Science.gov

Sample records for suppressor protein caveolin-1

  1. Quantitative Proteomics of Caveolin-1-regulated Proteins

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos; Sowa, Grzegorz; Derakhshan, Behrad; Lin, Michelle I.; Lee, Ji Y.; Zhao, Hongyu; Luo, Ruiyan; Colangelo, Christopher; Sessa, William C.

    2010-01-01

    Caveolae are organelles abundant in the plasma membrane of many specialized cells including endothelial cells (ECs), epithelial cells, and adipocytes, and in these cells, caveolin-1 (Cav-1) is the major coat protein essential for the formation of caveolae. To identify proteins that require Cav-1 for stable incorporation into membrane raft domains, a quantitative proteomics analysis using isobaric tagging for relative and absolute quantification was performed on rafts isolated from wild-type and Cav-1-deficient mice. In three independent experiments, 117 proteins were consistently identified in membrane rafts with the largest differences in the levels of Cav-2 and in the caveola regulatory proteins Cavin-1 and Cavin-2. Because the lung is highly enriched in ECs, we validated and characterized the role of the newly described protein Cavin-1 in several cardiovascular tissues and in ECs. Cavin-1 was highly expressed in ECs lining blood vessels and in cultured ECs. Knockdown of Cavin-1 reduced the levels of Cav-1 and -2 and weakly influenced the formation of high molecular weight oligomers containing Cav-1 and -2. Cavin-1 silencing enhanced basal nitric oxide release from ECs but blocked proangiogenic phenotypes such as EC proliferation, migration, and morphogenesis in vitro. Thus, these data support an important role of Cavin-1 as a regulator of caveola function in ECs. PMID:20585024

  2. Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells

    PubMed Central

    Song, Li; Ge, Shujun; Pachter, Joel S.

    2007-01-01

    Recent evidence from this laboratory indicated that reduced expression of caveolin-1 accompanied the diminished expression of tight junction (TJ)–associated proteins occludin and zonula occludens-1 (ZO-1) following stimulation of brain microvascular endothelial cells (BMECs) with the chemokine CCL2 (formerly called MCP-1). Because attenuated caveolin-1 levels have also been correlated with heightened permeability of other endothelia, the objective of this study was to test the hypothesis that reduced caveolin-1 expression is causally linked to the action of CCL2 on BMEC junctional protein expression and barrier integrity. This was achieved using adenovirus to nondestructively deliver caveolin-1 siRNA (Ad-siCav-1) to BMEC monolayers, which model the blood-brain barrier (BBB). Treatment with siRNA reduced the caveolin-1 protein level as well as occludin and ZO-1. Additionally, occludin exhibited dissociation from the cytoskeletal framework. These changes were attended by comparable alterations in adherens junction (AJ)–associated proteins, VE-cadherin and β-catenin, increased BMEC paracellular permeability, and facilitated the ability of CCL2 to stimulate monocytic transendothelial migration. Furthermore, treating BMECs with cavtratin, a synthetic cell-permeable peptide encoding the caveolin-1 scaffolding domain, antagonized effects of both Ad-siCav-1 and CCL2. These results collectively highlight caveolin-1 loss as a critical step in CCL2-induced modulation of BMEC junctional protein expression and integrity, and possibly serve a crucial role in regulating inflammation at the BBB. PMID:17023578

  3. Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways.

    PubMed

    Zhang, Jian; Lazarenko, Oxana P; Blackburn, Michael L; Badger, Thomas M; Ronis, Martin J J; Chen, Jin-Ran

    2014-07-01

    It has been suggested that the beneficial effects of soy protein isolate (SPI) on bone quality are due to either stimulation of estrogenic signaling via isoflavones or through a novel and as yet uncharacterized nonestrogenic pathway. In our study, SPI-fed rat serum inhibited the osteoblastic cell senescence pathway. This effect was accompanied by stimulation of cell differentiation, proliferation, and significant restoration of replicative senescent bone marrow mesenchymal ST2 cells (passaged 30 times). These effects were reproduced in bone from 5-wk-old intact and 10-wk-old ovariectomized female rats fed SPI diets. Caveolin-1 and p53 expression was decreased in bone in SPI-fed, but not in 17β-estradiol (E2)-treated rats. In cell culture studies, membranous caveolin-1 and nuclear p53 expression was greater in replicative senescent ST2 cell cultures than in earlier passaged cells. SPI-fed rat serum significantly down-regulated both caveolin-1 and p53 in senescent and nonsenescent cells. Replicative senescent ST2 cells exhibited a strong association among caveolin-1, p53, and mouse double minute 2 homologue (mdm2), which was inhibited by SPI-fed rat serum. Overexpression of caveolin-1 in ST2 cells resulted in increased expression of p53 and p21, whereas, knockdown of caveolin-1 using shRNA led to increases in mdm2 and eliminated SPI-fed rat serum's effects on p53 and p21 expression. In contrast, manipulation of caveolin-1 expression did not affect the actions of E2 or isoflavones on p53 expression in either ST2 or OB6 cells. These results suggest that caveolin-1 is a mediator of nonestrogenic SPI effects on bone cells.-Zhang, J., Lazarenko, O. P., Blackburn, M. L., Badger, T. M., Ronis, M. J. J., Chen, J.-R. Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways. PMID:24719353

  4. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    PubMed Central

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (P<0.05), while phytosterols significantly induced growth-suppression (P<0.05) and apoptosis. Cell cycle analysis showed that contrary to cholesterol, phytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1

  5. Increased PEA3/E1AF and decreased Net/Elk-3, both ETS proteins, characterize human NSCLC progression and regulate caveolin-1 transcription in Calu-1 and NCI-H23 NSCLC cell lines.

    PubMed

    Sloan, Karin A; Marquez, Hector A; Li, Jun; Cao, Yuxia; Hinds, Anne; O'Hara, Carl J; Kathuria, Satinder; Ramirez, Maria I; Williams, Mary C; Kathuria, Hasmeena

    2009-08-01

    Caveolin-1 protein has been called a 'conditional tumor suppressor' because it can either suppress or enhance tumor progression depending on cellular context. Caveolin-1 levels are dynamic in non-small-cell lung cancer, with increased levels in metastatic tumor cells. We have shown previously that transactivation of an erythroblastosis virus-transforming sequence (ETS) cis-element enhances caveolin-1 expression in a murine lung epithelial cell line. Based on high sequence homology between the murine and human caveolin-1 promoters, we proposed that ETS proteins might regulate caveolin-1 expression in human lung tumorigenesis. We confirm that caveolin-1 is not detected in well-differentiated primary lung tumors. Polyoma virus enhancer activator 3 (PEA3), a pro-metastatic ETS protein in breast cancer, is expressed at low levels in well-differentiated tumors and high levels in poorly differentiated tumors. Conversely, Net, a known ETS repressor, is expressed at high levels in the nucleus of well-differentiated primary tumor cells. In tumor cells in metastatic lymph node sites, caveolin-1 and PEA3 are highly expressed, whereas Net is now expressed in the cytoplasm. We studied transcriptional regulation of caveolin-1 in two human lung cancer cell lines, Calu-1 (high caveolin-1 expressing) and NCI-H23 (low caveolin-1 expressing). Chromatin immunoprecipitation-binding assays and small interfering RNA experiments show that PEA3 is a transcriptional activator in Calu-1 cells and that Net is a transcriptional repressor in NCI-H23 cells. These results suggest that Net may suppress caveolin-1 transcription in primary lung tumors and that PEA3 may activate caveolin-1 transcription in metastatic lymph nodes. PMID:19483189

  6. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells

    PubMed Central

    Bourseau-Guilmain, E.; Menard, J. A.; Lindqvist, E.; Indira Chandran, V.; Christianson, H. C.; Cerezo Magaña, M.; Lidfeldt, J.; Marko-Varga, G.; Welinder, C.; Belting, M.

    2016-01-01

    Hypoxia promotes tumour aggressiveness and resistance of cancers to oncological treatment. The identification of cancer cell internalizing antigens for drug targeting to the hypoxic tumour niche remains a challenge of high clinical relevance. Here we show that hypoxia down-regulates the surface proteome at the global level and, more specifically, membrane proteome internalization. We find that hypoxic down-regulation of constitutive endocytosis is HIF-independent, and involves caveolin-1-mediated inhibition of dynamin-dependent, membrane raft endocytosis. Caveolin-1 overexpression inhibits protein internalization, suggesting a general negative regulatory role of caveolin-1 in endocytosis. In contrast to this global inhibitory effect, we identify several proteins that can override caveolin-1 negative regulation, exhibiting increased internalization at hypoxia. We demonstrate antibody-mediated cytotoxin delivery and killing specifically of hypoxic cells through one of these proteins, carbonic anhydrase IX. Our data reveal that caveolin-1 modulates cell-surface proteome turnover at hypoxia with potential implications for specific targeting of the hypoxic tumour microenvironment. PMID:27094744

  7. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells.

    PubMed

    Bourseau-Guilmain, E; Menard, J A; Lindqvist, E; Indira Chandran, V; Christianson, H C; Cerezo Magaña, M; Lidfeldt, J; Marko-Varga, G; Welinder, C; Belting, M

    2016-01-01

    Hypoxia promotes tumour aggressiveness and resistance of cancers to oncological treatment. The identification of cancer cell internalizing antigens for drug targeting to the hypoxic tumour niche remains a challenge of high clinical relevance. Here we show that hypoxia down-regulates the surface proteome at the global level and, more specifically, membrane proteome internalization. We find that hypoxic down-regulation of constitutive endocytosis is HIF-independent, and involves caveolin-1-mediated inhibition of dynamin-dependent, membrane raft endocytosis. Caveolin-1 overexpression inhibits protein internalization, suggesting a general negative regulatory role of caveolin-1 in endocytosis. In contrast to this global inhibitory effect, we identify several proteins that can override caveolin-1 negative regulation, exhibiting increased internalization at hypoxia. We demonstrate antibody-mediated cytotoxin delivery and killing specifically of hypoxic cells through one of these proteins, carbonic anhydrase IX. Our data reveal that caveolin-1 modulates cell-surface proteome turnover at hypoxia with potential implications for specific targeting of the hypoxic tumour microenvironment. PMID:27094744

  8. Profibrogenic phenotype in caveolin-1 deficiency via differential regulation of STAT-1/3 proteins.

    PubMed

    Ryter, Stefan W; Choi, Augustine M K; Kim, Hong Pyo

    2014-10-01

    Fibrosis underlies the pathogenesis of several human diseases, which can lead to severe injury of vital organs. We previously demonstrated that caveolin-1 expression is reduced in experimental fibrosis and that caveolin-1 exerts antiproliferative and antifibrotic effects in lung fibrosis models. The signal transducers and activators of transcription (STAT) proteins, STAT1 and STAT3, can be activated simultaneously. STAT1 can inhibit cell growth and promote apoptosis while STAT3 inhibits apoptosis. Here, we show that caveolin-1-deficient (cav-1(-/-)) lung fibroblasts display dramatically upregulated STAT3 activation in response to platelet-derived growth factor-BB and transforming growth factor-β stimuli, whereas STAT1 activation is undetectable. Downregulation of protein tyrosine phosphatase-1B played a role in the preferential activation of STAT3 in cav-1(-/-) fibroblasts. Genetic deletion of STAT3 by siRNA modulated the expression of genes involved in cell proliferation and fibrogenesis. Basal expression of α-smooth muscle actin was prominent in cav-1(-/-) liver and kidney, consistent with deposition of collagen in these organs. Collectively, we demonstrate that the antiproliferative and antifibrogenic properties of caveolin-1 in vitro are mediated by the balance between STAT1 and STAT3 activation. Deregulated STAT signaling associated with caveolin-1 deficiency may be relevant to proliferative disorders such as tissue fibrosis. PMID:25263949

  9. Oxidative Stress Induces Premature Senescence by Stimulating Caveolin-1 Gene Transcription through p38 Mitogen-Activated Protein Kinase/Sp1–Mediated Activation of Two GC-Rich Promoter Elements

    PubMed Central

    Dasari, Arvind; Bartholomew, Janine N.; Volonte, Daniela; Galbiati, Ferruccio

    2015-01-01

    Cellular senescence is believed to represent a natural tumor suppressor mechanism. We have previously shown that up-regulation of caveolin-1 was required for oxidative stress–induced premature senescence in fibroblasts. However, the molecular mechanisms underlying caveolin-1 up-regulation in senescent cells remain unknown. Here, we show that subcytotoxic oxidative stress generated by hydrogen peroxide application promotes premature senescence and stimulates the activity of a (−1,296) caveolin-1 promoter reporter gene construct in fibroblasts. Functional deletion analysis mapped the oxidative stress response elements of the mouse caveolin-1 promoter to the sequences −244/−222 and −124/−101. The hydrogen peroxide–mediated activation of both Cav-1 (−244/−222) and Cav-1 (−124/−101) was prevented by the antioxidant quercetin. Combination of electrophoretic mobility shift studies, chromatin immunoprecipitation analysis, Sp1 overexpression experiments, as well as promoter mutagenesis identifies enhanced Sp1 binding to two GC-boxes at −238/−231 and −118/−106 as the core mechanism of oxidative stress–triggered caveolin-1 transactivation. In addition, signaling studies show p38 mitogen-activated protein kinase (MAPK) as the upstream regulator of Sp1-mediated activation of the caveolin-1 promoter following oxidative stress. Inhibition of p38 MAPK prevents the oxidant-induced Sp1-mediated up-regulation of caveolin-1 protein expression and development of premature senescence. Finally, we show that oxidative stress induces p38-mediated up-regulation of caveolin-1 and premature senescence in normal human mammary epithelial cells but not in MCF-7 breast cancer cells, which do not express caveolin-1 and undergo apoptosis. This study delineates for the first time the molecular mechanisms that modulate caveolin-1 gene transcription upon oxidative stress and brings new insights into the redox control of cellular senescence in both normal and cancer

  10. Caveolin-1 in sarcomas: friend or foe?

    PubMed Central

    Sáinz-Jaspeado, Miguel; Martin-Liberal, Juan; Lagares-Tena, Laura; Mateo-Lozano, Silvia; del Muro, Xavier Garcia; Tirado, Oscar M

    2011-01-01

    Sarcomas represent a heterogeneous group of tumors with a complex and difficult reproducible classification. Their pathogenesis is poorly understood and there are few effective treatment options for advanced disease. Caveolin-1 is a multifunctional scaffolding protein with multiple binding partners that regulates multiple cancer-associated processes including cellular transformation, tumor growth, cell death and survival, multidrug resistance, angiogenesis, cell migration and metastasis. However, ambiguous roles have been ascribed to caveolin-1 in signal transduction and cancer, including sarcomas. In particular, evidence indicating that caveolin-1 function is cell context dependent has been repeatedly reported. Caveolin-1 appears to act as a tumor suppressor protein at early stages of cancer progression. In contrast, a growing body of evidence indicates that caveolin-1 is up-regulated in several multidrug-resistant and metastatic cancer cell lines and human tumor specimens. This review is focused on the role of caveolin-1 in several soft tissue and bone sarcomas and discusses the use of this protein as a potential diagnostic and prognostic marker and as a therapeutic target. PMID:21471610

  11. Interaction with Caveolin-1 Modulates G Protein Coupling of Mouse β3-Adrenoceptor*

    PubMed Central

    Sato, Masaaki; Hutchinson, Dana S.; Halls, Michelle L.; Furness, Sebastian G. B.; Bengtsson, Tore; Evans, Bronwyn A.; Summers, Roger J.

    2012-01-01

    Caveolins act as scaffold proteins in multiprotein complexes and have been implicated in signaling by G protein-coupled receptors. Studies using knock-out mice suggest that β3-adrenoceptor (β3-AR) signaling is dependent on caveolin-1; however, it is not known whether caveolin-1 is associated with the β3-AR or solely with downstream signaling proteins. We have addressed this question by examining the impact of membrane rafts and caveolin-1 on the differential signaling of mouse β3a- and β3b-AR isoforms that diverge at the distal C terminus. Only the β3b-AR promotes pertussis toxin (PTX)-sensitive cAMP accumulation. When cells expressing the β3a-AR were treated with filipin III to disrupt membrane rafts or transfected with caveolin-1 siRNA, the cyclic AMP response to the β3-AR agonist CL316243 became PTX-sensitive, suggesting Gαi/o coupling. The β3a-AR C terminus, SP384PLNRF389DGY392EGARPF398PT, resembles a caveolin interaction motif. Mutant β3a-ARs (F389A/Y392A/F398A or P384S/F389A) promoted PTX-sensitive cAMP responses, and in situ proximity assays demonstrated an association between caveolin-1 and the wild type β3a-AR but not the mutant receptors. In membrane preparations, the β3b-AR activated Gαo and mediated PTX-sensitive cAMP responses, whereas the β3a-AR did not activate Gαi/o proteins. The endogenous β3a-AR displayed Gαi/o coupling in brown adipocytes from caveolin-1 knock-out mice or in wild type adipocytes treated with filipin III. Our studies indicate that interaction of the β3a-AR with caveolin inhibits coupling to Gαi/o proteins and suggest that signaling is modulated by a raft-enriched complex containing the β3a-AR, caveolin-1, Gαs, and adenylyl cyclase. PMID:22535965

  12. Calcium regulates caveolin-1 expression at the transcriptional level

    SciTech Connect

    Yang, Xiao-Yan; Huang, Cheng-Cheng; Kan, Qi-Ming; Li, Yan; Liu, Dan; Zhang, Xue-Cheng; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Caveolin-1 expression is regulated by calcium signaling at the transcriptional level. Black-Right-Pointing-Pointer An inhibitor of or siRNA to L-type calcium channel suppressed caveolin-1 expression. Black-Right-Pointing-Pointer Cyclosporine A or an NFAT inhibitor markedly reduced caveolin-1 expression. Black-Right-Pointing-Pointer Caveolin-1 regulation by calcium signaling is observed in several mouse cell lines. -- Abstract: Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca{sup 2+}/calcineurin/NFAT.

  13. Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation.

    PubMed

    Sun, Xing-Hui; Flynn, Daniel C; Castranova, Vincent; Millecchia, Lyndell L; Beardsley, Andrew R; Liu, Jun

    2007-03-01

    When cells are migrating, caveolin-1, the principal protein component of caveolae, is excluded from the leading edge and polarized at the cell rear. The dynamic feature depends on a specific sequence motif that directs intracellular trafficking of the protein. Deletion mutation analysis revealed a putative polarization domain at the N terminus of caveolin-1, between amino acids 32-60. Alanine substitution identified a minimal sequence of 10 residues ((46)TKEIDLVNRD(55)) necessary for caveolin-1 rear polarization. Interestingly, deletion of amino acids 1-60 did not prevent the polarization of caveolin-1 in human umbilical vein endothelial cells or wild-type mouse embryonic fibroblasts because of an interaction of Cav(61-178) mutant with endogenous caveolin-1. Surprisingly, expression of the depolarization mutant in caveolin-1 null cells dramatically impeded caveolae formation. Furthermore, knockdown of caveolae formation by methyl-beta-cyclodextrin failed to prevent wild-type caveolin-1 rear polarization. Importantly, genetic depletion of caveolin-1 led to disoriented migration, which can be rescued by full-length caveolin-1 but not the depolarization mutant, indicating a role of caveolin-1 polarity in chemotaxis. Thus, we have identified a sequence motif that is essential for caveolin-1 rear polarization and caveolae formation. PMID:17213184

  14. Elafin Reverses Pulmonary Hypertension via Caveolin-1–Dependent Bone Morphogenetic Protein Signaling

    PubMed Central

    Nickel, Nils P.; Spiekerkoetter, Edda; Gu, Mingxia; Li, Caiyun G.; Li, Hai; Kaschwich, Mark; Diebold, Isabel; Hennigs, Jan K.; Kim, Ki-Yoon; Miyagawa, Kazuya; Wang, Lingli; Cao, Aiqin; Sa, Silin; Jiang, Xinguo; Stockstill, Raymond W.; Nicolls, Mark R.; Zamanian, Roham T.; Bland, Richard D.

    2015-01-01

    Rationale: Pulmonary arterial hypertension is characterized by endothelial dysfunction, impaired bone morphogenetic protein receptor 2 (BMPR2) signaling, and increased elastase activity. Synthetic elastase inhibitors reverse experimental pulmonary hypertension but cause hepatotoxicity in clinical studies. The endogenous elastase inhibitor elafin attenuates hypoxic pulmonary hypertension in mice, but its potential to improve endothelial function and BMPR2 signaling, and to reverse severe experimental pulmonary hypertension or vascular pathology in the human disease was unknown. Objectives: To assess elafin-mediated regression of pulmonary vascular pathology in rats and in lung explants from patients with pulmonary hypertension. To determine if elafin amplifies BMPR2 signaling in pulmonary artery endothelial cells and to elucidate the underlying mechanism. Methods: Rats with pulmonary hypertension induced by vascular endothelial growth factor receptor blockade and hypoxia (Sugen/hypoxia) as well as lung organ cultures from patients with pulmonary hypertension were used to assess elafin-mediated reversibility of pulmonary vascular disease. Pulmonary arterial endothelial cells from patients and control subjects were used to determine the efficacy and mechanism of elafin-mediated BMPR2 signaling. Measurements and Main Results: In Sugen/hypoxia rats, elafin reduced elastase activity and reversed pulmonary hypertension, judged by regression of right ventricular systolic pressure and hypertrophy and pulmonary artery occlusive changes. Elafin improved endothelial function by increasing apelin, a BMPR2 target. Elafin induced apoptosis in human pulmonary arterial smooth muscle cells and decreased neointimal lesions in lung organ culture. In normal and patient pulmonary artery endothelial cells, elafin promoted angiogenesis by increasing pSMAD-dependent and -independent BMPR2 signaling. This was linked mechanistically to augmented interaction of BMPR2 with caveolin-1 via

  15. Blockade of CD26-mediated T cell costimulation with soluble caveolin-1-Ig fusion protein induces anergy in CD4{sup +}T cells

    SciTech Connect

    Ohnuma, Kei; Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 ; Uchiyama, Masahiko; Department of Computational Intelligence and System Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 ; Hatano, Ryo; Takasawa, Wataru; Endo, Yuko; Dang, Nam H.; Morimoto, Chikao; Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639

    2009-08-21

    CD26 binds to caveolin-1 in antigen-presenting cells (APC), and that ligation of CD26 by caveolin-1 induces T cell proliferation in a TCR/CD3-dependent manner. We report herein the effects of CD26-caveolin-1 costimulatory blockade by fusion protein caveolin-1-Ig (Cav-Ig). Soluble Cav-Ig inhibits T cell proliferation and cytokine production in response to recall antigen, or allogeneic APC. Our data hence suggest that blocking of CD26-associated signaling by soluble Cav-Ig may be an effective approach as immunosuppressive therapy.

  16. Fatty acid-binding protein 7 regulates function of caveolae in astrocytes through expression of caveolin-1.

    PubMed

    Kagawa, Yoshiteru; Yasumoto, Yuki; Sharifi, Kazem; Ebrahimi, Majid; Islam, Ariful; Miyazaki, Hirofumi; Yamamoto, Yui; Sawada, Tomoo; Kishi, Hiroko; Kobayashi, Sei; Maekawa, Motoko; Yoshikawa, Takeo; Takaki, Eiichi; Nakai, Akira; Kogo, Hiroshi; Fujimoto, Toyoshi; Owada, Yuji

    2015-05-01

    Fatty acid-binding proteins (FABPs) bind and solubilize long-chain fatty acids, controlling intracellular lipid dynamics. FABP7 is expressed by astrocytes in the developing brain, and suggested to be involved in the control of astrocyte lipid homeostasis. In this study, we sought to examine the role of FABP7 in astrocytes, focusing on plasma membrane lipid raft function, which is important for receptor-mediated signal transduction in response to extracellular stimuli. In FABP7-knockout (KO) astrocytes, the ligand-dependent accumulation of Toll-like receptor 4 (TLR4) and glial cell-line-derived neurotrophic factor receptor alpha 1 into lipid raft was decreased, and the activation of mitogen-activated protein kinases and nuclear factor-κB was impaired after lipopolysaccharide (LPS) stimulation when compared with wild-type astrocytes. In addition, the expression of caveolin-1, not cavin-1, 2, 3, caveolin-2, and flotillin-1, was found to be decreased at the protein and transcriptional levels. FABP7 re-expression in FABP7-KO astrocytes rescued the decreased level of caveolin-1. Furthermore, caveolin-1-transfection into FABP7-KO astrocytes significantly increased TLR4 recruitment into lipid raft and tumor necrosis factor-α production after LPS stimulation. Taken together, these data suggest that FABP7 controls lipid raft function through the regulation of caveolin-1 expression and is involved in the response of astrocytes to the external stimuli. GLIA 2015;63:780-794. PMID:25601031

  17. The caveolin-1 connection to cell death and survival.

    PubMed

    Quest, A F G; Lobos-González, L; Nuñez, S; Sanhueza, C; Fernández, J-G; Aguirre, A; Rodríguez, D; Leyton, L; Torres, V

    2013-02-01

    Caveolins are a family of membrane proteins required for the formation of small plasma membrane invaginations called caveolae that are implicated in cellular trafficking processes. In addition to this structural role, these scaffolding proteins modulate numerous intracellular signaling pathways; often via direct interaction with specific binding partners. Caveolin-1 is particularly well-studied in this respect and has been attributed a large variety of functions. Thus, Caveolin-1 also represents the best-characterized isoform of this family with respect to its participation in cancer. Rather strikingly, available evidence indicates that Caveolin-1 belongs to a select group of proteins that function, depending on the cellular settings, both as tumor suppressor and promoter of cellular traits commonly associated with enhanced malignant behavior, such as metastasis and multi-drug resistance. The mechanisms underlying such ambiguity in Caveolin-1 function constitute an area of great interest. Here, we will focus on discussing how Caveolin-1 modulates cell death and survival pathways and how this may contribute to a better understanding of the ambiguous role this protein plays in cancer. PMID:23228128

  18. Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability

    SciTech Connect

    Zhou Huimin; Jia Li; Wang Shujing; Wang Hongmei; Chu Haiying; Hu Yichuan; Cao Jun; Zhang Jianing . E-mail: jnzhang@dlmedu.edu.cn

    2006-06-23

    Caveolin-1 is the major component protein of caveolae and associated with a lot of cellular events such as endocytosis, cholesterol homeostasis, signal transduction, and tumorigenesis. The majority of results suggest that caveolin-1 might not only act as a tumor suppressor gene but also a promoting metastasis gene. In this study, the divergent expression and roles of caveolin-1 were investigated in mouse hepatocarcinoma cell lines Hca-F, Hca-P, and Hepa1-6, which have high, low, and no metastatic potential in the lymph nodes, as compared with normal mouse liver cell line IAR-20. The results showed that expression of caveolin-1 mRNA and protein along with the amount of caveolae number in Hca-F cells was higher than that in Hca-P cells, but was not detectable in Hepa1-6 cells. When caveolin-1 expression in Hca-F cells was down-regulated by RNAi approach, Hca-F cells proliferation rate in vitro declined and the expression of lymphangiogenic factor VEGFA in Hca-F decreased as well. Furthermore, in vivo implantation assay indicated that reduction of caveolin-1 expression in Hca-F prevented the lymphatic metastasis tumor burden of Hca-F cells in 615 mice. These results suggest that caveolin-1 facilities the lymphatic metastasis ability of mouse hepatocarcinoma cells via regulation tumor cell growth and VEGFA expression.

  19. Escherichia coli K1 internalization via caveolae requires caveolin-1 and protein kinase Calpha interaction in human brain microvascular endothelial cells.

    PubMed

    Sukumaran, Sunil K; Quon, Michael J; Prasadarao, Nemani V

    2002-12-27

    The morbidity and mortality associated with Escherichia coli K1 meningitis during the neonatal period have remained significant over the last decade and are once again on the rise. Transcytosis of brain microvascular endothelial cells (BMEC) by E. coli within an endosome to avoid lysosomal fusion is crucial for dissemination into the central nervous system. Central to E. coli internalization of BMEC is the expression of OmpA (outer membrane protein A), which interacts with its receptor for the actin reorganization that leads to invasion. However, nothing is known about the nature of the signaling events for the formation of endosomes containing E. coli K1. We show here that E. coli K1 infection of human BMEC (HBMEC) results in activation of caveolin-1 for bacterial uptake via caveolae. The interaction of caveolin-1 with phosphorylated protein kinase Calpha (PKCalpha) at the E. coli attachment site is critical for the invasion of HBMEC. Optical sectioning of confocal images of infected HBMEC indicates continuing association of caveolin-1 with E. coli during transcytosis. Overexpression of a dominant-negative form of caveolin-1 containing mutations in the scaffolding domain blocked the interaction of phospho-PKCalpha with caveolin-1 and the E. coli invasion of HBMEC, but not actin cytoskeleton rearrangement or the phosphorylation of PKCalpha. The interaction of caveolin-1 with phospho-PKCalpha was completely abrogated in HBMEC overexpressing dominant-negative forms of either focal adhesion kinase or PKCalpha. Treatment of HBMEC with a cell-permeable peptide that represents the scaffolding domain, which was coupled to an antennapedia motif of a Drosophila transcription factor significantly blocked the interaction of caveolin-1 with phospho-PKCalpha and E. coli invasion. These results show that E. coli K1 internalizes HBMEC via caveolae and that the scaffolding domain of caveolin-1 plays a significant role in the formation of endosomes. PMID:12386163

  20. Display of membrane proteins on the heterologous caveolae carved by caveolin-1 in the Escherichia coli cytoplasm.

    PubMed

    Shin, Jonghyeok; Jung, Young-Hun; Cho, Da-Hyeong; Park, Myungseo; Lee, Kyung Eun; Yang, Yoosoo; Jeong, Cherlhyun; Sung, Bong Hyun; Sohn, Jung-Hoon; Park, Jin-Byung; Kweon, Dae-Hyuk

    2015-11-01

    Caveolae are membrane-budding structures that exist in many vertebrate cells. One of the important functions of caveolae is to form membrane curvature and endocytic vesicles. Recently, it was shown that caveolae-like structures were formed in Escherichia coli through the expression of caveolin-1. This interesting structure seems to be versatile for a variety of biotechnological applications. Targeting of heterologous proteins in the caveolae-like structure should be the first question to be addressed for this purpose. Here we show that membrane proteins co-expressed with caveolin-1 are embedded into the heterologous caveolae (h-caveolae), the cavaolae-like structures formed inside the cell. Two transmembrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, Syntaxin 1a and vesicle-associated membrane protein 2 (VAMP2), were displayed on the h-caveolae surface. The size of the h-caveolae harboring the transmembrane proteins was ∼100 nm in diameter. The proteins were functional and faced outward on the h-caveolae. Multi-spanning transmembrane proteins FtsH and FeoB could be included in the h-caveolae, too. Furthermore, the recombinant E. coli cells were shown to endocytose substrate supplemented in the medium. These results provide a basis for exploiting the h-caveolae formed inside E. coli cells for future biotechnological applications. PMID:26320715

  1. Up-regulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent

    SciTech Connect

    Majkova, Zuzana; Smart, Eric; Toborek, Michal; Hennig, Bernhard

    2009-05-15

    Atherosclerosis, the primary cause of heart disease and stroke is initiated in the vascular endothelium, and risk factors for its development include environmental exposure to persistent organic pollutants. Caveolae are membrane microdomains involved in regulation of many signaling pathways, and in particular in endothelial cells. We tested the hypothesis that intact caveolae are required for coplanar PCB77-induced up-regulation of monocyte chemoattractant protein-1 (MCP-1), an endothelium-derived chemokine that attracts monocytes into sub-endothelial space in early stages of the atherosclerosis development. Atherosclerosis-prone LDL-R{sup -/-} mice (control) or caveolin-1{sup -/-}/LDL-R{sup -/-} mice were treated with PCB77. PCB77 induced aortic mRNA expression and plasma protein levels of MCP-1 in control, but not caveolin-1{sup -/-}/LDL-R{sup -/-} mice. To study the mechanism of this effect, primary endothelial cells were used. PCB77 increased MCP-1 levels in endothelial cells in a time- and concentration-dependent manner. This effect was abolished by caveolin-1 silencing using siRNA. Also, MCP-1 up-regulation by PCB77 was prevented by inhibiting p38 and c-Jun N-terminal kinase (JNK), but not ERK1/2, suggesting regulatory functions via p38 and JNK MAPK pathways. Finally, pre-treatment of endothelial cells with the aryl hydrocarbon receptor (AhR) inhibitor {alpha}-naphthoflavone ({alpha}-NF) partially blocked MCP-1 up-regulation. Thus, our data demonstrate that coplanar PCB77 can induce MCP-1 expression by endothelial cells and that this effect is mediated by AhR, as well as p 38 and JNK MAPK pathways. Intact caveolae are required for these processes both in vivo and in vitro. This further supports a key role for caveolae in vascular inflammation induced by persistent organic pollutants.

  2. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum.

    PubMed

    Schlegel, A; Arvan, P; Lisanti, M P

    2001-02-01

    Caveolin-1 serves as the main coat protein of caveolae membranes, as an intracellular cholesterol shuttle, and as a regulator of diverse signaling molecules. Of the 12 residues conserved across all caveolin isoforms from all species examined to date, only Ser(80) and Ser(168) could serve as phosphorylation sites. We show here that mimicking chronic phosphorylation of Ser(80) by mutation to Glu (i.e. Cav-1(S80E)), blocks phosphate incorporation. However, Cav-1(S168E) is phosphorylated to the same extent as wild-type caveolin-1. Cav-1(S80E) targets to the endoplasmic reticulum membrane, remains oligomeric, and maintains normal membrane topology. In contrast, Cav-1(S80A), which cannot be phosphorylated, targets to caveolae membranes. Some exocrine cells secrete caveolin-1 in a regulated manner. Cav-1(S80A) is not secreted by AR42J pancreatic adenocarcinoma cells even in the presence of dexamethasone, an agent that induces the secretory phenotype. Conversely, Cav-1(S80E) is secreted to a greater extent than wild-type caveolin-1 following dexamethasone treatment. We conclude that caveolin-1 phosphorylation on invariant serine residue 80 is required for endoplasmic reticulum retention and entry into the regulated secretory pathway. PMID:11078729

  3. Direct Regulation of TLR5 Expression by Caveolin-1

    PubMed Central

    Lim, Jae Sung; Nguyen, Kim Cuc Thi; Han, Jung Min; Jang, Ik-Soon; Fabian, Claire; Cho, Kyung A

    2015-01-01

    Toll-like receptor 5 (TLR5) is a specific receptor for microbial flagellin and is one of the most well-known receptors in the TLR family. We reported previously that TLR5 signaling is well maintained during aging and that caveolin-1 may be involved in TLR5 signaling in aged macrophages through direct interactions. Therefore, it is important to clarify whether caveolin-1/TLR5 interactions affect TLR5 expression during aging. To assess the effect of caveolin-1 on TLR5, we analyzed TLR5 expression in senescent fibroblasts and aged tissues expressing high levels of caveolin-1. As expected, TLR5 mRNA and protein expression was well maintained in senescent fibroblasts and aged tissues, whereas TLR4 mRNA and protein were diminished in those cells and tissues. To determine the mechanism of caveolin-1-dependent TLR5 expression, we examined TLR5 expression in caveolin-1 deficient mice. Interestingly, TLR5 mRNA and protein levels were decreased dramatically in tissues from caveolin-1 knockout mice. Moreover, overexpressed caveolin-1 in vitro enhanced TLR5 mRNA through the MAPK pathway and prolonged TLR5 protein half-life through direct interaction. These results suggest that caveolin-1 may play a crucial role in maintaining of TLR5 by regulating transcription systems and increasing protein half-life. PMID:26615831

  4. Direct Regulation of TLR5 Expression by Caveolin-1.

    PubMed

    Lim, Jae Sung; Nguyen, Kim Cuc Thi; Han, Jung Min; Jang, Ik-Soon; Fabian, Claire; Cho, Kyung A

    2015-12-01

    Toll-like receptor 5 (TLR5) is a specific receptor for microbial flagellin and is one of the most well-known receptors in the TLR family. We reported previously that TLR5 signaling is well maintained during aging and that caveolin-1 may be involved in TLR5 signaling in aged macrophages through direct interactions. Therefore, it is important to clarify whether caveolin-1/TLR5 interactions affect TLR5 expression during aging. To assess the effect of caveolin-1 on TLR5, we analyzed TLR5 expression in senescent fibroblasts and aged tissues expressing high levels of caveolin-1. As expected, TLR5 mRNA and protein expression was well maintained in senescent fibroblasts and aged tissues, whereas TLR4 mRNA and protein were diminished in those cells and tissues. To determine the mechanism of caveolin-1-dependent TLR5 expression, we examined TLR5 expression in caveolin-1 deficient mice. Interestingly, TLR5 mRNA and protein levels were decreased dramatically in tissues from caveolin-1 knockout mice. Moreover, overexpressed caveolin-1 in vitro enhanced TLR5 mRNA through the MAPK pathway and prolonged TLR5 protein half-life through direct interaction. These results suggest that caveolin-1 may play a crucial role in maintaining of TLR5 by regulating transcription systems and increasing protein half-life. PMID:26615831

  5. Integrin α1β1 Promotes Caveolin-1 Dephosphorylation by Activating T Cell Protein-tyrosine Phosphatase*

    PubMed Central

    Borza, Corina M.; Chen, Xiwu; Mathew, Sijo; Mont, Stacey; Sanders, Charles R.; Zent, Roy; Pozzi, Ambra

    2010-01-01

    Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury. PMID:20940300

  6. Integrin {alpha}1{beta}1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase.

    PubMed

    Borza, Corina M; Chen, Xiwu; Mathew, Sijo; Mont, Stacey; Sanders, Charles R; Zent, Roy; Pozzi, Ambra

    2010-12-17

    Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury. PMID:20940300

  7. Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been suggested that the beneficial effects of soy protein isolate (SPI) on bone quality might be due to either stimulation of estrogenic signaling via isoflavones or through a novel and as yet characterized non-estrogenic pathway. We report here that SPI-fed rat serum inhibited osteoblastic c...

  8. Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression.

    PubMed

    Rodriguez, Diego A; Tapia, Julio C; Fernandez, Jaime G; Torres, Vicente A; Muñoz, Nicolas; Galleguillos, Daniela; Leyton, Lisette; Quest, Andrew F G

    2009-04-01

    Augmented expression of cyclooxygenase-2 (COX-2) and enhanced production of prostaglandin E(2) (PGE(2)) are associated with increased tumor cell survival and malignancy. Caveolin-1 is a scaffold protein that has been proposed to function as a tumor suppressor in human cancer cells, although mechanisms underlying this ability remain controversial. Intriguingly, the possibility that caveolin-1 regulates the expression of COX-2 has not been explored. Here we show that augmented caveolin-1 expression in cells with low basal levels of this protein, such as human colon cancer (HT29, DLD-1), breast cancer (ZR75), and embryonic kidney (HEK293T) cells reduced COX-2 mRNA and protein levels and beta-catenin-Tcf/Lef and COX-2 gene reporter activity, as well as the production of PGE(2) and cell proliferation. Moreover, COX-2 overexpression or PGE(2) supplementation increased levels of the inhibitor of apoptosis protein survivin by a transcriptional mechanism, as determined by PCR analysis, survivin gene reporter assays and Western blotting. Furthermore, addition of PGE(2) to the medium prevented effects attributed to caveolin-1-mediated inhibition of beta-catenin-Tcf/Lef-dependent transcription. Finally, PGE(2) reduced the coimmunoprecipitation of caveolin-1 with beta-catenin and their colocalization at the plasma membrane. Thus, by reducing COX-2 expression, caveolin-1 interrupts a feedback amplification loop involving PGE(2)-induced signaling events linked to beta-catenin/Tcf/Lef-dependent transcription of tumor survival genes including cox-2 itself and survivin. PMID:19244345

  9. Overexpression of caveolin-1 is sufficient to phenocopy the behavior of a disease-associated mutant

    PubMed Central

    Hanson, Caroline A.; Drake, Kimberly R.; Baird, Michelle A.; Han, Bing; Kraft, Lewis J.; Davidson, Michael W.; Kenworthy, Anne K.

    2013-01-01

    Mutations and alterations in caveolin-1 expression levels have been linked to a number of human diseases. How misregulation of caveolin-1 contributes to disease is not fully understood, but has been proposed to involve the intracellular accumulation of mutant forms of the protein. To better understand the molecular basis for trafficking defects that trap caveolin-1 intracellularly, we compared the properties of a GFP-tagged version of caveolin-1 P132L, a mutant form of caveolin-1 previously linked to breast cancer, with wild type caveolin-1. Unexpectedly, wild type caveolin-1-GFP also accumulated intracellularly, leading us to examine the mechanisms underlying the abnormal localization of the wild type and mutant protein in more detail. We show that both the nature of the tag and cellular context impact the subcellular distribution of caveolin-1, demonstrate that even the wild type form of caveolin-1 can function as a dominant negative under some conditions, and identify specific conformation changes associated with incorrectly targeted forms of the protein. In addition, we find intracellular caveolin-1 is phosphorylated on Tyr14, but phosphorylation is not required for mistrafficking of the protein. These findings identify novel properties of mistargeted forms of caveolin-1 and raise the possibility that common trafficking defects underlie diseases associated with overexpression and mutations in caveolin-1. PMID:23469926

  10. Caveolin-1 and -2 in the Exocytic Pathway of MDCK Cells

    PubMed Central

    Scheiffele, P.; Verkade, P.; Fra, A.M.; Virta, H.; Simons, K.; Ikonen, E.

    1998-01-01

    Abstract. We have studied the biosynthesis and transport of the endogenous caveolins in MDCK cells. We show that in addition to homooligomers of caveolin-1, heterooligomeric complexes of caveolin-1 and -2 are formed in the ER. The oligomers become larger, increasingly detergent insoluble, and phosphorylated on caveolin-2 during transport to the cell surface. In the TGN caveolin-1/-2 heterooligomers are sorted into basolateral vesicles, whereas larger caveolin-1 homooligomers are targeted to the apical side. Caveolin-1 is present on both the apical and basolateral plasma membrane, whereas caveolin-2 is enriched on the basolateral surface where caveolae are present. This suggests that caveolin-1 and -2 heterooligomers are involved in caveolar biogenesis in the basolateral plasma membrane. Anti–caveolin-1 antibodies inhibit the apical delivery of influenza virus hemagglutinin without affecting basolateral transport of vesicular stomatitis virus G protein. Thus, we suggest that caveolin-1 homooligomers play a role in apical transport. PMID:9472032

  11. Caveolin-1 overexpression in benign and malignant salivary gland tumors.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad Javad; Nazhvani, Ali Dehghani; Azizi, Zahra

    2016-02-01

    Caveolin-1, a tyrosine-phosphorylated protein, is supposed to have different regulatory roles as promoter or suppressor in many human cancers. However, no published study concerned its expression in benign and malignant salivary gland tumors. The aim of this study was to evaluate and compare the expression of Cav-1 in the most common benign and malignant salivary gland tumors and evaluate its correlation with proliferation activity. In this cross-sectional retrospective study, immunohistochemical expression of caveolin-1 and Ki67 were evaluated in 49 samples, including 11 normal salivary glands, 15 cases of pleomorphic adenoma (PA), 13 adenoid cystic carcinomas (AdCC), and 10 mucoepidermoid carcinomas (MEC). The expression of Cav-1 was seen in 18 % of normal salivary glands and 85 % of tumors. The immunoreaction in the tumors was significantly higher than normal tissues (P = 0.001), but the difference between benign and malignant tumors was not significant (P = 0.07). Expression of Cav-1 was correlated with Ki67 labeling index in PAs, but not in malignant tumors. Cav-1 expression was not in association with tumor size and stage. Overexpression of Cav-1 was found in salivary gland tumors in comparison with normal tissues, but no significant difference was observed between benign and malignant tumors. Cav-1 was inversely correlated with proliferation in PA. Therefore, this marker may participate in tumorigenesis of salivary gland tumors and may be a potential biomarker for cancer treatments. PMID:26323261

  12. Caveolin-1, a stress-related oncotarget, in drug resistance

    PubMed Central

    Wang, Zhiyu; Wang, Neng; Liu, Pengxi; Peng, Fu; Tang, Hailin; Chen, Qianjun; Xu, Rui; Dai, Yan; Lin, Yi; Xie, Xiaoming; Peng, Cheng; Situ, Honglin

    2015-01-01

    Caveolin-1 (Cav-1) is both a tumor suppressor and an oncoprotein. Cav-1 overexpression was frequently confirmed in advanced cancer stages and positively associated with ABC transporters, cancer stem cell populations, aerobic glycolysis activity and autophagy. Cav-1 was tied to various stresses including radiotherapy, fluid shear and oxidative stresses and ultraviolet exposure, and interacted with stress signals such as AMP-activated protein kinase. Finally, a Cav-1 fluctuation model during cancer development is provided and Cav-1 is suggested to be a stress signal and cytoprotective. Loss of Cav-1 may increase susceptibility to oncogenic events. However, research to explore the underlying molecular network between Cav-1 and stress signals is warranted. PMID:26431273

  13. Role of caveolin-1 in the regulation of lipoprotein metabolism

    PubMed Central

    Frank, Philippe G.; Pavlides, Stephanos; Cheung, Michelle W.-C.; Daumer, Kristin; Lisanti, Michael P.

    2008-01-01

    Lipoprotein metabolism plays an important role in the development of several human diseases, including coronary artery disease and the metabolic syndrome. A good comprehension of the factors that regulate the metabolism of the various lipoproteins is therefore key to better understanding the variables associated with the development of these diseases. Among the players identified are regulators such as caveolins and caveolae. Caveolae are small plasma membrane invaginations that are observed in terminally differentiated cells. Their most important protein marker, caveolin-1, has been shown to play a key role in the regulation of several cellular signaling pathways and in the regulation of plasma lipoprotein metabolism. In the present paper, we have examined the role of caveolin-1 in lipoprotein metabolism using caveolin-1-deficient (Cav-1−/−) mice. Our data show that, while Cav-1−/− mice show increased plasma triglyceride levels, they also display reduced hepatic very low-density lipoprotein (VLDL) secretion. Additionally, we also found that a caveolin-1 deficiency is associated with an increase in high-density lipoprotein (HDL), and these HDL particles are enriched in cholesteryl ester in Cav-1−/− mice when compared with HDL obtained from wild-type mice. Finally, our data suggest that a caveolin-1 deficiency prevents the transcytosis of LDL across endothelial cells, and therefore, that caveolin-1 may be implicated in the regulation of plasma LDL levels. Taken together, our studies suggest that caveolin-1 plays an important role in the regulation of lipoprotein metabolism by controlling their plasma levels as well as their lipid composition. Thus caveolin-1 may also play an important role in the development of atherosclerosis. PMID:18508910

  14. Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible

    NASA Technical Reports Server (NTRS)

    Parat, M. O.; Fox, P. L.

    2001-01-01

    Caveolin-1 is a palmitoylated protein involved in assembly of signaling molecules in plasma membrane subdomains termed caveolae and in intracellular cholesterol transport. Three cysteine residues in the C terminus of caveolin-1 are subject to palmitoylation, which is not necessary for caveolar targeting of caveolin-1. Protein palmitoylation is a post-translational and reversible modification that may be regulated and that in turn may regulate conformation, membrane association, protein-protein interactions, and intracellular localization of the target protein. We have undertaken a detailed analysis of [(3)H]palmitate incorporation into caveolin-1 in aortic endothelial cells. The linkage of palmitate to caveolin-1 was hydroxylamine-sensitive and thus presumably a thioester bond. However, contrary to expectations, palmitate incorporation was blocked completely by the protein synthesis inhibitors cycloheximide and puromycin. In parallel experiments to show specificity, palmitoylation of aortic endothelial cell-specific nitric-oxide synthase was unaffected by these reagents. Inhibitors of protein trafficking, brefeldin A and monensin, blocked caveolin-1 palmitoylation, indicating that the modification was not cotranslational but rather required caveolin-1 transport from the endoplasmic reticulum and Golgi to the plasma membrane. In addition, immunophilin chaperones that form complexes with caveolin-1, i.e. FK506-binding protein 52, cyclophilin A, and cyclophilin 40, were not necessary for caveolin-1 palmitoylation because agents that bind immunophilins did not inhibit palmitoylation. Pulse-chase experiments showed that caveolin-1 palmitoylation is essentially irreversible because the release of [(3)H]palmitate was not significant even after 24 h. These results show that [(3)H]palmitate incorporation is limited to newly synthesized caveolin-1, not because incorporation only occurs during synthesis but because the continuous presence of palmitate on caveolin-1 prevents

  15. Regulation of Phagolysosomal Digestion by Caveolin-1 of the Retinal Pigment Epithelium Is Essential for Vision.

    PubMed

    Sethna, Saumil; Chamakkala, Tess; Gu, Xiaowu; Thompson, Timothy C; Cao, Guangwen; Elliott, Michael H; Finnemann, Silvia C

    2016-03-18

    Caveolin-1 associates with the endo/lysosomal machinery of cells in culture, suggesting that it functions at these organelles independently of its contribution to cell surface caveolae. Here we explored mice lacking caveolin-1 specifically in the retinal pigment epithelium (RPE). The RPE supports neighboring photoreceptors via diurnal phagocytosis of spent photoreceptor outer segment fragments. Like mice lacking caveolin-1 globally, (RPE)CAV1(-/-) mice developed a normal RPE and neural retina but showed reduced rod photoreceptor light responses, indicating that lack of caveolin-1 affects photoreceptor function in a non-cell-autonomous manner. (RPE)CAV1(-/-) RPE in situ showed normal particle engulfment but delayed phagosome clearance and reversed diurnal profiles of levels and activities of lysosomal enzymes. Therefore, eliminating caveolin-1 specifically impairs phagolysosomal degradation by the RPE in vivo. Endogenous caveolin-1 was recruited to maturing phagolysosomes in RPE cells in culture. Consistent with these in vivo data, a moderate increase (to ∼ 2.5-fold) or decrease (by half) of caveolin-1 protein levels in RPE cells in culture was sufficient to accelerate or impair phagolysosomal digestion, respectively. A mutant form of caveolin-1 that fails to reach the cell surface augmented degradation like wild-type caveolin-1. Acidic lysosomal pH and increased protease activity are essential for digestion. We show that halving caveolin-1 protein levels significantly alkalinized lysosomal pH and decreased lysosomal enzyme activities. Taken together, our results reveal a novel role for intracellular caveolin-1 in modulating phagolysosomal function. Moreover, they show, for the first time, that organellar caveolin-1 significantly affects tissue functionality in vivo. PMID:26814131

  16. Loss of Caveolin 1 is Associated With the Expression of Aquaporin 1 and Bladder Dysfunction in Mice

    PubMed Central

    Jung, Seheon; Kim, Sun-Ouck; Cho, Kyung-Aa; Song, Seung Hee; Kang, Teak Won; Park, Kwangsung; Kwon, Dongdeuk

    2015-01-01

    Purpose: It is suggested that caveolin and aquaporin might be closely associated with bladder signal activity. We investigated the effect of the deletion of caveolin 1, using caveolin 1 knockout mice, on the expression of aquaporin 1 in order to identify their relation in the urothelium of the urinary bladder. Methods: The cellular localization and expressions of aquaporin 1 and caveolin 1, in the wild type and caveolin 1 knockout mice urinary bladder, were examined by Western blot and immunofluorescence techniques. Results: Aquaporin 1 and caveolin 1 were coexpressed in the arterioles, venules, and capillaries of the suburothelial layer in the wild type controls. Aquaporin 1 protein expression was significantly higher in the caveolin 1 knockout mice than in the wild type controls (P <0.05). Conclusions: The results imply that aquaporin 1 and caveolin 1 may share a distinct relation with the bladder signal activity. This might play a specific role in bladder dysfunction. PMID:25833479

  17. siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway.

    PubMed

    Miyawaki-Shimizu, Kayo; Predescu, Dan; Shimizu, Jun; Broman, Michael; Predescu, Sanda; Malik, Asrar B

    2006-02-01

    Caveolin-1, the principal integral membrane protein of caveolae, has been implicated in regulating the structural integrity of caveolae, vesicular trafficking, and signal transduction. Although the functions of caveolin-1 are beginning to be explored in caveolin-1-/- mice, these results are confounded by unknown compensatory mechanisms and the development of pulmonary hypertension, cardiomyopathy, and lung fibrosis. To address the role of caveolin-1 in regulating lung vascular permeability, in the present study we used small interfering RNA (siRNA) to knock down caveolin-1 expression in mouse lung endothelia in vivo. Intravenous injection of siRNA against caveolin-1 mRNA incorporated in liposomes selectively reduced the expression of caveolin-1 by approximately 90% within 96 h of injection compared with wild-type mice. We observed the concomitant disappearance of caveolae in lung vessel endothelia and dilated interendothelial junctions (IEJs) as well as increased lung vascular permeability to albumin via IEJs. The reduced caveolin-1 expression also resulted in increased plasma nitric oxide concentration. The nitric oxide synthase inhibitor L-NAME, in part, blocked the increased vascular albumin permeability. These morphological and functional effects of caveolin-1 knockdown were reversible within 168 h after siRNA injection, corresponding to the restoration of caveolin-1 expression. Thus our results demonstrate the essential requirement of caveolin-1 in mediating the formation of caveolae in endothelial cells in vivo and in negatively regulating IEJ permeability. PMID:16183667

  18. Caveolin-1 signaling in lung fibrosis.

    PubMed

    Tourkina, Elena; Hoffman, Stanley

    2012-01-01

    Caveolin-1 is a master regulator of several signaling cascades because it is able to bind to and thereby inhibit members of a variety of kinase families. While associated with caveolae and involved in their generation, caveolin-1 is also present at other sites. A variety of studies have suggested that caveolin-1 may be a useful therapeutic target in fibrotic diseases of the lung and other tissues because in these diseases a low level of caveolin-1 expression is associated with a high level of collagen expression and fibrosis. Reduced caveolin-1 expression is observed not only in the fibroblasts that secrete collagen, but also in epithelial cells and monocytes. This is intriguing because both epithelial cells and monocytes have been suggested to be precursors of fibroblasts. Likely downstream effects of loss of caveolin-1 in fibrosis include activation of TGF-β signaling and upregulation of CXCR4 in monocytes resulting in their enhanced migration into damaged tissue where its ligand CXCL12 is produced. Finally, it may be possible to target caveolin-1 in fibrotic diseases without the use of gene therapy. A caveolin-1 peptide (caveolin-1 scaffolding domain) has been identified that retains the function of the full-length molecule to inhibit kinases and that can be modified by addition of the Antennapedia internalization sequence to allow it to enter cells both in vitro and in vivo. PMID:22802909

  19. Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development.

    PubMed

    Shi, Lu; Li, Lingyun; Wang, Ding; Li, Shu; Chen, Zhi; An, Zhengwen

    2016-06-01

    Caveolin-1 is a scaffolding protein involved in the formation of cholesterol-rich caveolae lipid rafts within the plasma membrane and is capable of collecting signaling molecules into the caveolae and regulating their activity, including extracellular matrix metalloproteinase inducer (EMMPRIN). However, detailed expression patterns of caveolin-1 and EMMPRIN in the developing dental germ are largely unknown. The present study investigated the expression patterns of caveolin-1 and EMMPRIN in the developing mouse tooth germ by immunohistochemistry and real-time polymerase chain reaction. At the bud stage, caveolin-1 expression was initiated in the epithelium bud and mesenchymal cells, while EMMPRIN was weakly expressed at this stage. At the cap stage, caveolin-1 protein was located in the lingual part of the tooth germ; however, EMMPRIN protein was located in the labial part. From the bell stage to 2 days postnatal, caveolin-1 expression was detected in the ameloblasts and cervical loop area; with EMMPRIN expression in the ameloblasts and odontoblasts. Real-time polymerase chain reaction results showed that both caveolin-1 and EMMPRIN mRNA levels increased gradually with progression of developmental stages, and peaked at day two postnatal. The current finding suggests that both caveolin-1 and EMMPRIN take part in mouse tooth development, especially in the differentiation and organization of odontogenic tissues. PMID:27075451

  20. High Mobility Group Box Protein 1 Boosts Endothelial Albumin Transcytosis through the RAGE/Src/Caveolin-1 Pathway.

    PubMed

    Shang, Dan; Peng, Tao; Gou, Shanmiao; Li, Yiqing; Wu, Heshui; Wang, Chunyou; Yang, Zhiyong

    2016-01-01

    High-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to destroy cell-cell junctions, resulting in vascular endothelial hyperpermeability. Here, we report that HMGB1 increases the endothelial transcytosis of albumin. In mouse lung vascular endothelial cells (MLVECs), HMGB1 at a concentration of 500 ng/ml or less did not harm cell-cell junctions but rapidly induced endothelial hyperpermeability to (125)I-albumin. HMGB1 induced an increase in (125)I-albumin and AlexaFluor 488-labeled albumin internalization in endocytosis assays. Depletion of receptor for advanced glycation end products (RAGE), but not TLR2 or TLR4, suppressed HMGB1-induced albumin transcytosis and endocytosis. Genetic and pharmacological destruction of lipid rafts significantly inhibited HMGB1-induced albumin endocytosis and transcytosis. HMGB1 induced the rapid phosphorylation of caveolin (Cav)-1 and Src. Either RAGE gene silencing or soluble RAGE suppressed Cav-1 Tyr14 phosphorylation and Src Tyr418 phosphorylation. The Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) blocked HMGB1-induced Cav-1 Tyr14 phosphorylation. PP2 and overexpression of Cav-1 with a T14F mutation significantly inhibited HMGB1-induced transcytosis and albumin endocytosis. Our findings suggest that HMGB1 induces the transcytosis of albumin via RAGE-dependent Src phosphorylation and Cav-1 phosphorylation. These studies revealed a new mechanism of HMGB1-induced endothelial hyperpermeability. PMID:27572515

  1. High Mobility Group Box Protein 1 Boosts Endothelial Albumin Transcytosis through the RAGE/Src/Caveolin-1 Pathway

    PubMed Central

    Shang, Dan; Peng, Tao; Gou, Shanmiao; Li, Yiqing; Wu, Heshui; Wang, Chunyou; Yang, Zhiyong

    2016-01-01

    High-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to destroy cell-cell junctions, resulting in vascular endothelial hyperpermeability. Here, we report that HMGB1 increases the endothelial transcytosis of albumin. In mouse lung vascular endothelial cells (MLVECs), HMGB1 at a concentration of 500 ng/ml or less did not harm cell-cell junctions but rapidly induced endothelial hyperpermeability to 125I-albumin. HMGB1 induced an increase in 125I-albumin and AlexaFluor 488-labeled albumin internalization in endocytosis assays. Depletion of receptor for advanced glycation end products (RAGE), but not TLR2 or TLR4, suppressed HMGB1-induced albumin transcytosis and endocytosis. Genetic and pharmacological destruction of lipid rafts significantly inhibited HMGB1-induced albumin endocytosis and transcytosis. HMGB1 induced the rapid phosphorylation of caveolin (Cav)-1 and Src. Either RAGE gene silencing or soluble RAGE suppressed Cav-1 Tyr14 phosphorylation and Src Tyr418 phosphorylation. The Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) blocked HMGB1-induced Cav-1 Tyr14 phosphorylation. PP2 and overexpression of Cav-1 with a T14F mutation significantly inhibited HMGB1-induced transcytosis and albumin endocytosis. Our findings suggest that HMGB1 induces the transcytosis of albumin via RAGE-dependent Src phosphorylation and Cav-1 phosphorylation. These studies revealed a new mechanism of HMGB1-induced endothelial hyperpermeability. PMID:27572515

  2. Caveolin-1 modulates the activity of the volume-regulated chloride channel

    PubMed Central

    Trouet, Dominique; Nilius, Bernd; Jacobs, Axel; Remacle, Claude; Droogmans, Guy; Eggermont, Jan

    1999-01-01

    Caveolae are small invaginations of the plasma membrane that have recently been implicated in signal transduction. In the present study, we have investigated whether caveolins, the principal protein of caveolae, also modulate volume-regulated anion channels (VRACs). ICl,swell, the cell swelling-induced chloride current through VRACs, was studied in three caveolin-1-deficient cell lines: Caco-2, MCF-7 and T47D. Electrophysiological measurements showed that ICl,swell was very small in these cells and that transient expression of caveolin-1 restored ICl,swell. The caveolin-1 effect was isoform specific: caveolin-1β but not caveolin-1α upregulated VRACs. This correlated with a different subcellular distribution of caveolin-1α (perinuclear location) from caveolin-1β (perinuclear and peripheral). To explain the modulation of ICl,swell by caveolin-1 we propose that caveolin increases the availability of VRACs in the plasma membrane or, alternatively, that it plays a crucial role in the signal transduction cascade of VRACs. PMID:10517805

  3. Caveolin-1 Induces Formation of Membrane Tubules That Sense Actomyosin Tension and Are Inhibited by Polymerase I and Transcript Release Factor/Cavin-1

    PubMed Central

    Verma, Prakhar; Ostermeyer-Fay, Anne G.

    2010-01-01

    Caveolin-1 and caveolae are often lost in cancer. We found that levels of caveolin-1 and polymerase I and transcript release factor (PTRF)/cavin-1 correlated closely in a panel of cancer and normal cells. Caveolin-1 reexpression in cancer cells lacking both proteins induced formation of long membrane tubules rarely seen in normal cells. PTRF/cavin-1 inhibited tubule formation when coexpressed with caveolin-1 in these cells, whereas suppression of PTRF/cavin-1 expression in cells that normally expressed both genes stimulated tubule formation by endogenous caveolin-1. Caveolin-1 tubules shared several features with previously described Rab8 tubules. Coexpressed Rab8 and caveolin-1 labeled the same tubules (as did EHD proteins), and synergized to promote tubule formation, whereas a dominant-interfering Rab8 mutant inhibited caveolin-1 tubule formation. Both overexpression and inhibition of dynamin-2 reduced the abundance of caveolin-1 tubules. Caveolin-1 reexpression in SK-BR-3 breast cancer cells also induced formation of short membrane tubules close to cortical actin filaments, which required actin filaments but not microtubules. Actomyosin-induced tension destabilized both long and short tubules; they often snapped and resolved to small vesicles. Actin filament depolymerization or myosin II inhibition reduced tension and stabilized tubules. These data demonstrate a new function for PTRF/cavin-1, a new functional interaction between caveolin-1 and Rab8 and that actomyosin interactions can induce tension on caveolin-1-containing membranes. PMID:20427576

  4. Growth suppression of MCF-7 cancer cell-derived xenografts in nude mice by caveolin-1

    SciTech Connect

    Wu Ping; Wang Xiaohui; Li Fei; Qi Baoju; Zhu Hua; Liu Shuang; Cui Yeqing; Chen Jianwen

    2008-11-07

    Caveolin-1 is an essential structural constituent of caveolae membrane domains that has been implicated in mitogenic signaling and oncogenesis. However, the exact functional role of caveolin-1 still remains controversial. In this report, utilizing MCF-7 human breast adenocarcinoma cells stably transfected with caveolin-1 (MCF-7/cav-1 cells), we demonstrate that caveolin-1 expression dramatically inhibits invasion and migration of these cells. Importantly, in vivo experiments employing xenograft tumor models demonstrated that expression of caveolin-1 results in significant growth inhibition of breast tumors. Moreover, a dramatic delay in tumor progression was observed in MCF-7/cav-1 cells as compared with MCF-7 cells. Histological analysis of tumor sections demonstrated a marked decrease in the percentage of proliferating tumor cells (Ki-67 assay) along with an increase in apoptotic tumor cells (TUNEL assay) in MCF-7/cav-1-treated animals. Our current findings provide for the first time in vivo evidence that caveolin-1 can indeed function as a tumor suppressor in human breast adenocarcinoma derived from MCF-7 cells rather than as a tumor promoter.

  5. Caveolin-1 is involved in reactive oxygen species-induced SHP-2 activation in astrocytes

    PubMed Central

    Yun, Ji Hee; Park, Soo Jung; Jo, Ara; Jou, Ilo; Park, Jung Soo

    2011-01-01

    Recent evidence supports a neuroprotective role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) against ischemic brain injury. However, the molecular mechanisms of SHP-2 activation and those governing how SHP-2 exerts its function under oxidative stress conditions are not well understood. Recently we have reported that reactive oxygen species (ROS)-mediated oxidative stress promotes the phosphorylation of endogenous SHP-2 through lipid rafts, and that this phosphorylation strongly occurs in astrocytes, but not in microglia. To investigate the molecules involved in events leading to phosphorylation of SHP-2, raft proteins were analyzed using astrocytes and microglia. Interestingly, caveolin-1 and -2 were detected only in astrocytes but not in microglia, whereas flotillin-1 was expressed in both cell types. To examine whether the H2O2-dependent phosphorylation of SHP-2 is mediated by caveolin-1, we used specific small interfering RNA (siRNA) to downregulate caveolin-1 expression. In the presence of caveolin-1 siRNA, the level of SHP-2 phosphorylation induced by H2O2 was significantly decreased, compared with in the presence of control siRNA. Overexpression of caveolin-1 effectively increased H2O2-induced SHP-2 phosphorylation in microglia. Lastly, H2O2 induced extracellular signal-regulated kinase (ERK) activation in astrocytes through caveolin-1. Our results suggest that caveolin-1 is involved in astrocyte-specific intracellular responses linked to the SHP-2-mediated signaling cascade following ROS-induced oxidative stress. PMID:21918362

  6. Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells

    NASA Technical Reports Server (NTRS)

    Parat, Marie-Odile; Stachowicz, Rafal Z.; Fox, Paul L.

    2002-01-01

    During normal and pathological conditions, endothelial cells (ECs) are subjected to locally generated reactive oxygen species, produced by themselves or by other vessel wall cells. In excess these molecules cause oxidative injury to the cell but at moderate levels they might modulate intracellular signalling pathways. We have investigated the effect of oxidative stress on the palmitoylation and trafficking of caveolin-1 in bovine aortic ECs. Exogenous H2O2 did not alter the intracellular localization of caveolin-1 in ECs. However, metabolic labelling experiments showed that H2O2 inhibited the trafficking of newly synthesized caveolin-1 to membrane raft domains. Several mechanisms potentially responsible for this inhibition were examined. Impairment of caveolin-1 synthesis by H2O2 was not responsible for diminished trafficking. Similarly, the inhibition was independent of H2O2-induced caveolin-1 phosphorylation as shown by the markedly different concentration dependences. We tested the effect of H2O2 on palmitoylation of caveolin-1 by the incorporation of [3H]palmitic acid. Exposure of ECs to H2O2 markedly inhibited the palmitoylation of caveolin-1. Comparable inhibition was observed after treatment of cells with H2O2 delivered either as a bolus or by continuous delivery with glucose and glucose oxidase. Kinetic studies showed that H2O2 did not alter the rate of caveolin-1 depalmitoylation but instead decreased the 'on-rate' of palmitoylation. Together these results show for the first time the modulation of protein palmitoylation by oxidative stress, and suggest a cellular mechanism by which stress might influence caveolin-1-dependent cell activities such as the concentration of signalling proteins and cholesterol trafficking.

  7. Temozolomide Modifies Caveolin-1 Expression in Experimental Malignant Gliomas In Vitro and In Vivo1

    PubMed Central

    Bruyère, Céline; Abeloos, Laurence; Lamoral-Theys, Delphine; Senetta, Rebecca; Mathieu, Véronique; Le Mercier, Marie; Kast, Richard E; Cassoni, Paola; Vandenbussche, Guy; Kiss, Robert; Lefranc, Florence

    2011-01-01

    BACKGROUND: Caveolin-1 is a protein that displays promotive versus preventive roles in cancer progression according to circumstances. Temozolomide (TMZ) is the standard chemotherapeutic to treat glioma patients. The present work aims to characterizeTMZ-induced effects on caveolin-1 expression in glioma cells. METHODS: Human astroglioma (U373 and T98G) and oligodendroglioma (Hs683) cell lines were used in vitro as well as in vivo orthotopic xenografts (Hs683 and U373) into the brains of immunocompromisedmice. In vitro TMZ-induced effects on protein expression and cellular localization were determined by Western blot analysis and on the actin cytoskeleton organization by means of immunofluorescence approaches. In vivo TMZ-induced effects in caveolin-1 expression in human glioma xenografts were monitored by means of immunohistochemistry. RESULTS: TMZ modified caveolin-1 expression and localization in vitro and in vivo after an administration schedule that slightly, if at all, impaired cell growth characteristics in vitro. Caveolin-1 by itself (at a 100-ng/ml concentration) was able to significantly reduce invasiveness (Boyden chambers) of the three human glioma cell lines. The TMZ-inducedmodification in caveolin-1 expression in flotation/raft compartments was paralleled by altered Cyr61 and β1 integrin expression, two elements that have already been reported to collaborate with caveolin-1 in regulating glioma cell biology, and all these features led to profound reorganization of the actin cytoskeleton. An experimental Src kinase inhibitor, AZD0530, almost completely antagonized the TMZ-induced modulation in caveolin-1 expression. CONCLUSION: TMZ modifies caveolin-1 expression in vitro and in vivo in glioma cells, a feature that directly affects glioma cell migration properties. PMID:21461172

  8. Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway.

    PubMed

    Wang, Zhiyu; Wang, Neng; Li, Wenping; Liu, Pengxi; Chen, Qianjun; Situ, Honglin; Zhong, Shaowen; Guo, Li; Lin, Yi; Shen, Jiangang; Chen, Jianping

    2014-10-01

    Accumulating evidence has suggested that cancer stem cells (CSCs) are at the root of drug resistance, and recent studies have indicated that caveolin-1, a membrane transporter protein, is involved in the regulation of cancer chemoresistance and stem cell signaling. However, the current understanding of the role of caveolin-1 in breast cancer development remains controversial. Herein, we demonstrate that caveolin-1 expression was upregulated after breast cancer chemotherapy in vitro and in vivo, accompanied by co-overexpression of β-catenin and ATP-binding cassette subfamily G member 2 (ABCG2) signaling. Additionally, breast CSCs were enriched for caveolin-1 expression. Caveolin-1 silencing sensitized breast CSCs by limiting their self-renewal ability but promoting the differentiation process. β-catenin silencing prevented the enhanced chemoresistance of CSCs induced by caveolin-1 overexpression, indicating that β-catenin is an essential molecule responsible for caveolin-1-mediated action. Further mechanistic investigation revealed that caveolin-1 silencing could downregulate the β-catenin/ABCG2 pathway through glycogen synthase kinase 3 beta activation and Akt inhibition, resulting in increased β-catenin phosphorylation and proteasomal degradation. Clinical investigation also revealed a close correlation between caveolin-1 and β-catenin/ABCG2 signaling in breast cancer samples. Notably, caveolin-1 was highly elevated in triple-negative breast cancer, and caveolin-1 silencing significantly impaired the tumorigenicity and chemoresistance of breast CSCs in in vivo models. Overall, our study not only highlights the role of caveolin-1 in mediating the chemoresistance of breast CSCs via β-catenin/ABCG2 regulation but also provides novel approaches for future therapies targeting CSCs. PMID:25085904

  9. Caveolin-1: an ambiguous partner in cell signalling and cancer

    PubMed Central

    Quest, Andrew F G; Gutierrez-Pajares, Jorge L; Torres, Vicente A

    2008-01-01

    Caveolae are small plasma membrane invaginations that have been implicated in a variety of functions including transcytosis, potocytosis and cholesterol transport and signal transduction. The major protein component of this compartment is a family of proteins called caveolins. Experimental data obtained in knockout mice have provided unequivocal evidence for a requirement of caveolins to generate morphologically detectable caveolae structures. However, expression of caveolins is not sufficient per seto assure the presence of these structures. With respect to other roles attributed to caveolins in the regulation of cellular function, insights are even less clear. Here we will consider, more specifically, the data concerning the ambiguous roles ascribed to caveolin-1 in signal transduction and cancer. In particular, evidence indicating that caveolin-1 function is cell context dependent will be discussed. PMID:18400052

  10. Dexamethasone induces caveolin-1 in vascular endothelial cells: implications for attenuated responses to VEGF.

    PubMed

    Igarashi, Junsuke; Hashimoto, Takeshi; Shoji, Kazuyo; Yoneda, Kozo; Tsukamoto, Ikuko; Moriue, Tetsuya; Kubota, Yasuo; Kosaka, Hiroaki

    2013-04-15

    Steroids exert direct actions on cardiovascular cells, although underlying molecular mechanisms remain incompletely understood. We examined if steroids modulate abundance of caveolin-1, a regulatory protein of cell-surface receptor pathways that regulates the magnitudes of endothelial response to vascular endothelial growth factor (VEGF). Dexamethasone, a synthetic glucocorticoid, induces caveolin-1 at both levels of protein and mRNA in a time- and dose-dependent manner in pharmacologically relevant concentrations in cultured bovine aortic endothelial cells. Aldosterone, a mineralocorticoid, but not the sex steroids 17β-estradiol, testosterone, or progesterone, elicits similar caveolin-1 induction. Caveolin-1 induction by dexamethasone and that by aldosterone were abrogated by RU-486, an inhibitor of glucocorticoid receptor, and by spironolactone, a mineralocorticoid receptor inhibitor, respectively. Dexamethasone attenuates VEGF-induced responses at the levels of protein kinases Akt and ERK1/2, small-G protein Rac1, nitric oxide production, and migration. When induction of caveolin-1 by dexamethasone is attenuated either by genetically by transient transfection with small interfering RNA or pharmacologically by RU-486, kinase responses to VEGF are rescued. Dexamethasone also increases expression of caveolin-1 protein in cultured human umbilical vein endothelial cells, associated with attenuated tube formation responses of these cells when cocultured with normal fibroblasts. Immunohistochemical analyses revealed that intraperitoneal injection of dexamethasone induces endothelial caveolin-1 protein in thoracic aorta and in lung artery in healthy male rats. Thus steroids functionally attenuate endothelial responses to VEGF via caveolin-1 induction at the levels of signal transduction, migration, and tube formation, identifying a novel point of cross talk between nuclear and cell-surface receptor signaling pathways. PMID:23426970

  11. Interleukin-1β induces the upregulation of caveolin-1 expression in a rat brain tumor model

    PubMed Central

    QIN, LI-JUAN; JIA, YONG-SEN; ZHANG, YI-BING; WANG, YIN-HUAN

    2016-01-01

    The aim of the present study was to investigate the expression of caveolin-1 in rat brain glioma tissue, and to determine whether interleukin-1β (IL-1β) has a role in this process. Using glioma cells, a tumor-burdened rat model was established, and the expression of caveolin-1 protein in the tumor sites was significantly increased following intracarotid infusion of IL-1β (3.7 ng/kg/min), as indicated by western blot analysis. The maximum value of the caveolin-1 expression was observed in tumor-burdened rats after 60 min of IL-1β perfusion, and which was significantly enhanced by vascular endothelial growth factor (VEGF). In addition, VEGF also significantly increased IL-1β-induced blood tumor barrier (BTB) permeability. The results suggest that the IL-1β-induced BTB permeability increase may be associated with the expression of caveolin-1 protein, and VEGF may be involved in this process. PMID:27073627

  12. Caveolin-1 as a Prognostic Marker for Local Control After Preoperative Chemoradiation Therapy in Rectal Cancer

    SciTech Connect

    Roedel, Franz Capalbo, Gianni; Roedel, Claus; Weiss, Christian

    2009-03-01

    Purpose: Caveolin-1 is a protein marker for caveolae organelles and has an essential impact on cellular signal transduction pathways (e.g., receptor tyrosine kinases, adhesion molecules, and G-protein-coupled receptors). In the present study, we investigated the expression of caveolin-1 in patients with rectal adenocarcinoma and correlated its expression pattern with the risk for disease recurrences after preoperative chemoradiation therapy (CRT) and surgical resection. Methods and Materials: Caveolin-1 mRNA and protein expression were evaluated by Affymetrix microarray analysis (n = 20) and immunohistochemistry (n = 44) on pretreatment biopsy samples of patients with locally advanced adenocarcinoma of the rectum, and were correlated with clinical and histopathologic characteristics as well as with 5-year rates of local failure and overall survival. Results: A significantly decreased median caveolin-1 intracellular mRNA level was observed in tumor biopsy samples as compared with noncancerous mucosa. Individual mRNA levels and immunohistologic staining, however, revealed an overexpression in 7 of 20 patients (35%) and 17 of 44 patients (38.6%), respectively. Based on immunohistochemical evaluation, local control rates at 5 years for patients with tumors showing low caveolin-1 expression were significantly better than for patients with high caveolin-1-expressing carcinoma cells (p = 0.05; 92%, 95% confidence interval [95% CI] = 82-102% vs. 72%, 95% CI = 49-84%). A low caveolin-1 protein expression was also significantly related to an increased overall survival rate (p = 0.05; 45%, 95% CI 16-60% vs. 82%, 95% CI = 67-97%). Conclusion: Caveolin-1 may provide a novel prognostic marker for local control and survival after preoperative CRT and surgical resection in rectal cancer.

  13. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231

  14. Effect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells.

    PubMed

    Kamada, Chiemi; Mukai, Rie; Kondo, Akari; Sato, Shinya; Terao, Junji

    2016-05-01

    Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a major structural protein of caveolae in vascular endothelial cells, plays a role in atherosclerosis development. Here we investigated effects of oxidized low-density lipoprotein, quercetin and its metabolite, quercetin 3-O-β-glucuronide, on caveolin-1 expression. Oxidized low-density lipoprotein significantly upregulated caveolin-1 mRNA expression. An oxidized low-density lipoprotein component, lysophosphatidylcholine, also induced expression of both caveolin-1 mRNA and protein. However, lysophosphatidylcholine did not affect the location of caveolin-1 proteins within caveolae structures. Co-treatment with quercetin or quercetin 3-O-β-glucuronide inhibited lysophosphatidylcholine-induced caveolin-1 expression. Quercetin and quercetin 3-O-β-glucuronide also suppressed expression of adhesion molecules induced by oxidized low-density lipoprotein and lysophosphatidylcholine. These results strongly suggest lysophosphatidylcholine derived from oxidized low-density lipoprotein contributes to atherosclerotic events by upregulating caveolin-1 expression, resulting in induction of adhesion molecules. Quercetin metabolites are likely to exert an anti-atherosclerotic effect by attenuating caveolin-1 expression in endothelial cells. PMID:27257344

  15. Effect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells

    PubMed Central

    Kamada, Chiemi; Mukai, Rie; Kondo, Akari; Sato, Shinya; Terao, Junji

    2016-01-01

    Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a major structural protein of caveolae in vascular endothelial cells, plays a role in atherosclerosis development. Here we investigated effects of oxidized low-density lipoprotein, quercetin and its metabolite, quercetin 3-O-β-glucuronide, on caveolin-1 expression. Oxidized low-density lipoprotein significantly upregulated caveolin-1 mRNA expression. An oxidized low-density lipoprotein component, lysophosphatidylcholine, also induced expression of both caveolin-1 mRNA and protein. However, lysophosphatidylcholine did not affect the location of caveolin-1 proteins within caveolae structures. Co-treatment with quercetin or quercetin 3-O-β-glucuronide inhibited lysophosphatidylcholine-induced caveolin-1 expression. Quercetin and quercetin 3-O-β-glucuronide also suppressed expression of adhesion molecules induced by oxidized low-density lipoprotein and lysophosphatidylcholine. These results strongly suggest lysophosphatidylcholine derived from oxidized low-density lipoprotein contributes to atherosclerotic events by upregulating caveolin-1 expression, resulting in induction of adhesion molecules. Quercetin metabolites are likely to exert an anti-atherosclerotic effect by attenuating caveolin-1 expression in endothelial cells. PMID:27257344

  16. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  17. Caveolin-1 mutants P132L and Y14F are dominant negative regulators of invasion, migration and aggregation in H1299 lung cancer cells

    SciTech Connect

    Shatz, Maria; Lustig, Gila; Reich, Reuven; Liscovitch, Mordechai

    2010-06-10

    Caveolin-1 is an essential protein constituent of caveolae. Accumulating evidence indicates that caveolin-1 may act as a positive regulator of cancer progression. In this study, we investigated the function of caveolin-1 in human lung cancer cells. Caveolin-1 knockdown inhibited cell proliferation and reduced focal adhesion kinase (Fak) phosphorylation. Matrix invasion and cell migration as well as expression and activity of matrix metalloproteases were attenuated following caveolin-1 RNAi-mediated knockdown or overexpression of Y14F and P132L mutants, demonstrating dominant-negative activity of these mutants. Time-lapse fluorescence microscopy revealed that caveolin-1 and its mutants P132L and Y14F are localized to the trailing edge of migrating cells during both random and directed cell movement, implying an active role of caveolin-1 in the migration process. Suppression of caveolin-1 function greatly elevated the percentage of H1299 cells exhibiting focal adhesions. In addition, cell aggregation was increased by wild type caveolin-1 and attenuated by both P132L and Y14F mutants. Overexpression of wild type caveolin-1 increased caveolae density, however, P132L and Y14F mutants did not affect caveolae formation, suggesting that in this respect that the mutants do not act in a dominant negative manner, and that effects of caveolin-1 on caveolae and cell invasion, migration, focal adhesion and aggregation, are separable. Our data provide novel mechanistic insights into the role of caveolin-1 in cell motility, invasiveness and aggregation, therefore, expanding our understanding of the tumor-promoting activities of caveolin-1 in advanced-stage cancer.

  18. Caveolin 1 Is Required for the Activation of Endothelial Nitric Oxide Synthase in Response to 17β-Estradiol

    PubMed Central

    Sud, Neetu; Wiseman, Dean A.; Black, Stephen M.

    2010-01-01

    Evidence suggests that estrogen mediates rapid endothelial nitric oxide synthase (eNOS) activation via estrogen receptor-a (ERα) within the plasma membrane of endothelial cells (EC). ERα is known to colocalize with caveolin 1, the major structural protein of caveolae, and caveolin 1 stimulates the translocation of ERα to the plasma membrane. However, the role played by caveolin 1 in regulating 17β-estradiol-mediated NO signaling in EC has not been adequately resolved. Thus, the purpose of this study was to explore how 17β-estradiol stimulates eNOS activity and the role of caveolin 1 in this process. Our data demonstrate that modulation of caveolin 1 expression using small interfering RNA or adenoviral gene delivery alters ERα localization to the plasma membrane in EC. Further, before estrogen stimulation ERα associates with caveolin 1, whereas stimulation promotes a pp60Src-mediated phosphorylation of caveolin 1 at tyrosine 14, increasing ERα-PI3 kinase interactions and disrupting caveolin 1-ERα interactions. Adenoviral mediated overexpression of a phosphorylation-deficient mutant of caveolin (Y14FCav) attenuated the ERα/PI3 kinase interaction and prevented Akt-mediated eNOS activation. Furthermore, Y14FCav overexpression reduced eNOS phosphorylation at serine1177 and decreased NO generation after estrogen exposure. Using a library of overlapping peptides we identified residues 62–73 of caveolin 1 as the ERα-binding site. Delivery of a synthetic peptide based on this sequence decreased ERα plasma membrane translocation and reduced estrogen-mediated activation of eNOS. In conclusion, caveolin 1 stimulates 17β-estradiol-induced NO production by promoting ERα to the plasma membrane, which facilitates the activation of the PI3 kinase pathway, leading to eNOS activation and NO generation. PMID:20610538

  19. The Ras Inhibitors Caveolin-1 and Docking Protein 1 Activate Peroxisome Proliferator-Activated Receptor γ through Spatial Relocalization at Helix 7 of Its Ligand-Binding Domain ▿

    PubMed Central

    Burgermeister, Elke; Friedrich, Teresa; Hitkova, Ivana; Regel, Ivonne; Einwächter, Henrik; Zimmermann, Wolfgang; Röcken, Christoph; Perren, Aurel; Wright, Matthew B.; Schmid, Roland M.; Seger, Rony; Ebert, Matthias P. A.

    2011-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that promotes differentiation and cell survival in the stomach. PPARγ upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPARγ is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPARγ signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPARγ and enhanced nuclear translocation and ligand-independent transcription of PPARγ target genes. In contrast, Cav1 overexpression sequestered PPARγ in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPARγ's ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPARγ and to inhibit cell proliferation. Ligand-activated PPARγ also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPARγ regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPARγ to ligands, limiting proliferation of gastric epithelial cells. PMID:21690289

  20. Phosphorylation of caveolin-1 on tyrosine-14 induced by ROS enhances palmitate-induced death of beta-pancreatic cells.

    PubMed

    Wehinger, Sergio; Ortiz, Rina; Díaz, María Inés; Aguirre, Adam; Valenzuela, Manuel; Llanos, Paola; Mc Master, Christopher; Leyton, Lisette; Quest, Andrew F G

    2015-05-01

    A considerable body of evidence exists implicating high levels of free saturated fatty acids in beta pancreatic cell death, although the molecular mechanisms and the signaling pathways involved have not been clearly defined. The membrane protein caveolin-1 has long been implicated in cell death, either by sensitizing to or directly inducing apoptosis and it is normally expressed in beta cells. Here, we tested whether the presence of caveolin-1 modulates free fatty acid-induced beta cell death by reexpressing this protein in MIN6 murine beta cells lacking caveolin-1. Incubation of MIN6 with palmitate, but not oleate, induced apoptotic cell death that was enhanced by the presence of caveolin-1. Moreover, palmitate induced de novo ceramide synthesis, loss of mitochondrial transmembrane potential and reactive oxygen species (ROS) formation in MIN6 cells. ROS generation promoted caveolin-1 phosphorylation on tyrosine-14 that was abrogated by the anti-oxidant N-acetylcysteine or the incubation with the Src-family kinase inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7(dimethylethyl)pyrazolo[3,4-d]pyrimidine). The expression of a non-phosphorylatable caveolin-1 tyrosine-14 to phenylalanine mutant failed to enhance palmitate-induced apoptosis while for MIN6 cells expressing the phospho-mimetic tyrosine-14 to glutamic acid mutant caveolin-1 palmitate sensitivity was comparable to that observed for MIN6 cells expressing wild type caveolin-1. Thus, caveolin-1 expression promotes palmitate-induced ROS-dependent apoptosis in MIN6 cells in a manner requiring Src family kinase mediated tyrosine-14 phosphorylation. PMID:25572853

  1. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression

    PubMed Central

    Zhao, Yong-lin; Song, Jin-ning; Ma, Xu-dong; Zhang, Bin-fei; Li, Dan-dong; Pang, Hong-gang

    2016-01-01

    Rosiglitazone up-regulates caveolin-1 levels and has neuroprotective effects in both chronic and acute brain injury. Therefore, we postulated that rosiglitazone may ameliorate diffuse axonal injury via its ability to up-regulate caveolin-1, inhibit expression of amyloid-beta precursor protein, and reduce the loss and abnormal phosphorylation of tau. In the present study, intraperitoneal injection of rosiglitazone significantly reduced the levels of amyloid-beta precursor protein and hyperphosphorylated tau (phosphorylated at Ser404(p-tau (S404)), and it increased the expression of total tau and caveolin-1 in the rat cortex. Our results show that rosiglitazone inhibits the expression of amyloid-beta precursor protein and lowers p-tau (S404) levels, and it reduces the loss of total tau, possibly by up-regulating caveolin-1. These actions of rosiglitazone may underlie its neuroprotective effects in the treatment of diffuse axonal injury. PMID:27482223

  2. Caveolin 1 (Cav-1) and actin-related protein 2/3 complex, subunit 1B (ARPC1B) expressions as prognostic indicators for oral squamous cell carcinoma (OSCC).

    PubMed

    Auzair, Lukman Bin Md; Vincent-Chong, Vui King; Ghani, Wan Maria Nabillah; Kallarakkal, Thomas George; Ramanathan, Anand; Lee, Chia Ee; Rahman, Zainal Ariff Abdul; Ismail, Siti Mazlipah; Abraham, Mannil Thomas; Zain, Rosnah Binti

    2016-07-01

    Caveolin-1 (Cav-1) and Actin-Related Protein 2/3 Complex, Subunit 1B (ARPC1B) have been implicated in various human cancers, yet its role in tumorigenesis remains controversial. Therefore, this study aims to determine the protein expression of these two genes in oral squamous cell carcinomas (OSCCs) and to evaluate the clinical and prognostic impact of these genes in OSCC. Protein expressions of these two genes were determined by immunohistochemistry technique. The association between Cav-1 and ARPC1B with clinico-pathological parameters was evaluated by Chi-square test (or Fisher exact test where appropriate). Correlation between the protein expressions of these 2 genes with survival was analyzed using Kaplan-Meier and Cox regression models. Cav-1 and ARPC1B were found to be significantly over-expressed in OSCC compared to normal oral mucosa (p = 0.002 and p = 0.033, respectively). Low level of ARPC1B protein expression showed a significant correlation with lymph node metastasis (LNM) (p = 0.010) and advanced tumor staging (p = 0.003). Kaplan-Meier survival analyses demonstrated that patients with over-expression of Cav-1 protein were associated with poor prognosis (p = 0.030). Adjusted multivariate Cox regression model revealed that over-expression of Cav-1 remained as an independent significant prognostic factor for OSCC (HRR = 2.700, 95 % CI 1.013-7.198, p = 0.047). This study demonstrated that low-expression of ARPC1B is significantly associated with LNM and advanced tumor staging whereas high expression of Cav-1 can be a prognostic indicator for poor prognosis in OSCC patients. PMID:26138391

  3. Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells.

    PubMed

    Lee, Eun Ji; Park, Mi Kyung; Kim, Hyun Ji; Kim, Eun Ji; Kang, Gyeoung-Jin; Byun, Hyun Jung; Lee, Chang Hoon

    2016-06-01

    Sphingosylphosphorylcholine (SPC) is found at increased in the malignant ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments that contribute to the viscoelasticity of metastatic cancer cells. However, the detailed mechanism of SPC-induced K8 phosphorylation and reorganization is not clear. We observed that SPC dose-dependently reduced the expression of epithelial membrane protein 2 (EMP2) in lung cancer cells. Then, we examined the role of EMP2 in SPC-induced phosphorylation and reorganization of K8 in lung cancer cells. We found that SPC concentration-dependently reduced EMP2 in A549, H1299, and other lung cancer cells. This was verified at the mRNA level by RT-PCR and real-time PCR (qPCR), and intracellular variation through confocal microscopy. EMP2 gene silencing and stable lung cancer cell lines established using EMP2 lentiviral shRNA induced K8 phosphorylation and reorganization. EMP2 overexpression reduced K8 phosphorylation and reorganization. We also observed that SPC-induced loss of EMP2 induces phosphorylation of JNK and ERK via reduced expression of protein phosphatase 2A (PP2A). Loss of EMP2 induces ubiquitination of protein phosphatase 2A (PP2A). SPC induced caveolin-1 (cav-1) expression and EEA1 endosome marker protein but not cav-2. SPC treatment enhanced the binding of cav-1 and PP2A and lowered binding of PP2A and alpha4. Gene silencing of EMP2 increased and gene silencing of cav-1 reduced migration of A549 lung cancer cells. Overall, these results suggest that SPC induces EMP2 down-regulation which reduces the PP2A via ubiquitination induced by cav-1, which sequestered alpha4, leading to the activation of ERK and JNK. PMID:26876307

  4. Diet-induced hypercholesterolemia promotes androgen-independent prostate cancer metastasis via IQGAP1 and caveolin-1

    PubMed Central

    Moon, Hyeongsun; Ruelcke, Jayde E.; Choi, Eunju; Sharpe, Laura J.; Nassar, Zeyad D.; Bielefeldt-Ohmann, Helle; Parat, Marie-Odile; Shah, Anup; Francois, Mathias; Inder, Kerry L.; Brown, Andrew J.; Russell, Pamela J.; Parton, Robert G.; Hill, Michelle M.

    2015-01-01

    Obesity and metabolic syndrome are associated with several cancers, however, the molecular mechanisms remain to be fully elucidated. Recent studies suggest that hypercholesterolemia increases intratumoral androgen signaling in prostate cancer, but it is unclear whether androgen-independent mechanisms also exist. Since hypercholesterolemia is associated with advanced, castrate-resistant prostate cancer, in this study, we aimed to determine whether and how hypercholesterolemia affects prostate cancer progression in the absence of androgen signaling. We demonstrate that diet-induced hypercholesterolemia promotes orthotopic xenograft PC-3 cell metastasis, concomitant with elevated expression of caveolin-1 and IQGAP1 in xenograft tumor tissues. In vitro cholesterol treatment of PC-3 cells stimulated migration and increased IQGAP1 and caveolin-1 protein level and localization to a detergent-resistant fraction. Down-regulation of caveolin-1 or IQGAP1 in PC-3 cells reduced migration and invasion in vitro, and hypercholesterolemia-induced metastasis in vivo. Double knock-down of caveolin-1 and IQGAP1 showed no additive effect, suggesting that caveolin-1 and IQGAP1 act via the same pathway. Taken together, our data show that hypercholesterolemia promotes prostate cancer metastasis independent of the androgen pathway, in part by increasing IQGAP1 and caveolin-1. These results have broader implications for managing metastasis of cancers in general as IQGAP1 and hypercholesterolemia are implicated in the progression of several cancers. PMID:25924234

  5. Caveolin-1 Dependent Endocytosis Enhances the Chemosensitivity of HER-2 Positive Breast Cancer Cells to Trastuzumab Emtansine (T-DM1)

    PubMed Central

    Chung, Yuan-Chiang; Kuo, Jang-Fang; Wei, Wan-Chen; Chang, King-Jen; Chao, Wei-Ting

    2015-01-01

    The humanized monoclonal antibody-drug conjugate trastuzumab emtansine (T-DM1, Kadcyla) has been approved by the U.S. FDA to treat human epidermal growth factor receptor 2 (HER-2)-positive metastatic breast cancer. Despite its effectiveness in most patients, some are initially resistant or develop resistance. No biomarker of drug resistance to T-DM1 has been identified. Antibody-drug efficacy is associated with antibody internalization in the cell; therefore, cellular sensitivity of cells to the drug may be linked to cellular vesicle trafficking systems. Caveolin-1 is a 22 KD protein required for caveolae formation and endocytic membrane transport. In this study, the relationship between caveolin-1 expression and the chemosensitivity of HER-2-positive breast cancer cells to T-DM1 was investigated. Samples from 32 human breast cancer biopsy and normal tissue specimens were evaluated immunohistochemically for caveolin-1 expression. Caveolin-1 was shown to be expressed in 68% (22/32) of the breast cancer specimens. In addition, eight (72.7%, 8/11) HER-2 positive breast cancer specimens had a higher caveolin-1 expression than normal tissues. HER-2-positive BT-474 and SKBR-3 breast cancer cells that express low and moderate levels of caveolin-1, respectively, were treated with trastuzumab or its conjugate T-DM1. Cell viability and molecular localizations of caveolin-1, antibody and its conjugate were examined. Confocal microscopy showed that T-DM1 and caveolin-1 colocalized in SKBR-3 cells, which also were five times more sensitive to the conjugate in terms of cell survival than BT-474 cells, although T-DM1 also showed improved drug efficacy in BT-474 cells than trastuzumab treatment. Caveolin-1 expression in these lines was manipulated by transfection of GFP-tagged caveolin-1 or caveolin-1 siRNA. BT-474 cells overexpressing caveolin-1 were more sensitive to T-DM1 treatment than mock-transfected cells, whereas the siRNA-transfected SKBR-3 cells had decreased sensitivity

  6. Caveolin-1 gene knockout impairs nitrergic function in mouse small intestine

    PubMed Central

    El-Yazbi, Ahmed F; Cho, Woo-Jung; Boddy, Geoffrey; Daniel, Edwin E

    2005-01-01

    Caveolin-1 is a plasma membrane-associated protein that is responsible for caveolae formation. It plays an important role in the regulation of the function of different signaling molecules, among which are the different isoforms of nitric oxide synthase (NOS). Nitric oxide (NO) is known to be an important inhibitory mediator in the mouse gut. Caveolin-1 knockout mice (Cav1−/−) were used to examine the effect of caveolin-1 absence on the NO function in the mouse small intestine (ileum and jejunum) compared to their genetic controls and BALB/c controls. Immunohistochemical staining showed loss of caveolin-1 and NOS in the jejunal smooth muscles and myenteric plexus interstitial cells of Cajal (ICC) of Cav1−/− mice; however, nNOS immunoreactive nerves were still present in myenteric ganglia. Under nonadrenergic noncholinergic (NANC) conditions, small intestinal tissues from Cav1−/− mice relaxed to electrical field stimulation (EFS), as did tissues from control mice. Relaxation of tissues from control mice was markedly reduced by N-omega-nitro-L-arginine (10−4 M), but relaxation of Cav1−/− animals was affected much less. Also, Cav1−/− mice tissues showed reduced relaxation responses to sodium nitroprusside (100 μM) compared to controls; yet there were no significant differences in the relaxation responses to 8-bromoguanosine-3′ : 5′-cyclic monophosphate (100 μM). Apamin (10−6 M) significantly reduced relaxations to EFS in NANC conditions in Cav1−/− mice, but not in controls. The data from this study suggest that caveolin-1 gene knockout causes alterations in the smooth muscles and the ICC, leading to an impaired NO function in the mouse small intestine that could possibly be compensated by apamin-sensitive inhibitory mediators. PMID:15937515

  7. Probing the caveolin-1 P132L mutant: Critical insights into its oligomeric behavior and structure

    PubMed Central

    Rieth, Monica D.; Lee, Jinwoo; Glover, Kerney Jebrell

    2012-01-01

    Caveolin-1 is the most important protein found in caveolae, which are cell surface invaginations of the plasma membrane that act as signaling platforms. A single point mutation in the transmembrane domain of caveolin-1 (proline 132 to leucine) has deleterious effects on caveolae formation in vivo, and has been implicated in various disease states, particularly aggressive breast cancers. Using a combination of gel filtration chromatography and analytical ultracentrifugation we found that a fully-functional construct of caveolin-1 (Cav162–178) was a monomer in dodecylphosphocholine micelles. In contrast, the P132L mutant of Cav162–178 was dimeric. To explore the dimerization of the P132L mutant further, various truncated constructs (Cav182–178, Cav196–178, Cav162–136, Cav182–136, Cav196–136) were prepared which revealed that oligomerization occurs in the transmembrane domain (residues 96–136) of caveolin-1. To characterize the mutant structurally, solution-state NMR experiments in lyso-myristoylphosphatidylglycerol were undertaken of the Cav196–136 P132L mutant. Chemical shift analysis revealed that compared to the wild type, helix 2 in the transmembrane domain was lengthened by four residues (wild type, residues 111 to 129; mutant, residues 111–133), which corresponds to an extra turn in helix 2 of the mutant. Lastly, point mutations at position 132 of Cav162–178 (P132A, P132I, P132V, P132G, P132W, P132F) revealed that no other hydrophobic amino acid can preserve the monomeric state of Cav162–178 which indicates that proline 132 is critical in supporting proper caveolin-1 behavior. PMID:22506673

  8. Polychlorinated biphenyl-induced VCAM-1 expression is attenuated in aortic endothelial cells isolated from caveolin-1 deficient mice

    SciTech Connect

    Han, Sung Gu; Eum, Sung Yong; Toborek, Michal; Smart, Eric; Hennig, Bernhard

    2010-07-15

    Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of cardiovascular diseases such as atherosclerosis. Vascular cell adhesion molecule-1 (VCAM-1) is a critical mediator for adhesion and uptake of monocytes across the endothelium in the early stages of atherosclerosis development. The upregulation of VCAM-1 by PCBs may be dependent on functional membrane domains called caveolae. Caveolae are particularly abundant in endothelial cell membranes and involved in trafficking and signal transduction. The objective of this study was to investigate the role of caveolae in PCB-induced endothelial cell dysfunction. Primary mouse aortic endothelial cells (MAECs) isolated from caveolin-1-deficient mice and background C57BL/6 mice were treated with coplanar PCBs, such as PCB77 and PCB126. In addition, siRNA gene silencing technique was used to knockdown caveolin-1 in porcine vascular endothelial cells. In MAECs with functional caveolae, VCAM-1 protein levels were increased after exposure to both coplanar PCBs, whereas expression levels of VCAM-1 were not significantly altered in cells deficient of caveolin-1. Furthermore, PCB-induced monocyte adhesion was attenuated in caveolin-1-deficient MAECs. Similarly, siRNA silencing of caveolin-1 in porcine endothelial cells confirmed the caveolin-1-dependent VCAM-1 expression. Treatment of cells with PCB77 and PCB126 resulted in phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2), and pharmacological inhibition of ERK1/2 diminished the observed PCB-induced increase in monocyte adhesion. These findings suggest that coplanar PCBs induce adhesion molecule expression, such as VCAM-1, in endothelial cells, and that this response is regulated by caveolin-1 and functional caveolae. Our data demonstrate a critical role of functional caveolae in the activation and dysfunction of endothelial cells by coplanar PCBs.

  9. Tagging Strategies Strongly Affect the Fate of Overexpressed Caveolin-1

    PubMed Central

    Han, Bing; Tiwari, Ajit; Kenworthy, Anne K

    2015-01-01

    Caveolin-1 (Cav1) is the primary scaffolding protein of caveolae, flask-shaped invaginations of the plasma membrane thought to function in endocytosis, mechanotransduction, signaling and lipid homeostasis. A significant amount of our current knowledge about caveolins and caveolae is derived from studies of transiently overexpressed, C-terminally tagged caveolin proteins. However, how different tags affect the behavior of ectopically expressed Cav1 is still largely unknown. To address this question, we performed a comparative analysis of the subcellular distribution, oligomerization state and detergent resistance of transiently overexpressed Cav1 labeled with three different C-terminal tags (EGFP, mCherry and myc). We show that addition of fluorescent protein tags enhances the aggregation and/or degradation of both wild-type Cav1 and an oligomerization defective P132L mutant. Strikingly, complexes formed by overexpressed Cav1 fusion proteins excluded endogenous Cav1 and Cav2, and the properties of native caveolins were largely preserved even when abnormal aggregates were present in cells. These findings suggest that differences in tagging strategies may be a source of variation in previously published studies of Cav1 and that overexpressed Cav1 may exert functional effects outside of caveolae. They also highlight the need for a critical re-evaluation of current knowledge based on transient overexpression of tagged Cav1. PMID:25639341

  10. Caveolin-1 regulates neural differentiation of rat bone mesenchymal stem cells into neurons by modulating Notch signaling.

    PubMed

    Wang, Shuyang; Kan, Quancheng; Sun, Yingpu; Han, Rui; Zhang, Guangyu; Peng, Tao; Jia, Yanjie

    2013-02-01

    Bone marrow mesenchymal stem cells (MSCs) are known to differentiate into neurons in vitro. However, the mechanism underlying MSC differentiation remains controversial. A recent analysis has shown that Notch signaling is involved in regulating the differentiation of MSCs. This study examines the potential mechanism of the differentiation of MSCs into neurons, and it considers the role of caveolin-1 in this process. We investigated neuron differentiation and Notch signaling by detecting the expression levels of microtubule-associated protein 2 (MAP-2), Neuron-specific Enolase (NSE), Notch-1, Notch intracellular domain (NICD) and hairy enhancer of split 5 (Hes5). We found that by down-regulating caveolin-1 during induction, MSCs were prone to neural differentiation and expressed high levels of neuronal markers. Meanwhile, the expression levels of Notch-1, NICD and Hes5 decreased. Our results indicate that down-regulation of caveolin-1 promotes the neuronal differentiation of MSCs by modulating the Notch signaling pathway. PMID:23031836

  11. HIV Infection Upregulates Caveolin 1 Expression To Restrict Virus Production▿

    PubMed Central

    Lin, Shanshan; Wang, Xiao Mei; Nadeau, Peter E.; Mergia, Ayalew

    2010-01-01

    Caveolin 1 (Cav-1) is a major protein of a specific membrane lipid raft known as caveolae. Cav-1 interacts with the gp41 of the human immunodeficiency virus (HIV) envelope, but the role of Cav-1 in HIV replication and pathogenesis is not known. In this report, we demonstrate that HIV infection in primary human monocyte-derived macrophages (MDMs), THP-1 macrophages, and U87-CD4 cells results in a dramatic upregulation of Cav-1 expression mediated by HIV Tat. The activity of p53 is essential for Tat-induced Cav-1 expression, as our findings show enhanced phosphorylation of serine residues at amino acid positions 15 and 46 in the presence of Tat with a resulting Cav-1 upregulation. Furthermore, inhibition of p38 mitogen-activated protein kinase (MAPK) blocked phosphorylation of p53 in the presence of Tat. Infection studies of Cav-1-overexpressing cells reveal a significant reduction of HIV production. Taken together, these results suggest that HIV infection enhances the expression of Cav-1, which subsequently causes virus reduction, suggesting that Cav-1 may contribute to persistent infection in macrophages. PMID:20610713

  12. Translocation of Endothelial Nitric-Oxide Synthase Involves a Ternary Complex with Caveolin-1 and NOSTRIN

    PubMed Central

    Schilling, Kirstin; Opitz, Nils; Wiesenthal, Anja; Oess, Stefanie; Tikkanen, Ritva; Icking, Ann

    2006-01-01

    Recently, we characterized a novel endothelial nitric-oxide synthase (eNOS)-interacting protein, NOSTRIN (for eNOS-trafficking inducer), which decreases eNOS activity upon overexpression and induces translocation of eNOS away from the plasma membrane. Here, we show that NOSTRIN directly binds to caveolin-1, a well-established inhibitor of eNOS. Because this interaction occurs between the N terminus of caveolin (positions 1–61) and the central domain of NOSTRIN (positions 323–434), it allows for independent binding of each of the two proteins to eNOS. Consistently, we were able to demonstrate the existence of a ternary complex of NOSTRIN, eNOS, and caveolin-1 in Chinese hamster ovary (CHO)-eNOS cells. In human umbilical vein endothelial cells (HUVECs), the ternary complex assembles at the plasma membrane upon confluence or thrombin stimulation. In CHO-eNOS cells, NOSTRIN-mediated translocation of eNOS involves caveolin in a process most likely representing caveolar trafficking. Accordingly, trafficking of NOSTRIN/eNOS/caveolin is affected by altering the state of actin filaments or cholesterol levels in the plasma membrane. During caveolar trafficking, NOSTRIN functions as an adaptor to recruit mediators such as dynamin-2 essential for membrane fission. We propose that a ternary complex between NOSTRIN, caveolin-1, and eNOS mediates translocation of eNOS, with important implications for the activity and availability of eNOS in the cell. PMID:16807357

  13. Flagellin-dependent TLR5/caveolin-1 as a promising immune activator in immunosenescence.

    PubMed

    Lim, Jae Sung; Nguyen, Kim Cuc Thi; Nguyen, Chung Truong; Jang, Ik-Soon; Han, Jung Min; Fabian, Claire; Lee, Shee Eun; Rhee, Joon Haeng; Cho, Kyung A

    2015-10-01

    The age-associated decline of immune responses causes high susceptibility to infections and reduced vaccine efficacy in the elderly. However, the mechanisms underlying age-related deficits are unclear. Here, we found that the expression and signaling of flagellin (FlaB)-dependent Toll-like receptor 5 (TLR5), unlike the other TLRs, were well maintained in old macrophages, similar to young macrophages. The expression and activation of TLR5/MyD88, but not TLR4, were sensitively regulated by the upregulation of caveolin-1 in old macrophages through direct interaction. This interaction was also confirmed using macrophages from caveolin-1 or MyD88 knockout mice. Because TLR5 and caveolin-1 were well expressed in major old tissues including lung, skin, intestine, and spleen, we analyzed in vivo immune responses via a vaccine platform with FlaB as a mucosal adjuvant for the pneumococcal surface protein A (PspA) against Streptococcus pneumoniae infection in young and aged mice. The FlaB-PspA fusion protein induced a significantly higher level of PspA-specific IgG and IgA responses and demonstrated a high protective efficacy against a lethal challenge with live S. pneumoniae in aged mice. These results suggest that caveolin-1/TLR5 signaling plays a key role in age-associated innate immune responses and that FlaB-PspA stimulation of TLR5 may be a new strategy for a mucosal vaccine adjuvant against pneumococcal infection in the elderly. PMID:26223660

  14. Telmisartan regresses left ventricular hypertrophy in caveolin-1 deficient mice

    PubMed Central

    Kreiger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C.

    2011-01-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known, however the role of the Ang II in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav- KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan, and cardiac function assessed by echocardiography. Treatment of Cav-1 KO mice with telmisartan significantly improved cardiac function compared to age-matched, vehicle treated Cav-1 KO mice, while telmisartan did not affected cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by telmisartan in Cav-1 KO but not WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides-A and –B, β-myosin heavy chain and TGF-β and telmisartan treatment normalized the expression of these genes. Telmisartan reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, telmisartan treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  15. Telmisartan regresses left ventricular hypertrophy in caveolin-1-deficient mice.

    PubMed

    Krieger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C

    2010-11-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known; however, its role in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav-1 KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan (Telm), and cardiac function was assessed by echocardiography. Treatment of Cav-1 KO mice with Telm significantly improved cardiac function compared with age-matched vehicle-treated Cav-1 KO mice, whereas Telm did not affect cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by Telm in Cav-1 KO but not in WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides A and B, β-myosin heavy chain and TGF-β, and Telm treatment normalized the expression of these genes. Telm reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, Telm treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  16. Hypoxia induces cardiac fibroblast proliferation and phenotypic switch: a role for caveolae and caveolin-1/PTEN mediated pathway

    PubMed Central

    Gao, Yao; Chu, Ming; Hong, Jian; Shang, Jingping

    2014-01-01

    Background Cardiac fibrosis following myocardial infarction (MI) results in heart failure. Caveolin-1, the main structural protein of caveolae, regulates signal transduction pathways controlling cell proliferation and apoptosis. Meanwhile, low phosphatase and tensin homolog (PTEN) activity enhances the PI3K/Akt signal pathway to induce cell proliferation. But whether caveolin-1 and PTEN activation regulates cardiac fibroblast proliferation and contributes to cardiac fibrosis from ischemic injury is incompletely understood. This study investigates whether hypoxia inducing cardiac fibroblast proliferation and phenotypic switch is caveolin-dependent. Methods We used in vitro and in vivo models of ischemic injury, immunohistochemical staining, and cell proliferation assays to address this hypothesis. Results We found that MI induced collagen deposition and cardiac dysfunction. After MI, mice displayed reduced caveolin-1 and PTEN expression and increased α-smooth muscle actin (α-SMA) expression in the infarct zone. Qualitative and quantitative analyses indicated that caveolin-1 expression was lowest at 7 days after MI, accompanied by increased collagen deposition and attenuated cardiac function. We cultured cardiac fibroblasts of mice were in hypoxia or normoxia conditions for 12, 24 and 48 hours. At all the time points, caveolin-1 and PTEN expression were gradually reduced, whereas, α-SMA was gradually increased. We also observed that cell viability was increased at 12 and 24 h after hypoxia then lightly decreased at 48 h. Additionally, disruption of caveolae with methyl-β-cyclodextrin (MβCD) enhanced p-Akt and α-SMA expression and fibroblast proliferation and phenotypic switch. Conclusions These findings suggest a key role for caveolae, perhaps through the caveolin-1/PTEN signaling pathway, in cardiac fibroblast proliferation and phenotypic switch under hypoxia. PMID:25364523

  17. Endothelial caveolin-1 plays a major role in the development of atherosclerosis

    PubMed Central

    Pavlides, Stephanos; Gutierrez-Pajares, Jorge L.; Iturrieta, Jeannette; Lisanti, Michael P.

    2015-01-01

    Clinical studies have established the important impact of atherosclerotic disease in Western societies. This disease is characterized by the accumulation of lipids and the migration of various cell types in the sub-endothelial space of blood vessels. As demonstrated by many studies, endothelial cells play an essential role in the development of this disease. The endothelium acts as a gatekeeper of blood vessel integrity and cardiovascular health status. For instance, the transfer of lipids via the transport of lipoproteins in the arterial intima is believed to be mediated by endothelial cells through a process termed transcytosis. In addition, lipoproteins that accumulate in the sub-endothelial space may also be modified, in a process that can direct the activation of endothelial cells. These steps are essential for the initiation of an atherosclerotic plaque and may be mediated, at least in part, by caveolae and their associated protein caveolin-1. In the present study, we evaluate the role of caveolin-1/caveolae in the regulation of these two steps in endothelial cells. Our data clearly demonstrate that caveolin-1 is involved in the regulation of lipoprotein transcytosis across endothelial cells and in the regulation of vascular inflammation. PMID:24390341

  18. Caveolin-1 Associated Adenovirus Entry into Human Corneal Cells

    PubMed Central

    Mukherjee, Santanu; Chintakuntlawar, Ashish V.; Lee, Jeong Yoon; Ramke, Mirja; Chodosh, James; Rajaiya, Jaya

    2013-01-01

    The cellular entry of viruses represents a critical area of study, not only for viral tropism, but also because viral entry dictates the nature of the immune response elicited upon infection. Epidemic keratoconjunctivitis (EKC), caused by viruses within human adenovirus species D (HAdV-D), is a severe, ocular surface infection associated with corneal inflammation. Clathrin-mediated endocytosis has previously been shown to play a critical role in entry of other HAdV species into many host cell types. However, HAdV-D endocytosis into corneal cells has not been extensively studied. Herein, we show an essential role for cholesterol rich, lipid raft microdomains and caveolin-1, in the entry of HAdV-D37 into primary human corneal fibroblasts. Cholesterol depletion using methyl-β-cyclodextrin (MβCD) profoundly reduced viral infection. When replenished with soluble cholesterol, the effect of MβCD was reversed, allowing productive viral infection. HAdV-D37 DNA was identified in caveolin-1 rich endosomal fractions after infection. Src kinase activity was also increased in caveolin-1 rich endosomal fractions after infection, and Src phosphorylation and CXCL1 induction were both decreased in caveolin-1-/- mice corneas compared to wild type mice. siRNA knock down of caveolin-1 in corneal cells reduced chemokine induction upon viral infection, and caveolin-1-/- mouse corneas showed reduced cellular entry of HAdV-D37. As a control, HAdV-C2, a non-corneal pathogen, appeared to utilize the caveolar pathway for entry into A549 cells, but failed to infect corneal cells entirely, indicating virus and cell specific tropism. Immuno-electron microscopy confirmed the presence of caveolin-1 in HAdV-D37-containing vesicles during the earliest stages of viral entry. Collectively, these experiments indicate for the first time that HAdV-D37 uses a lipid raft mediated caveolin-1 associated pathway for entry into corneal cells, and connects the processes of viral entry with downstream

  19. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    PubMed Central

    Boothe, Tobias; Lim, Gareth E.; Cen, Haoning; Skovsø, Søs; Piske, Micah; Li, Shu Nan; Nabi, Ivan R.; Gilon, Patrick; Johnson, James D.

    2016-01-01

    Objective The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. PMID:27110488

  20. Potential role of caveolin-1 in acetaminophen-induced hepatotoxicity

    SciTech Connect

    Gardner, Carol R.; Gray, Joshua P.; Joseph, Laurie B.; Cervelli, Jessica; Bremer, Nicole; Kim, Yunjung; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2010-05-15

    Caveolin-1 (Cav-1) is a membrane scaffolding protein, which functions to regulate intracellular compartmentalization of various signaling molecules. In the present studies, transgenic mice with a targeted disruption of the Cav-1 gene (Cav-1{sup -/-}) were used to assess the role of Cav-1 in acetaminophen-induced hepatotoxicity. Treatment of wild-type mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was correlated with decreased expression of Cav-1 in the liver. Acetaminophen-induced hepatotoxicity was significantly attenuated in Cav-1{sup -/-} mice, an effect that was independent of acetaminophen metabolism. Acetaminophen administration resulted in increased hepatic expression of the oxidative stress marker, lipocalin 24p3, as well as hemeoxygenase-1, but decreased glutathione and superoxide dismutase-1; no differences were noted between the genotypes suggesting that reduced toxicity in Cav-1{sup -/-} mice is not due to alterations in antioxidant defense. In wild-type mice, acetaminophen increased mRNA expression of the pro-inflammatory cytokines, interleukin-1beta, and monocyte chemoattractant protein-1 (MCP-1), as well as cyclooxygenase-2, while 15-lipoxygenase (15-LOX), which generates anti-inflammatory lipoxins, decreased. Acetaminophen-induced changes in MCP-1 and 15-LOX expression were greater in Cav-1{sup -/-} mice. Although expression of tumor necrosis factor-alpha, a potent hepatocyte mitogen, was up-regulated in the liver of Cav-1{sup -/-} mice after acetaminophen, expression of proliferating cell nuclear antigen and survivin, markers of cellular proliferation, were delayed, which may reflect the reduced need for tissue repair. Taken together, these data demonstrate that Cav-1 plays a role in promoting inflammation and toxicity during the pathogenesis of acetaminophen-induced injury.

  1. Potential Role of Caveolin-1 in Acetaminophen-Induced Hepatotoxicity

    PubMed Central

    Gardner, Carol R.; Gray, Joshua P.; Joseph, Laurie B.; Cervelli, Jessica; Bremer, Nicole; Kim, Yunjung; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2010-01-01

    Caveolin-1 (Cav-1) is a membrane scaffolding protein which functions to regulate intracellular compartmentalization of various signaling molecules. In the present studies, transgenic mice with a targeted disruption of the Cav-1 gene (Cav-1−/−) were used to assess the role of Cav-1 in acetaminophen-induced hepatotoxicity. Treatment of wild type mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was correlated with decreased expression of Cav-1 in the liver. Acetaminophen-induced hepatotoxicity was significantly attenuated in Cav-1−/− mice, an effect that was independent of acetaminophen metabolism. Acetaminophen administration resulted in increased hepatic expression of the oxidative stress marker, lipocalin 24p3, as well as hemeoxygenase-1, but decreased glutathione and superoxide dismutase-1; no differences were noted between the genotypes suggesting that reduced toxicity in Cav-1−/− mice is not due to alterations in anti-oxidant defense. In wild type mice, acetaminophen increased mRNA expression of the pro-inflammatory cytokines, interleukin-1β and monocyte chemoattractant protein-1 (MCP-1), as well as cyclooxygenase-2, while 15-lipoxygenase (15-LOX), which generates anti-inflammatory lipoxins, decreased. Acetaminophen-induced changes in MCP-1 and 15-LOX expression were greater in Cav-1−/− mice. Although expression of tumor necrosis factor-α, a potent hepatocyte mitogen, was up-regulated in the liver of Cav-1−/− mice after acetaminophen, expression of proliferating cell nuclear antigen and survivin, markers of cellular proliferation, were delayed which may reflect the reduced need for tissue repair. Taken together, these data demonstrate that Cav-1 plays a role in promoting inflammation and toxicity during the pathogenesis of acetaminophen-induced injury. PMID:20100502

  2. ACTH-induced caveolin-1 tyrosine phosphorylation is related to podosome assembly in Y1 adrenal cells

    SciTech Connect

    Colonna, Cecilia . E-mail: ccolonna@fmed.uba.ar; Podesta, Ernesto J.

    2005-04-01

    Y1 adrenocortical cells respond to ACTH with a characteristic rounding-up that facilitates cAMP signaling, critical for transport of cholesterol to the mitochondria and increase in steroid secretion. We here demonstrate that caveolin-1 participates in coupling activation of protein kinase A (PKA) to the control of cell shape. ACTH/8-Br-cAMP induced reorganization of caveolin-1-positive structures in correlation with the cellular rounding-up. Concomitant with this change, there was an increase in the phosphorylation of caveolin-1 (Tyr-14) localized at focal adhesions (FA) with reorganization of FA to rounded, ringlike structures. Colocalization with phalloidin showed that phosphocaveolin is present at the edge of actin filaments and that after ACTH stimulation F-actin dots at the cell periphery become surrounded by phosphocaveolin-1. These observations along with electron microscopy studies revealed these structures as podosomes. Podosome assembly was dependent on both PKA and tyrosine kinase activities because their formation was impaired after treatment with specific inhibitors [myristoylated PKI (mPKI) or PP2, respectively] previous to ACTH/8-Br-cAMP stimulation. These results show for the first time that ACTH induces caveolin-1 phosphorylation and podosome assembly in Y1 cells and support the view that the morphological and functional responses to PKA activation in steroidogenic cells are related to cytoskeleton dynamics.

  3. QRFP-43 inhibits lipolysis by preventing ligand-induced complex formation between perilipin A, caveolin-1, the catalytic subunit of protein kinase and hormone-sensitive lipase in 3T3-L1 adipocytes.

    PubMed

    Mulumba, Mukandila; Granata, Riccarda; Marleau, Sylvie; Ong, Huy

    2015-05-01

    QRFP (RFamide) peptides are neuropeptides involved in food intake and adiposity regulation in rodents. We have previously shown that QRFP-43 (43RFa) and QRFP-26 (26RFa) inhibited isoproterenol (ISO)-induced lipolysis in adipocytes. However, the antilipolytic signaling pathways activated by QRFP peptides have not been investigated. In the present study, 3T3-L1 adipocytes were used to identify the main pathways involved in QRFP-43 decreasing ISO-induced lipolysis. Our results show that QRFP-43 reduced ISO-induced phosphorylation of perilipin A (PLIN) and hormone-sensitive lipase (HSL) on Ser660 by 43 and 25%, respectively, but increased Akt phosphorylation by 44%. However, the inhibition of phosphodiesterase 3B (PDE3B), a regulator of lipolysis activated by Akt, did not reverse the antilipolytic effect of QRFP-43. PDE3B inhibition reversed the decrease of Ser660 HSL phosphorylation associated with QRFP-43 antilipolytic effect. QRFP-43 also prevented PKC activation and ISO-induced Src kinases activation leading to the inhibition of the caveolin-1 (CAV-1) translocation on lipid droplets. Indeed, QRFP-43 attenuated phorbol 12-myristate 13-acetate-induced lipolysis and ISO-induced extracellular signal-regulated and Src kinases by 28, 37 and 48%, respectively. The attenuation of ISO-induced lipolysis by QRFP-43 was associated with a decrease of phosphorylated Ser660 HSL, PKA-catalytic (PKA-c) subunit and CAV-1 translocation on lipid droplets by 37, 50 and 46%, respectively. The decrease in ISO-induced CAV-1 and PKA-c translocation was associated with a reduction of PLIN phosphorylation by 44% in QRFP-43-treated adipocytes. These results suggest that QRFP-43 attenuated ISO-induced lipolysis by preventing the formation of an active complex on lipid droplets and the activation of Src kinases and PKC. PMID:25677823

  4. [Interaction of two tumor suppressors: Phosphatase CTDSPL and Rb protein].

    PubMed

    Beniaminov, A D; Krasnov, G S; Dmitriev, A A; Puzanov, G A; Snopok, B A; Senchenko, V N; Kashuba, V I

    2016-01-01

    Earlier we established that CTDSPL gene encoding small carboxy-terminal domain serine phosphatase can be considered a classical tumor suppressor gene. Besides, transfection of tumor cell line MCF-7 with CTDSPL led to the content decrease of inactive phosphorylated form of another tumor suppressor, retinoblastoma protein (Rb), and subsequently to cell cycle arrest at the G1/S boundary. This result implied that small phosphatase CTDSPL is able to specifically dephosphorylate and activate Rb protein. In order to add some fuel to this hypothesis, in the present work we studied the interaction of two tumor suppressors CTDSPL and Rb in vitro. GST pool-down assay revealed that CTDSPL is able to precipitate Rb protein from MCF-7 cell extracts, while surface plasmon resonance technique showed that interaction of the two proteins is direct. Results of this study reassert that phosphatase CTDSPL and Rb could be involved in the common mechanism of cell cycle regulation. PMID:27414789

  5. MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1.

    PubMed

    Lin, Dao-Hong; Yue, Peng; Pan, Chunyang; Sun, Peng; Wang, Wen-Hui

    2011-06-01

    Dietary potassium stimulates the surface expression of ROMK channels in the aldosterone-sensitive distal nephron, but the mechanism by which this occurs is incompletely understood. Here, a high-potassium diet increased the transcription of microRNA (miR) 802 in the cortical collecting duct in mice. In addition, high-potassium intake decreased the expression of caveolin-1, whose 3' untranslated region contains the seed sequence of miR-802. In vitro, expression of miR-802 suppressed the expression of caveolin-1, and conversely, downregulation of endogenous miR-802 increased the expression of caveolin-1. Sucrose-gradient centrifugation suggested that caveolin-1 closely associated with ROMK channels, and immunoprecipitation showed that caveolin-1 interacted with the N terminus of ROMK. Expression of caveolin-1 varied inversely with the expression of ROMK1 in the plasma membrane, and caveolin-1 inhibited ROMK1 channel activity. Removal of the clathrin-dependent endocytosis motif from ROMK1 failed to abolish the effect of caveolin-1 on ROMK1 channel activity. Last, expression of miR-802 increased ROMK1 channel activity, an effect blocked by coexpression of caveolin-1. Taken together, miR-802 mediates the stimulatory effect of a high-potassium diet on ROMK channel activity by suppressing caveolin-1 expression, which leads to increased surface expression of ROMK channels in the distal nephron. PMID:21566059

  6. Gene expression profiling of early intervertebral disc degeneration reveals a down-regulation of canonical Wnt signaling and caveolin-1 expression: implications for development of regenerative strategies

    PubMed Central

    2013-01-01

    Introduction Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration. Methods Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age. Results Early IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice

  7. Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells.

    PubMed

    Jin, Xinchun; Sun, Yanyun; Xu, Ji; Liu, Wenlan

    2015-03-01

    Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation. PMID:25683686

  8. Kainic acid induces expression of caveolin-1 in activated microglia in rat brain.

    PubMed

    Takeuchi, Shigeko; Matsuda, Wakoto; Tooyama, Ikuo; Yasuhara, Osamu

    2013-01-01

    Caveolin-1, a major constituent of caveolae, has been implicated in endocytosis, signal transduction and cholesterol transport in a wide variety of cells. In the present study, the expression of caveolin-1 was examined by immunohistochemistry in rat brain with or without systemic injection of kainic acid (KA). Caveolin-1 immunoreactivity was observed in capillary walls in brains of control rats. From one to seven days after KA injection, caveolin-1 immunoreactivity appeared in activated microglia in the cerebral cortex, hippocampus and other brain regions. The strongest immunoreactivity of microglia was seen after 3 days after KA administration. The expression of caveolin-1 was confirmed by RT-PCR and Western blot analysis, respectively. The induction of caveolin-1 expression in microglia activated in response to kainic acid administration suggests its possible role in a modulation of inflammation. PMID:23690214

  9. Caveolin-1–dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo

    PubMed Central

    Marchiando, Amanda M.; Shen, Le; Graham, W. Vallen; Weber, Christopher R.; Schwarz, Brad T.; Austin, Jotham R.; Raleigh, David R.; Guan, Yanfang; Watson, Alastair J.M.; Montrose, Marshall H.

    2010-01-01

    Epithelial paracellular barrier function, determined primarily by tight junction permeability, is frequently disrupted in disease. In the intestine, barrier loss can be mediated by tumor necrosis factor (α) (TNF) signaling and epithelial myosin light chain kinase (MLCK) activation. However, TNF induces only limited alteration of tight junction morphology, and the events that couple structural reorganization to barrier regulation have not been defined. We have used in vivo imaging and transgenic mice expressing fluorescent-tagged occludin and ZO-1 fusion proteins to link occludin endocytosis to TNF-induced tight junction regulation. This endocytosis requires caveolin-1 and is essential for structural and functional tight junction regulation. These data demonstrate that MLCK activation triggers caveolin-1–dependent endocytosis of occludin to effect structural and functional tight junction regulation. PMID:20351069

  10. Caveolin-1 expression and cavin stability regulate caveolae dynamics in adipocyte lipid store fluctuation.

    PubMed

    Briand, Nolwenn; Prado, Cécilia; Mabilleau, Guillaume; Lasnier, Françoise; Le Lièpvre, Xavier; Covington, Jeffrey D; Ravussin, Eric; Le Lay, Soazig; Dugail, Isabelle

    2014-12-01

    Adipocytes specialized in the storage of energy as fat are among the most caveolae-enriched cell types. Loss of caveolae produces lipodystrophic diabetes in humans, which cannot be reversed by endothelial rescue of caveolin expression in mice, indicating major importance of adipocyte caveolae. However, how caveolae participate in fat cell functions is poorly understood. We investigated dynamic conditions of lipid store fluctuations and demonstrate reciprocal regulation of caveolae density and fat cell lipid droplet storage. We identified caveolin-1 expression as a crucial step in adipose cell lines and in mice to raise the density of caveolae, to increase adipocyte ability to accommodate larger lipid droplets, and to promote cell expansion by increased glucose utilization. In human subjects enrolled in a trial of 8 weeks of overfeeding to promote fattening, adipocyte expansion response correlated with initial caveolin-1 expression. Conversely, lipid mobilization in cultured adipocytes to induce lipid droplet shrinkage led to biphasic response of cavin-1 with ultimate loss of expression of cavin-1 and -3 and EHD2 by protein degradation, coincident with caveolae disassembly. We have identified the key steps in cavin/caveolin interplay regulating adipocyte caveolae dynamics. Our data establish that caveolae participate in a unique cell response connected to lipid store fluctuation, suggesting lipid-induced mechanotension in adipocytes. PMID:24969108

  11. Caveolin-1 Expression and Cavin Stability Regulate Caveolae Dynamics in Adipocyte Lipid Store Fluctuation

    PubMed Central

    Briand, Nolwenn; Prado, Cécilia; Mabilleau, Guillaume; Lasnier, Françoise; Le Lièpvre, Xavier; Covington, Jeffrey D.; Ravussin, Eric; Le Lay, Soazig

    2014-01-01

    Adipocytes specialized in the storage of energy as fat are among the most caveolae-enriched cell types. Loss of caveolae produces lipodystrophic diabetes in humans, which cannot be reversed by endothelial rescue of caveolin expression in mice, indicating major importance of adipocyte caveolae. However, how caveolae participate in fat cell functions is poorly understood. We investigated dynamic conditions of lipid store fluctuations and demonstrate reciprocal regulation of caveolae density and fat cell lipid droplet storage. We identified caveolin-1 expression as a crucial step in adipose cell lines and in mice to raise the density of caveolae, to increase adipocyte ability to accommodate larger lipid droplets, and to promote cell expansion by increased glucose utilization. In human subjects enrolled in a trial of 8 weeks of overfeeding to promote fattening, adipocyte expansion response correlated with initial caveolin-1 expression. Conversely, lipid mobilization in cultured adipocytes to induce lipid droplet shrinkage led to biphasic response of cavin-1 with ultimate loss of expression of cavin-1 and -3 and EHD2 by protein degradation, coincident with caveolae disassembly. We have identified the key steps in cavin/caveolin interplay regulating adipocyte caveolae dynamics. Our data establish that caveolae participate in a unique cell response connected to lipid store fluctuation, suggesting lipid-induced mechanotension in adipocytes. PMID:24969108

  12. Cardiopulmonary bypass increases pulmonary microvascular permeability through the Src kinase pathway: Involvement of caveolin-1 and vascular endothelial cadherin

    PubMed Central

    ZHANG, JUNWEN; JIANG, ZHAOLEI; BAO, CHUNRONG; MEI, JU; ZHU, JIAQUAN

    2016-01-01

    Changes in pulmonary microvascular permeability following cardiopulmonary bypass (CPB) and the underlying mechanisms have not yet been established. Therefore, the aim of the present study was to elucidate the alterations in pulmonary microvascular permeability following CPB and the underlying mechanism. The pulmonary microvascular permeability was measured using Evans Blue dye (EBD) exclusion, and the neutrophil infiltration and proinflammatory cytokine secretion was investigated. In addition, the activation of Src kinase and the phosphorylation of caveolin-1 and vascular endothelial cadherin (VE-cadherin) was examined. The results revealed that CPB increased pulmonary microvascular leakage, neutrophil count and proinflammatory cytokines in the bronchoalveolar lavage fluid, and activated Src kinase. The administration of PP2, an inhibitor of Src kinase, decreased the activation of Src kinase and attenuated the increase in pulmonary microvascular permeability observed following CPB. Two important proteins associated with vascular permeability, caveolin-1 and VE-cadherin, were significantly activated at 24 h in the lung tissues following CPB, which correlated with the alterations in pulmonary microvascular permeability and Src kinase. PP2 administration inhibited their activation, suggesting that they are downstream factors of Src kinase activation. The data indicated that the Src kinase pathway increased pulmonary microvascular permeability following CPB, and the activation of caveolin-1 and VE-cadherin may be involved. Inhibition of this pathway may provide a potential therapy for acute lung injury following cardiac surgery. PMID:26847917

  13. The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo.

    PubMed

    Das, K; Lewis, R Y; Scherer, P E; Lisanti, M P

    1999-06-25

    The mammalian caveolin gene family consists of caveolins-1, -2, and -3. The expression of caveolin-3 is muscle-specific. In contrast, caveolins-1 and -2 are co-expressed, and they form a hetero-oligomeric complex in many cell types, with particularly high levels in adipocytes, endothelial cells, and fibroblasts. These caveolin hetero-oligomers are thought to represent the functional assembly units that drive caveolae formation in vivo. Here, we investigate the mechanism by which caveolins-1 and -2 form hetero-oligomers. We reconstituted this reciprocal interaction in vivo and in vitro using a variety of complementary approaches, including the generation of glutathione S-transferase fusion proteins and synthetic peptides. Taken together, our results indicate that the membrane-spanning domains of both caveolins-1 and -2 play a critical role in mediating their ability to interact with each other. This is the first demonstration that these unusual membrane-spanning regions found in the caveolin family play a specific role in protein-protein interactions. PMID:10373486

  14. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis

    PubMed Central

    Qin, Li; Zhu, Neng; Ao, Bao-Xue; Liu, Chan; Shi, Ya-Ning; Du, Ke; Chen, Jian-Xiong; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Lipid disorder and inflammation play critical roles in the development of atherosclerosis. Reverse cholesterol transport is a key event in lipid metabolism. Caveolae and caveolin-1 are in the center stage of cholesterol transportation and inflammation in macrophages. Here, we propose that reverse cholesterol transport and inflammation in atherosclerosis can be integrated by caveolae and caveolin-1. PMID:27011179

  15. Caveolin-1 as a Novel Indicator of Wound-Healing Capacity in Aged Human Corneal Epithelium

    PubMed Central

    Rhim, Ji Heon; Kim, Jae Hoon; Yeo, Eui-Ju; Kim, Jae Chan; Park, Sang Chul

    2010-01-01

    Excess caveolin-1 has been reported to play a role in age-dependent hyporesponsiveness to growth factors in vitro. Therefore, we hypothesized that caveolin-1–dependent hyporesponsiveness to growth factors in aged corneal epithelial cells might be responsible for delayed wound healing in vivo. To test this hypothesis, we evaluated corneal wound-healing time by vital staining using fluorescein after laser epithelial keratomileusis (LASEK). We compared wound-healing times in young, middle-aged and elderly patients. We also examined caveolin-1 levels and other aging markers, such as p53 and p21, in the corneal epithelium. Elderly patients generally had higher caveolin-1 levels in the corneal epithelia than young patients. There were, however, variations among individuals with increased caveolin-1 in some young patients and decreased levels in some elderly patients. Wound-healing time after LASEK correlated well with the corneal caveolin-1 status. Therefore, we suggest that caveolin-1 status might be responsible for delayed wound healing in elderly patients after LASEK. Caveolin-1 status might be a regulator for wound-healing capacity and a novel target for in vivo adjustment. PMID:20644900

  16. Nanoscale Imaging of Caveolin-1 Membrane Domains In Vivo

    PubMed Central

    Gabor, Kristin A.; Kim, Dahan; Kim, Carol H.; Hess, Samuel T.

    2015-01-01

    Light microscopy enables noninvasive imaging of fluorescent species in biological specimens, but resolution is generally limited by diffraction to ~200–250 nm. Many biological processes occur on smaller length scales, highlighting the importance of techniques that can image below the diffraction limit and provide valuable single-molecule information. In recent years, imaging techniques have been developed which can achieve resolution below the diffraction limit. Utilizing one such technique, fluorescence photoactivation localization microscopy (FPALM), we demonstrated its ability to construct super-resolution images from single molecules in a living zebrafish embryo, expanding the realm of previous super-resolution imaging to a living vertebrate organism. We imaged caveolin-1 in vivo, in living zebrafish embryos. Our results demonstrate the successful image acquisition of super-resolution images in a living vertebrate organism, opening several opportunities to answer more dynamic biological questions in vivo at the previously inaccessible nanoscale. PMID:25646724

  17. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    SciTech Connect

    Luo, Di-xian; Xia, Cheng-lai; Li, Jun-mu; Xiong, Yan; Yuan, Hao-yu; TANG, Zhen-Wang; Zeng, Yixin; Liao, Duan-fang

    2010-12-03

    Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different static pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were

  18. Caveolin-1/-3: therapeutic targets for myocardial ischemia/reperfusion injury.

    PubMed

    Yang, Yang; Ma, Zhiqiang; Hu, Wei; Wang, Dongjin; Jiang, Shuai; Fan, Chongxi; Di, Shouyin; Liu, Dong; Sun, Yang; Yi, Wei

    2016-07-01

    Myocardial ischemia/reperfusion (I/R) injury is a major cause of morbidity and mortality worldwide. Caveolae, caveolin-1 (Cav-1), and caveolin-3 (Cav-3) are essential for the protective effects of conditioning against myocardial I/R injury. Caveolins are membrane-bound scaffolding proteins that compartmentalize and modulate signal transduction. In this review, we introduce caveolae and caveolins and briefly describe the interactions of caveolins in the cardiovascular diseases. We also review the roles of Cav-1/-3 in protection against myocardial ischemia and I/R injury, and in conditioning. Finally, we suggest several potential research avenues that may be of interest to clinicians and basic scientists. The information included, herein, is potentially useful for the design of future studies and should advance the investigation of caveolins as therapeutic targets. PMID:27282376

  19. Roxithromycin suppresses airway remodeling and modulates the expression of caveolin-1 and phospho-p42/p44MAPK in asthmatic rats.

    PubMed

    Wu, Li-Qin; Wang, Rui-Li; Dai, Yuan-Rong; Li, Feng-Qin; Wu, Hai-Ya; Yan, Sun-Shun; Wang, Liang-Rong; Jin, Li-da; Xia, Xiao-Dong

    2015-02-01

    Roxithromycin (RXM) expresses anti-asthmatic effects that are separate from its antibiotic activity, but its effects on airway remodeling are still unknown. Here, we evaluated the effects of RXM on airway remodeling and the expression of caveolin-1 and phospho-p42/p44mitogen-activated protein kinase (phospho-p42/p44MAPK) in chronic asthmatic rats. The chronic asthma was induced by ovalbumin/Al(OH)3 sensitization and ovalbumin challenge, RXM (30mg/kg) or dexamethasone (0.5mg/kg) was given before airway challenge initiation. We measured the thickness of bronchial wall and bronchial smooth muscle cell layer to indicate airway remodeling, and caveolin-1 and phospho-p42/p44MAPK expression in lung tissue and airway smooth muscle were detected by immunohistochemistry and western blot analysis, respectively. The results demonstrated that RXM treatment decreased the thickness of bronchial wall and bronchial smooth muscle cell layer, and also downregulated the phospho-p42/p44MAPK expression and upregulated the caveolin-1 expression. The above effects of RXM were similar to dexamethasone. Our results suggested that pretreatment with RXM could suppress airway remodeling and regulate the expression of caveolin-1 and phospho-p42/p44MAPK in chronic asthmatic rats. PMID:25479721

  20. Fyn is required for oxidative- and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1.

    PubMed Central

    Sanguinetti, Amy R; Cao, Haiming; Corley Mastick, Cynthia

    2003-01-01

    Caveolin-1 is phosphorylated on Tyr(14) in response to both oxidative and hyperosmotic stress. In the present paper, we show that this phosphorylation requires activation of the Src family kinase Fyn. Stress-induced caveolin phosphorylation was abolished by three Src kinase inhibitors, SU6656, PP2 and PD180970, and was not observed in fibroblasts derived from a Src, Yes and Fyn triple-knockout mouse (SYF-/-). Using cell lines derived from single-kinase-knockout mice (Src-/-, Yes-/- and Fyn-/-), we show that expression of Fyn, but not Src or Yes, is required for stress-induced caveolin phosphorylation. Heterologous expression of Fyn in the SYF-/- and Fyn-/- cells was sufficient to reconstitute stress-induced caveolin phosphorylation, and overexpression of Fyn in wild-type cells induced hyperphosphorylation of caveolin. Fyn was autophosphorylated following oxidative stress, verifying activation of this kinase. Interestingly, there was a concomitant increase in the phosphorylation of Fyn on its Csk (C-terminal Src kinase) site, indicating feedback inhibition. Csk binds to phosphocaveolin [Cao, Courchesne and Mastick (2002) J. Biol. Chem. 277, 8771-8774] and should phosphorylate any co-localized Src-family kinases. Oxidative-stress-induced phosphorylation of caveolin-1 also requires expression of Abl [Sanguinetti and Mastick (2003) Cell Signal. 15, 289-298]. Using inhibitors and cells derived from knockout mice, we verified a requirement for both Abl and Fyn in stress-induced caveolin phosphorylation in a single cell type. Our data suggest a novel mechanism for attenuation of Src-kinase activity by Abl: stable tyrosine phosphorylation of a scaffolding protein, caveolin, and recruitment of Csk. Paxillin, a substrate of both Abl and Src, organizes a similar regulatory complex. PMID:12921535

  1. Reconstitution and spectroscopic analysis of caveolin-1 residues 62-178 reveals that proline 110 governs its structure and solvent exposure.

    PubMed

    Root, Kyle T; Glover, Kerney Jebrell

    2016-04-01

    Caveolin-1 is a membrane protein that possesses an unusual topology where both N- and C-termini are cytoplasmic as a result of a membrane-embedded turn. In particular, proline 110 has been postulated to be the linchpin of this unusual motif. Using a caveolin-1 construct (residues 62-178) reconstituted into dodecylphosphocholine micelles with and without a cholesterol mimic, the changes that occurred upon P110A mutation were probed. Using far UV circular dichroism spectroscopy it was shown that cholesterol attenuated the helicity of caveolin-1, and that mutation of P110 to alanine caused a significant increase in the α-helicity of the protein. Near UV circular dichroism spectroscopy showed significant changes in structure and/or environment upon mutation that again were modulated by the presence of cholesterol. Stern-Volmer quenching and λ(max) analysis of tryptophan residues showed that the proline mutation caused W85 to become more exposed, W98 and W115 to become less exposed, and W128 showed no change. This finding provided evidence that regions proximal and far away from the proline are buried differentially upon its mutation and therefore this residue is strongly tied to maintaining the hydrophobic coverage along the caveolin-1 sequence. In the presence of cholesterol, the accessibilities of the two tryptophan residues that proceeded position 110 were altered much more significantly upon P110A mutation than the two tryptophans aft P110. Overall, this work provides strong evidence that proline 110 is critical for maintaining both the structure and hydrophobic coverage of caveolin-1 and that cholesterol also plays a significant role in modulating these parameters. PMID:26775739

  2. Deletion of Caveolin-1 Protects against Oxidative Lung Injury via Up-Regulation of Heme Oxygenase-1

    PubMed Central

    Jin, Yang; Kim, Hong Pyo; Chi, Minli; Ifedigbo, Emeka; Ryter, Stefan W.; Choi, Augustine M. K.

    2008-01-01

    Acute lung injury (ALI) is a major cause of morbidity and mortality in critically ill patients. Hyperoxia causes lung injury in animals and humans, and is an established model of ALI. Caveolin-1, a major constituent of caveolae, regulates numerous biological processes, including cell death and proliferation. Here we demonstrate that caveolin-1–null mice (cav-1−/−) were resistant to hyperoxia-induced death and lung injury. Cav-1−/− mice sustained reduced lung injury after hyperoxia as determined by protein levels in bronchoalveolar lavage fluid and histologic analysis. Furthermore, cav-1−/− fibroblasts and endothelial cells and cav-1 knockdown epithelial cells resisted hyperoxia-induced cell death in vitro. Basal and inducible expression of the stress protein heme oxygenase-1 (HO-1) were markedly elevated in lung tissue or fibroblasts from cav-1−/− mice. Hyperoxia induced the physical interaction between cav-1 and HO-1 in fibroblasts assessed by co-immunoprecipitation studies, which resulted in attenuation of HO activity. Inhibition of HO activity with tin protoporphyrin-IX abolished the survival benefits of cav-1−/− cells and cav-1−/− mice exposed to hyperoxia. The cav-1−/− mice displayed elevated phospho-p38 mitogen-activated protein kinase (MAPK) and p38β expression in lung tissue/cells under basal conditions and during hyperoxia. Treatment with SB202190, an inhibitor of p38 MAPK, decreased hyperoxia-inducible HO-1 expression in wild-type and cav-1−/− fibroblasts. Taken together, our data demonstrated that cav-1 deletion protects against hyperoxia-induced lung injury, involving in part the modulation of the HO-1–cav-1 interaction, and the enhanced induction of HO-1 through a p38 MAPK–mediated pathway. These studies identify caveolin-1 as a novel component involved in hyperoxia-induced lung injury. PMID:18323531

  3. IGF-Binding Protein 2 – Oncogene or Tumor Suppressor?

    PubMed Central

    Pickard, Adam; McCance, Dennis J.

    2015-01-01

    The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings. PMID:25774149

  4. Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

    PubMed Central

    Jordan, Andreas

    2015-01-01

    Summary Nanomedicine is a rapidly growing field in nanotechnology, which has great potential in the development of new therapies for numerous diseases. For example iron oxide nanoparticles are in clinical use already in the thermotherapy of brain cancer. Although it has been shown, that tumor cells take up these particles in vitro, little is known about the internalization routes. Understanding of the underlying uptake mechanisms would be very useful for faster and precise development of nanoparticles for clinical applications. This study aims at the identification of key proteins, which are crucial for the active uptake of iron oxide nanoparticles by HeLa cells (human cervical cancer) as a model cell line. Cells were transfected with specific siRNAs against Caveolin-1, Dynamin 2, Flotillin-1, Clathrin, PIP5Kα and CDC42. Knockdown of Caveolin-1 reduces endocytosis of superparamagnetic iron oxide nanoparticles (SPIONs) and silica-coated iron oxide nanoparticles (SCIONs) between 23 and 41%, depending on the surface characteristics of the nanoparticles and the experimental design. Knockdown of CDC42 showed a 46% decrease of the internalization of PEGylated SPIONs within 24 h incubation time. Knockdown of Dynamin 2, Flotillin-1, Clathrin and PIP5Kα caused no or only minor effects. Hence endocytosis in HeLa cells of iron oxide nanoparticles, used in this study, is mainly mediated by Caveolin-1 and CDC42. It is shown here for the first time, which proteins of the endocytotic pathway mediate the endocytosis of silica-coated iron oxide nanoparticles in HeLa cells in vitro. In future studies more experiments should be carried out with different cell lines and other well-defined nanoparticle species to elucidate possible general principles. PMID:25671161

  5. Activation and activities of the p53 tumour suppressor protein

    PubMed Central

    Bálint, É; Vousden, K H

    2001-01-01

    The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general feature of all cancers. Here we review recent advances in our understanding of the pathways that regulate p53 and the pathways that are induced by p53, as well as their implications for cancer therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11747320

  6. Downregulation of caveolin-1 upregulates the expression of growth factors and regulators in co-culture of fibroblasts with cancer cells

    PubMed Central

    SHI, XIAO-YU; XIONG, LI-XIA; XIAO, LIANG; MENG, CHUANG; QI, GUAN-YUN; LI, WEN-LIN

    2016-01-01

    Reduced expression levels of caveolin-1 (Cav-1) in tumor stromal fibroblasts influences the occurrence and progression of tumors, particularly in breast cancer, but the relevant molecular mechanism is unclear. The present study aimed to clarify the potential mechanism underlying the promotion of tumor growth by reduced Cav-1 expression levels, by investigating Cav-1-targeted molecules in fibroblasts and breast cancer cells. The expression of growth factors in the ESF fibroblast cell line transfected with Cav-1 small interfering RNA (siRNA) was examined. The expression of apoptotic regulators in the BT474 breast cancer cell line that was co-cultured with the fibroblasts, was also investigated. The transfection of Cav-1-targeting siRNA in ESF cells resulted in efficient and specific inhibition of Cav-1 expression. The downregulation of Cav-1 increased the expression and secretion of stromal cell-derived factor-1 (SDF-1), epidermal growth factor (EGF) and fibroblast-specific protein-1 (FSP-1) in ESF cells. This resulted in the accelerated proliferation of the breast cancer cells. Tumor protein 53-induced glycolysis and apoptosis regulator (TIGAR) was upregulated in the BT474 cells under the condition of co-culture with Cav-1 siRNA fibroblasts, while levels of reactive oxygen species (ROS) were decreased, resulting in apoptosis inhibition in the breast cancer cells. These results demonstrated that the downregulation of Cav-1 promoted the growth of breast cancer cells through increasing SDF-1, EGF and FSP-1 in tumor stromal fibroblasts, and TIGAR levels in breast cancer cells. To the best of our knowledge, the present study supports the hypothesis that Cav-1 possesses tumor-suppressor properties, with the mechanism of Cav-1-dependent signaling involving the regulation of SDF-1, EGF, FSP-1 and TIGAR. PMID:26647977

  7. Perivascular Adipose Tissue Inhibits Endothelial Function of Rat Aortas via Caveolin-1

    PubMed Central

    Lee, Michelle Hui-Hsin; Chen, Shiu-Jen

    2014-01-01

    Perivascular adipose tissue (PVAT)-derived factors have been proposed to play an important role in the pathogenesis of atherosclerosis. Caveolin-1 (Cav-1), occupying the calcium/calmodulin binding site of endothelial NO synthase (eNOS) and then inhibiting nitric oxide (NO) production, is also involved in the development of atherosclerosis. Thus, we investigated whether PVAT regulated vascular tone via Cav-1 and/or endothelial NO pathways. Isometric tension studies were carried out in isolated thoracic aortas from Wistar rats in the presence and absence of PVAT. Concentration-response curves of phenylephrine, acetylcholine, and sodium nitroprusside were illustrated to examine the vascular reactivity and endothelial function. The protein expressions of eNOS and Cav-1 were also examined in aortic homogenates. Our results demonstrated that PVAT significantly enhanced vasoconstriction and inhibited vasodilatation via endothelium-dependent mechanism. The aortic NO production was diminished after PVAT treatment, whereas protein expression and activity of eNOS were not significantly affected. In addition, Cav-1 protein expression was significantly increased in aortas with PVAT transfer. Furthermore, a caveolae depleter methyl-β-cyclodextrin abolished the effect of PVAT on the enhancement of vasoconstriction, and reversed the impairment of aortic NO production. In conclusion, unknown factor(s) released from PVAT may inhibit endothelial NO production and induce vasocontraction via an increase of Cav-1 protein expression. PMID:24926683

  8. Cross-talk between Dopachrome Tautomerase and Caveolin-1 Is Melanoma Cell Phenotype-specific and Potentially Involved in Tumor Progression.

    PubMed

    Popa, Ioana L; Milac, Adina L; Sima, Livia E; Alexandru, Petruta R; Pastrama, Florin; Munteanu, Cristian V A; Negroiu, Gabriela

    2016-06-10

    l-Dopachrome tautomerase (l-DCT), also called tyrosinase-related protein-2 (TRP-2), is a melanoma antigen overexpressed in most chemo-/radiotherapeutic stress-resistant tumor clones, and caveolin-1 (CAV1) is a main regulator of numerous signaling processes. A structural and functional relationship between DCT and CAV1 is first presented here in two human amelanotic melanoma cell lines, derived from vertical growth phase (MelJuSo) and metastatic (SKMel28) melanomas. DCT co-localizes at the plasma membrane with CAV1 and Cavin-1, another molecular marker for caveolae in both cell phenotypes. Our novel structural model proposed for the DCT-CAV1 complex, in addition to co-immunoprecipitation and mass spectrometry data, indicates a possible direct interaction between DCT and CAV1. The CAV1 control on DCT gene expression, DCT post-translational processing, and subcellular distribution is cell phenotype-dependent. DCT is a modulator of CAV1 stability and supramolecular assembly in both cell phenotypes. During autocrine stimulation, the expressions of DCT and CAV1 are oppositely regulated; DCT increases while CAV1 decreases. Sub-confluent MelJuSo clones DCT(high)/CAV1(low) are proliferating and acquire fibroblast-like morphology, forming massive, confluent clusters as demonstrated by immunofluorescent staining and TissueFAXS quantitative image cytometry analysis. CAV1 down-regulation directly contributes to the expansion of MelJuSo DCT(high) subtype. CAV1 involved in the perpetuation of cell phenotype-overexpressing anti-stress DCT molecule supports the concept that CAV1 functions as a tumor suppressor in early stages of melanoma. DCT is a regulator of the CAV1-associated structures and is possibly a new molecular player in CAV1-mediated processes in melanoma. PMID:27053106

  9. Distinct structural domains of caveolin-1 independently regulate Ca2+ release-activated Ca2+ channels and Ca2+ microdomain-dependent gene expression.

    PubMed

    Yeh, Yi-Chun; Parekh, Anant B

    2015-04-01

    In eukaryotic cells, calcium entry across the cell surface activates nuclear gene expression, a process critically important for cell growth and differentiation, learning, and memory and immune cell functions. In immune cells, calcium entry occurs through store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels, comprised of STIM1 and Orai1 proteins. Local calcium entry through CRAC channels activates expression of c-fos- and nuclear factor of activated T cells (NFAT)-dependent genes. Although c-fos and NFAT often interact to activate gene expression synergistically, they can be activated independently of one another to regulate distinct genes. This raises the question of how one transcription factor can be activated and not the other when both are stimulated by the same trigger. Here, we show that the lipid raft scaffolding protein caveolin-1 interacts with the STIM1-Orai1 complex to increase channel activity. Phosphorylation of tyrosine 14 on caveolin-1 regulates CRAC channel-evoked c-fos activation without impacting the NFAT pathway or Orai1 activity. Our results reveal that structurally distinct domains of caveolin-1 selectively regulate the ability of local calcium to activate distinct transcription factors. More generally, our findings reveal that modular regulation by a scaffolding protein provides a simple, yet effective, mechanism to tunnel a local signal down a specific pathway. PMID:25645930

  10. PML tumor suppressor protein is required for HCV production

    SciTech Connect

    Kuroki, Misao; Ariumi, Yasuo; Hijikata, Makoto; Ikeda, Masanori; Dansako, Hiromichi; Wakita, Takaji; Shimotohno, Kunitada; Kato, Nobuyuki

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer PML tumor suppressor protein is required for HCV production. Black-Right-Pointing-Pointer PML is dispensable for HCV RNA replication. Black-Right-Pointing-Pointer HCV could not alter formation of PML-NBs. Black-Right-Pointing-Pointer INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.

  11. Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells.

    PubMed

    Schönle, Anne; Hartl, Frederike A; Mentzel, Jan; Nöltner, Theresa; Rauch, Katharina S; Prestipino, Alessandro; Wohlfeil, Sebastian A; Apostolova, Petya; Hechinger, Anne-Kathrin; Melchinger, Wolfgang; Fehrenbach, Kerstin; Guadamillas, Marta C; Follo, Marie; Prinz, Gabriele; Ruess, Ann-Katrin; Pfeifer, Dietmar; Angel Del Pozo, Miguel; Schmitt-Graeff, Annette; Duyster, Justus; Hippen, Keli I; Blazar, Bruce R; Schachtrup, Kristina; Minguet, Susana; Zeiser, Robert

    2016-04-14

    Caveolin-1 (Cav-1) is a key organizer of membrane specializations and a scaffold protein that regulates signaling in multiple cell types. We found increased Cav-1 expression in human and murine T cells after allogeneic hematopoietic cell transplantation. Indeed, Cav-1(-/-)donor T cells caused less severe acute graft-versus-host disease (GVHD) and yielded higher numbers of regulatory T cells (Tregs) compared with controls. Depletion of Tregs from the graft abrogated this protective effect. Correspondingly, Treg frequencies increased when Cav-1(-/-)T cells were exposed to transforming growth factor-β/T-cell receptor (TCR)/CD28 activation or alloantigen stimulation in vitro compared with wild-type T cells. Mechanistically, we found that the phosphorylation of Cav-1 is dispensable for the control of T-cell fate by using a nonphosphorylatable Cav-1 (Y14F/Y14F) point-mutation variant. Moreover, the close proximity of lymphocyte-specific protein tyrosine kinase (Lck) to the TCR induced by TCR-activation was reduced in Cav-1(-/-)T cells. Therefore, less TCR/Lck clustering results in suboptimal activation of the downstream signaling events, which correlates with the preferential development into a Treg phenotype. Overall, we report a novel role for Cav-1 in TCR/Lck spatial distribution upon TCR triggering, which controls T-cell fate toward a regulatory phenotype. This alteration translated into a significant increase in the frequency of Tregs and reduced GVHD in vivo. PMID:26837700

  12. The influence of a caveolin-1 mutant on the function of P-glycoprotein

    PubMed Central

    Lee, Chih-Yuan; Lai, Ting-Yu; Tsai, Meng-Kun; Ou-Yang, Pu; Tsai, Ching-Yi; Wu, Shu-Wei; Hsu, Li-Chung; Chen, Jin-Shing

    2016-01-01

    The genetic heterogeneity in cancer cells has an increased chance in the acquisition of new mutant such as drug-resistant phenotype in cancer cells. The phenotype of drug resistance in cancer cells could be evaluated by the number or function of drug transporters on cell membranes, which would lead to decreased intracellular anti-cancer drugs concentration. Caveolae are flask-shaped invaginations on cell membrane that function in membrane trafficking, endocytosis, and as a compartment where receptors and signaling proteins are concentrated. Caveolin-1 (CAV1) is the principal structural protein of caveolae and closely correlates with multidrug resistance in cancer cells. In a systematic study of the ubiquitin-modified proteome, lysine 176 of CAV1 was identified as a potential post-translational modification site for ubiquitination. In this article, we identified a mutation at lysine 176 to arginine (K176R) on CAV1 would interfere with the biogenesis of caveolae and broke the interaction of CAV1 with P-glycoprotein. Functional assays further revealed that K176R mutant of CAV1 in cancer cells increased the transport activity of P-glycoprotein and decreased the killing ability of anti-cancer drugs in non-small-cell lung cancer cell lines. PMID:26843476

  13. Stability and folding of the tumour suppressor protein p16.

    PubMed

    Tang, K S; Guralnick, B J; Wang, W K; Fersht, A R; Itzhaki, L S

    1999-01-29

    The tumour suppressor p16 is a member of the INK4 family of inhibi tors of the cyclin D-dependent kinases, CDK4 and CDK6, that are involved in the key growth control pathway of the eukaryotic cell cycle. The 156 amino acid residue protein is composed of four ankyrin repeats (a helix-turn-helix motif) that stack linearly as two four-helix bundles resulting in a non-globular, elongated molecule. The thermodynamic and kinetic properties of the folding of p16 are unusual. The protein has a very low free energy of unfolding, Delta GH-2O/D-N, of 3.1 kcal mol-1 at 25 degreesC. The rate-determining transition state of folding/unfolding is very compact (89% as compact as the native state). The other unusual feature is the very rapid rate of unfolding in the absence of denaturant of 0.8 s-1 at 25 degreesC. Thus, p16 has both thermodynamic and kinetic instability. These features may be essential for the regulatory function of the INK4 proteins and of other ankyrin-repeat-containing proteins that mediate a wide range of protein-protein interactions. The mechanisms of inactivation of p16 by eight cancer-associated mutations were dissected using a systematic method designed to probe the integrity of the secondary structure and the global fold. The structure and folding of p16 appear to be highly vulnerable to single point mutations, probably as a result of the protein's low stability. This vulnerability provides one explanation for the striking frequency of p16 mutations in tumours and in immortalised cell lines. PMID:9917418

  14. RNA binding by the Wilms tumor suppressor zinc finger proteins.

    PubMed Central

    Caricasole, A; Duarte, A; Larsson, S H; Hastie, N D; Little, M; Holmes, G; Todorov, I; Ward, A

    1996-01-01

    The Wilms tumor suppressor gene WT1 is implicated in the ontogeny of genito-urinary abnormalities, including Denys-Drash syndrome and Wilms tumor of the kidney. WT1 encodes Kruppel-type zinc finger proteins that can regulate the expression of several growth-related genes, apparently by binding to specific DNA sites located within 5' untranslated leader regions as well as 5' promoter sequences. Both WT1 and a closely related early growth response factor, EGR1, can bind the same DNA sequences from the mouse gene encoding insulin-like growth factor 2 (Igf-2). We report that WT1, but not EGR1, can bind specific Igf-2 exonic RNA sequences, and that the zinc fingers are required for this interaction. WT1 zinc finger 1, which is not represented in EGR1, plays a more significant role in RNA binding than zinc finger 4, which does have a counterpart in EGR1. Furthermore, the normal subnuclear localization of WT1 proteins is shown to be RNase, but not DNase, sensitive. Therefore, WT1 might, like the Kruppel-type zinc finger protein TFIIIA, regulate gene expression by both transcriptional and posttranscriptional mechanisms. Images Fig. 1 Fig. 2 Fig. 3 PMID:8755514

  15. Cellular Factor XIIIA Transglutaminase Localizes in Caveolae and Regulates Caveolin-1 Phosphorylation, Homo-oligomerization and c-Src Signaling in Osteoblasts.

    PubMed

    Wang, Shuai; Kaartinen, Mari T

    2015-11-01

    Transglutaminases (TGs) are a family of widely distributed enzymes that catalyze protein crosslinking by forming a covalent isopeptide bond between the substrate proteins. We have shown that MC3T3-E1 osteoblasts express Factor XIII-A (FXIII-A), and that the extracellular crosslinking activity of FXIII-A is involved in regulating matrix secretion and deposition. In this study, we have investigated the localization and potential role of intracellular FXIII-A. Conventional immunofluorescence microscopy and TIRF microscopy analyses showed that FXIII-A co-localizes with caveolin-1 in specialized membrane structures, caveolae, in differentiating osteoblasts. The caveolae-disrupting agent methyl-β-cyclodextrin abolished FXIII-A staining and co-localization with caveolin-1 from the osteoblast plasma membrane. The presence of FXIII-A in caveolae was confirmed by preparing caveolae-enriched cellular fractions using sucrose density gradient ultracentrifugation followed by western blotting. Despite this association of FXIII-A with caveolae, there was no detectable transglutaminase activity in caveolae, as measured by monodansylcadaverine incorporation. TG inhibitor NC9--which can alter TG enzyme conformation--localized to caveolae and displaced FXIII-A from these structures when added to the osteoblast cultures. The decreased FXIII-A levels in caveolae after NC9 treatment increased c-Src activation, which resulted in caveolin-1 phosphorylation, homo-oligomerization and Akt phosphorylation, suggesting cellular FXIII-A has a role in regulating c-Src signaling in osteoblasts. PMID:26231113

  16. Caveolin-1 Orchestrates TCR Synaptic Polarity, Signal Specificity, and Function in CD8 T Cells

    PubMed Central

    Tomassian, Tamar; Humphries, Lisa A.; Liu, Scot D.; Silva, Oscar; Brooks, David G.; Miceli, M. Carrie

    2013-01-01

    TCR engagement triggers the polarized recruitment of membrane, actin, and transducer assemblies within the T cell–APC contact that amplify and specify signaling cascades and Teffector activity. We report that caveolin-1, a scaffold that regulates polarity and signaling in nonlymphoid cells, is required for optimal TCR-induced actin polymerization, synaptic membrane raft polarity, and function in CD8, but not CD4, T cells. In CD8+ T cells, caveolin-1 ablation selectively impaired TCR-induced NFAT-dependent NFATc1 and cytokine gene expression, whereas caveolin-1 re-expression promoted NFATc1 gene expression. Alternatively, caveolin-1 ablation did not affect TCR-induced NF-κB–dependent Iκbα expression. Cav-1−/− mice did not efficiently promote CD8 immunity to lymphocytic choriomeningitis virus, nor did cav-1−/− OT-1+ CD8+ T cells efficiently respond to Listeria mono-cytogenes-OVA after transfer into wild-type hosts. Therefore, caveolin-1 is a T cell-intrinsic orchestrator of TCR-mediated membrane polarity and signal specificity selectively employed by CD8 T cells to customize TCR responsiveness. PMID:21849673

  17. Expression of caveolin-1 is correlated with disease stage and survival in lung adenocarcinomas.

    PubMed

    Zhan, Ping; Shen, Xiao-Kun; Qian, Qian; Wang, Qin; Zhu, Ji-Ping; Zhang, Yu; Xie, Hai-Yan; Xu, Chuen-Hua; Hao, Ke-Ke; Hu, Wei; Xia, Ning; Lu, Guo-Jun; Yu, Li-Ke

    2012-04-01

    Caveolin-1 (cav-1) has been implicated in the development of human cancers. However, the distribution of cav-1 in non-small cell lung cancer (NSCLC) and its significance require further study. Real-time PCR and Western blot assays were performed to detect cav-1 mRNA and protein levels in tumor tissues (TT) and matched tumor-free tissues (TF). The protein expression in 115 paraffin-embedded blocks was examined by immunohistochemical staining (IHC). Correlations between cav-1 mRNA and protein expression by IHC and clinicopathological features were statistically evaluated. For the 136 patients examined, the levels of cav-1 mRNA and protein expression were significantly lower in lung TT compared to matched TF (P<0.05). High cav-1 expression was detected in 60 of 115 (52.2%) NSCLC tissues and this level was significantly lower than cav-1 expression in non-cancerous lung tissues (15 of 19, 78.9%, P<0.05). Up-regulation of cav-1 mRNA expression in lung adenocarcinoma (AC) (29.7%) was higher than that observed in lung squamous cell carcinoma (SCC) (15.8%). Statistical analysis of the correlation between cav-1 protein expression and clinical features showed a statistical association with poorer N-stage (P=0.032) and higher pathological TNM stage (P=0.012) in lung AC patients, that was not found in lung SCC patients. Moreover, lung AC patients with higher cav-1 expression showed significantly shorter life-spans than those with lower cav-1 expression (P=0.032, log-rank test). The levels of cav-1 mRNA and protein expression were significantly lower in lung cancers when compared to matched TF or non-cancerous lung tissues. The higher protein expression correlated with the advanced pathological stage and shorter survival rates in lung AC patients. PMID:22200856

  18. Identification of a novel prostate cancer biomarker, caveolin-1: Implications and potential clinical benefit

    PubMed Central

    Corn, Paul G; Thompson, Timothy C

    2010-01-01

    While prostate cancer is a common disease in men, it is uncommonly life-threatening. To better understand this phenomenon, tumor biologists have sought to elucidate the mechanisms that contribute to the development of virulent prostate cancer. The recent discovery that caveolin-1 (Cav-1) functions as an important oncogene involved in prostate cancer progression reflects the success of this effort. Cav-1 is a major structural coat protein of caveolae, specialized plasma membrane invaginations involved in multiple cellular functions, including molecular transport, cell adhesion, and signal transduction. Cav-1 is aberrantly overexpressed in human prostate cancer, with higher levels evident in metastatic versus primary sites. Intracellular Cav-1 promotes cell survival through activation of Akt and enhancement of additional growth factor pro-survival pathways. Cav-1 is also secreted as a biologically active molecule that promotes cell survival and angiogenesis within the tumor microenvironment. Secreted Cav-1 can be reproducibly detected in peripheral blood using a sensitive and specific immunoassay. Cav-1 levels distinguish men with prostate cancer from normal controls, and preoperative Cav-1 levels predict which patients are at highest risk for relapse following radical prostatectomy for localized disease. Thus, secreted Cav-1 is a promising biomarker in identifying clinically significant prostate cancer. PMID:21188102

  19. Pilus phase variation switches gonococcal adherence to invasion by caveolin-1-dependent host cell signaling.

    PubMed

    Faulstich, Michaela; Böttcher, Jan-Peter; Meyer, Thomas F; Fraunholz, Martin; Rudel, Thomas

    2013-01-01

    Many pathogenic bacteria cause local infections but occasionally invade into the blood stream, often with fatal outcome. Very little is known about the mechanism underlying the switch from local to invasive infection. In the case of Neisseria gonorrhoeae, phase variable type 4 pili (T4P) stabilize local infection by mediating microcolony formation and inducing anti-invasive signals. Outer membrane porin PorB(IA), in contrast, is associated with disseminated infection and facilitates the efficient invasion of gonococci into host cells. Here we demonstrate that loss of pili by natural pilus phase variation is a prerequisite for the transition from local to invasive infection. Unexpectedly, both T4P-mediated inhibition of invasion and PorB(IA)-triggered invasion utilize membrane rafts and signaling pathways that depend on caveolin-1-Y14 phosphorylation (Cav1-pY14). We identified p85 regulatory subunit of PI3 kinase (PI3K) and phospholipase Cγ1 as new, exclusive and essential interaction partners for Cav1-pY14 in the course of PorBIA-induced invasion. Active PI3K induces the uptake of gonococci via a new invasion pathway involving protein kinase D1. Our data describe a novel route of bacterial entry into epithelial cells and offer the first mechanistic insight into the switch from local to invasive gonococcal infection. PMID:23717204

  20. Herpes Simplex Virus 1 Suppresses the Function of Lung Dendritic Cells via Caveolin-1

    PubMed Central

    Wu, Bing; Geng, Shuang; Bi, Yanmin; Liu, Hu; Hu, Yanxin; Li, Xinqiang; Zhang, Yizhi; Zhou, Xiaoyu; Zheng, Guoxing; He, Bin

    2015-01-01

    Caveolin-1 (Cav-1), the principal structural protein of caveolae, has been implicated as a regulator of virus-host interactions. Several viruses exploit caveolae to facilitate viral infections. However, the roles of Cav-1 in herpes simplex virus 1 (HSV-1) infection have not fully been elucidated. Here, we report that Cav-1 downregulates the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) in dendritic cells (DCs) during HSV-1 infection. As a result, Cav-1 deficiency led to an accelerated elimination of virus and less lung pathological change following HSV-1 infection. This protection was dependent on iNOS and NO production in DCs. Adoptive transfer of DCs with Cav-1 knockdown was sufficient to confer the protection to wild-type (WT) mice. In addition, Cav-1 knockout (KO) (Cav-1−/−) mice treated with an iNOS inhibitor exhibited significantly reduced survival compared to that of the nontreated controls. We found that Cav-1 colocalized with iNOS and HSV-1 in caveolae in HSV-1-infected DCs, suggesting their interaction. Taken together, our results identified Cav-1 as a novel regulator utilized by HSV-1 to evade the host antiviral response mediated by NO production. Therefore, Cav-1 might be a valuable target for therapeutic approaches against herpesvirus infections. PMID:26018534

  1. Oligomerization of Clostridium perfringens Epsilon Toxin Is Dependent upon Caveolins 1 and 2

    PubMed Central

    Fennessey, Christine M.; Sheng, Jinsong; Rubin, Donald H.; McClain, Mark S.

    2012-01-01

    Evidence from multiple studies suggests that Clostridium perfringens ε-toxin is a pore-forming toxin, assembling into oligomeric complexes in the plasma membrane of sensitive cells. In a previous study, we used gene-trap mutagenesis to identify mammalian factors contributing to toxin activity, including caveolin-2 (CAV2). In this study, we demonstrate the importance of caveolin-2 and its interaction partner, caveolin-1 (CAV1), in ε-toxin-induced cytotoxicity. Using CAV2-specific shRNA in a toxin-sensitive human kidney cell line, ACHN, we confirmed that cells deficient in CAV2 exhibit increased resistance to ε-toxin. Similarly, using CAV1-specific shRNA, we demonstrate that cells deficient in CAV1 also exhibit increased resistance to the toxin. Immunoprecipitation of CAV1 and CAV2 from ε-toxin-treated ACHN cells demonstrated interaction of both CAV1 and -2 with the toxin. Furthermore, blue-native PAGE indicated that the toxin and caveolins were components of a 670 kDa protein complex. Although ε-toxin binding was only slightly perturbed in caveolin-deficient cells, oligomerization of the toxin was dramatically reduced in both CAV1- and CAV2-deficient cells. These results indicate that CAV1 and -2 potentiate ε-toxin induced cytotoxicity by promoting toxin oligomerization – an event which is requisite for pore formation and, by extension, cell death. PMID:23056496

  2. Non-caveolar caveolin-1 expression in prostate cancer cells promotes lymphangiogenesis

    PubMed Central

    Nassar, Zeyad D.; Hill, Michelle M.; Parton, Robert G.; Francois, Mathias; Parat, Marie-Odile

    2015-01-01

    Lymphangiogenesis allows prostate cancer (PCa) lymphatic metastasis, which is associated with poor prognosis and short survival rates. Caveolin-1 (Cav-1) is a membrane protein localized in caveolae, but also exists in non-caveolar, cellular or extracellular forms. Cav-1 is overexpressed in PCa, promotes prostate tumour progression and metastasis. We investigated the effect of caveolar and non-caveolar Cav-1 on PCa lymphangiogenic potential. Cav-1 was down-regulated in PC3 and DU145, and ectopically expressed in LNCaP cells. The effect of PCa cell conditioned media on lymphatic endothelial cell (LEC) viability, chemotaxis, chemokinesis and differentiation was assessed. The effect of Cav-1 on PCa cell expression of lymphangiogenesis-modulators VEGF-A and VEGF-C was assessed using qPCR and ELISA of the conditioned medium. Non-caveolar Cav-1, whether exogenous or endogenous (in LNCaP and PC3 cells, respectively) enhanced LEC proliferation, migration and differentiation. In contrast, caveolar Cav-1 (in DU145 cells) did not significantly affect PCa cell lymphangiogenic potential. The effect of non-caveolar Cav-1 on LECs was mediated by increased expression of VEGF-A as demonstrated by neutralization by anti-VEGF-A antibody. This study unveils for the first time a crucial role for non-caveolar Cav-1 in modulating PCa cell expression of VEGF-A and subsequent LEC proliferation, migration and tube formation. PMID:26328273

  3. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation

    PubMed Central

    Hayer, Arnold; Stoeber, Miriam; Ritz, Danilo; Engel, Sabrina; Meyer, Hemmo H.

    2010-01-01

    Caveolae are long-lived plasma membrane microdomains composed of caveolins, cavins, and a cholesterol-rich membrane. Little is known about how caveolae disassemble and how their coat components are degraded. We studied the degradation of caveolin-1 (CAV1), a major caveolar protein, in CV1 cells. CAV1 was degraded very slowly, but turnover could be accelerated by compromising caveolae assembly. Now, CAV1 became detectable in late endosomes (LE) and lysosomes where it was degraded. Targeting to the degradative pathway required ubiquitination and the endosomal sorting complex required for transport (ESCRT) machinery for inclusion into intralumenal vesicles in endosomes. A dual-tag strategy allowed us to monitor exposure of CAV1 to the acidic lumen of individual, maturing LE in living cells. Importantly, we found that “caveosomes,” previously described by our group as independent organelles distinct from endosomes, actually correspond to late endosomal compartments modified by the accumulation of overexpressed CAV1 awaiting degradation. The findings led us to a revised model for endocytic trafficking of CAV1. PMID:21041450

  4. Redistribution of the discs large tumor suppressor protein during mitosis.

    PubMed

    Massimi, Paola; Gardiol, Daniela; Roberts, Sally; Banks, Lawrence

    2003-11-01

    Drosophila discs large (Dlg) has been shown to be an essential regulator of cell polarity and attachment, and is classified as a potential tumour suppressor in higher eukaryotes. Human Dlg is expressed in epithelial cells at sites of cell-cell contact and acts as a negative regulator of cell growth. Although hDlg has been shown to be phosphorylated during mitosis, little is known about its activity during this stage of the cell cycle. To investigate this further we have analysed in detail the pattern of hDlg expression during mitotic cell division. In early mitosis there is a marked increase in membrane-bound hDlg which is then retained throughout mitosis, while during cytokinesis, there is a specific concentration of hDlg at the midbody. Using mutants of Dlg we show that this is mediated by sequences in the carboxy terminal region of Dlg, but it does not require the SH3 or PDZ domains, and is independent of binding to protein 4.1. Finally, using a mutant of Dlg that consists of just this carboxy terminal region of the protein, we show that it can compete with endogenous hDlg for midbody accumulation, and this mutant also gives rise to altered cell growth. We conclude that localisation of Dlg to the midbody indicates a role for Dlg at this critical point in cytokinesis. PMID:14567986

  5. Metastasis suppressor proteins in cutaneous squamous cell carcinoma.

    PubMed

    Bozdogan, Onder; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer; Atasoy, Pınar; Yulug, Isik G

    2016-07-01

    Cutaneous squamous cell carcinomas (cSCCs) are common human carcinomas. Despite having metastasizing capacities, they usually show less aggressive progression compared to squamous cell carcinoma (SCC) of other organs. Metastasis suppressor proteins (MSPs) are a group of proteins that control and slow-down the metastatic process. In this study, we established the importance of seven well-defined MSPs including NDRG1, NM23-H1, RhoGDI2, E-cadherin, CD82/KAI1, MKK4, and AKAP12 in cSCCs. Protein expression levels of the selected MSPs were detected in 32 cSCCs, 6 in situ SCCs, and two skin cell lines (HaCaT, A-431) by immunohistochemistry. The results were evaluated semi-quantitatively using the HSCORE system. In addition, mRNA expression levels were detected by qRT-PCR in the cell lines. The HSCOREs of NM23-H1 were similar in cSCCs and normal skin tissues, while RGHOGDI2, E-cadherin and AKAP12 were significantly downregulated in cSCCs compared to normal skin. The levels of MKK4, NDRG1 and CD82 were partially conserved in cSCCs. In stage I SCCs, nuclear staining of NM23-H1 (NM23-H1nuc) was significantly lower than in stage II/III SCCs. Only nuclear staining of MKK4 (MKK4nuc) showed significantly higher scores in in situ carcinomas compared to invasive SCCs. In conclusion, similar to other human tumors, we have demonstrated complex differential expression patterns for the MSPs in in-situ and invasive cSCCs. This complex MSP signature warrants further biological and experimental pathway research. PMID:27215390

  6. A role for caveolin-1 in desmoglein binding and desmosome dynamics

    PubMed Central

    Brennan, Donna; Peltonen, Sirkku; Dowling, Alicia; Medhat, Walid; Green, Kathleen J.; Wahl, James K.; Del Galdo, Francesco; Mahoney, Mỹ G.

    2011-01-01

    Desmoglein 2 (Dsg2) is a desmosomal cadherin that is aberrantly expressed in human skin carcinomas. In addition to its well-known role in mediating intercellular desmosomal adhesion, Dsg2 regulates mitogenic signaling that may promote cancer development and progression. However, the mechanisms by which Dsg2 activates these signaling pathways and the relative contribution of its signaling and adhesion functions in tumor progression are poorly understood. In this study we show that Dsg2 associates with caveolin-1 (Cav-1), the major protein of specialized membrane microdomains called caveolae, which functions in both membrane protein turnover and intracellular signaling. Sequence analysis revealed that Dsg2 contains a putative Cav-1 binding motif. A permeable competing peptide resembling the Cav-1 scaffolding domain bound to Dsg2, disrupted normal Dsg2 staining and interfered with the integrity of epithelial sheets in vitro. Additionally, we observed that Dsg2 is proteolytically processed; resulting in a 95 kDa ectodomain shed product and a 65 kDa membrane-spanning fragment, the latter of which localizes to lipid rafts along with full-length Dsg2. Disruption of lipid rafts shifted Dsg2 to the non-raft fractions, leading to the accumulation of these proteins. Interestingly, Dsg2 proteolytic products are elevated in vivo in skin tumors from transgenic mice overexpressing Dsg2. Collectively, these data are consistent with the possibility that accumulation of truncated Dsg2 protein interferes with desmosome assembly and/or maintenance to disrupt cell-cell adhesion. Furthermore, the association of Dsg2 with Cav-1 may provide a mechanism for regulating mitogenic signaling and modulating the cell surface presentation of an important adhesion molecule, both of which could contribute to malignant transformation and tumor progression. PMID:21841821

  7. Caveolin-1 regulates P2X7 receptor signaling in osteoblasts

    PubMed Central

    Gangadharan, Vimal; Nohe, Anja; Caplan, Jeffrey; Czymmek, Kirk

    2014-01-01

    The synthesis of new bone in response to a novel applied mechanical load requires a complex series of cellular signaling events in osteoblasts and osteocytes. The activation of the purinergic receptor P2X7R is central to this mechanotransduction signaling cascade. Recently, P2X7R have been found to be associated with caveolae, a subset of lipid microdomains found in several cell types. Deletion of caveolin-1 (CAV1), the primary protein constituent of caveolae in osteoblasts, results in increased bone mass, leading us to hypothesize that the P2X7R is scaffolded to caveolae in osteoblasts. Thus, upon activation of the P2X7R, we postulate that caveolae are endocytosed, thereby modulating the downstream signal. Sucrose gradient fractionation of MC3T3-E1 preosteoblasts showed that CAV1 was translocated to the denser cytosolic fractions upon stimulation with ATP. Both ATP and the more specific P2X7R agonist 2′(3′)-O-(4-benzoylbenzoyl)ATP (BzATP) induced endocytosis of CAV1, which was inhibited when MC3T3-E1 cells were pretreated with the specific P2X7R antagonist A-839977. The P2X7R cofractionated with CAV1, but, using superresolution structured illumination microscopy, we found only a subpopulation of P2X7R in these lipid microdomains on the membrane of MC3T3-E1 cells. Suppression of CAV1 enhanced the intracellular Ca2+ response to BzATP, suggesting that caveolae regulate P2X7R signaling. This proposed mechanism is supported by increased mineralization in CAV1 knockdown MC3T3-E1 cells treated with BzATP. These data suggest that caveolae regulate P2X7R signaling upon activation by undergoing endocytosis and potentially carrying with it other signaling proteins, hence controlling the spatiotemporal signaling of P2X7R in osteoblasts. PMID:25318104

  8. SorLA in glia: shared subcellular distribution patterns with caveolin-1.

    PubMed

    Salgado, Iris K; Serrano, Melissa; García, José O; Martínez, Namyr A; Maldonado, Héctor M; Báez-Pagán, Carlos A; Lasalde-Dominicci, José A; Silva, Walter I

    2012-04-01

    SorLA is an established sorting and trafficking protein in neurons with demonstrated relevance to Alzheimer's disease (AD). It shares these roles with the caveolins, markers of membrane rafts microdomains. To further our knowledge on sorLA's expression and traffic, we studied sorLA expression in various cultured glia and its relation to caveolin-1 (cav-1), a caveolar microdomain marker. RT-PCR and immunoblots demonstrated sorLA expression in rat C6 glioma, primary cultures of rat astrocytes (PCRA), and human astrocytoma 1321N1 cells. PCRA were determined to express the highest levels of sorLA's message. Induction of differentiation of C6 cells into an astrocyte-like phenotype led to a significant decrease in sorLA's mRNA and protein expression. A set of complementary experimental approaches establish that sorLA and cav-1 directly or indirectly interact in glia: (1) co-fractionation in light-density membrane raft fractions of rat C6 glioma, PCRA, and human 1321N1 astrocytoma cells; (2) a subcellular co-localization distribution pattern in vesicular perinuclear compartments seen via confocal imaging in C6 and PCRA; (3) additional confocal analysis in C6 cells suggesting that the perinuclear compartments correspond to their co-localization in early endosomes and the trans-Golgi; and; (4) co-immunoprecipitation data strongly supporting their direct or indirect physical interaction. These findings further establish that sorLA is expressed in glia and that it shares its subcellular distribution pattern with cav-1. A direct or indirect cav-1/sorLA interaction could modify the trafficking and sorting functions of sorLA in glia and its proposed neuroprotective role in AD. PMID:22127416

  9. Pro-apoptotic function of the retinoblastoma tumor suppressor protein

    PubMed Central

    Ianari, Alessandra; Natale, Tiziana; Calo, Eliezer; Ferretti, Elisabetta; Alesse, Edoardo; Screpanti, Isabella; Haigis, Kevin; Gulino, Alberto; Lees, Jacqueline A.

    2009-01-01

    SUMMARY The retinoblastoma protein (pRB) tumor suppressor blocks cell proliferation by repressing the E2F transcription factors. This inhibition is relieved through mitogen-induced phosphorylation of pRB, triggering E2F release and activation of cell cycle genes. E2F1 can also activate pro-apoptotic genes in response to genotoxic or oncogenic stress. However, pRB’s role in this context has not been established. Here we show that DNA damage and E1A-induced oncogenic stress promotes formation of a pRB-E2F1 complex even in proliferating cells. Moreover, pRB is bound to pro-apoptotic promoters that are transcriptional active and pRB is required for maximal apoptotic response in vitro and in vivo. Together, these data reveal a direct role for pRB in the induction of apoptosis in response to genotoxic or oncogenic stress. SIGNIFICANCE pRB function is disrupted in many human tumors through either inactivation of the Rb gene or alterations in its upstream regulators. pRB’s tumor suppressive activity is at least partially dependent upon its ability to arrest cells through E2F inhibition. Our data now establish a second role for pRB as a stress-induced activator of apoptosis. Notably, pRB’s ability to promote either arrest versus apoptosis seems to be context dependent, with apoptosis being favored in proliferating cells. This finding has the potential to explain why cells are typically more resistant to apoptosis when in the arrested state. Most importantly, our observations suggest that Rb status will influence tumor response to chemotherapy by impairing both the arrest and apoptotic checkpoint responses. PMID:19249677

  10. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications.

    PubMed

    Kamada, Rui; Toguchi, Yu; Nomura, Takao; Imagawa, Toshiaki; Sakaguchi, Kazuyasu

    2016-11-01

    Tetramer formation of p53 is essential for its tumor suppressor function. p53 not only acts as a tumor suppressor protein by inducing cell cycle arrest and apoptosis in response to genotoxic stress, but it also regulates other cellular processes, including autophagy, stem cell self-renewal, and reprogramming of differentiated cells into stem cells, immune system, and metastasis. More than 50% of human tumors have TP53 gene mutations, and most of them are missense mutations that presumably reduce tumor suppressor activity of p53. This review focuses on the role of the tetramerization (oligomerization), which is modulated by the protein concentration of p53, posttranslational modifications, and/or interactions with its binding proteins, in regulating the tumor suppressor function of p53. Functional control of p53 by stabilizing or inhibiting oligomer formation and its bio-applications are also discussed. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 598-612, 2016. PMID:26572807

  11. Oxidative Stress Induces Caveolin 1 Degradation and Impairs Caveolae Functions in Skeletal Muscle Cells

    PubMed Central

    Mougeolle, Alexis; Poussard, Sylvie; Decossas, Marion; Lamaze, Christophe

    2015-01-01

    Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2) at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle. PMID:25799323

  12. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    PubMed

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. PMID:26947806

  13. Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: Implication for dysregulation of neuronal function.

    PubMed

    Somkuwar, Sucharita S; Fannon, McKenzie J; Head, Brian P; Mandyam, Chitra D

    2016-07-22

    Role of striatal dopamine D1 receptors (D1Rs) in methamphetamine (Meth) taking and seeking is recognized from contingent Meth self-administration studies. For example, Meth increases levels of D1Rs in the dorsal striatum in animal models of Meth addiction, and blockade of striatal D1Rs decreased responding for Meth and reduced Meth priming-induced drug seeking. However, the mechanism underlying enhanced expression of striatal D1Rs in animals self-administering Meth is unknown and is hypothesized to involve maladaptive intracellular signal transduction mechanism via hyperphosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). D1Rs are predominantly localized to detergent-resistant membrane/lipid raft fractions (MLR fraction), and in vitro studies indicate that D1R signaling and recycling is regulated by the MLR-resident protein caveolin-1 (Cav-1), in an endocytotic-dependent manner. Notably, expression of Cav-1 is inversely regulated by ERK1/2 activation, suggesting a signaling interplay among D1Rs, ERK1/2 and Cav-1. We therefore evaluated the effects of extended access Meth self-administration on expression of striatal D1Rs, activated ERK1/2 and Cav-1. We first report that Cav-1 is heavily expressed in neurons located in the dorsal striatum. We also report that extended access Meth produces compulsive-like unregulated intake of the drug, and these behavioral outcomes are associated with enhanced expression of D1Rs, increased activity of ERK1/2, and reduced Cav-1 expression in the dorsal striatum. These data suggest a possible cellular mechanism that involves Cav-1 regulation of D1R expression in response to escalated Meth intake, and how this response of altered D1Rs and enhanced ERK1/2 activation to Meth self-administration contributes to contingent-related processes such as addiction. PMID:27138644

  14. Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice.

    PubMed

    Shivshankar, Pooja; Brampton, Christopher; Miyasato, Shelley; Kasper, Michael; Thannickal, Victor J; Le Saux, Claude Jourdan

    2012-07-01

    Idiopathic pulmonary fibrosis is associated with a decreased expression of caveolin-1 (cav-1), yet its role remains unclear. To investigate the role of cav-1, we induced pulmonary fibrosis in wild-type (WT) and cav-1-deficient (cav-1(-/-)) mice using intratracheal instillation of bleomycin. Contrary to expectations, significantly less collagen deposition was measured in tissue from cav-1(-/-) mice than in their WT counterparts, consistent with reduced mRNA expression of procollagen1a2 and procollagen3a1. Moreover, cav-1(-/-) mice demonstrated 77% less α-smooth muscle actin staining, suggesting reduced mesenchymal cell activation. Levels of pulmonary injury, assessed by tenascin-C mRNA expression and CD44v10 detection, were significantly increased at Day 21 after injury in WT mice, an effect significantly attenuated in cav-1(-/-) mice. The apparent protective effect against bleomycin-induced fibrosis in cav-1(-/-) mice was attributed to reduce cellular senescence and apoptosis in cav-1(-/-) epithelial cells during the early phase of lung injury. Reduced matrix metalloproteinase (MMP)-2 and MMP-9 expressions indicated a low profile of senescence-associated secretory phenotype (SASP) in the bleomycin-injured cav-1(-/-) mice. However, IL-6 and macrophage inflammatory protein 2 were increased in WT and cav-1(-/-) mice after bleomycin challenge, suggesting that bleomycin-induced inflammatory response substantiated the SASP pool. Thus, loss of cav-1 attenuates early injury response to bleomycin by limiting stress-induced cellular senescence/apoptosis in epithelial cells. In contrast, decreased cav-1 expression promotes fibroblast activation and collagen deposition, effects that may be relevant in later stages of reparative response. Hence, therapeutic strategies to modulate the expression of cav-1 should take into account cell-specific effects in the regenerative responses of the lung epithelium to injury. PMID:22362388

  15. Vascular smooth muscle cell proliferation depends on caveolin-1-regulated polyamine uptake

    PubMed Central

    Grossi, Mario; Rippe, Catarina; Sathanoori, Ramasri; Swärd, Karl; Forte, Amalia; Erlinge, David; Persson, Lo; Hellstrand, Per; Nilsson, Bengt-Olof

    2014-01-01

    Much evidence highlights the importance of polyamines for VSMC (vascular smooth muscle cell) proliferation and migration. Cav-1 (caveolin-1) was recently reported to regulate polyamine uptake in intestinal epithelial cells. The aim of the present study was to assess the importance of Cav-1 for VSMC polyamine uptake and its impact on cell proliferation and migration. Cav-1 KO (knockout) mouse aortic cells showed increased polyamine uptake and elevated proliferation and migration compared with WT (wild-type) cells. Both Cav-1 KO and WT cells expressed the smooth muscle differentiation markers SM22 and calponin. Cell-cycle phase distribution analysis revealed a higher proportion of Cav-1 KO than WT cells in the S phase. Cav-1 KO cells were hyper-proliferative in the presence but not in the absence of extracellular polyamines, and, moreover, supplementation with exogenous polyamines promoted proliferation in Cav-1 KO but not in WT cells. Expression of the solute carrier transporters Slc7a1 and Slc43a1 was higher in Cav-1 KO than in WT cells. ODC (ornithine decarboxylase) protein and mRNA expression as well as ODC activity were similar in Cav-1 KO and WT cells showing unaltered synthesis of polyamines in Cav-1 KO cells. Cav-1 was reduced in migrating cells in vitro and in carotid lesions in vivo. Our data show that Cav-1 negatively regulates VSMC polyamine uptake and that the proliferative advantage of Cav-1 KO cells is critically dependent on polyamine uptake. We provide proof-of-principle for targeting Cav-1-regulated polyamine uptake as a strategy to fight unwanted VSMC proliferation as observed in restenosis. PMID:25301005

  16. Caveolin-1 protects against hepatic ischemia/reperfusion injury through ameliorating peroxynitrite-mediated cell death.

    PubMed

    Gao, Lei; Chen, Xingmiao; Peng, Tao; Yang, Dan; Wang, Qi; Lv, Zhiping; Shen, Jiangang

    2016-06-01

    Nitrative stress is considered as an important pathological process of hepatic ischemia and reperfusion injury but its regulating mechanisms are largely unknown. In this study, we tested the hypothesis that caveolin-1 (Cav-1), a plasma membrane scaffolding protein, could be an important cellular signaling against hepatic I/R injury through inhibiting peroxynitrite (ONOO(-))-induced cellular damage. Male wild-type mice and Cav-1 knockout (Cav-1(-/-)) were subjected to 1h hepatic ischemia following 1, 6 and 12h of reperfusion by clipping and releasing portal vessels respectively. Immortalized human hepatocyte cell line (L02) was subjected to 1h hypoxia and 6h reoxygenation and treated with Cav-1 scaffolding domain peptide. The major discoveries included: (1) the expression of Cav-1 in serum and liver tissues of wild-type mice was time-dependently elevated during hepatic ischemia-reperfusion injury. (2) Cav-1 scaffolding domain peptide treatment inhibited cleaved caspase-3 expression in the hypoxia-reoxygenated L02 cells; (3) Cav-1 knockout (Cav-1(-/-)) mice had significantly higher levels of serum transaminases (ALT&AST) and TNF-α, and higher rates of apoptotic cell death in liver tissues than wild-type mice after subjected to 1h hepatic ischemia and 6hour reperfusion; (4) Cav-1(-/-) mice revealed higher expression levels of iNOS, ONOO(-) and 3-nitrotyrosine (3-NT) in the liver than wild-type mice, and Fe-TMPyP, a representative peroxynitrite decomposition catalyst (PDC), remarkably reduced level of ONOO(-) and 3-NT and ameliorated the serum ALT, AST and TNF-α levels in both wild-type and Cav-1(-/-) mice. Taken together, we conclude that Cav-1 could play a critical role in preventing nitrative stress-induced liver damage during hepatic ischemia-reperfusion injury. PMID:27021966

  17. The Importance of Caveolin-1 as Key-Regulator of Three-Dimensional Growth in Thyroid Cancer Cells Cultured under Real and Simulated Microgravity Conditions

    PubMed Central

    Riwaldt, Stefan; Bauer, Johann; Pietsch, Jessica; Braun, Markus; Segerer, Jürgen; Schwarzwälder, Achim; Corydon, Thomas J.; Infanger, Manfred; Grimm, Daniela

    2015-01-01

    We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed to microgravity. The evidence is based on proteins detected in cells and their supernatants of the recent spaceflight experiment: “NanoRacks-CellBox-Thyroid Cancer”. The culture supernatant had been collected in a special container adjacent to the flight hardware incubation chamber and stored at low temperature until it was analyzed by Multi-Analyte Profiling (MAP) technology, while the cells remaining in the incubation chamber were fixed by RNAlater and examined by mass spectrometry. The soluble proteins identified by MAP were investigated in regard to their mutual interactions and their influence on proteins, which were associated with the cells secreting the soluble proteins and had been identified in a preceding study. A Pathway Studio v.11 analysis of the soluble and cell-associated proteins together with protein kinase C alpha (PRKCA) suggests that caveolin-1 is involved, when plasminogen enriched in the extracellular space is not activated and the vascular cellular adhesion molecule (VCAM-1) mediated cell–cell adhesion is simultaneously strengthened and activated PRKCA is recruited in caveolae, while the thyroid cancer cells do not form spheroids. PMID:26633361

  18. The Importance of Caveolin-1 as Key-Regulator of Three-Dimensional Growth in Thyroid Cancer Cells Cultured under Real and Simulated Microgravity Conditions.

    PubMed

    Riwaldt, Stefan; Bauer, Johann; Pietsch, Jessica; Braun, Markus; Segerer, Jürgen; Schwarzwälder, Achim; Corydon, Thomas J; Infanger, Manfred; Grimm, Daniela

    2015-01-01

    We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed to microgravity. The evidence is based on proteins detected in cells and their supernatants of the recent spaceflight experiment: "NanoRacks-CellBox-Thyroid Cancer". The culture supernatant had been collected in a special container adjacent to the flight hardware incubation chamber and stored at low temperature until it was analyzed by Multi-Analyte Profiling (MAP) technology, while the cells remaining in the incubation chamber were fixed by RNAlater and examined by mass spectrometry. The soluble proteins identified by MAP were investigated in regard to their mutual interactions and their influence on proteins, which were associated with the cells secreting the soluble proteins and had been identified in a preceding study. A Pathway Studio v.11 analysis of the soluble and cell-associated proteins together with protein kinase C alpha (PRKCA) suggests that caveolin-1 is involved, when plasminogen enriched in the extracellular space is not activated and the vascular cellular adhesion molecule (VCAM-1) mediated cell-cell adhesion is simultaneously strengthened and activated PRKCA is recruited in caveolae, while the thyroid cancer cells do not form spheroids. PMID:26633361

  19. Intragenic Suppressors of Folding Defects in the P22 Tailspike Protein

    PubMed Central

    Fane, B.; King, J.

    1991-01-01

    Within the amino acid sequences of polypeptide chains little is known of the distribution of sites and sequences critical for directing chain folding and assembly. Temperature-sensitive folding (tsf) mutations identifying such sites have been previously isolated and characterized in gene 9 of phage P22 encoding the tailspike endorhamnosidase. We report here the isolation of a set of second-site conformational suppressors which alleviate the defect in such folding mutants. The suppressors were selected for their ability to correct the defects of missense tailspike polypeptide chains, generated by growth of gene 9 amber mutants on Salmonella host strains inserting either tyrosine, serine, glutamine or leucine at the nonsense codons. Second-site suppressors were recovered for 13 of 22 starting sites. The suppressors of defects at six sites mapped within gene 9. (Suppressors for seven other sites were extragenic and distant from gene 9.) The missense polypeptide chains generated from all six suppressible sites displayed ts phenotypes. Temperature-sensitive alleles were isolated at these amber sites by pseudoreversion. The intragenic suppressors restored growth at the restrictive temperature of these presumptive tsf alleles. Characterization of protein maturation in cells infected with mutant phages carrying the intragenic suppressors indicates that the suppression is acting at the level of polypeptide chain folding and assembly. PMID:1825987

  20. Slightly modifying pseudoproline dipeptides incorporation strategy enables solid phase synthesis of a 54 AA fragment of caveolin-1 encompassing the intramembrane domain.

    PubMed

    Coïc, Yves-Marie; Lan, Charlotte Le; Neumann, Jean-Michel; Jamin, Nadège; Baleux, Françoise

    2010-02-01

    This work contributes to highlight the benefits of pseudoproline dipeptides introduction in difficult SPPS. We show how a slight modification in the positioning choice conditioned the synthesis achievement of a 54 amino acid long caveolin-1 peptide encompassing the intramembrane domain. Furthermore, we report a side reaction correlated with the coupling steps and generating truncated fragments with a mass deviation of + 42 Da. Considering the need of structural data for membrane proteins, most of which are considered as prevalent therapeutic targets, chemical synthesis provides an interesting alternative pathway to obtain hydrophobic domains by pushing back the frontiers of conventional RP methods of purification. PMID:20014324

  1. Residue proximity information and protein model discrimination using saturation-suppressor mutagenesis

    PubMed Central

    Sahoo, Anusmita; Khare, Shruti; Devanarayanan, Sivasankar; Jain, Pankaj C.; Varadarajan, Raghavan

    2015-01-01

    Identification of residue-residue contacts from primary sequence can be used to guide protein structure prediction. Using Escherichia coli CcdB as the test case, we describe an experimental method termed saturation-suppressor mutagenesis to acquire residue contact information. In this methodology, for each of five inactive CcdB mutants, exhaustive screens for suppressors were performed. Proximal suppressors were accurately discriminated from distal suppressors based on their phenotypes when present as single mutants. Experimentally identified putative proximal pairs formed spatial constraints to recover >98% of native-like models of CcdB from a decoy dataset. Suppressor methodology was also applied to the integral membrane protein, diacylglycerol kinase A where the structures determined by X-ray crystallography and NMR were significantly different. Suppressor as well as sequence co-variation data clearly point to the X-ray structure being the functional one adopted in vivo. The methodology is applicable to any macromolecular system for which a convenient phenotypic assay exists. DOI: http://dx.doi.org/10.7554/eLife.09532.001 PMID:26716404

  2. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1.

    PubMed

    Matsumura, Shigeru; Kojidani, Tomoko; Kamioka, Yuji; Uchida, Seiichi; Haraguchi, Tokuko; Kimura, Akatsuki; Toyoshima, Fumiko

    2016-01-01

    Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end of retraction fibres, where ganglioside GM1-enriched membrane domains with clusters of caveola-like structures are formed in an integrin and RhoA-dependent manner. Furthermore, Gαi1-LGN-NuMA, a well-known regulatory complex of spindle orientation, is targeted to the caveolin-1-enriched cortical region to guide the spindle axis towards the cellular edge retraction. We propose that retraction-induced cortical heterogeneity of caveolin-1 during mitotic cell rounding sets the spindle orientation in the context of adhesion geometry. PMID:27292265

  3. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1

    PubMed Central

    Matsumura, Shigeru; Kojidani, Tomoko; Kamioka, Yuji; Uchida, Seiichi; Haraguchi, Tokuko; Kimura, Akatsuki; Toyoshima, Fumiko

    2016-01-01

    Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end of retraction fibres, where ganglioside GM1-enriched membrane domains with clusters of caveola-like structures are formed in an integrin and RhoA-dependent manner. Furthermore, Gαi1–LGN–NuMA, a well-known regulatory complex of spindle orientation, is targeted to the caveolin-1-enriched cortical region to guide the spindle axis towards the cellular edge retraction. We propose that retraction-induced cortical heterogeneity of caveolin-1 during mitotic cell rounding sets the spindle orientation in the context of adhesion geometry. PMID:27292265

  4. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway.

    PubMed

    Qin, Li; Yang, Yun-Bo; Yang, Yi-Xin; Zhu, Neng; Liu, Zheng; Ni, Ya-Guang; Li, Shun-Xiang; Zheng, Xi-Long; Liao, Duan-Fang

    2016-02-01

    Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, effectively reduces plasma cholesterol, but its effect on atherosclerosis is unclear. Foam cell formation has been implicated as a key mediator during the development of atherosclerosis. The purpose of this study was to investigate the effects of ezetimibe on foam cell formation and explore the underlying mechanism. The results presented here show that ezetimibe reduces atherosclerotic lesions in apolipoprotein E deficient (apoE-/-) mice by lowering cholesterol levels. Treatment of macrophages with Chol:MβCD resulted in foam cell formation, which was concentration-dependently inhibited by the presence of ezetimibe. Mechanically, ezetimibe treatment downregulated the expression of CD36 and scavenger receptor class B1 (SR-B1), but upregulated the expression of apoE and caveolin-1 in macrophage-derived foam cells, which kept consistent with our microarray results. Moreover, treatment with ezetimibe abrogated the increase of phospho-extracellular signal regulated kinase (ERK) 1/2 and their nuclear accumulation in foam cells. Inhibition of the MAPK pathway by the MEK inhibitor PD98059 attenuated the inhibitory effect of ezetimibe on the expression of p-ERK1/2 and caveolin-1. Taken together, these results showed that ezetimibe suppressed foam cell formation via the caveolin-1/MAPK signalling pathway, suggesting that inhibition of foam cell formation might be a novel mechanism underlying the anti-atherosclerotic effect of ezetimibe. PMID:26666965

  5. The Citrus leaf blotch virus movement protein acts as silencing suppressor.

    PubMed

    Renovell, Águeda; Vives, Mari Carmen; Ruiz-Ruiz, Susana; Navarro, Luis; Moreno, Pedro; Guerri, José

    2012-02-01

    To counteract plant antiviral defense based on RNA silencing, many viruses express proteins that inhibit this mechanism at different levels. The genome of Citrus leaf blotch virus (CLBV) encodes a 227-kDa protein involved in replication, a 40-kDa movement protein (MP), and a 41-kDa coat protein (CP). To determine if any of these proteins might have RNA silencing suppressor activities, we have used Agrobacterium-mediated transient assays in the green fluorescent protein (GFP)-expressing Nicotiana benthamiana line 16c. Only CLBV MP was able to suppress intracellular GFP silencing induced by expression of either single- or double-stranded (ds) GFP RNA, but not cell-to-cell or long distance spread of the silencing signal. The MP suppressor activity was weak compared to other characterized viral suppressor proteins. Overall our data indicate that MP acts as a suppressor of local silencing probably by interfering in the silencing pathway downstream of the steps of dsRNA and small RNAs generation. PMID:21948005

  6. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    SciTech Connect

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  7. Inhibition of CaV2.3 channels by NK1 receptors is sensitive to membrane cholesterol but insensitive to caveolin-1.

    PubMed

    Licon, Yamhilette; Leandro, Deniss; Romero-Mendez, Catalina; Rodriguez-Menchaca, Aldo A; Sanchez-Armass, Sergio; Meza, Ulises

    2015-08-01

    Voltage-gated, CaV2.3 calcium channels and neurokinin-1 (NK1) receptors are both present in nuclei of the central nervous system. When transiently coexpressed in human embryonic kidney (HEK) 293 cells, CaV2.3 is primarily inhibited during strong, agonist-dependent activation of NK1 receptors. NK1 receptors localize to plasma membrane rafts, and their modulation by Gq/11 protein-coupled signaling is sensitive to plasma membrane cholesterol. Here, we show that inhibition of CaV2.3 by NK1 receptors is attenuated following methyl-β-cyclodextrin (MBCD)-mediated depletion of membrane cholesterol. By contrast, inhibition of CaV2.3 was unaffected by intracellular diffusion of caveolin-1 scaffolding peptide or by overexpression of caveolin-1. Interestingly, MΒCD treatment had no effect on the macroscopic biophysical properties of CaV2.3, though it significantly decreased whole-cell membrane capacitance. Our data indicate that (1) cholesterol supports at least one component of the NK1 receptor-linked signaling pathway that inhibits CaV2.3 and (2) caveolin-1 is dispensable within this pathway. Our findings suggest that NK1 receptors reside within non-caveolar membrane rafts and that CaV2.3 resides nearby but outside the rafts. Raft-dependent modulation of CaV2.3 could be important in the physiological and pathophysiological processes in which these channels participate, including neuronal excitability, synaptic plasticity, epilepsy, and chronic pain. PMID:25204428

  8. CAVEOLIN-1 expression in brain metastasis from lung cancer predicts worse outcome and radioresistance, irrespective of tumor histotype

    PubMed Central

    Pittaro, Alessandra; Verdun di Cantogno, Ludovica; Stella, Giulia; De Blasi, Pierpaolo; Zorzetto, Michele; Mantovani, Cristina; Papotti, Mauro; Cassoni, Paola

    2015-01-01

    Brain metastases develop in one-third of patients with non-small-cell lung cancer and are associated with a dismal prognosis, irrespective of surgery or chemo-radiotherapy. Pathological markers for predicting outcomes after surgical resection and radiotherapy responsiveness are still lacking. Caveolin 1 has been associated with chemo- and radioresistance in various tumors, including non-small-cell lung cancer. Here, caveolin 1 expression was assessed in a series of 69 brain metastases from non-small-cell lung cancer and matched primary tumors to determine its role in predicting survival and radiotherapy responsiveness. Only caveolin 1 expression in brain metastasis was associated with poor prognosis and an increased risk of death (log rank test, p = 0.015). Moreover, in the younger patients (median age of <54 years), caveolin 1 expression neutralized the favorable effect of young age on survival compared with the older patients. Among the radiotherapy-treated patients, an increased risk of death was detected in the group with caveolin 1-positive brain metastasis (14 out of 22 patients, HR=6.839, 95% CI 1.849 to 25.301, Wald test p = 0.004). Overall, caveolin 1 expression in brain metastasis from non-small-cell lung cancer is independently predictive of worse outcome and radioresistance and could become an additional tool for personalized therapy in the critical subset of brain-metastatic non-small-cell lung cancer patients. PMID:26315660

  9. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation.

    PubMed

    Baumberger, Nicolas; Tsai, Ching-Hsui; Lie, Miranda; Havecker, Ericka; Baulcombe, David C

    2007-09-18

    Plant and animal viruses encode suppressor proteins of an adaptive immunity mechanism in which viral double-stranded RNA is processed into 21-25 nt short interfering (si)RNAs. The siRNAs guide ARGONAUTE (AGO) proteins so that they target viral RNA. Most viral suppressors bind long dsRNA or siRNAs and thereby prevent production of siRNA or binding of siRNA to AGO. The one exception is the 2b suppressor of Cucumoviruses that binds to and inhibits AGO1. Here we describe a novel suppressor mechanism in which a Polerovirus-encoded F box protein (P0) targets the PAZ motif and its adjacent upstream sequence in AGO1 and mediates its degradation. F box proteins are components of E3 ubiquitin ligase complexes that add polyubiquitin tracts on selected lysine residues and thereby mark a protein for proteasome-mediated degradation. With P0, however, the targeted degradation of AGO is insensitive to inhibition of the proteasome, indicating that the proteasome is not involved. We also show that P0 does not block a mobile signal of silencing, indicating that the signal molecule does not have AGO protein components. The ability of P0 to block silencing without affecting signal movement may contribute to the phloem restriction of viruses in the Polerovirus group. PMID:17869110

  10. Role of G(i/o)-Src kinase-PI3K/Akt pathway and caveolin-1 in β₂-adrenoceptor coupling to endothelial NO synthase in mouse pulmonary artery.

    PubMed

    Banquet, Sébastien; Delannoy, Estelle; Agouni, Abdelali; Dessy, Chantal; Lacomme, Sabrina; Hubert, Fabien; Richard, Vincent; Muller, Bernard; Leblais, Véronique

    2011-07-01

    Activation of the β₂-adrenoceptor (β₂-AR) elicits an endothelial nitric oxide synthase (eNOS)-dependent relaxation in mouse pulmonary artery, which, contrary to the muscarinic receptor-dependent relaxation, is preserved in hypoxic pulmonary arterial hypertension. We therefore characterized the signaling pathways underlying the β₂-AR-mediated eNOS activation, with special focus on G(i/o) proteins, protein kinases and caveolae. Functional studies (for evaluation of vasorelaxant response), Western blotting (for assessment of eNOS and caveolin-1 phosphorylation) and transmission electron microscopy (for visualization of caveolae) were conducted in pulmonary arteries from wild-type or caveolin-1 knockout mice. In wild-type isolated arteries, relaxation to the selective β₂-AR agonist procaterol was reduced by inhibitors of G(i/o) proteins (pertussis toxin, PTX), phosphatidylinositol 3-kinase (PI3K; wortmannin or LY 294002), Akt (Akt inhibitor X) and Src-kinase (PP2) and by cholesterol depletion (using methyl-β-cyclodextrin). Procaterol induced eNOS phosphorylation at Ser(1177), which was prevented by PTX, PP2 or Akt inhibitor. Procaterol also promoted caveolin-1 phosphorylation at Tyr(14), which was decreased by PTX or PP2. Caveolin-1 gene deletion resulted in endothelial caveolae disruption in mouse pulmonary artery and in potentiation of procaterol-induced relaxation. Unlike procaterol, acetylcholine-induced relaxation was unaffected by PTX, methyl-β-cyclodextrin or caveolin-1 gene deletion. To conclude, the mouse pulmonary endothelial β₂-AR is coupled to a G(i/o)-Src kinase-PI3K/Akt pathway to promote eNOS phosphorylation at Ser(1177) leading to a NO-dependent vasorelaxation. Caveolin-1 exerts a negative control on this response that is abrogated by its phosphorylation at Tyr(14), through a G(i/o)-Src kinase pathway. Since pulmonary β₂-AR- and muscarinic receptor-mediated relaxations differentiate in their respective signaling pathways leading to e

  11. Identification of a third Protein 4.1 tumor suppressor, Protein 4.1R, in meningioma pathogenesis.

    PubMed

    Robb, Victoria A; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H

    2003-08-01

    Meningiomas are common central nervous system tumors; however, the mechanisms underlying their pathogenesis are largely undefined. In this report, we demonstrate that a third Protein 4.1 family member, Protein 4.1R, functions as a meningioma tumor suppressor. We observed loss of Protein 4.1R expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningiomas by immunohistochemistry and fluorescence in situ hybridization. In support of a meningioma tumor suppressor function, Protein 4.1R overexpression resulted in reduced IOMM-Lee and CH157-MN cell proliferation. Similar to the Protein 4.1B and merlin tumor suppressors, Protein 4.1R membrane localization increased significantly under conditions of growth arrest in vitro. Lastly, we show that Protein 4.1R interacted with a subset of merlin/Protein 4.1B interactors including CD44 and betaII-spectrin. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor in the molecular pathogenesis of meningioma. PMID:12901833

  12. Caveolin-1 regulates cell apoptosis and invasion ability in paclitaxel-induced multidrug-resistant A549 lung cancer cells

    PubMed Central

    Han, Fei; Zhang, Long; Zhou, Yongxin; Yi, Xianghua

    2015-01-01

    The aim of the study was to investigate the effect and potential mechanism of caveolin-1 (Cav1) knockdown in paclitaxel-resistant lung cancer A549/Taxol cells. The human paclitaxel-resistant lung cancer cell line A549/Taxol was transfected with a Cav1 shRNA lentiviral vector. Interference efficiency for Cav1 was detected by real-time PCR and Western blotting. A MTT assay was used to determine cell proliferation, and flow cytometry was used to detect the cell cycle stage and apoptosis. Cell migration and invasion capability were detected by a transwell assay. Protein levels of related signaling molecules were detected by Western blotting. We successfully constructed a stable A549/Taxol cell line expressing low levels of Cav1. Cav1 knockdown significantly inhibited cell proliferation and induced G0/G1 arrest and cell apoptosis in vitro and in vivo. In addition, these effects correlated significantly with a reduction in cyclin D1 expression and activation of the Bcl-2/Bax-mediated mitochondrial apoptosis pathway. Furthermore, knockdown of Cav1 inhibited cell migration and invasion, and this may be related to the inhibition of AKT and the subsequent decreased protein expression of MMP2, MMP7 and MMP9. PMID:26464635

  13. Role of NF-kappaB-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide.

    PubMed

    Tiruppathi, Chinnaswamy; Shimizu, Jun; Miyawaki-Shimizu, Kayo; Vogel, Stephen M; Bair, Angela M; Minshall, Richard D; Predescu, Dan; Malik, Asrar B

    2008-02-15

    We investigated the role of NF-kappaB activation by the bacterial product lipopolysaccharide (LPS) in inducing caveolin-1 (Cav-1) expression and its consequence in contributing to the leakiness of the endothelial barrier. We observed that LPS challenge of human lung microvascular endothelial cells induced concentration- and time-dependent increases in expression of Cav-1 mRNA and protein. The NEMO (NF-kappaB essential modifier binding domain)-binding domain peptide (IkB kinase (IKK)-NEMO-binding domain (NBD) peptide), which prevents NF-kappaB activation by inhibiting the interaction of IKKgamma with the IKK complex, blocked LPS-induced Cav-1 mRNA and protein expression. Knockdown of NF-kappaB subunit p65/RelA expression with small interfering RNA also prevented LPS-induced Cav-1 expression. Caveolae open to the apical and basal plasmalemma of endothelial cells increased 2-4-fold within 4 h of LPS exposure. IKK-NBD peptide markedly reduced the LPS-induced increase in the number of caveolae as well as transendothelial albumin permeability. These observations were recapitulated in mouse studies in which IKK-NBD peptide prevented Cav-1 expression and interfered with the increase in lung microvessel permeability induced by LPS. Thus, LPS mediates NF-kappaB-dependent Cav-1 expression that results in increased caveolae number and thereby contributes to the mechanism of increased transendothelial albumin permeability. PMID:18077459

  14. Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation.

    PubMed

    Sun, Chun-Xiao; Robb, Victoria A; Gutmann, David H

    2002-11-01

    Members of the Protein 4.1 superfamily have highly conserved FERM domains that link cell surface glycoproteins to the actin cytoskeleton. Within this large and constantly expanding superfamily, at least five subgroups have been proposed. Two of these subgroups, the ERM and prototypic Protein 4.1 molecules, include proteins that function as tumor suppressors. The ERM subgroup member merlin/schwannomin is inactivated in the tumor-predisposition syndrome neurofibromatosis 2 (NF2), and the prototypic 4.1 subgroup member, Protein 4.1B, has been implicated in the molecular pathogenesis of breast, lung and brain cancers. This review focuses on what is known of mechanisms of action and critical protein interactions that may mediate the unique growth inhibitory signals of these two Protein 4.1 tumor suppressors. On the basis of insights derived from studying the NF2 tumor suppressor, we propose a model for merlin growth regulation in which CD44 links growth signals from plasma membrane to the nucleus by interacting with ERM proteins and merlin. PMID:12356905

  15. Modulator of Apoptosis 1 (MOAP-1) Is a Tumor Suppressor Protein Linked to the RASSF1A Protein*

    PubMed Central

    Law, Jennifer; Salla, Mohamed; Zare, Alaa; Wong, Yoke; Luong, Le; Volodko, Natalia; Svystun, Orysya; Flood, Kayla; Lim, Jonathan; Sung, Miranda; Dyck, Jason R. B.; Tan, Chong Teik; Su, Yu-Chin; Yu, Victor C.; Mackey, John; Baksh, Shairaz

    2015-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databases, immunoblotting of cancer cells, proliferation, and xenograft assays as well as DNA microarray analysis to demonstrate the role of MOAP-1 as a tumor suppressor protein. Frequent loss of MOAP-1 expression, in at least some cancers, appears to be attributed to mRNA down-regulation and the rapid proteasomal degradation of MOAP-1 that could be reversed utilizing the proteasome inhibitor MG132. Overexpression of MOAP-1 in several cancer cell lines resulted in reduced tumorigenesis and up-regulation of genes involved in cancer regulatory pathways that include apoptosis (p53, Fas, and MST1), DNA damage control (poly(ADP)-ribose polymerase and ataxia telangiectasia mutated), those within the cell metabolism (IR-α, IR-β, and AMP-activated protein kinase), and a stabilizing effect on microtubules. The loss of RASSF1A (an upstream regulator of MOAP-1) is one of the earliest detectable epigenetically silenced tumor suppressor proteins in cancer, and we speculate that the additional loss of function of MOAP-1 may be a second hit to functionally compromise the RASSF1A/MOAP-1 death receptor-dependent pathway and drive tumorigenesis. PMID:26269600

  16. Identification and RNA binding characterization of plant virus RNA silencing suppressor proteins.

    PubMed

    Vargason, Jeffrey M; Burch, Carissa J; Wilson, Jesse W

    2013-11-01

    Suppression is a common mechanism employed by viruses to evade the antiviral effects of the host's RNA silencing pathway. The activity of suppression has commonly been localized to gene products in the virus, but the variety of mechanisms used in suppression by these viral proteins spans nearly the complete biochemical pathway of RNA silencing in the host. This review describes the agrofiltration assay and a slightly modified version of the agro-infiltration assay called co-infiltration, which are common methods used to observe RNA silencing and identify viral silencing suppressor proteins in plants, respectively. In addition, this review will provide an overview of two methods, electrophoretic mobility shift assay and fluorescence polarization, used to assess the binding of a suppressor protein to siRNA which has been shown to be a general mechanism to suppress RNA silencing by plant viruses. PMID:23981361

  17. Caveolin-1 plays a critical role in host immunity against Klebsiella pneumoniae by regulating STAT5 and Akt activity.

    PubMed

    Guo, Qiang; Shen, Nan; Yuan, Kefei; Li, Jiaxin; Wu, Hong; Zeng, Yong; Fox, John; Bansal, Arvind K; Singh, Brij B; Gao, Hongwei; Wu, Min

    2012-06-01

    Caveolin-1 (Cav1) is a structural protein of caveolae. Although Cav1 is associated with certain bacterial infections, it is unknown whether Cav1 is involved in host immunity against Klebsiella pneumoniae, the third most commonly isolated microorganism from bacterial sepsis patients. Here, we showed that cav1 knockout mice succumbed to K. pneumoniae infection with markedly decreased survival rates, increased bacterial burdens, intensified tissue injury, hyperactive proinflammatory cytokines, and systemic bacterial dissemination as compared with WT mice. Knocking down Cav1 by a dominant negative approach in lung epithelial MLE-12 cells resulted in similar outcomes (decreased bacterial clearance and increased proinflammatory cytokine production). Furthermore, we revealed that STAT5 influences the GSK3β-β-catenin-Akt pathway, which contributes to the intensive inflammatory response and rapid infection dissemination seen in Cav1 deficiency. Collectively, our findings indicate that Cav1 may offer resistance to K. pneumoniae infection, by affecting both systemic and local production of proinflammatory cytokines via the actions of STAT5 and the GSK3β-β-catenin-Akt pathway. PMID:22678904

  18. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression

    PubMed Central

    Kim, Jin-Mo; Cha, Seon-Heui; Choi, Yu Ree; Jou, Ilo; Joe, Eun-Hye; Park, Sang Myun

    2016-01-01

    Parkinson’s disease (PD) is a common chronic and progressive neurodegenerative disorder. Although the cause of PD is still poorly understood, mutations in many genes including SNCA, parkin, PINK1, LRRK2, and DJ-1 have been identified in the familial forms of PD. It was recently proposed that alterations in lipid rafts may cause the neurodegeneration shown in PD. Here, we observe that DJ-1 deficiency decreased the expression of flotillin-1 (flot-1) and caveolin-1 (cav-1), the main protein components of lipid rafts, in primary astrocytes and MEF cells. As a mechanism, DJ-1 regulated flot-1 stability by direct interaction, however, decreased cav-1 expression may not be a direct effect of DJ-1, but rather as a result of decreased flot-1 expression. Dysregulation of flot-1 and cav-1 by DJ-1 deficiency caused an alteration in the cellular cholesterol level, membrane fluidity, and alteration in lipid rafts-dependent endocytosis. Moreover, DJ-1 deficiency impaired glutamate uptake into astrocytes, a major function of astrocytes in the maintenance of CNS homeostasis, by altering EAAT2 expression. This study will be helpful to understand the role of DJ-1 in the pathogenesis of PD, and the modulation of lipid rafts through the regulation of flot-1 or cav-1 may be a novel therapeutic target for PD. PMID:27346864

  19. Nitrosation-dependent caveolin 1 phosphorylation, ubiquitination, and degradation and its association with idiopathic pulmonary arterial hypertension.

    PubMed

    Bakhshi, Farnaz R; Mao, Mao; Shajahan, Ayesha N; Piegeler, Tobias; Chen, Zhenlong; Chernaya, Olga; Sharma, Tiffany; Elliott, W Mark; Szulcek, Robert; Bogaard, Harm Jan; Comhair, Suzy; Erzurum, Serpil; van Nieuw Amerongen, Geerten P; Bonini, Marcelo G; Minshall, Richard D

    2013-12-01

    In the present study, we tested the hypothesis that chronic inflammation and oxidative/nitrosative stress induce caveolin 1 (Cav-1) degradation, providing an underlying mechanism of endothelial cell activation/dysfunction and pulmonary vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). We observed reduced Cav-1 protein despite increased Cav-1 messenger RNA expression and also endothelial nitric oxide synthase (eNOS) hyperphosphorylation in human pulmonary artery endothelial cells (PAECs) from patients with IPAH. In control human lung endothelial cell cultures, tumor necrosis factor α-induced nitric oxide (NO) production and S-nitrosation (SNO) of Cav-1 Cys-156 were associated with Src displacement and activation, Cav-1 Tyr-14 phosphorylation, and destabilization of Cav-1 oligomers within 5 minutes that could be blocked by eNOS or Src inhibition. Prolonged stimulation (72 hours) with NO donor DETANONOate reduced oligomerized and total Cav-1 levels by 40%-80%, similar to that observed in IPAH patient-derived PAECs. NO donor stimulation of endothelial cells for >72 hours, which was associated with sustained Src activation and Cav-1 phosphorylation, ubiquitination, and degradation, was blocked by NOS inhibitor L-NAME, Src inhibitor PP2, and proteosomal inhibitor MG132. Thus, chronic inflammation, sustained eNOS and Src signaling, and Cav-1 degradation may be important causal factors in the development of IPAH by promoting PAEC dysfunction/activation via sustained oxidative/nitrosative stress. PMID:25006397

  20. Registered report: Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis.

    PubMed

    Fiering, Steven; Ang, Lay-Hong; Lacoste, Judith; Smith, Tim D; Griner, Erin

    2015-01-01

    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replicating selected results from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012 were selected on the basis of citations and Altimetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from 'Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis' by Goetz and colleagues, published in Cell in 2011 (Goetz et al., 2011). The key experiments being replicated are those reported in Figures 7C (a-d), Supplemental Figure S2A, and Supplemental Figure S7C (a-c) (Goetz et al., 2011). In these experiments, which are a subset of all the experiments reported in the original publication, Goetz and colleagues show in a subcutaneous xenograft model that stromal caveolin-1 remodels the intratumoral microenvironment, which is correlated with increased metastasis formation. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife. PMID:26179155

  1. Antenatal glucocorticoids counteract LPS changes in TGF-β pathway and caveolin-1 in ovine fetal lung.

    PubMed

    Collins, Jennifer J P; Kunzmann, Steffen; Kuypers, Elke; Kemp, Matthew W; Speer, Christian P; Newnham, John P; Kallapur, Suhas G; Jobe, Alan H; Kramer, Boris W

    2013-03-15

    Inflammation and antenatal glucocorticoids, the latter given to mothers at risk for preterm birth, affect lung development and may contribute to the development of bronchopulmonary dysplasia (BPD). The effects of the combined exposures on inflammation and antenatal glucocorticoids on transforming growth factor (TGF)-β signaling are unknown. TGF-β and its downstream mediators are implicated in the etiology of BPD. Therefore, we asked whether glucocorticoids altered intra-amniotic lipopolysaccharide (LPS) effects on TGF-β expression, its signaling molecule phosphorylated sma and mothers against decapentaplegic homolog 2 (pSmad2), and the downstream mediators connective tissue growth factor (CTGF) and caveolin-1 (Cav-1). Ovine singleton fetuses were randomized to receive either an intra-amniotic injection of LPS and/or maternal betamethasone (BTM) intramuscularly 7 and/or 14 days before delivery at 120 days gestational age (GA; term = 150 days GA). Saline was used for controls. Protein levels of TGF-β1 and -β2 were measured by ELISA. Smad2 phosphorylation was assessed by immunohistochemistry and Western blot. CTGF and Cav-1 mRNA and protein levels were determined by RT-PCR and Western blot. Free TGF-β1 and -β2 and total TGF-β1 levels were unchanged after LPS and/or BTM exposure, although total TGF-β2 increased in animals exposed to BTM 7 days before LPS. pSmad2 immunostaining increased 7 days after LPS exposure although pSmad2 protein expression did not increase. Similarly, CTGF mRNA and protein levels increased 7 days after LPS exposure as Cav-1 mRNA and protein levels decreased. BTM exposure before LPS prevented CTGF induction and Cav-1 downregulation. This study demonstrated that the intrauterine inflammation-induced TGF-β signaling can be inhibited by antenatal glucocorticoids in fetal lungs. PMID:23333802

  2. Involvement of Caveolin-1 in Repair of DNA Damage through Both Homologous Recombination and Non-Homologous End Joining

    PubMed Central

    Zhu, Hua; Yue, Jingyin; Pan, Zui; Wu, Hao; Cheng, Yan; Lu, Huimei; Ren, Xingcong; Yao, Ming; Shen, Zhiyuan; Yang, Jin-Ming

    2010-01-01

    Background Caveolin-1 (Cav-1), the major component of caveolae, is a 21–24 kDa integral membrane protein that interacts with a number of signaling molecules. By acting as a scaffolding protein, Cav-1 plays crucial roles in the regulation of various physiologic and patho-physiologic processes including oncogenic transformation and tumorigenesis, and tumor invasion and metastasis. Methodology/Principal Findings In the present study we sought to explore the role of Cav-1 in response to DNA damage and the mechanism involved. We found that the level of Cav-1 was up-regulated rapidly in cells treated with ionizing radiation. The up-regulation of Cav-1 following DNA damage occurred only in cells expressing endogenous Cav-1, and was associated with the activation of DNA damage response pathways. Furthermore, we demonstrated that the expression of Cav-1 protected cells against DNA damage through modulating the activities of both the homologous recombination (HR) and non-homologous end joining (NHEJ) repair systems, as evidenced by the inhibitory effects of the Cav-1-targeted siRNA on cell survival, HR frequency, phosphorylation of DNA-dependent protein kinase (DNA-PK), and nuclear translocation of epidermal growth factor receptor (EGFR) following DNA damage, and by the stimulatory effect of the forced expression of Cav-1 on NHEJ frequency. Conclusion/Significance Our results indicate that Cav-1 may play a critical role in sensing genotoxic stress and in orchestrating the response of cells to DNA damage through regulating the important molecules involved in maintaining genomic integrity. PMID:20700465

  3. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice

    PubMed Central

    Sala-Vila, Aleix; Navarro-Lérida, Inmaculada; Sánchez-Alvarez, Miguel; Bosch, Marta; Calvo, Carlos; López, Juan Antonio; Calvo, Enrique; Ferguson, Charles; Giacomello, Marta; Serafini, Annalisa; Scorrano, Luca; Enriquez, José Antonio; Balsinde, Jesús; Parton, Robert G.; Vázquez, Jesús; Pol, Albert; Del Pozo, Miguel A.

    2016-01-01

    The mitochondria-associated membrane (MAM) is a specialized subdomain of the endoplasmic reticulum (ER) which acts as an intracellular signaling hub. MAM dysfunction has been related to liver disease. We report a high-throughput mass spectrometry-based proteomics characterization of MAMs from mouse liver, which portrays them as an extremely complex compartment involved in different metabolic processes, including steroid metabolism. Interestingly, we identified caveolin-1 (CAV1) as an integral component of hepatic MAMs, which determine the relative cholesterol content of these ER subdomains. Finally, a detailed comparative proteomics analysis between MAMs from wild type and CAV1-deficient mice suggests that functional CAV1 contributes to the recruitment and regulation of intracellular steroid and lipoprotein metabolism-related processes accrued at MAMs. The potential impact of these novel aspects of CAV1 biology on global cell homeostasis and disease is discussed. PMID:27272971

  4. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice.

    PubMed

    Sala-Vila, Aleix; Navarro-Lérida, Inmaculada; Sánchez-Alvarez, Miguel; Bosch, Marta; Calvo, Carlos; López, Juan Antonio; Calvo, Enrique; Ferguson, Charles; Giacomello, Marta; Serafini, Annalisa; Scorrano, Luca; Enriquez, José Antonio; Balsinde, Jesús; Parton, Robert G; Vázquez, Jesús; Pol, Albert; Del Pozo, Miguel A

    2016-01-01

    The mitochondria-associated membrane (MAM) is a specialized subdomain of the endoplasmic reticulum (ER) which acts as an intracellular signaling hub. MAM dysfunction has been related to liver disease. We report a high-throughput mass spectrometry-based proteomics characterization of MAMs from mouse liver, which portrays them as an extremely complex compartment involved in different metabolic processes, including steroid metabolism. Interestingly, we identified caveolin-1 (CAV1) as an integral component of hepatic MAMs, which determine the relative cholesterol content of these ER subdomains. Finally, a detailed comparative proteomics analysis between MAMs from wild type and CAV1-deficient mice suggests that functional CAV1 contributes to the recruitment and regulation of intracellular steroid and lipoprotein metabolism-related processes accrued at MAMs. The potential impact of these novel aspects of CAV1 biology on global cell homeostasis and disease is discussed. PMID:27272971

  5. Rab5 is required in metastatic cancer cells for Caveolin-1-enhanced Rac1 activation, migration and invasion.

    PubMed

    Díaz, Jorge; Mendoza, Pablo; Ortiz, Rina; Díaz, Natalia; Leyton, Lisette; Stupack, Dwayne; Quest, Andrew F G; Torres, Vicente A

    2014-06-01

    Rab5 is a small GTPase that regulates early endosome trafficking and other cellular processes, including cell adhesion and migration. Specifically, Rab5 promotes Rac1 activation and cancer cell migration, but little is known about the upstream regulators of Rab5. We have previously shown that the scaffolding protein Caveolin-1 (CAV1) promotes Rac1 activation and migration of cancer cells. Here, we hypothesized that CAV1 stimulates Rab5 activation, leading to increased Rac1 activity and cell migration. Expression of CAV1 in B16-F10 mouse melanoma and HT-29(US) human colon adenocarcinoma cells increased the GTP loading of Rab5, whereas shRNA-mediated targeting of endogenous CAV1 in MDA-MB-231 breast cancer cells decreased Rab5-GTP levels. Accordingly, shRNA-mediated downregulation of Rab5 decreased CAV1-mediated Rac1 activation, cell migration and invasion in B16-F10 and HT-29(US) cells. Expression of CAV1 was accompanied by increased recruitment of Tiam1, a Rac1 guanine nucleotide exchange factor (GEF), to Rab5-positive early endosomes. Using the inhibitor NSC23766, Tiam1 was shown to be required for Rac1 activation and cell migration induced by CAV1 and Rab5. Mechanistically, we provide evidence implicating p85α (also known as PIK3R1), a Rab5 GTPase-activating protein (GAP), in CAV1-dependent effects, by showing that CAV1 recruits p85α, precluding p85α-mediated Rab5 inactivation and increasing cell migration. In summary, these studies identify a novel CAV1-Rab5-Rac1 signaling axis, whereby CAV1 prevents Rab5 inactivation, leading to increased Rac1 activity and enhanced tumor cell migration and invasion. PMID:24659799

  6. Curcumin attenuates high glucose-induced podocyte apoptosis by regulating functional connections between caveolin-1 phosphorylation and ROS

    PubMed Central

    Sun, Li-na; Liu, Xiang-chun; Chen, Xiang-jun; Guan, Guang-ju; Liu, Gang

    2016-01-01

    Aim: Caveolin-1 (cav-1) is a major multifunctional scaffolding protein of caveolae. Cav-1 is primarily expressed in mesangial cells, renal proximal tubule cells and podocytes in kidneys. Recent evidence shows that the functional connections between cav-1 and ROS play a key role in many diseases. In this study we investigated whether regulating the functional connections between cav-1 and ROS in kidneys contributed to the beneficial effects of curcumin in treating diabetic nephropathy in vitro and in vivo. Methods: Cultured mouse podocytes (mpc5) were incubated in a high glucose (HG, 30 mmol/L) medium for 24, 48 or 72 h. Male rats were injected with STZ (60 mg/kg, ip) to induce diabetes. ROS generation, SOD activity, MDA content and caspase-3 activity in the cultured cells and kidney cortex homogenate were determined. Apoptotic proteins and cav-1 phosphorylation were analyzed using Western blot analyses. Results: Incubation in HG-containing medium time-dependently increased ROS production, oxidative stress, apoptosis, and cav-1 phosphorylation in podocytes. Pretreatment with curcumin (1, 5, and 10 μmol/L) dose-dependently attenuated these abnormalities in HG-treated podocytes. Furthermore, in HG-containing medium, the podocytes transfected with a recombinant plasmid GFP-cav-1 Y14F (mutation at a cav-1 phosphorylation site) exhibited significantly decreased ROS production and apoptosis compared with the cells transfected with empty vector. In diabetic rats, administration of curcumin (100 or 200 mg/kg body weight per day, ig, for 8 weeks) not only significantly improved the renal function, but also suppressed ROS levels, oxidative stress, apoptosis and cav-1 phosphorylation in the kidneys. Conclusion: Curcumin attenuates high glucose-induced podocyte apoptosis in vitro and diabetic nephropathy in vivo partly through regulating the functional connections between cav-1 phosphorylation and ROS. PMID:26838071

  7. Identification of caveolin-1 as a potential causative factor in the generation of trastuzumab resistance in breast cancer cells.

    PubMed

    Sekhar, Sreeja C; Kasai, Tomonari; Satoh, Ayano; Shigehiro, Tsukasa; Mizutani, Akifumi; Murakami, Hiroshi; El-Aarag, Bishoy Ya; Salomon, David S; Massaguer, Anna; de Llorens, Rafael; Seno, Masaharu

    2013-01-01

    The oncogenic tyrosine kinase receptor ErbB2 is a prognostic factor and target for breast cancer therapeutics. In contrast with the other ErbB receptors, ErbB2 is hardly internalized by ligand induced mechanisms, indicating a prevalent surface expression. Elevated levels of ErbB2 in tumor cells are associated with its defective endocytosis and down regulation. Here we show that caveolin-1 expression in breast cancer derived SKBR-3 cells (SKBR-3/Cav-1) facilitates ligand induced ErbB2 endocytosis using an artificial peptide ligand EC-eGFP. Similarly, stimulation with humanized anti ErbB2 antibody Trastuzumab (Herceptin) was found to be internalized and co-localized with caveolin-1 in SKBR-3/Cav-1 cells. Internalized EC-eGFP and Trastuzumab in SKBR-3/Cav-1 cells were then delivered via caveolae to the caveolin-1 containing early endosomes. Consequently, attenuated Fc receptor mediated ADCC functions were observed when exposed to Trastuzumab and EC-Fc (EC-1 peptide conjugated to Fc part of human IgG). On the other hand, this caveolae dependent endocytic synergy was not observed in parental SKBR-3 cells. Therefore, caveolin-1 expression in breast cancer cells could be a predictive factor to estimate how cancer cells are likely to respond to Trastuzumab treatment. PMID:23833684

  8. Analysis of Protein Phosphatase-1 and Aurora Protein Kinase Suppressors Reveals New Aspects of Regulatory Protein Function in Saccharomyces cerevisiae

    PubMed Central

    Ghosh, Anuprita; Cannon, John F.

    2013-01-01

    Protein phosphatase-1 (PP1) controls many processes in eukaryotic cells. Modulation of mitosis by reversing phosphorylation of proteins phosphorylated by aurora protein kinase is a critical function for PP1. Overexpression of the sole PP1, Glc7, in budding yeast, Saccharomyces cerevisiae, is lethal. This work shows that lethality requires the function of Glc7 regulatory proteins Sds22, Reg2, and phosphorylated Glc8. This finding shows that Glc7 overexpression induced cell death requires a specific subset of the many Glc7-interacting proteins and therefore is likely caused by promiscuous dephosphorylation of a variety of substrates. Additionally, suppression can occur by reducing Glc7 protein levels by high-copy Fpr3 without use of its proline isomerase domain. This divulges a novel function of Fpr3. Most suppressors of GLC7 overexpression also suppress aurora protein kinase, ipl1, temperature-sensitive mutations. However, high-copy mutant SDS22 genes show reciprocal suppression of GLC7 overexpression induced cell death or ipl1 temperature sensitivity. Sds22 binds to many proteins besides Glc7. The N-terminal 25 residues of Sds22 are sufficient to bind, directly or indirectly, to seven proteins studied here including the spindle assembly checkpoint protein, Bub3. These data demonstrate that Sds22 organizes several proteins in addition to Glc7 to perform functions that counteract Ipl1 activity or lead to hyper Glc7 induced cell death. These data also emphasize that Sds22 targets Glc7 to nuclear locations distinct from Ipl1 substrates. PMID:23894419

  9. Overexpression of Aquaporin-1 and Caveolin-1 in the Rat Urinary Bladder Urothelium Following Bladder Outlet Obstruction

    PubMed Central

    Song, Seung Hee; Park, Kwangsung; Kwon, Dongdeuk

    2013-01-01

    Purpose This study was designed to investigate the effect of detrusor overactivity induced by partial bladder outlet obstruction (BOO) on the expression of aquaporin 1 (AQP1) and caveolin 1 (CAV1) in the rat urinary bladder, and to determine the role of these molecules in detrusor overactivity. Methods Female Sprague-Dawley rats were divided into control (n=30) and experimental (n=30) groups. The BOO group underwent partial BOO, and the control group underwent a sham operation. After 4 weeks, an urodynamic study was performed to measure the contraction interval and contraction pressure. The expression and cellular localization of AQP1 and CAV1 were determined by western blot and immunofluorescence experiments in the rat urinary bladder. Results In cystometrograms, the contraction interval was significantly lower in the BOO group (2.9±1.5 minutes) than in the control group (6.7±1.0 minutes) (P<0.05). Conversely, the average contraction pressure was significantly higher in the BOO group (21.2±3.3 mmHg) than in the control group (13.0±2.5 mmHg) (P<0.05). AQP1 and CAV1 were coexpressed in the capillaries, arterioles, and venules of the suburothelial layer. AQP1 and CAV1 protein expression was significantly increased in the BOO rats compared to the control rats (P<0.05). Conclusions Detrusor overactivity induced by BOO causes a significant increase in the expression of AQP1 and CAV1, which were coexpressed in the suburothelial microvasculature. This finding suggests that AQP1 and CAV1 might be closely related to bladder signal activity and may have a functional role in BOO-associated detrusor overactivity. PMID:24466464

  10. Caveolin-1 prevents sustained angiotensin II-induced resistance artery constriction and obesity-induced high blood pressure

    PubMed Central

    Czikora, Istvan; Feher, Attila; Lucas, Rudolf; Fulton, David J. R.

    2014-01-01

    The type 1 angiotensin II (ANG II) receptor (AT1R) undergoes internalization following stimulation by ANG II. Internalization reduces cell surface AT1Rs, and it is required for AT1R resensitization. In this process AT1R may interact with caveolin-1 (Cav1), the main scaffolding protein of caveolae. We hypothesized that the interaction between Cav1 and AT1R delays AT1R resensitization and thereby prevents sustained ANG II-induced resistance artery (RA) constriction under normal conditions and in experimental obesity. In rat and mouse skeletal muscle RA (diameter: ∼90–120 μm) ANG II-induced constrictions were reduced upon repeated (30-min apart) administrations. Upon disruption of caveolae with methyl-β-cyclodextrin or in RA of Cav1 knockout mice, repeated ANG II applications resulted in essentially maintained constrictions. In vascular smooth muscle cells, AT1R interacted with Cav1, and the degree of cell surface interactions was reduced by long-term (15-min), but not short-term (2-min), exposure to ANG II. When Cav1 was silenced, the amount of membrane-associated AT1R was significantly reduced by a short-term ANG II exposure. Moreover, Cav1 knockout mice fed a high-fat diet exhibited augmented and sustained RA constriction to ANG II and had elevated systemic blood pressure, when compared with normal or high-fat fed wild-type mice. Thus, Cav1, through a direct interaction, delays internalization and subsequent resensitization of AT1R. We suggest that this mechanism prevents sustained ANG II-induced RA constriction and elevated systemic blood pressure in diet-induced obesity. PMID:25527780

  11. The Ebola Virus VP35 Protein Is a Suppressor of RNA Silencing

    PubMed Central

    Geutjes, Ernst-Jan; Prins, Marcel; de Haan, Peter; Berkhout, Ben

    2007-01-01

    RNA silencing or interference (RNAi) is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs) that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs) that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication. PMID:17590081

  12. Microtubule-mediated transport of the tumor-suppressor protein Merlin and its mutants.

    PubMed

    Benseñor, Lorena B; Barlan, Kari; Rice, Sarah E; Fehon, Richard G; Gelfand, Vladimir I

    2010-04-20

    The neurofibromatosis type 2 (NF2) tumor-suppressor protein Merlin is a member of the ERM family of proteins that links the cytoskeleton to the plasma membrane. In humans, mutations in the NF2 gene cause neurofibromatosis type-2 (NF2), a cancer syndrome characterized by the development of tumors of the nervous system. Previous reports have suggested that the subcellular distribution of Merlin is critical to its function, and that several NF2 mutants that lack tumor-suppressor activity present improper localization. Here we used a Drosophila cell culture model to study the distribution and mechanism of intracellular transport of Merlin and its mutants. We found that Drosophila Merlin formed cytoplasmic particles that move bidirectionally along microtubules. A single NF2-causing amino acid substitution in the FERM domain dramatically inhibited Merlin particle movement. Surprisingly, the presence of this immotile Merlin mutant also inhibited trafficking of the WT protein. Analysis of the movement of WT protein using RNAi and pull-downs showed that Merlin particles are associated with and moved by microtubule motors (kinesin-1 and cytoplasmic dynein), and that binding of motors and movement is regulated by Merlin phosphorylation. Inhibition of Merlin transport by expression of the dominant-negative mutant or depletion of kinesin-1 results in increased nuclear accumulation of the transcriptional coactivator Yorkie. These results demonstrate the requirement of microtubule-dependent transport for Merlin function. PMID:20368450

  13. Microtubule-mediated transport of the tumor-suppressor protein Merlin and its mutants

    PubMed Central

    Benseñor, Lorena B.; Barlan, Kari; Rice, Sarah E.; Fehon, Richard G.; Gelfand, Vladimir I.

    2010-01-01

    The neurofibromatosis type 2 (NF2) tumor-suppressor protein Merlin is a member of the ERM family of proteins that links the cytoskeleton to the plasma membrane. In humans, mutations in the NF2 gene cause neurofibromatosis type-2 (NF2), a cancer syndrome characterized by the development of tumors of the nervous system. Previous reports have suggested that the subcellular distribution of Merlin is critical to its function, and that several NF2 mutants that lack tumor-suppressor activity present improper localization. Here we used a Drosophila cell culture model to study the distribution and mechanism of intracellular transport of Merlin and its mutants. We found that Drosophila Merlin formed cytoplasmic particles that move bidirectionally along microtubules. A single NF2-causing amino acid substitution in the FERM domain dramatically inhibited Merlin particle movement. Surprisingly, the presence of this immotile Merlin mutant also inhibited trafficking of the WT protein. Analysis of the movement of WT protein using RNAi and pull-downs showed that Merlin particles are associated with and moved by microtubule motors (kinesin-1 and cytoplasmic dynein), and that binding of motors and movement is regulated by Merlin phosphorylation. Inhibition of Merlin transport by expression of the dominant-negative mutant or depletion of kinesin-1 results in increased nuclear accumulation of the transcriptional coactivator Yorkie. These results demonstrate the requirement of microtubule-dependent transport for Merlin function. PMID:20368450

  14. Hydroxylation-Dependent Interaction of Substrates to the Von Hippel-Lindau Tumor Suppressor Protein (VHL).

    PubMed

    Heir, Pardeep; Ohh, Michael

    2016-01-01

    Oxygen-dependent hydroxylation of critical proline residues, catalyzed by prolyl hydroxylase (PHD1-3) enzymes, is a crucial posttranslational modification (PTM) within the canonical hypoxia-inducible factor (HIF)-centric cellular oxygen-sensing pathway. Alteration of substrates in this way often leads to proteasomal degradation mediated by the von Hippel-Lindau Tumor Suppressor protein (VHL) containing E3-ubiquitin ligase complex known as ECV (Elongins B/C, CUL2, VHL). Here, we outline in vitro protocols to demonstrate the ability of VHL to bind to a prolyl-hydroxylated substrate. PMID:27581016

  15. Modification of an apparatus for tumor-suppressor protein crystal growth in the International Space Station

    NASA Astrophysics Data System (ADS)

    de Morais Mendonca Teles, Antonio

    Some human diseases as tumors are being studied continuously for the development of vaccines against them. And a way of doing that is by means of proteins research. There are some kinds of proteins, like the p53 and p73 proteins, which are tumor suppressors. There are other diseases such as A.I.D.S., hansenosis, the Parkinson's and Chagas' diseases which are protein-related. The determination of how proteins geometrically order themselves, during its biological functions is very necessary to understand how a protein's structure affects its function, to design vaccines that intercede in tumor-protein activities and in other proteins related to those other diseases. The protein crystal growth in microgravity environment produces purer crystallization than on the ground, and it is a powerful tool to produce better vaccines. Several data have already been acquired using ground-based research and in spaceflight experiments aboard the Spacelab and Space Shuttle missions, and in the MIR and in the International Space Station (ISS). Here in this paper, I propose to be performed in the ISS Biological Research Facility (which is being developed), multiple crystal growth of proteins related to cancer (as tumors suppressors and oncoproteins), A.I.D.S., hansenosis, the Parkinson's and Chagas' diseases, for the future obtaining of possible vaccines against them. I also propose a simple and practical equipment, a modification of the crystallization plates (which use a vapor diffusion technique) inside each cylinder of the Protein Crystallization Apparatus in Microgravity (PCAM), with multiple chambers with different sizes. Instead of using some chambers with the same size it is better to use several chambers with different sizes. Why is that? The answer is: the energy associated with the surface tension of the liquid in the chamber is directly related to the circle area of it. So, to minimize the total energy of the surface tension of a proteins liquid -making it more stable

  16. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide.

    PubMed

    Tourkina, Elena; Bonner, Michael; Oates, James; Hofbauer, Ann; Richard, Mathieu; Znoyko, Sergei; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley

    2011-01-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the

  17. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation.

    PubMed

    Fusaro, Adriana F; Correa, Regis L; Nakasugi, Kenlee; Jackson, Craig; Kawchuk, Lawrence; Vaslin, Maite F S; Waterhouse, Peter M

    2012-05-10

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0(PE), in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0(PE) has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0(PE) destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery. PMID:22361475

  18. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    SciTech Connect

    Fusaro, Adriana F.; Correa, Regis L.; Nakasugi, Kenlee; Jackson, Craig; Kawchuk, Lawrence; Vaslin, Maite F.S.; Waterhouse, Peter M.

    2012-05-10

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0{sup PE}, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0{sup PE} has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0{sup PE} destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  19. Caveolin-1 Facilitates the Direct Coupling between Large Conductance Ca2+-activated K+ (BKCa) and Cav1.2 Ca2+ Channels and Their Clustering to Regulate Membrane Excitability in Vascular Myocytes*

    PubMed Central

    Suzuki, Yoshiaki; Yamamura, Hisao; Ohya, Susumu; Imaizumi, Yuji

    2013-01-01

    L-type voltage-dependent Ca2+ channels (LVDCC) and large conductance Ca2+-activated K+ channels (BKCa) are the major factors defining membrane excitability in vascular smooth muscle cells (VSMCs). The Ca2+ release from sarcoplasmic reticulum through ryanodine receptor significantly contributes to BKCa activation in VSMCs. In this study direct coupling between LVDCC (Cav1.2) and BKCa and the role of caveoline-1 on their interaction in mouse mesenteric artery SMCs were examined. The direct activation of BKCa by Ca2+ influx through coupling LVDCC was demonstrated by patch clamp recordings in freshly isolated VSMCs. Using total internal reflection fluorescence microscopy, it was found that a large part of yellow fluorescent protein-tagged BKCa co-localized with the cyan fluorescent protein-tagged Cav1.2 expressed in the plasma membrane of primary cultured mouse VSMCs and that the two molecules often exhibited FRET. It is notable that each BKα subunit of a tetramer in BKCa can directly interact with Cav1.2 and promotes Cav1.2 cluster in the molecular complex. Furthermore, caveolin-1 deficiency in knock-out (KO) mice significantly reduced not only the direct coupling between BKCa and Cav1.2 but also the functional coupling between BKCa and ryanodine receptor in VSMCs. The measurement of single cell shortening by 40 mm K+ revealed enhanced contractility in VSMCs from KO mice than wild type. Taken together, caveolin-1 facilitates the accumulation/clustering of BKCa-LVDCC complex in caveolae, which effectively regulates spatiotemporal Ca2+ dynamics including the negative feedback, to control the arterial excitability and contractility. PMID:24202214

  20. Direct measurement of formation of loops in DNA by a human tumor suppressor protein

    NASA Astrophysics Data System (ADS)

    Migliori, Amy; Kung, Samuel; Wang, Danielle; Smith, Douglas E.

    2013-09-01

    In previous work we developed methods using optical tweezers to measure protein-mediated formation of loops in DNA structures that can play an important role in regulating gene expression. We previously applied this method to study two-site restriction endonucleases, which were convenient model systems for studying this phenomenon. Here we report preliminary work in which we have applied this method to study p53, a human tumor suppressor protein, and show that we can measure formation of loops. Previous biophysical evidence for loops comes from relatively limited qualitative studies of fixed complexes by electron microscopy4. Our results provide independent corroboration and future opportunities for more quantitative studies investigating structure and mechanics.

  1. Caveolin-1 Expression Ameliorates Nephrotic Damage in a Rabbit Model of Cholesterol-Induced Hypercholesterolemia

    PubMed Central

    Chen, Ya-Hui; Lin, Wei-Wen; Liu, Chin-San; Hsu, Li-Sung; Lin, Yueh-Min; Su, Shih-Li

    2016-01-01

    Caveolin-1 (CAV-1) participates in regulating vesicular transport, signal transduction, tumor progression, and cholesterol homeostasis. In the present study, we tested the hypothesis that CAV-1 improves dyslipidemia, inhibits cyclophilin A (CypA)- mediated ROS production, prevents mitochondrial compensatory action and attenuates oxidative stress responses in cholesterol-induced hypercholesterolemia. To determine the role of CAV-1 in mediating oxidative and antioxidative as well as cholesterol homeostasis, hypercholesterolemic rabbits were intravenously administered antenapedia-CAV-1 (AP-CAV-1) peptide for 2 wk. AP-CAV-1 enhanced CAV-1 expression by ˃15%, inhibited CypA expression by ˃50% (P < 0.05) and significantly improved dyslipidemia, thus reducing neutral lipid peroxidation. Moreover, CAV-1 attenuated hypercholesterolemia-induced changes in mitochondrial morphology and biogenesis and preserved mitochondrial respiratory function. In addition, CAV-1 protected against hypercholesterol-induced oxidative stress responses by reducing the degree of oxidative damage and enhancing the expression of antioxidant enzymes. CAV-1 treatment significantly suppressed apoptotic cell death, as evidenced by the reduction in the number of terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells. We concluded that CAV-1 plays a critical role in inhibiting CypA-mediated ROS production, improving dyslipidemia, maintaining mitochondrial function, and suppressing oxidative stress responses that are vital for cell survival in hypercholesterol-affected renal organs. PMID:27124120

  2. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  3. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.

    PubMed

    Lobos-González, Lorena; Aguilar, Lorena; Diaz, Jorge; Diaz, Natalia; Urra, Hery; Torres, Vicente A; Silva, Veronica; Fitzpatrick, Christopher; Lladser, Alvaro; Hoek, Keith S; Leyton, Lisette; Quest, Andrew F G

    2013-07-01

    The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  4. Significance of caveolin-1 and matrix metalloproteinase 14 gene expression in canine mammary tumours.

    PubMed

    Ebisawa, M; Iwano, H; Nishikawa, M; Tochigi, Y; Komatsu, T; Endou, Y; Hirayama, K; Taniyama, H; Kadosawa, T; Yokota, H

    2015-11-01

    Canine mammary tumours (CMTs) are the most common neoplasms affecting female dogs. There is an urgent need for molecular biomarkers that can detect early stages of the disease in order to improve accuracy of CMT diagnosis. The aim of this study was to examine whether caveolin-1 (Cav-1) and matrix metalloproteinase 14 (MMP14) are associated with CMT histological malignancy and invasion. Sixty-five benign and malignant CMT samples and six normal canine mammary glands were analysed using quantitative reverse transcription-polymerase chain reaction. Cav-1 and MMP14 genes were highly expressed in CMT tissues compared to normal tissues. Cav-1 especially was overexpressed in malignant and invasive CMT tissues. When a CMT cell line was cultured on fluorescent gelatin-coated coverslips, localisation of Cav-1 was observed at invadopodia-mediated degradation sites of the gelatin matrix. These findings suggest that Cav-1 may be involved in CMT invasion and that the markers may be useful for estimating CMT malignancy. PMID:26364240

  5. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1.

    PubMed

    Yamaguchi, Tomoya; Lu, Can; Ida, Lisa; Yanagisawa, Kiyoshi; Usukura, Jiro; Cheng, Jinglei; Hotta, Naoe; Shimada, Yukako; Isomura, Hisanori; Suzuki, Motoshi; Fujimoto, Toyoshi; Takahashi, Takashi

    2016-01-01

    The receptor tyrosine kinase-like orphan receptor 1 (ROR1) sustains prosurvival signalling directly downstream of the lineage-survival oncogene NKX2-1/TTF-1 in lung adenocarcinoma. Here we report an unanticipated function of this receptor tyrosine kinase (RTK) as a scaffold of cavin-1 and caveolin-1 (CAV1), two essential structural components of caveolae. This kinase-independent function of ROR1 facilitates the interactions of cavin-1 and CAV1 at the plasma membrane, thereby preventing the lysosomal degradation of CAV1. Caveolae structures and prosurvival signalling towards AKT through multiple RTKs are consequently sustained. These findings provide mechanistic insight into how ROR1 inhibition can overcome EGFR-tyrosine kinase inhibitor (TKI) resistance due to bypass signalling via diverse RTKs such as MET and IGF-IR, which is currently a major clinical obstacle. Considering its onco-embryonic expression, inhibition of the scaffold function of ROR1 in patients with lung adenocarcinoma is an attractive approach for improved treatment of this devastating cancer. PMID:26725982

  6. Lower Serum Caveolin-1 Is Associated with Cerebral Microbleeds in Patients with Acute Ischemic Stroke

    PubMed Central

    Zhang, Jun; Zhu, Wusheng; Xiao, Lulu; Cao, Qinqin; Zhang, Hao; Wang, Huaiming; Ye, Zusen; Hao, Yonggang; Dai, Qiliang; Sun, Wen; Liu, Xinfeng; Ye, Ruidong

    2016-01-01

    Caveolin-1 (Cav-1) plays pivotal roles in the endothelial damage following stroke. The present study aimed to investigate whether serum Cav-1 level is associated with the presence of cerebral small vessel disease (cSVD) in patients with acute ischemic stroke. To this end, 156 patients were consecutively enrolled. Cranial magnetic resonance imaging was analyzed to determine the surrogates of cSVD, including cerebral microbleeds (CMBs), silent lacunar infarcts (SLIs), and white matter hyperintensities (WMHs). After adjusting for potential confounders, patients with low Cav-1 level had a higher risk of CMBs than patients with high Cav-1 level (OR: 4.05, 95% CI: 1.77–9.30). However, there was no relationship between Cav-1 and the presence of SLIs or WMHs. When CMBs were stratified by location and number, a similar association was found in patients with deep or infratentorial CMBs (OR: 4.04, 95% CI: 1.59–10.25) and with multiple CMBs (OR: 3.18, 95% CI: 1.16–8.72). These results suggest lower serum Cav-1 levels may be associated with CMBs, especially those that are multiple and located in deep brain or infratentorial structures, in patients with acute ischemic stroke. Cav-1 may be involved in the pathophysiology of CMBs, and may act as a potential target for treating cSVD. PMID:27119011

  7. Wogonin inhibits H2O2-induced vascular permeability through suppressing the phosphorylation of caveolin-1.

    PubMed

    Wang, Fei; Song, Xiuming; Zhou, Mi; Wei, Libin; Dai, Qinsheng; Li, Zhiyu; Lu, Na; Guo, Qinglong

    2013-03-01

    Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been reported for its anti-oxidant activity. However, it is still unclear whether wogonin can inhibit oxidant-induced vascular permeability. In this study, we evaluated the effects of wogonin on H2O2-induced vascular permeability in human umbilical vein endothelial cells (HUVECs). We found that wogonin can suppress the H2O2-stimulated actin remodeling and albumin uptake of HUVECs, as well as transendothelial cell migration of the human breast carcinoma cell MDA-MB-231. The mechanism revealed that wogonin inhibited H2O2-induced phosphorylation of caveolin-1 (cav-1) associating with the suppression of stabilization of VE-cadherin and β-catenin. Moreover, wogonin repressed anisomycin-induced phosphorylation of p38, cav-1 and vascular permeability. These results suggested that wogonin could inhibit H2O2-induced vascular permeability by downregulating the phosphorylation of cav-1, and that it might have a therapeutic potential for the diseases associated with the development of both oxidant and vascular permeability. PMID:23246481

  8. Static pressure drives proliferation of vascular smooth muscle cells via caveolin-1/ERK1/2 pathway

    SciTech Connect

    Luo, Di-xian; Cheng, Jiming; Xiong, Yan; Li, Junmo; Xia, Chenglai; Xu, Canxin; Wang, Chun; Zhu, Bingyang; Hu, Zhuowei; Liao, Duan-fang

    2010-01-22

    Intimal hyperplasia plays an important role in various types of vascular remodeling. Mechanical forces derived from blood flow are associated with the proliferation of vascular smooth muscle cells (VSMC). This contributes to many vascular disorders such as hypertension, atherosclerosis and restenosis after percutaneous transluminal angioplasty (PTA). In this study, we show that static pressure induces the proliferation of VSMC and activates its related signal pathway. VSMC from a rat aorta were treated with different pressures (0, 60, 90, 120, 150 and 180 mm Hg) in a custom-made pressure incubator for 24 h. The most active proliferation of VSMC was detected at a pressure of 120 mm Hg. VSMC was also incubated under a static pressure of 120 mm Hg for different time intervals (0, 2, 4, 8, 12 and 24 h). We found that static pressure significantly stimulates VSMC proliferation. Extracellular signal-regulated kinases 1/2 (ERK1/2) activation showed a peak at the pressure of 120 mm Hg at 4-h time point. Moreover, caveolin-1 expression was significantly inhibited by rising static pressure. Downregulation of VSMC proliferation could be found after PD98059 (ERK1/2 phosphorylation inhibitor) treatment. Our data also showed that a siRNA-mediated caveolin-1 knock down increased ERK1/2 phosphorylation and VSMC proliferation. These results demonstrate that static pressure promotes VSMC proliferation via the Caveolin-1/ERK1/2 pathway.

  9. SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis

    PubMed Central

    2014-01-01

    It is a well-established scientific observation that mammalian cells contain fidelity proteins that appear to protect against and adapt to various forms of endogenous and exogenous cellular conditions. Loss of function or genetic mutation of these fidelity proteins has also been shown to create a cellular environment that is permissive for the development of tumors, suggesting that these proteins also function as tumor suppressors (TSs). While the first identified TSs were confined to either the nucleus and/or the cytoplasm, it seemed logical to hypothesize that the mitochondria may also contain fidelity proteins that serve as TSs. In this regard, it now appears clear that at least two mitochondrial sirtuins function as sensing, watchdog, or TS proteins in vitro, in vivo, and in human tumor samples. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity/sensing proteins, SIRT3 and SIRT4, respond to changes in cellular nutrient status to alter the enzymatic activity of specific downstream targets to maintain energy production that matches energy availability and ATP consumption. As such, it is proposed that loss of function or genetic deletion of these mitochondrial genes results in a mismatch of mitochondrial energy metabolism, culminating in a cell phenotype permissive for transformation and tumorigenesis. In addition, these findings clearly suggest that loss of proper mitochondrial metabolism, via loss of SIRT3 and SIRT4, is sufficient to promote carcinogenesis. PMID:25332769

  10. SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis.

    PubMed

    Zhu, Yueming; Yan, Yufan; Principe, Daniel R; Zou, Xianghui; Vassilopoulos, Athanassios; Gius, David

    2014-01-01

    It is a well-established scientific observation that mammalian cells contain fidelity proteins that appear to protect against and adapt to various forms of endogenous and exogenous cellular conditions. Loss of function or genetic mutation of these fidelity proteins has also been shown to create a cellular environment that is permissive for the development of tumors, suggesting that these proteins also function as tumor suppressors (TSs). While the first identified TSs were confined to either the nucleus and/or the cytoplasm, it seemed logical to hypothesize that the mitochondria may also contain fidelity proteins that serve as TSs. In this regard, it now appears clear that at least two mitochondrial sirtuins function as sensing, watchdog, or TS proteins in vitro, in vivo, and in human tumor samples. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity/sensing proteins, SIRT3 and SIRT4, respond to changes in cellular nutrient status to alter the enzymatic activity of specific downstream targets to maintain energy production that matches energy availability and ATP consumption. As such, it is proposed that loss of function or genetic deletion of these mitochondrial genes results in a mismatch of mitochondrial energy metabolism, culminating in a cell phenotype permissive for transformation and tumorigenesis. In addition, these findings clearly suggest that loss of proper mitochondrial metabolism, via loss of SIRT3 and SIRT4, is sufficient to promote carcinogenesis. PMID:25332769

  11. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    PubMed Central

    2009-01-01

    Background Imaging tools such as scanning electron microscope (SEM) and atomic force microscope (AFM) can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK) 293, human breast cancer (MCF-7) and mouse melanoma (B16F1) cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor protein SMAR1 might be

  12. Bromodomain-containing protein 7 (BRD7) as a potential tumor suppressor in hepatocellular carcinoma

    PubMed Central

    Pan, Qiu-Zhong; Tang, Yan; Wang, Qi-Jing; Pan, Ke; Huang, Li-Xi; He, Jia; Zhao, Jing-Jing; Jiang, Shan-Shan; Zhang, Xiao-Fei; Zhang, Hong-Xia; Zhou, Zi-Qi; Weng, De-Sheng; Xia, Jian-Chuan

    2016-01-01

    Bromodomain-containing protein 7 (BRD7) is a subunit of the PBAF complex, which functions as a transcriptional cofactor for the tumor suppressor protein p53. Down-regulation of BRD7 has been demonstrated in multiple types of cancer. This study aimed to investigate BRD7 expression and its tumor suppressive effect in hepatocellular carcinoma (HCC). The expression of BRD7 was examined in clinical specimens of primary HCC and in HCC cell lines through real-time quantitative PCR, western blot and immunohistochemistry. The prognostic value of BRD7 expression and its correlation with the clinicopathological features of HCC patients were statistically analyzed. The effect of BRD7 on the tumorigenicity of HCC was also examined using proliferation and colony-formation assays, cell-cycle assays, migration and cell-invasion assays, and xenograft nude mouse models. BRD7 was down-regulated in tumor tissues and HCC cell lines. BRD7 protein expression was strongly associated with clinical stage and tumor size. Kaplan-Meier survival curves revealed higher survival rates in patients with higher BRD7 expression levels compared to those with lower BRD7 levels. A multivariate analysis indicated that BRD7 expression was an independent prognostic marker. The re-introduction of BRD7 expression significantly inhibited proliferation, colony formation, migration and invasion and led to cell cycle arrest in HCC cells in vitro. Furthermore, experiments in mice suggested that BRD7 overexpression suppresses HCC tumorigenicity in vivo. In conclusions, our data indicated that BRD7 may serve as a tumor suppressor in HCC and may be a novel molecular target for the treatment of HCC. PMID:26919247

  13. Lipopolysaccharide-induced caveolin-1 phosphorylation-dependent increase in transcellular permeability precedes the increase in paracellular permeability

    PubMed Central

    Wang, Nan; Zhang, Dan; Sun, Gengyun; Zhang, Hong; You, Qinghai; Shao, Min; Yue, Yang

    2015-01-01

    Background Lipopolysaccharide (LPS) was shown to induce an increase in caveolin-1 (Cav-1) expression in endothelial cells; however, the mechanisms regarding this response and the consequences on caveolae-mediated transcellular transport have not been completely investigated. This study aims to investigate the role of LPS-induced Cav-1 phosphorylation in pulmonary microvascular permeability in pulmonary microvascular endothelial cells (PMVECs). Methods Rat PMVECs were isolated, cultured, and identified. Endocytosis experiments were employed to stain the nuclei by DAPI, and images were obtained with a fluorescence microscope. Permeability of endothelial cultures was measured to analyze the barrier function of endothelial monolayer. Western blot assay was used to examine the expression of Cav-1, pCav-1, triton-insoluble Cav-1, and triton-soluble Cav-1 protein. Results The LPS treatment induced phosphorylation of Cav-1, but did not alter the total Cav-1 level till 60 min in both rat and human PMVECs. LPS treatment also increased the triton-insoluble Cav-1 level, which peaked 15 min after LPS treatment in both rat and human PMVECs. LPS treatment increases the intercellular cell adhesion molecule-1 expression. Src inhibitors, including PP2, PP1, Saracatinib, and Quercetin, partially inhibited LPS-induced phosphorylation of Cav-1. In addition, both PP2 and caveolae disruptor MβCD inhibited LPS-induced increase of triton-insoluble Cav-1. LPS induces permeability by activating interleukin-8 and vascular endothelial growth factor and targeting other adhesion markers, such as ZO-1 and occludin. LPS treatment also significantly increased the endocytosis of albumin, which could be blocked by PP2 or MβCD. Furthermore, LPS treatment for 15 min significantly elevated Evans Blue-labeled BSA transport in advance of a decrease in transendothelial electrical resistance of PMVEC monolayer at this time point. After LPS treatment for 30 min, transendothelial electrical resistance

  14. Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity

    PubMed Central

    Guo, Shuang; Cheng, Xiwen; Lim, Jun-Hee; Liu, Yu; Kao, Hung-Ying

    2014-01-01

    Oxidative stress is a consequence of an imbalance between reactive oxygen species (ROS) production and the ability of the cytoprotective system to detoxify the reactive intermediates. The tumor suppressor promyelocytic leukemia protein (PML) functions as a stress sensor. Loss of PML results in impaired mitochondrial complex II activity, increased ROS, and subsequent activation of nuclear factor erythroid 2–related factor 2 (Nrf2) antioxidative pathway. We also demonstrate that sulforaphane (SFN), an antioxidant, regulates Nrf2 activity by controlling abundance and subcellular distribution of PML and that PML is essential for SFN-mediated ROS increase, Nrf2 activation, antiproliferation, antimigration, and antiangiogenesis. Taking the results together, we have uncovered a novel antioxidative mechanism by which PML regulates cellular oxidant homeostasis by controlling complex II integrity and Nrf2 activity and identified PML as an indispensable mediator of SFN activity. PMID:24943846

  15. Identification of RNA-Binding Protein LARP4B as a Tumor Suppressor in Glioma.

    PubMed

    Koso, Hideto; Yi, Hungtsung; Sheridan, Paul; Miyano, Satoru; Ino, Yasushi; Todo, Tomoki; Watanabe, Sumiko

    2016-04-15

    Transposon-based insertional mutagenesis is a valuable method for conducting unbiased forward genetic screens to identify cancer genes in mice. We used this system to elucidate factors involved in the malignant transformation of neural stem cells into glioma-initiating cells. We identified an RNA-binding protein, La-related protein 4b (LARP4B), as a candidate tumor-suppressor gene in glioma. LARP4B expression was consistently decreased in human glioma stem cells and cell lines compared with normal neural stem cells. Moreover, heterozygous deletion of LARP4B was detected in nearly 80% of glioblastomas in The Cancer Genome Atlas database. LARP4B loss was also associated with low expression and poor patient survival. Overexpression of LARP4B in glioma cell lines strongly inhibited proliferation by inducing mitotic arrest and apoptosis in four of six lines as well as in two patient-derived glioma stem cell populations. The expression levels of CDKN1A and BAX were also upregulated upon LARP4B overexpression, and the growth-inhibitory effects were partially dependent on p53 (TP53) activity in cells expressing wild-type, but not mutant, p53. We further found that the La module, which is responsible for the RNA chaperone activity of LARP4B, was important for the growth-suppressive effect and was associated with BAX mRNA. Finally, LARP4B depletion in p53 and Nf1-deficient mouse primary astrocytes promoted cell proliferation and led to increased tumor size and invasiveness in xenograft and orthotopic models. These data provide strong evidence that LARP4B serves as a tumor-suppressor gene in glioma, encouraging further exploration of the RNA targets potentially involved in LARP4B-mediatd growth inhibition. Cancer Res; 76(8); 2254-64. ©2016 AACR. PMID:26933087

  16. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells

    PubMed Central

    Cui, Lei; Wang, Haiying; Ji, Yanxi; Yang, Jie; Xu, Shan; Huang, Xingyu; Wang, Zidao; Qin, Lei; Tien, Po; Zhou, Xi

    2015-01-01

    ABSTRACT RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic

  17. Smooth muscle NOS, colocalized with caveolin-1, modulates contraction in mouse small intestine

    PubMed Central

    El-Yazbi, Ahmed F; Cho, Woo Jung; Cena, Jonathan; Schulz, Richard; Daniel, Edwin E

    2008-01-01

    Neuronal nitric oxide synthase (nNOS) in myenteric neurons is activated during peristalsis to produce nitric oxide which relaxes intestinal smooth muscle. A putative nNOS is also found in the membrane of intestinal smooth muscle cells in mouse and dog. In this study we studied the possible functions of this nNOS expressed in mouse small intestinal smooth muscle colocalized with caveolin-1(Cav-1). Cav-1 knockout mice lacked nNOS in smooth muscle and provided control tissues. 60 mM KCl was used to increase intracellular [Ca2+] through L-type Ca2+ channel opening and stimulate smooth muscle NOS activity in intestinal tissue segments. An additional contractile response to LNNA (100 μM, NOS inhibitor) was observed in KCl-contracted tissues from control mice and was almost absent in tissues from Cav-1 knockout mice. Disruption of caveolae with 40 mM methyl-β cyclodextrin in tissues from control mice led to the loss of Cav-1 and nNOS immunoreactivity from smooth muscle as shown by immunohistochemistry and a reduction in the response of these tissues to N-ω-nitro-L-arginine (LNNA). Reconstitution of membrane cholesterol using water soluble cholesterol in the depleted segments restored the immunoreactivity and the response to LNNA added after KCl. Nicardipine (1 μM) blocked the responses to KCl and LNNA confirming the role of L-type Ca2+ channels. ODQ (1 μM, soluble guanylate cyclase inhibitor) had the same effect as inhibition of NOS following KCl. We conclude that the activation of nNOS, localized in smooth muscle caveolae, by calcium entering through L-type calcium channels triggers nitric oxide production which modulates muscle contraction by a cGMP-dependent mechanism. PMID:18400048

  18. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae.

    PubMed

    Zimnicka, Adriana M; Husain, Yawer S; Shajahan, Ayesha N; Sverdlov, Maria; Chaga, Oleg; Chen, Zhenlong; Toth, Peter T; Klomp, Jennifer; Karginov, Andrei V; Tiruppathi, Chinnaswamy; Malik, Asrar B; Minshall, Richard D

    2016-07-01

    Caveolin 1 (Cav1) is a required structural component of caveolae, and its phosphorylation by Src is associated with an increase in caveolae-mediated endocytosis. Here we demonstrate, using quantitative live-cell 4D, TIRF, and FRET imaging, that endocytosis and trafficking of caveolae are associated with a Cav1 Tyr-14 phosphorylation-dependent conformational change, which spatially separates, or loosens, Cav1 molecules within the oligomeric caveolar coat. When tracked by TIRF and spinning-disk microscopy, cells expressing phosphomimicking Cav1 (Y14D) mutant formed vesicles that were greater in number and volume than with Y14F-Cav1-GFP. Furthermore, we observed in HEK cells cotransfected with wild-type, Y14D, or Y14F Cav1-CFP and -YFP constructs that FRET efficiency was greater with Y14F pairs than with Y14D, indicating that pY14-Cav1 regulates the spatial organization of Cav1 molecules within the oligomer. In addition, albumin-induced Src activation or direct activation of Src using a rapamycin-inducible Src construct (RapR-Src) led to an increase in monomeric Cav1 in Western blots, as well as a simultaneous increase in vesicle number and decrease in FRET intensity, indicative of a Src-mediated conformational change in CFP/YFP-tagged WT-Cav1 pairs. We conclude that phosphorylation of Cav1 leads to separation or "spreading" of neighboring negatively charged N-terminal phosphotyrosine residues, promoting swelling of caveolae, followed by their release from the plasma membrane. PMID:27170175

  19. Loss of caveolin-1 and gain of MCT4 expression in the tumor stroma

    PubMed Central

    Martins, Diana; Beça, Francisco F; Sousa, Bárbara; Baltazar, Fátima; Paredes, Joana; Schmitt, Fernando

    2013-01-01

    The progression from in situ to invasive breast carcinoma is still an event poorly understood. However, it has been suggested that interactions between the neoplastic cells and the tumor microenvironment may play an important role in this process. Thus, the determination of differential tumor-stromal metabolic interactions could be an important step in invasiveness. The expression of stromal Caveolin-1 (Cav-1) has already been implicated in the progression from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). Additionally, stromal Cav-1 expression has been associated with the expression of stromal monocarboxylate transporter 4 (MCT4) in invasive breast cancer. However, the role of stromal MCT4 in invasiveness has never been explored, neither the association between Cav-1 and MCT4 in the transition from breast DCIS to IDC. Therefore, our aim was to investigate in a series of breast cancer samples including matched in situ and invasive components, if there was a relationship between stromal Cav-1 and MCT4 in the progression from in situ to invasive carcinoma. We found loss of stromal Cav-1 in the progression to IDC in 75% of the cases. In contrast, MCT4 stromal expression was acquired in 87% of the IDCs. Interestingly, a concomitant loss of Cav-1 and gain of MCT4 was observed in the stroma of 75% of the cases, when matched in situ and invasive carcinomas were compared. These results suggest that alterations in Cav-1 and MCT4 may thus mark a critical point in the progression from in situ to invasive breast cancer. PMID:23907124

  20. Prognostic value of caveolin-1 in genitourinary cancer: a meta-analysis

    PubMed Central

    Liu, Jia-Ming; Cheng, Si-Hang; Liu, Xiao-Xiao; Xia, Chao; Wang, Wei-Wen; Ma, Xue-Lei

    2015-01-01

    We aimed to obtain the most comprehensive picture to date of the prognostic value of caveolin-1 (Cav-1) in genitourinary carcinoma by meta-analyzing all eligible studies in PubMed and EMBASE. Data on patient clinical characteristics, cancer-specific survival (CSS) and recurrence-free survival (RFS) were extracted. The meta-analysis included 6 articles on prostate cancer, 5 on renal cancer, 1 on bladder cancer and 1 on transition cell carcinoma of the upper urinary tract. Two studies examining the association of ELISA-measured Cav-1 levels in serum with RFS in 621 patients with prostate cancer gave a combined hazard ratio (HR) of 1.25 (95% CI 0.36 to 4.36). The other 4 studies on prostate cancer examined the association of immunohistochemically determined Cav-1 levels in cancerous tissue with RFS and gave a combined HR of 1.83 (95% CI 1.36 to 2.47). Three studies on renal cancer examining the association of Cav-1 levels with CSS gave a multivariate HR of 1.98 (95% CI 1.35 to 2.90). The single studies on bladder carcinoma and upper urinary tract carcinoma gave, respectively, a multivariate HR of 2.28 (95% CI 1.09 to 4.74) for the relationship of Cav-1 levels to DFS, and a multivariate HR of 5.08 (95% CI 1.799 to 14.342) for the relationship of Cav-1 levels to CSS. This meta-analysis of available evidence suggests that elevated Cav-1 levels in serum can predict poor survival in patients with genitourinary cancer, which may help identify high-risk patients earlier and guide clinical decision-making. PMID:26884999

  1. Interferon-Inducible Protein 16: Insight into the Interaction with Tumor Suppressor p53

    SciTech Connect

    Liao, Jack C.C.; Lam, Robert; Brazda, Vaclav; Duan, Shili; Ravichandran, Mani; Ma, Justin; Xiao, Ting; Tempel, Wolfram; Zuo, Xiaobing; Wang, Yun-Xing; Chirgadze, Nickolay Y.; Arrowsmith, Cheryl H.

    2011-08-24

    IFI16 is a member of the interferon-inducible HIN-200 family of nuclear proteins. It has been implicated in transcriptional regulation by modulating protein-protein interactions with p53 tumor suppressor protein and other transcription factors. However, the mechanisms of interaction remain unknown. Here, we report the crystal structures of both HIN-A and HIN-B domains of IFI16 determined at 2.0 and 2.35 {angstrom} resolution, respectively. Each HIN domain comprises a pair of tightly packed OB-fold subdomains that appear to act as a single unit. We show that both HIN domains of IFI16 are capable of enhancing p53-DNA complex formation and transcriptional activation via distinctive means. HIN-A domain binds to the basic C terminus of p53, whereas the HIN-B domain binds to the core DNA-binding region of p53. Both interactions are compatible with the DNA-bound state of p53 and together contribute to the effect of full-length IFI16 on p53-DNA complex formation and transcriptional activation.

  2. Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma.

    PubMed

    Faggi, Fiorella; Chiarelli, Nicola; Colombi, Marina; Mitola, Stefania; Ronca, Roberto; Madaro, Luca; Bouche, Marina; Poliani, Pietro L; Vezzoli, Marika; Longhena, Francesca; Monti, Eugenio; Salani, Barbara; Maggi, Davide; Keller, Charles; Fanzani, Alessandro

    2015-06-01

    Rhabdomyosarcoma (RMS) is a childhood soft tissue tumor with broad expression of markers that are typically found in skeletal muscle. Cavin-1 is a recently discovered protein actively cooperating with Caveolin-1 (Cav-1) in the morphogenesis of caveolae and whose role in cancer is drawing increasing attention. Using a combined in silico and in vitro analysis here we show that Cavin-1 is expressed in myogenic RMS tumors as well as in human and primary mouse RMS cultures, exhibiting a broad subcellular localization, ranging from nuclei and cytosol to plasma membrane. In particular, the coexpression and plasma membrane interaction between Cavin-1 and Cav-1 characterized the proliferation of human and mouse RMS cell cultures, while a downregulation of their expression levels was observed during the myogenic differentiation. Knockdown of Cavin-1 or Cav-1 in the human RD and RH30 cells led to impairment of cell proliferation and migration. Moreover, loss of Cavin-1 in RD cells impaired the anchorage-independent cell growth in soft agar. While the loss of Cavin-1 did not affect the Cav-1 protein levels in RMS cells, Cav-1 overexpression and knockdown triggered a rise or depletion of Cavin-1 protein levels in RD cells, respectively, in turn reflecting on increased or decreased cell proliferation, migration and anchorage-independent cell growth. Collectively, these data indicate that the interaction between Cavin-1 and Cav-1 underlies the cell growth and migration in myogenic tumors. PMID:25822667

  3. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy

    PubMed Central

    Shi, Yin; Tan, Shi-Hao; Ng, Shukie; Zhou, Jing; Yang, Na-Di; Koo, Gi-Bang; McMahon, Kerrie-Ann; Parton, Robert G; Hill, Michelle M; del Pozo, Miguel A; Kim, You-Sun; Shen, Han-Ming

    2015-01-01

    CAV1 (caveolin 1, caveolae protein, 22kDa) is well known as a principal scaffolding protein of caveolae, a specialized plasma membrane structure. Relatively, the caveolae-independent function of CAV1 is less studied. Autophagy is a process known to involve various membrane structures, including autophagosomes, lysosomes, and autolysosomes for degradation of intracellular proteins and organelles. Currently, the function of CAV1 in autophagy remains largely elusive. In this study, we demonstrate for the first time that CAV1 deficiency promotes both basal and inducible autophagy. Interestingly, the promoting effect was found mainly in the late stage of autophagy via enhancing lysosomal function and autophagosome-lysosome fusion. Notably, the regulatory function of CAV1 in lysosome and autophagy was found to be caveolae-independent, and acts through lipid rafts. Furthermore, the elevated autophagy level induced by CAV1 deficiency serves as a cell survival mechanism under starvation. Importantly, downregulation of CAV1 and enhanced autophagy level were observed in human breast cancer cells and tissues. Taken together, our data reveal a novel function of CAV1 and lipid rafts in breast cancer development via modulation of lysosomal function and autophagy. PMID:25945613

  4. Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death

    PubMed Central

    Guan, D; Lim, J H; Peng, L; Liu, Y; Lam, M; Seto, E; Kao, H-Y

    2014-01-01

    The promyelocytic leukemia protein (PML) is a tumor suppressor that is expressed at a low level in various cancers. Although post-translational modifications including SUMOylation, phosphorylation, and ubiquitination have been found to regulate the stability or activity of PML, little is known about the role of its acetylation in the control of cell survival. Here we demonstrate that acetylation of lysine 487 (K487) and SUMO1 conjugation of K490 at PML protein are mutually exclusive. We found that hydrogen peroxide (H2O2) promotes PML deacetylation and identified SIRT1 and SIRT5 as PML deacetylases. Both SIRT1 and SIRT5 are required for H2O2-mediated deacetylation of PML and accumulation of nuclear PML protein in HeLa cells. Knockdown of SIRT1 reduces the number of H2O2-induced PML-nuclear bodies (NBs) and increases the survival of HeLa cells. Ectopic expression of wild-type PML but not the K487R mutant rescues H2O2-induced cell death in SIRT1 knockdown cells. Furthermore, ectopic expression of wild-type SIRT5 but not a catalytic defective mutant can also restore H2O2-induced cell death in SIRT1 knockdown cells. Taken together, our findings reveal a novel regulatory mechanism in which SIRT1/SIRT5-mediated PML deacetylation plays a role in the regulation of cancer cell survival. PMID:25032863

  5. Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target.

    PubMed

    Chemes, Lucía B; Sánchez, Ignacio E; de Prat-Gay, Gonzalo

    2011-09-16

    The retinoblastoma tumor suppressor (Rb) plays a key role in cell cycle control and is linked to various types of human cancer. Rb binds to the LxCxE motif, present in a number of cellular and viral proteins such as AdE1A, SV40 large T-antigen and human papillomavirus (HPV) E7, all instrumental in revealing fundamental mechanisms of tumor suppression, cell cycle control and gene expression. A detailed kinetic study of RbAB binding to the HPV E7 oncoprotein shows that an LxCxE-containing E7 fragment binds through a fast two-state reaction strongly favored by electrostatic interactions. Conversely, full-length E7 binds through a multistep process involving a pre-equilibrium between E7 conformers, a fast electrostatically driven association step guided by the LxCxE motif and a slow conformational rearrangement. This kinetic complexity arises from the conformational plasticity and intrinsically disordered nature of E7 and from multiple interaction surfaces present in both proteins. Affinity differences between E7N domains from high- and low-risk types are explained by their dissociation rates. In fact, since Rb is at the center of a large protein interaction network, fast and tight recognition provides an advantage for disruption by the viral proteins, where the balance of physiological and pathological interactions is dictated by kinetic ligand competition. The localization of the LxCxE motif within an intrinsically disordered domain provides the fast, diffusion-controlled interaction that allows viral proteins to outcompete physiological targets. We describe the interaction mechanism of Rb with a protein ligand, at the same time an LxCxE-containing model target, and a paradigmatic intrinsically disordered viral oncoprotein. PMID:21787785

  6. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins.

    PubMed Central

    Lasorella, A; Iavarone, A; Israel, M A

    1996-01-01

    Cells which are highly proliferative typically lack expression of differentiated, lineage-specific characteristics. Id2, a member of the helix-loop-helix (HLH) protein family known to inhibit cell differentiation, binds to the retinoblastoma protein (pRb) and abolishes its growth-suppressing activity. We found that Id2 but not Id1 or Id3 was able to bind in vitro not only pRb but also the related proteins p107 and p130. Also, an association between Id2 and p107 or p130 was observed in vivo in transiently transfected Saos-2 cells. In agreement with these results, expression of Id1 or Id3 did not affect the block of cell cycle progression mediated by pRb. Conversely, expression of Id2 specifically reversed the cell cycle arrest induced by each of the three members of the pRb family. Furthermore, the growth-suppressive activities of cyclin-dependent kinase inhibitors p16 and p21 were efficiently antagonized by high levels of Id2 but not by Id1 Id3. Consistent with the role of p16 as a selective inhibitor of pRb and pRb-related protein kinase activity, p16-imposed cell cycle arrest was completely abolished by Id2. Only a partial reversal of p21-induced growth suppression was observed, which correlated with the presence of a functional pRb. We also documented decreased levels of cyclin D1 protein and mRNA and the loss of cyclin D1-cdk4 complexes in cells constitutively expressing Id2. These data provide evidence for important Id2-mediated alterations in cell cycle components normally involved in the regulatory events of cell cycle progression, and they highlight a specific role for Id2 as an antagonist of multiple tumor suppressor proteins. PMID:8649364

  7. Tumor suppressor death-associated protein kinase attenuates inflammatory responses in the lung.

    PubMed

    Nakav, Sigal; Cohen, Shmuel; Feigelson, Sara W; Bialik, Shani; Shoseyov, David; Kimchi, Adi; Alon, Ronen

    2012-03-01

    Death-associated protein kinase (DAPk) is a tumor suppressor thought to inhibit cancer by promoting apoptosis and autophagy. Because cancer progression is linked to inflammation, we investigated the in vivo functions of DAPk in lung responses to various acute and chronic inflammatory stimuli. Lungs of DAPk knockout (KO) mice secreted higher concentrations of IL-6 and keratinocyte chemoattractant (or chemokine [C-X-C motif] ligand 1) in response to transient intranasal administrations of the Toll-like receptor-4 (TLR4) agonist LPS. In addition, DAPk-null macrophages and neutrophils were hyperresponsive to ex vivo stimulation with LPS. DAPk-null neutrophils were also hyperresponsive to activation via Fc receptor and Toll-like receptor-3, indicating that the suppressive functions of this kinase are not restricted to TLR4 pathways. Even after the reconstitution of DAPk-null lungs with DAPk-expressing leukocytes by transplanting wild-type (WT) bone marrow into lethally irradiated DAPk KO mice, the chimeric mice remained hypersensitive to both acute and chronic LPS challenges, as well as to tobacco smoke exposure. DAPk-null lungs reconstituted with WT leukocytes exhibited elevated neutrophil content and augmented cytokine secretion in the bronchoalveolar space, as well as enhanced epithelial cell injury in response to both acute and chronic inflammatory conditions. These results suggest that DAPk attenuates a variety of inflammatory responses, both in lung leukocytes and in lung epithelial cells. The DAPk-mediated suppression of lung inflammation and airway injury may contribute to the tumor-suppressor functions of this kinase in epithelial carcinogenesis. PMID:21997486

  8. Role of NF-κB-dependent Caveolin-1 Expression in the Mechanism of Increased Endothelial Permeability Induced by Lipopolysaccharide*S

    PubMed Central

    Tiruppathi, Chinnaswamy; Shimizu, Jun; Miyawaki-Shimizu, Kayo; Vogel, Stephen M.; Bair, Angela M.; Minshall, Richard D.; Predescu, Dan; Malik, Asrar B.

    2008-01-01

    We investigated the role of NF-κB activation by the bacterial product lipopolysaccharide (LPS) in inducing caveolin-1 (Cav-1) expression and its consequence in contributing to the leakiness of the endothelial barrier. We observed that LPS challenge of human lung microvascular endothelial cells induced concentration- and time-dependent increases in expression of Cav-1 mRNA and protein. The NEMO (NF-κB essential modifier binding domain)-binding domain peptide (IkB kinase (IKK)-NEMO-binding domain (NBD) peptide), which prevents NF-κB activation by inhibiting the interaction of IKKγ with the IKK complex, blocked LPS-induced Cav-1 mRNA and protein expression. Knockdown of NF-κB subunit p65/RelA expression with small interfering RNA also prevented LPS-induced Cav-1 expression. Caveolae open to the apical and basal plasmalemma of endothelial cells increased 2–4-fold within 4 h of LPS exposure. IKK-NBD peptide markedly reduced the LPS-induced increase in the number of caveolae as well as transendothelial albumin permeability. These observations were recapitulated in mouse studies in which IKK-NBD peptide prevented Cav-1 expression and interfered with the increase in lung microvessel permeability induced by LPS. Thus, LPS mediates NF-κB-dependent Cav-1 expression that results in increased caveolae number and thereby contributes to the mechanism of increased transendothelial albumin permeability. PMID:18077459

  9. High affinity binding sites for the Wilms' tumour suppressor protein WT1.

    PubMed Central

    Hamilton, T B; Barilla, K C; Romaniuk, P J

    1995-01-01

    The Wilms' tumour suppressor protein (WT1) is a putative transcriptional regulatory protein with four zinc fingers, the last three of which have extensive sequence homology to the early growth response-1 (EGR-1) protein. Although a peptide encoding the zinc finger domain of WT1[-KTS] can bind to a consensus 9 bp EGR-1 binding site, current knowledge about the mechanisms of zinc finger-DNA interactions would predict a more extended recognition site for WT1. Using a WT1[-KTS] zinc finger peptide (WT1-ZFP) and the template oligonucleotide GCG-TGG-GCG-NNNNN in a binding site selection assay, we have determined that the highest affinity binding sites for WT1[-KTS] consist of a 12 bp sequence GCG-TGG-GCG-(T/G)(G/A/T)(T/G). The binding of WT1-ZFP to a number of the selected sequences was measured by a quantitative nitrocellulose filter binding assay, and the results demonstrated that these sequences have a 4-fold higher affinity for the protein than the nonselected sequence GCG-TGG-GCG-CCC. The full length WT1 protein regulates transcription of reporter genes linked to these high affinity sequences. A peptide lacking the first zinc finger of WT1[-KTS], but containing the three zinc fingers homologous to EGR-1 failed to select any specific sequences downstream of the GCG-TGG-GCG consensus sequence in the binding site selection assay. DNA sequences in the fetal promoter of the insulin-like growth factor II gene that confer WT1 responsiveness in a transient transfection assay bind to the WT1-ZFP with affinities that vary according to the number of consensus bases each sequence possesses in the finger 1 subsite. PMID:7862533

  10. Ovine caveolin-1: cDNA cloning, E. coli expression, and association with endothelial nitric oxide synthase.

    PubMed

    Chen, D; Zangl, A L; Zhao, Q; Markley, J L; Zheng, J; Bird, I M; Magness, R R

    2001-04-25

    Caveolin-1 (Cav-1), the principal coat protein of caveolae, plays an obligatory role in regulating the activity of endothelial nitric oxide (NO) synthase (eNOS). We propose that Cav-1 may be critical to eNOS-NO mediated uterine vasodilatation during pregnancy and estrogen replacement therapy. To test this hypothesis in the sheep model, we isolated the full-length cDNA of ovine Cav-1 (oCav-1) from a Lambda ZAP cDNA library of ovine placental artery endothelial cells. Thirty-two positive oCav-1 clones were recognized by a partial oCav-1 cDNA from this library, of which eight were sequenced. Restriction digestion of these clones revealed that the cDNAs of oCav-1 ranged from approximately 2.1 to 2.7 kb. Northern analysis of Cav-1 mRNAs in ovine uterine artery endothelial cells (UAEC) showed two transcripts of approximately 2.1 and 2.7 kb, respectively. Immunoreactive Cav-1 protein, but not caveolin-2 or caveolin-3, was detected in UAEC. Sequence analysis revealed that in addition to a 537-bp open reading frame encoding a 178 amino acid oCav-1 protein, full-length oCav-1 cDNAs apparently possess a approximately 1.6-2.1 kb 3'-untranslated region. Database searches with oCav-1 cDNA revealed that the coding region of mammalian Cav-1 genes is highly conserved. We prepared a recombinant full-length oCav-1 protein in which six consecutive histidine residues were tagged at the end of its COOH-terminus and developed a [His]6-tagged oCav-1 'pull-down assay' for studying the association of eNOS with Cav-1. Incubation of exogenous [His]6-tagged oCav-1 with resting UAEC extracts led to the formation of a [His]6-tagged oCav-1-eNOS complex. In the presence of a synthetic caveolin-scaffolding domain (CSD, aa 82-101) peptide, but not a mutated CSD peptide, [His]6-tagged oCav-1 associated eNOS was dose (0-10 microM)-dependently inhibited. eNOS association with Cav-1 in UAEC was further confirmed by the facts that eNOS co-immunoprecipitated with Cav-1 and vice versa, and that eNOS co

  11. Negative regulation of RNA-binding protein HuR by tumor-suppressor ECRG2.

    PubMed

    Lucchesi, C; Sheikh, M S; Huang, Y

    2016-05-19

    Esophageal cancer-related gene 2 (ECRG2) is a newer tumor suppressor whose function in the regulation of cell growth and apoptosis remains to be elucidated. Here we show that ECRG2 expression was upregulated in response to DNA damage, and increased ECRG2 expression induced growth suppression in cancer cells but not in non-cancerous epithelial cells. ECRG2-mediated growth suppression was associated with activation of caspases and marked reduction in the levels of apoptosis inhibitor, X chromosome-linked inhibitor of apoptosis protein (XIAP). ECRG2, via RNA-binding protein human antigen R (HuR), regulated XIAP mRNA stability and expression. Furthermore, ECRG2 increased HuR ubiquitination and degradation but was unable to modulate the non-ubiquitinable mutant form of HuR. We also identified missense and frame-shift ECRG2 mutations in various human malignancies and noted that, unlike wild-type ECRG2, one cancer-derived ECRG2 mutant harboring glutamic acid instead of valine at position 30 (V30E) failed to induce cell death and activation of caspases. This naturally occurring V30E mutant also did not suppress XIAP and HuR. Importantly, the V30E mutant overexpressing cancer cells acquired resistance against multiple anticancer drugs, thus suggesting that ECRG2 mutations appear to have an important role in the acquisition of anticancer drug resistance in a subset of human malignancies. PMID:26434587

  12. Tumour suppressor death-associated protein kinase targets cytoplasmic HIF-1α for Th17 suppression

    PubMed Central

    Chou, Ting-Fang; Chuang, Ya-Ting; Hsieh, Wan-Chen; Chang, Pei-Yun; Liu, Hsin-Yu; Mo, Shu-Ting; Hsu, Tzu-Sheng; Miaw, Shi-Chuen; Chen, Ruey-Hwa; Kimchi, Adi; Lai, Ming-Zong

    2016-01-01

    Death-associated protein kinase (DAPK) is a tumour suppressor. Here we show that DAPK also inhibits T helper 17 (Th17) and prevents Th17-mediated pathology in a mouse model of autoimmunity. We demonstrate that DAPK specifically downregulates hypoxia-inducible factor 1α (HIF-1α). In contrast to the predominant nuclear localization of HIF-1α in many cell types, HIF-1α is located in both the cytoplasm and nucleus in T cells, allowing for a cytosolic DAPK–HIF-1α interaction. DAPK also binds prolyl hydroxylase domain protein 2 (PHD2) and increases HIF-1α-PHD2 association. DAPK thereby promotes the proline hydroxylation and proteasome degradation of HIF-1α. Consequently, DAPK deficiency leads to excess HIF-1α accumulation, enhanced IL-17 expression and exacerbated experimental autoimmune encephalomyelitis. Additional knockout of HIF-1α restores the normal differentiation of Dapk−/− Th17 cells and prevents experimental autoimmune encephalomyelitis development. Our results reveal a mechanism involving DAPK-mediated degradation of cytoplasmic HIF-1α, and suggest that raising DAPK levels could be used for treatment of Th17-associated inflammatory diseases. PMID:27312851

  13. Prolonged nitric oxide exposure enhances anoikis resistance and migration through epithelial-mesenchymal transition and caveolin-1 upregulation.

    PubMed

    Chanvorachote, Pithi; Pongrakhananon, Varisa; Chunhacha, Preedakorn

    2014-01-01

    Nitric oxide (NO) in tumor microenvironment may have a significant impact on metastatic behaviors of cancer. Noncytotoxic doses of NO enhanced anoikis resistance and migration in lung cancer H23 cells via an increase in lamellipodia, epithelial-mesenchymal transition (EMT) markers including vimentin and snail, and caveolin-1 (Cav-1). However, the induction of EMT was found in Cav-1-knock down cells treated with NO, suggesting that EMT was through Cav-1-independent pathway. These effects of NO were consistently observed in other lung cancer cells including H292 and H460 cells. These findings highlight the novel role of NO on EMT and metastatic behaviors of cancer cells. PMID:24967418

  14. Receptor protein-tyrosine phosphatase. gamma. is a candidate tumor suppressor gene at human chromosome region 3p21

    SciTech Connect

    LaForgia, S.; Cannizzaro, L.A.; Boghosian-Sell, L.; Croce, C.M.; Huebner, K. ); Morse, B. ); Levy, J.; Barnea, G.; Schlessinger, J. ); Li, F. ); Nowell, P.C.; Glick, J. ); Weston, A.; Harris, C.C. ); Drabkin, H. ); Patterson, D. )

    1991-06-01

    PTPG, the gene for protein-tyrosine phosphatase {gamma} (PTP{gamma}), maps to a region of human chromosome 3, 3p21, that is frequently deleted in renal cell carcinoma and lung carcinoma. One of the functions of protein-tyrosine phosphatases is to reverse the effect of protein-tyrosine kinases, many of which are oncogenes, suggesting that some protein-tyrosine phosphatase genes may act as tumor suppressor genes. A hallmark of tumor suppressor genes is that they are deleted in tumors in which their inactivation contributes to the malignant phenotype. In this study, one PTP {gamma} allele was lost in 3 of 5 renal carcinoma cell lines and 5 of 10 lung carcinoma tumor samples tested. Importantly, one PTP {gamma} allele was lost in three lung tumors that had not lost flanking loci. PTP {gamma} mRNA was expressed in kidney cell lines and lung cell lines but not expressed in several hematopoietic cell lines tested. Thus, the PTP {gamma} gene has characteristics that suggest it as a candidate tumor suppressor gene at 3p21.

  15. Retinoblastoma tumor suppressor protein in pancreatic progenitors controls α- and β-cell fate.

    PubMed

    Cai, Erica P; Wu, Xiaohong; Schroer, Stephanie A; Elia, Andrew J; Nostro, M Cristina; Zacksenhaus, Eldad; Woo, Minna

    2013-09-01

    Pancreatic endocrine cells expand rapidly during embryogenesis by neogenesis and proliferation, but during adulthood, islet cells have a very slow turnover. Disruption of murine retinoblastoma tumor suppressor protein (Rb) in mature pancreatic β-cells has a limited effect on cell proliferation. Here we show that deletion of Rb during embryogenesis in islet progenitors leads to an increase in the neurogenin 3-expressing precursor cell population, which persists in the postnatal period and is associated with increased β-cell mass in adults. In contrast, Rb-deficient islet precursors, through repression of the cell fate factor aristaless related homeobox, result in decreased α-cell mass. The opposing effect on survival of Rb-deficient α- and β-cells was a result of opposing effects on p53 in these cell types. As a consequence, loss of Rb in islet precursors led to a reduced α- to β-cell ratio, leading to improved glucose homeostasis and protection against diabetes. PMID:23946427

  16. The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells

    PubMed Central

    Parasido, Erika; Tricoli, Lucas; Sivakumar, Angiela; Mikhaiel, John P.; Yenugonda, Venkata; Rodriguez, Olga C.; Karam, Sana D.; Rood, Brian R.; Avantaggiati, Maria Laura; Albanese, Chris

    2015-01-01

    Medulloblastoma (MB), a primitive neuroectodermal tumor, is the most common malignant childhood brain tumor and remains incurable in about a third of patients. Currently, survivors carry a significant burden of late treatment effects. The p53 tumor suppressor protein plays a crucial role in influencing cell survival in response to cellular stress and while the p53 pathway is considered a key determinant of anti-tumor responses in many tumors, its role in cell survival in MB is much less well defined. Herein, we report that the experimental drug VMY-1-103 acts through induction of a partial DNA damage-like response as well induction of non-survival autophagy. Surprisingly, the genetic or chemical silencing of p53 significantly enhanced the cytotoxic effects of both VMY and the DNA damaging drug, doxorubicin. The inhibition of p53 in the presence of VMY revealed increased late stage apoptosis, increased DNA fragmentation and increased expression of genes involved in apoptosis, including CAPN12 and TRPM8, p63, p73, BIK, EndoG, CIDEB, P27Kip1 and P21cip1. These data provide the groundwork for additional studies on VMY as a therapeutic drug and support further investigations into the intriguing possibility that targeting p53 function may be an effective means of enhancing clinical outcomes in MB. PMID:26540407

  17. Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1)

    SciTech Connect

    Yates, Luke A. Durrant, Benjamin P.; Barber, Michael; Harlos, Karl; Fleurdépine, Sophie; Norbury, Chris J.; Gilbert, Robert J. C.

    2015-02-21

    The use of truncation and RNA-binding mutations of caffeine induced death suppressor protein 1 (Cid1) as a means to enhance crystallogenesis leading to an improvement of X-ray diffraction resolution by 1.5 Å is reported. The post-transcriptional addition of uridines to the 3′-end of RNAs is an important regulatory process that is critical for coding and noncoding RNA stability. In fission yeast and metazoans this untemplated 3′-uridylylation is catalysed by a single family of terminal uridylyltransferases (TUTs) whose members are adapted to specific RNA targets. In Schizosaccharomyces pombe the TUT Cid1 is responsible for the uridylylation of polyadenylated mRNAs, targeting them for destruction. In metazoans, the Cid1 orthologues ZCCHC6 and ZCCHC11 uridylate histone mRNAs, targeting them for degradation, but also uridylate microRNAs, altering their maturation. Cid1 has been studied as a model TUT that has provided insights into the larger and more complex metazoan enzyme system. In this paper, two strategies are described that led to improvements both in the crystallogenesis of Cid1 and in the resolution of diffraction by ∼1.5 Å. These advances have allowed high-resolution crystallo@@graphic studies of this TUT system to be initiated.

  18. Suppressing RNA silencing with small molecules and the viral suppressor of RNA silencing protein p19.

    PubMed

    Danielson, Dana C; Filip, Roxana; Powdrill, Megan H; O'Hara, Shifawn; Pezacki, John P

    2015-08-01

    RNA silencing is a gene regulatory and host defense mechanism whereby small RNA molecules are engaged by Argonaute (AGO) proteins, which facilitate gene knockdown of complementary mRNA targets. Small molecule inhibitors of AGO represent a convenient method for reversing this effect and have applications in human therapy and biotechnology. Viral suppressors of RNA silencing, such as p19, can also be used to suppress the pathway. Here we assess the compatibility of these two approaches, by examining whether synthetic inhibitors of AGO would inhibit p19-siRNA interactions. We observe that aurintricarboxylic acid (ATA) is a potent inhibitor of p19's ability to bind siRNA (IC50 = 0.43 μM), oxidopamine does not inhibit p19:siRNA interactions, and suramin is a mild inhibitor of p19:siRNA interactions (IC50 = 430 μM). We observe that p19 and suramin are compatible inhibitors of RNA silencing in human hepatoma cells. Our data suggests that at least some inhibitors of AGO may be used in combination with p19 to inhibit RNA silencing at different points in the pathway. PMID:26079891

  19. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast.

    PubMed

    Eid, Rawan; Sheibani, Sara; Gharib, Nada; Lapointe, Jason F; Horowitz, Avital; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2014-05-01

    The identification of a human ribosomal protein L9 (hRPL9) cDNA as a sequence capable of suppressing the lethal effects of heterologously expressed murine Bax in yeast led us to investigate its antiapoptotic potential. Using growth and viability assays, we show that yeast cells heterologously expressing hRPL9 are resistant to the growth inhibitory and lethal effects of exogenously supplied copper, indicating that it has pro-survival properties. To explore potential mechanisms, we used yeast mutants defective in all three types of programmed cell death (apoptosis, necrosis, and autophagy). The ability to retain pro-survival function in all the mutants suggests that hRPL9 may regulate a common pro-death process. In contrast, the yeast RPL9 orthologues, RPL9A and RPL9B, have opposite effects when overexpressed in yeast. In effect, instead of showing resistance to stress, RPL9A and RPL9B overexpressing cells show reduced cell growth. Further analysis indicates that the effects of overexpressed RPL9A and RPL9B are not in themselves lethal, instead, they serve to increase cell doubling time. Thus, yeast RPL9s are more representative of RPs whose extra-ribosomal function is similar to that of tumor suppressors. Taken together, our results demonstrate that RPL9 represents a species- and sequence-specific regulator of cell growth and survival. PMID:24305165

  20. The retinoblastoma protein tumor suppressor is important for appropriate osteoblast differentiation and bone development.

    PubMed

    Berman, Seth D; Yuan, Tina L; Miller, Emily S; Lee, Eunice Y; Caron, Alicia; Lees, Jacqueline A

    2008-09-01

    Mutation of the retinoblastoma (RB) tumor suppressor gene is strongly linked to osteosarcoma formation. This observation and the documented interaction between the retinoblastoma protein (pRb) and Runx2 suggests that pRb is important in bone development. To assess this hypothesis, we used a conditional knockout strategy to generate pRb-deficient embryos that survive to birth. Analysis of these embryos shows that Rb inactivation causes the abnormal development and impaired ossification of several bones, correlating with an impairment in osteoblast differentiation. We further show that Rb inactivation acts to promote osteoblast differentiation in vitro and, through conditional analysis, establish that this occurs in a cell-intrinsic manner. Although these in vivo and in vitro differentiation phenotypes seem paradoxical, we find that Rb-deficient osteoblasts have an impaired ability to exit the cell cycle both in vivo and in vitro that can explain the observed differentiation defects. Consistent with this observation, we show that the cell cycle and the bone defects in Rb-deficient embryos can be suppressed by deletion of E2f1, a known proliferation inducer that acts downstream of Rb. Thus, we conclude that pRb plays a key role in regulating osteoblast differentiation by mediating the inhibition of E2F and consequently promoting cell cycle exit. PMID:18819932

  1. Functional expression of NF1 tumor suppressor protein: association with keratin intermediate filaments during the early development of human epidermis

    PubMed Central

    Malminen, Maria; Peltonen, Sirkku; Koivunen, Jussi; Peltonen, Juha

    2002-01-01

    Background NF1 refers to type 1 neurofibromatosis syndrome, which has been linked with mutations of the large NF1 gene. NF1 tumor suppressor protein, neurofibromin, has been shown to regulate ras: the NF1 protein contains a GTPase activating protein (GAP) related domain which functions as p21rasGAP. Our studies have previously demonstrated that the NF1 protein forms a high affinity association with cytokeratin 14 during the formation of desmosomes and hemidesmosomes in cultured keratinocytes. Methods The expression of NF1 protein was studied in developing human epidermis using western transfer analysis, indirect immunofluorescence, confocal laser scanning microscopy, immunoelectron microscopy, and in situ hybridization. Results The expression of NF1 protein was noted to be highly elevated in the periderm at 8 weeks estimated gestational age (EGA) and in the basal cells at 8–14 weeks EGA. During this period, NF1 protein was associated with cytokeratin filaments terminating to desmosomes and hemidesmosomes. NF1 protein did not display colocalization with α-tubulin or actin of the cytoskeleton, or with adherens junction proteins. Conclusions These results depict an early fetal period when the NF1 tumor suppressor is abundantly expressed in epidermis and associated with cytokeratin filaments. This period is characterized by the initiation of differentiation of the basal cells, maturation of the basement membrane zone as well as accentuated formation of selected cellular junctions. NF1 tumor suppressor may function in the regulation of epidermal histogenesis via controlling the organization of the keratin cytoskeleton during the assembly of desmosomes and hemidesmosomes. PMID:12199909

  2. Cellular retinol binding protein 1 could be a tumor suppressor gene in cervical cancer

    PubMed Central

    Mendoza-Rodriguez, Mónica; Arreola, Hugo; Valdivia, Alejandra; Peralta, Raúl; Serna, Humberto; Villegas, Vanessa; Romero, Pablo; Alvarado-Hernández, Beatriz; Paniagua, Lucero; Marrero-Rodríguez, Daniel; Meraz, Marco A; Salcedo, Mauricio

    2013-01-01

    Aims: Cervical Cancer (CC) is one of the most important health problems in women. It frequently presents genetic changes at chromosome region 3q21. This region contains the Cellular Retinol Binding Protein 1 gene (CRBP1) which has been implicated as an important element in the development of other types of cancer. The main goal of the present work was to determine the molecular alterations of CRBP1 and its relationship to CC. Methods: To determine the molecular alterations of CRBP1 gene in CC; twenty-six CC and twenty-six healthy cervix samples were evaluated for: 1) Copy number gain by real-time PCR analysis, 2) expression levels by an immunohistochemistry assay on tissue microarray, and 3) the methylation status of the CRBP1 promoter region. Results: The increase in CRBP1 copy number was observed in 10 out of the 26 CC samples analyzed, while healthy cervices samples showed no changes in the copy number. In addition, there was a lack of expression of the CRBP1 gene in an important number of the CC samples (17/26), and the CRBP1 gene promoter was methylated in 15/26 of the CC samples. Interestingly, there was a significant association between the lack of expression of the CRBP1 gene and its methylation status. Conclusions: The data indicates that, both activating and inactivating changes in the CRBP1 gene could be significant events in the development and progression of CC, and the lack of expression of the CRBP1 protein could be related with to the development of CC. We believe that there is enough evidence to consider to CRBP1 gene as a tumor suppressor gene for CC. PMID:24040446

  3. Potential RNA Binding Proteins in Saccharomyces Cerevisiae Identified as Suppressors of Temperature-Sensitive Mutations in Npl3

    PubMed Central

    Henry, M.; Borland, C. Z.; Bossie, M.; Silver, P. A.

    1996-01-01

    The NPL3 gene of the yeast Saccharomyces cerevisiae encodes a protein with similarity to heterogeneous nuclear ribonucleoproteins (hnRNPs). Npl3p has been implicated in many nuclear-related events including RNA export, protein import, and rRNA processing. Several temperature-sensitive alleles of NPL3 have been isolated. We now report the sequence of these alleles. For one allele, npl3-1, four complementation groups of suppressors have been isolated. The cognate genes for the two recessive mutants were cloned. One of these is the previously known RNA15, which, like NPL3, also encodes a protein with similarity to the vertebrate hnRNP A/B protein family. The other suppressor corresponds to a newly defined gene we term HRP1, which also encodes a protein with similarity to the hnRNP A/B proteins of vertebrates. Mutations in HRP1 suppress all npl3 temperature-sensitive alleles but do not bypass an npl3 null allele. We show that HRP1 is essential for cell growth and that the corresponding protein is located in the nucleus. The discovery of two hnRNP homologues that can partially suppress the function of Np13p, also an RNA binding protein, will be discussed in terms of the possible roles for Npl3p in RNA metabolism. PMID:8770588

  4. Identification of a myeloid-derived suppressor cell cystatin-like protein that inhibits metastasis.

    PubMed

    Boutté, Angela M; Friedman, David B; Bogyo, Matthew; Min, Yongfen; Yang, Li; Lin, P Charles

    2011-08-01

    Myeloid-derived suppressor cells (MDSCs) are significantly increased in cancer patients and tumor bearing-animals. MDSCs infiltrate into tumors and promote tumor invasion and metastasis. To identify the mediator responsible for the prometastatic property of MDSCs, we used proteomics. We found neutrophilic granule protein (NGP) was decreased >2-fold in MDSCs from metastatic 4T1 tumor-bearing mice compared to nonmetastatic 67NR controls. NGP mRNA levels were decreased in bone marrow and in tumor-infiltrating MDSCs by 45 and 66%, respectively, in 4T1 tumor-bearing mice compared to 67NR controls. Interestingly, 4T1-conditioned medium reduced myeloid cell NGP expression by ∼ 40%, suggesting that a secreted factor mediates gene reduction. Sequence analysis shows a putative cystatin domain in NGP, and biochemical analysis confirms NGP a novel cathepsin inhibitor. It inhibited cathepsin B activity by nearly 40% in vitro. NGP expression in 4T1 tumor cells suppressed cell invasion, delayed primary tumor growth, and greatly reduced lung metastasis in vivo. A 2.8-fold reduction of cathepsin activity was found in tumors expressing NGP compared to controls. NGP significantly reduced tumor angiogenesis to 12.6 from 19.6 and lymphangiogenesis to 4.6 from 9.1 vessels/field. Necrosis was detectable only in NGP-expressing tumors, and the number of apoptotic cells increased to 22.4 from 8.3 in controls. Taken together, this study identifies a negative regulator of tumor metastasis in MDSCs, NGP, which is down-regulated in metastatic conditions. The finding suggests that malignant tumors promote invasion/metastasis not only through up-regulation of proteases but also down-regulation of protease inhibitors. PMID:21518852

  5. Ubiquitin-specific protease 11 functions as a tumor suppressor by modulating Mgl-1 protein to regulate cancer cell growth

    PubMed Central

    Lim, Key-Hwan; Suresh, Bharathi; Park, Jung-Hyun; Kim, Young-Soo; Ramakrishna, Suresh; Baek, Kwang-Hyun

    2016-01-01

    The Lethal giant larvae (Lgl) gene encodes a cortical cytoskeleton protein, Lgl, and is involved in maintaining cell polarity and epithelial integrity. Previously, we observed that Mgl-1, a mammalian homologue of the Drosophila tumor suppressor protein Lgl, is subjected to degradation via ubiquitin-proteasome pathway, and scaffolding protein RanBPM prevents the turnover of the Mgl-1 protein. Consequently, overexpression of RanBPM enhances Mgl-1-mediated cell proliferation and migration. Here, we analyzed the ability of ubiquitin-specific protease 11 (USP11) as a novel regulator of Mgl-1 and it requires RanBPM to regulate proteasomal degradation of Mgl-1. USP11 showed deubiquitinating activity and stabilized Mgl-1 protein. However, USP11-mediated Mgl-1 stabilization was inhibited in RanBPM-knockdown cells. Furthermore, in the cancer cell migration, the regulation of Mgl-1 by USP11 required RanBPM expression. In addition, an in vivo study revealed that depletion of USP11 leads to tumor formation. Taken together, the results indicated that USP11 functions as a tumor suppressor through the regulation of Mgl-1 protein degradation via RanBPM. PMID:26919101

  6. UV irradiation leads to transient changes in phosphorylation and stability of tumor suppressor protein p53.

    PubMed

    Scheidtmann, K; Landsberg, G

    1996-12-01

    Tumor suppressor protein p53 is thought to play a crucial role in maintaining the integrity of the genome. DNA damage caused by genotoxic drugs, UV or gamma-irradiation leads to accumulation of p53 and activation of its DNA binding and transcriptional activities and subsequently to cell cycle arrest or apoptosis. We investigated whether the apparent activation of p53 might be due to post-translational modification. The rat fibroblast cell lines REF52, 208F, and rat1 were irradiated with W-A and the synthesis, stability and phosphorylation state of p53 were investigated by pulse chase experiments, SDS-PAGE and two-dimensional phosphopeptide mapping. The three cell lines exhibited different sensitivities and biological responses to UV irradiation, REF52 cells responded with a growth arrest whereas 208F and rat1 cells underwent apoptosis. The fate of p53 was similar in all cases. Both the stability of p53 and its phosphorylation increased instantaneously but transiently. However, the amount of p53 that accumulated after UV treatment was much higher in 208F and rat1 than in REF52 cells. Interestingly, p53 that was synthesized early after irradiation was stable for more than 14 h whereas molecules synthesized 8 or more hours post irradiation were increasingly susceptible to degradation. Moreover, between 14 and 20 h after treatment, the rate of synthesis of p53 decreased to a level lower than in untreated cells suggesting negative feed back control. The expression of different p53-responsive genes, waf1/cip1, Gadd45, and bax was investigated by protein analyses. Surprisingly, p21(waf1) was expressed only in REF52 cells but not in the others. Furthermore, UV irradiation led only to a moderate increase of p21(waf1) expression. Expression of Gadd45 and box was detectable in both cell types but its expression did not change significantly upon UV treatment. Our results suggest i) that both cell types share a common pathway which upon UV irradiation results in enhanced

  7. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein.

    PubMed Central

    Munemitsu, S; Albert, I; Souza, B; Rubinfeld, B; Polakis, P

    1995-01-01

    The APC tumor-suppressor protein associates with beta-catenin, a cell adhesion protein that is upregulated by the WNT1 oncogene. We examined the effects of exogenous APC expression on the distribution and amount of beta-catenin in a colorectal cancer cell containing only mutant APC. Expression of wild-type APC caused a pronounced reduction in total beta-catenin levels by eliminating an excessive supply of cytoplasmic beta-catenin indigenous to the SW480 colorectal cancer cell line. This reduction was due to an enhanced rate of beta-catenin protein degradation. Truncated mutant APC proteins, characteristic of those associated with cancer, lacked this activity. Mutational analysis revealed that the central region of the APC protein, which is typically deleted or severely truncated in tumors, was responsible for the down-regulation of beta-catenin. These results suggest that the tumor-suppressor activity of mutant APC may be compromised due to a defect in its ability to regulate beta-catenin. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7708772

  8. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage.

    PubMed

    Liu, Jie; Jin, Xinchun; Liu, Ke J; Liu, Wenlan

    2012-02-29

    Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis. PMID:22378877

  9. Protective Effect of Ginsenoside Rg1 on Bleomycin-Induced Pulmonary Fibrosis in Rats: Involvement of Caveolin-1 and TGF-β1 Signal Pathway.

    PubMed

    Zhan, Heqin; Huang, Feng; Ma, Wenzhuo; Zhao, Zhenghang; Zhang, Haifang; Zhang, Chong

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis and high mortality rate. Panax Notoginseng Saponins (PNS), extracted from Panax Notoginseng as a traditional Asian medicine, displayed a significant anti-fibrosis effect in liver and lung. However, whether Ginsenoside Rg1 (Rg1), an important and active ingredient of PNS, exerts anti-fibrotic activity on IPF still remain unclear. In this study, we investigated the effect of Rg1 on bleomycin-induced pulmonary fibrosis in rats. Bleomycin (5 mg/kg body weight) was intratracheally administrated to male rats. Rg1 (18, 36 and 72 mg/kg) was orally administered on the next day after bleomycin. Lungs were harvested at day 7 and 28 for the further experiments. Histological analysis revealed that bleomycin successfully induced pulmonary fibrosis, and that Rg1 restored the histological alteration of bleomycin-induced pulmonary fibrosis (PF), significantly decreased lung coefficient, scores of alveolitis, scores of PF as well as contents of alpha smooth muscle actin (α-SMA) and hydroxyproline (Hyp) in a dose-dependent manner in PF rats. Moreover, Rg1 increased the expression levels of Caveolin-1 (Cav-1) mRNA and protein, lowered the expression of transforming growth factor-β1 (TGF-β1) mRNA and protein in the lung tissues of PF rats. These data suggest that Rg1 exhibits protective effect against bleomycin-induced PF in rats, which is potentially associated with the down-regulation of TGF-β1 and up-regulation of Cav-1. PMID:27476938

  10. Increase in caveolae and caveolin-1 expression modulates agonist-induced contraction and store- and receptor-operated Ca(2+) entry in pulmonary arteries of pulmonary hypertensive rats.

    PubMed

    Jiao, Hai-Xia; Mu, Yun-Ping; Gui, Long-Xin; Yan, Fu-Rong; Lin, Da-Cen; Sham, James S K; Lin, Mo-Jun

    2016-09-01

    Caveolin-1 (Cav-1) is a major component protein associated with caveolae in the plasma membrane and has been identified as a regulator of store-operated Ca(2+) entry (SOCE) and receptor-operated Ca(2+) entry (ROCE). However, the contributions of caveolae/Cav-1 of pulmonary arterial smooth muscle cells (PASMCs) to the altered Ca(2+) signaling pathways in pulmonary arteries (PAs) during pulmonary hypertension (PH) have not been fully characterized. The present study quantified caveolae number and Cav-1 expression, and determined the effects of caveolae disruption on ET-1, cyclopiazonic acid (CPA) and 1-Oleoyl-2-acetyl-glycerol (OAG)-induced contraction in PAs and Ca(2+) influx in PASMCs of chronic hypoxia (CH)- and monocrotaline (MCT)-induced PH rats. We found that the number of caveolae, and the Cav-1 mRNA and protein levels were increased significantly in PASMCs in both PH models. Disruption of caveolae by cholesterol depletion with methyl-β-cyclodextrin (MβCD) significantly inhibited the contractile response to ET-1, CPA and OAG in PAs of control rats. ET-1, SOCE and ROCE-mediated contractile responses were enhanced, and their susceptibility to MβCD suppression was potentiated in the two PH models. MβCD-induced inhibition was reversed by cholesterol repletion. Introduction of Cav-1 scaffolding domain peptide to mimic Cav-1 upregulation caused significant increase in CPA- and OAG-induced Ca(2+) entry in PASMCs of control, CH and MCT-treated groups. Our results suggest that the increase in caveolae and Cav-1 expression in PH contributes to the enhanced agonist-induced contraction of PA via modulation of SOCE and ROCE; and targeting caveolae/Cav-1 in PASMCs may provide a novel therapeutic strategy for the treatment of PH. PMID:27311393

  11. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment

    PubMed Central

    2011-01-01

    Cancer cells show a broad spectrum of bioenergetic states, with some cells using aerobic glycolysis while others rely on oxidative phosphorylation as their main source of energy. In addition, there is mounting evidence that metabolic coupling occurs in aggressive tumors, between epithelial cancer cells and the stromal compartment, and between well-oxygenated and hypoxic compartments. We recently showed that oxidative stress in the tumor stroma, due to aerobic glycolysis and mitochondrial dysfunction, is important for cancer cell mutagenesis and tumor progression. More specifically , increased autophagy/mitophagy in the tumor stroma drives a form of parasitic epithelial-stromal metabolic coupling. These findings explain why it is effective to treat tumors with either inducers or inhibitors of autophagy, as both would disrupt this energetic coupling. We also discuss evidence that glutamine addiction in cancer cells produces ammonia via oxidative mitochondrial metabolism. Ammonia production in cancer cells, in turn, could then help maintain autophagy in the tumor stromal compartment. In this vicious cycle, the initial glutamine provided to cancer cells would be produced by autophagy in the tumor stroma. Thus, we believe that parasitic epithelial-stromal metabolic coupling has important implications for cancer diagnosis and therapy, for example, in designing novel metabolic imaging techniques and establishing new targeted therapies. In direct support of this notion, we identified a loss of stromal caveolin-1 as a marker of oxidative stress, hypoxia, and autophagy in the tumor microenvironment, explaining its powerful predictive value. Loss of stromal caveolin-1 in breast cancers is associated with early tumor recurrence, metastasis, and drug resistance, leading to poor clinical outcome. PMID:21867571

  12. Integrin alpha1beta1 regulates epidermal growth factor receptor activation by controlling peroxisome proliferator-activated receptor gamma-dependent caveolin-1 expression.

    PubMed

    Chen, Xiwu; Whiting, Carrie; Borza, Corina; Hu, Wen; Mont, Stacey; Bulus, Nada; Zhang, Ming-Zhi; Harris, Raymond C; Zent, Roy; Pozzi, Ambra

    2010-06-01

    Integrin alpha1beta1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin alpha1beta1-mediated EGFR activation. Integrin alpha1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin alpha1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin alpha1-null MCs decreases EGFR-mediated ROS production. We further show that integrin alpha1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARgamma or inhibition of ERK increases Cav-1 levels in the integrin alpha1-null MCs. Finally, we show that glomeruli of integrin alpha1-null mice have reduced levels of Cav-1 and activated PPARgamma but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin alpha1beta1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARgamma axis plays a key role in regulating integrin alpha1beta1-dependent Cav-1 expression and consequent EGFR-mediated ROS production. PMID:20368353

  13. Integrin α1β1 Regulates Epidermal Growth Factor Receptor Activation by Controlling Peroxisome Proliferator-Activated Receptor γ-Dependent Caveolin-1 Expression ▿ # ‖

    PubMed Central

    Chen, Xiwu; Whiting, Carrie; Borza, Corina; Hu, Wen; Mont, Stacey; Bulus, Nada; Zhang, Ming-Zhi; Harris, Raymond C.; Zent, Roy; Pozzi, Ambra

    2010-01-01

    Integrin α1β1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin α1β1-mediated EGFR activation. Integrin α1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin α1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin α1-null MCs decreases EGFR-mediated ROS production. We further show that integrin α1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARγ or inhibition of ERK increases Cav-1 levels in the integrin α1-null MCs. Finally, we show that glomeruli of integrin α1-null mice have reduced levels of Cav-1 and activated PPARγ but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin α1β1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARγ axis plays a key role in regulating integrin α1β1-dependent Cav-1 expression and consequent EGFR-mediated ROS production. PMID:20368353

  14. Cyclin-dependent kinase inhibition by the KLF6 tumor suppressor protein through interaction with cyclin D1.

    PubMed

    Benzeno, Sharon; Narla, Goutham; Allina, Jorge; Cheng, George Z; Reeves, Helen L; Banck, Michaela S; Odin, Joseph A; Diehl, J Alan; Germain, Doris; Friedman, Scott L

    2004-06-01

    Kruppel-like factor 6 (KLF6) is a tumor suppressor gene inactivated in prostate and colon cancers, as well as in astrocytic gliomas. Here, we establish that KLF6 mediates growth inhibition through an interaction with cyclin D1, leading to reduced phosphorylation of the retinoblastoma protein (Rb) at Ser(795). Furthermore, introduction of KLF6 disrupts cyclin D1-cyclin-dependent kinase (cdk) 4 complexes and forces the redistribution of p21(Cip/Kip) onto cdk2, which promotes G(1) cell cycle arrest. Our data suggest that KLF6 converges with the Rb pathway to inhibit cyclin D1/cdk4 activity, resulting in growth suppression. PMID:15172998

  15. The HIV-1 Nef Protein Binds Argonaute-2 and Functions as a Viral Suppressor of RNA Interference

    PubMed Central

    Aqil, Madeeha; Naqvi, Afsar Raza; Bano, Aalia Shahr; Jameel, Shahid

    2013-01-01

    The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR). PMID:24023945

  16. The cAMP responsive element binding protein 1 transactivates epithelial membrane protein 2, a potential tumor suppressor in the urinary bladder urothelial carcinoma.

    PubMed

    Li, Chien-Feng; Wu, Wen-Jeng; Wu, Wen-Ren; Liao, Yu-Jing; Chen, Lih-Ren; Huang, Chun-Nung; Li, Ching-Chia; Li, Wei-Ming; Huang, Hsuan-Ying; Chen, Yi-Ling; Liang, Shih-Shin; Chow, Nan-Haw; Shiue, Yow-Ling

    2015-04-20

    In this study, we report that EMP2 plays a tumor suppressor role by inducing G2/M cell cycle arrest, suppressing cell viability, proliferation, colony formation/anchorage-independent cell growth via regulation of G2/M checkpoints in distinct urinary bladder urothelial carcinoma (UBUC)-derived cell lines. Genistein treatment or exogenous expression of the cAMP responsive element binding protein 1 (CREB1) gene in different UBUC-derived cell lines induced EMP2 transcription and subsequent translation. Mutagenesis on either or both cAMP-responsive element(s) dramatically decreased the EMP2 promoter activity with, without genistein treatment or exogenous CREB1 expression, respectively. Significantly correlation between the EMP2 immunointensity and primary tumor, nodal status, histological grade, vascular invasion and mitotic activity was identified. Multivariate analysis further demonstrated that low EMP2 immunoexpression is an independent prognostic factor for poor disease-specific survival. Genistein treatments, knockdown of EMP2 gene and double knockdown of CREB1 and EMP2 genes significantly inhibited tumor growth and notably downregulated CREB1 and EMP2 protein levels in the mice xenograft models. Therefore, genistein induced CREB1 transcription, translation and upregulated pCREB1(S133) protein level. Afterward, pCREB1(S133) transactivated the tumor suppressor gene, EMP2, in vitro and in vivo. Our study identified a novel transcriptional target, which plays a tumor suppressor role, of CREB1. PMID:25940704

  17. The cAMP responsive element binding protein 1 transactivates epithelial membrane protein 2, a potential tumor suppressor in the urinary bladder urothelial carcinoma

    PubMed Central

    Wu, Wen-Ren; Liao, Yu-Jing; Chen, Lih-Ren; Huang, Chun-Nung; Li, Ching-Chia; Li, Wei-Ming; Huang, Hsuan-Ying; Chen, Yi-Ling; Liang, Shih-Shin; Chow, Nan-Haw; Shiue, Yow-Ling

    2015-01-01

    In this study, we report that EMP2 plays a tumor suppressor role by inducing G2/M cell cycle arrest, suppressing cell viability, proliferation, colony formation/anchorage-independent cell growth via regulation of G2/M checkpoints in distinct urinary bladder urothelial carcinoma (UBUC)-derived cell lines. Genistein treatment or exogenous expression of the cAMP responsive element binding protein 1 (CREB1) gene in different UBUC-derived cell lines induced EMP2 transcription and subsequent translation. Mutagenesis on either or both cAMP-responsive element(s) dramatically decreased the EMP2 promoter activity with, without genistein treatment or exogenous CREB1 expression, respectively. Significantly correlation between the EMP2 immunointensity and primary tumor, nodal status, histological grade, vascular invasion and mitotic activity was identified. Multivariate analysis further demonstrated that low EMP2 immunoexpression is an independent prognostic factor for poor disease-specific survival. Genistein treatments, knockdown of EMP2 gene and double knockdown of CREB1 and EMP2 genes significantly inhibited tumor growth and notably downregulated CREB1 and EMP2 protein levels in the mice xenograft models. Therefore, genistein induced CREB1 transcription, translation and upregulated pCREB1(S133) protein level. Afterward, pCREB1(S133) transactivated the tumor suppressor gene, EMP2, in vitro and in vivo. Our study identified a novel transcriptional target, which plays a tumor suppressor role, of CREB1. PMID:25940704

  18. The Drosophila suppressor of sable gene encodes a polypeptide with regions similar to those of RNA-binding proteins.

    PubMed Central

    Voelker, R A; Gibson, W; Graves, J P; Sterling, J F; Eisenberg, M T

    1991-01-01

    The nucleotide sequence of the Drosophila melanogaster suppressor of sable [su(s)] gene has been determined. Comparison of genomic and cDNA sequences indicates that an approximately 7,860-nucleotide primary transcript is processed into an approximately 5-kb message, expressed during all stages of the life cycle, that contains an open reading frame capable of encoding a 1,322-amino-acid protein of approximately 150 kDa. The putative protein contains an RNA recognition motif-like region and a highly charged arginine-, lysine-, serine-, aspartic or glutamic acid-rich region that is similar to a region contained in several RNA-processing proteins. In vitro translation of in vitro-transcribed RNA from a complete cDNA yields a product whose size agrees with the size predicted by the open reading frame. Antisera against su(s) fusion proteins recognize the in vitro-translated protein and detect a protein of identical size in the nuclear fractions from tissue culture cells and embryos. The protein is also present in smaller amounts in cytoplasmic fractions of embryos. That the su(s) protein has regions similar in structure to RNA-processing protein is consistent with its known role in affecting the transcript levels of those alleles that it suppresses. Images PMID:1703632

  19. Analysis of Geminivirus AL2 and L2 Proteins Reveals a Novel AL2 Silencing Suppressor Activity

    PubMed Central

    Jackel, Jamie N.; Buchmann, R. Cody; Singhal, Udit

    2014-01-01

    ABSTRACT Both posttranscriptional and transcriptional gene silencing (PTGS and TGS, respectively) participate in defense against the DNA-containing geminiviruses. As a countermeasure, members of the genus Begomovirus (e.g., Cabbage leaf curl virus) encode an AL2 protein that is both a transcriptional activator and a silencing suppressor. The related L2 protein of Beet curly top virus (genus Curtovirus) lacks transcription activation activity. Previous studies showed that both AL2 and L2 suppress silencing by a mechanism that correlates with adenosine kinase (ADK) inhibition, while AL2 in addition activates transcription of cellular genes that negatively regulate silencing pathways. The goal of this study was to clarify the general means by which these viral proteins inhibit various aspects of silencing. We confirmed that AL2 inhibits systemic silencing spread by a mechanism that requires transcription activation activity. Surprisingly, we also found that reversal of PTGS and TGS by ADK inactivation depended on whether experiments were conducted in vegetative or reproductive Nicotiana benthamiana plants (i.e., before or after the vegetative-to-reproductive transition). While AL2 was able to reverse silencing in both vegetative and reproductive plants, L2 and ADK inhibition were effective only in vegetative plants. This suggests that silencing maintenance mechanisms can change during development or in response to stress. Remarkably, we also observed that AL2 lacking its transcription activation domain could reverse TGS in reproductive plants, revealing a third, previously unsuspected AL2 suppression mechanism that depends on neither ADK inactivation nor transcription activation. IMPORTANCE RNA silencing in plants is a multivalent antiviral defense, and viruses respond by elaborating multiple and sometimes multifunctional proteins that inhibit various aspects of silencing. The studies described here add an additional layer of complexity to this interplay. By examining

  20. Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster

    SciTech Connect

    Holdridge, C.; Dorsett, D. )

    1991-04-01

    The suppressor of hairy-wing [su(Hw)] locus of Drosophila melanogaster encodes a zinc finger protein that binds a repeated motif in the gypsy retroposon. Mutations of su(Hw) suppress the phenotypes associated with mutations caused by gypsy insertions. To examine the mechanisms by which su(Hw) alters gene expression, a fragment of gypsy containing multiple su(Hw) protein-binding sites was inserted into various locations in the well-characterized Drosophila hsp70 heat shock gene promoter. The authors found no evidence for activation of basal hsp70 transcription by su(Hw) protein in cultured Drosophila cells but observed that it can repress heat shock-induced transcription. Repression occurred only when su(Hw) protein-binding sites were positioned between binding sites for proteins required for heat shock transcription. They propose that su(Hw) protein interferes nonspecifically with protein-protein interactions required for heat shock transcription, perhaps sterically, or by altering the ability of DNA to bend or twist.

  1. Nasopharyngeal carcinomas frequently lack the p16/MTS1 tumor suppressor protein but consistently express the retinoblastoma gene product.

    PubMed Central

    Gulley, M. L.; Nicholls, J. M.; Schneider, B. G.; Amin, M. B.; Ro, J. Y.; Geradts, J.

    1998-01-01

    The p16/MTS1 gene is altered by deletion, mutation, or hypermethylation in a wide variety of human cancers. As a result of deficient p16 protein, these cancers lack a critical mechanism for halting G1/S cell cycle progression. In the current study, 59 cases of nasopharyngeal carcinoma were evaluated for expression of the p16 tumor suppressor protein by immunohistochemical analysis of paraffin-embedded tissue. There was no detectable p16 in 38/59 cases (64%), which implies a very high rate of p16 inactivation in this type of cancer. On the other hand, the retinoblastoma gene product, which also regulates the G1 to S phase transition of the cell cycle, was consistently expressed in nasopharyngeal carcinomas by immunohistochemical analysis. These results implicate p16 inactivation but not Rb alteration in the stepwise progression of nasopharyngeal carcinogenesis. Images Figure 1 Figure 2 PMID:9546345

  2. The protein 4.1 tumor suppressor, DAL-1, impairs cell motility, but regulates proliferation in a cell-type-specific fashion.

    PubMed

    Gutmann, D H; Hirbe, A C; Huang, Z Y; Haipek, C A

    2001-04-01

    The neurofibromatosis 2 (NF2) tumor suppressor belongs to the Protein 4.1 family of molecules that link the actin cytoskeleton to cell surface glycoproteins. We have previously demonstrated that the NF2 protein, merlin, can suppress cell growth in vitro and in vivo as well as impair actin cytoskeleton-associated processes, such as cell spreading, attachment, and motility. Recently, we determined that expression of a second Protein 4.1 tumor suppressor, DAL-1, was lost in 60% of sporadic meningiomas, but not schwannomas. In this report, we demonstrate that DAL-1 suppresses cell proliferation in meningioma, but not schwannoma cells. Similar to merlin, DAL-1 interacts with other ERM proteins and betaII-spectrin, but not the merlin interactor protein, SCHIP-1. In addition, we report the identification of the full-length DAL-1 tumor suppressor, termed KIAA0987. Collectively, these results suggest that the two Protein 4.1 meningioma tumor suppressors, merlin and DAL-1, may be functionally distinct proteins with different mechanisms of action. PMID:11300722

  3. Caveolin-1-negative head and neck squamous cell carcinoma primary tumors display increased epithelial to mesenchymal transition and prometastatic properties

    PubMed Central

    Jung, Alain C.; Ray, Anne-Marie; Ramolu, Ludivine; Macabre, Christine; Simon, Florian; Noulet, Fanny; Blandin, Anne-Florence; Renner, Guillaume; Lehmann, Maxime; Choulier, Laurence; Kessler, Horst; Abecassis, Joseph; Dontenwill, Monique; Martin, Sophie

    2015-01-01

    Distant metastases arise in 20-30% of patients with squamous cell carcinoma of the head and neck (HNSCC) in the 2 years following treatment. Therapeutic options are limited and the outcome of the patients is poor. The identification of predictive biomarkers of patient at risk for distant metastasis and therapies are urgently needed. We previously identified a clinical subgroup, called “R1” characterized by high propensity for rapid distant metastasis. Here, we showed that “R1” patients do not or at very low level express caveolin-1 (Cav1). Low or no expression of Cav1 is of bad prognosis. Disappearance of Cav1 enables cells to undergo epithelial-mesenchymal transition (EMT). EMT is associated with enhanced migration and invasion. Our study uncovered a new target, α5β1 integrin. Targeting α5β1 integrins might not only prevent metastasis of HNSCC but also delay the development of the primary tumor by reducing tumor cell viability. Cav1 detection might be taken into consideration in the future in the clinic not only to identify patients at high risk of metastasis but also to select patient who might benefit from an anti-integrin therapy. PMID:26474461

  4. Evidence for Dsg3 in regulating Src signaling by competing with it for binding to caveolin-1

    PubMed Central

    Wan, Hong; Lin, Kuang; Tsang, Siu Man; Uttagomol, Jutamas

    2015-01-01

    This data article contains extended, complementary analysis related to the research articles entitled “Desmoglein 3, via an interaction with E-cadherin, is associated with activation of Src” (Tsang et al., 2010) [1] and figures related to the review article entitled “Desmoglein 3: a help or a hindrance in cancer progression?” (Brown et al., 2014) [2]. We show here that both Src and caveolin-1 (Cav-1) associate with Dsg3 in a non-ionic detergent soluble pool and that modulation of Dsg3 levels inversely alters the expression of Src in the Cav-1 complex. Furthermore, immunofluorescence analysis revealed a reduced colocalization of Cav-1/total Src in cells with overexpression of Dsg3 compared to control cells. In support, the sequence analysis has identified a region within the carboxyl-terminus of human Dsg3 for a likelihood of binding to the scaffolding domain of Cav-1, the known Src binding site in Cav-1, and this region is highly conserved across most of 18 species as well as within desmoglein family members. Based on these findings, we propose a working model that Dsg3 activates Src through competing with its inactive form for binding to Cav-1, thus leading to release of Src followed by its auto-activation. PMID:26858977

  5. Tyrosine-Phosphorylated Caveolin-1 Blocks Bacterial Uptake by Inducing Vav2-RhoA-Mediated Cytoskeletal Rearrangements

    PubMed Central

    Kaushansky, Alexis; Pompaiah, Malvika; Thorn, Hans; Brinkmann, Volker; MacBeath, Gavin; Meyer, Thomas F.

    2010-01-01

    Certain bacterial adhesins appear to promote a pathogen's extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp)-producing Neisseria gonorrhoeae (P+GC) induces an immediate recruitment of caveolin-1 (Cav1) in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function. PMID:20808760

  6. CIZ1, a p21Cip1/Waf1-interacting protein, functions as a tumor suppressor in vivo.

    PubMed

    Nishibe, Rio; Watanabe, Wataru; Ueda, Takeshi; Yamasaki, Norimasa; Koller, Richard; Wolff, Linda; Honda, Zen-ichiro; Ohtsubo, Motoaki; Honda, Hiroaki

    2013-05-21

    CIZ1 is a nuclear protein involved in DNA replication and is also implicated in human diseases including cancers. To gain an insight into its function in vivo, we generated mice lacking Ciz1. Ciz1-deficient (Ciz1(-/-)) mice grew without any obvious abnormalities, and Ciz1(-/-) mouse embryonic fibroblasts (MEFs) did not show any defects in cell cycle status, cell growth, and DNA damage response. However, Ciz1(-/-) MEFs were sensitive to hydroxyurea-mediated replication stress and susceptible to oncogene-induced cellular transformation. In addition, Ciz1(-/-) mice developed various types of leukemias by retroviral insertional mutagenesis. These results indicate that CIZ1 functions as a tumor suppressor in vivo. PMID:23583447

  7. Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann-Pick type C1

    PubMed Central

    Mundy, Dorothy I.; Lopez, Adam M.; Posey, Kenneth S.; Chuang, Jen-Chieh; Ramirez, Charina M.; Scherer, Philipp E.; Turley, Stephen D.

    2014-01-01

    Caveolin-1 (Cav-1) is a major structural protein in caveolae in the plasma membranes of many cell types, particularly endothelial cells and adipocytes. Loss of Cav-1 function has been implicated in multiple diseases affecting the cardiopulmonary and central nervous systems, as well as in specific aspects of sterol and lipid metabolism in the liver and intestine. Lungs contain an exceptionally high level of Cav-1. Parameters of cholesterol metabolism in the lung were measured, initially in Cav-1-deficient mice (Cav-1−/−), and subsequently in Cav-1−/− mice that also lacked the lysosomal cholesterol transporter Niemann-Pick C1 (Npc1) was also absent (Cav-1−/−:Npc1−/−). In 50-day-old Cav-1−/− mice fed a low- or high-cholesterol chow diet, the total cholesterol concentration (mg/g) in the lungs was marginally lower than in the Cav-1+/+ controls, but due to an expansion in their lung mass exceeding 30%, whole-lung cholesterol content (mg/organ) was moderately elevated. Lung mass (g) in the Cav-1−/−:Npc1−/− mice (0.356 ± 0.022) markedly exceeded that in their Cav-1+/+:Npc1+/+ controls (0.137 ± 0.009), as well as in their Cav-1−/−:Npc1+/+ (0.191 ± 0.013) and Cav-1+/+:Npc1−/− (0.213 ± 0.022) littermates. The corresponding lung total cholesterol content (mg/organ) in mice of these genotypes was 6.74 ± 0.17, 0.71 ± 0.05, 0.96 ± 0.05 and 3.12 ± 0.43, respectively, with the extra cholesterol in the Cav-1−/−:Npc1−/− and Cav-1+/+:Npc1−/− mice being nearly all unesterified (UC). The exacerbation of the Npc1 lung phenotype and increase in the UC level in the Cav-1−/−:Npc1−/− mice imply a regulatory role of Cav-1 in pulmonary cholesterol metabolism when lysosomal sterol transport is disrupted. PMID:24747682

  8. The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins.

    PubMed Central

    Paces-Fessy, Mélanie; Boucher, Dominique; Petit, Emile; Paute-Briand, Sandrine; Blanchet-Tournier, Marie-Françoise

    2004-01-01

    Sufu (Suppressor of fused) is a negative regulator of the Hedgehog signal-transduction pathway, interacting directly with the Gli family of transcription factors. However, its function remains poorly understood. In the present study, we determined the expression, tissue distribution and biochemical properties of mSufu (mouse Sufu) protein. We identified several mSufu variants of which some were phosphorylated. A yeast two-hybrid screen with mSufu as bait allowed us to identify several nuclear proteins as potential partners of mSufu. Most of these partners, such as SAP18 (Sin3-associated polypeptide 18), pCIP (p300/CBP-cointegrator protein) and PIAS1 (protein inhibitor of activated signal transduction and activators of transcription 1), are involved in either repression or activation of transcription and two of them, Galectin3 and hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1), have a nuclear function in pre-mRNA splicing. We confirmed the mSufu-SAP18 and mSufu-Galectin3 interactions by independent biochemical assays. Using a cell transfection assay, we also demonstrated that mSufu protein (484 amino acids) is predominantly cytoplasmic but becomes mostly nuclear when a putative nuclear export signal is mutated or after treatment of the cells with leptomycin B. Moreover, mSufu is translocated to the nucleus when co-expressed with SAP18, which is normally found in this compartment. In contrast, Galectin3 is translocated to the cytoplasm when it is co-expressed with mSufu. Our findings indicate that mSufu is a shuttle protein that appears to be extremely versatile in its ability to bind different proteins in both the cytoplasm and nucleus. PMID:14611647

  9. Roles of Caveolin-1 in Angiotensin II-Induced Hypertrophy and Inward Remodeling of Cerebral Pial Arterioles.

    PubMed

    Umesalma, Shaikamjad; Houwen, Frederick Keith; Baumbach, Gary L; Chan, Siu-Lung

    2016-03-01

    Angiotensin II (Ang II) is a major determinant of inward remodeling and hypertrophy in pial arterioles that may have an important role in stroke during chronic hypertension. Previously, we found that epidermal growth factor receptor is critical in Ang II-mediated hypertrophy that may involve caveolin-1 (Cav-1). In this study, we examined the effects of Cav-1 and matrix metalloproteinase-9 (MMP9) on Ang II-mediated structural changes in pial arterioles. Cav-1-deficient (Cav-1(-/-)), MMP9-deficient (MMP9(-/-)), and wild-type mice were infused with either Ang II (1000 ng/kg per minute) or saline via osmotic minipumps for 28 days (n=6-8 per group). Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of pial arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined histologically in pressurized fixed pial arterioles. Expression of Cav-1, MMP9, phosphorylated epidermal growth factor receptor, and Akt was determined by Western blotting and immunohistochemistry. Deficiency of Cav-1 or MMP9 did not affect Ang II-induced hypertension. Ang II increased the expression of Cav-1, phosphorylated epidermal growth factor receptor, and Akt in wild-type mice, which was attenuated in Cav-1(-/-) mice. Ang II-induced hypertrophy, inward remodeling, and increased MMP9 expression in pial arterioles were prevented in Cav-1(-/-) mice. Ang II-mediated increases in MMP9 expression and inward remodeling, but not hypertrophy, were prevented in MMP9(-/-) mice. In conclusion, Cav-1 is essential in Ang II-mediated inward remodeling and hypertrophy in pial arterioles. Cav-1-induced MMP9 is exclusively involved in inward remodeling, not hypertrophy. Further studies are needed to determine the role of Akt in Ang II-mediated hypertrophy. PMID:26831194

  10. Caveolin 1 is critical for abdominal aortic aneurysm formation induced by angiotensin II and inhibition of lysyl oxidase.

    PubMed

    Takayanagi, Takehiko; Crawford, Kevin J; Kobayashi, Tomonori; Obama, Takashi; Tsuji, Toshiyuki; Elliott, Katherine J; Hashimoto, Tomoki; Rizzo, Victor; Eguchi, Satoru

    2014-06-01

    Although AngII (angiotensin II) and its receptor AT1R (AngII type 1 receptor) have been implicated in AAA (abdominal aortic aneurysm) formation, the proximal signalling events primarily responsible for AAA formation remain uncertain. Caveolae are cholesterol-rich membrane microdomains that serve as a signalling platform to facilitate the temporal and spatial localization of signal transduction events, including those stimulated by AngII. Cav1 (caveolin 1)-enriched caveolae in vascular smooth muscle cells mediate ADAM17 (a disintegrin and metalloproteinase 17)-dependent EGFR (epidermal growth factor receptor) transactivation, which is linked to vascular remodelling induced by AngII. In the present study, we have tested our hypothesis that Cav1 plays a critical role for the development of AAA at least in part via its specific alteration of AngII signalling within caveolae. Cav1-/- mice and the control wild-type mice were co-infused with AngII and β-aminopropionitrile to induce AAA. We found that Cav1-/- mice with the co-infusion did not develop AAA compared with control mice in spite of hypertension. We found an increased expression of ADAM17 and enhanced phosphorylation of EGFR in AAA. These events were markedly attenuated in Cav1-/- aortas with the co-infusion. Furthermore, aortas from Cav1-/- mice with the co-infusion showed less endoplasmic reticulum stress, oxidative stress and inflammatory responses compared with aortas from control mice. Cav1 silencing in cultured vascular smooth muscle cells prevented AngII-induced ADAM17 induction and activation. In conclusion, Cav1 appears to play a critical role in the formation of AAA and associated endoplasmic reticulum/oxidative stress, presumably through the regulation of caveolae compartmentalized signals induced by AngII. PMID:24329494

  11. Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis

    PubMed Central

    Hart, Peter C.; Ratti, Bianca A.; Mao, Mao; Ansenberger-Fricano, Kristine; Shajahan-Haq, Ayesha N.; Tyner, Angela L.; Minshall, Richard D.; Bonini, Marcelo G.

    2016-01-01

    Aerobic glycolysis is an indispensable component of aggressive cancer cell metabolism. It also distinguishes cancer cells from most healthy cell types in the body. Particularly for this reason, targeting the metabolism to improve treatment outcomes has long been perceived as a potentially valuable strategy. In practice, however, our limited knowledge of why and how metabolic reprogramming occurs has prevented progress towards therapeutic interventions that exploit the metabolic peculiarities of tumors. We recently described that in breast cancer, MnSOD upregulation is both necessary and sufficient to activate glycolysis. Here, we focused on determining the molecular mechanisms of MnSOD upregulation. We found that Caveolin-1 (Cav-1) is a central component of this mechanism due to its suppressive effects of NF-E2-related factor 2 (Nrf2), a transcription factor upstream of MnSOD. In transformed MCF10A(Er/Src) cells, Cav-1 loss preceded the activation of Nrf2 and its induction of MnSOD expression. Consistently, with previous observations, MnSOD expression secondary to Nrf2 activation led to an increase in the glycolytic rate dependent on mtH2O2 production and the activation of AMPK. Moreover, rescue of Cav-1 expression in a breast cancer cell line (MCF7) suppressed Nrf2 and reduced MnSOD expression. Experimental data were reinforced by epidemiologic nested case-control studies showing that Cav-1 and MnSOD are inversely expressed in cases of invasive ductal carcinoma, with low Cav-1 and high MnSOD expression being associated with lower 5-year survival rates and molecular subtypes with poorest prognosis. PMID:26543228

  12. Caveolin-1 Deficiency Induces Spontaneous Endothelial-to-Mesenchymal Transition in Murine Pulmonary Endothelial Cells in Vitro

    PubMed Central

    Li, Zhaodong; Wermuth, Peter J.; Benn, Bryan S.; Lisanti, Michael P.; Jimenez, Sergio A.

    2014-01-01

    It was previously demonstrated that transforming growth factor β (TGF-β) induces endothelial-to-mesenchymal transition (EndoMT) in murine lung endothelial cells (ECs) in vitro. Owing to the important role of caveolin-1 (CAV1) in TGF-β receptor internalization and TGF-β signaling, the participation of CAV1 in the induction of EndoMT in murine lung ECs was investigated. Pulmonary ECs were isolated from wild-type and Cav1 knockout mice using immunomagnetic methods with sequential anti-CD31 and anti-CD102 antibody selection followed by in vitro culture and treatment with TGF-β1. EndoMT was assessed by semiquantitative RT-PCR for Acta2, Col1a1, Snai1, and Snai2; by immunofluorescence for α-smooth muscle actin; and by Western blot analysis for α-smooth muscle actin, SNAIL1, SNAIL2, and the α2 chain of type I collagen. The same studies were performed in Cav1−/− pulmonary ECs after restoration of functional CAV1 domains using a cell-permeable CAV1 scaffolding domain peptide. Pulmonary ECs from Cav1 knockout mice displayed high levels of spontaneous Acta2, Col1A, Snai1, and Snai2 expression, which increased after TGF-β treatment. Spontaneous and TGF-β1–stimulated EndoMT were abrogated by the restoration of functional CAV1 domains using a cell-permeable peptide. The findings suggest that CAV1 regulation of EndoMT may play a role in the development of fibroproliferative vasculopathies. PMID:23195429

  13. Loss of Stromal Caveolin-1 Expression: A Novel Tumor Microenvironment Biomarker That Can Predict Poor Clinical Outcomes for Pancreatic Cancer

    PubMed Central

    Shan, Tao; Lu, Hongwei; Ji, Hong; Li, Yiming; Guo, Jian; Chen, Xi; Wu, Tao

    2014-01-01

    Aims Cancer development and progression is not only associated with the tumor cell proliferation but also depends on the interaction between tumor cells and the stromal microenvironment. A new understanding of the role of the tumor microenvironment suggests that the loss of stromal caveolin-1 (Cav-1) as a key regulator may become a potential therapy target. This study aims to elucidate whether stromal Cav-1 expression in pancreatic cancer can be a strong prognosis biomarker. Methods Tissue samples from 45 pancreatic cancer patients were studied. Parenchyma and stroma were separated and purified using laser capture microdissection. Stromal Cav-1 expression was measured from pancreatic cancer, paraneoplastic, and normal tissue using immunohistochemistry. We analyzed the correlation of stromal Cav-1 expression with clinicopathologic features and prognostic indicators, such as tumor marker HER-2/neu gene. Results Specimens from six patients (13.3%) showed high levels of stromal Cav-1 staining, those from eight patients (17.8%) showed a lower, intermediate level of staining, whereas those from 31 patients (68.9%) showed an absence of staining. Cav-1 expression in cancer-associated fibroblasts was lower than that in paracancer-associated and in normal fibroblasts. Stromal Cav-1 loss was associated with TNM stage (P = 0.018), lymph node metastasis (P = 0.014), distant metastasis (P = 0.027), and HER-2/neu amplification (P = 0.007). The relationships of age, sex, histological grade, and tumor size with stromal Cav-1 expression were not significant (P>0.05). A negative correlation was found between circulating tumor cells and stromal Cav-1 expression (P<0.05). Conclusion The loss of stromal Cav-1 in pancreatic cancer was an independent prognostic indicator, thus suggesting that stromal Cav-1 may be an effective therapeutic target for patients with pancreatic cancer. PMID:24949874

  14. Interaction of caveolin-1, nitric oxide, and nitric oxide synthases in hypoxic human SK-N-MC neuroblastoma cells.

    PubMed

    Shen, Jiangang; Lee, Waisin; Li, Yue; Lau, Chi Fai; Ng, Kwong Man; Fung, Man Lung; Liu, Ke Jian

    2008-10-01

    Neuroblastoma cells are capable of hypoxic adaptation, but the mechanisms involved are not fully understood. We hypothesized that caveolin-1 (cav-1), a plasma membrane signal molecule, might play a role in protecting neuroblastoma cells from oxidative injury by modulating nitric oxide (NO) production. We investigated the alterations of cav-1, cav-2, nitric oxide synthases (NOS), and NO levels in human SK-N-MC neuroblastoma cells exposed to hypoxia with 2% [O2]. The major discoveries include: (i) cav-1 but not cav-2 was up-regulated in the cells exposed to 15 h of hypoxia; (ii) NO donor 1-[N, N-di-(2-aminoethyl) amino] diazen-1-ium-1, 2-diolate up-regulated the expression of cav-1, whereas the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester and inducible NOS (iNOS) inhibitor 1400W each abolished the increase in cav-1 expression in the hypoxic SK-N-MC cells. These results suggest that iNOS-induced NO production contributes to the up-regulation of cav-1 in the hypoxic SK-N-MC cells. Furthermore, we studied the roles played by cav-1 in regulating NO, NOS, and apoptotic cell death in the SK-N-MC cells subjected to 15 h of hypoxic treatment. Both cav-1 transfection and cav-1 scaffolding domain peptide abolished the induction of iNOS, reduced the production of NO, and reduced the rates of apoptotic cell death in the hypoxic SK-N-MC cells. These results suggest that increased expression of cav-1 in response to hypoxic stimulation could prevent oxidative injury induced by reactive oxygen species. The interactions of cav-1, NO, and NOS could be an important signal pathway in protecting the neuroblastoma cells from oxidative injury, contributing to the hypoxic tolerance of neuroblastoma cells. PMID:18717816

  15. Caveolin-1 mediates endotoxin inhibition of endothelin-1-induced endothelial nitric oxide synthase activity in liver sinusoidal endothelial cells.

    PubMed

    Kwok, Willson; Lee, Sang Ho; Culberson, Cathy; Korneszczuk, Katarzyna; Clemens, Mark G

    2009-11-01

    Endothelin-1 (ET-1) plays a key role in the regulation of endothelial nitric oxide synthase (eNOS) activation in liver sinusoidal endothelial cells (LSECs). In the presence of endotoxin, an increase in caveolin-1 (Cav-1) expression impairs ET-1/eNOS signaling; however, the molecular mechanism is unknown. The objective of this study was to investigate the molecular mechanism of Cav-1 in the regulation of LPS suppression of ET-1-mediated eNOS activation in LSECs by examining the effect of caveolae disruption using methyl-beta-cyclodextrin (CD) and filipin. Treatment with 5 mM CD for 30 min increased eNOS activity (+255%, P < 0.05). A dose (0.25 microg/ml) of filipin for 30 min produced a similar effect (+111%, P < 0.05). CD induced the perinuclear localization of Cav-1 and eNOS and stimulated NO production in the same region. Readdition of 0.5 mM cholesterol to saturate CD reversed these effects. Both the combined treatment with CD and ET-1 (CD + ET-1) and with filipin and ET-1 stimulated eNOS activity; however, pretreatment with endotoxin (LPS) abrogated these effects. Following LPS pretreatment, CD + ET-1 failed to stimulate eNOS activity (+51%, P > 0.05), which contributed to the reduced levels of eNOS-Ser1177 phosphorylation and eNOS-Thr495 dephosphorylation, the LPS/CD-induced overexpression and translocation of Cav-1 in the perinuclear region, and the increased perinuclear colocalization of eNOS with Cav-1. These results supported the hypothesis that Cav-1 mediates the action of endotoxin in suppressing ET-1-mediated eNOS activation and demonstrated that the manipulation of caveolae produces significant effects on ET-1-mediated eNOS activity in LSECs. PMID:20501440

  16. The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects.

    PubMed

    de Oliveira, Virgínia Carla; da Silva Morgado, Fabricio; Ardisson-Araújo, Daniel Mendes Pereira; Resende, Renato Oliveira; Ribeiro, Bergmann Morais

    2015-11-01

    In this work, we showed that cell death induced by a recombinant (vAcNSs) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing the silencing suppressor (NSs) protein of Tomato spotted wilt virus (TSWV) was enhanced on permissive and semipermissive cell lines. The expression of a heterologous gene (firefly luciferase) during co-infection of insect cells with vAcNSs and a second recombinant baculovirus (vAgppolhfluc) was shown to increase when compared to single vAgppolhfluc infections. Furthermore, the vAcNSs mean time-to-death values were significantly lower than those for wild-type AcMNPV on larvae of Spodoptera frugiperda and Anticarsia gemmatalis. These results showed that the TSWV-NSs protein could efficiently increase heterologous protein expression in insect cells as well as baculovirus pathogenicity and virulence, probably by suppressing the gene-silencing machinery in insects. PMID:26323262

  17. The G protein Gαs acts as a tumor suppressor in sonic hedgehog signaling-driven tumorigenesis.

    PubMed

    Rao, Rohit; Salloum, Ralph; Xin, Mei; Lu, Q Richard

    2016-05-18

    G protein-coupled receptors (GPCRs) are critical players in tumor growth and progression. The redundant roles of GPCRs in tumor development confound effective treatment; therefore, targeting a single common signaling component downstream of these receptors may be efficacious. GPCRs transmit signals through heterotrimeric G proteins composed of Gα and Gβγ subunits. Hyperactive Gαs signaling can mediate tumor progression in some tissues; however, recent work in medulloblastoma and basal cell carcinoma revealed that Gαs can also function as a tumor suppressor in neoplasms derived from ectoderm cells including neural and epidermal stem/progenitor cells. In these stem-cell compartments, signaling through Gαs suppresses self-renewal by inhibiting the Sonic Hedgehog (SHH) and Hippo pathways. The loss of GNAS, which encodes Gαs, leads to activation of these pathways, over-proliferation of progenitor cells, and tumor formation. Gαs activates the cAMP-dependent protein kinase A (PKA) signaling pathway and inhibits activation of SHH effectors Smoothened-Gli. In addition, Gαs-cAMP-PKA activation negatively regulates the Hippo pathway by blocking the NF2-LATS1/2-Yap signaling. In this review, we will address the novel function of the signaling network regulated by Gαs in suppression of SHH-driven tumorigenesis and the therapeutic approaches that can be envisioned to harness this pathway to inhibit tumor growth and progression. PMID:27052725

  18. The cricket paralysis virus suppressor inhibits microRNA silencing mediated by the Drosophila Argonaute-2 protein.

    PubMed

    Besnard-Guérin, Corinne; Jacquier, Caroline; Pidoux, Josette; Deddouche, Safia; Antoniewski, Christophe; Antoniewsk, Christophe

    2015-01-01

    Small RNAs are potent regulators of gene expression. They also act in defense pathways against invading nucleic acids such as transposable elements or viruses. To counteract these defenses, viruses have evolved viral suppressors of RNA silencing (VSRs). Plant viruses encoded VSRs interfere with siRNAs or miRNAs by targeting common mediators of these two pathways. In contrast, VSRs identified in insect viruses to date only interfere with the siRNA pathway whose effector Argonaute protein is Argonaute-2 (Ago-2). Although a majority of Drosophila miRNAs exerts their silencing activity through their loading into the Argonaute-1 protein, recent studies highlighted that a fraction of miRNAs can be loaded into Ago-2, thus acting as siRNAs. In light of these recent findings, we re-examined the role of insect VSRs on Ago-2-mediated miRNA silencing in Drosophila melanogaster. Using specific reporter systems in cultured Schneider-2 cells and transgenic flies, we showed here that the Cricket Paralysis virus VSR CrPV1-A but not the Flock House virus B2 VSR abolishes silencing by miRNAs loaded into the Ago-2 protein. Thus, our results provide the first evidence that insect VSR have the potential to directly interfere with the miRNA silencing pathway. PMID:25793377

  19. SCS1, a multicopy suppressor of hsp60-ts mutant alleles, does not encode a mitochondrially targeted protein.

    PubMed Central

    Shu, Y; Hallberg, R L

    1995-01-01

    We identified and isolated a Saccharomyces cerevisiae gene which, when overexpressed, suppressed the temperature-sensitive phenotype of cells expressing a mutant allele of the gene encoding the mitochondrial chaperonin, Hsp60. This gene, SCS1 (suppressor of chaperonin sixty-1), encodes a 757-amino-acid protein of as yet unknown function which, nonetheless, has human, rice, and Caenorhabditis elegans homologs with high degrees (ca. 60%) of amino acid sequence identity. SCS1 is not an essential gene, but SCS1-null strains do not grow above 37 degrees C and show some growth-related defects at 30 degrees C as well. This gene is expressed at both 30 and 38 degrees C, producing little or no differences in mRNA levels at these two temperatures. Overexpression of SCS1 could not complement an HSP60-null allele, indicating that suppression was not due to the bypassing of Hsp60 activity. Of 10 other hsp60-ts alleles tested, five could also be suppressed by SCS1 overexpression. There were no common mutant phenotypes of the strains expressing these alleles that give any clue as to why they were suppressible while others were not. An epitope (influenza virus hemagglutinin)-tagged form of SCS1 in single copy complemented an SCS1-null allele. The Scs1-hemagglutinin protein was found to be at comparable levels and in similar multiply modified forms in cells growing at both 30 and 38 degrees C. Surprisingly, when localized either by cell fractionation procedures or by immunocytochemistry, these proteins were found not in mitochondria but in the cytosol. The overexpression of SCS1 had significant effects on the cellular levels of mRNAs encoding the proteins Cpn10 and Mgel, two other mitochondrial protein cochaperones, but not on mRNAs encoding a number of other mitochondrial or cytosolic proteins analyzed. The implications of these findings are discussed. PMID:7565713

  20. C-reactive protein exacerbates renal ischemia-reperfusion injury: are myeloid-derived suppressor cells to blame?

    PubMed

    Pegues, Melissa A; McWilliams, Ian L; Szalai, Alexander J

    2016-07-01

    Myeloid-derived suppressor cells (MDSCs) are a CD11b(+)Gr1(+) population in mice that can be separated into granulocytic (g-MDSC) and monocytic (m-MDSC) subtypes based on their expression of Ly6G and Ly6C. Both MDSC subtypes are potent suppressors of T cell immunity, and their contribution has been investigated in a plethora of diseases including renal cancer, renal transplant, and chronic kidney disease. Whether MDSCs contribute to the pathogenesis of acute kidney injury (AKI) remains unknown. Herein, using human C-reactive protein (CRP) transgenic (CRPtg) and CRP-deficient mice (CRP(-/-)) subjected to bilateral renal ischemia-reperfusion injury (IRI), we confirm our earlier finding that CRP exacerbates renal IRI and show for the first time that this effect is accompanied in CRPtg mice by a shift in the balance of kidney-infiltrating MDSCs toward a suppressive Ly6G(+)Ly6C(low) g-MDSC subtype. In CRPtg mice, direct depletion of g-MDSCs (using an anti-Gr1 monoclonal antibody) reduced the albuminuria caused by renal IRI, confirming they play a deleterious role. Remarkably, treatment of CRPtg mice with an antisense oligonucleotide that specifically blocks the human CRP acute-phase response also led to a reduction in renal g-MDSC numbers and improved albuminuria after renal IRI. Our study in CRPtg mice provides new evidence that MDSCs participate in the pathogenesis of renal IRI and shows that their pharmacological depletion is beneficial. If ongoing investigations confirm that CRP is an endogenous regulator of MDSCs in CRPtg mice, and if this action is recapitulated in humans, then targeting CRP or/and MDSCs might offer a new approach for the treatment of AKI. PMID:27053688

  1. Alanine Scanning of Cucumber Mosaic Virus (CMV) 2B Protein Identifies Different Positions for Cell-To-Cell Movement and Gene Silencing Suppressor Activity

    PubMed Central

    Nemes, Katalin; Gellért, Ákos; Balázs, Ervin; Salánki, Katalin

    2014-01-01

    The multifunctional 2b protein of CMV has a role in the long distance and local movement of the virus, in symptom formation, in evasion of defense mediated by salicylic acid as well as in suppression of RNA silencing. The role of conserved amino acid sequence domains were analyzed previously in the protein function, but comprehensive analysis of this protein was not carried out until recently. We have analyzed all over the 2b protein by alanine scanning mutagenesis changing three consecutive amino acids (aa) to alanine. We have identified eight aa triplets as key determinants of the 2b protein function in virus infection. Four of them (KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA, SPS/40-42/AAA) overlap with previously determined regions indispensable in gene silencing suppressor function. We have identified two additional triplets necessary for the suppressor function of the 2b protein (LPF/55-57/AAA, NVE/10-12/AAA), and two other positions were required for cell-to-cell movement of the virus (MEL/1-3/AAA, RHV/70-72/AAA), which are not essential for suppressor activity. PMID:25380036

  2. Silencing cAMP-response element-binding protein (CREB) identifies CYR61 as a tumor suppressor gene in melanoma.

    PubMed

    Dobroff, Andrey S; Wang, Hua; Melnikova, Vladislava O; Villares, Gabriel J; Zigler, Maya; Huang, Li; Bar-Eli, Menashe

    2009-09-18

    Metastatic progression of melanoma is associated with overexpression and activity of cAMP-response element-binding protein (CREB). However, the mechanism by which CREB contributes to tumor progression and metastasis remains unclear. Here, we demonstrate that stably silencing CREB expression in two human metastatic melanoma cell lines, A375SM and C8161-c9, suppresses tumor growth and experimental metastasis. Analysis of cDNA microarrays revealed that CREB silencing leads to increased expression of cysteine-rich protein 61 (CCN1/CYR61) known to mediate adhesion, chemostasis, survival, and angiogenesis. Promoter analysis and chromatin immunoprecipitation assays demonstrated that CREB acts as a negative regulator of CCN1/CYR61 transcription by directly binding to its promoter. Re-expression of CREB in CREB-silenced cells rescued the low CCN1/CYR61 expression phenotype. CCN1/CYR61 overexpression resulted in reduced tumor growth and metastasis and inhibited the activity of matrix metalloproteinase-2. Furthermore, its overexpression decreased melanoma cell motility and invasion through Matrigel, which was abrogated by silencing CCN1/CYR61 in low metastatic melanoma cells. Moreover, a significant decrease in angiogenesis as well as an increase in apoptosis was seen in tumors overexpressing CCN1/CYR61. Our results demonstrate that CREB promotes melanoma growth and metastasis by down-regulating CCN1/CYR61 expression, which acts as a suppressor of melanoma cell motility, invasion and angiogenesis. PMID:19632997

  3. Silencing cAMP-response Element-binding Protein (CREB) Identifies CYR61 as a Tumor Suppressor Gene in Melanoma*

    PubMed Central

    Dobroff, Andrey S.; Wang, Hua; Melnikova, Vladislava O.; Villares, Gabriel J.; Zigler, Maya; Huang, Li; Bar-Eli, Menashe

    2009-01-01

    Metastatic progression of melanoma is associated with overexpression and activity of cAMP-response element-binding protein (CREB). However, the mechanism by which CREB contributes to tumor progression and metastasis remains unclear. Here, we demonstrate that stably silencing CREB expression in two human metastatic melanoma cell lines, A375SM and C8161-c9, suppresses tumor growth and experimental metastasis. Analysis of cDNA microarrays revealed that CREB silencing leads to increased expression of cysteine-rich protein 61 (CCN1/CYR61) known to mediate adhesion, chemostasis, survival, and angiogenesis. Promoter analysis and chromatin immunoprecipitation assays demonstrated that CREB acts as a negative regulator of CCN1/CYR61 transcription by directly binding to its promoter. Re-expression of CREB in CREB-silenced cells rescued the low CCN1/CYR61 expression phenotype. CCN1/CYR61 overexpression resulted in reduced tumor growth and metastasis and inhibited the activity of matrix metalloproteinase-2. Furthermore, its overexpression decreased melanoma cell motility and invasion through Matrigel, which was abrogated by silencing CCN1/CYR61 in low metastatic melanoma cells. Moreover, a significant decrease in angiogenesis as well as an increase in apoptosis was seen in tumors overexpressing CCN1/CYR61. Our results demonstrate that CREB promotes melanoma growth and metastasis by down-regulating CCN1/CYR61 expression, which acts as a suppressor of melanoma cell motility, invasion and angiogenesis. PMID:19632997

  4. Identification of Two Reactive Cysteine Residues in the Tumor Suppressor Protein p53 Using Top-Down FTICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Scotcher, Jenna; Clarke, David J.; Weidt, Stefan K.; Mackay, C. Logan; Hupp, Ted R.; Sadler, Peter J.; Langridge-Smith, Pat R. R.

    2011-05-01

    The tumor suppressor p53 is a redox-regulated transcription factor involved in cell cycle arrest, apoptosis and senescence in response to multiple forms of stress, as well as many other cellular processes such as DNA repair, glycolysis, autophagy, oxidative stress and differentiation. The discovery of cysteine-targeting compounds that cause re-activation of mutant p53 and the death of tumor cells in vivo has emphasized the functional importance of p53 thiols. Using a combination of top-down and middle-down FTICR mass spectrometry, we show that of the 10 Cys residues in the core domain of wild-type p53, Cys182 and Cys277 exhibit a remarkable preference for modification by the alkylating reagent N-ethylmaleimide. The assignment of Cys182 and Cys277 as the two reactive Cys residues was confirmed by site-directed mutagenesis. Further alkylation of p53 beyond Cys182 and Cys277 was found to trigger co-operative modification of the remaining seven Cys residues and protein unfolding. This study highlights the power of top-down FTICR mass spectrometry for analysis of the cysteine reactivity and redox chemistry in multiple cysteine-containing proteins.

  5. Cullin 1 functions as a centrosomal suppressor of centriole multiplication by regulating Polo-like kinase 4 protein levels

    PubMed Central

    Korzeniewski, Nina; Zheng, Leon; Cuevas, Rolando; Parry, Joshua; Chatterjee, Payel; Anderton, Brittany; Duensing, Anette; Münger, Karl; Duensing, Stefan

    2009-01-01

    Abnormal centrosome and centriole numbers are frequently detected in tumor cells where they can contribute to mitotic aberrations that cause chromosome missegregation and aneuploidy. The molecular mechanisms of centriole overduplication in malignant cells, however, are poorly characterized. Here, we show that the core SCF component CUL1 localizes to maternal centrioles and that CUL1 is critical for suppressing centriole overduplication through multiplication, a recently discovered mechanism whereby multiple daughter centrioles form concurrently at single maternal centrioles. We found that this activity of CUL1 involves the degradation of Polo-like kinase 4 (PLK4) at maternal centrioles. PLK4 is required for centriole duplication and strongly stimulates centriole multiplication when aberrantly expressed. We found that CUL1 is critical for the degradation of active PLK4 following deregulation of cyclin E/CDK2 activity, as is frequently observed in human cancer cells, as well as for baseline PLK4 protein stability. Collectively, our results suggest that CUL1 may function as a tumor suppressor by regulating PLK4 protein levels and thereby restraining excessive daughter centriole formation at maternal centrioles. PMID:19679553

  6. Molecular characterization and expression pattern of tumor suppressor protein p53 in mandarin fish, Siniperca chuatsi following virus challenge.

    PubMed

    Guo, Huizhi; Fu, Xiaozhe; Li, Ningqiu; Lin, Qiang; Liu, Lihui; Wu, Shuqin

    2016-04-01

    In recent years, the tumor suppressor protein p53, which is crucial for cellular defense against tumor development, has also been implicated in host antiviral defense. In the present study, a 1555 bp full-length cDNA of p53 from mandarin fish (Siniperca chuatsi) (Sc-p53) was cloned and characterized. Quantitative real-time PCR assays revealed that Sc-p53 was expressed in all tissues examined, and it was most abundant in the gill and kidney. Recombinant Sc-p53 fused with a His·Tag was expressed in Escherichia coli BL21 (DE3) cells and a rabbit polyclonal antibody was raised against recombinant Sc-p53. In addition, the regulation of Sc-p53 gene expression after experimental viral infection was determined and characterized. The mRNA and protein expression of Sc-p53 were significantly up-regulated in the Chinese perch brain (CPB) cell line and mandarin fish after infection with infectious kidney and spleen necrosis virus (ISKNV). The results showed a biphasic expression pattern of Sc-p53 protein in CPB. However, a different expression pattern of Sc-p53 in response to S. chuatsi rhabdovirus (SCRV) infection was found. The mRNA expression of Sc-p53 was significantly up-regulated in CPB at 6 h and spleen of mandarin fish at 24 h post-infection. The protein expression of Sc-p53 was significantly up-regulated in CPB at 1 h, remained elevated at 4 h, and then decreased to control level at 8 h post-infection by SCRV. All of these data suggested that Sc-p53 plays a critical role in immune defense and antiviral responses. PMID:26980610

  7. The Insulator Protein Suppressor of Hairy Wing Is Required for Proper Ring Canal Development During Oogenesis in Drosophila

    PubMed Central

    Hsu, Shih-Jui; Plata, Maria P.; Ernest, Ben; Asgarifar, Saghi; Labrador, Mariano

    2015-01-01

    Chromatin insulators orchestrate gene transcription during embryo development and cell differentiation by stabilizing interactions between distant genomic sites. Mutations in genes encoding insulator proteins are generally lethal, making in vivo functional analyses of insulator proteins difficult. In Drosophila, however, mutations in the gene encoding the Suppressor of Hairy wing insulator protein [Su(Hw)] are viable and female sterile, providing an opportunity to study insulator function during oocyte development. Whereas previous reports suggest that the function of Su(Hw) in oogenesis is independent of its insulator activity, many aspects of the role of Su(Hw) in Drosophila oogenesis remain unexplored. Here we show that mutations in su(Hw) result in smaller ring canal lumens and smaller outer ring diameters, which likely obstruct molecular and vesicle passage from nurse cells to the oocyte. Fluorescence microscopy reveals that lack of Su(Hw) leads to excess accumulation of Kelch (Kel) and Filament-actin (F-actin) proteins in the ring canal structures of developing egg chambers. Furthermore, we found that misexpression of the Src oncogene at 64B (Src64B) may cause ring canal development defects as microarray analysis and real-time RT-PCR revealed there is a three fold decrease in Src64B expression in su(Hw) mutant ovaries. Restoration of Src64B expression in su(Hw) mutant female germ cells rescued the ring phenotype but did not restore fertility. We conclude that loss of su(Hw) affects expression of many oogenesis related genes and down-regulates Src64B, resulting in ring canal defects potentially contributing to obstruction of molecular flow and an eventual failure of egg chamber organization. PMID:25882370

  8. The insulator protein Suppressor of Hairy wing is required for proper ring canal development during oogenesis in Drosophila.

    PubMed

    Hsu, Shih-Jui; Plata, Maria P; Ernest, Ben; Asgarifar, Saghi; Labrador, Mariano

    2015-07-01

    Chromatin insulators orchestrate gene transcription during embryo development and cell differentiation by stabilizing interactions between distant genomic sites. Mutations in genes encoding insulator proteins are generally lethal, making in vivo functional analyses of insulator proteins difficult. In Drosophila, however, mutations in the gene encoding the Suppressor of Hairy wing insulator protein [Su(Hw)] are viable and female sterile, providing an opportunity to study insulator function during oocyte development. Whereas previous reports suggest that the function of Su(Hw) in oogenesis is independent of its insulator activity, many aspects of the role of Su(Hw) in Drosophila oogenesis remain unexplored. Here we show that mutations in su(Hw) result in smaller ring canal lumens and smaller outer ring diameters, which likely obstruct molecular and vesicle passage from nurse cells to the oocyte. Fluorescence microscopy reveals that lack of Su(Hw) leads to excess accumulation of Kelch (Kel) and Filament-actin (F-actin) proteins in the ring canal structures of developing egg chambers. Furthermore, we found that misexpression of the Src oncogene at 64B (Src64B) may cause ring canal development defects as microarray analysis and real-time RT-PCR revealed there is a three fold decrease in Src64B expression in su(Hw) mutant ovaries. Restoration of Src64B expression in su(Hw) mutant female germ cells rescued the ring phenotype but did not restore fertility. We conclude that loss of su(Hw) affects expression of many oogenesis related genes and down-regulates Src64B, resulting in ring canal defects potentially contributing to obstruction of molecular flow and an eventual failure of egg chamber organization. PMID:25882370

  9. The Drosophila suppressor of underreplication protein binds to late-replicating regions of polytene chromosomes.

    PubMed Central

    Makunin, I V; Volkova, E I; Belyaeva, E S; Nabirochkina, E N; Pirrotta, V; Zhimulev, I F

    2002-01-01

    In many late-replicating euchromatic regions of salivary gland polytene chromosomes, DNA is underrepresented. A mutation in the SuUR gene suppresses underreplication and leads to normal levels of DNA polytenization in these regions. We identified the SuUR gene and determined its structure. In the SuUR mutant stock a 6-kb insertion was found in the fourth exon of the gene. A single SuUR transcript is present at all stages of Drosophila development and is most abundant in adult females and embryos. The SuUR gene encodes a protein of 962 amino acids whose putative sequence is similar to the N-terminal part of SNF2/SWI2 proteins. Staining of salivary gland polytene chromosomes with antibodies directed against the SuUR protein shows that the protein is localized mainly in late-replicating regions and in regions of intercalary and pericentric heterochromatin. PMID:11901119

  10. Expression of Caveolin-1 in Periodontal Tissue and Its Role in Osteoblastic and Cementoblastic Differentiation In Vitro.

    PubMed

    Lee, So-Youn; Yi, Jin-Kyu; Yun, Hyung-Mun; Bae, Cheol-Hyeon; Cho, Eui-Sic; Lee, Kook-Sun; Kim, Eun-Cheol

    2016-05-01

    It has been previously reported that caveolin-1 (Cav-1) knockout mice exhibit increased bone size and stiffness. However, the expression and role of Cav-1 on periodontal tissue is poorly understood. The aim of this study was to investigate the immunohistochemical expression of Cav-1 in the mouse periodontium and explore the role of Cav-1 on osteoblastic and cementoblastic differentiation in human periodontal ligament cells (hPDLCs), cementoblasts, and osteoblasts. To reveal the molecular mechanisms of Cav-1 activity, associated signaling pathways were also examined. Immunolocalization of Cav-1 was studied in mice periodontal tissue. Differentiation was evaluated by ALP activity, alizarin red S staining, and RT-PCR for marker genes. Signal transduction was analyzed using Western blotting and confocal microscopy. Cav-1 expression was observed in hPDLCs, cementoblasts, and osteoblasts of the periodontium both in vivo and in vitro. Inhibition of Cav-1 expression by methyl-β-cyclodextrin (MβCD) and knockdown of Cav-1 by siRNA promoted osteoblastic and cementoblastic differentiation by increasing ALP activity, calcium nodule formation, and mRNA expression of differentiation markers in hPDLCs, cementoblasts, and osteoblasts. Osteogenic medium-induced BMP-2 and BMP-7 expression, and phosphorylation of Smad1/5/8 were enhanced by MβCD and siRNA knockdown of Cav-1, which was reversed by BMP inhibitor noggin. MβCD and Cav-1 siRNA knockdown increased OM-induced AMPK, Akt, GSK3β, and CREB phosphorylation, which were reversed by Ara-A, a specific AMPK inhibitor. Moreover, OM-induced activation of p38, ERK, JNK, and NF-κB was enhanced by Cav-1 inhibition. This study demonstrates, for the first time, that Cav-1 is expressed in developing periodontal tissue and in vitro in periodontal-related cells. Cav-1 inhibition positively regulates osteoblastic differentiation in hPDLCs, cementoblasts, and osteoblasts via BMP, AMPK, MAPK, and NF-κB pathway. Thus, Cav-1 inhibition may be

  11. Caveolin-1 Regulates the P2Y2 Receptor Signaling in Human 1321N1 Astrocytoma Cells.

    PubMed

    Martinez, Namyr A; Ayala, Alondra M; Martinez, Magdiel; Martinez-Rivera, Freddyson J; Miranda, Jorge D; Silva, Walter I

    2016-06-01

    Damage to the CNS can cause a differential spatio-temporal release of multiple factors, such as nucleotides, ATP and UTP. The latter interact with neuronal and glial nucleotide receptors. The P2Y2 nucleotide receptor (P2Y2R) has gained prominence as a modulator of gliotic responses after CNS injury. Still, the molecular mechanisms underlying these responses in glia are not fully understood. Membrane-raft microdomains, such as caveolae, and their constituent caveolins, modulate receptor signaling in astrocytes; yet, their role in P2Y2R signaling has not been adequately explored. Hence, this study evaluated the role of caveolin-1 (Cav-1) in modulating P2Y2R subcellular distribution and signaling in human 1321N1 astrocytoma cells. Recombinant hP2Y2R expressed in 1321N1 cells and Cav-1 were found to co-fractionate in light-density membrane-raft fractions, co-localize via confocal microscopy, and co-immunoprecipitate. Raft localization was dependent on ATP stimulation and Cav-1 expression. This hP2Y2R/Cav-1 distribution and interaction was confirmed with various cell model systems differing in the expression of both P2Y2R and Cav-1, and shRNA knockdown of Cav-1 expression. Furthermore, shRNA knockdown of Cav-1 expression decreased nucleotide-induced increases in the intracellular Ca(2+) concentration in 1321N1 and C6 glioma cells without altering TRAP-6 and carbachol Ca(2+) responses. In addition, Cav-1 shRNA knockdown also decreased AKT phosphorylation and altered the kinetics of ERK1/2 activation in 1321N1 cells. Our findings strongly suggest that P2Y2R interaction with Cav-1 in membrane-raft caveolae of 1321N1 cells modulates receptor coupling to its downstream signaling machinery. Thus, P2Y2R/Cav-1 interactions represent a novel target for controlling P2Y2R function after CNS injury. PMID:27129210

  12. The expression of retinoblastoma tumor suppressor protein in oral cancers and precancers: A clinicopathological study

    PubMed Central

    Thomas, Sunila; Balan, Anita; Balaram, Prabha

    2015-01-01

    Background: The role of retinoblastoma (Rb) protein in cell cycle regulation prompted us to take up this study with the aim of assessing its role in the progression of oral cancer and to correlate with various clinicopathological parameters, including habits such as smoking, Paan chewing, and alcoholism. Materials and Methods: This observational study included surgical specimens from 10 apparently normal oral mucosa, 14 oral reactive lesions (ORL), 29 precancerous lesions and 43 oral cancers. The expression of Rb protein in tissue samples were evaluated by immunohistochemistry and correlated with clinicopathological data. The percentage and mean expression of Rb protein were statistically analyzed using Student's t-test and P < 0.05 was considered as statistically significant difference. Results: The expression of Rb protein was found to increase from normal, ORL, precancerous lesions to cancers. A consistently high expression of Rb protein was seen in oral cancers, with an increase in well-differentiated and moderately differentiated tumors. Patients with combined habits of Paan chewing, smoking, and alcohol consumption had a higher expression compared with those without habits. Conclusion: Within the limitations of this study, it seems that overexpression of Rb protein noted in oral cancer, with an increase in well and moderately differentiated tumors suggest a possible role of Rb in differentiation. The high expression of Rb in patients with combined habits of Paan chewing, smoking and alcohol consumption indicates that Rb pathway may be altered in habit-related oral malignancies. PMID:26288619

  13. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein.

    PubMed

    Bromley, Dennis; Bauer, Matthias R; Fersht, Alan R; Daggett, Valerie

    2016-09-01

    The p53 tumor suppressor protein performs a critical role in stimulating apoptosis and cell cycle arrest in response to oncogenic stress. The function of p53 can be compromised by mutation, leading to increased risk of cancer; approximately 50% of cancers are associated with mutations in the p53 gene, the majority of which are in the core DNA-binding domain. The Y220C mutation of p53, for example, destabilizes the core domain by 4 kcal/mol, leading to rapid denaturation and aggregation. The associated loss of tumor suppressor functionality is associated with approximately 75 000 new cancer cases every year. Destabilized p53 mutants can be 'rescued' and their function restored; binding of a small molecule into a pocket on the surface of mutant p53 can stabilize its wild-type structure and restore its function. Here, we describe an in silico algorithm for identifying potential rescue pockets, including the algorithm's integration with the Dynameomics molecular dynamics data warehouse and the DIVE visual analytics engine. We discuss the results of the application of the method to the Y220C p53 mutant, entailing finding a putative rescue pocket through MD simulations followed by an in silico search for stabilizing ligands that dock into the putative rescue pocket. The top three compounds from this search were tested experimentally and one of them bound in the pocket, as shown by nuclear magnetic resonance, and weakly stabilized the mutant. PMID:27503952

  14. 3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region.

    PubMed Central

    Sithanandam, G; Latif, F; Duh, F M; Bernal, R; Smola, U; Li, H; Kuzmin, I; Wixler, V; Geil, L; Shrestha, S

    1996-01-01

    NotI linking clones, localized to the human chromosome 3p21.3 region and homozygously deleted in small cell lung cancer cell lines NCI-H740 and NCI-H1450, were used to search for a putative tumor suppressor gene(s). One of these clones, NL1G210, detected a 2.5-kb mRNA in all examined human tissues, expression being especially high in the heart and skeletal muscle. Two overlapping cDNA clones containing the entire open reading frame were isolated from a human heart cDNA library and fully characterized. Computer analysis and a search of the GenBank database to reveal high sequence identity of the product of this gene to serine-threonine kinases, especially to mitogen-activated protein kinase-activated protein kinase 2, a recently described substrate of mitogen-activated kinases. Sequence identitiy was 72% at the nucleotide level and 75% at the amino acid level, strongly suggesting that this protein is a serine-threonine kinase. Here we demonstrate that the new gene, referred to as 3pK (for chromosome 3p kinase), in fact encodes a mitogen-activated protein kinase-regulated protein serine-threonine kinase with a novel substrate specificity. PMID:8622688

  15. The Bladder Tumor Suppressor Protein TERE1 (UBIAD1)Modulates Cell Cholesterol: Implications for Tumor Progression

    PubMed Central

    McGarvey, Terry; Wang, Huiyi; Lal, Priti; Puthiyaveettil, Raghunath; Tomaszewski, John; Sepulveda, Jorge; Labelle, Ed; Weiss, Jayne S.; Nickerson, Michael L.; Kruth, Howard S.; Brandt, Wolfgang; Wessjohann, Ludger A.; Malkowicz, S. Bruce

    2011-01-01

    Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression. PMID:21740188

  16. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF.

    PubMed

    Hamada, Fumihiko; Bienz, Mariann

    2004-11-01

    Adenomatous polyposis coli (APC) is an important tumor suppressor in the colon. APC antagonizes the transcriptional activity of the Wnt effector beta-catenin by promoting its nuclear export and its proteasomal destruction in the cytoplasm. Here, we show that a third function of APC in antagonizing beta-catenin involves C-terminal binding protein (CtBP). APC is associated with CtBP in vivo and binds to CtBP in vitro through its conserved 15 amino acid repeats. Failure of this association results in elevated levels of beta-catenin/TCF complexes and of TCF-mediated transcription. Notably, CtBP is neither associated with TCF in vivo nor does mutation of the CtBP binding motifs in TCF-4 alter its transcriptional activity. This questions the idea that CtBP is a direct corepressor of TCF. Our evidence indicates that APC is an adaptor between beta-catenin and CtBP and that CtBP lowers the availability of free nuclear beta-catenin for binding to TCF by sequestering APC/beta-catenin complexes. PMID:15525529

  17. Expression of Caveolin-1 reduces cellular responses to TGF-{beta}1 through down-regulating the expression of TGF-{beta} type II receptor gene in NIH3T3 fibroblast cells

    SciTech Connect

    Lee, Eun Kyung; Lee, Youn Sook; Han, In-Oc; Park, Seok Hee . E-mail: parks@skku.edu

    2007-07-27

    Transcriptional repression of Transforming Growth Factor-{beta} type II receptor (T{beta}RII) gene has been proposed to be one of the major mechanisms leading to TGF-{beta} resistance. In this study, we demonstrate that expression of Caveolin-1 (Cav-1) gene in NIH3T3 fibroblast cells down-regulates the expression of T{beta}RII gene in the transcriptional level, eventually resulting in the decreased responses to TGF-{beta}. The reduced expression of T{beta}RII gene by Cav-1 appeared to be due to the changes of the sequence-specific DNA binding proteins to either Positive Regulatory Element 1 (PRE1) or PRE2 of the T{beta}RII promoter. In addition, Cav-1 expression inhibited TGF-{beta}-mediated cellular proliferation and Plasminogen Activator Inhibitor (PAI)-1 gene expression as well as TGF-{beta}-induced luciferase activity. Furthermore, the inhibition of endogeneous Cav-1 by small interfering RNA increased the expression of T{beta}RII gene. These findings strongly suggest that expression of Cav-1 leads to the decreased cellular responsiveness to TGF-{beta} through down-regulating T{beta}RII gene expression.

  18. Xuezhikang, Extract of Red Yeast Rice, Improved Abnormal Hemorheology, Suppressed Caveolin-1 and Increased eNOS Expression in Atherosclerotic Rats

    PubMed Central

    Yang, Ya-Bing; Liu, Mei-Lin

    2013-01-01

    Background Xuezhikang is the extract of red yeast rice, which has been widely used for the management of atherosclerotic disease, but the molecular basis of its antiatherosclerotic effects has not yet been fully identified. Here we investigated the changes of eNOS in vascular endothelia and RBCs, eNOS regulatory factor Caveolin-1 in endothelia, and hemorheological parameters in atherosclerotic rats to explore the protective effects of Xuezhikang. Methodology/Principal Findings Wistar rats were divided into 4 groups (n = 12/group) group C, controls; group M, high-cholesterol diet (HCD) induced atherosclerotic models; group X, HCD+Xuezhikang; and group L, HCD +Lovastatin. In group X, Xuezhikang inhibited oxidative stress, down-regulated caveolin-1 in aorta wall (P<0.05), up-regulated eNOS expression in vascular endothelia and erythrocytes (P<0.05), increased NOx (nitrite and nitrate) in plasma and cGMP in erythrocyte plasma and aorta wall (P<0.05), increased erythrocyte deformation index (EDI), and decreased whole blood viscosity and plasma viscosity (P<0.05), with the improvement of arterial pathology. Conclusions/Significance Xuezhikang up-regulated eNOS expression in vascular endothelia and RBCs, increased plasma NOx and improved abnormal hemorheology in high cholesterol diet induced atherosclerotic rats. The elevated eNOS/NO and improved hemorheology may be beneficial to atherosclerotic disease. PMID:23675421

  19. Conserved Molecular Underpinnings and Characterization of a Role for Caveolin-1 in the Tumor Microenvironment of Mature T-Cell Lymphomas

    PubMed Central

    Herek, Tyler A.; Shew, Timothy D.; Spurgin, Heather N.; Cutucache, Christine E.

    2015-01-01

    Neoplasms of extra-thymic T-cell origin represent a rare and difficult population characterized by poor clinical outcome, aggressive presentation, and poorly defined molecular characteristics. Much work has been done to gain greater insights into distinguishing features among malignant subtypes, but there also exists a need to identify unifying characteristics to assist in rapid diagnosis and subsequent potential treatment. Herein, we investigated gene expression data of five different mature T-cell lymphoma subtypes (n = 187) and found 21 genes to be up- and down-regulated across all malignancies in comparison to healthy CD4+ and CD8+ T-cell controls (n = 52). From these results, we sought to characterize a role for caveolin-1 (CAV1), a gene with previous description in the progression of both solid and hematological tumors. Caveolin-1 was upregulated, albeit with a heterogeneous nature, across all mature T-cell lymphoma subtypes, a finding confirmed using immunohistochemical staining on an independent sampling of mature T-cell lymphoma biopsies (n = 65 cases). Further, stratifying malignant samples in accordance with high and low CAV1 expression revealed that higher expression of CAV1 in mature T-cell lymphomas is analogous with an enhanced inflammatory and invasive gene expression profile. Taken together, these results demonstrate a role for CAV1 in the tumor microenvironment of mature T-cell malignancies and point toward potential prognostic implications. PMID:26566034

  20. An extragenic suppressor of the mitosis-defective bimD6 mutation of Aspergillus nidulans codes for a chromosome scaffold protein

    SciTech Connect

    Holt, C.L.; May, G.S.

    1996-03-01

    We previously identified a gene, bimD, that functions in chromosome segregation and contains sequences suggesting that it may be a DNA-binding protein. Two conditionally lethal mutations in bimD arrest with aberrant mitotic spindles at restrictive temperature. These spindles have one-third the normal number of microtubules, and the chromosomes never attach to the remaining microtubules. For this reason, we hypothesized that BIMD functioned in chromosome segregation, possibly as a component of the kinetochore. To identify other components that function with bimD, we conducted a screen for extragenic suppressors of the bimD5 and bimD6 mutations. We have isolated seven cold-sensitive extragenic suppressors of bimD6 heat sensitivity that represent three or possibly four separate sud genes. We have cloned one of the suppressor genes by complementation of the cold-sensitive phenotype of the sudA3 mutation. SUDA belongs to the DA-box protein family. DA-box proteins have been shown to function in chromosome structure and segregation. Thus bimD and the sud genes cooperatively function in chromosome segregation in Aspergillus nidulans. 40 refs., 5 figs., 2 tabs.

  1. Inhibition of 3' modification of small RNAs in virus-infected plants require spatial and temporal co-expression of small RNAs and viral silencing-suppressor proteins.

    PubMed

    Lózsa, Rita; Csorba, Tibor; Lakatos, Lóránt; Burgyán, József

    2008-07-01

    Plant viruses are inducers and targets of RNA silencing. Viruses counteract with RNA silencing by expressing silencing-suppressor proteins. Many of the identified proteins bind siRNAs, which prevents assembly of silencing effector complexes, and also interfere with their 3' methylation, which protects them against degradation. Here, we investigated the 3' modification of silencing-related small RNAs in Nicotiana benthamiana plants infected with viruses expressing RNA silencing suppressors, the p19 protein of Carnation Italian ringspot virus (CIRV) and HC-Pro of Tobacco etch virus (TEV). We found that CIRV had only a slight effect on viral siRNA 3' modification, but TEV significantly inhibited the 3' modification of si/miRNAs. We also found that p19 and HC-Pro were able to bind both 3' modified and non-modified small RNAs in vivo. The findings suggest that the 3' modification of viral siRNAs occurs in the cytoplasm, though miRNA 3' modification likely takes place in the nucleus as well. Both silencing suppressors inhibited the 3' modification of si/miRNAs when they and small RNAs were transiently co-expressed, suggesting that the inhibition of si/miRNA 3' modification requires spatial and temporal co-expression. Finally, our data revealed that a HEN1-like methyltransferase might account for the small RNA modification at the their 3'-terminal nucleotide in N. benthamiana. PMID:18539609

  2. Cardiac Glycosides Activate the Tumor Suppressor and Viral Restriction Factor Promyelocytic Leukemia Protein (PML)

    PubMed Central

    Milutinovic, Snezana; Heynen-Genel, Susanne; Chao, Elizabeth; Dewing, Antimone; Solano, Ricardo; Milan, Loribelle; Barron, Nikki; He, Min; Diaz, Paul W.; Matsuzawa, Shu-ichi; Reed, John C.; Hassig, Christian A.

    2016-01-01

    Cardiac glycosides (CGs), inhibitors of Na+/K+-ATPase (NKA), used clinically to treat heart failure, have garnered recent attention as potential anti-cancer and anti-viral agents. A high-throughput phenotypic screen designed to identify modulators of promyelocytic leukemia protein (PML) nuclear body (NB) formation revealed the CG gitoxigenin as a potent activator of PML. We demonstrate that multiple structurally distinct CGs activate the formation of PML NBs and induce PML protein SUMOylation in an NKA-dependent fashion. CG effects on PML occur at the post-transcriptional level, mechanistically distinct from previously described PML activators and are mediated through signaling events downstream of NKA. Curiously, genomic deletion of PML in human cancer cells failed to abrogate the cytotoxic effects of CGs and other apoptotic stimuli such as ceramide and arsenic trioxide that were previously shown to function through PML in mice. These findings suggest that alternative pathways can compensate for PML loss to mediate apoptosis in response to CGs and other apoptotic stimuli. PMID:27031987

  3. Cardiac Glycosides Activate the Tumor Suppressor and Viral Restriction Factor Promyelocytic Leukemia Protein (PML).

    PubMed

    Milutinovic, Snezana; Heynen-Genel, Susanne; Chao, Elizabeth; Dewing, Antimone; Solano, Ricardo; Milan, Loribelle; Barron, Nikki; He, Min; Diaz, Paul W; Matsuzawa, Shu-ichi; Reed, John C; Hassig, Christian A

    2016-01-01

    Cardiac glycosides (CGs), inhibitors of Na+/K+-ATPase (NKA), used clinically to treat heart failure, have garnered recent attention as potential anti-cancer and anti-viral agents. A high-throughput phenotypic screen designed to identify modulators of promyelocytic leukemia protein (PML) nuclear body (NB) formation revealed the CG gitoxigenin as a potent activator of PML. We demonstrate that multiple structurally distinct CGs activate the formation of PML NBs and induce PML protein SUMOylation in an NKA-dependent fashion. CG effects on PML occur at the post-transcriptional level, mechanistically distinct from previously described PML activators and are mediated through signaling events downstream of NKA. Curiously, genomic deletion of PML in human cancer cells failed to abrogate the cytotoxic effects of CGs and other apoptotic stimuli such as ceramide and arsenic trioxide that were previously shown to function through PML in mice. These findings suggest that alternative pathways can compensate for PML loss to mediate apoptosis in response to CGs and other apoptotic stimuli. PMID:27031987

  4. Interallelic Complementation at the Suppressor of Forked Locus of Drosophila Reveals Complementation between Suppressor of Forked Proteins Mutated in Different Regions

    PubMed Central

    Simonelig, M.; Elliott, K.; Mitchelson, A.; O'Hare, K.

    1996-01-01

    The Su(f) protein of Drosophila melanogaster shares extensive homologies with proteins from yeast (RNA14) and man (77 kD subunit of cleavage stimulation factor) that are required for 3' end processing of mRNA. These homologies suggest that su(f) is involved in mRNA 3' end formation and that some aspects of this process are conserved throughout eukaryotes. We have investigated the genetic and molecular complexity of the su(f) locus. The su(f) gene is transcribed to produce three RNAs and could encode two proteins. Using constructs that contain different parts of the locus, we show that only the larger predicted gene product of 84 kD is required for the wild-type function of su(f). Some lethal alleles of su(f) complement to produce viable combinations. The structures of complementing and noncomplementing su(f) alleles indicate that 84-kD Su(f) proteins mutated in different domains can act in combination for partial su(f) function. Our results suggest protein-protein interaction between or within wild-type Su(f) molecules. PMID:8846900

  5. Cooperative Role of Mineralocorticoid Receptor and Caveolin-1 in Regulating the Vascular Response to Low Nitric Oxide-High Angiotensin II-Induced Cardiovascular Injury.

    PubMed

    Pojoga, Luminita H; Yao, Tham M; Opsasnick, Lauren A; Siddiqui, Waleed T; Reslan, Ossama M; Adler, Gail K; Williams, Gordon H; Khalil, Raouf A

    2015-10-01

    Aldosterone interacts with mineralocorticoid receptor (MR) to stimulate sodium reabsorption in renal tubules and may also affect the vasculature. Caveolin-1 (cav-1), an anchoring protein in plasmalemmal caveolae, binds steroid receptors and also endothelial nitric oxide synthase, thus limiting its translocation and activation. To test for potential MR/cav-1 interaction in the vasculature, we investigated if MR blockade in cav-1-replete or -deficient states would alter vascular function in a mouse model of low nitric oxide (NO)-high angiotensin II (AngII)-induced cardiovascular injury. Wild-type (WT) and cav-1 knockout mice (cav-1(-/-)) consuming a high salt diet (4% NaCl) received Nω-nitro-l-arginine methyl ester (L-NAME) (0.1-0.2 mg/ml in drinking water at days 1-11) plus AngII (0.7-2.8 mg/kg per day via an osmotic minipump at days 8-11) ± MR antagonist eplerenone (EPL) 100 mg/kg per day in food. In both genotypes, blood pressure increased with L-NAME + AngII. EPL minimally changed blood pressure, although its dose was sufficient to block MR and reverse cardiac expression of the injury markers cluster of differentiation 68 and plasminogen activator inhibitor-1 in L-NAME+AngII treated mice. In aortic rings, phenylephrine and KCl contraction was enhanced with EPL in L-NAME+AngII treated WT mice, but not cav-1(-/-) mice. AngII-induced contraction was not different, and angiotensin type 1 receptor expression was reduced in L-NAME + AngII treated WT and cav-1(-/-) mice. In WT mice, acetylcholine-induced relaxation was enhanced with L-NAME + AngII treatment and reversed with EPL. Acetylcholine relaxation in cav-1(-/-) mice was greater than in WT mice, not modified by L-NAME + AngII or EPL, and blocked by ex vivo L-NAME, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or endothelium removal, suggesting the role of NO-cGMP. Cardiac endothelial NO synthase was increased in cav-1(-/-) versus WT mice, further increased with L-NAME + AngII, and not affected by EPL

  6. Regulation of cell polarity determinants by the Retinoblastoma tumor suppressor protein.

    PubMed

    Payankaulam, Sandhya; Yeung, Kelvin; McNeill, Helen; Henry, R William; Arnosti, David N

    2016-01-01

    In addition to their canonical roles in the cell cycle, RB family proteins regulate numerous developmental pathways, although the mechanisms remain obscure. We found that Drosophila Rbf1 associates with genes encoding components of the highly conserved apical-basal and planar cell polarity pathways, suggesting a possible regulatory role. Here, we show that depletion of Rbf1 in Drosophila tissues is indeed associated with polarity defects in the wing and eye. Key polarity genes aPKC, par6, vang, pk, and fmi are upregulated, and an aPKC mutation suppresses the Rbf1-induced phenotypes. RB control of cell polarity may be an evolutionarily conserved function, with important implications in cancer metastasis. PMID:26971715

  7. Regulation of cell polarity determinants by the Retinoblastoma tumor suppressor protein

    PubMed Central

    Payankaulam, Sandhya; Yeung, Kelvin; McNeill, Helen; Henry, R. William; Arnosti, David N.

    2016-01-01

    In addition to their canonical roles in the cell cycle, RB family proteins regulate numerous developmental pathways, although the mechanisms remain obscure. We found that Drosophila Rbf1 associates with genes encoding components of the highly conserved apical–basal and planar cell polarity pathways, suggesting a possible regulatory role. Here, we show that depletion of Rbf1 in Drosophila tissues is indeed associated with polarity defects in the wing and eye. Key polarity genes aPKC, par6, vang, pk, and fmi are upregulated, and an aPKC mutation suppresses the Rbf1-induced phenotypes. RB control of cell polarity may be an evolutionarily conserved function, with important implications in cancer metastasis. PMID:26971715

  8. Transcriptional regulation of thymine DNA glycosylase (TDG) by the tumor suppressor protein p53.

    PubMed

    da Costa, Nathalia Meireles; Hautefeuille, Agnès; Cros, Marie-Pierre; Melendez, Matias Eliseo; Waters, Timothy; Swann, Peter; Hainaut, Pierre; Pinto, Luis Felipe Ribeiro

    2012-12-15

    Thymine DNA glycosylase (TDG) belongs to the superfamily of uracil DNA glycosylases (UDG) and is the first enzyme in the base-excision repair pathway (BER) that removes thymine from G:T mismatches at CpG sites. This glycosylase activity has also been found to be critical for active demethylation of genes involved in embryonic development. Here we show that wild-type p53 transcriptionally regulates TDG expression. Chromatin immunoprecipitation (ChIP) and luciferase assays indicate that wild-type p53 binds to a domain of TDG promoter containing two p53 consensus response elements (p53RE) and activates its transcription. Next, we have used a panel of cell lines with different p53 status to demonstrate that TDG mRNA and protein expression levels are induced in a p53-dependent manner under different conditions. This panel includes isogenic breast and colorectal cancer cell lines with wild-type or inactive p53, esophageal squamous cell carcinoma cell lines lacking p53 or expressing a temperature-sensitive p53 mutant and normal human bronchial epithelial cells. Induction of TDG mRNA expression is accompanied by accumulation of TDG protein in both nucleus and cytoplasm, with nuclear re-localization occurring upon DNA damage in p53-competent, but not -incompetent, cells. These observations suggest a role for p53 activity in TDG nuclear translocation. Overall, our results show that TDG expression is directly regulated by p53, suggesting that loss of p53 function may affect processes mediated by TDG, thus negatively impacting on genetic and epigenetic stability. PMID:23165212

  9. Transcriptional regulation of thymine DNA glycosylase (TDG) by the tumor suppressor protein p53

    PubMed Central

    da Costa, Nathalia Meireles; Hautefeuille, Agnès; Cros, Marie-Pierre; Melendez, Matias Eliseo; Waters, Timothy; Swann, Peter; Hainaut, Pierre; Pinto, Luis Felipe Ribeiro

    2012-01-01

    Thymine DNA glycosylase (TDG) belongs to the superfamily of uracil DNA glycosylases (UDG) and is the first enzyme in the base-excision repair pathway (BER) that removes thymine from G:T mismatches at CpG sites. This glycosylase activity has also been found to be critical for active demethylation of genes involved in embryonic development. Here we show that wild-type p53 transcriptionally regulates TDG expression. Chromatin immunoprecipitation (ChIP) and luciferase assays indicate that wild-type p53 binds to a domain of TDG promoter containing two p53 consensus response elements (p53RE) and activates its transcription. Next, we have used a panel of cell lines with different p53 status to demonstrate that TDG mRNA and protein expression levels are induced in a p53-dependent manner under different conditions. This panel includes isogenic breast and colorectal cancer cell lines with wild-type or inactive p53, esophageal squamous cell carcinoma cell lines lacking p53 or expressing a temperature-sensitive p53 mutant and normal human bronchial epithelial cells. Induction of TDG mRNA expression is accompanied by accumulation of TDG protein in both nucleus and cytoplasm, with nuclear re-localization occurring upon DNA damage in p53-competent, but not -incompetent, cells. These observations suggest a role for p53 activity in TDG nuclear translocation. Overall, our results show that TDG expression is directly regulated by p53, suggesting that loss of p53 function may affect processes mediated by TDG, thus negatively impacting on genetic and epigenetic stability. PMID:23165212

  10. Stable expression of silencing-suppressor protein enhances the performance and longevity of an engineered metabolic pathway.

    PubMed

    Naim, Fatima; Shrestha, Pushkar; Singh, Surinder P; Waterhouse, Peter M; Wood, Craig C

    2016-06-01

    Transgenic engineering of plants is important in both basic and applied research. However, the expression of a transgene can dwindle over time as the plant's small (s)RNA-guided silencing pathways shut it down. The silencing pathways have evolved as antiviral defence mechanisms, and viruses have co-evolved viral silencing-suppressor proteins (VSPs) to block them. Therefore, VSPs have been routinely used alongside desired transgene constructs to enhance their expression in transient assays. However, constitutive, stable expression of a VSP in a plant usually causes pronounced developmental abnormalities, as their actions interfere with endogenous microRNA-regulated processes, and has largely precluded the use of VSPs as an aid to stable transgene expression. In an attempt to avoid the deleterious effects but obtain the enhancing effect, a number of different VSPs were expressed exclusively in the seeds of Arabidopsis thaliana alongside a three-step transgenic pathway for the synthesis of arachidonic acid (AA), an ω-6 long chain polyunsaturated fatty acid. Results from independent transgenic events, maintained for four generations, showed that the VSP-AA-transformed plants were developmentally normal, apart from minor phenotypes at the cotyledon stage, and could produce 40% more AA than plants transformed with the AA transgene cassette alone. Intriguingly, a geminivirus VSP, V2, was constitutively expressed without causing developmental defects, as it acts on the siRNA amplification step that is not part of the miRNA pathway, and gave strong transgene enhancement. These results demonstrate that VSP expression can be used to protect and enhance stable transgene performance and has significant biotechnological application. PMID:26628000

  11. An evolutionarily conserved interaction of tumor suppressor protein Pdcd4 with the poly(A)-binding protein contributes to translation suppression by Pdcd4.

    PubMed

    Fehler, Olesja; Singh, Priyanka; Haas, Astrid; Ulrich, Diana; Müller, Jan P; Ohnheiser, Johanna; Klempnauer, Karl-Heinz

    2014-01-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) has been implicated in the translational regulation of specific mRNAs, however, the identities of the natural Pdcd4 target mRNAs and the mechanisms by which Pdcd4 affects their translation are not well understood. Pdcd4 binds to the eukaryotic translation initiation factor eIF4A and inhibits its helicase activity, which has suggested that Pdcd4 suppresses translation initiation of mRNAs containing structured 5'-untranslated regions. Recent work has revealed a second inhibitory mechanism, which is eIF4A-independent and involves direct RNA-binding of Pdcd4 to the target mRNAs. We have now identified the poly(A)-binding protein (PABP) as a novel direct interaction partner of Pdcd4. The ability to interact with PABP is shared between human and Drosophila Pdcd4, indicating that it has been highly conserved during evolution. Mutants of Pdcd4 that have lost the ability to interact with PABP fail to stably associate with ribosomal complexes in sucrose density gradients and to suppress translation, as exemplified by c-myb mRNA. Overall, our work identifies PABP as a novel functionally relevant Pdcd4 interaction partner that contributes to the regulation of translation by Pdcd4. PMID:25190455

  12. An evolutionarily conserved interaction of tumor suppressor protein Pdcd4 with the poly(A)-binding protein contributes to translation suppression by Pdcd4

    PubMed Central

    Fehler, Olesja; Singh, Priyanka; Haas, Astrid; Ulrich, Diana; Müller, Jan P.; Ohnheiser, Johanna; Klempnauer, Karl-Heinz

    2014-01-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) has been implicated in the translational regulation of specific mRNAs, however, the identities of the natural Pdcd4 target mRNAs and the mechanisms by which Pdcd4 affects their translation are not well understood. Pdcd4 binds to the eukaryotic translation initiation factor eIF4A and inhibits its helicase activity, which has suggested that Pdcd4 suppresses translation initiation of mRNAs containing structured 5′-untranslated regions. Recent work has revealed a second inhibitory mechanism, which is eIF4A-independent and involves direct RNA-binding of Pdcd4 to the target mRNAs. We have now identified the poly(A)-binding protein (PABP) as a novel direct interaction partner of Pdcd4. The ability to interact with PABP is shared between human and Drosophila Pdcd4, indicating that it has been highly conserved during evolution. Mutants of Pdcd4 that have lost the ability to interact with PABP fail to stably associate with ribosomal complexes in sucrose density gradients and to suppress translation, as exemplified by c-myb mRNA. Overall, our work identifies PABP as a novel functionally relevant Pdcd4 interaction partner that contributes to the regulation of translation by Pdcd4. PMID:25190455

  13. Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase*

    PubMed Central

    Andresen, Christina Aaen; Smedegaard, Stine; Sylvestersen, Kathrine Beck; Svensson, Charlotte; Iglesias-Gato, Diego; Cazzamali, Giuseppe; Nielsen, Tine Kragh; Nielsen, Michael Lund; Flores-Morales, Amilcar

    2014-01-01

    The ankyrin and SOCS (suppressor of cytokine signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting 18 members in humans, the identity of the physiological targets of the Asb proteins remains largely unexplored. To increase our understanding of the function of ASB proteins, we conducted a family-wide SILAC (stable isotope labeling by amino acids in cell culture)-based protein/protein interaction analysis. This investigation led to the identification of novel as well as known ASB-associated proteins like Cullin 5 and Elongins B/C. We observed that several proteins can be bound by more than one Asb protein. The additional exploration of this phenomenon demonstrated that ASB-Cullin 5 complexes can oligomerize and provides evidence that Cullin 5 forms heterodimeric complexes with the Cullin 4a-DDB1 complex. We also demonstrated that ASB11 is a novel endoplasmic reticulum-associated ubiquitin ligase with the ability to interact and promote the ubiquitination of Ribophorin 1, an integral protein of the oligosaccharyltransferase (OST) glycosylation complex. Moreover, expression of ASB11 can increase Ribophorin 1 protein turnover in vivo. In summary, we provide a comprehensive protein/protein interaction data resource that can aid the biological and functional characterization of ASB ubiquitin ligases. PMID:24337577

  14. FUSE Binding Protein 1 Facilitates Persistent Hepatitis C Virus Replication in Hepatoma Cells by Regulating Tumor Suppressor p53

    PubMed Central

    Dixit, Updesh; Pandey, Ashutosh K.; Liu, Zhihe; Kumar, Sushil; Neiditch, Matthew B.; Klein, Kenneth M.

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) is a leading cause of chronic hepatitis C (CHC), liver cirrhosis, and hepatocellular carcinoma (HCC). Immunohistochemistry of archived HCC tumors showed abundant FBP1 expression in HCC tumors with the CHC background. Oncomine data analysis of normal versus HCC tumors with the CHC background indicated a 4-fold increase in FBP1 expression with a concomitant 2.5-fold decrease in the expression of p53. We found that FBP1 promotes HCV replication by inhibiting p53 and regulating BCCIP and TCTP, which are positive and negative regulators of p53, respectively. The severe inhibition of HCV replication in FBP1-knockdown Huh7.5 cells was restored to a normal level by downregulation of either p53 or BCCIP. Although p53 in Huh7.5 cells is transcriptionally inactive as a result of Y220C mutation, we found that the activation and DNA binding ability of Y220C p53 were strongly suppressed by FBP1 but significantly activated upon knockdown of FBP1. Transient expression of FBP1 in FBP1 knockdown cells fully restored the control phenotype in which the DNA binding ability of p53 was strongly suppressed. Using electrophoretic mobility shift assay (EMSA) and isothermal titration calorimetry (ITC), we found no significant difference in in vitro target DNA binding affinity of recombinant wild-type p53 and its Y220C mutant p53. However, in the presence of recombinant FBP1, the DNA binding ability of p53 is strongly inhibited. We confirmed that FBP1 downregulates BCCIP, p21, and p53 and upregulates TCTP under radiation-induced stress. Since FBP1 is overexpressed in most HCC tumors with an HCV background, it may have a role in promoting persistent virus infection and tumorigenesis. IMPORTANCE It is our novel finding that FUSE binding protein 1 (FBP1) strongly inhibits the function of tumor suppressor p53 and is an essential host cell factor required for HCV replication. Oncomine data analysis of a large number of samples has revealed that overexpression of

  15. Regulation of class II beta-tubulin expression by tumor suppressor p53 protein in mouse melanoma cells in response to Vinca alkaloid.

    PubMed

    Arai, Katsuhiko; Matsumoto, Yoshifumi; Nagashima, Yuko; Yagasaki, Kazumi

    2006-04-01

    The continuous exposure of antimicrotubule drugs to tumors often results in the emergence of drug-resistant tumor cells with altered expression of several beta-tubulin isotypes. We found that Vinca alkaloid enhanced expression of class II beta-tubulin isotype (mTUBB2) in mouse B16F10 melanoma cells via alteration of the tumor suppressor p53 protein. Vincristine treatment stimulated an increase in mTUBB2 mRNA expression and promoted accumulation of this isotype around the nuclei. Transient transfection assays employing a reporter construct, together with site-directed mutagenesis studies, suggested that the p53-binding site found in the first intron was a critical region for mTUBB2 expression. Electrophoretic mobility shift assay and associated antibody supershift experiments showed that vincristine promoted release of p53 protein from the binding site. In addition, exogenous induction of TAp63gamma (p51A), a homologue of p53, canceled the effect of vincristine on mTUBB2 expression. These results suggest that p53 protein may function as a suppressor of mTUBB2 expression and vincristine-mediated inhibition of p53 binding results in enhanced mTUBB2 expression. This phenomenon could be related with the emergence of drug-resistant tumor cells induced by Vinca alkaloid and may participate in determining the fate of these cells. PMID:16603638

  16. Tumor suppressor protein Pdcd4 interacts with Daxx and modulates the stability of Daxx and the Hipk2-dependent phosphorylation of p53 at serine 46.

    PubMed

    Kumar, N; Wethkamp, N; Waters, L C; Carr, M D; Klempnauer, K-H

    2013-01-01

    The tumor suppressor protein Pdcd4 is a nuclear/cytoplasmic shuttling protein that has been implicated in the development of several types of human cancer. In the nucleus, Pdcd4 affects the transcription of specific genes by modulating the activity of several transcription factors. We have identified the Daxx protein as a novel interaction partner of Pdcd4. Daxx is a scaffold protein with roles in diverse processes, including transcriptional regulation, DNA-damage signaling, apoptosis and chromatin remodeling. We show that the interaction of both proteins is mediated by the N-terminal domain of Pdcd4 and the central part of Daxx, and that binding to Pdcd4 stimulates the degradation of Daxx, presumably by disrupting the interaction of Daxx with the de-ubiquitinylating enzyme Hausp. Daxx has previously been shown to serve as a scaffold for protein kinase Hipk2 and tumor suppressor protein p53 and to stimulate the phosphorylation of p53 at serine 46 (Ser-46) in response to genotoxic stress. We show that Pdcd4 also disrupts the Daxx-Hipk2 interaction and inhibits the phosphorylation of p53. We also show that ultraviolet irradiation decreases the expression of Pdcd4. Taken together, our results support a model in which Pdcd4 serves to suppress the phosphorylation of p53 in the absence of DNA damage, while the suppressive effect of Pdcd4 is abrogated after DNA damage owing to the decrease of Pdcd4. Overall, our data demonstrate that Pdcd4 is a novel modulator of Daxx function and provide evidence for a role of Pdcd4 in restraining p53 activity in unstressed cells. PMID:23536002

  17. Nucleocytoplasmic transfer of the NF2 tumor suppressor protein merlin is regulated by exon 2 and a CRM1-dependent nuclear export signal in exon 15.

    PubMed

    Kressel, Michael; Schmucker, Beatrice

    2002-09-15

    The neurofibromatosis 2 protein merlin is a classical tumor suppressor protein. Germline mutations predispose to the development of schwannomas, meningiomas and ependymomas. Merlin has been implicated in cellular migration and adhesion. This function is reflected in its subcellular localization at the plasma membrane and known interacting partners. Merlin has been regarded as an exception in not exerting a functional role within the nucleus as other tumor suppressors do. Here, we show that detection of wild-type protein in the nucleus is a rare event. However, splicing out of exon 2 leads to unrestricted entry into the nucleus. Skipping of adjacent exon 3 has no comparable effect ruling out an unspecific effect due to misfolding of the 4.1/JEF domain. Exon 2 functions as a cytoplasmic retention factor as it is able to confer sole cytoplasmic localization to a GFP fusion protein. Nuclear entry of merlin is thus regulated by alternative splicing within the 4.1/JEF domain and analogous to band 4.1 protein. Merlin's ability to enter the nucleus is complemented by a full nuclear-cytoplasmic shuttle protein with a functional Rev-type nuclear export sequence (NES) within exon 15 that facilitates export via the CRM1/exportin pathway. Deletion of this NES or treatment with the CRM1-specific inhibitor leptomycin B leads to overall nuclear accumulation of merlin isoforms missing exon 2. A cellular function different to the wild-type protein is implied for naturally occurring splice variants lacking exon 2. A putative effect of merlin as a transcriptional regulator and identification of nuclear binding partners remains to be elucidated. PMID:12217955

  18. The 1.35 A resolution structure of the phosphatase domain of the suppressor of T cell receptor signaling protein in complex with sulfate

    SciTech Connect

    Jakoncic, J.; Sondgeroth, B.; Carpino, N.; Nassar, N.

    2010-04-19

    The suppressor of T-cell signaling (Sts) proteins are multidomain proteins that negatively regulate the signaling of membrane-bound receptors, including the T-cell receptor (TCR) and the epidermal growth-factor receptor (EGFR). They contain at their C-terminus a 2H-phosphatase homology (PGM) domain that is responsible for their protein tyrosine phosphatase activity. Here, the crystal structure of the phosphatase domain of Sts-1, Sts-1PGM, was determined at pH 4.6. The asymmetric unit contains two independent molecules and each active site is occupied by a sulfate ion. Each sulfate is located at the phosphate-binding site and makes similar interactions with the catalytic residues. The structure suggests an explanation for the lower Michaelis-Menten constants at acidic pH.

  19. Fast-Suppressor Screening for New Components in Protein Trafficking, Organelle Biogenesis and Silencing Pathway in Arabidopsis thaliana Using DEX-Inducible FREE1-RNAi Plants

    PubMed Central

    Zhao, Qiong; Gao, Caiji; Lee, PoShing; Liu, Lin; Li, Shaofang; Hu, Tangjin; Shen, Jinbo; Pan, Shuying; Ye, Hao; Chen, Yunru; Cao, Wenhan; Cui, Yong; Zeng, Peng; Yu, Sheng; Gao, Yangbin; Chen, Liang; Mo, Beixin; Liu, Xin; Xiao, Shi; Zhao, Yunde; Zhong, Silin; Chen, Xuemei; Jiang, Liwen

    2015-01-01

    Membrane trafficking is essential for plant growth and responses to external signals. The plant unique FYVE domain-containing protein FREE1 is a component of the ESCRT complex (endosomal sorting complex required for transport). FREE1 plays multiple roles in regulating protein trafficking and organelle biogenesis including the formation of intraluminal vesicles of multivesicular body (MVB), vacuolar protein transport and vacuole biogenesis, and autophagic degradation. FREE1 knockout plants show defective MVB formation, abnormal vacuolar transport, fragmented vacuoles, accumulated autophagosomes, and seedling lethality. To further uncover the underlying mechanisms of FREE1 function in plants, we performed a forward genetic screen for mutants that suppressed the seedling lethal phenotype of FREE1-RNAi transgenic plants. The obtained mutants are termed as suppressors of free1 (sof). To date, 229 putative sof mutants have been identified. Barely detecting of FREE1 protein with M3 plants further identified 84 FREE1-related suppressors. Also 145 mutants showing no reduction of FREE1 protein were termed as RNAi-related mutants. Through next-generation sequencing (NGS) of bulked DNA from F2 mapping population of two RNAi-related sof mutants, FREE1-RNAi T-DNA inserted on chromosome 1 was identified and the causal mutation of putative sof mutant is being identified similarly. These FREE1- and RNAi-related sof mutants will be useful tools and resources for illustrating the underlying mechanisms of FREE1 function in intracellular trafficking and organelle biogenesis, as well as for uncovering the new components involved in the regulation of silencing pathways in plants. PMID:26165498

  20. WWOX: a fragile tumor suppressor

    PubMed Central

    Schrock, Morgan S.; Huebner, Kay

    2015-01-01

    WWOX, the WW domain-containing oxidoreductase gene at chromosome region 16q23.3-q24.1, spanning chromosomal fragile site FRA16D, encodes the 46 kDa Wwox protein. WWOX is a tumor suppressor that is lost or reduced in expression in a wide variety of cancers, including breast, prostate, ovarian, and lung. The function of WWOX as a tumor suppressor implies that it serves an essential function in the prevention of carcinogenesis. Indeed, in vitro studies show that Wwox protein interacts with many binding partners to regulate cellular apoptosis, proliferation and/or maturation. It has been reported that newborn Wwox knockout mice exhibit nascent osteosarcomas while Wwox+/- mice exhibit increased incidence of spontaneous and induced tumors. Furthermore, absence or reduction of Wwox expression in mouse xenograft models results in increased tumorigenesis, which can be rescued by Wwox re-expression, though there is not universal agreement among investigators regarding the role of Wwox loss in these experimental models. Despite this proposed tumor suppressor function, the overlap of WWOX with FRA16D sensitizes the gene to protein-inactivating deletions caused by replication stress. The high frequency of deletions within the WWOX locus in cancers of various types, without the hallmark protein inactivation-associated mutations of ‘classical’ tumor suppressors, has led to the proposal that WWOX deletions in cancers are passenger events that occur in early cancer progenitor cells due to fragility of the genetic locus, rather than driver events which provide the cancer cell a selective advantage. Recently, a proposed epigenetic cause of chromosomal fragility has suggested a novel mechanism for early fragile site instability and has implications regarding the involvement of tumor suppressor genes at CFSs in cancer. In this review, we provide an overview of the evidence for WWOX as a tumor suppressor gene and put this into the context of fragility associated with the FRA16D

  1. Nuclear tumor suppressors in space and time.

    PubMed

    Barbie, David A; Conlan, Lindus A; Kennedy, Brian K

    2005-07-01

    Numerous studies have identified key binding partners and functional activities of nuclear tumor-suppressor proteins such as the retinoblastoma protein, p53 and BRCA1. Historically, less attention has been given to the subnuclear locations of these proteins. Here, we describe several recent studies that promote the view that regulated association with subcompartments of the nucleus is inherent to tumor-suppressor function. PMID:15936946

  2. Transient Co-Expression of Post-Transcriptional Gene Silencing Suppressors for Increased in Planta Expression of a Recombinant Anthrax Receptor Fusion Protein

    PubMed Central

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M.; McDonald, Karen A.

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI. PMID:21954339

  3. Restoration of tumor suppressor functions by small-molecule inhibitors

    PubMed Central

    Pyndiah, Slovénie; Sakamuro, Daitoku

    2015-01-01

    Over the last decades, accumulating data have advanced our understanding of the mechanism of action of tumor suppressor proteins and therapeutic strategies to restore tumor suppressor pathways have emerged as a promising approach for cancer therapy. Based on our recent findings on bridging integrator-1 (BIN1), we outline potential advantages and disadvantages of chemical activation of tumor suppressors. PMID:27308472

  4. Gene Therapy of c-myc Suppressor FUSE-Binding Protein-Interacting Repressor by Sendai Virus Delivery Prevents Tracheal Stenosis

    PubMed Central

    Mizokami, Daisuke; Araki, Koji; Tanaka, Nobuaki; Suzuki, Hiroshi; Tomifuji, Masayuki; Yamashita, Taku; Ueda, Yasuji; Shimada, Hideaki; Matsushita, Kazuyuki; Shiotani, Akihiro

    2015-01-01

    Acquired tracheal stenosis remains a challenging problem for otolaryngologists. The objective of this study was to determine whether the Sendai virus (SeV)-mediated c-myc suppressor, a far upstream element (FUSE)-binding protein (FBP)-interacting repressor (FIR), modulates wound healing of the airway mucosa, and whether it prevents tracheal stenosis in an animal model of induced mucosal injury. A fusion gene-deleted, non-transmissible SeV vector encoding FIR (FIR-SeV/ΔF) was prepared. Rats with scraped airway mucosae were administered FIR-SeV/ΔF through the tracheostoma. The pathological changes in the airway mucosa and in the tracheal lumen were assessed five days after scraping. Untreated animals showed hyperplasia of the airway epithelium and a thickened submucosal layer with extensive fibrosis, angiogenesis, and collagen deposition causing lumen stenosis. By contrast, the administration of FIR-SeV/ΔF decreased the degree of tracheal stenosis (P < 0.05) and improved the survival rate (P < 0.05). Immunohistochemical staining showed that c-Myc expression was downregulated in the tracheal basal cells of the FIR-SeV/ΔF-treated animals, suggesting that c-myc was suppressed by FIR-SeV/ΔF in the regenerating airway epithelium of the injured tracheal mucosa. The airway-targeted gene therapy of the c-myc suppressor FIR, using a recombinant SeV vector, prevented tracheal stenosis in a rat model of airway mucosal injury. PMID:25569246

  5. Suppressor mutations in the Glutamine Dumper1 protein dissociate disturbance in amino acid transport from other characteristics of the Gdu1D phenotype

    PubMed Central

    Yu, Shi; Pratelli, Réjane; Denbow, Cynthia; Pilot, Guillaume

    2015-01-01

    Intracellular amino acid transport across plant membranes is critical for metabolic pathways which are often split between different organelles. In addition, transport of amino acids across the plasma membrane enables the distribution of organic nitrogen through the saps between leaves and developing organs. Amino acid importers have been studied for more than two decades, and their role in this process is well-documented. While equally important, amino acid exporters are not well-characterized. The over-expression of GDU1, encoding a small membrane protein with one transmembrane domain, leads to enhancement of amino acid export by Arabidopsis cells, glutamine secretion at the leaf margin, early senescence and size reduction of the plant, possibly caused by the stimulation of amino acid exporter(s). Previous work reported the identification of suppressor mutations of the GDU1 over-expression phenotype, which affected the GDU1 and LOG2 genes, the latter encoding a membrane-bound ubiquitin ligase interacting with GDU1. The present study focuses on the characterization of three additional suppressor mutations affecting GDU1. Size, phenotype, glutamine transport and amino acid tolerance were recorded for recapitulation plants and over-expressors of mutagenized GDU1 proteins. Unexpectedly, the over-expression of most mutated GDU1 led to plants with enhanced amino acid export, but failing to display secretion of glutamine and size reduction. The results show that the various effects triggered by GDU1 over-expression can be dissociated from one another by mutagenizing specific residues. The fact that these residues are not necessarily conserved suggests that the diverse biochemical properties of the GDU1 protein are not only born by the characterized transmembrane and VIMAG domains. These data provide a better understanding of the structure/function relationships of GDU1 and may enable modifying amino acid export in plants without detrimental effects on plant fitness

  6. Ubiquitination of the N-terminal Region of Caveolin-1 Regulates Endosomal Sorting by the VCP/p97 AAA-ATPase*

    PubMed Central

    Kirchner, Philipp; Bug, Monika; Meyer, Hemmo

    2013-01-01

    Caveolin-1 (CAV1) is the defining constituent of caveolae at the plasma membrane of many mammalian cells. For turnover, CAV1 is ubiquitinated and sorted to late endosomes and lysosomes. Sorting of CAV1 requires the AAA+-type ATPase VCP and its cofactor UBXD1. However, it is unclear in which region CAV1 is ubiquitinated and how ubiquitination is linked to sorting of CAV1 by VCP-UBXD1. Here, we show through site-directed mutagenesis that ubiquitination of CAV1 occurs at any of the six lysine residues, 5, 26, 30, 39, 47, and 57, that are clustered in the N-terminal region but not at lysines in the oligomerization, intramembrane, or C-terminal domains. Mutation of Lys-5–57 to arginines prevented binding of the VCP-UBXD1 complex and, importantly, strongly reduced recruitment of VCP-UBXD1 to endocytic compartments. Moreover, the Lys-5–57Arg mutation specifically interfered with trafficking of CAV1 from early to late endosomes. Conversely and consistently, depletion of VCP or UBXD1 led to accumulation of ubiquitinated CAV1, suggesting that VCP acts downstream of ubiquitination and is required for transport of the ubiquitinated form of CAV1 to late endosomes. These results define the N-terminal region of CAV1 as the critical ubiquitin conjugation site and, together with previous data, demonstrate the significance of this ubiquitination for binding to the VCP-UBXD1 complex and for sorting into lysosomes. PMID:23335559

  7. Exercise-Induced Changes in Caveolin-1, Depletion of Mitochondrial Cholesterol, and the Inhibition of Mitochondrial Swelling in Rat Skeletal Muscle but Not in the Liver.

    PubMed

    Flis, Damian Jozef; Olek, Robert Antoni; Kaczor, Jan Jacek; Rodziewicz, Ewa; Halon, Malgorzata; Antosiewicz, Jedrzej; Wozniak, Michal; Gabbianelli, Rosita; Ziolkowski, Wieslaw

    2016-01-01

    The reduction in cholesterol in mitochondria, observed after exercise, is related to the inhibition of mitochondrial swelling. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and is required by various signalling pathways. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the mitochondrial Cav-1 concentration; additionally, we identified the results of these changes as they relate to the induction of changes in the mitochondrial swelling and cholesterol in rat skeletal muscle and liver. Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their quadriceps femoris muscles and livers were immediately removed for experimentation. The exercise protocol caused an increase in the Cav-1 concentration in crude muscle mitochondria; this was related to a reduction in the cholesterol level and an inhibition of mitochondrial swelling. There were no changes in rat livers, with the exception of increased markers of oxidative stress in mitochondria. These data indicate the possible role of Cav-1 in the adaptive change in the rat muscle mitochondria following exercise. PMID:26839631

  8. Methylated Bone Morphogenetic Protein 3 (BMP3) Gene: Evaluation of Tumor Suppressor Function and Biomarker Potential in Biliary Cancer

    PubMed Central

    Kisiel, John B; Li, Jia; Zou, Hongzhi; Oseini, Abdul M; Strauss, Benjamin B; Gulaid, Kadra H.; Moser, Catherine D; Aderca, Ileana; Ahlquist, David A; Roberts, Lewis R; Shire, Abdirashid M

    2014-01-01

    Background Although cholangiocarcinoma (CC) is an uncommon and highly lethal malignancy, early detection enables the application of potentially curative therapies and improves survival. Consequently, tools to improve the early diagnosis of CC are urgently needed. During a screen for genes epigenetically suppressed by methylation in CC that might serve as methylation markers for CC, we found that the BMP3 gene is methylated in CC cell lines, but the potential diagnostic value and the function of BMP3 in CC are unknown. Methods We aimed to quantitatively assess BMP3 methylation in resected CC tumor specimens using methylation specific PCR and evaluate the tumor suppressor role of BMP3 in biliary cancer cell lines in comparison to an immortalized normal cholangiocyte cell line. Expression of BMP3 was quantified by mRNA levels before and after treatment with 5-Aza-2’-deoxycytidine and trichostatin A. After transfection with a BMP3-containing plasmid, cell viability was measured using the bromodeoxyuridine incorporation assay and apoptosis quantified by caspase assay. Results In primary CC tumor tissue specimens significantly more methylated BMP3 copies were found when compared to matched benign bile duct epithelium from the same patient, with high specificity. BMP3 expression was absent in cell lines with BMP3 methylation; this suppression of BMP3 expression was reversed by treatment with a DNA demethylating agent and histone de-acetylase inhibitor. Transfection of a BMP3-expressing construct into a BMP3-negative biliary cancer cell line restored BMP3 mRNA expression and reduced cell proliferation and cell viability while increasing the rate of apoptosis. Conclusion These findings strongly support a tumor suppressor role for BMP3 in CC and suggest that BMP3 methylation may be a new biomarker for early detection of CCs. of the peptidome are also involved. PMID:25077038

  9. ATP13A3 and caveolin-1 as potential biomarkers for difluoromethylornithine-based therapies in pancreatic cancers

    PubMed Central

    Madan, Meenu; Patel, Arjun; Skruber, Kristen; Geerts, Dirk; Altomare, Deborah A; IV, Otto Phanstiel

    2016-01-01

    The purpose of this paper was to better understand the role of polyamine transport in pancreatic cancers.This paper identifies potential biomarkers for assessing the relative tumor commitment to polyamine biosynthesis or transport. Cell lines with low polyamine import activity and low ATP13A3 protein levels appear committed to polyamine biosynthesis and required high concentrations of the polyamine biosynthesis inhibitor, difluoromethylornithine (DFMO) to inhibit their growth (e.g., AsPC-1 and Capan 1). In contrast, cell lines with high polyamine import activity and high ATP13A3 protein expression (e.g., L3.6pl) demonstrated a commitment to polyamine transport and required lower DFMO concentrations to inhibit their growth. Pancreatic cancer cell lines which were most sensitive to DFMO also gave the highest EC50 values for the polyamine transport inhibitors (PTIs) tested indicating that more PTI was needed to inhibit the active polyamine transport systems of these cell lines. Most significant is that the combination therapy of DFMO+PTI was efficacious against both cell types with the PTI showing low efficacy in cell lines with low polyamine transport activity and high efficacy in cell lines with high polyamine transport activity. High ATP13A3 protein expression and moderate to low Cav-1 protein expression was shown to be predictive of tumors which effectively escape DFMO via polyamine import. In summary, this report demonstrates for the first time the role of ATP13A3 in polyamine transport and its use as a potential biomarker along with Cav-1 to select tumors most susceptible to DFMO. These findings may help stratify patients in the ongoing clinical trials with DFMO-based therapies and help predict tumor response. PMID:27429841

  10. Tid1, the Mammalian Homologue of Drosophila Tumor Suppressor Tid56, Mediates Macroautophagy by Interacting with Beclin1-containing Autophagy Protein Complex*

    PubMed Central

    Niu, Ge; Zhang, Huan; Liu, Dan; Chen, Li; Belani, Chandra; Wang, Hong-Gang; Cheng, Hua

    2015-01-01

    One of the fundamental functions of molecular chaperone proteins is to selectively conjugate cellular proteins, targeting them directly to lysosome. Some of chaperones, such as the stress-induced Hsp70, also play important roles in autophagosome-forming macroautophagy under various stress conditions. However, the role of their co-chaperones in autophagy regulation has not been well defined. We here show that Tid1, a DnaJ co-chaperone for Hsp70 and the mammalian homologue of the Drosophila tumor suppressor Tid56, is a key mediator of macroautophagy pathway. Ectopic expression of Tid1 induces autophagy by forming LC3+ autophagosome foci, whereas silencing Tid1 leads to drastic impairment of autophagy as induced by nutrient deprivation or rapamycin. In contrast, Hsp70 is dispensable for a role in nutrient deprivation-induced autophagy. The murine Tid1 can be replaced with human Tid1 in murine fibroblast cells for induction of autophagy. We further show that Tid1 increases autophagy flux by interacting with the Beclin1-PI3 kinase class III protein complex in response to autophagy inducing signal and that Tid1 is an essential mediator that connects IκB kinases to the Beclin1-containing autophagy protein complex. Together, these results reveal a crucial role of Tid1 as an evolutionarily conserved and essential mediator of canonical macroautophagy. PMID:26055714

  11. MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer

    PubMed Central

    Bae, Hyun Jin; Eun, Jung Woo; Shen, Qingyu; Park, Se Jin; Shin, Woo Chan; Yang, Hee Doo; Park, Mijung; Park, Won Sang; Kang, Yong-Koo; Nam, Suk Woo

    2015-01-01

    MicroRNA-31 (miR-31) is among the most frequently altered microRNAs in human cancers and altered expression of miR-31 has been detected in a large variety of tumor types, but the functional role of miR-31 still hold both tumor suppressive and oncogenic roles in different tumor types. MiR-31 expression was down-regulated in a large cohort of hepatocellular carcinoma (HCC) patients, and low expression of miR-31 was significantly associated with poor prognosis of HCC patients. Ectopic expression of miR-31 mimics suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins. Additional study evidenced miR-31 directly to suppress HDAC2 and CDK2 expression by inhibiting mRNA translation in HCC cells. We also found that ectopic expression of miR-31 mimics reduced metastatic potential of HCC cells by selectively regulating epithelial-mesenchymal transition (EMT) regulatory proteins such as N-cadherin, E-cadherin, vimentin and fibronectin. HCC tissues derived from chemical-induced rat liver cancer models validated that miR-31 expression is significantly down-regulated, and that those cell cycle- and EMT-regulatory proteins are deregulated in rat liver cancer. Overall, we suggest that miR-31 functions as a tumor suppressor by selectively regulating cell cycle and EMT regulatory proteins in human hepatocarcinogenesis providing a novel target for the molecular treatment of liver malignancies. PMID:25797269

  12. Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis

    PubMed Central

    Yoon, Young-Sil; Lee, Min-Woo; Ryu, Dongryeol; Kim, Jeong Ho; Ma, Hui; Seo, Woo-Young; Kim, Yo-Na; Kim, Su Sung; Lee, Chul Ho; Hunter, Tony; Choi, Cheol Soo; Montminy, Marc R.; Koo, Seung-Hoi

    2010-01-01

    Fasting promotes hepatic gluconeogenesis to maintain glucose homeostasis. The cAMP-response element binding protein (CREB)-regulated transcriptional coactivator 2 (CRTC2) is responsible for transcriptional activation of gluconeogenic genes and is critical for conveying the opposing hormonal signals of glucagon and insulin in the liver. Here, we show that suppressor of MEK null 1 (SMEK1) and SMEK2 [protein phosphatase 4 (PP4) regulatory subunits 3a and 3b, respectively] are directly involved in the regulation of hepatic glucose metabolism in mice. Expression of hepatic SMEK1/2 is up-regulated during fasting or in mouse models of insulin-resistant conditions in a Peroxisome Proliferator-Activated Receptor-gamma Coactivator 1α (PGC-1α)-dependent manner. Overexpression of SMEK promotes elevations in plasma glucose with increased hepatic gluconeogenic gene expression, whereas depletion of the SMEK proteins reduces hyperglycemia and enhances CRTC2 phosphorylation; the effect is blunted by S171A CRTC2, which is refractory to salt-inducible kinase (SIK)-dependent inhibition. Taken together, we would propose that mammalian SMEK/PP4C proteins are involved in the regulation of hepatic glucose metabolism through dephosphorylation of CRTC2. PMID:20876121

  13. Leishmania donovani prevents oxidative burst-mediated apoptosis of host macrophages through selective induction of suppressors of cytokine signaling (SOCS) proteins.

    PubMed

    Srivastav, Supriya; Basu Ball, Writoban; Gupta, Purnima; Giri, Jayeeta; Ukil, Anindita; Das, Pijush K

    2014-01-10

    One of the mechanisms for establishment of infection employed by intra-macrophage pathogen-like Leishmania is inhibition of oxidative burst-mediated macrophage apoptosis to protect their niche for survival and replication. We tried to elucidate the underlying mechanism for this by using H2O2 for induction of apoptosis. Leishmania donovani-infected macrophages were much more resistant to H2O2-mediated apoptosis compared with control. Although infected cells were capable of comparable reactive oxygen species production, there was less activation of the downstream cascade consisting of caspase-3 and -7 and cleaved poly(ADP)-ribose polymerase. Suppressors of cytokine signaling (SOCS) 1 and 3 proteins and reactive oxygen species scavenging enzyme thioredoxin, known to be involved in stabilization of protein-tyrosine phosphatases, were found to be induced during infection. Induction of SOCS proteins may be mediated by Egr1, and silencing of Socs1 and -3 either alone or in combination resulted in reduced thioredoxin levels, enhanced activation of caspases, and increased apoptosis of infected macrophages. The induction of protein-tyrosine phosphatases, thioredoxin, SOCS, and Egr1 in L. donovani-infected macrophages was found to be unaffected by H2O2 treatment. SOCS knocked down cells also displayed decreased parasite survival thus marking reduction in disease progression. Taken together, these results suggest that L. donovani may exploit SOCS for subverting macrophage apoptotic machinery toward establishing its replicative niche inside the host. PMID:24275663

  14. A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth.

    PubMed

    Fernandez-Zapico, Martin E; Lomberk, Gwen A; Tsuji, Shoichiro; DeMars, Cathrine J; Bardsley, Michael R; Lin, Yi-Hui; Almada, Luciana L; Han, Jing-Jing; Mukhopadhyay, Debabrata; Ordog, Tamas; Buttar, Navtej S; Urrutia, Raul

    2011-04-15

    SP/KLF (Specificity protein/Krüppel-like factor) transcription factors comprise an emerging group of proteins that may behave as tumour suppressors. Incidentally, many cancers that display alterations in certain KLF proteins are also associated with a high incidence of KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homologue) mutations. Therefore in the present paper we investigate whether SP/KLF proteins suppress KRAS-mediated cell growth, and more importantly, the potential mechanisms underlying these effects. Using a comprehensive family-wide screening of the 24 SP/KLF members, we discovered that SP5, SP8, KLF2, KLF3, KLF4, KLF11, KLF13, KLF14, KLF15 and KLF16 inhibit cellular growth and suppress transformation mediated by oncogenic KRAS. Each protein in this subset of SP/KLF members individually inhibits BrdU (5-bromo-2-deoxyuridine) incorporation in KRAS oncogenic-mutant cancer cells. SP5, KLF3, KLF11, KLF13, KLF14 and KLF16 also increase apoptosis in these cells. Using KLF11 as a representative model for mechanistic studies, we demonstrate that this protein inhibits the ability of cancer cells to form both colonies in soft agar and tumour growth in vivo. Molecular studies demonstrate that these effects of KLF11 are mediated, at least in part, through silencing cyclin A via binding to its promoter and leading to cell-cycle arrest in S-phase. Interestingly, similar to KLF11, KLF14 and KLF16 mechanistically share the ability to modulate the expression of cyclin A. Collectively, the present study stringently defines a distinct subset of SP/KLF proteins that impairs KRAS-mediated cell growth, and that mechanistically some members of this subset accomplish this, at least in part, through regulation of the cyclin A promoter. PMID:21171965

  15. Caveolin-1 (P132L), a Common Breast Cancer Mutation, Confers Mammary Cell Invasiveness and Defines a Novel Stem Cell/Metastasis-Associated Gene Signature

    PubMed Central

    Bonuccelli, Gloria; Casimiro, Mathew C.; Sotgia, Federica; Wang, Chenguang; Liu, Manran; Katiyar, Sanjay; Zhou, Jie; Dew, Elliott; Capozza, Franco; Daumer, Kristin M.; Minetti, Carlo; Milliman, Janet N.; Alpy, Fabien; Rio, Marie-Christine; Tomasetto, Catherine; Mercier, Isabelle; Flomenberg, Neal; Frank, Philippe G.; Pestell, Richard G.; Lisanti, Michael P.

    2009-01-01

    Here we used the Met-1 cell line in an orthotopic transplantation model in FVB/N mice to dissect the role of the Cav-1(P132L) mutation in human breast cancer. Identical experiments were performed in parallel with wild-type Cav-1. Cav-1(P132L) up-regulated the expression of estrogen receptor-α as predicted, because only estrogen receptor-α-positive patients have been shown to harbor Cav-1(P132L) mutations. In the context of primary tumor formation, Cav-1(P132L) behaved as a loss-of-function mutation, lacking any tumor suppressor activity. In contrast, Cav-1(P132L) caused significant increases in cell migration, invasion, and experimental metastasis, consistent with a gain-of-function mutation. To identify possible molecular mechanism(s) underlying this invasive gain-of-function activity, we performed unbiased gene expression profiling. From this analysis, we show that the Cav-1(P132L) expression signature contains numerous genes that have been previously associated with cell migration, invasion, and metastasis. These include i) secreted growth factors and extracellular matrix proteins (Cyr61, Plf, Pthlh, Serpinb5, Tnc, and Wnt10a), ii) proteases that generate EGF and HGF (Adamts1 and St14), and iii) tyrosine kinase substrates and integrin signaling/adapter proteins (Akap13, Cdcp1, Ddef1, Eps15, Foxf1a, Gab2, Hs2st1, and Itgb4). Several of the P132L-specific genes are also highly expressed in stem/progenitor cells or are associated with myoepithelial cells, suggestive of an epithelial-mesenchymal transition. These results directly support clinical data showing that patients harboring Cav-1 mutations are more likely to undergo recurrence and metastasis. PMID:19395651

  16. Alternative splicing of Wilms tumor suppressor 1 (Wt1) exon 4 results in protein isoforms with different functions.

    PubMed

    Schnerwitzki, Danny; Perner, Birgit; Hoppe, Beate; Pietsch, Stefan; Mehringer, Rebecca; Hänel, Frank; Englert, Christoph

    2014-09-01

    The Wilms tumor suppressor gene Wt1 encodes a zinc finger transcription factor that is essential for development of multiple organs including kidneys, gonads, spleen and heart. In mammals Wt1 comprises 10 exons with two characteristic splicing events: inclusion or skipping of exon 5 and alternative usage of two splice donor sites between exons 9 and 10. Most fish including zebrafish and medaka possess two wt1 paralogs, wt1a and wt1b, both lacking exon 5. Here we have characterized wt1 in guppy, platyfish and the short-lived African killifish Nothobranchius furzeri. All fish except zebrafish show alternative splicing of exon 4 of wt1a but not of wt1b with the wt1a(-exon 4) isoform being the predominant splice variant. With regard to function, Wt1a(+exon 4) showed less dimerization but stimulated transcription more effectively than the Wt1a(-exon 4) isoform. A specific knockdown of wt1a exon 4 in zebrafish was associated with anomalies in kidney development demonstrating a physiological function for Wt1a exon 4. Interestingly, alternative splicing of exon 4 seems to be an early evolutionary event as it is observed in the single wt1 gene of the sturgeon, a species that has not gone through teleost-specific genome duplication. PMID:25014653

  17. Effects of hepatitis C virus on suppressor of cytokine signaling mRNA levels: comparison between different genotypes and core protein sequence analysis.

    PubMed

    Pascarella, Stéphanie; Clément, Sophie; Guilloux, Kévin; Conzelmann, Stéphanie; Penin, François; Negro, Francesco

    2011-06-01

    Glucose metabolism disturbances, including insulin resistance and type 2 diabetes, are frequent and important cofactors of hepatitis C. Increasing epidemiological and experimental data suggest that all major genotypes of hepatitis C virus (HCV), albeit to a different extent, cause insulin resistance. The HCV core protein has been shown to be sufficient to impair insulin signaling in vitro through several post-receptorial mechanisms, mostly via the activation of suppressor of cytokine signaling (SOCS) family members and the consequent decrease of insulin receptor substrate-1 (IRS-1). The levels of IRS-1 and SOCS were investigated upon expression of the core protein of HCV genotypes 1-4. Furthermore, the core protein sequences were analyzed to identify the amino acid residues responsible for IRS-1 decrease, with particular regard to SOCS mRNA deregulation. The results suggest that the activation of SOCS family members is a general mechanism associated with the common HCV genotypes. A rare genotype 1b variant, however, failed to activate any of the SOCS tested: this allowed to analyze in detail the distinct amino acid sequences responsible for SOCS deregulation. By combining approaches using intergenotypic chimeras and site-directed mutagenesis, genetic evidence was provided in favor of a role of amino acids 49 and 131 of the HCV core-encoding sequence in mediating SOCS transactivation. PMID:21503913

  18. The Tumor Suppressor Activity of the Transmembrane Protein with Epidermal Growth Factor and Two Follistatin Motifs 2 (TMEFF2) Correlates with Its Ability to Modulate Sarcosine Levels*

    PubMed Central

    Chen, Xiaofei; Overcash, Ryan; Green, Thomas; Hoffman, Donald; Asch, Adam S.; Ruiz-Echevarría, Maria J.

    2011-01-01

    The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed in brain and prostate and overexpressed in prostate cancer, but its role in this disease is unclear. Several studies have suggested that TMEFF2 plays a role in suppressing the growth and invasive potential of human cancer cells, whereas others suggest that the shed portion of TMEFF2, which lacks the cytoplasmic region, has a growth-promoting activity. Here we show that TMEFF2 has a dual mode of action. Ectopic expression of wild-type full-length TMEFF2 inhibits soft agar colony formation, cellular invasion, and migration and increases cellular sensitivity to apoptosis. However, expression of the ectodomain portion of TMEFF2 increases cell proliferation. Using affinity chromatography and mass spectrometry, we identify sarcosine dehydrogenase (SARDH), the enzyme that converts sarcosine to glycine, as a TMEFF2-interacting protein. Co-immunoprecipitation and immunofluorescence analysis confirms the interaction of SARDH with full-length TMEFF2. The ectodomain does not bind to SARDH. Moreover, expression of the full-length TMEFF2 but not the ectodomain results in a decreased level of sarcosine in the cells. These results suggest that the tumor suppressor activity of TMEFF2 requires the cytoplasmic/transmembrane portion of the protein and correlates with its ability to bind to SARDH and to modulate the level of sarcosine. PMID:21393249

  19. Cellular Retinoic Acid Binding Protein 2 Is Strikingly Downregulated in Human Esophageal Squamous Cell Carcinoma and Functions as a Tumor Suppressor

    PubMed Central

    Xiao, Weifan; Sun, Fenyong; Yuan, Hong; Pan, Qiuhui

    2016-01-01

    Esophageal squamous cell carcinoma (ESCC) is the predominant pathotype of esophageal carcinoma (EC) in China, especially in Henan province, with poor prognosis and limited 5-year survival rate. Cellular retinoic acid binding protein 2 (CRABP2) is a member of the retinoic acid (RA) and lipocalin/cytosolic fatty-acid binding protein family and plays a completely contrary role in tumorigenesis through the retinoid signaling pathway, depending on the nuclear RA receptors (RAR) and PPARbeta/delta receptors. Presently, the biological role of CRABP2 in the development of ESCC has never been reported. Here, we firstly evaluated the expression of CRABP2 at both mRNA and protein levels and showed that it was remarkably downregulated in clinical ESCC tissues and closely correlated with the occurrence position, pathology, TNM stage, size, infiltration depth and cell differentiation of the tumor. Additionally, the biological function assays demonstrated that CRABP2 acted as a tumor suppressor in esophageal squamous carcinogenesis by significantly inhibiting cell growth, inducing cell apoptosis and blocking cell metastasis both in vitro and in vivo. All in all, our finding simplicate that CRABP2 is possibly an efficient molecular marker for diagnosing and predicting the development of ESCC. PMID:26839961

  20. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein

    NASA Technical Reports Server (NTRS)

    Ratner, N.; Bloom, G. S.; Brady, S. T.

    1998-01-01

    Proteins that interact with both cytoskeletal and membrane components are candidates to modulate membrane trafficking. The tumor suppressor proteins neurofibromin (NF1) and adenomatous polyposis coli (APC) both bind to microtubules and interact with membrane-associated proteins. The effects of recombinant NF1 and APC fragments on vesicle motility were evaluated by measuring fast axonal transport along microtubules in axoplasm from squid giant axons. APC4 (amino acids 1034-2844) reduced only anterograde movements, whereas APC2 (aa 1034-2130) or APC3 (aa 2130-2844) reduced both anterograde and retrograde transport. NF1 had no effect on organelle movement in either direction. Because APC contains multiple cyclin-dependent kinase (CDK) consensus phosphorylation motifs, the kinase inhibitor olomoucine was examined. At concentrations in which olomoucine is specific for cyclin-dependent kinases (5 microM), it reduced only anterograde transport, whereas anterograde and retrograde movement were both affected at concentrations at which other kinases are inhibited as well (50 microM). Both anterograde and retrograde transport also were inhibited by histone H1 and KSPXK peptides, substrates for proline-directed kinases, including CDKs. Our data suggest that CDK-like axonal kinases modulate fast anterograde transport and that other axonal kinases may be involved in modulating retrograde transport. The specific effect of APC4 on anterograde transport suggests a model in which the binding of APC to microtubules may limit the activity of axonal CDK kinase or kinases in restricted domains, thereby affecting organelle transport.

  1. Exchange Factor TBL1 and Arginine Methyltransferase PRMT6 Cooperate in Protecting G Protein Pathway Suppressor 2 (GPS2) from Proteasomal Degradation*

    PubMed Central

    Huang, Jiawen; Cardamone, M. Dafne; Johnson, Holly E.; Neault, Mathieu; Chan, Michelle; Floyd, Z. Elizabeth; Mallette, Frédérick A.; Perissi, Valentina

    2015-01-01

    G protein pathway suppressor 2 (GPS2) is a multifunctional protein involved in the regulation of a number of metabolic organs. First identified as part of the NCoR-SMRT corepressor complex, GPS2 is known to play an important role in the nucleus in the regulation of gene transcription and meiotic recombination. In addition, we recently reported a non-transcriptional role of GPS2 as an inhibitor of the proinflammatory TNFα pathway in the cytosol. Although this suggests that the control of GPS2 localization may be an important determinant of its molecular functions, a clear understanding of GPS2 differential targeting to specific cellular locations is still lacking. Here we show that a fine balance between protein stabilization and degradation tightly regulates GPS2 nuclear function. Our findings indicate that GPS2 is degraded upon polyubiquitination by the E3 ubiquitin ligase Siah2. Unexpectedly, interaction with the exchange factor TBL1 is required to protect GPS2 from degradation, with methylation of GPS2 by arginine methyltransferase PRMT6 regulating the interaction with TBL1 and inhibiting proteasome-dependent degradation. Overall, our findings indicate that regulation of GPS2 by posttranslational modifications provides an effective strategy for modulating its molecular function within the nuclear compartment. PMID:26070566

  2. Rational optimization of amber suppressor tRNAs toward efficient incorporation of a non-natural amino acid into protein in a eukaryotic wheat germ extract.

    PubMed

    Ogawa, Atsushi; Namba, Yuki; Gakumasawa, Mai

    2016-03-01

    Amber suppression is a useful method of genetically incorporating a non-natural amino acid (NAA) into a protein during translation by utilizing an NAA-charged amber suppressor tRNA (sup-tRNA). A wheat germ extract (WGE) is suitable for this method by virtue of its high productivity and versatility in addition to its advantages as a cell-free translation system. However, in spite of this high potential, a genetic NAA incorporation system in WGE has not been sufficiently optimized in terms of sup-tRNAs, in contrast to that in E. coli and its cell extracts. We herein rationally optimized amber sup-tRNAs to efficiently incorporate a model NAA, p-acetyl-phenylalanine (AcPhe), into a protein in WGE, via flexizyme-based aminoacylation. The optimized sup-tRNA (named tLys-opt) that was pre-charged with AcPhe exclusively yielded up to 220 μg mL(-1) of AcPhe-incorporated protein (yellow fluorescent protein, YPet) under the optimal conditions. This high productivity is comparable to the best reported yield of a similar NAA-incorporated protein synthesized with an engineered aminoacyl-tRNA synthetase/sup-tRNA pair in WGE, despite the fact that tLys-opt that has released AcPhe was not reused at all in this study. The results clearly show both the necessity of optimizing sup-tRNAs for efficient NAA incorporation and the validity of our strategy for their optimization. Because the optimization strategy described here is expected to be applicable not only to amber sup-tRNAs for other NAAs but also to ones used in other acylation methods, it would facilitate the synthesis of large amounts of various types of NAA-incorporated proteins in WGE. PMID:26832824

  3. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells

    PubMed Central

    Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke. PMID:26881424

  4. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells.

    PubMed

    Song, Haoming; Cheng, Youjun; Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke. PMID:26881424

  5. Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo.

    PubMed

    Yang, Hong; Guan, Liuyuan; Li, Shun; Jiang, Ying; Xiong, Niya; Li, Li; Wu, Chunhui; Zeng, Hongjuan; Liu, Yiyao

    2016-03-29

    Cancer cells are subjected to fluid shear stress during passage through the venous and lymphatic system. Caveolin-1 (Cav-1), a principal structural component of caveolar membrane domains, contributes to cancer development but its mechanobiological roles under low shear stress (LSS) conditions remain largely unknown. Here, we identified Cav-1 is mechanosensitive to LSS exposure, and its activation-induced PI3K/Akt/mTOR signaling promotes motility, invadopodia formation and metastasis of breast carcinoma MDA-MB-231 cells. Application of LSS (1.8 and 4.0 dynes/cm2) to MDA-MB-231 cells significantly increased the cell motility, invadopodia formation, MT1-MMP expression, ECM degradation, and also induced a sustained activation of Cav-1 and PI3K/Akt/mTOR signaling cascades. Methyl-β-cyclodextrin-caused caveolae destruction markedly decreased LSS-induced activation of both Cav-1 and PI3K/Akt/mTOR, leading to suppress MT1-MMP expression, inhibit invadopodia formation and ECM degradation, suggesting that caveolae integrity also involved in metastasis. Immunocytochemical assay showed that LSS induces the Cav-1 clustering in lipid rafts and co-localization of Cav-1 and MT1-MMP on invadopodia. Immunofluorescence confocal analysis demonstrated that Cav-1 activation were required for the acquisition of a polarized phenotype in MDA-MB-231 cells. Finally, Cav-1 knockdown significantly suppressed tumor colonization in the lungs and distant metastases in animal models. Our findings highlight the importance of Cav-1 in hematogenous metastasis, and provide new insights into the underlying mechanisms of mechanotransduction induced by LSS. PMID:26919102

  6. Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo

    PubMed Central

    Jiang, Ying; Xiong, Niya; Li, Li; Wu, Chunhui; Zeng, Hongjuan; Liu, Yiyao

    2016-01-01

    Cancer cells are subjected to fluid shear stress during passage through the venous and lymphatic system. Caveolin-1 (Cav-1), a principal structural component of caveolar membrane domains, contributes to cancer development but its mechanobiological roles under low shear stress (LSS) conditions remain largely unknown. Here, we identified Cav-1 is mechanosensitive to LSS exposure, and its activation-induced PI3K/Akt/mTOR signaling promotes motility, invadopodia formation and metastasis of breast carcinoma MDA-MB-231 cells. Application of LSS (1.8 and 4.0 dynes/cm2) to MDA-MB-231 cells significantly increased the cell motility, invadopodia formation, MT1-MMP expression, ECM degradation, and also induced a sustained activation of Cav-1 and PI3K/Akt/mTOR signaling cascades. Methyl-β-cyclodextrin-caused caveolae destruction markedly decreased LSS-induced activation of both Cav-1 and PI3K/Akt/mTOR, leading to suppress MT1-MMP expression, inhibit invadopodia formation and ECM degradation, suggesting that caveolae integrity also involved in metastasis. Immunocytochemical assay showed that LSS induces the Cav-1 clustering in lipid rafts and co-localization of Cav-1 and MT1-MMP on invadopodia. Immunofluorescence confocal analysis demonstrated that Cav-1 activation were required for the acquisition of a polarized phenotype in MDA-MB-231 cells. Finally, Cav-1 knockdown significantly suppressed tumor colonization in the lungs and distant metastases in animal models. Our findings highlight the importance of Cav-1 in hematogenous metastasis, and provide new insights into the underlying mechanisms of mechanotransduction induced by LSS. PMID:26919102

  7. A novel approach to protein-protein interaction: complex formation between the p53 tumor suppressor and the HIV Tat proteins.

    PubMed

    Longo, F; Marchetti, M A; Castagnoli, L; Battaglia, P A; Gigliani, F

    1995-01-01

    By using a novel genetic approach, based on the properties of lambda cl repressor, we demonstrate that the HIV-1 Tat protein specifically interacts with the human p53 protein via the p53 O2 dimerization domain. By random and site-specific mutagenesis, we also identify the residues in Tat and O2 peptides which are involved in this interaction. Two alternative biological consequences are expected to result from Tat-p53 interaction: (i) Tat-O2 interaction inactivates p53 regulation function, thus producing cell transformation; (ii) Tat-O2 interaction favours the formation of p53 dimers, thus leading the cell towards apoptosis. PMID:7818536

  8. Association Between Upstream Purine Complexes of Human Caveolin-1 Gene and Schizophrenia in Qazvin Province of Iran

    PubMed Central

    Najafipour, Reza; Heidari, Abolfazl; Alizadeh, Safar Ali; Ghafelebashi, Hannaneh; Rashvand, Zahra; Javadi, Amir; Moradi, Mohammad; Afshar, Hosein

    2014-01-01

    Background: Caveolin is a multifunctional and scaffolding membrane protein, which involves cholesterol trafficking to plasma lipid microdomain. It organizes and targets synaptic parts of the neurotransmitter and neurotrophic receptor signaling pathways. Caveolins are encoded by CAV-1, 2 and 3 genes. Disruption of the CAV1 would likely ruin the neuronal signaling, which leads to symptoms of schizophrenia in predisposed individuals. Objectives: The upper area of CAV-1 gene is highly conserved and can have a regulatory role in neurodegenerative diseases. This study was designed to find out the possible association of polymorphisms of this area and schizophrenia. Patients and Methods: In a case-control study, 254 blood samples were obtained from 127 patients with schizophrenia and 127 well matched controls referred to 22 Bahman Hospital of Qazvin University of Medical Sciences (QUMS) in Qazvin province, Iran, using simple random sampling method. After extracting DNA, the upper region of the human CAV1- gene was amplified by PCR in all collected samples. The products were visualized by silver staining in 10% polyacrylamide gel and then sequenced. Results: We detected nine homozygotes in patients and 15 in control subjects. Homozygosity was 7.08% and 11.8% in cases and control, respectively. Nine types homozygote haplotype were detected in upper region of the CAV1 gene in cases and controls. Three haplotypes were common in cases and controls; four haplotypes were seen in controls only and two in cases. Conclusions: Our findings implied a significant correlation between some haplotypes of upper region of CAV1 gene and schizophrenia. Existence of some haplotypes and lack of another in CAV1 upstream can suggest a significant correlation between schizophrenia and some haplotypes. PMID:25763243

  9. A Novel Method for Gene-Specific Enhancement of Protein Translation by Targeting 5’UTRs of Selected Tumor Suppressors

    PubMed Central

    Master, Adam; Wójcicka, Anna; Giżewska, Kamilla; Popławski, Piotr; Williams, Graham R.; Nauman, Alicja

    2016-01-01

    Background Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. Findings We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5’-untranslated region (5’UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5’UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5’UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5’UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5’UTRs of complex structure. Significance This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5’UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene

  10. Morphological changes and nuclear translocation of DLC1 tumor suppressor protein precede apoptosis in human non-small cell lung carcinoma cells

    SciTech Connect

    Yuan Baozhu Jefferson, Amy M.; Millecchia, Lyndell; Popescu, Nicholas C.; Reynolds, Steven H.

    2007-11-01

    We have previously shown that reactivation of DLC1, a RhoGAP containing tumor suppressor gene, inhibits tumorigenicity of human non-small cell lung carcinoma cells (NSCLC). After transfection of NSCLC cells with wild type (WT) DLC1, changes in cell morphology were observed. To determine whether such changes have functional implications, we generated several DLC1 mutants and examined their effects on cell morphology, proliferation, migration and apoptosis in a DLC1 deficient NSCLC cell line. We show that WT DLC1 caused actin cytoskeleton-based morphological alterations manifested as cytoplasmic extensions and membrane blebbings in most cells. Subsequently, a fraction of cells exhibiting DLC1 protein nuclear translocation (PNT) underwent caspase 3-dependent apoptosis. We also show that the RhoGAP domain is essential for the occurrence of morphological alterations, PNT and apoptosis, and the inhibition of cell migration. DLC1 PNT is dependent on a bipartite nuclear localizing sequence and most likely is regulated by a serine-rich domain at N-terminal part of the DLC1 protein. Also, we found that DLC1 functions in the cytoplasm as an inhibitor of tumor cell proliferation and migration, but in the nucleus as an inducer of apoptosis. Our analyses provide evidence for a possible link between morphological alterations, PNT and proapoptotic and anti-oncogenic activities of DLC1 in lung cancer.

  11. Morphological changes and nuclear translocation of DLC1 tumor suppressor protein precede apoptosis in human non-small cell lung carcinoma cells.

    PubMed

    Yuan, Bao-Zhu; Jefferson, Amy M; Millecchia, Lyndell; Popescu, Nicholas C; Reynolds, Steven H

    2007-11-01

    We have previously shown that reactivation of DLC1, a RhoGAP containing tumor suppressor gene, inhibits tumorigenicity of human non-small cell lung carcinoma cells (NSCLC). After transfection of NSCLC cells with wild type (WT) DLC1, changes in cell morphology were observed. To determine whether such changes have functional implications, we generated several DLC1 mutants and examined their effects on cell morphology, proliferation, migration and apoptosis in a DLC1 deficient NSCLC cell line. We show that WT DLC1 caused actin cytoskeleton-based morphological alterations manifested as cytoplasmic extensions and membrane blebbings in most cells. Subsequently, a fraction of cells exhibiting DLC1 protein nuclear translocation (PNT) underwent caspase 3-dependent apoptosis. We also show that the RhoGAP domain is essential for the occurrence of morphological alterations, PNT and apoptosis, and the inhibition of cell migration. DLC1 PNT is dependent on a bipartite nuclear localizing sequence and most likely is regulated by a serine-rich domain at N-terminal part of the DLC1 protein. Also, we found that DLC1 functions in the cytoplasm as an inhibitor of tumor cell proliferation and migration, but in the nucleus as an inducer of apoptosis. Our analyses provide evidence for a possible link between morphological alterations, PNT and proapoptotic and anti-oncogenic activities of DLC1 in lung cancer. PMID:17888903

  12. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC.

    PubMed

    Wang, Zi; Ma, Bianyin; Li, Hui; Xiao, Xiaojuan; Zhou, Weihua; Liu, Feng; Zhang, Bin; Zhu, Min; Yang, Qin; Zeng, Yayue; Sun, Yang; Sun, Shuming; Wang, Yanpeng; Zhang, Yibin; Weng, Haibo; Chen, Lixiang; Ye, Mao; An, Xiuli; Liu, Jing

    2016-01-01

    Protein 4.1N is a member of protein 4.1 family and has been recognized as a potential tumor suppressor in solid tumors. Here, we aimed to investigate the role and mechanisms of 4.1N in non-small cell lung cancer (NSCLC). We confirmed that the expression level of 4.1N was inversely correlated with the metastatic properties of NSCLC cell lines and histological grade of clinical NSCLC tissues. Specific knockdown of 4.1N promoted tumor cell proliferation, migration and adhesion in vitro, and tumor growth and metastasis in mouse xenograft models. Furthermore, we identified PP1 as a novel 4.1N-interacting molecule, and the FERM domain of 4.1N mediated the interaction between 4.1N and PP1. Further, ectopic expression of 4.1N could inactivate JNK-c-Jun signaling pathway through enhancing PP1 activity and interaction between PP1 and p-JNK. Correspondingly, expression of potential downstream metastasis targets (ezrin and MMP9) and cell cycle targets (p53, p21 and p19) of JNK-c-Jun pathway were also regulated by 4.1N. Our data suggest that down-regulation of 4.1N expression is a critical step for NSCLC development and that repression of JNK-c-Jun signaling through PP1 is one of the key anti-tumor mechanisms of 4.1N. PMID:26575790

  13. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 suppresses tumor growth in breast cancer-bearing mice by negatively regulating myeloid-derived suppressor cell functions.

    PubMed

    Hong, Hye-Jin; Lim, Hui Xuan; Song, Ju Han; Lee, Arim; Kim, Eugene; Cho, Daeho; Cohen, Edward P; Kim, Tae Sung

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are one of the most important cell types that contribute to negative regulation of immune responses in the tumor microenvironment. Recently, aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1), a novel pleiotropic cytokine, was identified as an antitumor protein that inhibits angiogenesis and induces antitumor responses. However, the effect of AIMP1 on MDSCs in the tumor environment remains unclear. In the present study, we demonstrated that AIMP1 significantly inhibited tumor growth in 4T1 breast cancer-bearing mice and reduced MDSCs population of tumor sites and spleens of tumor-bearing mice. AIMP1 reduced expansion of MDSCs from bone marrow-derived cells in the tumor-conditioned media. AIMP1 also negatively regulated suppressive activities of MDSCs by inhibiting IL-6 and NO production, and Arg-1 expression. Furthermore, treatment of breast cancer-bearing mice with AIMP1 decreased the capacity of MDSCs to suppress T cell proliferation and Treg cell induction. Western blot and inhibition experiments showed that downregulation of MDSCs functions by AIMP1 may result from attenuated activation of STATs, Akt, and ERK. These findings indicate that AIMP1 plays an essential role in negative regulation of suppressive functions of MDSCs. Therefore, it has a significant potential as a therapeutic agent for cancer treatment. PMID:26613952

  14. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC

    PubMed Central

    Zhou, Weihua; Liu, Feng; Zhang, Bin; Zhu, Min; Yang, Qin; Zeng, Yayue; Sun, Yang; Sun, Shuming; Wang, Yanpeng; Zhang, Yibin; Weng, Haibo; Chen, Lixiang; Ye, Mao; An, Xiuli; Liu, Jing

    2016-01-01

    Protein 4.1N is a member of protein 4.1 family and has been recognized as a potential tumor suppressor in solid tumors. Here, we aimed to investigate the role and mechanisms of 4.1N in non-small cell lung cancer (NSCLC). We confirmed that the expression level of 4.1N was inversely correlated with the metastatic properties of NSCLC cell lines and histological grade of clinical NSCLC tissues. Specific knockdown of 4.1N promoted tumor cell proliferation, migration and adhesion in vitro, and tumor growth and metastasis in mouse xenograft models. Furthermore, we identified PP1 as a novel 4.1N-interacting molecule, and the FERM domain of 4.1N mediated the interaction between 4.1N and PP1. Further, ectopic expression of 4.1N could inactivate JNK-c-Jun signaling pathway through enhancing PP1 activity and interaction between PP1 and p-JNK. Correspondingly, expression of potential downstream metastasis targets (ezrin and MMP9) and cell cycle targets (p53, p21 and p19) of JNK-c-Jun pathway were also regulated by 4.1N. Our data suggest that down-regulation of 4.1N expression is a critical step for NSCLC development and that repression of JNK-c-Jun signaling through PP1 is one of the key anti-tumor mechanisms of 4.1N. PMID:26575790

  15. RNA-binding protein HuR sequesters microRNA-21 to prevent translation repression of proinflammatory tumor suppressor gene programmed cell death 4

    PubMed Central

    Poria, D K; Guha, A; Nandi, I; Ray, P S

    2016-01-01

    Translation control of proinflammatory genes has a crucial role in regulating the inflammatory response and preventing chronic inflammation, including a transition to cancer. The proinflammatory tumor suppressor protein programmed cell death 4 (PDCD4) is important for maintaining the balance between inflammation and tumorigenesis. PDCD4 messenger RNA translation is inhibited by the oncogenic microRNA, miR-21. AU-rich element-binding protein HuR was found to interact with the PDCD4 3′-untranslated region (UTR) and prevent miR-21-mediated repression of PDCD4 translation. Cells stably expressing miR-21 showed higher proliferation and reduced apoptosis, which was reversed by HuR expression. Inflammatory stimulus caused nuclear-cytoplasmic relocalization of HuR, reversing the translation repression of PDCD4. Unprecedentedly, HuR was also found to bind to miR-21 directly, preventing its interaction with the PDCD4 3′-UTR, thereby preventing the translation repression of PDCD4. This suggests that HuR might act as a ‘miRNA sponge‘ to regulate miRNA-mediated translation regulation under conditions of stress-induced nuclear-cytoplasmic translocation of HuR, which would allow fine-tuned gene expression in complex regulatory environments. PMID:26189797

  16. Neogenin, an avian cell surface protein expressed during terminal neuronal differentiation, is closely related to the human tumor suppressor molecule deleted in colorectal cancer.

    PubMed

    Vielmetter, J; Kayyem, J F; Roman, J M; Dreyer, W J

    1994-12-01

    Using a monoclonal antibody, we have identified and characterized a previously unknown cell surface protein in chicken that we call neogenin and have determined its primary sequence. The deduced amino acid sequence and structure of neogenin characterize it as a member of the immunoglobulin (Ig) superfamily. Based on amino acid sequence similarities, neogenin is closely related to the human tumor suppressor molecule DCC (deleted in colorectal cancer). Neogenin and DCC define a subgroup of Ig superfamily proteins structurally distinct from other Ig molecules such as N-CAM, Ng-CAM, and Bravo/Nr-CAM. As revealed by antibody staining of tissue sections and Western blots, neogenin expression correlates with the onset of neuronal differentiation. Neogenin is also found on cells in the lower gastrointestinal tract of embryonic chickens. DCC has been observed in human neural tissues and has been shown to be essential for terminal differentiation of specific cell types in the adult human colon. These parallels suggest that neogenin, like DCC, is functionally involved in the transition from cell proliferation to terminal differentiation of specific cell types. Since neogenin is expressed on growing neurites and downregulated at termination of neurite growth, it may also play an important role in many of the complex functional aspects of neurite extension and intercellular signaling. PMID:7806578

  17. Wilms' tumour-suppressor protein isoforms have opposite effects on Igf2 expression in primary embryonic cells, independently of p53 genotype.

    PubMed Central

    Duarte, A.; Caricasole, A.; Graham, C. F.; Ward, A.

    1998-01-01

    The p53 protein has been proposed as a modulator of the Wilms' tumour-suppressor protein (WT1) transcriptional regulation activity. To investigate this putative p53 role, the promoter P3 of the mouse insulin-like growth factor II gene (Igf2) was used as a target for WT1 regulation in primary cell cultures derived from p53 wild-type (p53+/+) and knock-out (p53-/-) mouse embryos. In these cells, the WT1 transcriptional activity was observed to be independent of p53 genotype. Furthermore, the two WT1 zinc finger (ZF) isoforms were for the first time found to have opposite effects on gene expression from a single promoter in the same cell type, WT1[-KTS] activating Igf2 P3, whereas WT1[+KTS] repressed its activity. In addition, we have mapped the WT1 binding sites and investigated the effect on WT1 binding activity of individual ZF deletions and Denys-Drash syndrome point mutations to this target. Images Figure 1 Figure 3 Figure 4 PMID:9460996

  18. Metastasis Suppressor Genes

    PubMed Central

    Yan, Jinchun; Yang, Qin; Huang, Qihong

    2014-01-01

    Metastasis is a major cause of cancer mortality. Metastasis is a complex process that requires the regulation of both metastasis-promoting and metastasis suppressor genes. The discovery of metastasis suppressor genes contributes significantly to our understanding of metastasis mechanisms and provides prognostic markers and therapeutic targets in clinical cancer management. In this review, we summarize the methods that have been used to identify metastasis suppressors and the potential clinical impact of these genes. PMID:23348381

  19. Transcription-Dependent Nuclear-Cytoplasmic Trafficking Is Required for the Function of the von Hippel-Lindau Tumor Suppressor Protein

    PubMed Central

    Lee, Stephen; Neumann, Markus; Stearman, Robert; Stauber, Roland; Pause, Arnim; Pavlakis, George N.; Klausner, Richard D.

    1999-01-01

    Mutation of the von Hippel-Lindau tumor suppressor gene (vhl) causes the von Hippel-Lindau cancer syndrome as well as sporadic renal clear cell carcinoma. To pursue our study of the intracellular localization of VHL protein in relation to its function, we fused VHL to the green fluorescent protein (GFP) to produce the VHL-GFP fusion protein. Like VHL, VHL-GFP binds to elongins B and C and Cullin-2 and regulates target gene product levels, including levels of vascular endothelial growth factor and glucose transporter 1. VHL-GFP localizes predominantly to the cytoplasm, with some detectable nuclear signal. Inhibition of transcription by actinomycin D or 5,6-dichlorobenzimidazole riboside (DRB) causes VHL to be redistributed to the nucleus. A cellular fusion assay was used to demonstrate that inhibition of transcription induces a decrease in the nuclear export rate of VHL. The dependence of transcription for trafficking is lost with a deletion of exon 2, a region with a mutation causing a splice defect in the VHL gene in sporadic renal clear cell carcinoma. Addition of a strong nuclear export signal (NES) derived from the Rev protein results in complete nuclear exclusion and abrogates the redistribution of VHL-GFP-NES into the nucleus upon inhibition of transcription. Leptomycin B, which inhibits NES-mediated nuclear export, reverts the distribution of VHL-GFP-NES to that of VHL-GFP and restores sensitivity to actinomycin D and DRB. Uncoupling of VHL-GFP trafficking to transcription either by an exon 2 deletion or fusion to NES abolishes VHL function. We suggest that VHL function requires not only nuclear or cytoplasmic localization, but also exon 2-mediated transcription-dependent trafficking between these two cellular compartments. PMID:9891082

  20. Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas.

    PubMed

    Gutmann, D H; Donahoe, J; Perry, A; Lemke, N; Gorse, K; Kittiniyom, K; Rempel, S A; Gutierrez, J A; Newsham, I F

    2000-06-12

    Meningiomas are common nervous system tumors, whose molecular pathogenesis is poorly understood. To date, the most frequent genetic alteration detected in these tumors is loss of heterozygosity (LOH) on chromosome 22q. This finding led to the identification of the neurofibromatosis 2 (NF2) tumor suppressor gene on 22q12, which is inactivated in 40% of sporadic meningiomas. The NF2 gene product, merlin (or schwannomin), is a member of the protein 4.1 family of membrane-associated proteins, which also includes ezrin, radixin and moesin. Recently, we identified another protein 4.1 gene, DAL-1 (differentially expressed in adenocarcinoma of the lung) located on chromosome 18p11.3, which is lost in approximately 60% of non-small cell lung carcinomas, and exhibits growth-suppressing properties in lung cancer cell lines. Given the homology between DAL-1 and NF2 and the identification of significant LOH in the region of DAL-1 in lung, breast and brain tumors, we investigated the possibility that loss of expression of DAL-1 was important for meningioma development. In this report, we demonstrate DAL-1 loss in 60% of sporadic meningiomas using LOH, RT-PCR, western blot and immunohistochemistry analyses. Analogous to merlin, we show that DAL-1 loss is an early event in meningioma tumorigenesis, suggesting that these two protein 4.1 family members are critical growth regulators in the pathogenesis of meningiomas. Furthermore, our work supports the emerging notion that membrane-associated alterations are important in the early stages of neoplastic transformation and the study of such alterations may elucidate the mechanism of tumorigenesis shared by other tumor types. PMID:10888600

  1. The Transformation Suppressor Pdcd4 Is a Novel Eukaryotic Translation Initiation Factor 4A Binding Protein That Inhibits Translation

    PubMed Central

    Yang, Hsin-Sheng; Jansen, Aaron P.; Komar, Anton A.; Zheng, Xiaojing; Merrick, William C.; Costes, Sylvain; Lockett, Stephen J.; Sonenberg, Nahum; Colburn, Nancy H.

    2003-01-01

    Pdcd4 is a novel transformation suppressor that inhibits tumor promoter-induced neoplastic transformation and the activation of AP-1-dependent transcription required for transformation. A yeast two-hybrid analysis revealed that Pdcd4 associates with the eukaryotic translation initiation factors eIF4AI and eIF4AII. Immunofluorescent confocal microscopy showed that Pdcd4 colocalizes with eIF4A in the cytoplasm. eIF4A is an ATP-dependent RNA helicase needed to unwind 5′ mRNA secondary structure. Recombinant Pdcd4 specifically inhibited the helicase activity of eIF4A and eIF4F. In vivo translation assays showed that Pdcd4 inhibited cap-dependent but not internal ribosome entry site (IRES)-dependent translation. In contrast, Pdcd4D418A, a mutant inactivated for binding to eIF4A, failed to inhibit cap-dependent or IRES-dependent translation or AP-1 transactivation. Recombinant Pdcd4 prevented eIF4A from binding to the C-terminal region of eIF4G (amino acids 1040 to 1560) but not to the middle region of eIF4G(amino acids 635 to 1039). In addition, both Pdcd4 and Pdcd4D418A bound to the middle region of eIF4G. The mechanism by which Pdcd4 inhibits translation thus appears to involve inhibition of eIF4A helicase, interference with eIF4A association-dissociation from eIF4G, and inhibition of eIF4A binding to the C-terminal domain of eIF4G. Pdcd4 binding to eIF4A is linked to its transformation-suppressing activity, as Pdcd4-eIF4A binding and consequent inhibition of translation are required for Pdcd4 transrepression of AP-1. PMID:12482958

  2. High-resolution Structures of Protein-Membrane Complexes by Neutron Reflection and MD Simulation: Membrane Association of the PTEN Tumor Suppressor

    NASA Astrophysics Data System (ADS)

    Lösche, Matthias

    2012-02-01

    The lipid matrix of biomembranes is an in-plane fluid, thermally and compositionally disordered leaflet of 5 nm thickness and notoriously difficult to characterize in structural terms. Yet, biomembranes are ubiquitous in the cell, and membrane-bound proteins are implicated in a variety of signaling pathways and intra-cellular transport. We developed methodology to study proteins associated with model membranes using neutron reflection measurements and showed recently that this approach can resolve the penetration depth and orientation of membrane proteins with ångstrom resolution if their crystal or NMR structure is known. Here we apply this technology to determine the membrane bindung and unravel functional details of the PTEN phosphatase, a key player in the PI3K apoptosis pathway. PTEN is an important regulatory protein and tumor suppressor that performs its phosphatase activity as an interfacial enzyme at the plasma membrane-cytoplasm boundary. Acting as an antagonist to phosphoinositide-3-kinase (PI3K) in cell signaling, it is deleted in many human cancers. Despite its importance in regulating the levels of the phosphoinositoltriphosphate PI(3,4,5)P3, there is little understanding of how PTEN binds to membranes, is activated and then acts as a phosphatase. We investigated the structure and function of PTEN by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act synergetically in attracting the enzyme to the membrane surface. Membrane affinities depend strongly on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase ``scoots'' along the membrane surface (penetration < 5 å) but binds the membrane tightly with its two major domains, the C2 and

  3. Integrin cytoplasmic domain-associated protein 1alpha (ICAP-1alpha ) interacts directly with the metastasis suppressor nm23-H2, and both proteins are targeted to newly formed cell adhesion sites upon integrin engagement.

    PubMed

    Fournier, Henri-Noël; Dupé-Manet, Sandra; Bouvard, Daniel; Lacombe, Marie-Lise; Marie, Christiane; Block, Marc R; Albiges-Rizo, Corinne

    2002-06-01

    Cell adhesion-dependent signaling implicates cytoplasmic proteins interacting with the intracellular tails of integrins. Among those, the integrin cytoplasmic domain-associated protein 1alpha (ICAP-1alpha) has been shown to interact specifically with the beta(1) integrin cytoplasmic domain. Although it is likely that this protein plays an important role in controlling cell adhesion and migration, little is known about its actual function. To search for potential ICAP-1alpha-binding proteins, we used a yeast two-hybrid screen and identified the human metastatic suppressor protein nm23-H2 as a new partner of ICAP-1alpha. This direct interaction was confirmed in vitro, using purified recombinant ICAP-1alpha and nm23-H2, and by co-immunoprecipitation from CHO cell lysates over-expressing ICAP-1alpha. The physiological relevance of this interaction is provided by confocal fluorescence microscopy, which shows that ICAP-1alpha and nm23-H2 are co-localized in lamellipodia during the early stages of cell spreading. These adhesion sites are enriched in occupied beta(1) integrins and precede the formation of focal adhesions devoid of ICAP-1alpha and nm23-H2, indicating the dynamic segregation of components of matrix adhesions. This peripheral staining of ICAP-1alpha and nm23-H2 is only observed in cells spreading on fibronectin and collagen and is absent in cells spreading on poly-l-lysine, vitronectin, or laminin. This is consistent with the fact that targeting of both ICAP-1alpha and nm23-H2 to the cell periphery is dependent on beta(1) integrin engagement rather than being a consequence of cell adhesion. This finding represents the first evidence that the tumor suppressor nm23-H2 could act on beta(1) integrin-mediated cell adhesion by interacting with one of the integrin partners, ICAP-1alpha. PMID:11919189

  4. Folliculin, the product of the Birt-Hogg-Dube tumor suppressor gene, interacts with the adherens junction protein p0071 to regulate cell-cell adhesion.

    PubMed

    Medvetz, Doug A; Khabibullin, Damir; Hariharan, Venkatesh; Ongusaha, Pat P; Goncharova, Elena A; Schlechter, Tanja; Darling, Thomas N; Hofmann, Ilse; Krymskaya, Vera P; Liao, James K; Huang, Hayden; Henske, Elizabeth P

    2012-01-01

    Birt-Hogg-Dube (BHD) is a tumor suppressor gene syndrome associated with fibrofolliculomas, cystic lung disease, and chromophobe renal cell carcinoma. In seeking to elucidate the pathogenesis of BHD, we discovered a physical interaction between folliculin (FLCN), the protein product of the BHD gene, and p0071, an armadillo repeat containing protein that localizes to the cytoplasm and to adherens junctions. Adherens junctions are one of the three cell-cell junctions that are essential to the establishment and maintenance of the cellular architecture of all epithelial tissues. Surprisingly, we found that downregulation of FLCN leads to increased cell-cell adhesion in functional cell-based assays and disruption of cell polarity in a three-dimensional lumen-forming assay, both of which are phenocopied by downregulation of p0071. These data indicate that the FLCN-p0071 protein complex is a negative regulator of cell-cell adhesion. We also found that FLCN positively regulates RhoA activity and Rho-associated kinase activity, consistent with the only known function of p0071. Finally, to examine the role of Flcn loss on cell-cell adhesion in vivo, we utilized keratin-14 cre-recombinase (K14-cre) to inactivate Flcn in the mouse epidermis. The K14-Cre-Bhd(flox/flox) mice have striking delays in eyelid opening, wavy fur, hair loss, and epidermal hyperplasia with increased levels of mammalian target of rapamycin complex 1 (mTORC1) activity. These data support a model in which dysregulation of the FLCN-p0071 interaction leads to alterations in cell adhesion, cell polarity, and RhoA signaling, with broad implications for the role of cell-cell adhesion molecules in the pathogenesis of human disease, including emphysema and renal cell carcinoma. PMID:23139756

  5. The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 is a direct substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and regulates immunity.

    PubMed

    Kang, Sining; Yang, Fan; Li, Lin; Chen, Huamin; Chen, She; Zhang, Jie

    2015-03-01

    Pathogen-associated molecular patterns (PAMPs) are recognized by plant pattern recognition receptors to activate PAMP-triggered immunity (PTI). Mitogen-activated protein kinases (MAPKs), as well as other cytoplasmic kinases, integrate upstream immune signals and, in turn, dissect PTI signaling via different substrates to regulate defense responses. However, only a few direct substrates of these signaling kinases have been identified. Here, we show that PAMP perception enhances phosphorylation of BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1), a transcription factor involved in brassinosteroid (BR) signaling pathway, through pathogen-induced MAPKs in Arabidopsis (Arabidopsis thaliana). BES1 interacts with MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and is phosphorylated by MPK6. bes1 loss-of-function mutants display compromised resistance to bacterial pathogen Pseudomonas syringae pv tomato DC3000. BES1 S286A/S137A double mutation (BES1(SSAA)) impairs PAMP-induced phosphorylation and fails to restore bacterial resistance in bes1 mutant, indicating a positive role of BES1 phosphorylation in plant immunity. BES1 is phosphorylated by glycogen synthase kinase3 (GSK3)-like kinase BR-insensitive2 (BIN2), a negative regulator of BR signaling. BR perception inhibits BIN2 activity, allowing dephosphorylation of BES1 to regulate plant development. However, BES1(SSAA) does not affect BR-mediated plant growth, suggesting differential residue requirements for the modulation of BES1 phosphorylation in PTI and BR signaling. Our study identifies BES1 as a unique direct substrate of MPK6 in PTI signaling. This finding reveals MAPK-mediated BES1 phosphorylation as another BES1 modulation mechanism in plant cell signaling, in addition to GSK3-like kinase-mediated BES1 phosphorylation and F box protein-mediated BES1 degradation. PMID:25609555

  6. Suppressor of Ty homolog-5, a novel tumor-specific human telomerase reverse transcriptase promoter-binding protein and activator in colon cancer cells

    PubMed Central

    Dong, Yong; He, Chao; Hu, Xiaotong

    2015-01-01

    The human telomerase reverse transcriptase (hTERT) promoter promotes differential hTERT gene expression in tumor cells and normal cells. However, information on the mechanisms underlying the differential hTERT transcription and induction of telomerase activity in tumor cells is limited. In the present study, suppressor of Ty homolog-5 (SPT5), a protein encoded by the SUPT5H gene, was identified as a novel tumor-specific hTERT promoter-binding protein and activator in colon cancer cells. We verified the tumor-specific binding activity of SPT5 to the hTERT promoter in vitro and in vivo and detected high expression levels of SUPT5H in colorectal cancer cell lines and primary human colorectal cancer tissues. SUPT5H was more highly expressed in colorectal cancer cases with distant metastasis than in cases without distant metastasis. Inhibition of endogenous SUPT5H expression by SUPT5H gene-specific short hairpin RNAs effectively attenuated hTERT promoter-driven green fluorescent protein (GFP) expression, whereas no detectable effects on CMV promoter-driven GFP expression in the same cells were observed. In addition, inhibition of SUPT5H expression not only effectively repressed telomerase activity, accelerated telomere shortening, and promoted cell senescence in colon cancer cells, but also suppressed cancer cell growth and migration. Our results demonstrated that SPT5 contributes to the up-regulation of hTERT expression and tumor development, and SUPT5H may potentially be used as a novel tumor biomarker and/or cancer therapeutic target. PMID:26418880

  7. The P1 protein, not HC-Pro, of Wheat streak mosaic virus is a suppressor of RNA silencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HC-Pro, a well-characterized multi-functional protein encoded by members of the genus Potyvirus, has been shown to be involved in aphid transmission, replication maintenance, systemic movement, and posttranscriptional gene silencing (PTGS) suppression, and to be a determinant of disease synergism in...

  8. SUT2 is a novel multicopy suppressor of low activity of the cAMP/protein kinase A pathway in yeast.

    PubMed

    Rützler, Michael; Reissaus, André; Budzowska, Magdalena; Bandlow, Wolfhard

    2004-04-01

    SUT2 was found in a screen for multicopy suppressors of the synthetic slow growth phenotype of a Deltaras2Deltagpa2 double deletion mutant. It failed, however, to cure the lethal phenotype of a Deltaras1Deltaras2 mutant suggesting that it acts upstream of Ras or in a parallel pathway. By testing cAMP-dependent reactions including the accumulation of storage carbohydrates, pseudohyphal differentiation, entry of meiosis as well as the measurement of FLO11 reporter activity we show that Sut2p modulates the activity of protein kinase A (PKA). Additionally, we demonstrate that cellular levels of Ras2p are affected by Sut2p and that Sut2-GFPp accumulates significantly in the nucleus. Based on the observed influence of high SUT2 gene dosage on PKA activity as well as Sut2p's homology to the presumptive transcription factor Sut1p, we suggest that Sut2p contributes to regulation of PKA activity at the level of transcription. PMID:15030478

  9. Characterization of the Zn(II) Binding Properties of the Human Wilms’ Tumor Suppressor Protein C-terminal Zinc Finger Peptide

    PubMed Central

    2015-01-01

    Zinc finger proteins that bind Zn(II) using a Cys2His2 coordination motif within a ββα protein fold are the most abundant DNA binding transcription factor domains in eukaryotic systems. These classic zinc fingers are typically unfolded in the apo state and spontaneously fold into their functional ββα folds upon incorporation of Zn(II). These metal-induced protein folding events obscure the free energy cost of protein folding by coupling the protein folding and metal-ion binding thermodynamics. Herein, we determine the formation constant of a Cys2His2/ββα zinc finger domain, the C-terminal finger of the Wilms’ tumor suppressor protein (WT1-4), for the purposes of determining its free energy cost of protein folding. Measurements of individual conditional dissociation constants, Kd values, at pH values from 5 to 9 were determined using fluorescence spectroscopy by direct or competition titration. Potentiometric titrations of apo-WT1-4 followed by NMR spectroscopy provided the intrinsic pKa values of the Cys2His2 residues, and corresponding potentiometric titrations of Zn(II)–WT1-4 followed by fluorescence spectroscopy yielded the effective pKaeff values of the Cys2His2 ligands bound to Zn(II). The Kd, pKa, and pKaeff values were combined in a minimal, complete equilibrium model to yield the pH-independent formation constant value for Zn(II)–WT1-4, KfML value of 7.5 × 1012 M–1, with a limiting Kd value of 133 fM. This shows that Zn(II) binding to the Cys2His2 site in WT1-4 provides at least −17.6 kcal/mol in driving force to fold the protein scaffold. A comparison of the conditional dissociation constants of Zn(II)–WT1-4 to those from the model peptide Zn(II)–GGG–Cys2His2 over the pH range 5.0 to 9.0 and a comparison of their pH-independent KfML values demonstrates that the free energy cost of protein folding in WT1-4 is less than +2.1 kcal/mol. These results validate our GGG model system for determining the cost of protein folding in natural

  10. Inhalational anesthetics disrupt postsynaptic density protein-95, Drosophila disc large tumor suppressor, and zonula occludens-1 domain protein interactions critical to action of several excitatory receptor channels related to anesthesia

    PubMed Central

    Tao, Feng; Chen, Qiang; Sato, Yuko; Skinner, John; Tang, Pei; Johns, Roger A.

    2015-01-01

    Background We have shown previously that inhaled anesthetics disrupt the interaction between the second postsynaptic density protein-95, Drosophila disc large tumor suppressor, and zonula occludens-1 (PDZ) domain of postsynaptic density protein-95 (PSD-95) and the C-terminus of N-methyl-D-aspartate receptor subunits NR2A and NR2B. Our data indicate that PDZ domains may serve as a molecular target for inhaled anesthetics. However, the underlying molecular mechanisms remain to be illustrated. Methods Glutathione S-transferase pull-down assay, co-immunoprecipitation and yeast two-hybrid analysis were used to assess PDZ domain-mediated protein-protein interactions in different conditions. Nuclear magnetic resonance spectroscopy was used to investigate isoflurane-induced chemical shift changes in the PDZ1–3 domains of PSD-95. A surface plasmon resonance-based BIAcore assay was used to examine the ability of isoflurane to inhibit the PDZ domain-mediated protein-protein interactions in real time. Results Halothane and isoflurane dose dependently inhibited PDZ domain-mediated interactions between PSD-95 and Shaker-type potassium channel Kv1.4 and between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit GluA2 and its interacting proteins— glutamate receptor interacting protein or protein interacting with c kinase 1. However, halothane and isoflurane had no effect on PDZ domain-mediated interactions between γ-aminobutyric acid, type B receptor and its interacting proteins. The inhaled anesthetic isoflurane mostly affected the residues close to or in the peptide binding groove of PSD-95 PDZ1 and PDZ2 (especially PDZ2), while barely affecting the peptide binding groove of PSD-95 PDZ3. Conclusion These results suggest that inhaled anesthetics interfere with PDZ domain-mediated protein-protein interactions at several receptors important to neuronal excitation, anesthesia and pain processing. PMID:25654436

  11. Membrane association of the PTEN tumor suppressor: Neutron scattering and MD simulations reveal the structure of protein-membranes complexes

    PubMed Central

    Nanda, Hirsh; Heinrich, Frank; Lösche, Mathias

    2014-01-01

    Neutron reflection (NR) from planar interfaces is an emerging technology that provides unique and otherwise inaccessible structural information on disordered molecular systems such as membrane proteins associated with fluid bilayers, thus addressing one of the remaining challenges of structural biology. Although intrinsically a low-resolution technique, using structural information from crystallography or NMR allows the construction of NR models that describe the architecture of protein-membrane complexes at high resolution. In addition, a combination of these methods with molecular dynamics (MD) simulations has the potential to reveal the dynamics of protein interactions with the bilayer in atomistic detail. We review recent advances in this area by discussing the application of these techniques to the complex formed by the PTEN phosphatase with the plasma membrane. These studies provide insights in the cellular regulation of PTEN, its interaction with PI(4,5)P2 in the inner plasma membrane and the pathway by which its substrate, PI(3,4,5)P3, accesses the PTEN catalytic site. PMID:25461777

  12. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells

    SciTech Connect

    Cai, Liquan; Wang, Dan; Fisher, Alfred L.; Wang, Zhou

    2014-05-02

    Highlights: • RNAi screen identified genetic enhancers for the C. elegans homolog of EAF2. • EAF2 and RBBP4 proteins physically bind to each other and alter transcription. • Overexpression of EAF2 and RBBP4 induces the cell death in prostate cancer cells. - Abstract: The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in

  13. Apical Membrane Localization of the Adenomatous Polyposis Coli Tumor Suppressor Protein and Subcellular Distribution of the β-Catenin Destruction Complex in Polarized Epithelial Cells

    PubMed Central

    Reinacher-Schick, Anke; Gumbiner, Barry M.

    2001-01-01

    The adenomatous polyposis coli (APC) protein is implicated in the majority of hereditary and sporadic colon cancers. APC is known to function as a tumor suppressor through downregulation of β-catenin as part of a high molecular weight complex known as the β-catenin destruction complex. The molecular composition of the intact complex and its site of action in the cell are still not well understood. Reports on the subcellular localization of APC in various cell systems have differed significantly and have been consistent with an association with a cytosolic complex, with microtubules, with the nucleus, or with the cortical actin cytoskeleton. To better understand the role of APC and the destruction complex in colorectal cancer, we have begun to characterize and isolate these complexes from confluent polarized human colon epithelial cell monolayers and other epithelial cell types. Subcellular fractionation and immunofluorescence microscopy reveal that a predominant fraction of APC associates tightly with the apical plasma membrane in a variety of epithelial cell types. This apical membrane association is not dependent on the mutational status of either APC or β-catenin. An additional pool of APC is cytosolic and fractionates into two distinct high molecular weight complexes, 20S and 60S in size. Only the 20S fraction contains an appreciable portion of the cellular axin and small but detectable amounts of glycogen synthase kinase 3β and β-catenin. Therefore, it is likely to correspond to the previously characterized β-catenin destruction complex. Dishevelled is almost entirely cytosolic, but does not significantly cofractionate with the 20S complex. The disproportionate amount of APC in the apical membrane and the lack of other destruction complex components in the 60S fraction of APC raise questions about whether these pools of APC take part in the degradation of β-catenin, or alternatively, whether they could be involved in other functions of the protein that

  14. Inhibition of 3′ modification of small RNAs in virus-infected plants require spatial and temporal co-expression of small RNAs and viral silencing-suppressor proteins

    PubMed Central

    Lózsa, Rita; Csorba, Tibor; Burgyán, József

    2008-01-01

    Plant viruses are inducers and targets of RNA silencing. Viruses counteract with RNA silencing by expressing silencing-suppressor proteins. Many of the identified proteins bind siRNAs, which prevents assembly of silencing effector complexes, and also interfere with their 3′ methylation, which protects them against degradation. Here, we investigated the 3′ modification of silencing-related small RNAs in Nicotiana benthamiana plants infected with viruses expressing RNA silencing suppressors, the p19 protein of Carnation Italian ringspot virus (CIRV) and HC-Pro of Tobacco etch virus (TEV). We found that CIRV had only a slight effect on viral siRNA 3′ modification, but TEV significantly inhibited the 3′ modification of si/miRNAs. We also found that p19 and HC-Pro were able to bind both 3′ modified and non-modified small RNAs in vivo. The findings suggest that the 3′ modification of viral siRNAs occurs in the cytoplasm, though miRNA 3′ modification likely takes place in the nucleus as well. Both silencing suppressors inhibited the 3′ modification of si/miRNAs when they and small RNAs were transiently co-expressed, suggesting that the inhibition of si/miRNA 3′ modification requires spatial and temporal co-expression. Finally, our data revealed that a HEN1-like methyltransferase might account for the small RNA modification at the their 3′-terminal nucleotide in N. benthamiana. PMID:18539609

  15. Destabilizing missense mutations in the tumour suppressor protein p53 enhance its ubiquitination in vitro and in vivo

    PubMed Central

    Shimizu, Harumi; Saliba, David; Wallace, Maura; Finlan, Lee; Langridge-Smith, Patrick R. R.; Hupp, Ted R.

    2006-01-01

    p53 ubiquitination catalysed by MDM2 (murine double minute clone 2 oncoprotein) provides a biochemical assay to dissect stages in E3-ubiquitin-ligase-catalysed ubiquitination of a conformationally flexible protein. A mutant form of p53 (p53F270A) containing a mutation in the second MDM2-docking site in the DNA-binding domain of p53 (F270A) is susceptible to modification of long-lived and high-molecular-mass covalent adducts in vivo. Mutant F270A is hyperubiquitinated in cells as defined by immunoprecipitation and immunoblotting with an anti-ubiquitin antibody. Transfection of His-tagged ubiquitin along with p53R175H or p53F270A also results in selective hyperubiquitination in cells under conditions where wild-type p53 is refractory to covalent modification. The extent of mutant p53R175H or p53F270A unfolding in cells as defined by exposure of the DO-12 epitope correlates with the extent of hyperubiquitination, suggesting a link between substrate conformation and E3 ligase function. The p53F270A:6KR chimaeric mutant (where 6KR refers to the simultaneous mutation of lysine residues at positions 370, 372, 373, 381, 382 and 386 to arginine) maintains the high-molecular-mass covalent adducts and is modified in an MDM2-dependent manner. Using an in vitro ubiquitination system, mutant p53F270A and the p53F270A:6KR chimaeric mutant is also subject to hyperubiquitination outwith the C-terminal domain, indicating direct recognition of the mutant p53 conformation by (a) factor(s) in the cell-free ubiquitination system. These data identify an in vitro and in vivo assay with which to dissect how oligomeric protein conformational alterations are linked to substrate ubiquitination in cells. This has implications for understanding the recognition of misfolded proteins during aging and in human diseases such as cancer. PMID:16579792

  16. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6.

    PubMed

    Hu, Hao; Yu, Ting; Arpiainen, Satu; Lang, Matti A; Hakkola, Jukka; Abu-Bakar, A'edah

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5'-Luc constructs--down to -160bp from the TSS--showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from -160 to -74bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene--a well-known p53 activator--increased the expression of the p53 responsive positive control and the CYP2A6-5'-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5'-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. PMID:26343999

  17. The Suppressor of Hairy-Wing Protein Regulates the Tissue-Specific Expression of the Drosophila Gypsy Retrotransposon

    PubMed Central

    Smith, P. A.; Corces, V. G.

    1995-01-01

    The gypsy retrotransposon of Drosophila melanogaster causes mutations that show temporal and tissue-specific phenotypes. These mutant phenotypes can be reversed by mutations in su(Hw), a gene that also regulates the transcription of the gypsy element. Gypsy encodes a full-length 7.0-kb RNA that is expressed in the salivary gland precursors and fat body of the embryo, imaginal discs and fat body of larvae, and fat body and ovaries of adult females. The su(Hw)-binding region inserted upstream of the promoter of a lacZ reporter gene can induce β-galactosidase expression in a subset of the embryonic and larval tissues where gypsy is normally transcribed. This expression is dependent on the presence of a functional su(Hw) product, suggesting that this protein is a positive activator of gypsy transcription. Flies transformed with a construct in which the 5' LTR and leader sequences of gypsy are fused to lacZ show β-galactosidase expression in all tissues where gypsy is normally expressed, indicating that sequences other than the su(Hw)-binding site are required for proper spatial and temporal expression of gypsy. Mutations in the zinc fingers of su(Hw) affect its ability to bind DNA and to induce transcription of the lacZ reporter gene. Two other structural domains of su(Hw) also play an important role in transcriptional regulation of gypsy. Deletion of the amino-terminal acidic domain results in the loss of lacZ expression in larval fat body and adult ovaries, whereas mutations in the leucine zipper region result in an increase of lacZ expression in larval fat body and a decrease in adult ovaries. These effects might be the result of interactions of su(Hw) with activator and repressor proteins through the acidic and leucine zipper domains to produce the final pattern of tissue-specific expression of gypsy. PMID:7705625

  18. Advanced Engineering of Lipid Metabolism in Nicotiana benthamiana Using a Draft Genome and the V2 Viral Silencing-Suppressor Protein

    PubMed Central

    Naim, Fatima; Nakasugi, Kenlee; Crowhurst, Ross N.; Hilario, Elena; Zwart, Alexander B.; Hellens, Roger P.; Taylor, Jennifer M.; Waterhouse, Peter M.; Wood, Craig C.

    2012-01-01

    The transient leaf assay in Nicotiana benthamiana is widely used in plant sciences, with one application being the rapid assembly of complex multigene pathways that produce new fatty acid profiles. This rapid and facile assay would be further improved if it were possible to simultaneously overexpress transgenes while accurately silencing endogenes. Here, we report a draft genome resource for N. benthamiana spanning over 75% of the 3.1 Gb haploid genome. This resource revealed a two-member NbFAD2 family, NbFAD2.1 and NbFAD2.2, and quantitative RT-PCR (qRT-PCR) confirmed their expression in leaves. FAD2 activities were silenced using hairpin RNAi as monitored by qRT-PCR and biochemical assays. Silencing of endogenous FAD2 activities was combined with overexpression of transgenes via the use of the alternative viral silencing-suppressor protein, V2, from Tomato yellow leaf curl virus. We show that V2 permits maximal overexpression of transgenes but, crucially, also allows hairpin RNAi to operate unimpeded. To illustrate the efficacy of the V2-based leaf assay system, endogenous lipids were shunted from the desaturation of 18∶1 to elongation reactions beginning with 18∶1 as substrate. These V2-based leaf assays produced ∼50% more elongated fatty acid products than p19-based assays. Analyses of small RNA populations generated from hairpin RNAi against NbFAD2 confirm that the siRNA population is dominated by 21 and 22 nt species derived from the hairpin. Collectively, these new tools expand the range of uses and possibilities for metabolic engineering in transient leaf assays. PMID:23300750

  19. A mitotic function for the high-mobility group protein HMG20b regulated by its interaction with the BRC repeats of the BRCA2 tumor suppressor.

    PubMed

    Lee, M; Daniels, M J; Garnett, M J; Venkitaraman, A R

    2011-07-28

    The inactivation of BRCA2, a suppressor of breast, ovarian and other epithelial cancers, triggers instability in chromosome structure and number, which are thought to arise from defects in DNA recombination and mitotic cell division, respectively. Human BRCA2 controls DNA recombination via eight BRC repeats, evolutionarily conserved motifs of ∼35 residues, that interact directly with the recombinase RAD51. How BRCA2 controls mitotic cell division is debated. Several studies by different groups report that BRCA2 deficiency affects cytokinesis. Moreover, its interaction with HMG20b, a protein of uncertain function containing a promiscuous DNA-binding domain and kinesin-like coiled coils, has been implicated in the G2-M transition. We show here that HMG20b depletion by RNA interference disturbs the completion of cell division, suggesting a novel function for HMG20b. In vitro, HMG20b binds directly to the BRC repeats of BRCA2, and exhibits the highest affinity for BRC5, a motif that binds poorly to RAD51. Conversely, the BRC4 repeat binds strongly to RAD51, but not to HMG20b. In vivo, BRC5 overexpression inhibits the BRCA2-HMG20b interaction, recapitulating defects in the completion of cell division provoked by HMG20b depletion. In contrast, BRC4 inhibits the BRCA2-RAD51 interaction and the assembly of RAD51 at sites of DNA damage, but not the completion of cell division. Our findings suggest that a novel function for HMG20b in cytokinesis is regulated by its interaction with the BRC repeats of BRCA2, and separate this unexpected function for the BRC repeats from their known activity in DNA recombination. We propose that divergent tumor-suppressive pathways regulating chromosome segregation as well as chromosome structure may be governed by the conserved BRC motifs in BRCA2. PMID:21399666

  20. Methylation and mRNA expression levels of P15, death-associated protein kinase, and suppressor of cytokine signaling-1 genes in multiple myeloma

    PubMed Central

    Liu, Lin; Tan, Lin; He, Zhenxin

    2016-01-01

    Objective(s): The aim of this study was to investigate the methylation status and mRNA expression levels of P15, death-associated protein kinase (DAPK), and suppressor of cytokine signaling-1 (SOCS1) genes in multiple myeloma (MM). Materials and Methods: The bone marrow samples of 54 MM patients were collected and the methylation status of the P15, DAPK, and SOCS1 gene promoter regions was determined by methylation-specific polymerase chain reaction. Automated sequencing technology was used to sequence the amplified products in order to analyze the base methylation sites. mRNA expression levels were determined using real-time fluorescent quantitative polymerase chain reaction. Results: Among the 54 MM patients, the positive methylation rates of the P15, DAPK, and SOCS1 genes were 27.78%, 18.52%, and 16.67%, respectively. The methylation results were confirmed by sequencing. The positive methylation rates of the P15, DAPK, and SOCS1 genes showed no correlation with patient gender, age, typing, staging, and grouping (P>0.05). There was no significant difference in the mRNA expression levels of the P15, DAPK, and SOCS1 genes between the MM patient group and the control group (P>0.05). Conclusions: Aberrant methylation of the P15, DAPK, and SOCS1 genes exists in MM, and these genes may play certain roles in pathogenesis of MM. There was no significant difference in mRNA expression levels between the methylated group and the non-methylated group, suggesting that these genes are regulated by other mechanisms during their transcription.

  1. The VHL tumor suppressor protein regulates tumorigenicity of U87-derived glioma stem-like cells by inhibiting the JAK/STAT signaling pathway.

    PubMed

    Kanno, Hiroshi; Sato, Hidemitsu; Yokoyama, Taka-Akira; Yoshizumi, Tetsuya; Yamada, Sachiko

    2013-03-01

    The signal transducer and activator of transcription 3 (STAT3) factor plays an important role in the tumorigenicity of cancer stem cells. The purpose of this study was to investigate the inhibitory mechanism of this pathway acting through the tumor suppressor von Hippel-Lindau (VHL) protein in glioma cancer stem cells. We isolated floating neurosphere-forming CD133+ cells as glioma stem-like cells (GSLCs) by the MACS method. Furthermore, we examined these cells for their growth rate, ability to form colonies and neurospheres in soft agar, capacity for implantation into SCID mice and expression of CD133, STAT3, JAK2, Elongin A, PTEN and VHL. Furthermore, we transferred the VHL gene, an inhibitor of STAT3, into GSLCs using an adenovirus vector and compared these transfectants with control vector-transfected GSLCs. GSLCs proved to be implantable and formed a tumor in the subcutaneous tissue of SCID mice, the histology of which was similar to that of human glioblastomas. In addition, GSLCs exhibited a high capacity for soft agar colony and neurosphere formation, nearly all of which were CD133 positive. The majority of GSLCs were immunopositive for STAT3, JAK2 and Elongin A, but immunonegative for PTEN and VHL. When the VHL gene was transferred to GSLCs and these cells were transplanted into SCID mice, they did not result in tumor formation. Their capacity for soft agar colony and neurosphere formation was significantly inhibited, although their proliferation was only moderately inhibited. Regarding the expression of various factors, that of CD133 was decreased in the VHL transfectants and those of STAT3, JAK2 and Elongin A were eliminated. However, the expression of PTEN and of VHL was upregulated. These findings suggest that VHL regulated the tumorigenicity and self-renewal ability of glioma cancer stem cells by inhibiting the JAK/STAT signaling pathway. PMID:23338840

  2. The p53 Tumor Suppressor Protein Does Not Regulate Expression of Its Own Inhibitor, MDM2, Except under Conditions of Stress

    PubMed Central

    Mendrysa, Susan M.; Perry, Mary Ellen

    2000-01-01

    MDM2 is an important regulator of the p53 tumor suppressor protein. MDM2 inhibits p53 by binding to it, physically blocking its ability to transactivate gene expression, and stimulating its degradation. In cultured cells, mdm2 expression can be regulated by p53. Hence, mdm2 and p53 can interact to form an autoregulatory loop in which p53 activates expression of its own inhibitor. The p53/MDM2 autoregulatory loop has been elucidated within cultured cells; however, regulation of mdm2 expression by p53 has not been demonstrated within intact tissues. Here, we examine the role of p53 in regulating mdm2 expression in vivo in order to test the hypothesis that the p53/MDM2 autoregulatory loop is the mechanism by which low levels of p53 are maintained. We demonstrate that basal expression of mdm2 in murine tissues is p53 independent, even in tissues that express functional p53. Transcription of mdm2 is induced in a p53-dependent manner following gamma irradiation, indicating that p53 regulates mdm2 expression in vivo following a stimulus. The requirement for a stimulus to activate p53-dependent regulation of mdm2 expression in vivo appeared to differ from the situation in early-passage mouse embryo fibroblasts, where mdm2 expression is enhanced by the presence of p53. Analysis of mdm2 expression in intact and dispersed embryos revealed that establishment of mouse embryo fibroblasts in culture induces p53-dependent mdm2 expression, suggesting that an unknown stimulus activates p53 function in cultured cells. Together, these results indicate that p53 does not regulate expression of its own inhibitor, except in response to stimuli. PMID:10688649

  3. Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition

    PubMed Central

    2010-01-01

    Background Activating transcription factor-3 (ATF3) is involved in the complex process of cellular stress response. However, its exact role in cancer is discussed controversially because both tumor suppressive and oncogenic effects have been described. Here we followed-up on our previous observation that inhibition of Hsp90 may increase ATF3 expression and sought to determine the role of ATF3 in colon cancer. Methods Regulation of ATF3 was determined in cancer cells using signaling inhibitors and a heat-shock protein-90 (Hsp90) antagonist. Human HCT116 cancer cells were stably transfected with an ATF3-shRNA or a luciferase-shRNA expression plasmid and alterations in cell motility were assessed in migration assays. The impact of ATF3 down-regulation on cancer growth and metastasis were investigated in a subcutaneous tumor model, a model of hepatic tumor growth and in a model of peritoneal carcinomatosis. Human colon cancer tissues were analyzed for ATF3 expression. Results The results show that therapeutic Hsp90 inhibition substantially up-regulates the expression of ATF3 in various cancer cells, including colon, gastric and pancreatic cancer. This effect was evident both in vitro and in vivo. RNAi mediated knock-down of ATF3 in HCT116 colon cancer cells significantly increased cancer cell migration in vitro. Moreover, in xenogenic mouse models, ATF3 knock-down promoted subcutaneous tumor growth and hepatic metastasis, as well as peritoneal carcinomatosis. Importantly, ATF3 expression was lower in human colon cancer specimens, as compared to corresponding normal surrounding tissues, suggesting that ATF3 may represent a down-regulated tumor suppressor in colon cancer. Conclusion In conclusion, ATF3 down-regulation in colon cancer promotes tumor growth and metastasis. Considering that blocking Hsp90 induces ATF3 expression, Hsp90 inhibition may represent a valid strategy to treat metastatic colon cancer by up-regulating this anti-metastatic transcription factor. PMID

  4. The Optimal Corepressor Function of Nuclear Receptor Corepressor (NCoR) for Peroxisome Proliferator-activated Receptor γ Requires G Protein Pathway Suppressor 2*

    PubMed Central

    Guo, Chun; Li, Yali; Gow, Chien-Hung; Wong, Madeline; Zha, Jikun; Yan, Chunxia; Liu, Hongqi; Wang, Yongjun; Burris, Thomas P.; Zhang, Jinsong

    2015-01-01

    Repression of peroxisome proliferator-activated receptor γ (PPARγ)-dependent transcription by the nuclear receptor corepressor (NCoR) is important for homeostatic expression of PPARγ target genes in vivo. The current model states that NCoR-mediated repression requires its direct interaction with PPARγ in the repressive conformation. Previous studies, however, have shown that DNA-bound PPARγ is incompatible with a direct, high-affinity association with NCoR because of the inherent ability of PPARγ to adopt the active conformation. Here we show that NCoR acquires the ability to repress active PPARγ-mediated transcription via G protein pathway suppressor 2 (GPS2), a component of the NCoR corepressor complex. Unlike NCoR, GPS2 can recognize and bind the active state of PPARγ. In GPS2-deficient mouse embryonic fibroblast cells, loss of GPS2 markedly reduces the corepressor function of NCoR for PPARγ, leading to constitutive activation of PPARγ target genes and spontaneous adipogenesis of the cells. GPS2, however, is dispensable for repression mediated by unliganded thyroid hormone receptor α or a PPARγ mutant unable to adopt the active conformation. This study shows that GPS2, although dispensable for the intrinsic repression function of NCoR, can mediate a novel corepressor repression pathway that allows NCoR to directly repress active PPARγ-mediated transcription, which is important for the optimal corepressor function of NCoR for PPARγ. Interestingly, GPS2-dependent repression specifically targets PPARγ but not PPARα or PPARδ. Therefore, GPS2 may serve as a unique target to manipulate PPARγ signaling in diseases. PMID:25519902

  5. PML Surfs into HIPPO Tumor Suppressor Pathway

    PubMed Central

    Strano, Sabrina; Fausti, Francesca; Di Agostino, Silvia; Sudol, Marius; Blandino, Giovanni

    2013-01-01

    Growth arrest, inhibition of cell proliferation, apoptosis, senescence, and differentiation are the most characterized effects of a given tumor suppressor response. It is becoming increasingly clear that tumor suppression results from the integrated and synergistic activities of different pathways. This implies that tumor suppression includes linear, as well as lateral, crosstalk signaling. The latter may happen through the concomitant involvement of common nodal proteins. Here, we discuss the role of Promyelocytic leukemia protein (PML) in functional cross-talks with the HIPPO and the p53 family tumor suppressor pathways. PML, in addition to its own anti-tumor activity, contributes to the assembly of an integrated and superior network that may be necessary for the maximization of the tumor suppressor response to diverse oncogenic insults. PMID:23459691

  6. Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines

    SciTech Connect

    Gestl, Erin E.; Anne Boettger, S.

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated with p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53

  7. The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: Genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein.

    PubMed Central

    Chantrel, Y; Gaisne, M; Lions, C; Verdière, J

    1998-01-01

    We report here that Hap1p (originally named Cyp1p) has an essential function in anaerobic or heme-deficient growth. Analysis of intragenic revertants shows that this function depends on the amino acid preceding the first cysteine residue of the DNA-binding domain of Hap1p. Selection of recessive extragenic suppressors of a hap1-hem1- strain allowed the identification, cloning, and molecular analysis of ASC1 (Cyp1 Absence of growth Supressor). The sequence of ASC1 reveals that its ORF is interrupted by an intron that shelters the U24 snoRNA. Deletion of the intron, inactivation of the ORF, and molecular localization of the mutations show unambiguously that it is the protein and not the snoRNA that is involved in the suppressor phenotype. ASC1, which is constitutively transcribed, encodes an abundant, cytoplasmically localized 35-kD protein that belongs to the WD repeat family, which is found in a large variety of eucaryotic organisms. Polysome profile analysis supports the involvement of this protein in translation. We propose that the absence of functional Asc1p allows the growth of hap1-hem1- cells by reducing the efficiency of translation. Based on sequence comparisons, we discuss the possibility that the protein intervenes in a kinase-dependent signal transduction pathway involved in this last function. PMID:9504906

  8. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death

    PubMed Central

    Seillier, M; Peuget, S; Gayet, O; Gauthier, C; N'Guessan, P; Monte, M; Carrier, A; Iovanna, J L; Dusetti, N J

    2012-01-01

    TP53INP1 (tumor protein 53-induced nuclear protein 1) is a tumor suppressor, whose expression is downregulated in cancers from different organs. It was described as a p53 target gene involved in cell death, cell-cycle arrest and cellular migration. In this work, we show that TP53INP1 is also able to interact with ATG8-family proteins and to induce autophagy-dependent cell death. In agreement with this finding, we observe that TP53INP1, which is mainly nuclear, relocalizes in autophagosomes during autophagy where it is eventually degraded. TP53INP1-LC3 interaction occurs via a functional LC3-interacting region (LIR). Inactivating mutations of this sequence abolish TP53INP1-LC3 interaction, relocalize TP53INP1 in autophagosomes and decrease TP53INP1 ability to trigger cell death. Interestingly, TP53INP1 binds to ATG8-family proteins with higher affinity than p62, suggesting that it could partially displace p62 from autophagosomes, modifying thereby their composition. Moreover, silencing the expression of autophagy related genes (ATG5 or Beclin-1) or inhibiting caspase activity significantly decreases cell death induced by TP53INP1. These data indicate that cell death observed after TP53INP1-LC3 interaction depends on both autophagy and caspase activity. We conclude that TP53INP1 could act as a tumor suppressor by inducing cell death by caspase-dependent autophagy. PMID:22421968

  9. Tumor suppressor identified as inhibitor of inflammation

    Cancer.gov

    Scientists at NCI have found that a protein, FBXW7, which acts as a tumor suppressor, is also important for the reduction in strength of inflammatory pathways. It has long been recognized that a complex interaction exists between cancer causing mechanisms

  10. Dispersion suppressors with bending

    SciTech Connect

    Garren, A.

    1985-10-01

    Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.

  11. Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins.

    PubMed

    Moissiard, Guillaume; Parizotto, Eneida Abreu; Himber, Christophe; Voinnet, Olivier

    2007-08-01

    In plants, worms, and fungi, RNA-dependent RNA polymerases (RDRs) amplify the production of short-interfering RNAs (siRNAs) that mediate RNA silencing. In Arabidopsis, RDR6 is thought to copy endogenous and exogenous RNA templates into double-stranded RNAs (dsRNAs), which are subsequently processed into siRNAs by one or several of the four Dicer-like enzymes (DCL1-->4). This reaction produces secondary siRNAs corresponding to sequences outside the primary targeted regions of a transcript, a phenomenon called transitivity. One recognized role of RDR6 is to strengthen the RNA silencing response mounted by plants against viruses. Accordingly, suppressor proteins deployed by viruses inhibit this defense. However, interactions between silencing suppressors and RDR6 have not yet been documented. Additionally, the mechanism underlying transitivity remains poorly understood. Here, we report how several viral silencing suppressors inhibit the RDR6-dependent amplification of virus-induced and transgene-induced gene silencing. Viral suppression of primary siRNA accumulation shows that transitivity can be initiated with minute amounts of DCL4-dependent 21-nucleotide (nt)-long siRNAs, whereas DCL3-dependent 24-nt siRNAs appear dispensable for this process. We further show that unidirectional (3-->5') transitivity requires the hierarchical and redundant functions of DCL4 and DCL2 acting downstream from RDR6 to produce 21- and 22-nt-long siRNAs, respectively. The 3-->5' transitive reaction is likely to be processive over >750 nt, with secondary siRNA production progressively decreasing as the reaction proceeds toward the 5'-proximal region of target transcripts. Finally, we show that target cleavage by a primary small RNA and 3-->5' transitivity can be genetically uncoupled, and we provide in vivo evidence supporting a key role for priming in this specific reaction. PMID:17592042

  12. Measurand transient signal suppressor

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A transient signal suppressor for use in a controls system which is adapted to respond to a change in a physical parameter whenever it crosses a predetermined threshold value in a selected direction of increasing or decreasing values with respect to the threshold value and is sustained for a selected discrete time interval is presented. The suppressor includes a sensor transducer for sensing the physical parameter and generating an electrical input signal whenever the sensed physical parameter crosses the threshold level in the selected direction. A manually operated switch is provided for adapting the suppressor to produce an output drive signal whenever the physical parameter crosses the threshold value in the selected direction of increasing or decreasing values. A time delay circuit is selectively adjustable for suppressing the transducer input signal for a preselected one of a plurality of available discrete suppression time and producing an output signal only if the input signal is sustained for a time greater than the selected suppression time. An electronic gate is coupled to receive the transducer input signal and the timer output signal and produce an output drive signal for energizing a control relay whenever the transducer input is a non-transient signal which is sustained beyond the selected time interval.

  13. RASSF tumor suppressor gene family: biological functions and regulation.

    PubMed

    Volodko, Natalia; Gordon, Marilyn; Salla, Mohamed; Ghazaleh, Haya Abu; Baksh, Shairaz

    2014-08-19

    Genetic changes through allelic loss and nucleic acid or protein modifications are the main contributors to loss of function of tumor suppressor proteins. In particular, epigenetic silencing of genes by promoter hypermethylation is associated with increased tumor severity and poor survival. The RASSF (Ras association domain family) family of proteins consists of 10 members, many of which are tumor suppressor proteins that undergo loss of expression through promoter methylation in numerous types of cancers such as leukemia, melanoma, breast, prostate, neck, lung, brain, colorectal and kidney cancers. In addition to their tumor suppressor function, RASSF proteins act as scaffolding agents in microtubule stability, regulate mitotic cell division, modulate apoptosis, control cell migration and cell adhesion, and modulate NFκB activity and the duration of inflammation. The ubiquitous functions of these proteins highlight their importance in numerous physiological pathways. In this review, we will focus on the biological roles of the RASSF family members and their regulation. PMID:24607545

  14. Syndecan-2 Exerts Antifibrotic Effects by Promoting Caveolin-1–mediated Transforming Growth Factor-β Receptor I Internalization and Inhibiting Transforming Growth Factor-β1 Signaling

    PubMed Central

    Shi, Yuanyuan; Gochuico, Bernadette R.; Yu, Guoying; Tang, Xiaomeng; Osorio, Juan C.; Fernandez, Isis E.; Risquez, Cristobal F.; Patel, Avignat S.; Shi, Ying; Wathelet, Marc G.; Goodwin, Andrew J.; Haspel, Jeffrey A.; Ryter, Stefan W.; Billings, Eric M.; Kaminski, Naftali; Morse, Danielle

    2013-01-01

    Rationale: Alveolar transforming growth factor (TGF)-β1 signaling and expression of TGF-β1 target genes are increased in patients with idiopathic pulmonary fibrosis (IPF) and in animal models of pulmonary fibrosis. Internalization and degradation of TGF-β receptor TβRI inhibits TGF-β signaling and could attenuate development of experimental lung fibrosis. Objectives: To demonstrate that after experimental lung injury, human syndecan-2 confers antifibrotic effects by inhibiting TGF-β1 signaling in alveolar epithelial cells. Methods: Microarray assays were performed to identify genes differentially expressed in alveolar macrophages of patients with IPF versus control subjects. Transgenic mice that constitutively overexpress human syndecan-2 in macrophages were developed to test the antifibrotic properties of syndecan-2. In vitro assays were performed to determine syndecan-2–dependent changes in epithelial cell TGF-β1 signaling, TGF-β1, and TβRI internalization and apoptosis. Wild-type mice were treated with recombinant human syndecan-2 during the fibrotic phase of bleomycin-induced lung injury. Measurements and Main Results: We observed significant increases in alveolar macrophage syndecan-2 levels in patients with IPF. Macrophage-specific overexpression of human syndecan-2 in transgenic mice conferred antifibrotic effects after lung injury by inhibiting TGF-β1 signaling and downstream expression of TGF-β1 target genes, reducing extracellular matrix production and alveolar epithelial cell apoptosis. In vitro, syndecan-2 promoted caveolin-1–dependent internalization of TGF-β1 and TβRI in alveolar epithelial cells, which inhibited TGF-β1 signaling and epithelial cell apoptosis. Therapeutic administration of human syndecan-2 abrogated lung fibrosis in mice. Conclusions: Alveolar macrophage syndecan-2 exerts antifibrotic effects by promoting caveolin-1–dependent TGF-β1 and TβRI internalization and inhibiting TGF-β1 signaling in alveolar epithelial

  15. Identification of the full-length KIAA0591 gene encoding a novel kinesin-related protein which is mapped to the neuroblastoma suppressor gene locus at 1p36.2.

    PubMed

    Nagai, M; Ichimiya, S; Ozaki, T; Seki, N; Mihara, M; Furuta, S; Ohira, M; Tomioka, N; Nomura, N; Sakiyama, S; Kubo, O; Takakura, K; Hori, T; Nakagawara, A

    2000-05-01

    The distal region of a short arm of chromosome 1p is frequently deleted in many human cancers including neuroblastoma (NBL), in which it has been narrowed down to the smallest region of overlap between D1S244 and D1S214 (approximately 7 cM). During the search for the candidate tumor suppressor genes mapped within the region, we found the KIAA0591 gene which encoded a new human kinesin-related protein with a homology to human axonal transporter of synaptic vesicles (ATSV). The kinesin is an intracellular motor protein and often associated with neuronal differentiation and survival. Here we identified a complete open reading frame of the KIAA0591 gene by screening a cDNA library derived from human substantia nigra. The KIAA0591 protein contains a possible pleckstrin homology (PH) domain at its carboxy-terminus. However, it did not possess a force-generating motor domain which is well conserved among kinesin superfamily members (KIFs). Northern blot analysis demonstrated that KIAA0591 mRNA was preferentially expressed in both adult and fetal brains, kidney, skeletal muscle and pancreas. KIAA0591 was expressed in favorable NBLs at higher levels than in unfavorable NBLs, although RT-PCR SSCP analysis showed no mutation within the coding region of the KIAA0591 gene, when 8 neuroblastoma tissues and 15 neuroblastoma-derived cell lines were examined. Thus, the full-length KIAA0591 gene may be a novel member of human KIF superfamily which lacks motor domain and might function as a tumor suppressor in an epigenetic but not a classic Knudson's manner. PMID:10762626

  16. Metastasis Suppressors and the Tumor Microenvironment

    PubMed Central

    Cook, Leah M.; Hurst, Douglas R.; Welch, Danny R.

    2011-01-01

    The most lethal and debilitating attribute of cancer cells is their ability to metastasize. Throughout the process of metastasis, tumor cells interact with other tumor cells, host cells and a variety of molecules. Tumor cells are also faced with a number of insults, such as hemodynamic sheer pressure and immune selection. This brief review explores how metastasis suppressor proteins regulate interactions between tumor cells and the microenvironments in which tumor cells find themselves. PMID:21168504

  17. Viral suppressors of RNA-based viral immunity: Host targets

    PubMed Central

    Wu, Qingfa; Wang, Xianbing

    2010-01-01

    Discovery of diverse plant and animal viral proteins as suppressors of RNA silencing has provided strong support for an RNA-based viral immunity (RVI), which is now known to specifically destroy viral RNAs by RNA interference in fungi, plants and invertebrates. Here we review several recent studies that have revealed new mechanistic insights into plant and insect viral suppressors of RVI or suggested a role for RNA silencing suppression during mammalian viral infection. PMID:20638637

  18. Cytoplasmic Functions of the Tumor Suppressor p53

    PubMed Central

    Green, Douglas R.; Kroemer, Guido

    2010-01-01

    The principal tumor suppressor protein, p53, accumulates in cells in response to DNA damage, oncogene activation, and other stresses. It acts as a nuclear transcription factor that transactivates genes involved in apoptosis, cell cycle regulation, and numerous other processes. An emerging area of research unravels additional activities of p53 in the cytoplasm, where it triggers apoptosis and inhibits autophagy. These novel functions contribute to p53’s mission as a tumor suppressor. PMID:19407794

  19. Myeloid derived suppressor cells

    PubMed Central

    Waldron, Todd J.; Quatromoni, Jon G.; Karakasheva, Tatiana A.; Singhal, Sunil; Rustgi, Anil K.

    2013-01-01

    The goal of achieving measurable response with cancer immunotherapy requires counteracting the immunosuppressive characteristics of tumors. One of the mechanisms that tumors utilize to escape immunosurveillance is the activation of myeloid derived suppressor cells (MDSCs). Upon activation by tumor-derived signals, MDSCs inhibit the ability of the host to mount an anti-tumor immune response via their capacity to suppress both the innate and adaptive immune systems. Despite their relatively recent discovery and characterization, anti-MDSC agents have been identified, which may improve immunotherapy efficacy. PMID:23734336

  20. A conserved domain in exon 2 coding for the human and murine ARF tumor suppressor protein is required for autophagy induction

    PubMed Central

    Budina-Kolomets, Anna; Hontz, Robert D; Pimkina, Julia; Murphy, Maureen E

    2013-01-01

    The ARF tumor suppressor, encoded by the CDKN2A gene, has a well-defined role regulating TP53 stability; this activity maps to exon 1β of CDKN2A. In contrast, little is known about the function(s) of exon 2 of ARF, which contains the majority of mutations in human cancer. In addition to controlling TP53 stability, ARF also has a role in the induction of autophagy. However, whether the principal molecule involved is full-length ARF, or a small molecular weight variant called smARF, has been controversial. Additionally, whether tumor-derived mutations in exon 2 of CDKN2A affect ARF’s autophagy function is unknown. Finally, whereas it is known that silencing or inhibiting TP53 induces autophagy, the contribution of ARF to this induction is unknown. In this report we used multiple autophagy assays to map a region located in the highly conserved 5′ end of exon 2 of CDKN2A that is necessary for autophagy induction by both human and murine ARF. We showed that mutations in exon 2 of CDKN2A that affect the coding potential of ARF, but not p16INK4a, all impair the ability of ARF to induce autophagy. We showed that whereas full-length ARF can induce autophagy, our combined data suggest that smARF instead induces mitophagy (selective autophagy of mitochondria), thus potentially resolving some confusion regarding the role of these variants. Finally, we showed that silencing Tp53 induces autophagy in an ARF-dependent manner. Our data indicated that a conserved domain in ARF mediates autophagy, and for the first time they implicate autophagy in ARF’s tumor suppressor function. PMID:23939042

  1. Epithelial cell-derived periostin functions as a tumor suppressor in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14ARF/Mdm2 signaling pathway.

    PubMed

    Lv, Hongjun; Liu, Rui; Fu, Jiao; Yang, Qi; Shi, Jing; Chen, Pu; Ji, Meiju; Shi, Bingyin; Hou, Peng

    2014-01-01

    Periostin is usually considered as an oncogene in diverse human cancers, including breast, prostate, colon, esophagus, and pancreas cancers, whereas it acts as a tumor suppressor in bladder cancer. In gastric cancer, it has been demonstrated that periglandular periostin expression is decreased whereas stromal periostin expression is significantly increased as compared with normal gastric tissues. Moreover, periostin produced by stromal myofibroblasts markedly promotes gastric cancer cell growth. These observations suggest that periostin derived from different types of cells may play distinct biological roles in gastric tumorigenesis. The aim of this study was to explore the biological functions and related molecular mechanisms of epithelial cell-derived periostin in gastric cancer. Our data showed that periglandular periostin was significantly down-regulated in gastric cancer tissues as compared with matched normal gastric mucosa. In addition, its expression in metastatic lymph nodes was significantly lower than that in their primary cancer tissues. Our data also demonstrated that periglandular periostin expression was negatively associated with tumor stage. More importantly, restoration of periostin expression in gastric cancer cells dramatically suppressed cell growth and invasiveness. Elucidation of the mechanisms involved revealed that periostin restoration enhanced Rb phosphorylation and sequentially activated the transcription of E2F1 target gene p14(ARF), leading to Mdm2 inactivation and the stabilization of p53 and E-cadherin proteins. Strikingly, these effects of periostin were abolished upon Rb deletion. Collectively, we have for the first time demonstrated that epithelial cell-derived periostin exerts tumor-suppressor activities in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14(ARF)/Mdm2 signaling pathway. PMID:25486483

  2. RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest.

    PubMed

    Lai, A; Kennedy, B K; Barbie, D A; Bertos, N R; Yang, X J; Theberge, M C; Tsai, S C; Seto, E; Zhang, Y; Kuzmichev, A; Lane, W S; Reinberg, D; Harlow, E; Branton, P E

    2001-04-01

    Retinoblastoma (RB) tumor suppressor family pocket proteins induce cell cycle arrest by repressing transcription of E2F-regulated genes through both histone deacetylase (HDAC)-dependent and -independent mechanisms. In this study we have identified a stable complex that accounts for the recruitment of both repression activities to the pocket. One component of this complex is RBP1, a known pocket-binding protein that exhibits both HDAC-dependent and -independent repression functions. RB family proteins were shown to associate via the pocket with previously identified mSIN3-SAP30-HDAC complexes containing exclusively class I HDACs. Such enzymes do not interact directly with RB family proteins but rather utilize RBP1 to target the pocket. This mechanism was shown to account for the majority of RB-associated HDAC activity. We also show that in quiescent normal human cells this entire RBP1-mSIN3-SAP30-HDAC complex colocalizes with both RB family members and E2F4 in a limited number of discrete regions of the nucleus that in other studies have been shown to represent the initial origins of DNA replication following growth stimulation. These results suggest that RB family members, at least in part, drive exit from the cell cycle by recruitment of this HDAC complex via RBP1 to repress transcription from E2F-dependent promoters and possibly to alter chromatin structure at DNA origins. PMID:11283269

  3. Caveolin-1, Caveolin-2 and Cavin-1 are strong predictors of adipogenic differentiation in human tumors and cell lines of liposarcoma.

    PubMed

    Codenotti, Silvia; Vezzoli, Marika; Poliani, Pietro Luigi; Cominelli, Manuela; Bono, Federica; Kabbout, Hadi; Faggi, Fiorella; Chiarelli, Nicola; Colombi, Marina; Zanella, Isabella; Biasiotto, Giorgio; Montanelli, Alessandro; Caimi, Luigi; Monti, Eugenio; Fanzani, Alessandro

    2016-08-01

    Caveolins (Cav-1, -2 and -3) and Cavins (Cavin-1, -2, -3 and -4) are two protein families controlling the biogenesis and function of caveolae, plasma membrane omega-like invaginations representing the primary site of important cellular processes like endocytosis, cholesterol homeostasis and signal transduction. Caveolae are especially abundant in fat tissue, playing a consistent role in a number of processes, such as the insulin-dependent glucose uptake and transmembrane transport of lipids underlying differentiation, maintenance and adaptive hypertrophy of adipocytes. Based on this premise, in this work we have investigated the expression of caveolar protein components in liposarcoma (LPS), an adipocytic soft tissue sarcoma affecting adults categorized in well-differentiated, dedifferentiated, myxoid and pleomorphic histotypes. By performing an extensive microarray data analysis followed by immunohistochemistry on human LPS tumors, we demonstrated that Cav-1, Cav-2 and Cavin-1 always cluster in all the histotypes, reaching the highest expression in well-differentiated LPS, the least aggressive of the malignant forms composed by tumor cells with a morphology resembling mature adipocytes. In vitro experiments carried out using two human LPS cell lines showed that the expression levels of Cav-1, Cav-2 and Cavin-1 proteins were faintly detectable during cell growth, becoming consistently increased during the accumulation of intracellular lipid droplets characterizing the adipogenic differentiation. Moreover, in differentiated LPS cells the three proteins were also found to co-localize and form molecular aggregates at the plasma membrane, as shown via immunofluorescence and immunoprecipitation analysis. Overall, these data indicate that Cav-1, Cav-2 and Cavin-1 may be considered as reliable markers for identification of LPS tumors characterized by consistent adipogenic differentiation. PMID:27168348

  4. The caveolin proteins

    PubMed Central

    Williams, Terence M; Lisanti, Michael P

    2004-01-01

    The caveolin gene family has three members in vertebrates: caveolin-1, caveolin-2, and caveolin-3. So far, most caveolin-related research has been conducted in mammals, but the proteins have also been found in other animals, including Xenopus laevis, Fugu rubripes, and Caenorhabditis elegans. Caveolins can serve as protein markers of caveolae ('little caves'), invaginations in the plasma membrane 50-100 nanometers in diameter. Caveolins are found predominantly at the plasma membrane but also in the Golgi, the endoplasmic reticulum, in vesicles, and at cytosolic locations. They are expressed ubiquitously in mammals, but their expression levels vary considerably between tissues. The highest levels of caveolin-1 (also called caveolin, Cav-1 and VIP2I) are found in terminally-differentiated cell types, such as adipocytes, endothelia, smooth muscle cells, and type I pneumocytes. Caveolin-2 (Cav-2) is colocalized and coexpressed with Cav-1 and requires Cav-1 for proper membrane targeting; the Cav-2 gene also maps to the same chromosomal region as Cav-1 (7q31.1 in humans). Caveolin-3 (Cav-3) has greater protein-sequence similarity to Cav-1 than to Cav-2, but it is expressed mainly in muscle cells, including smooth, skeletal, and cardiac myocytes. Caveolins participate in many important cellular processes, including vesicular transport, cholesterol homeostasis, signal transduction, and tumor suppression. PMID:15003112

  5. Tumor suppressor protein Lgl mediates G1 cell cycle arrest at high cell density by forming an Lgl-VprBP-DDB1 complex

    PubMed Central

    Yamashita, Kazunari; Ide, Mariko; Furukawa, Kana T.; Suzuki, Atsushi; Hirano, Hisashi; Ohno, Shigeo

    2015-01-01

    Lethal giant larvae (Lgl) is an evolutionarily conserved tumor suppressor whose loss of function causes disrupted epithelial architecture with enhanced cell proliferation and defects in cell polarity. A role for Lgl in the establishment and maintenance of cell polarity via suppression of the PAR-aPKC polarity complex is established; however, the mechanism by which Lgl regulates cell proliferation is not fully understood. Here we show that depletion of Lgl1 and Lgl2 in MDCK epithelial cells results in overproliferation and overproduction of Lgl2 causes G1 arrest. We also show that Lgl associates with the VprBP-DDB1 complex independently of the PAR-aPKC complex and prevents the VprBP-DDB1 subunits from binding to Cul4A, a central component of the CRL4 [VprBP] ubiquitin E3 ligase complex implicated in G1- to S-phase progression. Consistently, depletion of VprBP or Cul4 rescues the overproliferation of Lgl-depleted cells. In addition, the affinity between Lgl2 and the VprBP-DDB1 complex increases at high cell density. Further, aPKC-mediated phosphorylation of Lgl2 negatively regulates the interaction between Lgl2 and VprBP-DDB1 complex. These results suggest a mechanism protecting overproliferation of epithelial cells in which Lgl plays a critical role by inhibiting formation of the CRL4 [VprBP] complex, resulting in G1 arrest. PMID:25947136

  6. Myb-Binding Protein 1A (MYBBP1A) Is Essential for Early Embryonic Development, Controls Cell Cycle and Mitosis, and Acts as a Tumor Suppressor

    PubMed Central

    Mori, Silvia; Bernardi, Rosa; Laurent, Audrey; Resnati, Massimo; Crippa, Ambra; Gabrieli, Arianna; Keough, Rebecca; Gonda, Thomas J.; Blasi, Francesco

    2012-01-01

    MYBBP1A is a predominantly nucleolar transcriptional regulator involved in rDNA synthesis and p53 activation via acetylation. However little further information is available as to its function. Here we report that MYBBP1A is developmentally essential in the mouse prior to blastocyst formation. In cell culture, down-regulation of MYBBP1A decreases the growth rate of wild type mouse embryonic stem cells, mouse embryo fibroblasts (MEFs) and of human HeLa cells, where it also promotes apoptosis. HeLa cells either arrest at G2/M or undergo delayed and anomalous mitosis. At mitosis, MYBBP1A is localized to a parachromosomal region and gene-expression profiling shows that its down-regulation affects genes controlling chromosomal segregation and cell cycle. However, MYBBP1A down-regulation increases the growth rate of the immortalized NIH3T3 cells. Such Mybbp1a down-regulated NIH3T3 cells are more susceptible to Ras-induced transformation and cause more potent Ras-driven tumors. We conclude that MYBBP1A is an essential gene with novel roles at the pre-mitotic level and potential tumor suppressor activity. PMID:23056166

  7. Gel mobility shift assays for RNA binding viral RNAi suppressors.

    PubMed

    Csorba, Tibor; Burgyán, József

    2011-01-01

    The host-virus interaction is a continuous coevolutionary race involving both host defence strategies and virus escape mechanisms. RNA silencing is one of the main processes employed by eukaryotic organisms to fight viruses. However, viruses encode suppressor proteins to counteract this antiviral mechanism. Virtually all plant viruses encode at least one suppressor. In spite of being highly diverse at the protein level, a large group of these proteins inhibit RNA silencing very similarly, by sequestration of double-stranded RNA or small-interfering RNA molecules, the central players of the pathway. The RNA binding capacity of virus suppressor proteins can be studied by the electrophoretic mobility shift assay method. Also known as gel retardation assay, gel mobility assay, gel shift assay or band shift assay, EMSA is an in vitro technique used to characterize protein:DNA or protein:RNA interactions. The method had been developed based on the observation that protein: nucleic acid complexes migrate slower through a non-denaturing polyacrylamide gel than the free nucleic acid fragments. Here, we provide a detailed protocol for the analysis of crucifer-infecting Tobacco mosaic tobamovirus (cr-TMV) silencing suppressor protein p122 RNA binding capacity. PMID:21431690

  8. Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins.

    PubMed

    Wang, Linda; Chang, Esther W Y; Wong, Siew Cheng; Ong, Siew-Min; Chong, Debra Q Y; Ling, Khoon Lin

    2013-01-15

    Immune dysfunction may contribute to tumor progression in gastric cancer (GC) patients. One mechanism of immune dysfunction is the suppression of T cell activation and impairment of the efficacy of cancer immunotherapy by myeloid-derived suppressor cells (MDSCs). We assessed the phenotype and immunosuppressive function of MDSCs in GC patients. We further investigated the role of S100A8/A9 in GC and the relationship between S100A8/A9 and MDSC function. Lastly, the effect of MDSCs on survival rates and its potential as a prognostic factor in GC patients were investigated. MDSCs from PBMCs of GC patients were identified by comparing the expression of specific surface markers with PBMCs from healthy individuals. The ability of MDSCs to suppress T lymphocyte response and the effect of S100A8/A9 and RAGE blocking were tested in vitro by (autologous) MLR. GC patients had significantly more MDSCs than healthy individuals. These MDSCs suppressed both T lymphocyte proliferation and IFN-γ production and had high arginase-I expression. Levels of S100A8/A9 in plasma were higher in GC patients compared with healthy individuals, and they correlated with MDSC levels in the blood. Blocking of S100A8/A9 itself and the S100A8/A9 receptor RAGE on MDSCs from GC patients abrogated T cell effector function. We found that high levels of MDSCs correlated with more advanced cancer stage and with reduced survival (p = 0.006). S100A8/A9 has been identified as a potential target to modulate antitumor immunity by reversing MDSC-mediated immunosuppression. PMID:23248262

  9. Toll-Like Receptor 3 and Suppressor of Cytokine Signaling Proteins Regulate CXCR4 and CXCR7 Expression in Bone Marrow-Derived Human Multipotent Stromal Cells

    PubMed Central

    Tomchuck, Suzanne L.; Henkle, Sarah L.; Coffelt, Seth B.; Betancourt, Aline M.

    2012-01-01

    Background The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to “danger” signals – by-products of damaged, infected or inflamed tissues – via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated by TLRs in hMSC. Methodology/Principal Findings We demonstrate that TLR3 stimulation activates a Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 1 pathway, and increases expression of suppressor of cytokine signaling (SOCS) 1 and SOCS3 in hMSC. Our studies suggest that each of these SOCS plays a distinct role in negatively regulating TLR3 and JAK/STAT signaling. TLR3-mediated interferon regulatory factor 1 (IRF1) expression was inhibited by SOCS3 overexpression in hMSC while SOCS1 overexpression reduced STAT1 activation. Furthermore, our study is the first to demonstrate that when TLR3 is activated in hMSC, expression of CXCR4 and CXCR7 is downregulated. SOCS3 overexpression inhibited internalization of both CXCR4 and CXCR7 following TLR3 stimulation. In contrast, SOCS1 overexpression only inhibited CXCR7 internalization. Conclusion/Significance These results demonstrate that SOCS1 and SOCS3 each play a functionally distinct role in modulating TLR3, JAK/STAT, and CXCR4/CXCR7 signaling in hMSC and shed further light on the way hMSC respond to danger signals. PMID:22745793

  10. Runt-related Transcription Factor 1 (RUNX1) Stimulates Tumor Suppressor p53 Protein in Response to DNA Damage through Complex Formation and Acetylation*

    PubMed Central

    Wu, Dan; Ozaki, Toshinori; Yoshihara, Yukari; Kubo, Natsumi; Nakagawara, Akira

    2013-01-01

    Representative tumor suppressor p53 plays a critical role in the regulation of proper DNA damage response. In this study, we have found for the first time that Runt-related transcription factor 1 (RUNX1) contributes to p53-dependent DNA damage response. Upon adriamycin (ADR) exposure, p53 as well as RUNX1 were strongly induced in p53-proficient HCT116 and U2OS cells, which were closely associated with significant transactivation of p53 target genes, such as p21WAF1, BAX, NOXA, and PUMA. RUNX1 was exclusively expressed in the cell nucleus and formed a complex with p53 in response to ADR. Chromatin immunoprecipitation assay demonstrated that p53 together with RUNX1 are efficiently recruited onto p53 target gene promoters following ADR exposure, indicating that RUNX1 is involved in p53-mediated transcriptional regulation. Indeed, forced expression of RUNX1 stimulated the transcriptional activity of p53 in response to ADR. Consistent with these observations, knockdown of RUNX1 attenuated ADR-mediated induction of p53 target genes and suppressed ADR-dependent apoptosis. Furthermore, RUNX1 was associated with p300 histone acetyltransferase, and ADR-dependent acetylation of p53 at Lys-373/382 was markedly inhibited in RUNX1 knockdown cells. In addition, knockdown of RUNX1 resulted in a significant decrease in the amount of p53-p300 complex following ADR exposure. Taken together, our present results strongly suggest that RUNX1 is required for the stimulation of p53 in response to DNA damage and also provide novel insight into understanding the molecular mechanisms behind p53-dependent DNA damage response. PMID:23148227

  11. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis.

    PubMed

    Strippoli, Raffaele; Loureiro, Jesús; Moreno, Vanessa; Benedicto, Ignacio; Pérez Lozano, María Luisa; Barreiro, Olga; Pellinen, Teijo; Minguet, Susana; Foronda, Miguel; Osteso, Maria Teresa; Calvo, Enrique; Vázquez, Jesús; López Cabrera, Manuel; del Pozo, Miguel Angel

    2015-01-01

    Peritoneal dialysis (PD) is a form of renal replacement therapy whose repeated use can alter dialytic function through induction of epithelial-mesenchymal transition (EMT) and fibrosis, eventually leading to PD discontinuation. The peritoneum from Cav1-/- mice showed increased EMT, thickness, and fibrosis. Exposure of Cav1-/- mice to PD fluids further increased peritoneal membrane thickness, altered permeability, and increased the number of FSP-1/cytokeratin-positive cells invading the sub-mesothelial stroma. High-throughput quantitative proteomics revealed increased abundance of collagens, FN, and laminin, as well as proteins related to TGF-β activity in matrices derived from Cav1-/- cells. Lack of Cav1 was associated with hyperactivation of a MEK-ERK1/2-Snail-1 pathway that regulated the Smad2-3/Smad1-5-8 balance. Pharmacological blockade of MEK rescued E-cadherin and ZO-1 inter-cellular junction localization, reduced fibrosis, and restored peritoneal function in Cav1-/- mice. Moreover, treatment of human PD-patient-derived MCs with drugs increasing Cav1 levels, as well as ectopic Cav1 expression, induced re-acquisition of epithelial features. This study demonstrates a pivotal role of Cav1 in the balance of epithelial versus mesenchymal state and suggests targets for the prevention of fibrosis during PD. PMID:25550395

  12. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial–mesenchymal transition and fibrosis during peritoneal dialysis

    PubMed Central

    Strippoli, Raffaele; Loureiro, Jesús; Moreno, Vanessa; Benedicto, Ignacio; Pérez Lozano, María Luisa; Barreiro, Olga; Pellinen, Teijo; Minguet, Susana; Foronda, Miguel; Osteso, Maria Teresa; Calvo, Enrique; Vázquez, Jesús; López Cabrera, Manuel; del Pozo, Miguel Angel

    2015-01-01

    Peritoneal dialysis (PD) is a form of renal replacement therapy whose repeated use can alter dialytic function through induction of epithelial–mesenchymal transition (EMT) and fibrosis, eventually leading to PD discontinuation. The peritoneum from Cav1−/− mice showed increased EMT, thickness, and fibrosis. Exposure of Cav1−/− mice to PD fluids further increased peritoneal membrane thickness, altered permeability, and increased the number of FSP-1/cytokeratin-positive cells invading the sub-mesothelial stroma. High-throughput quantitative proteomics revealed increased abundance of collagens, FN, and laminin, as well as proteins related to TGF-β activity in matrices derived from Cav1−/− cells. Lack of Cav1 was associated with hyperactivation of a MEK-ERK1/2-Snail-1 pathway that regulated the Smad2-3/Smad1-5-8 balance. Pharmacological blockade of MEK rescued E-cadherin and ZO-1 inter-cellular junction localization, reduced fibrosis, and restored peritoneal function in Cav1−/− mice. Moreover, treatment of human PD-patient-derived MCs with drugs increasing Cav1 levels, as well as ectopic Cav1 expression, induced re-acquisition of epithelial features. This study demonstrates a pivotal role of Cav1 in the balance of epithelial versus mesenchymal state and suggests targets for the prevention of fibrosis during PD. PMID:25550395

  13. Tumor suppressor molecules and methods of use

    DOEpatents

    Welch, Peter J.; Barber, Jack R.

    2004-09-07

    The invention provides substantially pure tumor suppressor nucleic acid molecules and tumor suppressor polypeptides. The invention also provides hairpin ribozymes and antibodies selective for these tumor suppressor molecules. Also provided are methods of detecting a neoplastic cell in a sample using detectable agents specific for the tumor suppressor nucleic acids and polypeptides.

  14. The Tumor Suppressor DiRas3 Forms a Complex with H-Ras and C-RAF Proteins and Regulates Localization, Dimerization, and Kinase Activity of C-RAF*

    PubMed Central

    Baljuls, Angela; Beck, Matthias; Oenel, Ayla; Robubi, Armin; Kroschewski, Ruth; Hekman, Mirko; Rudel, Thomas; Rapp, Ulf R.

    2012-01-01

    The maternally imprinted Ras-related tumor suppressor gene DiRas3 is lost or down-regulated in more than 60% of ovarian and breast cancers. The anti-tumorigenic effect of DiRas3 is achieved through several mechanisms, including inhibition of cell proliferation, motility, and invasion, as well as induction of apoptosis and autophagy. Re-expression of DiRas3 in cancer cells interferes with the signaling through Ras/MAPK and PI3K. Despite intensive research, the mode of interference of DiRas3 with the Ras/RAF/MEK/ERK signal transduction is still a matter of speculation. In this study, we show that DiRas3 associates with the H-Ras oncogene and that activation of H-Ras enforces this interaction. Furthermore, while associated with DiRas3, H-Ras is able to bind to its effector protein C-RAF. The resulting multimeric complex consisting of DiRas3, C-RAF, and active H-Ras is more stable than the two protein complexes H-Ras·C-RAF or H-Ras·DiRas3, respectively. The consequence of this complex formation is a DiRas3-mediated recruitment and anchorage of C-RAF to components of the membrane skeleton, suppression of C-RAF/B-RAF heterodimerization, and inhibition of C-RAF kinase activity. PMID:22605333

  15. Piperlongumine exerts cytotoxic effects against cancer cells with mutant p53 proteins at least in part by restoring the biological functions of the tumor suppressor.

    PubMed

    Basak, Debasish; Punganuru, Surendra R; Srivenugopal, Kalkunte S

    2016-04-01

    Piperlongumine (PL), a small molecule alkaloid present in black pepper (Piper longum), has been reported to kill tumor cells irrespective of their p53 gene status, however, the mechanisms involved are unknown. Since p53 is a redox-sensitive protein, we hypothesized that the redox imbalance induced by PL may affect the structure and/or function of the mutant p53 protein and promote cell death. We used two human colon cancer cell lines, the HT29 and SW620 which harbor the R273H DNA contact abrogatory mutation in p53. PL treatment induced significant ROS production and protein glutathionylation with a concomitant increase in Nrf-2 expression in both cell lines. Surprisingly, immunoprecipitation with wt-p53 specific antibodies (PAb1620) or direct western blotting showed a progressive generation of wild-type-like p53 protein along with a loss of its mutant counterpart in PL-treated HT29 and SW620 cells. Moreover, the EMSA and DNA-affinity blotting revealed a time-dependent restoration of DNA-binding for the mutant p53, which was accompanied by the induction of p53 target genes, MDM2 and Bax. PL, while cytotoxic by itself, also increased the cell killing by many anticancer drugs. In nude mice bearing the HT29 tumors, PL alone (7.5 mg/kg daily) produced a 40% decrease in tumor volume, which was accompanied by diminished intratumoral mutant p53 protein levels. The antitumor efficacy of BCNU or doxorubicin in HT29 xenografts was highly potentiated by PL, followed by expression of apoptotic proteins. These clinically-relevant findings suggest that PL-induced oxidative milieu facilitates a weak functional restoration of mutant p53 through protein glutathionylation and contributes to the increased drug sensitivity. PMID:26848023

  16. Suppressor of hairy-wing, modifier of mdg4 and centrosomal protein of 190 gene orthologues of the gypsy insulator complex in the malaria mosquito, Anopheles stephensi.

    PubMed

    Carballar-Lejarazú, R; Brennock, P; James, A A

    2016-08-01

    DNA insulators organize independent gene regulatory domains and can regulate interactions amongst promoter and enhancer elements. They have the potential to be important in genome enhancing and editing technologies because they can mitigate chromosomal position effects on transgenes. The orthologous genes of the Anopheles stephensi putative gypsy-like insulator protein complex were identified and expression characteristics studied. These genes encode polypeptides with all the expected protein domains (Cysteine 2 Histidine 2 (C2H2) zinc fingers and/or a bric-a-brac/poxvirus and zinc finger). The mosquito gypsy transcripts are expressed constitutively and are upregulated in ovaries of blood-fed females. We have uncovered significant experimental evidence that the gypsy insulator protein complex is widespread in vector mosquitoes. PMID:27110891

  17. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    SciTech Connect

    Dougherty, Gerard W.; Chopp, Treasa; Qi Shengmei; Cutler, Mary Lou . E-mail: mcutler@usuhs.mil

    2005-05-15

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.

  18. A novel protein kinase D phosphorylation site in the tumor suppressor Rab interactor 1 is critical for coordination of cell migration

    PubMed Central

    Ziegler, Susanne; Eiseler, Tim; Scholz, Rolf-Peter; Beck, Alexander; Link, Gisela; Hausser, Angelika

    2011-01-01

    The multifunctional signal adapter protein Ras and Rab interactor 1 (RIN1) is a Ras effector protein involved in the regulation of epithelial cell processes such as cell migration and endocytosis. RIN1 signals via two downstream pathways, namely the activation of Rab5 and Abl family kinases. Protein kinase D (PKD) phosphorylates RIN1 at serine 351 in vitro, thereby regulating interaction with 14–3-3 proteins. Here, we report the identification of serine 292 in RIN1 as an in vivo PKD phosphorylation site. PKD-mediated phosphorylation at this site was confirmed with a phospho-specific antibody and by mass spectrometry. We demonstrate that phosphorylation at serine 292 controls RIN1-mediated inhibition of cell migration by modulating the activation of Abl kinases. We further provide evidence that RIN1 in vivo phosphorylation at serine 351 occurs independently of PKD. Collectively, our data identify a novel PKD signaling pathway through RIN1 and Abl kinases that is involved in the regulation of actin remodeling and cell migration. PMID:21209314

  19. Endoproteolytic cleavage of FE65 converts the adaptor protein to a potent suppressor of the sAPPalpha pathway in primates.

    PubMed

    Hu, Qubai; Wang, Lin; Yang, Zheng; Cool, Bethany H; Zitnik, Galynn; Martin, George M

    2005-04-01

    Adaptor protein FE65 (APBB1) specifically binds to the intracellular tail of the type I transmembrane protein, beta-amyloid precursor protein (APP). The formation of this complex may be important for modulation of the processing and function of APP. APP is proteolytically cleaved at multiple sites. The cleavages and their regulation are of central importance in the pathogenesis of dementias of the Alzheimer type. In cell cultures and perhaps in vivo, secretion of the alpha-cleaved APP ectodomain (sAPPalpha) is the major pathway in the most cells. Regulation of the process may require extracellular/intracellular cues. Neither extracellular ligands nor intracellular mediators have been identified, however. Here, we show novel evidence that the major isoform of FE65 (97-kDa FE65, p97FE65) can be converted to a 65-kDa N-terminally truncated C-terminal fragment (p65FE65) via endoproteolysis. The cleavage region locates immediately after an acidic residue cluster but before the three major protein-protein binding domains. The cleavage activity is particularly high in human and non-human primate cells and low in rodent cells; the activity appears to be triggered/enhanced by high cell density, presumably via cell-cell/cell-substrate contact cues. As a result, p65FE65 exhibits extraordinarily high affinity for APP (up to 40-fold higher than p97FE65) and potent suppression (up to 90%) of secretion of sAPPalpha. Strong p65FE65-APP binding is required for the suppression. The results suggest that p65FE65 may be an intracellular mediator in a signaling cascade regulating alpha-secretion of APP, particularly in primates. PMID:15647266

  20. Mutational patterns in oncogenes and tumour suppressors.

    PubMed

    Baeissa, Hanadi M; Benstead-Hume, Graeme; Richardson, Christopher J; Pearl, Frances M G

    2016-06-15

    All cancers depend upon mutations in critical genes, which confer a selective advantage to the tumour cell. Knowledge of these mutations is crucial to understanding the biology of cancer initiation and progression, and to the development of targeted therapeutic strategies. The key to understanding the contribution of a disease-associated mutation to the development and progression of cancer, comes from an understanding of the consequences of that mutation on the function of the affected protein, and the impact on the pathways in which that protein is involved. In this paper we examine the mutation patterns observed in oncogenes and tumour suppressors, and discuss different approaches that have been developed to identify driver mutations within cancers that contribute to the disease progress. We also discuss the MOKCa database where we have developed an automatic pipeline that structurally and functionally annotates all proteins from the human proteome that are mutated in cancer. PMID:27284061

  1. The roles of selenium, insulin-like growth factor binding protein 2 and suppressor of cytokine signaling 3 in the pathogenesis of Kashin-Beck disease.

    PubMed

    Wang, Sen; Duan, Chen; Liu, Huan; Shao, Wanzhen; Wu, Cuiyan; Han, Jing; Guo, Xiong

    2016-07-01

    We aimed to verify the levels of IGFBP2 and SOCS3 in cartilage and chondrocytes of Kashin-Beck disease (KBD) patients and the effects of different selenium concentrations on the protein expression levels. Chondrocytes were cultured with sodium selenite in vitro. Immunohistochemistry and western blotting were used to verify the protein expressions. IGFBP2 and SOCS3 were up-regulated in KBD chondrocytes and decreased with increasing selenium concentrations. IGFBP2 expressed highest in the middle zone of KBD cartilage, SOCS3 expressed higher in the middle and deep zone. IGFBP2 and SOCS3 may be the biomarkers for KBD diagnosis and evaluating the effect of selenium supplement. PMID:27099071

  2. ZFC3H1, a Zinc Finger Protein, Modulates IL-8 Transcription by Binding with Celastramycin A, a Potential Immune Suppressor

    PubMed Central

    Tomita, Takeshi; Ieguchi, Katsuaki; Coin, Fredric; Kato, Yasuhiro; Kikuchi, Haruhisa; Oshima, Yoshiteru; Kurata, Shoichiro; Maru, Yoshiro

    2014-01-01

    Celastramycin A, a small molecule that inhibits the production of antibacterial peptides in an ex vivo culture system of Drosophila, suppresses the TNFα-mediated induction of IL-8 in mammalian cells. To understand its molecular mechanism, we examined Celastramycin A binding proteins and investigated their biological functions. Our screening and subsequent pull-down assay revealed ZFC3H1 (also known as CCDC131 or CSRC2), an uncharacterized zinc finger protein, as a Celastramycin A binding protein. The knockdown of ZFC3H1 reduced IL-8 expression levels in the TNFα-stimulated lung carcinoma cell line, LU99, and UV-irradiated HeLa cells. Based on reporter assay results, we concluded that ZFC3H1 participates in the transcriptional activation of IL-8. The findings of our UV-irradiation experiments implied that ZFC3H1 may indirectly interact with ERCC1 in an activated DNA repair complex. Thus, we designated ZFC3H1 as a mammalian target of Celastramycin A (mTOC). PMID:25268596

  3. Suppressor of K+ transport growth defect 1 (SKD1) interacts with RING-type ubiquitin ligase and sucrose non-fermenting 1-related protein kinase (SnRK1) in the halophyte ice plant.

    PubMed

    Chiang, Chih-Pin; Li, Chang-Hua; Jou, Yingtzy; Chen, Yu-Chan; Lin, Ya-Chung; Yang, Fang-Yu; Huang, Nu-Chuan; Yen, Hungchen Emilie

    2013-05-01

    SKD1 (suppressor of K+ transport growth defect 1) is an AAA-type ATPase that functions as a molecular motor. It was previously shown that SKD1 accumulates in epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. SKD1 knock-down Arabidopsis mutants showed an imbalanced Na+/K+ ratio under salt stress. Two enzymes involved in protein post-translational modifications that physically interacted with McSKD1 were identified. McCPN1 (copine 1), a RING-type ubiquitin ligase, has an N-terminal myristoylation site that links to the plasma membrane, a central copine domain that interacts with McSKD1, and a C-terminal RING domain that catalyses protein ubiquitination. In vitro ubiquitination assay demonstrated that McCPN1 was capable of mediating ubiquitination of McSKD1. McSnRK1 (sucrose non-fermenting 1-related protein kinase) is a Ser/Thr protein kinase that contains an N-terminal STKc catalytic domain to phosphorylate McSKD1, and C-terminal UBA and KA1 domains to interact with McSKD1. The transcript and protein levels of McSnRK1 increased as NaCl concentrations increased. The formation of an SKD1-SnRK1-CPN1 ternary complex was demonstrated by yeast three-hybrid and bimolecular fluorescence complementation. It was found that McSKD1 preferentially interacts with McSnRK1 in the cytosol, and salt induced the re-distribution of McSKD1 and McSnRK1 towards the plasma membrane via the microtubule cytoskeleton and subsequently interacted with RING-type E3 McCPN1. The potential effects of ubiquitination and phosphorylation on McSKD1, such as changes in the ATPase activity and cellular localization, and how they relate to the functions of SKD1 in the maintenance of Na+/K+ homeostasis under salt stress, are discussed. PMID:23580756

  4. Functional conservation of suppressors of cytokine signaling proteins between teleosts and mammals: Atlantic salmon SOCS1 binds to JAK/STAT family members and suppresses type I and II IFN signaling.

    PubMed

    Skjesol, Astrid; Liebe, Theresa; Iliev, Dimitar B; Thomassen, Ernst I S; Tollersrud, Linn Greiner; Sobhkhez, Mehrdad; Lindenskov Joensen, Lisbeth; Secombes, Christopher J; Jørgensen, Jorunn B

    2014-07-01

    Suppressor of cytokine signaling (SOCS) proteins are crucially involved in the control of inflammatory responses through their impact on various signaling pathways including the JAK/STAT pathway. Although all SOCS protein family members are identified in teleost fish, their functional properties in non-mammalian vertebrates have not been extensively studied. To gain further insight into SOCS functions in bony fish, we have identified and characterized the Atlantic salmon (Salmo salar) SOCS1, SOCS2 and CISH genes. These genes exhibited sequence conservation with their mammalian counterparts and they were ubiquitously expressed. SOCS1 in mammalian species has been recognized as a key negative regulator of interferon (IFN) signaling and recent data for the two model fish Tetraodon (Tetraodon nigroviridis) and zebrafish (Danio rerio) suggest that these functions are conserved from teleost to mammals. In agreement with this we here demonstrate a strong negative regulatory activity of salmon SOCS1 on type I and type II IFN signaling, while SOCS2a and b and CISH only moderately affected IFN responses. SOCS1 also inhibited IFNγ-induced nuclear localization of STAT1 and a direct interaction between SOCS1 and STAT1 and between SOCS1 and the Tyk2 kinase was found. Using SOCS1 mutants lacking either the KIR domain or the ESS, SH2 and SOCS box domains showed that all domains affected the ability of SOCS1 to inhibit IFN-mediated signaling. These results are the first to demonstrate that SOCS1 is a potent inhibitor of IFN-mediated JAK-STAT signaling in teleost fish. PMID:24582990

  5. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    PubMed

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication. PMID:26244501

  6. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways

    PubMed Central

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication. PMID:26244501

  7. Novel protein ADTRP regulates TFPI expression and function in human endothelial cells in normal conditions and in response to androgen

    PubMed Central

    Zhu, Hua; Popescu, Narcis I.; Wren, Jonathan D.; Lupu, Florea

    2011-01-01

    Thrombosis and cardiovascular disease (CVD) represent major causes of morbidity and mortality. Low androgen correlates with higher incidence of CVD/thrombosis. Tissue Factor Pathway Inhibitor (TFPI) is the major inhibitor of tissue factor-factor VIIa (TF-FVIIa)–dependent FXa generation. Because endothelial cell (EC) dysfunction leading to vascular disease correlates with low EC-associated TFPI, we sought to identify mechanisms that regulate the natural expression of TFPI. Data mining of NCBI's GEO microarrays revealed strong coexpression between TFPI and the uncharacterized protein encoded by C6ORF105, which is predicted to be multispan, palmitoylated and androgen-responsive. We demonstrate that this protein regulates both the native and androgen-enhanced TFPI expression and activity in cultured ECs, and we named it androgen-dependent TFPI-regulating protein (ADTRP). We confirm ADTRP expression and colocalization with TFPI and caveolin-1 in ECs. ADTRP-shRNA reduces, while over-expression of ADTRP enhances, TFPI mRNA and activity and the colocalization of TF-FVIIa–FXa-TFPI with caveolin-1. Imaging and Triton X-114–extraction confirm TFPI and ADTRP association with lipid rafts/caveolae. Dihydrotestosterone up-regulates TFPI and ADTRP expression, and increases FXa inhibition by TFPI in an ADTRP- and caveolin-1-dependent manner. We conclude that the ADTRP-dependent up-regulation of TFPI expression and activity by androgen represents a novel mechanism of increasing the anticoagulant protection of the endothelium. PMID:21868574

  8. Regulation of BRAF protein stability by a negative feedback loop involving the MEK-ERK pathway but not the FBXW7 tumour suppressor.

    PubMed

    Hernandez, Maria Aguilar; Patel, Bipin; Hey, Fiona; Giblett, Susan; Davis, Hayley; Pritchard, Catrin

    2016-06-01

    The (V600E)BRAF oncogenic mutation is detected in a wide range of human cancers and induces hyperactivation of the downstream MEK-ERK signalling cascade. Although output of the BRAF-MEK-ERK pathway is regulated by feed-forward RAF activity, feedback control also plays an important role. One such feedback pathway has been identified in Caenorhabditis elegans and involves ERK-mediated phosphorylation of BRAF within a CDC4 phosphodegron (CPD), targeting BRAF for degradation via CDC4 (also known as FBXW7), a component of the SKP1/CUL1/F-box (SCF) E3 ubiquitin ligase complex. Here we investigate this pathway in mammalian cells. Short-term expression of autochthonous (V600E)BRAF in mouse embryonic fibroblasts (MEFs) leads to down-regulation of BRAF protein levels in a proteasome-dependent manner and (V600E)BRAF has a reduced half-life compared to (WT)BRAF in HEK293(T) cells. These effects were reversed by treatment with the MEK inhibitor PD184352. We have identified the equivalent CPD at residues 400-405 in human BRAF and have found that mutation of ERK phosphorylation sites at residues T401 and S405 in (V600E)BRAF increases the half-life of the protein. While BRAF and FBXW7 co-immunoprecipitated, the overexpression of FBXW7 did not influence the half-life of either (WT)BRAF or (V600E)BRAF. Furthermore, disruption of the substrate-binding site of mouse FBXW7 using the R482Q mutation did not affect the interaction with BRAF and the expression levels of (WT)BRAF and (V600E)BRAF were not altered in MEFs derived from mice with the homozygous knockin (R482Q)FBXW7 mutation. Overall these data confirm the existence of a negative feedback pathway by which BRAF protein stability is regulated by ERK. However, unlike the situation in C. elegans, FBXW7 does not play a unique role in mediating subsequent BRAF degradation. PMID:26898828

  9. At the double for tumor suppressor.

    PubMed

    Sonawane, Mahendra

    2016-01-01

    Research on zebrafish reveals how a tumor suppressor works in two different types of cells, and how hypotonic stress promotes tumor formation when the function of this tumor suppressor is lost. PMID:27421119

  10. At the double for tumor suppressor

    PubMed Central

    2016-01-01

    Research on zebrafish reveals how a tumor suppressor works in two different types of cells, and how hypotonic stress promotes tumor formation when the function of this tumor suppressor is lost. PMID:27421119

  11. Microbial Regulation of p53 Tumor Suppressor.

    PubMed

    Zaika, Alexander I; Wei, Jinxiong; Noto, Jennifer M; Peek, Richard M

    2015-09-01

    p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40). Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host-bacteria interactions and tumorigenesis associated with bacterial infections. PMID:26379246

  12. Microbial Regulation of p53 Tumor Suppressor

    PubMed Central

    Zaika, Alexander I.; Wei, Jinxiong; Noto, Jennifer M.; Peek, Richard M.

    2015-01-01

    p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40). Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host–bacteria interactions and tumorigenesis associated with bacterial infections. PMID:26379246

  13. Caveolae Restrict Tiger Frog Virus Release in HepG2 cells and Caveolae-Associated Proteins Incorporated into Virus Particles.

    PubMed

    He, Jian; Zheng, Yi-Wen; Lin, Yi-Fan; Mi, Shu; Qin, Xiao-Wei; Weng, Shao-Ping; He, Jian-Guo; Guo, Chang-Jun

    2016-01-01

    Caveolae are flask-shaped invaginations of the plasma membrane. Caveolae play important roles in the process of viruses entry into host cells, but the roles of caveolae at the late stage of virus infection were not completely understood. Tiger frog virus (TFV) has been isolated from the diseased tadpoles of the frog, Rana tigrina rugulosa, and causes high mortality of tiger frog tadpoles cultured in Southern China. In the present study, the roles of caveolae at the late stage of TFV infection were investigated. We showed that TFV virions were localized with the caveolae at the late stage of infection in HepG2 cells. Disruption of caveolae by methyl-β-cyclodextrin/nystatin or knockdown of caveolin-1 significantly increase the release of TFV. Moreover, the interaction between caveolin-1 and TFV major capsid protein was detected by co-immunoprecipitation. Those results suggested that caveolae restricted TFV release from the HepG2 cells. Caveolae-associated proteins (caveolin-1, caveolin-2, cavin-1, and cavin-2) were selectively incorporated into TFV virions. Different combinations of proteolytic and/or detergent treatments with virions showed that caveolae-associated proteins were located in viral capsid of TFV virons. Taken together, caveolae might be a restriction factor that affects virus release and caveolae-associated proteins were incorporated in TFV virions. PMID:26887868

  14. Caveolae Restrict Tiger Frog Virus Release in HepG2 cells and Caveolae-Associated Proteins Incorporated into Virus Particles

    PubMed Central

    He, Jian; Zheng, Yi-Wen; Lin, Yi-Fan; Mi, Shu; Qin, Xiao-Wei; Weng, Shao-Ping; He, Jian-Guo; Guo, Chang-Jun

    2016-01-01

    Caveolae are flask-shaped invaginations of the plasma membrane. Caveolae play important roles in the process of viruses entry into host cells, but the roles of caveolae at the late stage of virus infection were not completely understood. Tiger frog virus (TFV) has been isolated from the diseased tadpoles of the frog, Rana tigrina rugulosa, and causes high mortality of tiger frog tadpoles cultured in Southern China. In the present study, the roles of caveolae at the late stage of TFV infection were investigated. We showed that TFV virions were localized with the caveolae at the late stage of infection in HepG2 cells. Disruption of caveolae by methyl-β-cyclodextrin/nystatin or knockdown of caveolin-1 significantly increase the release of TFV. Moreover, the interaction between caveolin-1 and TFV major capsid protein was detected by co-immunoprecipitation. Those results suggested that caveolae restricted TFV release from the HepG2 cells. Caveolae-associated proteins (caveolin-1, caveolin-2, cavin-1, and cavin-2) were selectively incorporated into TFV virions. Different combinations of proteolytic and/or detergent treatments with virions showed that caveolae-associated proteins were located in viral capsid of TFV virons. Taken together, caveolae might be a restriction factor that affects virus release and caveolae-associated proteins were incorporated in TFV virions. PMID:26887868

  15. The Establishment of a Hyperactive Structure Allows the Tumour Suppressor Protein p53 to Function through P-TEFb during Limited CDK9 Kinase Inhibition.

    PubMed

    Albert, Thomas K; Antrecht, Claudia; Kremmer, Elisabeth; Meisterernst, Michael

    2016-01-01

    CDK9 is the catalytic subunit of positive elongation factor b (P-TEFb) that controls the transition of RNA polymerase II (RNAPII) into elongation. CDK9 inhibitors block mRNA synthesis and trigger activation of the stress-sensitive p53 protein. This in turn induces transcription of CDKN1A (p21) and other cell cycle control genes. It is presently unclear if and how p53 circumvents a general P-TEFb-requirement when it activates its target genes. Our investigations using a panel of specific inhibitors reason for a critical role of CDK9 also in the case of direct inhibition of the kinase. At the prototypic p21 gene, the activator p53 initially accumulates at the pre-bound upstream enhancer followed-with significant delay-by de novo binding to a secondary enhancer site within the first intron of p21. This is accompanied by recruitment of the RNAPII initiation machinery to both elements. ChIP and functional analyses reason for a prominent role of CDK9 itself and elongation factor complexes PAF1c and SEC involved in pause and elongation control. It appears that the strong activation potential of p53 facilitates gene activation in the situation of global repression of RNAPII transcription. The data further underline the fundamental importance of CDK9 for class II gene transcription. PMID:26745862

  16. Distinct roles of secreted HtrA proteases from gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin.

    PubMed

    Hoy, Benjamin; Geppert, Tim; Boehm, Manja; Reisen, Felix; Plattner, Patrick; Gadermaier, Gabriele; Sewald, Norbert; Ferreira, Fatima; Briza, Peter; Schneider, Gisbert; Backert, Steffen; Wessler, Silja

    2012-03-23

    The periplasmic chaperone and serine protease HtrA is important for bacterial stress responses and protein quality control. Recently, we discovered that HtrA from Helicobacter pylori is secreted and cleaves E-cadherin to disrupt the epithelial barrier, but it remained unknown whether this maybe a general virulence mechanism. Here, we show that important other pathogens including enteropathogenic Escherichia coli, Shigella flexneri, and Campylobacter jejuni, but not Neisseria gonorrhoeae, cleaved E-cadherin on host cells. HtrA deletion in C. jejuni led to severe defects in E-cadherin cleavage, loss of cell adherence, paracellular transmigration, and basolateral invasion. Computational modeling of HtrAs revealed a conserved pocket in the active center exhibiting pronounced proteolytic activity. Differential E-cadherin cleavage was determined by an alanine-to-glutamine exchange in the active center of neisserial HtrA. These data suggest that HtrA-mediated E-cadherin cleavage is a prevalent pathogenic mechanism of multiple gram-negative bacteria representing an attractive novel target for therapeutic intervention to combat bacterial infections. PMID:22337879

  17. The Establishment of a Hyperactive Structure Allows the Tumour Suppressor Protein p53 to Function through P-TEFb during Limited CDK9 Kinase Inhibition

    PubMed Central

    Albert, Thomas K.; Antrecht, Claudia; Kremmer, Elisabeth; Meisterernst, Michael

    2016-01-01

    CDK9 is the catalytic subunit of positive elongation factor b (P-TEFb) that controls the transition of RNA polymerase II (RNAPII) into elongation. CDK9 inhibitors block mRNA synthesis and trigger activation of the stress-sensitive p53 protein. This in turn induces transcription of CDKN1A (p21) and other cell cycle control genes. It is presently unclear if and how p53 circumvents a general P-TEFb-requirement when it activates its target genes. Our investigations using a panel of specific inhibitors reason for a critical role of CDK9 also in the case of direct inhibition of the kinase. At the prototypic p21 gene, the activator p53 initially accumulates at the pre-bound upstream enhancer followed—with significant delay—by de novo binding to a secondary enhancer site within the first intron of p21. This is accompanied by recruitment of the RNAPII initiation machinery to both elements. ChIP and functional analyses reason for a prominent role of CDK9 itself and elongation factor complexes PAF1c and SEC involved in pause and elongation control. It appears that the strong activation potential of p53 facilitates gene activation in the situation of global repression of RNAPII transcription. The data further underline the fundamental importance of CDK9 for class II gene transcription. PMID:26745862

  18. p53 Tumor Suppressor Protein Stability and Transcriptional Activity Are Targeted by Kaposi's Sarcoma-Associated Herpesvirus-Encoded Viral Interferon Regulatory Factor 3

    PubMed Central

    Baresova, Petra; Musilova, Jana; Pitha, Paula M.

    2014-01-01

    Viruses have developed numerous strategies to counteract the host cell defense. Kaposi's sarcoma-associated herpesvirus (KSHV) is a DNA tumor virus linked to the development of Kaposi's sarcoma, Castleman's disease, and primary effusion lymphoma (PEL). The virus-encoded viral interferon regulatory factor 3 (vIRF-3) gene is a latent gene which is involved in the regulation of apoptosis, cell cycle, antiviral immunity, and tumorigenesis. vIRF-3 was shown to interact with p53 and inhibit p53-mediated apoptosis. However, the molecular mechanism underlying this phenomenon has not been established. Here, we show that vIRF-3 associates with the DNA-binding domain of p53, inhibits p53 phosphorylation on serine residues S15 and S20, and antagonizes p53 oligomerization and the DNA-binding affinity. Furthermore, vIRF-3 destabilizes p53 protein by increasing the levels of p53 polyubiquitination and targeting p53 for proteasome-mediated degradation. Consequently, vIRF-3 attenuates p53-mediated transcription of the growth-regulatory p21 gene. These effects of vIRF-3 are of biological relevance since the knockdown of vIRF-3 expression in KSHV-positive BC-3 cells, derived from PEL, leads to an increase in p53 phosphorylation, enhancement of p53 stability, and activation of p21 gene transcription. Collectively, these data suggest that KSHV evolved an efficient mechanism to downregulate p53 function and thus facilitate uncontrolled cell proliferation and tumor growth. PMID:24248600

  19. Novel and enhanced anti-melanoma DNA vaccine targeting the tyrosinase protein inhibits myeloid-derived suppressor cells and tumor growth in a syngeneic prophylactic and therapeutic murine model.

    PubMed

    Yan, J; Tingey, C; Lyde, R; Gorham, T C; Choo, D K; Muthumani, A; Myles, D; Weiner, L P; Kraynyak, K A; Reuschel, E L; Finkel, T H; Kim, J J; Sardesai, N Y; Ugen, K E; Muthumani, K; Weiner, D B

    2014-12-01

    Melanoma is the most deadly type of skin cancer, constituting annually ∼ 75% of all cutaneous cancer-related deaths due to metastatic spread. Currently, because of metastatic spread, there are no effective treatment options for late-stage metastatic melanoma patients. Studies over the past two decades have provided insight into several complex molecular mechanisms as to how these malignancies evade immunological control, indicating the importance of immune escape or suppression for tumor survival. Thus, it is essential to develop innovative cancer strategies and address immune obstacles with the goal of generating more effective immunotherapies. One important area of study is to further elucidate the role and significance of myeloid-derived suppressor cells (MDSCs) in the maintenance of the tumor microenvironment. These cells possess a remarkable ability to suppress immune responses and, as such, facilitate tumor growth. Thus, MDSCs represent an important new target for preventing tumor progression and escape from immune control. In this study, we investigated the role of MDSCs in immune suppression of T cells in an antigen-specific B16 melanoma murine system utilizing a novel synthetic tyrosinase (Tyr) DNA vaccine therapy in both prophylactic and therapeutic models. This Tyr vaccine induced a robust and broad immune response, including directing CD8 T-cell infiltration into tumor sites. The vaccine also reduced the number of MDSCs in the tumor microenvironment through the downregulation of monocyte chemoattractant protein 1, interleukin-10, CXCL5 and arginase II, factors important for MDSC expansion. This novel synthetic DNA vaccine significantly reduced the melanoma tumor burden and increased survival in vivo, due likely, in part, to the facilitation of a change in the tumor microenvironment through MDSC suppression. PMID:25394503

  20. Keratinization-associated miR-7 and miR-21 Regulate Tumor Suppressor Reversion-inducing Cysteine-rich Protein with Kazal Motifs (RECK) in Oral Cancer*

    PubMed Central

    Jung, Hyun Min; Phillips, Brittany L.; Patel, Rushi S.; Cohen, Donald M.; Jakymiw, Andrew; Kong, William W.; Cheng, Jin Q.; Chan, Edward K. L.

    2012-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that posttranscriptionally regulate gene expression during many biological processes. Recently, the aberrant expressions of miRNAs have become a major focus in cancer research. The purpose of this study was to identify deregulated miRNAs in oral cancer and further focus on specific miRNAs that were related to patient survival. Here, we report that miRNA expression profiling provided more precise information when oral squamous cell carcinomas were subcategorized on the basis of clinicopathological parameters (tumor primary site, histological subtype, tumor stage, and HPV16 status). An innovative radar chart analysis method was developed to depict subcategories of cancers taking into consideration the expression patterns of multiple miRNAs combined with the clinicopathological parameters. Keratinization of tumors and the high expression of miR-21 were the major factors related to the poor prognosis of patients. Interestingly, a majority of the keratinized tumors expressed high levels of miR-21. Further investigations demonstrated the regulation of the tumor suppressor gene reversion-inducing cysteine-rich protein with kazal motifs (RECK) by two keratinization-associated miRNAs, miR-7 and miR-21. Transfection of miR-7 and miR-21-mimics reduced the expression of RECK through direct miRNA-mediated regulation, and these miRNAs were inversely correlated with RECK in CAL 27 orthotopic xenograft tumors. Furthermore, a similar inverse correlation was demonstrated in CAL 27 cells treated in vitro by different external stimuli such as trypsinization, cell density, and serum concentration. Taken together, our data show that keratinization is associated with poor prognosis of oral cancer patients and keratinization-associated miRNAs mediate deregulation of RECK which may contribute to the aggressiveness of tumors. PMID:22761427

  1. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    SciTech Connect

    Kumari, Gita; Mahalingam, S.

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  2. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors

    PubMed Central

    Lakatos, Lóránt; Csorba, Tibor; Pantaleo, Vitantonio; Chapman, Elisabeth J; Carrington, James C; Liu, Yu-Ping; Dolja, Valerian V; Calvino, Lourdes Fernández; López-Moya, Juan José; Burgyán, József

    2006-01-01

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation. PMID:16724105

  3. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors.

    PubMed

    Lakatos, Lóránt; Csorba, Tibor; Pantaleo, Vitantonio; Chapman, Elisabeth J; Carrington, James C; Liu, Yu-Ping; Dolja, Valerian V; Calvino, Lourdes Fernández; López-Moya, Juan José; Burgyán, József

    2006-06-21

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation. PMID:16724105

  4. Electrodialytic membrane suppressors for ion chromatography make programmable buffer generators.

    PubMed

    Chen, Yongjing; Srinivasan, Kannan; Dasgupta, Purnendu K

    2012-01-01

    The use of buffer solutions is immensely important in a great variety of disciplines. The generation of continuous pH gradients in flow systems plays an important role in the chromatographic separation of proteins, high-throughput pK(a) determinations, etc. We demonstrate here that electrodialytic membrane suppressors used in ion chromatography can be used to generate buffers. The generated pH, computed from first principles, agrees well with measured values. We demonstrate the generation of phosphate and citrate buffers using a cation-exchange membrane (CEM) -based anion suppressor and Tris and ethylenediamine buffers using an anion-exchange membrane (AEM) -based cation suppressor. Using a mixture of phosphate, citrate, and borate as the buffering ions and using a CEM suppressor, we demonstrate the generation of a highly reproducible (avg RSD 0.20%, n = 3), temporally linear (pH 3.0-11.9, r(2) > 0.9996), electrically controlled pH gradient. With butylamine and a large concentration (0.5 M) of added NaCl, we demonstrate a similar linear pH gradient of large range with a near-constant ionic strength. We believe that this approach will be of value for the generation of eluents in the separation of proteins and other biomolecules and in online process titrations. PMID:22103670

  5. Post-transcriptional modulation of protein phosphatase PPP2CA and tumor suppressor PTEN by endogenous siRNA cleaved from hairpin within PTEN mRNA 3′UTR in human liver cells

    PubMed Central

    Gao, Yu-en; Wang, Yuan; Chen, Fu-quan; Feng, Jin-yan; Yang, Guang; Feng, Guo-xing; Yang, Zhe; Ye, Li-hong; Zhang, Xiao-dong

    2016-01-01

    Aim: Increasing evidence shows that mRNAs exert regulatory function along with coding proteins. Recently we report that a hairpin within YAP mRNA 3′UTR can modulate the Hippo signaling pathway. PTEN is a tumor suppressor, and is mutated in human cancers. In this study we examined whether PTEN mRNA 3′UTR contained a hairpin structure that could regulate gene regulation at the post-transcriptional level. Methods: The secondary structure of PTEN mRNA 3′UTR was analyzed using RNAdraw and RNAstructure. Function of hairpin structure derived from the PTEN mRNA 3′UTR was examined using luciferase reporter assay, RT-PCR and Western blotting. RNA-immunoprecipitation (RIP) assay was used to analyze the interaction between PTEN mRNA and microprocessor Drosha and DGCR8. Endogenous siRNA (esiRNA) derived from PTEN mRNA 3′UTR was identified by RT-PCR and rt-PCR, and its target genes were predicted using RNAhybrid. Results: A bioinformatics analysis revealed that PTEN mRNA contained a hairpin structure (termed PTEN-sh) within 3′UTR, which markedly increased the reporter activities of AP-1 and NF-κB in 293T cells. Moreover, treatment with PTEN-sh (1 and 2 μg) dose-dependently inhibited the expression of PTEN in human liver L-O2 cells. RIP assay demonstrated that the microprocessor Drosha and DGCR8 was bound to PTEN-sh in L-O2 cells, leading to the cleavage of PTEN-sh from PTEN mRNA 3′UTR. In addition, microprocessor Dicer was involved in the processing of PTEN-sh. Interestingly, esiRNA (termed PTEN-sh-3p21) cleaved from PTEN-sh was identified in 293T cells and human liver tissues, which was found to target the mRNA 3′UTRs of protein phosphatase PPP2CA and PTEN in L-O2 cells. Treatment of L-O2 or Chang liver cells with PTEN-sh-3p21 (50, 100 nmol/L) promoted the cell proliferation in dose- and time-dependent manners. Conclusion: The endogenous siRNA (PTEN-sh-3p21) cleaved from PTEN-sh within PTEN mRNA 3′UTR modulates PPP2CA and PTEN at the post

  6. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence.

    PubMed

    Csorba, Tibor; Kontra, Levente; Burgyán, József

    2015-05-01

    RNA silencing is a homology-dependent gene inactivation mechanism that regulates a wide range of biological processes including antiviral defense. To deal with host antiviral responses viruses evolved mechanisms to avoid or counteract this, most notably through expression of viral suppressors of RNA silencing. Besides working as silencing suppressors, these proteins may also fulfill other functions during infection. In many cases the interplay between the suppressor function and other "unrelated" functions remains elusive. We will present host factors implicated in antiviral pathways and summarize the current status of knowledge about the diverse viral suppressors' strategies acting at various steps of antiviral silencing in plants. Besides, we will consider the multi-functionality of these versatile proteins and related biochemical processes in which they may be involved in fine-tuning the plant-virus interaction. Finally, we will present the current applications and discuss perspectives of the use of these proteins in molecular biology and biotechnology. PMID:25766638

  7. Niemann-Pick C1 protein regulates cholesterol transport to the trans-Golgi network and plasma membrane caveolae.

    PubMed

    Garver, William S; Krishnan, Kumar; Gallagos, Jayme R; Michikawa, Makoto; Francis, Gordon A; Heidenreich, Randall A

    2002-04-01

    The Niemann-Pick C1 (NPC1) protein regulates cholesterol transport from late endosomes-lysosomes to other intracellular compartments. In this article, cholesterol transport to caveolin-1 and caveolin-2 containing compartments, such as the trans-Golgi network (TGN) and plasma membrane caveolae, was examined in normal (NPC+/+), NPC heterozygous (NPC+/-), and NPC homozygous (NPC-/-) human fibroblasts. The expression and distribution of NPC1 in each cell type were similar, and characterized by a finely dispersed, granular staining pattern. The expression of caveolin-1 and caveolin-2 was increased in NPC+/- and NPC-/- fibroblasts, although the distribution in each cell type was similar and characterized by predominant staining of the TGN and plasma membrane. The TGN in NPC+/+ fibroblasts was relatively cholesterol-enriched, whereas the TGN in NPC+/- and NPC-/- fibroblasts was partially or completely cholesterol-deficient, respectively. Consistent with studies demonstrating the transport of cholesterol from the TGN to plasma membrane caveolae, the concentration of cholesterol in plasma membrane caveolae isolated from NPC+/- and NPC-/- fibroblasts was significantly decreased, even though the total concentration of plasma membrane cholesterol in each cell type was similar. These studies demonstrate that NPC1 regulates cholesterol transport to caveolin-1 and caveolin-2 containing compartments such as the TGN and plasma membrane caveolae. PMID:11907140

  8. Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi

    PubMed Central

    van Mierlo, Joël T.; Overheul, Gijs J.; Obadia, Benjamin; van Cleef, Koen W. R.; Webster, Claire L.; Saleh, Maria-Carla; Obbard, Darren J.; van Rij, Ronald P.

    2014-01-01

    The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors. PMID:25032815

  9. Distinct microRNA expression profile and targeted biological pathways in functional myeloid-derived suppressor cells induced by Δ9-tetrahydrocannabinol in vivo: regulation of CCAAT/enhancer-binding protein α by microRNA-690.

    PubMed

    Hegde, Venkatesh L; Tomar, Sunil; Jackson, Austin; Rao, Roshni; Yang, Xiaoming; Singh, Udai P; Singh, Narendra P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2013-12-27

    Δ(9)-Tetrahydrocannabinol (THC), the major bioactive component of marijuana, has been shown to induce functional myeloid-derived suppressor cells (MDSCs) in vivo. Here, we studied the involvement of microRNA (miRNA) in this process. CD11b(+)Gr-1(+) MDSCs were purified from peritoneal exudates of mice administered with THC and used for genome-wide miRNA profiling. Expression of CD31 and Ki-67 confirmed that the THC-MDSCs were immature and proliferating. THC-induced MDSCs exhibited distinct miRNA expression signature relative to various myeloid cells and BM precursors. We identified 13 differentially expressed (>2-fold) miRNA in THC-MDSCs relative to control BM precursors. In silico target prediction for these miRNA and pathway analysis using multiple bioinformatics tools revealed significant overrepresentation of Gene Ontology clusters within hematopoiesis, myeloid cell differentiation, and regulation categories. Insulin-like growth factor 1 signaling involved in cell growth and proliferation, and myeloid differentiation pathways were among the most significantly enriched canonical pathways. Among the differentially expressed, miRNA-690 was highly overexpressed in THC-MDSCs (∼16-fold). Transcription factor CCAAT/enhancer-binding protein α (C/EBPα) was identified as a potential functional target of miR-690. Supporting this, C/EBPα expression was attenuated in THC-MDSCs as compared with BM precursors and exhibited an inverse relation with miR-690. miR-690 knockdown using peptide nucleic acid-antagomiR was able to unblock and significantly increase C/EBPα expression establishing the functional link. Further, CD11b(+)Ly6G(+)Ly6C(+) and CD11b(+)Ly6G(-)Ly6C(+) purified subtypes showed high levels of miR-690 with attenuated C/EBPα expression. Moreover, EL-4 tumor-elicited MDSCs showed increased miR-690 expression. In conclusion, miRNA are significantly altered during the generation of functional MDSC from BM. Select miRNA such as miR-690 targeting genes involved in

  10. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network.

    PubMed

    Boominathan, Lakshmanane

    2010-12-01

    The tumor suppressor p53 homologues, TA-p73, and p63 have been shown to function as tumor suppressors. However, how they function as tumor suppressors remains elusive. Here, I propose a number of tumor suppressor pathways that illustrate how the TA-p73 and p63 could function as negative regulators of invasion, metastasis, and cancer stem cells (CSCs) proliferation. Furthermore, I provide molecular insights into how TA-p73 and p63 could function as tumor suppressors. Remarkably, the guardians--p53, p73, and p63--of the genome are in control of most of the known tumor suppressor miRNAs, tumor suppressor genes, and metastasis suppressors by suppressing c-myc through miR-145/let-7/miR-34/TRIM32/PTEN/FBXW7. In particular, p53 and TA-p73/p63 appear to upregulate the expression of (1) tumor suppressor miRNAs, such as let-7, miR-34, miR-15/16a, miR-145, miR-29, miR-26, miR-30, and miR-146a; (2) tumor suppressor genes, such as PTEN, RBs, CDKN1a/b/c, and CDKN2a/b/c/d; (3) metastasis suppressors, such as Raf kinase inhibitory protein, CycG2, and DEC2, and thereby they enlarge their tumor suppressor network to inhibit tumorigenesis, invasion, angiogenesis, migration, metastasis, and CSCs proliferation. PMID:20922462

  11. Suppressors of Recb Mutations in Salmonella Typhimurium

    PubMed Central

    Benson, N. R.; Roth, J.

    1994-01-01

    Using a screen that directly assesses transductional proficiency, we have isolated suppressors of recB mutations in Salmonella typhimurium. The alleles of sbcB reported here are phenotypically distinct from those isolated in Escherichia coli in that they restore recombination proficiency (Rec(+)), resistance to ultraviolet light (UV(R)), and mitomycin C resistance (MC(R)) in the absence of an accompanying sbcCD mutation. In addition the sbcB alleles reported here are co-dominant to sbcB(+). We have also isolated insertion and deletion mutants of the sbcB locus. These null mutations suppress only the UV(S) phenotype of recB mutants. We have also isolated sbcCD mutations, which map near proC. These sbcCD mutations increase the viability, recombination proficiency and MC(R) of both the transductional recombination suppressors (sbcB1 & sbcB6) and the sbcB null mutations. S. typhimurium recB sbcB1 sbcCD8 strains are 15-fold more recombination proficient than wild-type strains. The increase in transductants in these strains is accompanied by a loss of abortive transductants suggesting that these fragments are accessible to the mutant recombination apparatus. Using tandem duplications, we have constructed sbcB merodiploids and found that, in a recB mutant sbcCD(+) genetic background, the sbcB(+) allele is dominant to sbcB1 for transductional recombination but co-dominant for UV(R) and MC(R). However, in a recB sbcCD8 genetic background, the sbcB1 mutation is co-dominant to sbcB(+) for all phenotypes. Our results lead us to suggest that the SbcB and SbcCD proteins have roles in RecBCD-dependent recombination. PMID:8001778

  12. Suppressors made from intermetallic materials

    DOEpatents

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  13. Two Replicable Suppressor Situations in Personality Research

    ERIC Educational Resources Information Center

    Paulhus, Delroy L.; Robins, Richard W.; Trzesniewski, Kali H.; Tracy, Jessica L.

    2004-01-01

    Suppressor situations occur when the simultaneous inclusion of two predictors improves one or both validities. A common allegation is that suppressor effects rarely replicate and have little substantive import. We present substantive examples from two established research domains to counter this skepticism. In the first domain, we show how…

  14. Discovery of Tumor Suppressor Gene Function.

    ERIC Educational Resources Information Center

    Oppenheimer, Steven B.

    1995-01-01

    This is an update of a 1991 review on tumor suppressor genes written at a time when understanding of how the genes work was limited. A recent major breakthrough in the understanding of the function of tumor