Science.gov

Sample records for suppressor protein caveolin-1

  1. Quantitative Proteomics of Caveolin-1-regulated Proteins

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos; Sowa, Grzegorz; Derakhshan, Behrad; Lin, Michelle I.; Lee, Ji Y.; Zhao, Hongyu; Luo, Ruiyan; Colangelo, Christopher; Sessa, William C.

    2010-01-01

    Caveolae are organelles abundant in the plasma membrane of many specialized cells including endothelial cells (ECs), epithelial cells, and adipocytes, and in these cells, caveolin-1 (Cav-1) is the major coat protein essential for the formation of caveolae. To identify proteins that require Cav-1 for stable incorporation into membrane raft domains, a quantitative proteomics analysis using isobaric tagging for relative and absolute quantification was performed on rafts isolated from wild-type and Cav-1-deficient mice. In three independent experiments, 117 proteins were consistently identified in membrane rafts with the largest differences in the levels of Cav-2 and in the caveola regulatory proteins Cavin-1 and Cavin-2. Because the lung is highly enriched in ECs, we validated and characterized the role of the newly described protein Cavin-1 in several cardiovascular tissues and in ECs. Cavin-1 was highly expressed in ECs lining blood vessels and in cultured ECs. Knockdown of Cavin-1 reduced the levels of Cav-1 and -2 and weakly influenced the formation of high molecular weight oligomers containing Cav-1 and -2. Cavin-1 silencing enhanced basal nitric oxide release from ECs but blocked proangiogenic phenotypes such as EC proliferation, migration, and morphogenesis in vitro. Thus, these data support an important role of Cavin-1 as a regulator of caveola function in ECs. PMID:20585024

  2. Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells

    PubMed Central

    Song, Li; Ge, Shujun; Pachter, Joel S.

    2007-01-01

    Recent evidence from this laboratory indicated that reduced expression of caveolin-1 accompanied the diminished expression of tight junction (TJ)–associated proteins occludin and zonula occludens-1 (ZO-1) following stimulation of brain microvascular endothelial cells (BMECs) with the chemokine CCL2 (formerly called MCP-1). Because attenuated caveolin-1 levels have also been correlated with heightened permeability of other endothelia, the objective of this study was to test the hypothesis that reduced caveolin-1 expression is causally linked to the action of CCL2 on BMEC junctional protein expression and barrier integrity. This was achieved using adenovirus to nondestructively deliver caveolin-1 siRNA (Ad-siCav-1) to BMEC monolayers, which model the blood-brain barrier (BBB). Treatment with siRNA reduced the caveolin-1 protein level as well as occludin and ZO-1. Additionally, occludin exhibited dissociation from the cytoskeletal framework. These changes were attended by comparable alterations in adherens junction (AJ)–associated proteins, VE-cadherin and β-catenin, increased BMEC paracellular permeability, and facilitated the ability of CCL2 to stimulate monocytic transendothelial migration. Furthermore, treating BMECs with cavtratin, a synthetic cell-permeable peptide encoding the caveolin-1 scaffolding domain, antagonized effects of both Ad-siCav-1 and CCL2. These results collectively highlight caveolin-1 loss as a critical step in CCL2-induced modulation of BMEC junctional protein expression and integrity, and possibly serve a crucial role in regulating inflammation at the BBB. PMID:17023578

  3. Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways.

    PubMed

    Zhang, Jian; Lazarenko, Oxana P; Blackburn, Michael L; Badger, Thomas M; Ronis, Martin J J; Chen, Jin-Ran

    2014-07-01

    It has been suggested that the beneficial effects of soy protein isolate (SPI) on bone quality are due to either stimulation of estrogenic signaling via isoflavones or through a novel and as yet uncharacterized nonestrogenic pathway. In our study, SPI-fed rat serum inhibited the osteoblastic cell senescence pathway. This effect was accompanied by stimulation of cell differentiation, proliferation, and significant restoration of replicative senescent bone marrow mesenchymal ST2 cells (passaged 30 times). These effects were reproduced in bone from 5-wk-old intact and 10-wk-old ovariectomized female rats fed SPI diets. Caveolin-1 and p53 expression was decreased in bone in SPI-fed, but not in 17β-estradiol (E2)-treated rats. In cell culture studies, membranous caveolin-1 and nuclear p53 expression was greater in replicative senescent ST2 cell cultures than in earlier passaged cells. SPI-fed rat serum significantly down-regulated both caveolin-1 and p53 in senescent and nonsenescent cells. Replicative senescent ST2 cells exhibited a strong association among caveolin-1, p53, and mouse double minute 2 homologue (mdm2), which was inhibited by SPI-fed rat serum. Overexpression of caveolin-1 in ST2 cells resulted in increased expression of p53 and p21, whereas, knockdown of caveolin-1 using shRNA led to increases in mdm2 and eliminated SPI-fed rat serum's effects on p53 and p21 expression. In contrast, manipulation of caveolin-1 expression did not affect the actions of E2 or isoflavones on p53 expression in either ST2 or OB6 cells. These results suggest that caveolin-1 is a mediator of nonestrogenic SPI effects on bone cells.-Zhang, J., Lazarenko, O. P., Blackburn, M. L., Badger, T. M., Ronis, M. J. J., Chen, J.-R. Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways. PMID:24719353

  4. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    PubMed Central

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (P<0.05), while phytosterols significantly induced growth-suppression (P<0.05) and apoptosis. Cell cycle analysis showed that contrary to cholesterol, phytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1

  5. Increased PEA3/E1AF and decreased Net/Elk-3, both ETS proteins, characterize human NSCLC progression and regulate caveolin-1 transcription in Calu-1 and NCI-H23 NSCLC cell lines.

    PubMed

    Sloan, Karin A; Marquez, Hector A; Li, Jun; Cao, Yuxia; Hinds, Anne; O'Hara, Carl J; Kathuria, Satinder; Ramirez, Maria I; Williams, Mary C; Kathuria, Hasmeena

    2009-08-01

    Caveolin-1 protein has been called a 'conditional tumor suppressor' because it can either suppress or enhance tumor progression depending on cellular context. Caveolin-1 levels are dynamic in non-small-cell lung cancer, with increased levels in metastatic tumor cells. We have shown previously that transactivation of an erythroblastosis virus-transforming sequence (ETS) cis-element enhances caveolin-1 expression in a murine lung epithelial cell line. Based on high sequence homology between the murine and human caveolin-1 promoters, we proposed that ETS proteins might regulate caveolin-1 expression in human lung tumorigenesis. We confirm that caveolin-1 is not detected in well-differentiated primary lung tumors. Polyoma virus enhancer activator 3 (PEA3), a pro-metastatic ETS protein in breast cancer, is expressed at low levels in well-differentiated tumors and high levels in poorly differentiated tumors. Conversely, Net, a known ETS repressor, is expressed at high levels in the nucleus of well-differentiated primary tumor cells. In tumor cells in metastatic lymph node sites, caveolin-1 and PEA3 are highly expressed, whereas Net is now expressed in the cytoplasm. We studied transcriptional regulation of caveolin-1 in two human lung cancer cell lines, Calu-1 (high caveolin-1 expressing) and NCI-H23 (low caveolin-1 expressing). Chromatin immunoprecipitation-binding assays and small interfering RNA experiments show that PEA3 is a transcriptional activator in Calu-1 cells and that Net is a transcriptional repressor in NCI-H23 cells. These results suggest that Net may suppress caveolin-1 transcription in primary lung tumors and that PEA3 may activate caveolin-1 transcription in metastatic lymph nodes. PMID:19483189

  6. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells

    PubMed Central

    Bourseau-Guilmain, E.; Menard, J. A.; Lindqvist, E.; Indira Chandran, V.; Christianson, H. C.; Cerezo Magaña, M.; Lidfeldt, J.; Marko-Varga, G.; Welinder, C.; Belting, M.

    2016-01-01

    Hypoxia promotes tumour aggressiveness and resistance of cancers to oncological treatment. The identification of cancer cell internalizing antigens for drug targeting to the hypoxic tumour niche remains a challenge of high clinical relevance. Here we show that hypoxia down-regulates the surface proteome at the global level and, more specifically, membrane proteome internalization. We find that hypoxic down-regulation of constitutive endocytosis is HIF-independent, and involves caveolin-1-mediated inhibition of dynamin-dependent, membrane raft endocytosis. Caveolin-1 overexpression inhibits protein internalization, suggesting a general negative regulatory role of caveolin-1 in endocytosis. In contrast to this global inhibitory effect, we identify several proteins that can override caveolin-1 negative regulation, exhibiting increased internalization at hypoxia. We demonstrate antibody-mediated cytotoxin delivery and killing specifically of hypoxic cells through one of these proteins, carbonic anhydrase IX. Our data reveal that caveolin-1 modulates cell-surface proteome turnover at hypoxia with potential implications for specific targeting of the hypoxic tumour microenvironment. PMID:27094744

  7. Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells.

    PubMed

    Bourseau-Guilmain, E; Menard, J A; Lindqvist, E; Indira Chandran, V; Christianson, H C; Cerezo Magaña, M; Lidfeldt, J; Marko-Varga, G; Welinder, C; Belting, M

    2016-01-01

    Hypoxia promotes tumour aggressiveness and resistance of cancers to oncological treatment. The identification of cancer cell internalizing antigens for drug targeting to the hypoxic tumour niche remains a challenge of high clinical relevance. Here we show that hypoxia down-regulates the surface proteome at the global level and, more specifically, membrane proteome internalization. We find that hypoxic down-regulation of constitutive endocytosis is HIF-independent, and involves caveolin-1-mediated inhibition of dynamin-dependent, membrane raft endocytosis. Caveolin-1 overexpression inhibits protein internalization, suggesting a general negative regulatory role of caveolin-1 in endocytosis. In contrast to this global inhibitory effect, we identify several proteins that can override caveolin-1 negative regulation, exhibiting increased internalization at hypoxia. We demonstrate antibody-mediated cytotoxin delivery and killing specifically of hypoxic cells through one of these proteins, carbonic anhydrase IX. Our data reveal that caveolin-1 modulates cell-surface proteome turnover at hypoxia with potential implications for specific targeting of the hypoxic tumour microenvironment. PMID:27094744

  8. Profibrogenic phenotype in caveolin-1 deficiency via differential regulation of STAT-1/3 proteins.

    PubMed

    Ryter, Stefan W; Choi, Augustine M K; Kim, Hong Pyo

    2014-10-01

    Fibrosis underlies the pathogenesis of several human diseases, which can lead to severe injury of vital organs. We previously demonstrated that caveolin-1 expression is reduced in experimental fibrosis and that caveolin-1 exerts antiproliferative and antifibrotic effects in lung fibrosis models. The signal transducers and activators of transcription (STAT) proteins, STAT1 and STAT3, can be activated simultaneously. STAT1 can inhibit cell growth and promote apoptosis while STAT3 inhibits apoptosis. Here, we show that caveolin-1-deficient (cav-1(-/-)) lung fibroblasts display dramatically upregulated STAT3 activation in response to platelet-derived growth factor-BB and transforming growth factor-β stimuli, whereas STAT1 activation is undetectable. Downregulation of protein tyrosine phosphatase-1B played a role in the preferential activation of STAT3 in cav-1(-/-) fibroblasts. Genetic deletion of STAT3 by siRNA modulated the expression of genes involved in cell proliferation and fibrogenesis. Basal expression of α-smooth muscle actin was prominent in cav-1(-/-) liver and kidney, consistent with deposition of collagen in these organs. Collectively, we demonstrate that the antiproliferative and antifibrogenic properties of caveolin-1 in vitro are mediated by the balance between STAT1 and STAT3 activation. Deregulated STAT signaling associated with caveolin-1 deficiency may be relevant to proliferative disorders such as tissue fibrosis. PMID:25263949

  9. Oxidative Stress Induces Premature Senescence by Stimulating Caveolin-1 Gene Transcription through p38 Mitogen-Activated Protein Kinase/Sp1–Mediated Activation of Two GC-Rich Promoter Elements

    PubMed Central

    Dasari, Arvind; Bartholomew, Janine N.; Volonte, Daniela; Galbiati, Ferruccio

    2015-01-01

    Cellular senescence is believed to represent a natural tumor suppressor mechanism. We have previously shown that up-regulation of caveolin-1 was required for oxidative stress–induced premature senescence in fibroblasts. However, the molecular mechanisms underlying caveolin-1 up-regulation in senescent cells remain unknown. Here, we show that subcytotoxic oxidative stress generated by hydrogen peroxide application promotes premature senescence and stimulates the activity of a (−1,296) caveolin-1 promoter reporter gene construct in fibroblasts. Functional deletion analysis mapped the oxidative stress response elements of the mouse caveolin-1 promoter to the sequences −244/−222 and −124/−101. The hydrogen peroxide–mediated activation of both Cav-1 (−244/−222) and Cav-1 (−124/−101) was prevented by the antioxidant quercetin. Combination of electrophoretic mobility shift studies, chromatin immunoprecipitation analysis, Sp1 overexpression experiments, as well as promoter mutagenesis identifies enhanced Sp1 binding to two GC-boxes at −238/−231 and −118/−106 as the core mechanism of oxidative stress–triggered caveolin-1 transactivation. In addition, signaling studies show p38 mitogen-activated protein kinase (MAPK) as the upstream regulator of Sp1-mediated activation of the caveolin-1 promoter following oxidative stress. Inhibition of p38 MAPK prevents the oxidant-induced Sp1-mediated up-regulation of caveolin-1 protein expression and development of premature senescence. Finally, we show that oxidative stress induces p38-mediated up-regulation of caveolin-1 and premature senescence in normal human mammary epithelial cells but not in MCF-7 breast cancer cells, which do not express caveolin-1 and undergo apoptosis. This study delineates for the first time the molecular mechanisms that modulate caveolin-1 gene transcription upon oxidative stress and brings new insights into the redox control of cellular senescence in both normal and cancer

  10. Caveolin-1 in sarcomas: friend or foe?

    PubMed Central

    Sáinz-Jaspeado, Miguel; Martin-Liberal, Juan; Lagares-Tena, Laura; Mateo-Lozano, Silvia; del Muro, Xavier Garcia; Tirado, Oscar M

    2011-01-01

    Sarcomas represent a heterogeneous group of tumors with a complex and difficult reproducible classification. Their pathogenesis is poorly understood and there are few effective treatment options for advanced disease. Caveolin-1 is a multifunctional scaffolding protein with multiple binding partners that regulates multiple cancer-associated processes including cellular transformation, tumor growth, cell death and survival, multidrug resistance, angiogenesis, cell migration and metastasis. However, ambiguous roles have been ascribed to caveolin-1 in signal transduction and cancer, including sarcomas. In particular, evidence indicating that caveolin-1 function is cell context dependent has been repeatedly reported. Caveolin-1 appears to act as a tumor suppressor protein at early stages of cancer progression. In contrast, a growing body of evidence indicates that caveolin-1 is up-regulated in several multidrug-resistant and metastatic cancer cell lines and human tumor specimens. This review is focused on the role of caveolin-1 in several soft tissue and bone sarcomas and discusses the use of this protein as a potential diagnostic and prognostic marker and as a therapeutic target. PMID:21471610

  11. Interaction with Caveolin-1 Modulates G Protein Coupling of Mouse β3-Adrenoceptor*

    PubMed Central

    Sato, Masaaki; Hutchinson, Dana S.; Halls, Michelle L.; Furness, Sebastian G. B.; Bengtsson, Tore; Evans, Bronwyn A.; Summers, Roger J.

    2012-01-01

    Caveolins act as scaffold proteins in multiprotein complexes and have been implicated in signaling by G protein-coupled receptors. Studies using knock-out mice suggest that β3-adrenoceptor (β3-AR) signaling is dependent on caveolin-1; however, it is not known whether caveolin-1 is associated with the β3-AR or solely with downstream signaling proteins. We have addressed this question by examining the impact of membrane rafts and caveolin-1 on the differential signaling of mouse β3a- and β3b-AR isoforms that diverge at the distal C terminus. Only the β3b-AR promotes pertussis toxin (PTX)-sensitive cAMP accumulation. When cells expressing the β3a-AR were treated with filipin III to disrupt membrane rafts or transfected with caveolin-1 siRNA, the cyclic AMP response to the β3-AR agonist CL316243 became PTX-sensitive, suggesting Gαi/o coupling. The β3a-AR C terminus, SP384PLNRF389DGY392EGARPF398PT, resembles a caveolin interaction motif. Mutant β3a-ARs (F389A/Y392A/F398A or P384S/F389A) promoted PTX-sensitive cAMP responses, and in situ proximity assays demonstrated an association between caveolin-1 and the wild type β3a-AR but not the mutant receptors. In membrane preparations, the β3b-AR activated Gαo and mediated PTX-sensitive cAMP responses, whereas the β3a-AR did not activate Gαi/o proteins. The endogenous β3a-AR displayed Gαi/o coupling in brown adipocytes from caveolin-1 knock-out mice or in wild type adipocytes treated with filipin III. Our studies indicate that interaction of the β3a-AR with caveolin inhibits coupling to Gαi/o proteins and suggest that signaling is modulated by a raft-enriched complex containing the β3a-AR, caveolin-1, Gαs, and adenylyl cyclase. PMID:22535965

  12. Calcium regulates caveolin-1 expression at the transcriptional level

    SciTech Connect

    Yang, Xiao-Yan; Huang, Cheng-Cheng; Kan, Qi-Ming; Li, Yan; Liu, Dan; Zhang, Xue-Cheng; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Caveolin-1 expression is regulated by calcium signaling at the transcriptional level. Black-Right-Pointing-Pointer An inhibitor of or siRNA to L-type calcium channel suppressed caveolin-1 expression. Black-Right-Pointing-Pointer Cyclosporine A or an NFAT inhibitor markedly reduced caveolin-1 expression. Black-Right-Pointing-Pointer Caveolin-1 regulation by calcium signaling is observed in several mouse cell lines. -- Abstract: Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca{sup 2+}/calcineurin/NFAT.

  13. Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation.

    PubMed

    Sun, Xing-Hui; Flynn, Daniel C; Castranova, Vincent; Millecchia, Lyndell L; Beardsley, Andrew R; Liu, Jun

    2007-03-01

    When cells are migrating, caveolin-1, the principal protein component of caveolae, is excluded from the leading edge and polarized at the cell rear. The dynamic feature depends on a specific sequence motif that directs intracellular trafficking of the protein. Deletion mutation analysis revealed a putative polarization domain at the N terminus of caveolin-1, between amino acids 32-60. Alanine substitution identified a minimal sequence of 10 residues ((46)TKEIDLVNRD(55)) necessary for caveolin-1 rear polarization. Interestingly, deletion of amino acids 1-60 did not prevent the polarization of caveolin-1 in human umbilical vein endothelial cells or wild-type mouse embryonic fibroblasts because of an interaction of Cav(61-178) mutant with endogenous caveolin-1. Surprisingly, expression of the depolarization mutant in caveolin-1 null cells dramatically impeded caveolae formation. Furthermore, knockdown of caveolae formation by methyl-beta-cyclodextrin failed to prevent wild-type caveolin-1 rear polarization. Importantly, genetic depletion of caveolin-1 led to disoriented migration, which can be rescued by full-length caveolin-1 but not the depolarization mutant, indicating a role of caveolin-1 polarity in chemotaxis. Thus, we have identified a sequence motif that is essential for caveolin-1 rear polarization and caveolae formation. PMID:17213184

  14. Elafin Reverses Pulmonary Hypertension via Caveolin-1–Dependent Bone Morphogenetic Protein Signaling

    PubMed Central

    Nickel, Nils P.; Spiekerkoetter, Edda; Gu, Mingxia; Li, Caiyun G.; Li, Hai; Kaschwich, Mark; Diebold, Isabel; Hennigs, Jan K.; Kim, Ki-Yoon; Miyagawa, Kazuya; Wang, Lingli; Cao, Aiqin; Sa, Silin; Jiang, Xinguo; Stockstill, Raymond W.; Nicolls, Mark R.; Zamanian, Roham T.; Bland, Richard D.

    2015-01-01

    Rationale: Pulmonary arterial hypertension is characterized by endothelial dysfunction, impaired bone morphogenetic protein receptor 2 (BMPR2) signaling, and increased elastase activity. Synthetic elastase inhibitors reverse experimental pulmonary hypertension but cause hepatotoxicity in clinical studies. The endogenous elastase inhibitor elafin attenuates hypoxic pulmonary hypertension in mice, but its potential to improve endothelial function and BMPR2 signaling, and to reverse severe experimental pulmonary hypertension or vascular pathology in the human disease was unknown. Objectives: To assess elafin-mediated regression of pulmonary vascular pathology in rats and in lung explants from patients with pulmonary hypertension. To determine if elafin amplifies BMPR2 signaling in pulmonary artery endothelial cells and to elucidate the underlying mechanism. Methods: Rats with pulmonary hypertension induced by vascular endothelial growth factor receptor blockade and hypoxia (Sugen/hypoxia) as well as lung organ cultures from patients with pulmonary hypertension were used to assess elafin-mediated reversibility of pulmonary vascular disease. Pulmonary arterial endothelial cells from patients and control subjects were used to determine the efficacy and mechanism of elafin-mediated BMPR2 signaling. Measurements and Main Results: In Sugen/hypoxia rats, elafin reduced elastase activity and reversed pulmonary hypertension, judged by regression of right ventricular systolic pressure and hypertrophy and pulmonary artery occlusive changes. Elafin improved endothelial function by increasing apelin, a BMPR2 target. Elafin induced apoptosis in human pulmonary arterial smooth muscle cells and decreased neointimal lesions in lung organ culture. In normal and patient pulmonary artery endothelial cells, elafin promoted angiogenesis by increasing pSMAD-dependent and -independent BMPR2 signaling. This was linked mechanistically to augmented interaction of BMPR2 with caveolin-1 via

  15. Blockade of CD26-mediated T cell costimulation with soluble caveolin-1-Ig fusion protein induces anergy in CD4{sup +}T cells

    SciTech Connect

    Ohnuma, Kei; Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 ; Uchiyama, Masahiko; Department of Computational Intelligence and System Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 ; Hatano, Ryo; Takasawa, Wataru; Endo, Yuko; Dang, Nam H.; Morimoto, Chikao; Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639

    2009-08-21

    CD26 binds to caveolin-1 in antigen-presenting cells (APC), and that ligation of CD26 by caveolin-1 induces T cell proliferation in a TCR/CD3-dependent manner. We report herein the effects of CD26-caveolin-1 costimulatory blockade by fusion protein caveolin-1-Ig (Cav-Ig). Soluble Cav-Ig inhibits T cell proliferation and cytokine production in response to recall antigen, or allogeneic APC. Our data hence suggest that blocking of CD26-associated signaling by soluble Cav-Ig may be an effective approach as immunosuppressive therapy.

  16. Fatty acid-binding protein 7 regulates function of caveolae in astrocytes through expression of caveolin-1.

    PubMed

    Kagawa, Yoshiteru; Yasumoto, Yuki; Sharifi, Kazem; Ebrahimi, Majid; Islam, Ariful; Miyazaki, Hirofumi; Yamamoto, Yui; Sawada, Tomoo; Kishi, Hiroko; Kobayashi, Sei; Maekawa, Motoko; Yoshikawa, Takeo; Takaki, Eiichi; Nakai, Akira; Kogo, Hiroshi; Fujimoto, Toyoshi; Owada, Yuji

    2015-05-01

    Fatty acid-binding proteins (FABPs) bind and solubilize long-chain fatty acids, controlling intracellular lipid dynamics. FABP7 is expressed by astrocytes in the developing brain, and suggested to be involved in the control of astrocyte lipid homeostasis. In this study, we sought to examine the role of FABP7 in astrocytes, focusing on plasma membrane lipid raft function, which is important for receptor-mediated signal transduction in response to extracellular stimuli. In FABP7-knockout (KO) astrocytes, the ligand-dependent accumulation of Toll-like receptor 4 (TLR4) and glial cell-line-derived neurotrophic factor receptor alpha 1 into lipid raft was decreased, and the activation of mitogen-activated protein kinases and nuclear factor-κB was impaired after lipopolysaccharide (LPS) stimulation when compared with wild-type astrocytes. In addition, the expression of caveolin-1, not cavin-1, 2, 3, caveolin-2, and flotillin-1, was found to be decreased at the protein and transcriptional levels. FABP7 re-expression in FABP7-KO astrocytes rescued the decreased level of caveolin-1. Furthermore, caveolin-1-transfection into FABP7-KO astrocytes significantly increased TLR4 recruitment into lipid raft and tumor necrosis factor-α production after LPS stimulation. Taken together, these data suggest that FABP7 controls lipid raft function through the regulation of caveolin-1 expression and is involved in the response of astrocytes to the external stimuli. GLIA 2015;63:780-794. PMID:25601031

  17. The caveolin-1 connection to cell death and survival.

    PubMed

    Quest, A F G; Lobos-González, L; Nuñez, S; Sanhueza, C; Fernández, J-G; Aguirre, A; Rodríguez, D; Leyton, L; Torres, V

    2013-02-01

    Caveolins are a family of membrane proteins required for the formation of small plasma membrane invaginations called caveolae that are implicated in cellular trafficking processes. In addition to this structural role, these scaffolding proteins modulate numerous intracellular signaling pathways; often via direct interaction with specific binding partners. Caveolin-1 is particularly well-studied in this respect and has been attributed a large variety of functions. Thus, Caveolin-1 also represents the best-characterized isoform of this family with respect to its participation in cancer. Rather strikingly, available evidence indicates that Caveolin-1 belongs to a select group of proteins that function, depending on the cellular settings, both as tumor suppressor and promoter of cellular traits commonly associated with enhanced malignant behavior, such as metastasis and multi-drug resistance. The mechanisms underlying such ambiguity in Caveolin-1 function constitute an area of great interest. Here, we will focus on discussing how Caveolin-1 modulates cell death and survival pathways and how this may contribute to a better understanding of the ambiguous role this protein plays in cancer. PMID:23228128

  18. Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability

    SciTech Connect

    Zhou Huimin; Jia Li; Wang Shujing; Wang Hongmei; Chu Haiying; Hu Yichuan; Cao Jun; Zhang Jianing . E-mail: jnzhang@dlmedu.edu.cn

    2006-06-23

    Caveolin-1 is the major component protein of caveolae and associated with a lot of cellular events such as endocytosis, cholesterol homeostasis, signal transduction, and tumorigenesis. The majority of results suggest that caveolin-1 might not only act as a tumor suppressor gene but also a promoting metastasis gene. In this study, the divergent expression and roles of caveolin-1 were investigated in mouse hepatocarcinoma cell lines Hca-F, Hca-P, and Hepa1-6, which have high, low, and no metastatic potential in the lymph nodes, as compared with normal mouse liver cell line IAR-20. The results showed that expression of caveolin-1 mRNA and protein along with the amount of caveolae number in Hca-F cells was higher than that in Hca-P cells, but was not detectable in Hepa1-6 cells. When caveolin-1 expression in Hca-F cells was down-regulated by RNAi approach, Hca-F cells proliferation rate in vitro declined and the expression of lymphangiogenic factor VEGFA in Hca-F decreased as well. Furthermore, in vivo implantation assay indicated that reduction of caveolin-1 expression in Hca-F prevented the lymphatic metastasis tumor burden of Hca-F cells in 615 mice. These results suggest that caveolin-1 facilities the lymphatic metastasis ability of mouse hepatocarcinoma cells via regulation tumor cell growth and VEGFA expression.

  19. Escherichia coli K1 internalization via caveolae requires caveolin-1 and protein kinase Calpha interaction in human brain microvascular endothelial cells.

    PubMed

    Sukumaran, Sunil K; Quon, Michael J; Prasadarao, Nemani V

    2002-12-27

    The morbidity and mortality associated with Escherichia coli K1 meningitis during the neonatal period have remained significant over the last decade and are once again on the rise. Transcytosis of brain microvascular endothelial cells (BMEC) by E. coli within an endosome to avoid lysosomal fusion is crucial for dissemination into the central nervous system. Central to E. coli internalization of BMEC is the expression of OmpA (outer membrane protein A), which interacts with its receptor for the actin reorganization that leads to invasion. However, nothing is known about the nature of the signaling events for the formation of endosomes containing E. coli K1. We show here that E. coli K1 infection of human BMEC (HBMEC) results in activation of caveolin-1 for bacterial uptake via caveolae. The interaction of caveolin-1 with phosphorylated protein kinase Calpha (PKCalpha) at the E. coli attachment site is critical for the invasion of HBMEC. Optical sectioning of confocal images of infected HBMEC indicates continuing association of caveolin-1 with E. coli during transcytosis. Overexpression of a dominant-negative form of caveolin-1 containing mutations in the scaffolding domain blocked the interaction of phospho-PKCalpha with caveolin-1 and the E. coli invasion of HBMEC, but not actin cytoskeleton rearrangement or the phosphorylation of PKCalpha. The interaction of caveolin-1 with phospho-PKCalpha was completely abrogated in HBMEC overexpressing dominant-negative forms of either focal adhesion kinase or PKCalpha. Treatment of HBMEC with a cell-permeable peptide that represents the scaffolding domain, which was coupled to an antennapedia motif of a Drosophila transcription factor significantly blocked the interaction of caveolin-1 with phospho-PKCalpha and E. coli invasion. These results show that E. coli K1 internalizes HBMEC via caveolae and that the scaffolding domain of caveolin-1 plays a significant role in the formation of endosomes. PMID:12386163

  20. Display of membrane proteins on the heterologous caveolae carved by caveolin-1 in the Escherichia coli cytoplasm.

    PubMed

    Shin, Jonghyeok; Jung, Young-Hun; Cho, Da-Hyeong; Park, Myungseo; Lee, Kyung Eun; Yang, Yoosoo; Jeong, Cherlhyun; Sung, Bong Hyun; Sohn, Jung-Hoon; Park, Jin-Byung; Kweon, Dae-Hyuk

    2015-11-01

    Caveolae are membrane-budding structures that exist in many vertebrate cells. One of the important functions of caveolae is to form membrane curvature and endocytic vesicles. Recently, it was shown that caveolae-like structures were formed in Escherichia coli through the expression of caveolin-1. This interesting structure seems to be versatile for a variety of biotechnological applications. Targeting of heterologous proteins in the caveolae-like structure should be the first question to be addressed for this purpose. Here we show that membrane proteins co-expressed with caveolin-1 are embedded into the heterologous caveolae (h-caveolae), the cavaolae-like structures formed inside the cell. Two transmembrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, Syntaxin 1a and vesicle-associated membrane protein 2 (VAMP2), were displayed on the h-caveolae surface. The size of the h-caveolae harboring the transmembrane proteins was ∼100 nm in diameter. The proteins were functional and faced outward on the h-caveolae. Multi-spanning transmembrane proteins FtsH and FeoB could be included in the h-caveolae, too. Furthermore, the recombinant E. coli cells were shown to endocytose substrate supplemented in the medium. These results provide a basis for exploiting the h-caveolae formed inside E. coli cells for future biotechnological applications. PMID:26320715

  1. Up-regulation of endothelial monocyte chemoattractant protein-1 by coplanar PCB77 is caveolin-1-dependent

    SciTech Connect

    Majkova, Zuzana; Smart, Eric; Toborek, Michal; Hennig, Bernhard

    2009-05-15

    Atherosclerosis, the primary cause of heart disease and stroke is initiated in the vascular endothelium, and risk factors for its development include environmental exposure to persistent organic pollutants. Caveolae are membrane microdomains involved in regulation of many signaling pathways, and in particular in endothelial cells. We tested the hypothesis that intact caveolae are required for coplanar PCB77-induced up-regulation of monocyte chemoattractant protein-1 (MCP-1), an endothelium-derived chemokine that attracts monocytes into sub-endothelial space in early stages of the atherosclerosis development. Atherosclerosis-prone LDL-R{sup -/-} mice (control) or caveolin-1{sup -/-}/LDL-R{sup -/-} mice were treated with PCB77. PCB77 induced aortic mRNA expression and plasma protein levels of MCP-1 in control, but not caveolin-1{sup -/-}/LDL-R{sup -/-} mice. To study the mechanism of this effect, primary endothelial cells were used. PCB77 increased MCP-1 levels in endothelial cells in a time- and concentration-dependent manner. This effect was abolished by caveolin-1 silencing using siRNA. Also, MCP-1 up-regulation by PCB77 was prevented by inhibiting p38 and c-Jun N-terminal kinase (JNK), but not ERK1/2, suggesting regulatory functions via p38 and JNK MAPK pathways. Finally, pre-treatment of endothelial cells with the aryl hydrocarbon receptor (AhR) inhibitor {alpha}-naphthoflavone ({alpha}-NF) partially blocked MCP-1 up-regulation. Thus, our data demonstrate that coplanar PCB77 can induce MCP-1 expression by endothelial cells and that this effect is mediated by AhR, as well as p 38 and JNK MAPK pathways. Intact caveolae are required for these processes both in vivo and in vitro. This further supports a key role for caveolae in vascular inflammation induced by persistent organic pollutants.

  2. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum.

    PubMed

    Schlegel, A; Arvan, P; Lisanti, M P

    2001-02-01

    Caveolin-1 serves as the main coat protein of caveolae membranes, as an intracellular cholesterol shuttle, and as a regulator of diverse signaling molecules. Of the 12 residues conserved across all caveolin isoforms from all species examined to date, only Ser(80) and Ser(168) could serve as phosphorylation sites. We show here that mimicking chronic phosphorylation of Ser(80) by mutation to Glu (i.e. Cav-1(S80E)), blocks phosphate incorporation. However, Cav-1(S168E) is phosphorylated to the same extent as wild-type caveolin-1. Cav-1(S80E) targets to the endoplasmic reticulum membrane, remains oligomeric, and maintains normal membrane topology. In contrast, Cav-1(S80A), which cannot be phosphorylated, targets to caveolae membranes. Some exocrine cells secrete caveolin-1 in a regulated manner. Cav-1(S80A) is not secreted by AR42J pancreatic adenocarcinoma cells even in the presence of dexamethasone, an agent that induces the secretory phenotype. Conversely, Cav-1(S80E) is secreted to a greater extent than wild-type caveolin-1 following dexamethasone treatment. We conclude that caveolin-1 phosphorylation on invariant serine residue 80 is required for endoplasmic reticulum retention and entry into the regulated secretory pathway. PMID:11078729

  3. Direct Regulation of TLR5 Expression by Caveolin-1.

    PubMed

    Lim, Jae Sung; Nguyen, Kim Cuc Thi; Han, Jung Min; Jang, Ik-Soon; Fabian, Claire; Cho, Kyung A

    2015-12-01

    Toll-like receptor 5 (TLR5) is a specific receptor for microbial flagellin and is one of the most well-known receptors in the TLR family. We reported previously that TLR5 signaling is well maintained during aging and that caveolin-1 may be involved in TLR5 signaling in aged macrophages through direct interactions. Therefore, it is important to clarify whether caveolin-1/TLR5 interactions affect TLR5 expression during aging. To assess the effect of caveolin-1 on TLR5, we analyzed TLR5 expression in senescent fibroblasts and aged tissues expressing high levels of caveolin-1. As expected, TLR5 mRNA and protein expression was well maintained in senescent fibroblasts and aged tissues, whereas TLR4 mRNA and protein were diminished in those cells and tissues. To determine the mechanism of caveolin-1-dependent TLR5 expression, we examined TLR5 expression in caveolin-1 deficient mice. Interestingly, TLR5 mRNA and protein levels were decreased dramatically in tissues from caveolin-1 knockout mice. Moreover, overexpressed caveolin-1 in vitro enhanced TLR5 mRNA through the MAPK pathway and prolonged TLR5 protein half-life through direct interaction. These results suggest that caveolin-1 may play a crucial role in maintaining of TLR5 by regulating transcription systems and increasing protein half-life. PMID:26615831

  4. Direct Regulation of TLR5 Expression by Caveolin-1

    PubMed Central

    Lim, Jae Sung; Nguyen, Kim Cuc Thi; Han, Jung Min; Jang, Ik-Soon; Fabian, Claire; Cho, Kyung A

    2015-01-01

    Toll-like receptor 5 (TLR5) is a specific receptor for microbial flagellin and is one of the most well-known receptors in the TLR family. We reported previously that TLR5 signaling is well maintained during aging and that caveolin-1 may be involved in TLR5 signaling in aged macrophages through direct interactions. Therefore, it is important to clarify whether caveolin-1/TLR5 interactions affect TLR5 expression during aging. To assess the effect of caveolin-1 on TLR5, we analyzed TLR5 expression in senescent fibroblasts and aged tissues expressing high levels of caveolin-1. As expected, TLR5 mRNA and protein expression was well maintained in senescent fibroblasts and aged tissues, whereas TLR4 mRNA and protein were diminished in those cells and tissues. To determine the mechanism of caveolin-1-dependent TLR5 expression, we examined TLR5 expression in caveolin-1 deficient mice. Interestingly, TLR5 mRNA and protein levels were decreased dramatically in tissues from caveolin-1 knockout mice. Moreover, overexpressed caveolin-1 in vitro enhanced TLR5 mRNA through the MAPK pathway and prolonged TLR5 protein half-life through direct interaction. These results suggest that caveolin-1 may play a crucial role in maintaining of TLR5 by regulating transcription systems and increasing protein half-life. PMID:26615831

  5. Integrin α1β1 Promotes Caveolin-1 Dephosphorylation by Activating T Cell Protein-tyrosine Phosphatase*

    PubMed Central

    Borza, Corina M.; Chen, Xiwu; Mathew, Sijo; Mont, Stacey; Sanders, Charles R.; Zent, Roy; Pozzi, Ambra

    2010-01-01

    Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury. PMID:20940300

  6. Integrin {alpha}1{beta}1 promotes caveolin-1 dephosphorylation by activating T cell protein-tyrosine phosphatase.

    PubMed

    Borza, Corina M; Chen, Xiwu; Mathew, Sijo; Mont, Stacey; Sanders, Charles R; Zent, Roy; Pozzi, Ambra

    2010-12-17

    Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury. PMID:20940300

  7. Soy protein isolate down-regulates caveolin-1 expression to suppress osteoblastic cell senescence pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been suggested that the beneficial effects of soy protein isolate (SPI) on bone quality might be due to either stimulation of estrogenic signaling via isoflavones or through a novel and as yet characterized non-estrogenic pathway. We report here that SPI-fed rat serum inhibited osteoblastic c...

  8. Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression.

    PubMed

    Rodriguez, Diego A; Tapia, Julio C; Fernandez, Jaime G; Torres, Vicente A; Muñoz, Nicolas; Galleguillos, Daniela; Leyton, Lisette; Quest, Andrew F G

    2009-04-01

    Augmented expression of cyclooxygenase-2 (COX-2) and enhanced production of prostaglandin E(2) (PGE(2)) are associated with increased tumor cell survival and malignancy. Caveolin-1 is a scaffold protein that has been proposed to function as a tumor suppressor in human cancer cells, although mechanisms underlying this ability remain controversial. Intriguingly, the possibility that caveolin-1 regulates the expression of COX-2 has not been explored. Here we show that augmented caveolin-1 expression in cells with low basal levels of this protein, such as human colon cancer (HT29, DLD-1), breast cancer (ZR75), and embryonic kidney (HEK293T) cells reduced COX-2 mRNA and protein levels and beta-catenin-Tcf/Lef and COX-2 gene reporter activity, as well as the production of PGE(2) and cell proliferation. Moreover, COX-2 overexpression or PGE(2) supplementation increased levels of the inhibitor of apoptosis protein survivin by a transcriptional mechanism, as determined by PCR analysis, survivin gene reporter assays and Western blotting. Furthermore, addition of PGE(2) to the medium prevented effects attributed to caveolin-1-mediated inhibition of beta-catenin-Tcf/Lef-dependent transcription. Finally, PGE(2) reduced the coimmunoprecipitation of caveolin-1 with beta-catenin and their colocalization at the plasma membrane. Thus, by reducing COX-2 expression, caveolin-1 interrupts a feedback amplification loop involving PGE(2)-induced signaling events linked to beta-catenin/Tcf/Lef-dependent transcription of tumor survival genes including cox-2 itself and survivin. PMID:19244345

  9. Overexpression of caveolin-1 is sufficient to phenocopy the behavior of a disease-associated mutant

    PubMed Central

    Hanson, Caroline A.; Drake, Kimberly R.; Baird, Michelle A.; Han, Bing; Kraft, Lewis J.; Davidson, Michael W.; Kenworthy, Anne K.

    2013-01-01

    Mutations and alterations in caveolin-1 expression levels have been linked to a number of human diseases. How misregulation of caveolin-1 contributes to disease is not fully understood, but has been proposed to involve the intracellular accumulation of mutant forms of the protein. To better understand the molecular basis for trafficking defects that trap caveolin-1 intracellularly, we compared the properties of a GFP-tagged version of caveolin-1 P132L, a mutant form of caveolin-1 previously linked to breast cancer, with wild type caveolin-1. Unexpectedly, wild type caveolin-1-GFP also accumulated intracellularly, leading us to examine the mechanisms underlying the abnormal localization of the wild type and mutant protein in more detail. We show that both the nature of the tag and cellular context impact the subcellular distribution of caveolin-1, demonstrate that even the wild type form of caveolin-1 can function as a dominant negative under some conditions, and identify specific conformation changes associated with incorrectly targeted forms of the protein. In addition, we find intracellular caveolin-1 is phosphorylated on Tyr14, but phosphorylation is not required for mistrafficking of the protein. These findings identify novel properties of mistargeted forms of caveolin-1 and raise the possibility that common trafficking defects underlie diseases associated with overexpression and mutations in caveolin-1. PMID:23469926

  10. Caveolin-1 and -2 in the Exocytic Pathway of MDCK Cells

    PubMed Central

    Scheiffele, P.; Verkade, P.; Fra, A.M.; Virta, H.; Simons, K.; Ikonen, E.

    1998-01-01

    Abstract. We have studied the biosynthesis and transport of the endogenous caveolins in MDCK cells. We show that in addition to homooligomers of caveolin-1, heterooligomeric complexes of caveolin-1 and -2 are formed in the ER. The oligomers become larger, increasingly detergent insoluble, and phosphorylated on caveolin-2 during transport to the cell surface. In the TGN caveolin-1/-2 heterooligomers are sorted into basolateral vesicles, whereas larger caveolin-1 homooligomers are targeted to the apical side. Caveolin-1 is present on both the apical and basolateral plasma membrane, whereas caveolin-2 is enriched on the basolateral surface where caveolae are present. This suggests that caveolin-1 and -2 heterooligomers are involved in caveolar biogenesis in the basolateral plasma membrane. Anti–caveolin-1 antibodies inhibit the apical delivery of influenza virus hemagglutinin without affecting basolateral transport of vesicular stomatitis virus G protein. Thus, we suggest that caveolin-1 homooligomers play a role in apical transport. PMID:9472032

  11. Caveolin-1 overexpression in benign and malignant salivary gland tumors.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad Javad; Nazhvani, Ali Dehghani; Azizi, Zahra

    2016-02-01

    Caveolin-1, a tyrosine-phosphorylated protein, is supposed to have different regulatory roles as promoter or suppressor in many human cancers. However, no published study concerned its expression in benign and malignant salivary gland tumors. The aim of this study was to evaluate and compare the expression of Cav-1 in the most common benign and malignant salivary gland tumors and evaluate its correlation with proliferation activity. In this cross-sectional retrospective study, immunohistochemical expression of caveolin-1 and Ki67 were evaluated in 49 samples, including 11 normal salivary glands, 15 cases of pleomorphic adenoma (PA), 13 adenoid cystic carcinomas (AdCC), and 10 mucoepidermoid carcinomas (MEC). The expression of Cav-1 was seen in 18 % of normal salivary glands and 85 % of tumors. The immunoreaction in the tumors was significantly higher than normal tissues (P = 0.001), but the difference between benign and malignant tumors was not significant (P = 0.07). Expression of Cav-1 was correlated with Ki67 labeling index in PAs, but not in malignant tumors. Cav-1 expression was not in association with tumor size and stage. Overexpression of Cav-1 was found in salivary gland tumors in comparison with normal tissues, but no significant difference was observed between benign and malignant tumors. Cav-1 was inversely correlated with proliferation in PA. Therefore, this marker may participate in tumorigenesis of salivary gland tumors and may be a potential biomarker for cancer treatments. PMID:26323261

  12. Caveolin-1, a stress-related oncotarget, in drug resistance

    PubMed Central

    Wang, Zhiyu; Wang, Neng; Liu, Pengxi; Peng, Fu; Tang, Hailin; Chen, Qianjun; Xu, Rui; Dai, Yan; Lin, Yi; Xie, Xiaoming; Peng, Cheng; Situ, Honglin

    2015-01-01

    Caveolin-1 (Cav-1) is both a tumor suppressor and an oncoprotein. Cav-1 overexpression was frequently confirmed in advanced cancer stages and positively associated with ABC transporters, cancer stem cell populations, aerobic glycolysis activity and autophagy. Cav-1 was tied to various stresses including radiotherapy, fluid shear and oxidative stresses and ultraviolet exposure, and interacted with stress signals such as AMP-activated protein kinase. Finally, a Cav-1 fluctuation model during cancer development is provided and Cav-1 is suggested to be a stress signal and cytoprotective. Loss of Cav-1 may increase susceptibility to oncogenic events. However, research to explore the underlying molecular network between Cav-1 and stress signals is warranted. PMID:26431273

  13. Role of caveolin-1 in the regulation of lipoprotein metabolism

    PubMed Central

    Frank, Philippe G.; Pavlides, Stephanos; Cheung, Michelle W.-C.; Daumer, Kristin; Lisanti, Michael P.

    2008-01-01

    Lipoprotein metabolism plays an important role in the development of several human diseases, including coronary artery disease and the metabolic syndrome. A good comprehension of the factors that regulate the metabolism of the various lipoproteins is therefore key to better understanding the variables associated with the development of these diseases. Among the players identified are regulators such as caveolins and caveolae. Caveolae are small plasma membrane invaginations that are observed in terminally differentiated cells. Their most important protein marker, caveolin-1, has been shown to play a key role in the regulation of several cellular signaling pathways and in the regulation of plasma lipoprotein metabolism. In the present paper, we have examined the role of caveolin-1 in lipoprotein metabolism using caveolin-1-deficient (Cav-1−/−) mice. Our data show that, while Cav-1−/− mice show increased plasma triglyceride levels, they also display reduced hepatic very low-density lipoprotein (VLDL) secretion. Additionally, we also found that a caveolin-1 deficiency is associated with an increase in high-density lipoprotein (HDL), and these HDL particles are enriched in cholesteryl ester in Cav-1−/− mice when compared with HDL obtained from wild-type mice. Finally, our data suggest that a caveolin-1 deficiency prevents the transcytosis of LDL across endothelial cells, and therefore, that caveolin-1 may be implicated in the regulation of plasma LDL levels. Taken together, our studies suggest that caveolin-1 plays an important role in the regulation of lipoprotein metabolism by controlling their plasma levels as well as their lipid composition. Thus caveolin-1 may also play an important role in the development of atherosclerosis. PMID:18508910

  14. Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible

    NASA Technical Reports Server (NTRS)

    Parat, M. O.; Fox, P. L.

    2001-01-01

    Caveolin-1 is a palmitoylated protein involved in assembly of signaling molecules in plasma membrane subdomains termed caveolae and in intracellular cholesterol transport. Three cysteine residues in the C terminus of caveolin-1 are subject to palmitoylation, which is not necessary for caveolar targeting of caveolin-1. Protein palmitoylation is a post-translational and reversible modification that may be regulated and that in turn may regulate conformation, membrane association, protein-protein interactions, and intracellular localization of the target protein. We have undertaken a detailed analysis of [(3)H]palmitate incorporation into caveolin-1 in aortic endothelial cells. The linkage of palmitate to caveolin-1 was hydroxylamine-sensitive and thus presumably a thioester bond. However, contrary to expectations, palmitate incorporation was blocked completely by the protein synthesis inhibitors cycloheximide and puromycin. In parallel experiments to show specificity, palmitoylation of aortic endothelial cell-specific nitric-oxide synthase was unaffected by these reagents. Inhibitors of protein trafficking, brefeldin A and monensin, blocked caveolin-1 palmitoylation, indicating that the modification was not cotranslational but rather required caveolin-1 transport from the endoplasmic reticulum and Golgi to the plasma membrane. In addition, immunophilin chaperones that form complexes with caveolin-1, i.e. FK506-binding protein 52, cyclophilin A, and cyclophilin 40, were not necessary for caveolin-1 palmitoylation because agents that bind immunophilins did not inhibit palmitoylation. Pulse-chase experiments showed that caveolin-1 palmitoylation is essentially irreversible because the release of [(3)H]palmitate was not significant even after 24 h. These results show that [(3)H]palmitate incorporation is limited to newly synthesized caveolin-1, not because incorporation only occurs during synthesis but because the continuous presence of palmitate on caveolin-1 prevents

  15. Regulation of Phagolysosomal Digestion by Caveolin-1 of the Retinal Pigment Epithelium Is Essential for Vision.

    PubMed

    Sethna, Saumil; Chamakkala, Tess; Gu, Xiaowu; Thompson, Timothy C; Cao, Guangwen; Elliott, Michael H; Finnemann, Silvia C

    2016-03-18

    Caveolin-1 associates with the endo/lysosomal machinery of cells in culture, suggesting that it functions at these organelles independently of its contribution to cell surface caveolae. Here we explored mice lacking caveolin-1 specifically in the retinal pigment epithelium (RPE). The RPE supports neighboring photoreceptors via diurnal phagocytosis of spent photoreceptor outer segment fragments. Like mice lacking caveolin-1 globally, (RPE)CAV1(-/-) mice developed a normal RPE and neural retina but showed reduced rod photoreceptor light responses, indicating that lack of caveolin-1 affects photoreceptor function in a non-cell-autonomous manner. (RPE)CAV1(-/-) RPE in situ showed normal particle engulfment but delayed phagosome clearance and reversed diurnal profiles of levels and activities of lysosomal enzymes. Therefore, eliminating caveolin-1 specifically impairs phagolysosomal degradation by the RPE in vivo. Endogenous caveolin-1 was recruited to maturing phagolysosomes in RPE cells in culture. Consistent with these in vivo data, a moderate increase (to ∼ 2.5-fold) or decrease (by half) of caveolin-1 protein levels in RPE cells in culture was sufficient to accelerate or impair phagolysosomal digestion, respectively. A mutant form of caveolin-1 that fails to reach the cell surface augmented degradation like wild-type caveolin-1. Acidic lysosomal pH and increased protease activity are essential for digestion. We show that halving caveolin-1 protein levels significantly alkalinized lysosomal pH and decreased lysosomal enzyme activities. Taken together, our results reveal a novel role for intracellular caveolin-1 in modulating phagolysosomal function. Moreover, they show, for the first time, that organellar caveolin-1 significantly affects tissue functionality in vivo. PMID:26814131

  16. Loss of Caveolin 1 is Associated With the Expression of Aquaporin 1 and Bladder Dysfunction in Mice

    PubMed Central

    Jung, Seheon; Kim, Sun-Ouck; Cho, Kyung-Aa; Song, Seung Hee; Kang, Teak Won; Park, Kwangsung; Kwon, Dongdeuk

    2015-01-01

    Purpose: It is suggested that caveolin and aquaporin might be closely associated with bladder signal activity. We investigated the effect of the deletion of caveolin 1, using caveolin 1 knockout mice, on the expression of aquaporin 1 in order to identify their relation in the urothelium of the urinary bladder. Methods: The cellular localization and expressions of aquaporin 1 and caveolin 1, in the wild type and caveolin 1 knockout mice urinary bladder, were examined by Western blot and immunofluorescence techniques. Results: Aquaporin 1 and caveolin 1 were coexpressed in the arterioles, venules, and capillaries of the suburothelial layer in the wild type controls. Aquaporin 1 protein expression was significantly higher in the caveolin 1 knockout mice than in the wild type controls (P <0.05). Conclusions: The results imply that aquaporin 1 and caveolin 1 may share a distinct relation with the bladder signal activity. This might play a specific role in bladder dysfunction. PMID:25833479

  17. siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway.

    PubMed

    Miyawaki-Shimizu, Kayo; Predescu, Dan; Shimizu, Jun; Broman, Michael; Predescu, Sanda; Malik, Asrar B

    2006-02-01

    Caveolin-1, the principal integral membrane protein of caveolae, has been implicated in regulating the structural integrity of caveolae, vesicular trafficking, and signal transduction. Although the functions of caveolin-1 are beginning to be explored in caveolin-1-/- mice, these results are confounded by unknown compensatory mechanisms and the development of pulmonary hypertension, cardiomyopathy, and lung fibrosis. To address the role of caveolin-1 in regulating lung vascular permeability, in the present study we used small interfering RNA (siRNA) to knock down caveolin-1 expression in mouse lung endothelia in vivo. Intravenous injection of siRNA against caveolin-1 mRNA incorporated in liposomes selectively reduced the expression of caveolin-1 by approximately 90% within 96 h of injection compared with wild-type mice. We observed the concomitant disappearance of caveolae in lung vessel endothelia and dilated interendothelial junctions (IEJs) as well as increased lung vascular permeability to albumin via IEJs. The reduced caveolin-1 expression also resulted in increased plasma nitric oxide concentration. The nitric oxide synthase inhibitor L-NAME, in part, blocked the increased vascular albumin permeability. These morphological and functional effects of caveolin-1 knockdown were reversible within 168 h after siRNA injection, corresponding to the restoration of caveolin-1 expression. Thus our results demonstrate the essential requirement of caveolin-1 in mediating the formation of caveolae in endothelial cells in vivo and in negatively regulating IEJ permeability. PMID:16183667

  18. Caveolin-1 signaling in lung fibrosis.

    PubMed

    Tourkina, Elena; Hoffman, Stanley

    2012-01-01

    Caveolin-1 is a master regulator of several signaling cascades because it is able to bind to and thereby inhibit members of a variety of kinase families. While associated with caveolae and involved in their generation, caveolin-1 is also present at other sites. A variety of studies have suggested that caveolin-1 may be a useful therapeutic target in fibrotic diseases of the lung and other tissues because in these diseases a low level of caveolin-1 expression is associated with a high level of collagen expression and fibrosis. Reduced caveolin-1 expression is observed not only in the fibroblasts that secrete collagen, but also in epithelial cells and monocytes. This is intriguing because both epithelial cells and monocytes have been suggested to be precursors of fibroblasts. Likely downstream effects of loss of caveolin-1 in fibrosis include activation of TGF-β signaling and upregulation of CXCR4 in monocytes resulting in their enhanced migration into damaged tissue where its ligand CXCL12 is produced. Finally, it may be possible to target caveolin-1 in fibrotic diseases without the use of gene therapy. A caveolin-1 peptide (caveolin-1 scaffolding domain) has been identified that retains the function of the full-length molecule to inhibit kinases and that can be modified by addition of the Antennapedia internalization sequence to allow it to enter cells both in vitro and in vivo. PMID:22802909

  19. Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development.

    PubMed

    Shi, Lu; Li, Lingyun; Wang, Ding; Li, Shu; Chen, Zhi; An, Zhengwen

    2016-06-01

    Caveolin-1 is a scaffolding protein involved in the formation of cholesterol-rich caveolae lipid rafts within the plasma membrane and is capable of collecting signaling molecules into the caveolae and regulating their activity, including extracellular matrix metalloproteinase inducer (EMMPRIN). However, detailed expression patterns of caveolin-1 and EMMPRIN in the developing dental germ are largely unknown. The present study investigated the expression patterns of caveolin-1 and EMMPRIN in the developing mouse tooth germ by immunohistochemistry and real-time polymerase chain reaction. At the bud stage, caveolin-1 expression was initiated in the epithelium bud and mesenchymal cells, while EMMPRIN was weakly expressed at this stage. At the cap stage, caveolin-1 protein was located in the lingual part of the tooth germ; however, EMMPRIN protein was located in the labial part. From the bell stage to 2 days postnatal, caveolin-1 expression was detected in the ameloblasts and cervical loop area; with EMMPRIN expression in the ameloblasts and odontoblasts. Real-time polymerase chain reaction results showed that both caveolin-1 and EMMPRIN mRNA levels increased gradually with progression of developmental stages, and peaked at day two postnatal. The current finding suggests that both caveolin-1 and EMMPRIN take part in mouse tooth development, especially in the differentiation and organization of odontogenic tissues. PMID:27075451

  20. High Mobility Group Box Protein 1 Boosts Endothelial Albumin Transcytosis through the RAGE/Src/Caveolin-1 Pathway.

    PubMed

    Shang, Dan; Peng, Tao; Gou, Shanmiao; Li, Yiqing; Wu, Heshui; Wang, Chunyou; Yang, Zhiyong

    2016-01-01

    High-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to destroy cell-cell junctions, resulting in vascular endothelial hyperpermeability. Here, we report that HMGB1 increases the endothelial transcytosis of albumin. In mouse lung vascular endothelial cells (MLVECs), HMGB1 at a concentration of 500 ng/ml or less did not harm cell-cell junctions but rapidly induced endothelial hyperpermeability to (125)I-albumin. HMGB1 induced an increase in (125)I-albumin and AlexaFluor 488-labeled albumin internalization in endocytosis assays. Depletion of receptor for advanced glycation end products (RAGE), but not TLR2 or TLR4, suppressed HMGB1-induced albumin transcytosis and endocytosis. Genetic and pharmacological destruction of lipid rafts significantly inhibited HMGB1-induced albumin endocytosis and transcytosis. HMGB1 induced the rapid phosphorylation of caveolin (Cav)-1 and Src. Either RAGE gene silencing or soluble RAGE suppressed Cav-1 Tyr14 phosphorylation and Src Tyr418 phosphorylation. The Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) blocked HMGB1-induced Cav-1 Tyr14 phosphorylation. PP2 and overexpression of Cav-1 with a T14F mutation significantly inhibited HMGB1-induced transcytosis and albumin endocytosis. Our findings suggest that HMGB1 induces the transcytosis of albumin via RAGE-dependent Src phosphorylation and Cav-1 phosphorylation. These studies revealed a new mechanism of HMGB1-induced endothelial hyperpermeability. PMID:27572515

  1. High Mobility Group Box Protein 1 Boosts Endothelial Albumin Transcytosis through the RAGE/Src/Caveolin-1 Pathway

    PubMed Central

    Shang, Dan; Peng, Tao; Gou, Shanmiao; Li, Yiqing; Wu, Heshui; Wang, Chunyou; Yang, Zhiyong

    2016-01-01

    High-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to destroy cell-cell junctions, resulting in vascular endothelial hyperpermeability. Here, we report that HMGB1 increases the endothelial transcytosis of albumin. In mouse lung vascular endothelial cells (MLVECs), HMGB1 at a concentration of 500 ng/ml or less did not harm cell-cell junctions but rapidly induced endothelial hyperpermeability to 125I-albumin. HMGB1 induced an increase in 125I-albumin and AlexaFluor 488-labeled albumin internalization in endocytosis assays. Depletion of receptor for advanced glycation end products (RAGE), but not TLR2 or TLR4, suppressed HMGB1-induced albumin transcytosis and endocytosis. Genetic and pharmacological destruction of lipid rafts significantly inhibited HMGB1-induced albumin endocytosis and transcytosis. HMGB1 induced the rapid phosphorylation of caveolin (Cav)-1 and Src. Either RAGE gene silencing or soluble RAGE suppressed Cav-1 Tyr14 phosphorylation and Src Tyr418 phosphorylation. The Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) blocked HMGB1-induced Cav-1 Tyr14 phosphorylation. PP2 and overexpression of Cav-1 with a T14F mutation significantly inhibited HMGB1-induced transcytosis and albumin endocytosis. Our findings suggest that HMGB1 induces the transcytosis of albumin via RAGE-dependent Src phosphorylation and Cav-1 phosphorylation. These studies revealed a new mechanism of HMGB1-induced endothelial hyperpermeability. PMID:27572515

  2. Caveolin-1 modulates the activity of the volume-regulated chloride channel

    PubMed Central

    Trouet, Dominique; Nilius, Bernd; Jacobs, Axel; Remacle, Claude; Droogmans, Guy; Eggermont, Jan

    1999-01-01

    Caveolae are small invaginations of the plasma membrane that have recently been implicated in signal transduction. In the present study, we have investigated whether caveolins, the principal protein of caveolae, also modulate volume-regulated anion channels (VRACs). ICl,swell, the cell swelling-induced chloride current through VRACs, was studied in three caveolin-1-deficient cell lines: Caco-2, MCF-7 and T47D. Electrophysiological measurements showed that ICl,swell was very small in these cells and that transient expression of caveolin-1 restored ICl,swell. The caveolin-1 effect was isoform specific: caveolin-1β but not caveolin-1α upregulated VRACs. This correlated with a different subcellular distribution of caveolin-1α (perinuclear location) from caveolin-1β (perinuclear and peripheral). To explain the modulation of ICl,swell by caveolin-1 we propose that caveolin increases the availability of VRACs in the plasma membrane or, alternatively, that it plays a crucial role in the signal transduction cascade of VRACs. PMID:10517805

  3. Caveolin-1 Induces Formation of Membrane Tubules That Sense Actomyosin Tension and Are Inhibited by Polymerase I and Transcript Release Factor/Cavin-1

    PubMed Central

    Verma, Prakhar; Ostermeyer-Fay, Anne G.

    2010-01-01

    Caveolin-1 and caveolae are often lost in cancer. We found that levels of caveolin-1 and polymerase I and transcript release factor (PTRF)/cavin-1 correlated closely in a panel of cancer and normal cells. Caveolin-1 reexpression in cancer cells lacking both proteins induced formation of long membrane tubules rarely seen in normal cells. PTRF/cavin-1 inhibited tubule formation when coexpressed with caveolin-1 in these cells, whereas suppression of PTRF/cavin-1 expression in cells that normally expressed both genes stimulated tubule formation by endogenous caveolin-1. Caveolin-1 tubules shared several features with previously described Rab8 tubules. Coexpressed Rab8 and caveolin-1 labeled the same tubules (as did EHD proteins), and synergized to promote tubule formation, whereas a dominant-interfering Rab8 mutant inhibited caveolin-1 tubule formation. Both overexpression and inhibition of dynamin-2 reduced the abundance of caveolin-1 tubules. Caveolin-1 reexpression in SK-BR-3 breast cancer cells also induced formation of short membrane tubules close to cortical actin filaments, which required actin filaments but not microtubules. Actomyosin-induced tension destabilized both long and short tubules; they often snapped and resolved to small vesicles. Actin filament depolymerization or myosin II inhibition reduced tension and stabilized tubules. These data demonstrate a new function for PTRF/cavin-1, a new functional interaction between caveolin-1 and Rab8 and that actomyosin interactions can induce tension on caveolin-1-containing membranes. PMID:20427576

  4. Growth suppression of MCF-7 cancer cell-derived xenografts in nude mice by caveolin-1

    SciTech Connect

    Wu Ping; Wang Xiaohui; Li Fei; Qi Baoju; Zhu Hua; Liu Shuang; Cui Yeqing; Chen Jianwen

    2008-11-07

    Caveolin-1 is an essential structural constituent of caveolae membrane domains that has been implicated in mitogenic signaling and oncogenesis. However, the exact functional role of caveolin-1 still remains controversial. In this report, utilizing MCF-7 human breast adenocarcinoma cells stably transfected with caveolin-1 (MCF-7/cav-1 cells), we demonstrate that caveolin-1 expression dramatically inhibits invasion and migration of these cells. Importantly, in vivo experiments employing xenograft tumor models demonstrated that expression of caveolin-1 results in significant growth inhibition of breast tumors. Moreover, a dramatic delay in tumor progression was observed in MCF-7/cav-1 cells as compared with MCF-7 cells. Histological analysis of tumor sections demonstrated a marked decrease in the percentage of proliferating tumor cells (Ki-67 assay) along with an increase in apoptotic tumor cells (TUNEL assay) in MCF-7/cav-1-treated animals. Our current findings provide for the first time in vivo evidence that caveolin-1 can indeed function as a tumor suppressor in human breast adenocarcinoma derived from MCF-7 cells rather than as a tumor promoter.

  5. Caveolin-1 is involved in reactive oxygen species-induced SHP-2 activation in astrocytes

    PubMed Central

    Yun, Ji Hee; Park, Soo Jung; Jo, Ara; Jou, Ilo; Park, Jung Soo

    2011-01-01

    Recent evidence supports a neuroprotective role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) against ischemic brain injury. However, the molecular mechanisms of SHP-2 activation and those governing how SHP-2 exerts its function under oxidative stress conditions are not well understood. Recently we have reported that reactive oxygen species (ROS)-mediated oxidative stress promotes the phosphorylation of endogenous SHP-2 through lipid rafts, and that this phosphorylation strongly occurs in astrocytes, but not in microglia. To investigate the molecules involved in events leading to phosphorylation of SHP-2, raft proteins were analyzed using astrocytes and microglia. Interestingly, caveolin-1 and -2 were detected only in astrocytes but not in microglia, whereas flotillin-1 was expressed in both cell types. To examine whether the H2O2-dependent phosphorylation of SHP-2 is mediated by caveolin-1, we used specific small interfering RNA (siRNA) to downregulate caveolin-1 expression. In the presence of caveolin-1 siRNA, the level of SHP-2 phosphorylation induced by H2O2 was significantly decreased, compared with in the presence of control siRNA. Overexpression of caveolin-1 effectively increased H2O2-induced SHP-2 phosphorylation in microglia. Lastly, H2O2 induced extracellular signal-regulated kinase (ERK) activation in astrocytes through caveolin-1. Our results suggest that caveolin-1 is involved in astrocyte-specific intracellular responses linked to the SHP-2-mediated signaling cascade following ROS-induced oxidative stress. PMID:21918362

  6. Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells

    NASA Technical Reports Server (NTRS)

    Parat, Marie-Odile; Stachowicz, Rafal Z.; Fox, Paul L.

    2002-01-01

    During normal and pathological conditions, endothelial cells (ECs) are subjected to locally generated reactive oxygen species, produced by themselves or by other vessel wall cells. In excess these molecules cause oxidative injury to the cell but at moderate levels they might modulate intracellular signalling pathways. We have investigated the effect of oxidative stress on the palmitoylation and trafficking of caveolin-1 in bovine aortic ECs. Exogenous H2O2 did not alter the intracellular localization of caveolin-1 in ECs. However, metabolic labelling experiments showed that H2O2 inhibited the trafficking of newly synthesized caveolin-1 to membrane raft domains. Several mechanisms potentially responsible for this inhibition were examined. Impairment of caveolin-1 synthesis by H2O2 was not responsible for diminished trafficking. Similarly, the inhibition was independent of H2O2-induced caveolin-1 phosphorylation as shown by the markedly different concentration dependences. We tested the effect of H2O2 on palmitoylation of caveolin-1 by the incorporation of [3H]palmitic acid. Exposure of ECs to H2O2 markedly inhibited the palmitoylation of caveolin-1. Comparable inhibition was observed after treatment of cells with H2O2 delivered either as a bolus or by continuous delivery with glucose and glucose oxidase. Kinetic studies showed that H2O2 did not alter the rate of caveolin-1 depalmitoylation but instead decreased the 'on-rate' of palmitoylation. Together these results show for the first time the modulation of protein palmitoylation by oxidative stress, and suggest a cellular mechanism by which stress might influence caveolin-1-dependent cell activities such as the concentration of signalling proteins and cholesterol trafficking.

  7. Temozolomide Modifies Caveolin-1 Expression in Experimental Malignant Gliomas In Vitro and In Vivo1

    PubMed Central

    Bruyère, Céline; Abeloos, Laurence; Lamoral-Theys, Delphine; Senetta, Rebecca; Mathieu, Véronique; Le Mercier, Marie; Kast, Richard E; Cassoni, Paola; Vandenbussche, Guy; Kiss, Robert; Lefranc, Florence

    2011-01-01

    BACKGROUND: Caveolin-1 is a protein that displays promotive versus preventive roles in cancer progression according to circumstances. Temozolomide (TMZ) is the standard chemotherapeutic to treat glioma patients. The present work aims to characterizeTMZ-induced effects on caveolin-1 expression in glioma cells. METHODS: Human astroglioma (U373 and T98G) and oligodendroglioma (Hs683) cell lines were used in vitro as well as in vivo orthotopic xenografts (Hs683 and U373) into the brains of immunocompromisedmice. In vitro TMZ-induced effects on protein expression and cellular localization were determined by Western blot analysis and on the actin cytoskeleton organization by means of immunofluorescence approaches. In vivo TMZ-induced effects in caveolin-1 expression in human glioma xenografts were monitored by means of immunohistochemistry. RESULTS: TMZ modified caveolin-1 expression and localization in vitro and in vivo after an administration schedule that slightly, if at all, impaired cell growth characteristics in vitro. Caveolin-1 by itself (at a 100-ng/ml concentration) was able to significantly reduce invasiveness (Boyden chambers) of the three human glioma cell lines. The TMZ-inducedmodification in caveolin-1 expression in flotation/raft compartments was paralleled by altered Cyr61 and β1 integrin expression, two elements that have already been reported to collaborate with caveolin-1 in regulating glioma cell biology, and all these features led to profound reorganization of the actin cytoskeleton. An experimental Src kinase inhibitor, AZD0530, almost completely antagonized the TMZ-induced modulation in caveolin-1 expression. CONCLUSION: TMZ modifies caveolin-1 expression in vitro and in vivo in glioma cells, a feature that directly affects glioma cell migration properties. PMID:21461172

  8. Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway.

    PubMed

    Wang, Zhiyu; Wang, Neng; Li, Wenping; Liu, Pengxi; Chen, Qianjun; Situ, Honglin; Zhong, Shaowen; Guo, Li; Lin, Yi; Shen, Jiangang; Chen, Jianping

    2014-10-01

    Accumulating evidence has suggested that cancer stem cells (CSCs) are at the root of drug resistance, and recent studies have indicated that caveolin-1, a membrane transporter protein, is involved in the regulation of cancer chemoresistance and stem cell signaling. However, the current understanding of the role of caveolin-1 in breast cancer development remains controversial. Herein, we demonstrate that caveolin-1 expression was upregulated after breast cancer chemotherapy in vitro and in vivo, accompanied by co-overexpression of β-catenin and ATP-binding cassette subfamily G member 2 (ABCG2) signaling. Additionally, breast CSCs were enriched for caveolin-1 expression. Caveolin-1 silencing sensitized breast CSCs by limiting their self-renewal ability but promoting the differentiation process. β-catenin silencing prevented the enhanced chemoresistance of CSCs induced by caveolin-1 overexpression, indicating that β-catenin is an essential molecule responsible for caveolin-1-mediated action. Further mechanistic investigation revealed that caveolin-1 silencing could downregulate the β-catenin/ABCG2 pathway through glycogen synthase kinase 3 beta activation and Akt inhibition, resulting in increased β-catenin phosphorylation and proteasomal degradation. Clinical investigation also revealed a close correlation between caveolin-1 and β-catenin/ABCG2 signaling in breast cancer samples. Notably, caveolin-1 was highly elevated in triple-negative breast cancer, and caveolin-1 silencing significantly impaired the tumorigenicity and chemoresistance of breast CSCs in in vivo models. Overall, our study not only highlights the role of caveolin-1 in mediating the chemoresistance of breast CSCs via β-catenin/ABCG2 regulation but also provides novel approaches for future therapies targeting CSCs. PMID:25085904

  9. Caveolin-1: an ambiguous partner in cell signalling and cancer

    PubMed Central

    Quest, Andrew F G; Gutierrez-Pajares, Jorge L; Torres, Vicente A

    2008-01-01

    Caveolae are small plasma membrane invaginations that have been implicated in a variety of functions including transcytosis, potocytosis and cholesterol transport and signal transduction. The major protein component of this compartment is a family of proteins called caveolins. Experimental data obtained in knockout mice have provided unequivocal evidence for a requirement of caveolins to generate morphologically detectable caveolae structures. However, expression of caveolins is not sufficient per seto assure the presence of these structures. With respect to other roles attributed to caveolins in the regulation of cellular function, insights are even less clear. Here we will consider, more specifically, the data concerning the ambiguous roles ascribed to caveolin-1 in signal transduction and cancer. In particular, evidence indicating that caveolin-1 function is cell context dependent will be discussed. PMID:18400052

  10. Dexamethasone induces caveolin-1 in vascular endothelial cells: implications for attenuated responses to VEGF.

    PubMed

    Igarashi, Junsuke; Hashimoto, Takeshi; Shoji, Kazuyo; Yoneda, Kozo; Tsukamoto, Ikuko; Moriue, Tetsuya; Kubota, Yasuo; Kosaka, Hiroaki

    2013-04-15

    Steroids exert direct actions on cardiovascular cells, although underlying molecular mechanisms remain incompletely understood. We examined if steroids modulate abundance of caveolin-1, a regulatory protein of cell-surface receptor pathways that regulates the magnitudes of endothelial response to vascular endothelial growth factor (VEGF). Dexamethasone, a synthetic glucocorticoid, induces caveolin-1 at both levels of protein and mRNA in a time- and dose-dependent manner in pharmacologically relevant concentrations in cultured bovine aortic endothelial cells. Aldosterone, a mineralocorticoid, but not the sex steroids 17β-estradiol, testosterone, or progesterone, elicits similar caveolin-1 induction. Caveolin-1 induction by dexamethasone and that by aldosterone were abrogated by RU-486, an inhibitor of glucocorticoid receptor, and by spironolactone, a mineralocorticoid receptor inhibitor, respectively. Dexamethasone attenuates VEGF-induced responses at the levels of protein kinases Akt and ERK1/2, small-G protein Rac1, nitric oxide production, and migration. When induction of caveolin-1 by dexamethasone is attenuated either by genetically by transient transfection with small interfering RNA or pharmacologically by RU-486, kinase responses to VEGF are rescued. Dexamethasone also increases expression of caveolin-1 protein in cultured human umbilical vein endothelial cells, associated with attenuated tube formation responses of these cells when cocultured with normal fibroblasts. Immunohistochemical analyses revealed that intraperitoneal injection of dexamethasone induces endothelial caveolin-1 protein in thoracic aorta and in lung artery in healthy male rats. Thus steroids functionally attenuate endothelial responses to VEGF via caveolin-1 induction at the levels of signal transduction, migration, and tube formation, identifying a novel point of cross talk between nuclear and cell-surface receptor signaling pathways. PMID:23426970

  11. Interleukin-1β induces the upregulation of caveolin-1 expression in a rat brain tumor model

    PubMed Central

    QIN, LI-JUAN; JIA, YONG-SEN; ZHANG, YI-BING; WANG, YIN-HUAN

    2016-01-01

    The aim of the present study was to investigate the expression of caveolin-1 in rat brain glioma tissue, and to determine whether interleukin-1β (IL-1β) has a role in this process. Using glioma cells, a tumor-burdened rat model was established, and the expression of caveolin-1 protein in the tumor sites was significantly increased following intracarotid infusion of IL-1β (3.7 ng/kg/min), as indicated by western blot analysis. The maximum value of the caveolin-1 expression was observed in tumor-burdened rats after 60 min of IL-1β perfusion, and which was significantly enhanced by vascular endothelial growth factor (VEGF). In addition, VEGF also significantly increased IL-1β-induced blood tumor barrier (BTB) permeability. The results suggest that the IL-1β-induced BTB permeability increase may be associated with the expression of caveolin-1 protein, and VEGF may be involved in this process. PMID:27073627

  12. Caveolin-1 as a Prognostic Marker for Local Control After Preoperative Chemoradiation Therapy in Rectal Cancer

    SciTech Connect

    Roedel, Franz Capalbo, Gianni; Roedel, Claus; Weiss, Christian

    2009-03-01

    Purpose: Caveolin-1 is a protein marker for caveolae organelles and has an essential impact on cellular signal transduction pathways (e.g., receptor tyrosine kinases, adhesion molecules, and G-protein-coupled receptors). In the present study, we investigated the expression of caveolin-1 in patients with rectal adenocarcinoma and correlated its expression pattern with the risk for disease recurrences after preoperative chemoradiation therapy (CRT) and surgical resection. Methods and Materials: Caveolin-1 mRNA and protein expression were evaluated by Affymetrix microarray analysis (n = 20) and immunohistochemistry (n = 44) on pretreatment biopsy samples of patients with locally advanced adenocarcinoma of the rectum, and were correlated with clinical and histopathologic characteristics as well as with 5-year rates of local failure and overall survival. Results: A significantly decreased median caveolin-1 intracellular mRNA level was observed in tumor biopsy samples as compared with noncancerous mucosa. Individual mRNA levels and immunohistologic staining, however, revealed an overexpression in 7 of 20 patients (35%) and 17 of 44 patients (38.6%), respectively. Based on immunohistochemical evaluation, local control rates at 5 years for patients with tumors showing low caveolin-1 expression were significantly better than for patients with high caveolin-1-expressing carcinoma cells (p = 0.05; 92%, 95% confidence interval [95% CI] = 82-102% vs. 72%, 95% CI = 49-84%). A low caveolin-1 protein expression was also significantly related to an increased overall survival rate (p = 0.05; 45%, 95% CI 16-60% vs. 82%, 95% CI = 67-97%). Conclusion: Caveolin-1 may provide a novel prognostic marker for local control and survival after preoperative CRT and surgical resection in rectal cancer.

  13. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231

  14. Effect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells.

    PubMed

    Kamada, Chiemi; Mukai, Rie; Kondo, Akari; Sato, Shinya; Terao, Junji

    2016-05-01

    Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a major structural protein of caveolae in vascular endothelial cells, plays a role in atherosclerosis development. Here we investigated effects of oxidized low-density lipoprotein, quercetin and its metabolite, quercetin 3-O-β-glucuronide, on caveolin-1 expression. Oxidized low-density lipoprotein significantly upregulated caveolin-1 mRNA expression. An oxidized low-density lipoprotein component, lysophosphatidylcholine, also induced expression of both caveolin-1 mRNA and protein. However, lysophosphatidylcholine did not affect the location of caveolin-1 proteins within caveolae structures. Co-treatment with quercetin or quercetin 3-O-β-glucuronide inhibited lysophosphatidylcholine-induced caveolin-1 expression. Quercetin and quercetin 3-O-β-glucuronide also suppressed expression of adhesion molecules induced by oxidized low-density lipoprotein and lysophosphatidylcholine. These results strongly suggest lysophosphatidylcholine derived from oxidized low-density lipoprotein contributes to atherosclerotic events by upregulating caveolin-1 expression, resulting in induction of adhesion molecules. Quercetin metabolites are likely to exert an anti-atherosclerotic effect by attenuating caveolin-1 expression in endothelial cells. PMID:27257344

  15. Effect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells

    PubMed Central

    Kamada, Chiemi; Mukai, Rie; Kondo, Akari; Sato, Shinya; Terao, Junji

    2016-01-01

    Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a major structural protein of caveolae in vascular endothelial cells, plays a role in atherosclerosis development. Here we investigated effects of oxidized low-density lipoprotein, quercetin and its metabolite, quercetin 3-O-β-glucuronide, on caveolin-1 expression. Oxidized low-density lipoprotein significantly upregulated caveolin-1 mRNA expression. An oxidized low-density lipoprotein component, lysophosphatidylcholine, also induced expression of both caveolin-1 mRNA and protein. However, lysophosphatidylcholine did not affect the location of caveolin-1 proteins within caveolae structures. Co-treatment with quercetin or quercetin 3-O-β-glucuronide inhibited lysophosphatidylcholine-induced caveolin-1 expression. Quercetin and quercetin 3-O-β-glucuronide also suppressed expression of adhesion molecules induced by oxidized low-density lipoprotein and lysophosphatidylcholine. These results strongly suggest lysophosphatidylcholine derived from oxidized low-density lipoprotein contributes to atherosclerotic events by upregulating caveolin-1 expression, resulting in induction of adhesion molecules. Quercetin metabolites are likely to exert an anti-atherosclerotic effect by attenuating caveolin-1 expression in endothelial cells. PMID:27257344

  16. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  17. Caveolin-1 mutants P132L and Y14F are dominant negative regulators of invasion, migration and aggregation in H1299 lung cancer cells

    SciTech Connect

    Shatz, Maria; Lustig, Gila; Reich, Reuven; Liscovitch, Mordechai

    2010-06-10

    Caveolin-1 is an essential protein constituent of caveolae. Accumulating evidence indicates that caveolin-1 may act as a positive regulator of cancer progression. In this study, we investigated the function of caveolin-1 in human lung cancer cells. Caveolin-1 knockdown inhibited cell proliferation and reduced focal adhesion kinase (Fak) phosphorylation. Matrix invasion and cell migration as well as expression and activity of matrix metalloproteases were attenuated following caveolin-1 RNAi-mediated knockdown or overexpression of Y14F and P132L mutants, demonstrating dominant-negative activity of these mutants. Time-lapse fluorescence microscopy revealed that caveolin-1 and its mutants P132L and Y14F are localized to the trailing edge of migrating cells during both random and directed cell movement, implying an active role of caveolin-1 in the migration process. Suppression of caveolin-1 function greatly elevated the percentage of H1299 cells exhibiting focal adhesions. In addition, cell aggregation was increased by wild type caveolin-1 and attenuated by both P132L and Y14F mutants. Overexpression of wild type caveolin-1 increased caveolae density, however, P132L and Y14F mutants did not affect caveolae formation, suggesting that in this respect that the mutants do not act in a dominant negative manner, and that effects of caveolin-1 on caveolae and cell invasion, migration, focal adhesion and aggregation, are separable. Our data provide novel mechanistic insights into the role of caveolin-1 in cell motility, invasiveness and aggregation, therefore, expanding our understanding of the tumor-promoting activities of caveolin-1 in advanced-stage cancer.

  18. Caveolin 1 Is Required for the Activation of Endothelial Nitric Oxide Synthase in Response to 17β-Estradiol

    PubMed Central

    Sud, Neetu; Wiseman, Dean A.; Black, Stephen M.

    2010-01-01

    Evidence suggests that estrogen mediates rapid endothelial nitric oxide synthase (eNOS) activation via estrogen receptor-a (ERα) within the plasma membrane of endothelial cells (EC). ERα is known to colocalize with caveolin 1, the major structural protein of caveolae, and caveolin 1 stimulates the translocation of ERα to the plasma membrane. However, the role played by caveolin 1 in regulating 17β-estradiol-mediated NO signaling in EC has not been adequately resolved. Thus, the purpose of this study was to explore how 17β-estradiol stimulates eNOS activity and the role of caveolin 1 in this process. Our data demonstrate that modulation of caveolin 1 expression using small interfering RNA or adenoviral gene delivery alters ERα localization to the plasma membrane in EC. Further, before estrogen stimulation ERα associates with caveolin 1, whereas stimulation promotes a pp60Src-mediated phosphorylation of caveolin 1 at tyrosine 14, increasing ERα-PI3 kinase interactions and disrupting caveolin 1-ERα interactions. Adenoviral mediated overexpression of a phosphorylation-deficient mutant of caveolin (Y14FCav) attenuated the ERα/PI3 kinase interaction and prevented Akt-mediated eNOS activation. Furthermore, Y14FCav overexpression reduced eNOS phosphorylation at serine1177 and decreased NO generation after estrogen exposure. Using a library of overlapping peptides we identified residues 62–73 of caveolin 1 as the ERα-binding site. Delivery of a synthetic peptide based on this sequence decreased ERα plasma membrane translocation and reduced estrogen-mediated activation of eNOS. In conclusion, caveolin 1 stimulates 17β-estradiol-induced NO production by promoting ERα to the plasma membrane, which facilitates the activation of the PI3 kinase pathway, leading to eNOS activation and NO generation. PMID:20610538

  19. The Ras Inhibitors Caveolin-1 and Docking Protein 1 Activate Peroxisome Proliferator-Activated Receptor γ through Spatial Relocalization at Helix 7 of Its Ligand-Binding Domain ▿

    PubMed Central

    Burgermeister, Elke; Friedrich, Teresa; Hitkova, Ivana; Regel, Ivonne; Einwächter, Henrik; Zimmermann, Wolfgang; Röcken, Christoph; Perren, Aurel; Wright, Matthew B.; Schmid, Roland M.; Seger, Rony; Ebert, Matthias P. A.

    2011-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that promotes differentiation and cell survival in the stomach. PPARγ upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPARγ is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPARγ signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPARγ and enhanced nuclear translocation and ligand-independent transcription of PPARγ target genes. In contrast, Cav1 overexpression sequestered PPARγ in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPARγ's ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPARγ and to inhibit cell proliferation. Ligand-activated PPARγ also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPARγ regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPARγ to ligands, limiting proliferation of gastric epithelial cells. PMID:21690289

  20. Phosphorylation of caveolin-1 on tyrosine-14 induced by ROS enhances palmitate-induced death of beta-pancreatic cells.

    PubMed

    Wehinger, Sergio; Ortiz, Rina; Díaz, María Inés; Aguirre, Adam; Valenzuela, Manuel; Llanos, Paola; Mc Master, Christopher; Leyton, Lisette; Quest, Andrew F G

    2015-05-01

    A considerable body of evidence exists implicating high levels of free saturated fatty acids in beta pancreatic cell death, although the molecular mechanisms and the signaling pathways involved have not been clearly defined. The membrane protein caveolin-1 has long been implicated in cell death, either by sensitizing to or directly inducing apoptosis and it is normally expressed in beta cells. Here, we tested whether the presence of caveolin-1 modulates free fatty acid-induced beta cell death by reexpressing this protein in MIN6 murine beta cells lacking caveolin-1. Incubation of MIN6 with palmitate, but not oleate, induced apoptotic cell death that was enhanced by the presence of caveolin-1. Moreover, palmitate induced de novo ceramide synthesis, loss of mitochondrial transmembrane potential and reactive oxygen species (ROS) formation in MIN6 cells. ROS generation promoted caveolin-1 phosphorylation on tyrosine-14 that was abrogated by the anti-oxidant N-acetylcysteine or the incubation with the Src-family kinase inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7(dimethylethyl)pyrazolo[3,4-d]pyrimidine). The expression of a non-phosphorylatable caveolin-1 tyrosine-14 to phenylalanine mutant failed to enhance palmitate-induced apoptosis while for MIN6 cells expressing the phospho-mimetic tyrosine-14 to glutamic acid mutant caveolin-1 palmitate sensitivity was comparable to that observed for MIN6 cells expressing wild type caveolin-1. Thus, caveolin-1 expression promotes palmitate-induced ROS-dependent apoptosis in MIN6 cells in a manner requiring Src family kinase mediated tyrosine-14 phosphorylation. PMID:25572853

  1. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression

    PubMed Central

    Zhao, Yong-lin; Song, Jin-ning; Ma, Xu-dong; Zhang, Bin-fei; Li, Dan-dong; Pang, Hong-gang

    2016-01-01

    Rosiglitazone up-regulates caveolin-1 levels and has neuroprotective effects in both chronic and acute brain injury. Therefore, we postulated that rosiglitazone may ameliorate diffuse axonal injury via its ability to up-regulate caveolin-1, inhibit expression of amyloid-beta precursor protein, and reduce the loss and abnormal phosphorylation of tau. In the present study, intraperitoneal injection of rosiglitazone significantly reduced the levels of amyloid-beta precursor protein and hyperphosphorylated tau (phosphorylated at Ser404(p-tau (S404)), and it increased the expression of total tau and caveolin-1 in the rat cortex. Our results show that rosiglitazone inhibits the expression of amyloid-beta precursor protein and lowers p-tau (S404) levels, and it reduces the loss of total tau, possibly by up-regulating caveolin-1. These actions of rosiglitazone may underlie its neuroprotective effects in the treatment of diffuse axonal injury. PMID:27482223

  2. Caveolin 1 (Cav-1) and actin-related protein 2/3 complex, subunit 1B (ARPC1B) expressions as prognostic indicators for oral squamous cell carcinoma (OSCC).

    PubMed

    Auzair, Lukman Bin Md; Vincent-Chong, Vui King; Ghani, Wan Maria Nabillah; Kallarakkal, Thomas George; Ramanathan, Anand; Lee, Chia Ee; Rahman, Zainal Ariff Abdul; Ismail, Siti Mazlipah; Abraham, Mannil Thomas; Zain, Rosnah Binti

    2016-07-01

    Caveolin-1 (Cav-1) and Actin-Related Protein 2/3 Complex, Subunit 1B (ARPC1B) have been implicated in various human cancers, yet its role in tumorigenesis remains controversial. Therefore, this study aims to determine the protein expression of these two genes in oral squamous cell carcinomas (OSCCs) and to evaluate the clinical and prognostic impact of these genes in OSCC. Protein expressions of these two genes were determined by immunohistochemistry technique. The association between Cav-1 and ARPC1B with clinico-pathological parameters was evaluated by Chi-square test (or Fisher exact test where appropriate). Correlation between the protein expressions of these 2 genes with survival was analyzed using Kaplan-Meier and Cox regression models. Cav-1 and ARPC1B were found to be significantly over-expressed in OSCC compared to normal oral mucosa (p = 0.002 and p = 0.033, respectively). Low level of ARPC1B protein expression showed a significant correlation with lymph node metastasis (LNM) (p = 0.010) and advanced tumor staging (p = 0.003). Kaplan-Meier survival analyses demonstrated that patients with over-expression of Cav-1 protein were associated with poor prognosis (p = 0.030). Adjusted multivariate Cox regression model revealed that over-expression of Cav-1 remained as an independent significant prognostic factor for OSCC (HRR = 2.700, 95 % CI 1.013-7.198, p = 0.047). This study demonstrated that low-expression of ARPC1B is significantly associated with LNM and advanced tumor staging whereas high expression of Cav-1 can be a prognostic indicator for poor prognosis in OSCC patients. PMID:26138391

  3. Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells.

    PubMed

    Lee, Eun Ji; Park, Mi Kyung; Kim, Hyun Ji; Kim, Eun Ji; Kang, Gyeoung-Jin; Byun, Hyun Jung; Lee, Chang Hoon

    2016-06-01

    Sphingosylphosphorylcholine (SPC) is found at increased in the malignant ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments that contribute to the viscoelasticity of metastatic cancer cells. However, the detailed mechanism of SPC-induced K8 phosphorylation and reorganization is not clear. We observed that SPC dose-dependently reduced the expression of epithelial membrane protein 2 (EMP2) in lung cancer cells. Then, we examined the role of EMP2 in SPC-induced phosphorylation and reorganization of K8 in lung cancer cells. We found that SPC concentration-dependently reduced EMP2 in A549, H1299, and other lung cancer cells. This was verified at the mRNA level by RT-PCR and real-time PCR (qPCR), and intracellular variation through confocal microscopy. EMP2 gene silencing and stable lung cancer cell lines established using EMP2 lentiviral shRNA induced K8 phosphorylation and reorganization. EMP2 overexpression reduced K8 phosphorylation and reorganization. We also observed that SPC-induced loss of EMP2 induces phosphorylation of JNK and ERK via reduced expression of protein phosphatase 2A (PP2A). Loss of EMP2 induces ubiquitination of protein phosphatase 2A (PP2A). SPC induced caveolin-1 (cav-1) expression and EEA1 endosome marker protein but not cav-2. SPC treatment enhanced the binding of cav-1 and PP2A and lowered binding of PP2A and alpha4. Gene silencing of EMP2 increased and gene silencing of cav-1 reduced migration of A549 lung cancer cells. Overall, these results suggest that SPC induces EMP2 down-regulation which reduces the PP2A via ubiquitination induced by cav-1, which sequestered alpha4, leading to the activation of ERK and JNK. PMID:26876307

  4. Diet-induced hypercholesterolemia promotes androgen-independent prostate cancer metastasis via IQGAP1 and caveolin-1

    PubMed Central

    Moon, Hyeongsun; Ruelcke, Jayde E.; Choi, Eunju; Sharpe, Laura J.; Nassar, Zeyad D.; Bielefeldt-Ohmann, Helle; Parat, Marie-Odile; Shah, Anup; Francois, Mathias; Inder, Kerry L.; Brown, Andrew J.; Russell, Pamela J.; Parton, Robert G.; Hill, Michelle M.

    2015-01-01

    Obesity and metabolic syndrome are associated with several cancers, however, the molecular mechanisms remain to be fully elucidated. Recent studies suggest that hypercholesterolemia increases intratumoral androgen signaling in prostate cancer, but it is unclear whether androgen-independent mechanisms also exist. Since hypercholesterolemia is associated with advanced, castrate-resistant prostate cancer, in this study, we aimed to determine whether and how hypercholesterolemia affects prostate cancer progression in the absence of androgen signaling. We demonstrate that diet-induced hypercholesterolemia promotes orthotopic xenograft PC-3 cell metastasis, concomitant with elevated expression of caveolin-1 and IQGAP1 in xenograft tumor tissues. In vitro cholesterol treatment of PC-3 cells stimulated migration and increased IQGAP1 and caveolin-1 protein level and localization to a detergent-resistant fraction. Down-regulation of caveolin-1 or IQGAP1 in PC-3 cells reduced migration and invasion in vitro, and hypercholesterolemia-induced metastasis in vivo. Double knock-down of caveolin-1 and IQGAP1 showed no additive effect, suggesting that caveolin-1 and IQGAP1 act via the same pathway. Taken together, our data show that hypercholesterolemia promotes prostate cancer metastasis independent of the androgen pathway, in part by increasing IQGAP1 and caveolin-1. These results have broader implications for managing metastasis of cancers in general as IQGAP1 and hypercholesterolemia are implicated in the progression of several cancers. PMID:25924234

  5. Caveolin-1 Dependent Endocytosis Enhances the Chemosensitivity of HER-2 Positive Breast Cancer Cells to Trastuzumab Emtansine (T-DM1)

    PubMed Central

    Chung, Yuan-Chiang; Kuo, Jang-Fang; Wei, Wan-Chen; Chang, King-Jen; Chao, Wei-Ting

    2015-01-01

    The humanized monoclonal antibody-drug conjugate trastuzumab emtansine (T-DM1, Kadcyla) has been approved by the U.S. FDA to treat human epidermal growth factor receptor 2 (HER-2)-positive metastatic breast cancer. Despite its effectiveness in most patients, some are initially resistant or develop resistance. No biomarker of drug resistance to T-DM1 has been identified. Antibody-drug efficacy is associated with antibody internalization in the cell; therefore, cellular sensitivity of cells to the drug may be linked to cellular vesicle trafficking systems. Caveolin-1 is a 22 KD protein required for caveolae formation and endocytic membrane transport. In this study, the relationship between caveolin-1 expression and the chemosensitivity of HER-2-positive breast cancer cells to T-DM1 was investigated. Samples from 32 human breast cancer biopsy and normal tissue specimens were evaluated immunohistochemically for caveolin-1 expression. Caveolin-1 was shown to be expressed in 68% (22/32) of the breast cancer specimens. In addition, eight (72.7%, 8/11) HER-2 positive breast cancer specimens had a higher caveolin-1 expression than normal tissues. HER-2-positive BT-474 and SKBR-3 breast cancer cells that express low and moderate levels of caveolin-1, respectively, were treated with trastuzumab or its conjugate T-DM1. Cell viability and molecular localizations of caveolin-1, antibody and its conjugate were examined. Confocal microscopy showed that T-DM1 and caveolin-1 colocalized in SKBR-3 cells, which also were five times more sensitive to the conjugate in terms of cell survival than BT-474 cells, although T-DM1 also showed improved drug efficacy in BT-474 cells than trastuzumab treatment. Caveolin-1 expression in these lines was manipulated by transfection of GFP-tagged caveolin-1 or caveolin-1 siRNA. BT-474 cells overexpressing caveolin-1 were more sensitive to T-DM1 treatment than mock-transfected cells, whereas the siRNA-transfected SKBR-3 cells had decreased sensitivity

  6. Caveolin-1 gene knockout impairs nitrergic function in mouse small intestine

    PubMed Central

    El-Yazbi, Ahmed F; Cho, Woo-Jung; Boddy, Geoffrey; Daniel, Edwin E

    2005-01-01

    Caveolin-1 is a plasma membrane-associated protein that is responsible for caveolae formation. It plays an important role in the regulation of the function of different signaling molecules, among which are the different isoforms of nitric oxide synthase (NOS). Nitric oxide (NO) is known to be an important inhibitory mediator in the mouse gut. Caveolin-1 knockout mice (Cav1−/−) were used to examine the effect of caveolin-1 absence on the NO function in the mouse small intestine (ileum and jejunum) compared to their genetic controls and BALB/c controls. Immunohistochemical staining showed loss of caveolin-1 and NOS in the jejunal smooth muscles and myenteric plexus interstitial cells of Cajal (ICC) of Cav1−/− mice; however, nNOS immunoreactive nerves were still present in myenteric ganglia. Under nonadrenergic noncholinergic (NANC) conditions, small intestinal tissues from Cav1−/− mice relaxed to electrical field stimulation (EFS), as did tissues from control mice. Relaxation of tissues from control mice was markedly reduced by N-omega-nitro-L-arginine (10−4 M), but relaxation of Cav1−/− animals was affected much less. Also, Cav1−/− mice tissues showed reduced relaxation responses to sodium nitroprusside (100 μM) compared to controls; yet there were no significant differences in the relaxation responses to 8-bromoguanosine-3′ : 5′-cyclic monophosphate (100 μM). Apamin (10−6 M) significantly reduced relaxations to EFS in NANC conditions in Cav1−/− mice, but not in controls. The data from this study suggest that caveolin-1 gene knockout causes alterations in the smooth muscles and the ICC, leading to an impaired NO function in the mouse small intestine that could possibly be compensated by apamin-sensitive inhibitory mediators. PMID:15937515

  7. Probing the caveolin-1 P132L mutant: Critical insights into its oligomeric behavior and structure

    PubMed Central

    Rieth, Monica D.; Lee, Jinwoo; Glover, Kerney Jebrell

    2012-01-01

    Caveolin-1 is the most important protein found in caveolae, which are cell surface invaginations of the plasma membrane that act as signaling platforms. A single point mutation in the transmembrane domain of caveolin-1 (proline 132 to leucine) has deleterious effects on caveolae formation in vivo, and has been implicated in various disease states, particularly aggressive breast cancers. Using a combination of gel filtration chromatography and analytical ultracentrifugation we found that a fully-functional construct of caveolin-1 (Cav162–178) was a monomer in dodecylphosphocholine micelles. In contrast, the P132L mutant of Cav162–178 was dimeric. To explore the dimerization of the P132L mutant further, various truncated constructs (Cav182–178, Cav196–178, Cav162–136, Cav182–136, Cav196–136) were prepared which revealed that oligomerization occurs in the transmembrane domain (residues 96–136) of caveolin-1. To characterize the mutant structurally, solution-state NMR experiments in lyso-myristoylphosphatidylglycerol were undertaken of the Cav196–136 P132L mutant. Chemical shift analysis revealed that compared to the wild type, helix 2 in the transmembrane domain was lengthened by four residues (wild type, residues 111 to 129; mutant, residues 111–133), which corresponds to an extra turn in helix 2 of the mutant. Lastly, point mutations at position 132 of Cav162–178 (P132A, P132I, P132V, P132G, P132W, P132F) revealed that no other hydrophobic amino acid can preserve the monomeric state of Cav162–178 which indicates that proline 132 is critical in supporting proper caveolin-1 behavior. PMID:22506673

  8. Polychlorinated biphenyl-induced VCAM-1 expression is attenuated in aortic endothelial cells isolated from caveolin-1 deficient mice

    SciTech Connect

    Han, Sung Gu; Eum, Sung Yong; Toborek, Michal; Smart, Eric; Hennig, Bernhard

    2010-07-15

    Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of cardiovascular diseases such as atherosclerosis. Vascular cell adhesion molecule-1 (VCAM-1) is a critical mediator for adhesion and uptake of monocytes across the endothelium in the early stages of atherosclerosis development. The upregulation of VCAM-1 by PCBs may be dependent on functional membrane domains called caveolae. Caveolae are particularly abundant in endothelial cell membranes and involved in trafficking and signal transduction. The objective of this study was to investigate the role of caveolae in PCB-induced endothelial cell dysfunction. Primary mouse aortic endothelial cells (MAECs) isolated from caveolin-1-deficient mice and background C57BL/6 mice were treated with coplanar PCBs, such as PCB77 and PCB126. In addition, siRNA gene silencing technique was used to knockdown caveolin-1 in porcine vascular endothelial cells. In MAECs with functional caveolae, VCAM-1 protein levels were increased after exposure to both coplanar PCBs, whereas expression levels of VCAM-1 were not significantly altered in cells deficient of caveolin-1. Furthermore, PCB-induced monocyte adhesion was attenuated in caveolin-1-deficient MAECs. Similarly, siRNA silencing of caveolin-1 in porcine endothelial cells confirmed the caveolin-1-dependent VCAM-1 expression. Treatment of cells with PCB77 and PCB126 resulted in phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2), and pharmacological inhibition of ERK1/2 diminished the observed PCB-induced increase in monocyte adhesion. These findings suggest that coplanar PCBs induce adhesion molecule expression, such as VCAM-1, in endothelial cells, and that this response is regulated by caveolin-1 and functional caveolae. Our data demonstrate a critical role of functional caveolae in the activation and dysfunction of endothelial cells by coplanar PCBs.

  9. Tagging Strategies Strongly Affect the Fate of Overexpressed Caveolin-1

    PubMed Central

    Han, Bing; Tiwari, Ajit; Kenworthy, Anne K

    2015-01-01

    Caveolin-1 (Cav1) is the primary scaffolding protein of caveolae, flask-shaped invaginations of the plasma membrane thought to function in endocytosis, mechanotransduction, signaling and lipid homeostasis. A significant amount of our current knowledge about caveolins and caveolae is derived from studies of transiently overexpressed, C-terminally tagged caveolin proteins. However, how different tags affect the behavior of ectopically expressed Cav1 is still largely unknown. To address this question, we performed a comparative analysis of the subcellular distribution, oligomerization state and detergent resistance of transiently overexpressed Cav1 labeled with three different C-terminal tags (EGFP, mCherry and myc). We show that addition of fluorescent protein tags enhances the aggregation and/or degradation of both wild-type Cav1 and an oligomerization defective P132L mutant. Strikingly, complexes formed by overexpressed Cav1 fusion proteins excluded endogenous Cav1 and Cav2, and the properties of native caveolins were largely preserved even when abnormal aggregates were present in cells. These findings suggest that differences in tagging strategies may be a source of variation in previously published studies of Cav1 and that overexpressed Cav1 may exert functional effects outside of caveolae. They also highlight the need for a critical re-evaluation of current knowledge based on transient overexpression of tagged Cav1. PMID:25639341

  10. Caveolin-1 regulates neural differentiation of rat bone mesenchymal stem cells into neurons by modulating Notch signaling.

    PubMed

    Wang, Shuyang; Kan, Quancheng; Sun, Yingpu; Han, Rui; Zhang, Guangyu; Peng, Tao; Jia, Yanjie

    2013-02-01

    Bone marrow mesenchymal stem cells (MSCs) are known to differentiate into neurons in vitro. However, the mechanism underlying MSC differentiation remains controversial. A recent analysis has shown that Notch signaling is involved in regulating the differentiation of MSCs. This study examines the potential mechanism of the differentiation of MSCs into neurons, and it considers the role of caveolin-1 in this process. We investigated neuron differentiation and Notch signaling by detecting the expression levels of microtubule-associated protein 2 (MAP-2), Neuron-specific Enolase (NSE), Notch-1, Notch intracellular domain (NICD) and hairy enhancer of split 5 (Hes5). We found that by down-regulating caveolin-1 during induction, MSCs were prone to neural differentiation and expressed high levels of neuronal markers. Meanwhile, the expression levels of Notch-1, NICD and Hes5 decreased. Our results indicate that down-regulation of caveolin-1 promotes the neuronal differentiation of MSCs by modulating the Notch signaling pathway. PMID:23031836

  11. HIV Infection Upregulates Caveolin 1 Expression To Restrict Virus Production▿

    PubMed Central

    Lin, Shanshan; Wang, Xiao Mei; Nadeau, Peter E.; Mergia, Ayalew

    2010-01-01

    Caveolin 1 (Cav-1) is a major protein of a specific membrane lipid raft known as caveolae. Cav-1 interacts with the gp41 of the human immunodeficiency virus (HIV) envelope, but the role of Cav-1 in HIV replication and pathogenesis is not known. In this report, we demonstrate that HIV infection in primary human monocyte-derived macrophages (MDMs), THP-1 macrophages, and U87-CD4 cells results in a dramatic upregulation of Cav-1 expression mediated by HIV Tat. The activity of p53 is essential for Tat-induced Cav-1 expression, as our findings show enhanced phosphorylation of serine residues at amino acid positions 15 and 46 in the presence of Tat with a resulting Cav-1 upregulation. Furthermore, inhibition of p38 mitogen-activated protein kinase (MAPK) blocked phosphorylation of p53 in the presence of Tat. Infection studies of Cav-1-overexpressing cells reveal a significant reduction of HIV production. Taken together, these results suggest that HIV infection enhances the expression of Cav-1, which subsequently causes virus reduction, suggesting that Cav-1 may contribute to persistent infection in macrophages. PMID:20610713

  12. Translocation of Endothelial Nitric-Oxide Synthase Involves a Ternary Complex with Caveolin-1 and NOSTRIN

    PubMed Central

    Schilling, Kirstin; Opitz, Nils; Wiesenthal, Anja; Oess, Stefanie; Tikkanen, Ritva; Icking, Ann

    2006-01-01

    Recently, we characterized a novel endothelial nitric-oxide synthase (eNOS)-interacting protein, NOSTRIN (for eNOS-trafficking inducer), which decreases eNOS activity upon overexpression and induces translocation of eNOS away from the plasma membrane. Here, we show that NOSTRIN directly binds to caveolin-1, a well-established inhibitor of eNOS. Because this interaction occurs between the N terminus of caveolin (positions 1–61) and the central domain of NOSTRIN (positions 323–434), it allows for independent binding of each of the two proteins to eNOS. Consistently, we were able to demonstrate the existence of a ternary complex of NOSTRIN, eNOS, and caveolin-1 in Chinese hamster ovary (CHO)-eNOS cells. In human umbilical vein endothelial cells (HUVECs), the ternary complex assembles at the plasma membrane upon confluence or thrombin stimulation. In CHO-eNOS cells, NOSTRIN-mediated translocation of eNOS involves caveolin in a process most likely representing caveolar trafficking. Accordingly, trafficking of NOSTRIN/eNOS/caveolin is affected by altering the state of actin filaments or cholesterol levels in the plasma membrane. During caveolar trafficking, NOSTRIN functions as an adaptor to recruit mediators such as dynamin-2 essential for membrane fission. We propose that a ternary complex between NOSTRIN, caveolin-1, and eNOS mediates translocation of eNOS, with important implications for the activity and availability of eNOS in the cell. PMID:16807357

  13. Flagellin-dependent TLR5/caveolin-1 as a promising immune activator in immunosenescence.

    PubMed

    Lim, Jae Sung; Nguyen, Kim Cuc Thi; Nguyen, Chung Truong; Jang, Ik-Soon; Han, Jung Min; Fabian, Claire; Lee, Shee Eun; Rhee, Joon Haeng; Cho, Kyung A

    2015-10-01

    The age-associated decline of immune responses causes high susceptibility to infections and reduced vaccine efficacy in the elderly. However, the mechanisms underlying age-related deficits are unclear. Here, we found that the expression and signaling of flagellin (FlaB)-dependent Toll-like receptor 5 (TLR5), unlike the other TLRs, were well maintained in old macrophages, similar to young macrophages. The expression and activation of TLR5/MyD88, but not TLR4, were sensitively regulated by the upregulation of caveolin-1 in old macrophages through direct interaction. This interaction was also confirmed using macrophages from caveolin-1 or MyD88 knockout mice. Because TLR5 and caveolin-1 were well expressed in major old tissues including lung, skin, intestine, and spleen, we analyzed in vivo immune responses via a vaccine platform with FlaB as a mucosal adjuvant for the pneumococcal surface protein A (PspA) against Streptococcus pneumoniae infection in young and aged mice. The FlaB-PspA fusion protein induced a significantly higher level of PspA-specific IgG and IgA responses and demonstrated a high protective efficacy against a lethal challenge with live S. pneumoniae in aged mice. These results suggest that caveolin-1/TLR5 signaling plays a key role in age-associated innate immune responses and that FlaB-PspA stimulation of TLR5 may be a new strategy for a mucosal vaccine adjuvant against pneumococcal infection in the elderly. PMID:26223660

  14. Telmisartan regresses left ventricular hypertrophy in caveolin-1 deficient mice

    PubMed Central

    Kreiger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C.

    2011-01-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known, however the role of the Ang II in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav- KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan, and cardiac function assessed by echocardiography. Treatment of Cav-1 KO mice with telmisartan significantly improved cardiac function compared to age-matched, vehicle treated Cav-1 KO mice, while telmisartan did not affected cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by telmisartan in Cav-1 KO but not WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides-A and –B, β-myosin heavy chain and TGF-β and telmisartan treatment normalized the expression of these genes. Telmisartan reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, telmisartan treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  15. Telmisartan regresses left ventricular hypertrophy in caveolin-1-deficient mice.

    PubMed

    Krieger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C

    2010-11-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known; however, its role in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav-1 KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan (Telm), and cardiac function was assessed by echocardiography. Treatment of Cav-1 KO mice with Telm significantly improved cardiac function compared with age-matched vehicle-treated Cav-1 KO mice, whereas Telm did not affect cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by Telm in Cav-1 KO but not in WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides A and B, β-myosin heavy chain and TGF-β, and Telm treatment normalized the expression of these genes. Telm reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, Telm treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  16. Hypoxia induces cardiac fibroblast proliferation and phenotypic switch: a role for caveolae and caveolin-1/PTEN mediated pathway

    PubMed Central

    Gao, Yao; Chu, Ming; Hong, Jian; Shang, Jingping

    2014-01-01

    Background Cardiac fibrosis following myocardial infarction (MI) results in heart failure. Caveolin-1, the main structural protein of caveolae, regulates signal transduction pathways controlling cell proliferation and apoptosis. Meanwhile, low phosphatase and tensin homolog (PTEN) activity enhances the PI3K/Akt signal pathway to induce cell proliferation. But whether caveolin-1 and PTEN activation regulates cardiac fibroblast proliferation and contributes to cardiac fibrosis from ischemic injury is incompletely understood. This study investigates whether hypoxia inducing cardiac fibroblast proliferation and phenotypic switch is caveolin-dependent. Methods We used in vitro and in vivo models of ischemic injury, immunohistochemical staining, and cell proliferation assays to address this hypothesis. Results We found that MI induced collagen deposition and cardiac dysfunction. After MI, mice displayed reduced caveolin-1 and PTEN expression and increased α-smooth muscle actin (α-SMA) expression in the infarct zone. Qualitative and quantitative analyses indicated that caveolin-1 expression was lowest at 7 days after MI, accompanied by increased collagen deposition and attenuated cardiac function. We cultured cardiac fibroblasts of mice were in hypoxia or normoxia conditions for 12, 24 and 48 hours. At all the time points, caveolin-1 and PTEN expression were gradually reduced, whereas, α-SMA was gradually increased. We also observed that cell viability was increased at 12 and 24 h after hypoxia then lightly decreased at 48 h. Additionally, disruption of caveolae with methyl-β-cyclodextrin (MβCD) enhanced p-Akt and α-SMA expression and fibroblast proliferation and phenotypic switch. Conclusions These findings suggest a key role for caveolae, perhaps through the caveolin-1/PTEN signaling pathway, in cardiac fibroblast proliferation and phenotypic switch under hypoxia. PMID:25364523

  17. Endothelial caveolin-1 plays a major role in the development of atherosclerosis

    PubMed Central

    Pavlides, Stephanos; Gutierrez-Pajares, Jorge L.; Iturrieta, Jeannette; Lisanti, Michael P.

    2015-01-01

    Clinical studies have established the important impact of atherosclerotic disease in Western societies. This disease is characterized by the accumulation of lipids and the migration of various cell types in the sub-endothelial space of blood vessels. As demonstrated by many studies, endothelial cells play an essential role in the development of this disease. The endothelium acts as a gatekeeper of blood vessel integrity and cardiovascular health status. For instance, the transfer of lipids via the transport of lipoproteins in the arterial intima is believed to be mediated by endothelial cells through a process termed transcytosis. In addition, lipoproteins that accumulate in the sub-endothelial space may also be modified, in a process that can direct the activation of endothelial cells. These steps are essential for the initiation of an atherosclerotic plaque and may be mediated, at least in part, by caveolae and their associated protein caveolin-1. In the present study, we evaluate the role of caveolin-1/caveolae in the regulation of these two steps in endothelial cells. Our data clearly demonstrate that caveolin-1 is involved in the regulation of lipoprotein transcytosis across endothelial cells and in the regulation of vascular inflammation. PMID:24390341

  18. Caveolin-1 Associated Adenovirus Entry into Human Corneal Cells

    PubMed Central

    Mukherjee, Santanu; Chintakuntlawar, Ashish V.; Lee, Jeong Yoon; Ramke, Mirja; Chodosh, James; Rajaiya, Jaya

    2013-01-01

    The cellular entry of viruses represents a critical area of study, not only for viral tropism, but also because viral entry dictates the nature of the immune response elicited upon infection. Epidemic keratoconjunctivitis (EKC), caused by viruses within human adenovirus species D (HAdV-D), is a severe, ocular surface infection associated with corneal inflammation. Clathrin-mediated endocytosis has previously been shown to play a critical role in entry of other HAdV species into many host cell types. However, HAdV-D endocytosis into corneal cells has not been extensively studied. Herein, we show an essential role for cholesterol rich, lipid raft microdomains and caveolin-1, in the entry of HAdV-D37 into primary human corneal fibroblasts. Cholesterol depletion using methyl-β-cyclodextrin (MβCD) profoundly reduced viral infection. When replenished with soluble cholesterol, the effect of MβCD was reversed, allowing productive viral infection. HAdV-D37 DNA was identified in caveolin-1 rich endosomal fractions after infection. Src kinase activity was also increased in caveolin-1 rich endosomal fractions after infection, and Src phosphorylation and CXCL1 induction were both decreased in caveolin-1-/- mice corneas compared to wild type mice. siRNA knock down of caveolin-1 in corneal cells reduced chemokine induction upon viral infection, and caveolin-1-/- mouse corneas showed reduced cellular entry of HAdV-D37. As a control, HAdV-C2, a non-corneal pathogen, appeared to utilize the caveolar pathway for entry into A549 cells, but failed to infect corneal cells entirely, indicating virus and cell specific tropism. Immuno-electron microscopy confirmed the presence of caveolin-1 in HAdV-D37-containing vesicles during the earliest stages of viral entry. Collectively, these experiments indicate for the first time that HAdV-D37 uses a lipid raft mediated caveolin-1 associated pathway for entry into corneal cells, and connects the processes of viral entry with downstream

  19. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    PubMed Central

    Boothe, Tobias; Lim, Gareth E.; Cen, Haoning; Skovsø, Søs; Piske, Micah; Li, Shu Nan; Nabi, Ivan R.; Gilon, Patrick; Johnson, James D.

    2016-01-01

    Objective The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. PMID:27110488

  20. Potential role of caveolin-1 in acetaminophen-induced hepatotoxicity

    SciTech Connect

    Gardner, Carol R.; Gray, Joshua P.; Joseph, Laurie B.; Cervelli, Jessica; Bremer, Nicole; Kim, Yunjung; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2010-05-15

    Caveolin-1 (Cav-1) is a membrane scaffolding protein, which functions to regulate intracellular compartmentalization of various signaling molecules. In the present studies, transgenic mice with a targeted disruption of the Cav-1 gene (Cav-1{sup -/-}) were used to assess the role of Cav-1 in acetaminophen-induced hepatotoxicity. Treatment of wild-type mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was correlated with decreased expression of Cav-1 in the liver. Acetaminophen-induced hepatotoxicity was significantly attenuated in Cav-1{sup -/-} mice, an effect that was independent of acetaminophen metabolism. Acetaminophen administration resulted in increased hepatic expression of the oxidative stress marker, lipocalin 24p3, as well as hemeoxygenase-1, but decreased glutathione and superoxide dismutase-1; no differences were noted between the genotypes suggesting that reduced toxicity in Cav-1{sup -/-} mice is not due to alterations in antioxidant defense. In wild-type mice, acetaminophen increased mRNA expression of the pro-inflammatory cytokines, interleukin-1beta, and monocyte chemoattractant protein-1 (MCP-1), as well as cyclooxygenase-2, while 15-lipoxygenase (15-LOX), which generates anti-inflammatory lipoxins, decreased. Acetaminophen-induced changes in MCP-1 and 15-LOX expression were greater in Cav-1{sup -/-} mice. Although expression of tumor necrosis factor-alpha, a potent hepatocyte mitogen, was up-regulated in the liver of Cav-1{sup -/-} mice after acetaminophen, expression of proliferating cell nuclear antigen and survivin, markers of cellular proliferation, were delayed, which may reflect the reduced need for tissue repair. Taken together, these data demonstrate that Cav-1 plays a role in promoting inflammation and toxicity during the pathogenesis of acetaminophen-induced injury.

  1. Potential Role of Caveolin-1 in Acetaminophen-Induced Hepatotoxicity

    PubMed Central

    Gardner, Carol R.; Gray, Joshua P.; Joseph, Laurie B.; Cervelli, Jessica; Bremer, Nicole; Kim, Yunjung; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2010-01-01

    Caveolin-1 (Cav-1) is a membrane scaffolding protein which functions to regulate intracellular compartmentalization of various signaling molecules. In the present studies, transgenic mice with a targeted disruption of the Cav-1 gene (Cav-1−/−) were used to assess the role of Cav-1 in acetaminophen-induced hepatotoxicity. Treatment of wild type mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was correlated with decreased expression of Cav-1 in the liver. Acetaminophen-induced hepatotoxicity was significantly attenuated in Cav-1−/− mice, an effect that was independent of acetaminophen metabolism. Acetaminophen administration resulted in increased hepatic expression of the oxidative stress marker, lipocalin 24p3, as well as hemeoxygenase-1, but decreased glutathione and superoxide dismutase-1; no differences were noted between the genotypes suggesting that reduced toxicity in Cav-1−/− mice is not due to alterations in anti-oxidant defense. In wild type mice, acetaminophen increased mRNA expression of the pro-inflammatory cytokines, interleukin-1β and monocyte chemoattractant protein-1 (MCP-1), as well as cyclooxygenase-2, while 15-lipoxygenase (15-LOX), which generates anti-inflammatory lipoxins, decreased. Acetaminophen-induced changes in MCP-1 and 15-LOX expression were greater in Cav-1−/− mice. Although expression of tumor necrosis factor-α, a potent hepatocyte mitogen, was up-regulated in the liver of Cav-1−/− mice after acetaminophen, expression of proliferating cell nuclear antigen and survivin, markers of cellular proliferation, were delayed which may reflect the reduced need for tissue repair. Taken together, these data demonstrate that Cav-1 plays a role in promoting inflammation and toxicity during the pathogenesis of acetaminophen-induced injury. PMID:20100502

  2. ACTH-induced caveolin-1 tyrosine phosphorylation is related to podosome assembly in Y1 adrenal cells

    SciTech Connect

    Colonna, Cecilia . E-mail: ccolonna@fmed.uba.ar; Podesta, Ernesto J.

    2005-04-01

    Y1 adrenocortical cells respond to ACTH with a characteristic rounding-up that facilitates cAMP signaling, critical for transport of cholesterol to the mitochondria and increase in steroid secretion. We here demonstrate that caveolin-1 participates in coupling activation of protein kinase A (PKA) to the control of cell shape. ACTH/8-Br-cAMP induced reorganization of caveolin-1-positive structures in correlation with the cellular rounding-up. Concomitant with this change, there was an increase in the phosphorylation of caveolin-1 (Tyr-14) localized at focal adhesions (FA) with reorganization of FA to rounded, ringlike structures. Colocalization with phalloidin showed that phosphocaveolin is present at the edge of actin filaments and that after ACTH stimulation F-actin dots at the cell periphery become surrounded by phosphocaveolin-1. These observations along with electron microscopy studies revealed these structures as podosomes. Podosome assembly was dependent on both PKA and tyrosine kinase activities because their formation was impaired after treatment with specific inhibitors [myristoylated PKI (mPKI) or PP2, respectively] previous to ACTH/8-Br-cAMP stimulation. These results show for the first time that ACTH induces caveolin-1 phosphorylation and podosome assembly in Y1 cells and support the view that the morphological and functional responses to PKA activation in steroidogenic cells are related to cytoskeleton dynamics.

  3. QRFP-43 inhibits lipolysis by preventing ligand-induced complex formation between perilipin A, caveolin-1, the catalytic subunit of protein kinase and hormone-sensitive lipase in 3T3-L1 adipocytes.

    PubMed

    Mulumba, Mukandila; Granata, Riccarda; Marleau, Sylvie; Ong, Huy

    2015-05-01

    QRFP (RFamide) peptides are neuropeptides involved in food intake and adiposity regulation in rodents. We have previously shown that QRFP-43 (43RFa) and QRFP-26 (26RFa) inhibited isoproterenol (ISO)-induced lipolysis in adipocytes. However, the antilipolytic signaling pathways activated by QRFP peptides have not been investigated. In the present study, 3T3-L1 adipocytes were used to identify the main pathways involved in QRFP-43 decreasing ISO-induced lipolysis. Our results show that QRFP-43 reduced ISO-induced phosphorylation of perilipin A (PLIN) and hormone-sensitive lipase (HSL) on Ser660 by 43 and 25%, respectively, but increased Akt phosphorylation by 44%. However, the inhibition of phosphodiesterase 3B (PDE3B), a regulator of lipolysis activated by Akt, did not reverse the antilipolytic effect of QRFP-43. PDE3B inhibition reversed the decrease of Ser660 HSL phosphorylation associated with QRFP-43 antilipolytic effect. QRFP-43 also prevented PKC activation and ISO-induced Src kinases activation leading to the inhibition of the caveolin-1 (CAV-1) translocation on lipid droplets. Indeed, QRFP-43 attenuated phorbol 12-myristate 13-acetate-induced lipolysis and ISO-induced extracellular signal-regulated and Src kinases by 28, 37 and 48%, respectively. The attenuation of ISO-induced lipolysis by QRFP-43 was associated with a decrease of phosphorylated Ser660 HSL, PKA-catalytic (PKA-c) subunit and CAV-1 translocation on lipid droplets by 37, 50 and 46%, respectively. The decrease in ISO-induced CAV-1 and PKA-c translocation was associated with a reduction of PLIN phosphorylation by 44% in QRFP-43-treated adipocytes. These results suggest that QRFP-43 attenuated ISO-induced lipolysis by preventing the formation of an active complex on lipid droplets and the activation of Src kinases and PKC. PMID:25677823

  4. [Interaction of two tumor suppressors: Phosphatase CTDSPL and Rb protein].

    PubMed

    Beniaminov, A D; Krasnov, G S; Dmitriev, A A; Puzanov, G A; Snopok, B A; Senchenko, V N; Kashuba, V I

    2016-01-01

    Earlier we established that CTDSPL gene encoding small carboxy-terminal domain serine phosphatase can be considered a classical tumor suppressor gene. Besides, transfection of tumor cell line MCF-7 with CTDSPL led to the content decrease of inactive phosphorylated form of another tumor suppressor, retinoblastoma protein (Rb), and subsequently to cell cycle arrest at the G1/S boundary. This result implied that small phosphatase CTDSPL is able to specifically dephosphorylate and activate Rb protein. In order to add some fuel to this hypothesis, in the present work we studied the interaction of two tumor suppressors CTDSPL and Rb in vitro. GST pool-down assay revealed that CTDSPL is able to precipitate Rb protein from MCF-7 cell extracts, while surface plasmon resonance technique showed that interaction of the two proteins is direct. Results of this study reassert that phosphatase CTDSPL and Rb could be involved in the common mechanism of cell cycle regulation. PMID:27414789

  5. MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1.

    PubMed

    Lin, Dao-Hong; Yue, Peng; Pan, Chunyang; Sun, Peng; Wang, Wen-Hui

    2011-06-01

    Dietary potassium stimulates the surface expression of ROMK channels in the aldosterone-sensitive distal nephron, but the mechanism by which this occurs is incompletely understood. Here, a high-potassium diet increased the transcription of microRNA (miR) 802 in the cortical collecting duct in mice. In addition, high-potassium intake decreased the expression of caveolin-1, whose 3' untranslated region contains the seed sequence of miR-802. In vitro, expression of miR-802 suppressed the expression of caveolin-1, and conversely, downregulation of endogenous miR-802 increased the expression of caveolin-1. Sucrose-gradient centrifugation suggested that caveolin-1 closely associated with ROMK channels, and immunoprecipitation showed that caveolin-1 interacted with the N terminus of ROMK. Expression of caveolin-1 varied inversely with the expression of ROMK1 in the plasma membrane, and caveolin-1 inhibited ROMK1 channel activity. Removal of the clathrin-dependent endocytosis motif from ROMK1 failed to abolish the effect of caveolin-1 on ROMK1 channel activity. Last, expression of miR-802 increased ROMK1 channel activity, an effect blocked by coexpression of caveolin-1. Taken together, miR-802 mediates the stimulatory effect of a high-potassium diet on ROMK channel activity by suppressing caveolin-1 expression, which leads to increased surface expression of ROMK channels in the distal nephron. PMID:21566059

  6. Gene expression profiling of early intervertebral disc degeneration reveals a down-regulation of canonical Wnt signaling and caveolin-1 expression: implications for development of regenerative strategies

    PubMed Central

    2013-01-01

    Introduction Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration. Methods Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age. Results Early IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice

  7. Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells.

    PubMed

    Jin, Xinchun; Sun, Yanyun; Xu, Ji; Liu, Wenlan

    2015-03-01

    Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation. PMID:25683686

  8. Kainic acid induces expression of caveolin-1 in activated microglia in rat brain.

    PubMed

    Takeuchi, Shigeko; Matsuda, Wakoto; Tooyama, Ikuo; Yasuhara, Osamu

    2013-01-01

    Caveolin-1, a major constituent of caveolae, has been implicated in endocytosis, signal transduction and cholesterol transport in a wide variety of cells. In the present study, the expression of caveolin-1 was examined by immunohistochemistry in rat brain with or without systemic injection of kainic acid (KA). Caveolin-1 immunoreactivity was observed in capillary walls in brains of control rats. From one to seven days after KA injection, caveolin-1 immunoreactivity appeared in activated microglia in the cerebral cortex, hippocampus and other brain regions. The strongest immunoreactivity of microglia was seen after 3 days after KA administration. The expression of caveolin-1 was confirmed by RT-PCR and Western blot analysis, respectively. The induction of caveolin-1 expression in microglia activated in response to kainic acid administration suggests its possible role in a modulation of inflammation. PMID:23690214

  9. Caveolin-1–dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo

    PubMed Central

    Marchiando, Amanda M.; Shen, Le; Graham, W. Vallen; Weber, Christopher R.; Schwarz, Brad T.; Austin, Jotham R.; Raleigh, David R.; Guan, Yanfang; Watson, Alastair J.M.; Montrose, Marshall H.

    2010-01-01

    Epithelial paracellular barrier function, determined primarily by tight junction permeability, is frequently disrupted in disease. In the intestine, barrier loss can be mediated by tumor necrosis factor (α) (TNF) signaling and epithelial myosin light chain kinase (MLCK) activation. However, TNF induces only limited alteration of tight junction morphology, and the events that couple structural reorganization to barrier regulation have not been defined. We have used in vivo imaging and transgenic mice expressing fluorescent-tagged occludin and ZO-1 fusion proteins to link occludin endocytosis to TNF-induced tight junction regulation. This endocytosis requires caveolin-1 and is essential for structural and functional tight junction regulation. These data demonstrate that MLCK activation triggers caveolin-1–dependent endocytosis of occludin to effect structural and functional tight junction regulation. PMID:20351069

  10. Caveolin-1 expression and cavin stability regulate caveolae dynamics in adipocyte lipid store fluctuation.

    PubMed

    Briand, Nolwenn; Prado, Cécilia; Mabilleau, Guillaume; Lasnier, Françoise; Le Lièpvre, Xavier; Covington, Jeffrey D; Ravussin, Eric; Le Lay, Soazig; Dugail, Isabelle

    2014-12-01

    Adipocytes specialized in the storage of energy as fat are among the most caveolae-enriched cell types. Loss of caveolae produces lipodystrophic diabetes in humans, which cannot be reversed by endothelial rescue of caveolin expression in mice, indicating major importance of adipocyte caveolae. However, how caveolae participate in fat cell functions is poorly understood. We investigated dynamic conditions of lipid store fluctuations and demonstrate reciprocal regulation of caveolae density and fat cell lipid droplet storage. We identified caveolin-1 expression as a crucial step in adipose cell lines and in mice to raise the density of caveolae, to increase adipocyte ability to accommodate larger lipid droplets, and to promote cell expansion by increased glucose utilization. In human subjects enrolled in a trial of 8 weeks of overfeeding to promote fattening, adipocyte expansion response correlated with initial caveolin-1 expression. Conversely, lipid mobilization in cultured adipocytes to induce lipid droplet shrinkage led to biphasic response of cavin-1 with ultimate loss of expression of cavin-1 and -3 and EHD2 by protein degradation, coincident with caveolae disassembly. We have identified the key steps in cavin/caveolin interplay regulating adipocyte caveolae dynamics. Our data establish that caveolae participate in a unique cell response connected to lipid store fluctuation, suggesting lipid-induced mechanotension in adipocytes. PMID:24969108

  11. Caveolin-1 Expression and Cavin Stability Regulate Caveolae Dynamics in Adipocyte Lipid Store Fluctuation

    PubMed Central

    Briand, Nolwenn; Prado, Cécilia; Mabilleau, Guillaume; Lasnier, Françoise; Le Lièpvre, Xavier; Covington, Jeffrey D.; Ravussin, Eric; Le Lay, Soazig

    2014-01-01

    Adipocytes specialized in the storage of energy as fat are among the most caveolae-enriched cell types. Loss of caveolae produces lipodystrophic diabetes in humans, which cannot be reversed by endothelial rescue of caveolin expression in mice, indicating major importance of adipocyte caveolae. However, how caveolae participate in fat cell functions is poorly understood. We investigated dynamic conditions of lipid store fluctuations and demonstrate reciprocal regulation of caveolae density and fat cell lipid droplet storage. We identified caveolin-1 expression as a crucial step in adipose cell lines and in mice to raise the density of caveolae, to increase adipocyte ability to accommodate larger lipid droplets, and to promote cell expansion by increased glucose utilization. In human subjects enrolled in a trial of 8 weeks of overfeeding to promote fattening, adipocyte expansion response correlated with initial caveolin-1 expression. Conversely, lipid mobilization in cultured adipocytes to induce lipid droplet shrinkage led to biphasic response of cavin-1 with ultimate loss of expression of cavin-1 and -3 and EHD2 by protein degradation, coincident with caveolae disassembly. We have identified the key steps in cavin/caveolin interplay regulating adipocyte caveolae dynamics. Our data establish that caveolae participate in a unique cell response connected to lipid store fluctuation, suggesting lipid-induced mechanotension in adipocytes. PMID:24969108

  12. Cardiopulmonary bypass increases pulmonary microvascular permeability through the Src kinase pathway: Involvement of caveolin-1 and vascular endothelial cadherin

    PubMed Central

    ZHANG, JUNWEN; JIANG, ZHAOLEI; BAO, CHUNRONG; MEI, JU; ZHU, JIAQUAN

    2016-01-01

    Changes in pulmonary microvascular permeability following cardiopulmonary bypass (CPB) and the underlying mechanisms have not yet been established. Therefore, the aim of the present study was to elucidate the alterations in pulmonary microvascular permeability following CPB and the underlying mechanism. The pulmonary microvascular permeability was measured using Evans Blue dye (EBD) exclusion, and the neutrophil infiltration and proinflammatory cytokine secretion was investigated. In addition, the activation of Src kinase and the phosphorylation of caveolin-1 and vascular endothelial cadherin (VE-cadherin) was examined. The results revealed that CPB increased pulmonary microvascular leakage, neutrophil count and proinflammatory cytokines in the bronchoalveolar lavage fluid, and activated Src kinase. The administration of PP2, an inhibitor of Src kinase, decreased the activation of Src kinase and attenuated the increase in pulmonary microvascular permeability observed following CPB. Two important proteins associated with vascular permeability, caveolin-1 and VE-cadherin, were significantly activated at 24 h in the lung tissues following CPB, which correlated with the alterations in pulmonary microvascular permeability and Src kinase. PP2 administration inhibited their activation, suggesting that they are downstream factors of Src kinase activation. The data indicated that the Src kinase pathway increased pulmonary microvascular permeability following CPB, and the activation of caveolin-1 and VE-cadherin may be involved. Inhibition of this pathway may provide a potential therapy for acute lung injury following cardiac surgery. PMID:26847917

  13. The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo.

    PubMed

    Das, K; Lewis, R Y; Scherer, P E; Lisanti, M P

    1999-06-25

    The mammalian caveolin gene family consists of caveolins-1, -2, and -3. The expression of caveolin-3 is muscle-specific. In contrast, caveolins-1 and -2 are co-expressed, and they form a hetero-oligomeric complex in many cell types, with particularly high levels in adipocytes, endothelial cells, and fibroblasts. These caveolin hetero-oligomers are thought to represent the functional assembly units that drive caveolae formation in vivo. Here, we investigate the mechanism by which caveolins-1 and -2 form hetero-oligomers. We reconstituted this reciprocal interaction in vivo and in vitro using a variety of complementary approaches, including the generation of glutathione S-transferase fusion proteins and synthetic peptides. Taken together, our results indicate that the membrane-spanning domains of both caveolins-1 and -2 play a critical role in mediating their ability to interact with each other. This is the first demonstration that these unusual membrane-spanning regions found in the caveolin family play a specific role in protein-protein interactions. PMID:10373486

  14. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis

    PubMed Central

    Qin, Li; Zhu, Neng; Ao, Bao-Xue; Liu, Chan; Shi, Ya-Ning; Du, Ke; Chen, Jian-Xiong; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Lipid disorder and inflammation play critical roles in the development of atherosclerosis. Reverse cholesterol transport is a key event in lipid metabolism. Caveolae and caveolin-1 are in the center stage of cholesterol transportation and inflammation in macrophages. Here, we propose that reverse cholesterol transport and inflammation in atherosclerosis can be integrated by caveolae and caveolin-1. PMID:27011179

  15. Caveolin-1 as a Novel Indicator of Wound-Healing Capacity in Aged Human Corneal Epithelium

    PubMed Central

    Rhim, Ji Heon; Kim, Jae Hoon; Yeo, Eui-Ju; Kim, Jae Chan; Park, Sang Chul

    2010-01-01

    Excess caveolin-1 has been reported to play a role in age-dependent hyporesponsiveness to growth factors in vitro. Therefore, we hypothesized that caveolin-1–dependent hyporesponsiveness to growth factors in aged corneal epithelial cells might be responsible for delayed wound healing in vivo. To test this hypothesis, we evaluated corneal wound-healing time by vital staining using fluorescein after laser epithelial keratomileusis (LASEK). We compared wound-healing times in young, middle-aged and elderly patients. We also examined caveolin-1 levels and other aging markers, such as p53 and p21, in the corneal epithelium. Elderly patients generally had higher caveolin-1 levels in the corneal epithelia than young patients. There were, however, variations among individuals with increased caveolin-1 in some young patients and decreased levels in some elderly patients. Wound-healing time after LASEK correlated well with the corneal caveolin-1 status. Therefore, we suggest that caveolin-1 status might be responsible for delayed wound healing in elderly patients after LASEK. Caveolin-1 status might be a regulator for wound-healing capacity and a novel target for in vivo adjustment. PMID:20644900

  16. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    SciTech Connect

    Luo, Di-xian; Xia, Cheng-lai; Li, Jun-mu; Xiong, Yan; Yuan, Hao-yu; TANG, Zhen-Wang; Zeng, Yixin; Liao, Duan-fang

    2010-12-03

    Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different static pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were

  17. Nanoscale Imaging of Caveolin-1 Membrane Domains In Vivo

    PubMed Central

    Gabor, Kristin A.; Kim, Dahan; Kim, Carol H.; Hess, Samuel T.

    2015-01-01

    Light microscopy enables noninvasive imaging of fluorescent species in biological specimens, but resolution is generally limited by diffraction to ~200–250 nm. Many biological processes occur on smaller length scales, highlighting the importance of techniques that can image below the diffraction limit and provide valuable single-molecule information. In recent years, imaging techniques have been developed which can achieve resolution below the diffraction limit. Utilizing one such technique, fluorescence photoactivation localization microscopy (FPALM), we demonstrated its ability to construct super-resolution images from single molecules in a living zebrafish embryo, expanding the realm of previous super-resolution imaging to a living vertebrate organism. We imaged caveolin-1 in vivo, in living zebrafish embryos. Our results demonstrate the successful image acquisition of super-resolution images in a living vertebrate organism, opening several opportunities to answer more dynamic biological questions in vivo at the previously inaccessible nanoscale. PMID:25646724

  18. Caveolin-1/-3: therapeutic targets for myocardial ischemia/reperfusion injury.

    PubMed

    Yang, Yang; Ma, Zhiqiang; Hu, Wei; Wang, Dongjin; Jiang, Shuai; Fan, Chongxi; Di, Shouyin; Liu, Dong; Sun, Yang; Yi, Wei

    2016-07-01

    Myocardial ischemia/reperfusion (I/R) injury is a major cause of morbidity and mortality worldwide. Caveolae, caveolin-1 (Cav-1), and caveolin-3 (Cav-3) are essential for the protective effects of conditioning against myocardial I/R injury. Caveolins are membrane-bound scaffolding proteins that compartmentalize and modulate signal transduction. In this review, we introduce caveolae and caveolins and briefly describe the interactions of caveolins in the cardiovascular diseases. We also review the roles of Cav-1/-3 in protection against myocardial ischemia and I/R injury, and in conditioning. Finally, we suggest several potential research avenues that may be of interest to clinicians and basic scientists. The information included, herein, is potentially useful for the design of future studies and should advance the investigation of caveolins as therapeutic targets. PMID:27282376

  19. Roxithromycin suppresses airway remodeling and modulates the expression of caveolin-1 and phospho-p42/p44MAPK in asthmatic rats.

    PubMed

    Wu, Li-Qin; Wang, Rui-Li; Dai, Yuan-Rong; Li, Feng-Qin; Wu, Hai-Ya; Yan, Sun-Shun; Wang, Liang-Rong; Jin, Li-da; Xia, Xiao-Dong

    2015-02-01

    Roxithromycin (RXM) expresses anti-asthmatic effects that are separate from its antibiotic activity, but its effects on airway remodeling are still unknown. Here, we evaluated the effects of RXM on airway remodeling and the expression of caveolin-1 and phospho-p42/p44mitogen-activated protein kinase (phospho-p42/p44MAPK) in chronic asthmatic rats. The chronic asthma was induced by ovalbumin/Al(OH)3 sensitization and ovalbumin challenge, RXM (30mg/kg) or dexamethasone (0.5mg/kg) was given before airway challenge initiation. We measured the thickness of bronchial wall and bronchial smooth muscle cell layer to indicate airway remodeling, and caveolin-1 and phospho-p42/p44MAPK expression in lung tissue and airway smooth muscle were detected by immunohistochemistry and western blot analysis, respectively. The results demonstrated that RXM treatment decreased the thickness of bronchial wall and bronchial smooth muscle cell layer, and also downregulated the phospho-p42/p44MAPK expression and upregulated the caveolin-1 expression. The above effects of RXM were similar to dexamethasone. Our results suggested that pretreatment with RXM could suppress airway remodeling and regulate the expression of caveolin-1 and phospho-p42/p44MAPK in chronic asthmatic rats. PMID:25479721

  20. Fyn is required for oxidative- and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1.

    PubMed Central

    Sanguinetti, Amy R; Cao, Haiming; Corley Mastick, Cynthia

    2003-01-01

    Caveolin-1 is phosphorylated on Tyr(14) in response to both oxidative and hyperosmotic stress. In the present paper, we show that this phosphorylation requires activation of the Src family kinase Fyn. Stress-induced caveolin phosphorylation was abolished by three Src kinase inhibitors, SU6656, PP2 and PD180970, and was not observed in fibroblasts derived from a Src, Yes and Fyn triple-knockout mouse (SYF-/-). Using cell lines derived from single-kinase-knockout mice (Src-/-, Yes-/- and Fyn-/-), we show that expression of Fyn, but not Src or Yes, is required for stress-induced caveolin phosphorylation. Heterologous expression of Fyn in the SYF-/- and Fyn-/- cells was sufficient to reconstitute stress-induced caveolin phosphorylation, and overexpression of Fyn in wild-type cells induced hyperphosphorylation of caveolin. Fyn was autophosphorylated following oxidative stress, verifying activation of this kinase. Interestingly, there was a concomitant increase in the phosphorylation of Fyn on its Csk (C-terminal Src kinase) site, indicating feedback inhibition. Csk binds to phosphocaveolin [Cao, Courchesne and Mastick (2002) J. Biol. Chem. 277, 8771-8774] and should phosphorylate any co-localized Src-family kinases. Oxidative-stress-induced phosphorylation of caveolin-1 also requires expression of Abl [Sanguinetti and Mastick (2003) Cell Signal. 15, 289-298]. Using inhibitors and cells derived from knockout mice, we verified a requirement for both Abl and Fyn in stress-induced caveolin phosphorylation in a single cell type. Our data suggest a novel mechanism for attenuation of Src-kinase activity by Abl: stable tyrosine phosphorylation of a scaffolding protein, caveolin, and recruitment of Csk. Paxillin, a substrate of both Abl and Src, organizes a similar regulatory complex. PMID:12921535

  1. Reconstitution and spectroscopic analysis of caveolin-1 residues 62-178 reveals that proline 110 governs its structure and solvent exposure.

    PubMed

    Root, Kyle T; Glover, Kerney Jebrell

    2016-04-01

    Caveolin-1 is a membrane protein that possesses an unusual topology where both N- and C-termini are cytoplasmic as a result of a membrane-embedded turn. In particular, proline 110 has been postulated to be the linchpin of this unusual motif. Using a caveolin-1 construct (residues 62-178) reconstituted into dodecylphosphocholine micelles with and without a cholesterol mimic, the changes that occurred upon P110A mutation were probed. Using far UV circular dichroism spectroscopy it was shown that cholesterol attenuated the helicity of caveolin-1, and that mutation of P110 to alanine caused a significant increase in the α-helicity of the protein. Near UV circular dichroism spectroscopy showed significant changes in structure and/or environment upon mutation that again were modulated by the presence of cholesterol. Stern-Volmer quenching and λ(max) analysis of tryptophan residues showed that the proline mutation caused W85 to become more exposed, W98 and W115 to become less exposed, and W128 showed no change. This finding provided evidence that regions proximal and far away from the proline are buried differentially upon its mutation and therefore this residue is strongly tied to maintaining the hydrophobic coverage along the caveolin-1 sequence. In the presence of cholesterol, the accessibilities of the two tryptophan residues that proceeded position 110 were altered much more significantly upon P110A mutation than the two tryptophans aft P110. Overall, this work provides strong evidence that proline 110 is critical for maintaining both the structure and hydrophobic coverage of caveolin-1 and that cholesterol also plays a significant role in modulating these parameters. PMID:26775739

  2. Deletion of Caveolin-1 Protects against Oxidative Lung Injury via Up-Regulation of Heme Oxygenase-1

    PubMed Central

    Jin, Yang; Kim, Hong Pyo; Chi, Minli; Ifedigbo, Emeka; Ryter, Stefan W.; Choi, Augustine M. K.

    2008-01-01

    Acute lung injury (ALI) is a major cause of morbidity and mortality in critically ill patients. Hyperoxia causes lung injury in animals and humans, and is an established model of ALI. Caveolin-1, a major constituent of caveolae, regulates numerous biological processes, including cell death and proliferation. Here we demonstrate that caveolin-1–null mice (cav-1−/−) were resistant to hyperoxia-induced death and lung injury. Cav-1−/− mice sustained reduced lung injury after hyperoxia as determined by protein levels in bronchoalveolar lavage fluid and histologic analysis. Furthermore, cav-1−/− fibroblasts and endothelial cells and cav-1 knockdown epithelial cells resisted hyperoxia-induced cell death in vitro. Basal and inducible expression of the stress protein heme oxygenase-1 (HO-1) were markedly elevated in lung tissue or fibroblasts from cav-1−/− mice. Hyperoxia induced the physical interaction between cav-1 and HO-1 in fibroblasts assessed by co-immunoprecipitation studies, which resulted in attenuation of HO activity. Inhibition of HO activity with tin protoporphyrin-IX abolished the survival benefits of cav-1−/− cells and cav-1−/− mice exposed to hyperoxia. The cav-1−/− mice displayed elevated phospho-p38 mitogen-activated protein kinase (MAPK) and p38β expression in lung tissue/cells under basal conditions and during hyperoxia. Treatment with SB202190, an inhibitor of p38 MAPK, decreased hyperoxia-inducible HO-1 expression in wild-type and cav-1−/− fibroblasts. Taken together, our data demonstrated that cav-1 deletion protects against hyperoxia-induced lung injury, involving in part the modulation of the HO-1–cav-1 interaction, and the enhanced induction of HO-1 through a p38 MAPK–mediated pathway. These studies identify caveolin-1 as a novel component involved in hyperoxia-induced lung injury. PMID:18323531

  3. IGF-Binding Protein 2 – Oncogene or Tumor Suppressor?

    PubMed Central

    Pickard, Adam; McCance, Dennis J.

    2015-01-01

    The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings. PMID:25774149

  4. Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

    PubMed Central

    Jordan, Andreas

    2015-01-01

    Summary Nanomedicine is a rapidly growing field in nanotechnology, which has great potential in the development of new therapies for numerous diseases. For example iron oxide nanoparticles are in clinical use already in the thermotherapy of brain cancer. Although it has been shown, that tumor cells take up these particles in vitro, little is known about the internalization routes. Understanding of the underlying uptake mechanisms would be very useful for faster and precise development of nanoparticles for clinical applications. This study aims at the identification of key proteins, which are crucial for the active uptake of iron oxide nanoparticles by HeLa cells (human cervical cancer) as a model cell line. Cells were transfected with specific siRNAs against Caveolin-1, Dynamin 2, Flotillin-1, Clathrin, PIP5Kα and CDC42. Knockdown of Caveolin-1 reduces endocytosis of superparamagnetic iron oxide nanoparticles (SPIONs) and silica-coated iron oxide nanoparticles (SCIONs) between 23 and 41%, depending on the surface characteristics of the nanoparticles and the experimental design. Knockdown of CDC42 showed a 46% decrease of the internalization of PEGylated SPIONs within 24 h incubation time. Knockdown of Dynamin 2, Flotillin-1, Clathrin and PIP5Kα caused no or only minor effects. Hence endocytosis in HeLa cells of iron oxide nanoparticles, used in this study, is mainly mediated by Caveolin-1 and CDC42. It is shown here for the first time, which proteins of the endocytotic pathway mediate the endocytosis of silica-coated iron oxide nanoparticles in HeLa cells in vitro. In future studies more experiments should be carried out with different cell lines and other well-defined nanoparticle species to elucidate possible general principles. PMID:25671161

  5. Activation and activities of the p53 tumour suppressor protein

    PubMed Central

    Bálint, É; Vousden, K H

    2001-01-01

    The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general feature of all cancers. Here we review recent advances in our understanding of the pathways that regulate p53 and the pathways that are induced by p53, as well as their implications for cancer therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11747320

  6. Downregulation of caveolin-1 upregulates the expression of growth factors and regulators in co-culture of fibroblasts with cancer cells

    PubMed Central

    SHI, XIAO-YU; XIONG, LI-XIA; XIAO, LIANG; MENG, CHUANG; QI, GUAN-YUN; LI, WEN-LIN

    2016-01-01

    Reduced expression levels of caveolin-1 (Cav-1) in tumor stromal fibroblasts influences the occurrence and progression of tumors, particularly in breast cancer, but the relevant molecular mechanism is unclear. The present study aimed to clarify the potential mechanism underlying the promotion of tumor growth by reduced Cav-1 expression levels, by investigating Cav-1-targeted molecules in fibroblasts and breast cancer cells. The expression of growth factors in the ESF fibroblast cell line transfected with Cav-1 small interfering RNA (siRNA) was examined. The expression of apoptotic regulators in the BT474 breast cancer cell line that was co-cultured with the fibroblasts, was also investigated. The transfection of Cav-1-targeting siRNA in ESF cells resulted in efficient and specific inhibition of Cav-1 expression. The downregulation of Cav-1 increased the expression and secretion of stromal cell-derived factor-1 (SDF-1), epidermal growth factor (EGF) and fibroblast-specific protein-1 (FSP-1) in ESF cells. This resulted in the accelerated proliferation of the breast cancer cells. Tumor protein 53-induced glycolysis and apoptosis regulator (TIGAR) was upregulated in the BT474 cells under the condition of co-culture with Cav-1 siRNA fibroblasts, while levels of reactive oxygen species (ROS) were decreased, resulting in apoptosis inhibition in the breast cancer cells. These results demonstrated that the downregulation of Cav-1 promoted the growth of breast cancer cells through increasing SDF-1, EGF and FSP-1 in tumor stromal fibroblasts, and TIGAR levels in breast cancer cells. To the best of our knowledge, the present study supports the hypothesis that Cav-1 possesses tumor-suppressor properties, with the mechanism of Cav-1-dependent signaling involving the regulation of SDF-1, EGF, FSP-1 and TIGAR. PMID:26647977

  7. Perivascular Adipose Tissue Inhibits Endothelial Function of Rat Aortas via Caveolin-1

    PubMed Central

    Lee, Michelle Hui-Hsin; Chen, Shiu-Jen

    2014-01-01

    Perivascular adipose tissue (PVAT)-derived factors have been proposed to play an important role in the pathogenesis of atherosclerosis. Caveolin-1 (Cav-1), occupying the calcium/calmodulin binding site of endothelial NO synthase (eNOS) and then inhibiting nitric oxide (NO) production, is also involved in the development of atherosclerosis. Thus, we investigated whether PVAT regulated vascular tone via Cav-1 and/or endothelial NO pathways. Isometric tension studies were carried out in isolated thoracic aortas from Wistar rats in the presence and absence of PVAT. Concentration-response curves of phenylephrine, acetylcholine, and sodium nitroprusside were illustrated to examine the vascular reactivity and endothelial function. The protein expressions of eNOS and Cav-1 were also examined in aortic homogenates. Our results demonstrated that PVAT significantly enhanced vasoconstriction and inhibited vasodilatation via endothelium-dependent mechanism. The aortic NO production was diminished after PVAT treatment, whereas protein expression and activity of eNOS were not significantly affected. In addition, Cav-1 protein expression was significantly increased in aortas with PVAT transfer. Furthermore, a caveolae depleter methyl-β-cyclodextrin abolished the effect of PVAT on the enhancement of vasoconstriction, and reversed the impairment of aortic NO production. In conclusion, unknown factor(s) released from PVAT may inhibit endothelial NO production and induce vasocontraction via an increase of Cav-1 protein expression. PMID:24926683

  8. Cross-talk between Dopachrome Tautomerase and Caveolin-1 Is Melanoma Cell Phenotype-specific and Potentially Involved in Tumor Progression.

    PubMed

    Popa, Ioana L; Milac, Adina L; Sima, Livia E; Alexandru, Petruta R; Pastrama, Florin; Munteanu, Cristian V A; Negroiu, Gabriela

    2016-06-10

    l-Dopachrome tautomerase (l-DCT), also called tyrosinase-related protein-2 (TRP-2), is a melanoma antigen overexpressed in most chemo-/radiotherapeutic stress-resistant tumor clones, and caveolin-1 (CAV1) is a main regulator of numerous signaling processes. A structural and functional relationship between DCT and CAV1 is first presented here in two human amelanotic melanoma cell lines, derived from vertical growth phase (MelJuSo) and metastatic (SKMel28) melanomas. DCT co-localizes at the plasma membrane with CAV1 and Cavin-1, another molecular marker for caveolae in both cell phenotypes. Our novel structural model proposed for the DCT-CAV1 complex, in addition to co-immunoprecipitation and mass spectrometry data, indicates a possible direct interaction between DCT and CAV1. The CAV1 control on DCT gene expression, DCT post-translational processing, and subcellular distribution is cell phenotype-dependent. DCT is a modulator of CAV1 stability and supramolecular assembly in both cell phenotypes. During autocrine stimulation, the expressions of DCT and CAV1 are oppositely regulated; DCT increases while CAV1 decreases. Sub-confluent MelJuSo clones DCT(high)/CAV1(low) are proliferating and acquire fibroblast-like morphology, forming massive, confluent clusters as demonstrated by immunofluorescent staining and TissueFAXS quantitative image cytometry analysis. CAV1 down-regulation directly contributes to the expansion of MelJuSo DCT(high) subtype. CAV1 involved in the perpetuation of cell phenotype-overexpressing anti-stress DCT molecule supports the concept that CAV1 functions as a tumor suppressor in early stages of melanoma. DCT is a regulator of the CAV1-associated structures and is possibly a new molecular player in CAV1-mediated processes in melanoma. PMID:27053106

  9. Distinct structural domains of caveolin-1 independently regulate Ca2+ release-activated Ca2+ channels and Ca2+ microdomain-dependent gene expression.

    PubMed

    Yeh, Yi-Chun; Parekh, Anant B

    2015-04-01

    In eukaryotic cells, calcium entry across the cell surface activates nuclear gene expression, a process critically important for cell growth and differentiation, learning, and memory and immune cell functions. In immune cells, calcium entry occurs through store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels, comprised of STIM1 and Orai1 proteins. Local calcium entry through CRAC channels activates expression of c-fos- and nuclear factor of activated T cells (NFAT)-dependent genes. Although c-fos and NFAT often interact to activate gene expression synergistically, they can be activated independently of one another to regulate distinct genes. This raises the question of how one transcription factor can be activated and not the other when both are stimulated by the same trigger. Here, we show that the lipid raft scaffolding protein caveolin-1 interacts with the STIM1-Orai1 complex to increase channel activity. Phosphorylation of tyrosine 14 on caveolin-1 regulates CRAC channel-evoked c-fos activation without impacting the NFAT pathway or Orai1 activity. Our results reveal that structurally distinct domains of caveolin-1 selectively regulate the ability of local calcium to activate distinct transcription factors. More generally, our findings reveal that modular regulation by a scaffolding protein provides a simple, yet effective, mechanism to tunnel a local signal down a specific pathway. PMID:25645930

  10. PML tumor suppressor protein is required for HCV production

    SciTech Connect

    Kuroki, Misao; Ariumi, Yasuo; Hijikata, Makoto; Ikeda, Masanori; Dansako, Hiromichi; Wakita, Takaji; Shimotohno, Kunitada; Kato, Nobuyuki

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer PML tumor suppressor protein is required for HCV production. Black-Right-Pointing-Pointer PML is dispensable for HCV RNA replication. Black-Right-Pointing-Pointer HCV could not alter formation of PML-NBs. Black-Right-Pointing-Pointer INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.

  11. Stability and folding of the tumour suppressor protein p16.

    PubMed

    Tang, K S; Guralnick, B J; Wang, W K; Fersht, A R; Itzhaki, L S

    1999-01-29

    The tumour suppressor p16 is a member of the INK4 family of inhibi tors of the cyclin D-dependent kinases, CDK4 and CDK6, that are involved in the key growth control pathway of the eukaryotic cell cycle. The 156 amino acid residue protein is composed of four ankyrin repeats (a helix-turn-helix motif) that stack linearly as two four-helix bundles resulting in a non-globular, elongated molecule. The thermodynamic and kinetic properties of the folding of p16 are unusual. The protein has a very low free energy of unfolding, Delta GH-2O/D-N, of 3.1 kcal mol-1 at 25 degreesC. The rate-determining transition state of folding/unfolding is very compact (89% as compact as the native state). The other unusual feature is the very rapid rate of unfolding in the absence of denaturant of 0.8 s-1 at 25 degreesC. Thus, p16 has both thermodynamic and kinetic instability. These features may be essential for the regulatory function of the INK4 proteins and of other ankyrin-repeat-containing proteins that mediate a wide range of protein-protein interactions. The mechanisms of inactivation of p16 by eight cancer-associated mutations were dissected using a systematic method designed to probe the integrity of the secondary structure and the global fold. The structure and folding of p16 appear to be highly vulnerable to single point mutations, probably as a result of the protein's low stability. This vulnerability provides one explanation for the striking frequency of p16 mutations in tumours and in immortalised cell lines. PMID:9917418

  12. Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells.

    PubMed

    Schönle, Anne; Hartl, Frederike A; Mentzel, Jan; Nöltner, Theresa; Rauch, Katharina S; Prestipino, Alessandro; Wohlfeil, Sebastian A; Apostolova, Petya; Hechinger, Anne-Kathrin; Melchinger, Wolfgang; Fehrenbach, Kerstin; Guadamillas, Marta C; Follo, Marie; Prinz, Gabriele; Ruess, Ann-Katrin; Pfeifer, Dietmar; Angel Del Pozo, Miguel; Schmitt-Graeff, Annette; Duyster, Justus; Hippen, Keli I; Blazar, Bruce R; Schachtrup, Kristina; Minguet, Susana; Zeiser, Robert

    2016-04-14

    Caveolin-1 (Cav-1) is a key organizer of membrane specializations and a scaffold protein that regulates signaling in multiple cell types. We found increased Cav-1 expression in human and murine T cells after allogeneic hematopoietic cell transplantation. Indeed, Cav-1(-/-)donor T cells caused less severe acute graft-versus-host disease (GVHD) and yielded higher numbers of regulatory T cells (Tregs) compared with controls. Depletion of Tregs from the graft abrogated this protective effect. Correspondingly, Treg frequencies increased when Cav-1(-/-)T cells were exposed to transforming growth factor-β/T-cell receptor (TCR)/CD28 activation or alloantigen stimulation in vitro compared with wild-type T cells. Mechanistically, we found that the phosphorylation of Cav-1 is dispensable for the control of T-cell fate by using a nonphosphorylatable Cav-1 (Y14F/Y14F) point-mutation variant. Moreover, the close proximity of lymphocyte-specific protein tyrosine kinase (Lck) to the TCR induced by TCR-activation was reduced in Cav-1(-/-)T cells. Therefore, less TCR/Lck clustering results in suboptimal activation of the downstream signaling events, which correlates with the preferential development into a Treg phenotype. Overall, we report a novel role for Cav-1 in TCR/Lck spatial distribution upon TCR triggering, which controls T-cell fate toward a regulatory phenotype. This alteration translated into a significant increase in the frequency of Tregs and reduced GVHD in vivo. PMID:26837700

  13. The influence of a caveolin-1 mutant on the function of P-glycoprotein

    PubMed Central

    Lee, Chih-Yuan; Lai, Ting-Yu; Tsai, Meng-Kun; Ou-Yang, Pu; Tsai, Ching-Yi; Wu, Shu-Wei; Hsu, Li-Chung; Chen, Jin-Shing

    2016-01-01

    The genetic heterogeneity in cancer cells has an increased chance in the acquisition of new mutant such as drug-resistant phenotype in cancer cells. The phenotype of drug resistance in cancer cells could be evaluated by the number or function of drug transporters on cell membranes, which would lead to decreased intracellular anti-cancer drugs concentration. Caveolae are flask-shaped invaginations on cell membrane that function in membrane trafficking, endocytosis, and as a compartment where receptors and signaling proteins are concentrated. Caveolin-1 (CAV1) is the principal structural protein of caveolae and closely correlates with multidrug resistance in cancer cells. In a systematic study of the ubiquitin-modified proteome, lysine 176 of CAV1 was identified as a potential post-translational modification site for ubiquitination. In this article, we identified a mutation at lysine 176 to arginine (K176R) on CAV1 would interfere with the biogenesis of caveolae and broke the interaction of CAV1 with P-glycoprotein. Functional assays further revealed that K176R mutant of CAV1 in cancer cells increased the transport activity of P-glycoprotein and decreased the killing ability of anti-cancer drugs in non-small-cell lung cancer cell lines. PMID:26843476

  14. RNA binding by the Wilms tumor suppressor zinc finger proteins.

    PubMed Central

    Caricasole, A; Duarte, A; Larsson, S H; Hastie, N D; Little, M; Holmes, G; Todorov, I; Ward, A

    1996-01-01

    The Wilms tumor suppressor gene WT1 is implicated in the ontogeny of genito-urinary abnormalities, including Denys-Drash syndrome and Wilms tumor of the kidney. WT1 encodes Kruppel-type zinc finger proteins that can regulate the expression of several growth-related genes, apparently by binding to specific DNA sites located within 5' untranslated leader regions as well as 5' promoter sequences. Both WT1 and a closely related early growth response factor, EGR1, can bind the same DNA sequences from the mouse gene encoding insulin-like growth factor 2 (Igf-2). We report that WT1, but not EGR1, can bind specific Igf-2 exonic RNA sequences, and that the zinc fingers are required for this interaction. WT1 zinc finger 1, which is not represented in EGR1, plays a more significant role in RNA binding than zinc finger 4, which does have a counterpart in EGR1. Furthermore, the normal subnuclear localization of WT1 proteins is shown to be RNase, but not DNase, sensitive. Therefore, WT1 might, like the Kruppel-type zinc finger protein TFIIIA, regulate gene expression by both transcriptional and posttranscriptional mechanisms. Images Fig. 1 Fig. 2 Fig. 3 PMID:8755514

  15. Cellular Factor XIIIA Transglutaminase Localizes in Caveolae and Regulates Caveolin-1 Phosphorylation, Homo-oligomerization and c-Src Signaling in Osteoblasts.

    PubMed

    Wang, Shuai; Kaartinen, Mari T

    2015-11-01

    Transglutaminases (TGs) are a family of widely distributed enzymes that catalyze protein crosslinking by forming a covalent isopeptide bond between the substrate proteins. We have shown that MC3T3-E1 osteoblasts express Factor XIII-A (FXIII-A), and that the extracellular crosslinking activity of FXIII-A is involved in regulating matrix secretion and deposition. In this study, we have investigated the localization and potential role of intracellular FXIII-A. Conventional immunofluorescence microscopy and TIRF microscopy analyses showed that FXIII-A co-localizes with caveolin-1 in specialized membrane structures, caveolae, in differentiating osteoblasts. The caveolae-disrupting agent methyl-β-cyclodextrin abolished FXIII-A staining and co-localization with caveolin-1 from the osteoblast plasma membrane. The presence of FXIII-A in caveolae was confirmed by preparing caveolae-enriched cellular fractions using sucrose density gradient ultracentrifugation followed by western blotting. Despite this association of FXIII-A with caveolae, there was no detectable transglutaminase activity in caveolae, as measured by monodansylcadaverine incorporation. TG inhibitor NC9--which can alter TG enzyme conformation--localized to caveolae and displaced FXIII-A from these structures when added to the osteoblast cultures. The decreased FXIII-A levels in caveolae after NC9 treatment increased c-Src activation, which resulted in caveolin-1 phosphorylation, homo-oligomerization and Akt phosphorylation, suggesting cellular FXIII-A has a role in regulating c-Src signaling in osteoblasts. PMID:26231113

  16. Caveolin-1 Orchestrates TCR Synaptic Polarity, Signal Specificity, and Function in CD8 T Cells

    PubMed Central

    Tomassian, Tamar; Humphries, Lisa A.; Liu, Scot D.; Silva, Oscar; Brooks, David G.; Miceli, M. Carrie

    2013-01-01

    TCR engagement triggers the polarized recruitment of membrane, actin, and transducer assemblies within the T cell–APC contact that amplify and specify signaling cascades and Teffector activity. We report that caveolin-1, a scaffold that regulates polarity and signaling in nonlymphoid cells, is required for optimal TCR-induced actin polymerization, synaptic membrane raft polarity, and function in CD8, but not CD4, T cells. In CD8+ T cells, caveolin-1 ablation selectively impaired TCR-induced NFAT-dependent NFATc1 and cytokine gene expression, whereas caveolin-1 re-expression promoted NFATc1 gene expression. Alternatively, caveolin-1 ablation did not affect TCR-induced NF-κB–dependent Iκbα expression. Cav-1−/− mice did not efficiently promote CD8 immunity to lymphocytic choriomeningitis virus, nor did cav-1−/− OT-1+ CD8+ T cells efficiently respond to Listeria mono-cytogenes-OVA after transfer into wild-type hosts. Therefore, caveolin-1 is a T cell-intrinsic orchestrator of TCR-mediated membrane polarity and signal specificity selectively employed by CD8 T cells to customize TCR responsiveness. PMID:21849673

  17. Expression of caveolin-1 is correlated with disease stage and survival in lung adenocarcinomas.

    PubMed

    Zhan, Ping; Shen, Xiao-Kun; Qian, Qian; Wang, Qin; Zhu, Ji-Ping; Zhang, Yu; Xie, Hai-Yan; Xu, Chuen-Hua; Hao, Ke-Ke; Hu, Wei; Xia, Ning; Lu, Guo-Jun; Yu, Li-Ke

    2012-04-01

    Caveolin-1 (cav-1) has been implicated in the development of human cancers. However, the distribution of cav-1 in non-small cell lung cancer (NSCLC) and its significance require further study. Real-time PCR and Western blot assays were performed to detect cav-1 mRNA and protein levels in tumor tissues (TT) and matched tumor-free tissues (TF). The protein expression in 115 paraffin-embedded blocks was examined by immunohistochemical staining (IHC). Correlations between cav-1 mRNA and protein expression by IHC and clinicopathological features were statistically evaluated. For the 136 patients examined, the levels of cav-1 mRNA and protein expression were significantly lower in lung TT compared to matched TF (P<0.05). High cav-1 expression was detected in 60 of 115 (52.2%) NSCLC tissues and this level was significantly lower than cav-1 expression in non-cancerous lung tissues (15 of 19, 78.9%, P<0.05). Up-regulation of cav-1 mRNA expression in lung adenocarcinoma (AC) (29.7%) was higher than that observed in lung squamous cell carcinoma (SCC) (15.8%). Statistical analysis of the correlation between cav-1 protein expression and clinical features showed a statistical association with poorer N-stage (P=0.032) and higher pathological TNM stage (P=0.012) in lung AC patients, that was not found in lung SCC patients. Moreover, lung AC patients with higher cav-1 expression showed significantly shorter life-spans than those with lower cav-1 expression (P=0.032, log-rank test). The levels of cav-1 mRNA and protein expression were significantly lower in lung cancers when compared to matched TF or non-cancerous lung tissues. The higher protein expression correlated with the advanced pathological stage and shorter survival rates in lung AC patients. PMID:22200856

  18. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation

    PubMed Central

    Hayer, Arnold; Stoeber, Miriam; Ritz, Danilo; Engel, Sabrina; Meyer, Hemmo H.

    2010-01-01

    Caveolae are long-lived plasma membrane microdomains composed of caveolins, cavins, and a cholesterol-rich membrane. Little is known about how caveolae disassemble and how their coat components are degraded. We studied the degradation of caveolin-1 (CAV1), a major caveolar protein, in CV1 cells. CAV1 was degraded very slowly, but turnover could be accelerated by compromising caveolae assembly. Now, CAV1 became detectable in late endosomes (LE) and lysosomes where it was degraded. Targeting to the degradative pathway required ubiquitination and the endosomal sorting complex required for transport (ESCRT) machinery for inclusion into intralumenal vesicles in endosomes. A dual-tag strategy allowed us to monitor exposure of CAV1 to the acidic lumen of individual, maturing LE in living cells. Importantly, we found that “caveosomes,” previously described by our group as independent organelles distinct from endosomes, actually correspond to late endosomal compartments modified by the accumulation of overexpressed CAV1 awaiting degradation. The findings led us to a revised model for endocytic trafficking of CAV1. PMID:21041450

  19. Identification of a novel prostate cancer biomarker, caveolin-1: Implications and potential clinical benefit

    PubMed Central

    Corn, Paul G; Thompson, Timothy C

    2010-01-01

    While prostate cancer is a common disease in men, it is uncommonly life-threatening. To better understand this phenomenon, tumor biologists have sought to elucidate the mechanisms that contribute to the development of virulent prostate cancer. The recent discovery that caveolin-1 (Cav-1) functions as an important oncogene involved in prostate cancer progression reflects the success of this effort. Cav-1 is a major structural coat protein of caveolae, specialized plasma membrane invaginations involved in multiple cellular functions, including molecular transport, cell adhesion, and signal transduction. Cav-1 is aberrantly overexpressed in human prostate cancer, with higher levels evident in metastatic versus primary sites. Intracellular Cav-1 promotes cell survival through activation of Akt and enhancement of additional growth factor pro-survival pathways. Cav-1 is also secreted as a biologically active molecule that promotes cell survival and angiogenesis within the tumor microenvironment. Secreted Cav-1 can be reproducibly detected in peripheral blood using a sensitive and specific immunoassay. Cav-1 levels distinguish men with prostate cancer from normal controls, and preoperative Cav-1 levels predict which patients are at highest risk for relapse following radical prostatectomy for localized disease. Thus, secreted Cav-1 is a promising biomarker in identifying clinically significant prostate cancer. PMID:21188102

  20. Pilus phase variation switches gonococcal adherence to invasion by caveolin-1-dependent host cell signaling.

    PubMed

    Faulstich, Michaela; Böttcher, Jan-Peter; Meyer, Thomas F; Fraunholz, Martin; Rudel, Thomas

    2013-01-01

    Many pathogenic bacteria cause local infections but occasionally invade into the blood stream, often with fatal outcome. Very little is known about the mechanism underlying the switch from local to invasive infection. In the case of Neisseria gonorrhoeae, phase variable type 4 pili (T4P) stabilize local infection by mediating microcolony formation and inducing anti-invasive signals. Outer membrane porin PorB(IA), in contrast, is associated with disseminated infection and facilitates the efficient invasion of gonococci into host cells. Here we demonstrate that loss of pili by natural pilus phase variation is a prerequisite for the transition from local to invasive infection. Unexpectedly, both T4P-mediated inhibition of invasion and PorB(IA)-triggered invasion utilize membrane rafts and signaling pathways that depend on caveolin-1-Y14 phosphorylation (Cav1-pY14). We identified p85 regulatory subunit of PI3 kinase (PI3K) and phospholipase Cγ1 as new, exclusive and essential interaction partners for Cav1-pY14 in the course of PorBIA-induced invasion. Active PI3K induces the uptake of gonococci via a new invasion pathway involving protein kinase D1. Our data describe a novel route of bacterial entry into epithelial cells and offer the first mechanistic insight into the switch from local to invasive gonococcal infection. PMID:23717204

  1. Herpes Simplex Virus 1 Suppresses the Function of Lung Dendritic Cells via Caveolin-1

    PubMed Central

    Wu, Bing; Geng, Shuang; Bi, Yanmin; Liu, Hu; Hu, Yanxin; Li, Xinqiang; Zhang, Yizhi; Zhou, Xiaoyu; Zheng, Guoxing; He, Bin

    2015-01-01

    Caveolin-1 (Cav-1), the principal structural protein of caveolae, has been implicated as a regulator of virus-host interactions. Several viruses exploit caveolae to facilitate viral infections. However, the roles of Cav-1 in herpes simplex virus 1 (HSV-1) infection have not fully been elucidated. Here, we report that Cav-1 downregulates the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) in dendritic cells (DCs) during HSV-1 infection. As a result, Cav-1 deficiency led to an accelerated elimination of virus and less lung pathological change following HSV-1 infection. This protection was dependent on iNOS and NO production in DCs. Adoptive transfer of DCs with Cav-1 knockdown was sufficient to confer the protection to wild-type (WT) mice. In addition, Cav-1 knockout (KO) (Cav-1−/−) mice treated with an iNOS inhibitor exhibited significantly reduced survival compared to that of the nontreated controls. We found that Cav-1 colocalized with iNOS and HSV-1 in caveolae in HSV-1-infected DCs, suggesting their interaction. Taken together, our results identified Cav-1 as a novel regulator utilized by HSV-1 to evade the host antiviral response mediated by NO production. Therefore, Cav-1 might be a valuable target for therapeutic approaches against herpesvirus infections. PMID:26018534

  2. Oligomerization of Clostridium perfringens Epsilon Toxin Is Dependent upon Caveolins 1 and 2

    PubMed Central

    Fennessey, Christine M.; Sheng, Jinsong; Rubin, Donald H.; McClain, Mark S.

    2012-01-01

    Evidence from multiple studies suggests that Clostridium perfringens ε-toxin is a pore-forming toxin, assembling into oligomeric complexes in the plasma membrane of sensitive cells. In a previous study, we used gene-trap mutagenesis to identify mammalian factors contributing to toxin activity, including caveolin-2 (CAV2). In this study, we demonstrate the importance of caveolin-2 and its interaction partner, caveolin-1 (CAV1), in ε-toxin-induced cytotoxicity. Using CAV2-specific shRNA in a toxin-sensitive human kidney cell line, ACHN, we confirmed that cells deficient in CAV2 exhibit increased resistance to ε-toxin. Similarly, using CAV1-specific shRNA, we demonstrate that cells deficient in CAV1 also exhibit increased resistance to the toxin. Immunoprecipitation of CAV1 and CAV2 from ε-toxin-treated ACHN cells demonstrated interaction of both CAV1 and -2 with the toxin. Furthermore, blue-native PAGE indicated that the toxin and caveolins were components of a 670 kDa protein complex. Although ε-toxin binding was only slightly perturbed in caveolin-deficient cells, oligomerization of the toxin was dramatically reduced in both CAV1- and CAV2-deficient cells. These results indicate that CAV1 and -2 potentiate ε-toxin induced cytotoxicity by promoting toxin oligomerization – an event which is requisite for pore formation and, by extension, cell death. PMID:23056496

  3. Non-caveolar caveolin-1 expression in prostate cancer cells promotes lymphangiogenesis

    PubMed Central

    Nassar, Zeyad D.; Hill, Michelle M.; Parton, Robert G.; Francois, Mathias; Parat, Marie-Odile

    2015-01-01

    Lymphangiogenesis allows prostate cancer (PCa) lymphatic metastasis, which is associated with poor prognosis and short survival rates. Caveolin-1 (Cav-1) is a membrane protein localized in caveolae, but also exists in non-caveolar, cellular or extracellular forms. Cav-1 is overexpressed in PCa, promotes prostate tumour progression and metastasis. We investigated the effect of caveolar and non-caveolar Cav-1 on PCa lymphangiogenic potential. Cav-1 was down-regulated in PC3 and DU145, and ectopically expressed in LNCaP cells. The effect of PCa cell conditioned media on lymphatic endothelial cell (LEC) viability, chemotaxis, chemokinesis and differentiation was assessed. The effect of Cav-1 on PCa cell expression of lymphangiogenesis-modulators VEGF-A and VEGF-C was assessed using qPCR and ELISA of the conditioned medium. Non-caveolar Cav-1, whether exogenous or endogenous (in LNCaP and PC3 cells, respectively) enhanced LEC proliferation, migration and differentiation. In contrast, caveolar Cav-1 (in DU145 cells) did not significantly affect PCa cell lymphangiogenic potential. The effect of non-caveolar Cav-1 on LECs was mediated by increased expression of VEGF-A as demonstrated by neutralization by anti-VEGF-A antibody. This study unveils for the first time a crucial role for non-caveolar Cav-1 in modulating PCa cell expression of VEGF-A and subsequent LEC proliferation, migration and tube formation. PMID:26328273

  4. Redistribution of the discs large tumor suppressor protein during mitosis.

    PubMed

    Massimi, Paola; Gardiol, Daniela; Roberts, Sally; Banks, Lawrence

    2003-11-01

    Drosophila discs large (Dlg) has been shown to be an essential regulator of cell polarity and attachment, and is classified as a potential tumour suppressor in higher eukaryotes. Human Dlg is expressed in epithelial cells at sites of cell-cell contact and acts as a negative regulator of cell growth. Although hDlg has been shown to be phosphorylated during mitosis, little is known about its activity during this stage of the cell cycle. To investigate this further we have analysed in detail the pattern of hDlg expression during mitotic cell division. In early mitosis there is a marked increase in membrane-bound hDlg which is then retained throughout mitosis, while during cytokinesis, there is a specific concentration of hDlg at the midbody. Using mutants of Dlg we show that this is mediated by sequences in the carboxy terminal region of Dlg, but it does not require the SH3 or PDZ domains, and is independent of binding to protein 4.1. Finally, using a mutant of Dlg that consists of just this carboxy terminal region of the protein, we show that it can compete with endogenous hDlg for midbody accumulation, and this mutant also gives rise to altered cell growth. We conclude that localisation of Dlg to the midbody indicates a role for Dlg at this critical point in cytokinesis. PMID:14567986

  5. Metastasis suppressor proteins in cutaneous squamous cell carcinoma.

    PubMed

    Bozdogan, Onder; Vargel, Ibrahim; Cavusoglu, Tarik; Karabulut, Ayse A; Karahan, Gurbet; Sayar, Nilufer; Atasoy, Pınar; Yulug, Isik G

    2016-07-01

    Cutaneous squamous cell carcinomas (cSCCs) are common human carcinomas. Despite having metastasizing capacities, they usually show less aggressive progression compared to squamous cell carcinoma (SCC) of other organs. Metastasis suppressor proteins (MSPs) are a group of proteins that control and slow-down the metastatic process. In this study, we established the importance of seven well-defined MSPs including NDRG1, NM23-H1, RhoGDI2, E-cadherin, CD82/KAI1, MKK4, and AKAP12 in cSCCs. Protein expression levels of the selected MSPs were detected in 32 cSCCs, 6 in situ SCCs, and two skin cell lines (HaCaT, A-431) by immunohistochemistry. The results were evaluated semi-quantitatively using the HSCORE system. In addition, mRNA expression levels were detected by qRT-PCR in the cell lines. The HSCOREs of NM23-H1 were similar in cSCCs and normal skin tissues, while RGHOGDI2, E-cadherin and AKAP12 were significantly downregulated in cSCCs compared to normal skin. The levels of MKK4, NDRG1 and CD82 were partially conserved in cSCCs. In stage I SCCs, nuclear staining of NM23-H1 (NM23-H1nuc) was significantly lower than in stage II/III SCCs. Only nuclear staining of MKK4 (MKK4nuc) showed significantly higher scores in in situ carcinomas compared to invasive SCCs. In conclusion, similar to other human tumors, we have demonstrated complex differential expression patterns for the MSPs in in-situ and invasive cSCCs. This complex MSP signature warrants further biological and experimental pathway research. PMID:27215390

  6. A role for caveolin-1 in desmoglein binding and desmosome dynamics

    PubMed Central

    Brennan, Donna; Peltonen, Sirkku; Dowling, Alicia; Medhat, Walid; Green, Kathleen J.; Wahl, James K.; Del Galdo, Francesco; Mahoney, Mỹ G.

    2011-01-01

    Desmoglein 2 (Dsg2) is a desmosomal cadherin that is aberrantly expressed in human skin carcinomas. In addition to its well-known role in mediating intercellular desmosomal adhesion, Dsg2 regulates mitogenic signaling that may promote cancer development and progression. However, the mechanisms by which Dsg2 activates these signaling pathways and the relative contribution of its signaling and adhesion functions in tumor progression are poorly understood. In this study we show that Dsg2 associates with caveolin-1 (Cav-1), the major protein of specialized membrane microdomains called caveolae, which functions in both membrane protein turnover and intracellular signaling. Sequence analysis revealed that Dsg2 contains a putative Cav-1 binding motif. A permeable competing peptide resembling the Cav-1 scaffolding domain bound to Dsg2, disrupted normal Dsg2 staining and interfered with the integrity of epithelial sheets in vitro. Additionally, we observed that Dsg2 is proteolytically processed; resulting in a 95 kDa ectodomain shed product and a 65 kDa membrane-spanning fragment, the latter of which localizes to lipid rafts along with full-length Dsg2. Disruption of lipid rafts shifted Dsg2 to the non-raft fractions, leading to the accumulation of these proteins. Interestingly, Dsg2 proteolytic products are elevated in vivo in skin tumors from transgenic mice overexpressing Dsg2. Collectively, these data are consistent with the possibility that accumulation of truncated Dsg2 protein interferes with desmosome assembly and/or maintenance to disrupt cell-cell adhesion. Furthermore, the association of Dsg2 with Cav-1 may provide a mechanism for regulating mitogenic signaling and modulating the cell surface presentation of an important adhesion molecule, both of which could contribute to malignant transformation and tumor progression. PMID:21841821

  7. Caveolin-1 regulates P2X7 receptor signaling in osteoblasts

    PubMed Central

    Gangadharan, Vimal; Nohe, Anja; Caplan, Jeffrey; Czymmek, Kirk

    2014-01-01

    The synthesis of new bone in response to a novel applied mechanical load requires a complex series of cellular signaling events in osteoblasts and osteocytes. The activation of the purinergic receptor P2X7R is central to this mechanotransduction signaling cascade. Recently, P2X7R have been found to be associated with caveolae, a subset of lipid microdomains found in several cell types. Deletion of caveolin-1 (CAV1), the primary protein constituent of caveolae in osteoblasts, results in increased bone mass, leading us to hypothesize that the P2X7R is scaffolded to caveolae in osteoblasts. Thus, upon activation of the P2X7R, we postulate that caveolae are endocytosed, thereby modulating the downstream signal. Sucrose gradient fractionation of MC3T3-E1 preosteoblasts showed that CAV1 was translocated to the denser cytosolic fractions upon stimulation with ATP. Both ATP and the more specific P2X7R agonist 2′(3′)-O-(4-benzoylbenzoyl)ATP (BzATP) induced endocytosis of CAV1, which was inhibited when MC3T3-E1 cells were pretreated with the specific P2X7R antagonist A-839977. The P2X7R cofractionated with CAV1, but, using superresolution structured illumination microscopy, we found only a subpopulation of P2X7R in these lipid microdomains on the membrane of MC3T3-E1 cells. Suppression of CAV1 enhanced the intracellular Ca2+ response to BzATP, suggesting that caveolae regulate P2X7R signaling. This proposed mechanism is supported by increased mineralization in CAV1 knockdown MC3T3-E1 cells treated with BzATP. These data suggest that caveolae regulate P2X7R signaling upon activation by undergoing endocytosis and potentially carrying with it other signaling proteins, hence controlling the spatiotemporal signaling of P2X7R in osteoblasts. PMID:25318104

  8. SorLA in glia: shared subcellular distribution patterns with caveolin-1.

    PubMed

    Salgado, Iris K; Serrano, Melissa; García, José O; Martínez, Namyr A; Maldonado, Héctor M; Báez-Pagán, Carlos A; Lasalde-Dominicci, José A; Silva, Walter I

    2012-04-01

    SorLA is an established sorting and trafficking protein in neurons with demonstrated relevance to Alzheimer's disease (AD). It shares these roles with the caveolins, markers of membrane rafts microdomains. To further our knowledge on sorLA's expression and traffic, we studied sorLA expression in various cultured glia and its relation to caveolin-1 (cav-1), a caveolar microdomain marker. RT-PCR and immunoblots demonstrated sorLA expression in rat C6 glioma, primary cultures of rat astrocytes (PCRA), and human astrocytoma 1321N1 cells. PCRA were determined to express the highest levels of sorLA's message. Induction of differentiation of C6 cells into an astrocyte-like phenotype led to a significant decrease in sorLA's mRNA and protein expression. A set of complementary experimental approaches establish that sorLA and cav-1 directly or indirectly interact in glia: (1) co-fractionation in light-density membrane raft fractions of rat C6 glioma, PCRA, and human 1321N1 astrocytoma cells; (2) a subcellular co-localization distribution pattern in vesicular perinuclear compartments seen via confocal imaging in C6 and PCRA; (3) additional confocal analysis in C6 cells suggesting that the perinuclear compartments correspond to their co-localization in early endosomes and the trans-Golgi; and; (4) co-immunoprecipitation data strongly supporting their direct or indirect physical interaction. These findings further establish that sorLA is expressed in glia and that it shares its subcellular distribution pattern with cav-1. A direct or indirect cav-1/sorLA interaction could modify the trafficking and sorting functions of sorLA in glia and its proposed neuroprotective role in AD. PMID:22127416

  9. Pro-apoptotic function of the retinoblastoma tumor suppressor protein

    PubMed Central

    Ianari, Alessandra; Natale, Tiziana; Calo, Eliezer; Ferretti, Elisabetta; Alesse, Edoardo; Screpanti, Isabella; Haigis, Kevin; Gulino, Alberto; Lees, Jacqueline A.

    2009-01-01

    SUMMARY The retinoblastoma protein (pRB) tumor suppressor blocks cell proliferation by repressing the E2F transcription factors. This inhibition is relieved through mitogen-induced phosphorylation of pRB, triggering E2F release and activation of cell cycle genes. E2F1 can also activate pro-apoptotic genes in response to genotoxic or oncogenic stress. However, pRB’s role in this context has not been established. Here we show that DNA damage and E1A-induced oncogenic stress promotes formation of a pRB-E2F1 complex even in proliferating cells. Moreover, pRB is bound to pro-apoptotic promoters that are transcriptional active and pRB is required for maximal apoptotic response in vitro and in vivo. Together, these data reveal a direct role for pRB in the induction of apoptosis in response to genotoxic or oncogenic stress. SIGNIFICANCE pRB function is disrupted in many human tumors through either inactivation of the Rb gene or alterations in its upstream regulators. pRB’s tumor suppressive activity is at least partially dependent upon its ability to arrest cells through E2F inhibition. Our data now establish a second role for pRB as a stress-induced activator of apoptosis. Notably, pRB’s ability to promote either arrest versus apoptosis seems to be context dependent, with apoptosis being favored in proliferating cells. This finding has the potential to explain why cells are typically more resistant to apoptosis when in the arrested state. Most importantly, our observations suggest that Rb status will influence tumor response to chemotherapy by impairing both the arrest and apoptotic checkpoint responses. PMID:19249677

  10. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications.

    PubMed

    Kamada, Rui; Toguchi, Yu; Nomura, Takao; Imagawa, Toshiaki; Sakaguchi, Kazuyasu

    2016-11-01

    Tetramer formation of p53 is essential for its tumor suppressor function. p53 not only acts as a tumor suppressor protein by inducing cell cycle arrest and apoptosis in response to genotoxic stress, but it also regulates other cellular processes, including autophagy, stem cell self-renewal, and reprogramming of differentiated cells into stem cells, immune system, and metastasis. More than 50% of human tumors have TP53 gene mutations, and most of them are missense mutations that presumably reduce tumor suppressor activity of p53. This review focuses on the role of the tetramerization (oligomerization), which is modulated by the protein concentration of p53, posttranslational modifications, and/or interactions with its binding proteins, in regulating the tumor suppressor function of p53. Functional control of p53 by stabilizing or inhibiting oligomer formation and its bio-applications are also discussed. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 598-612, 2016. PMID:26572807

  11. Oxidative Stress Induces Caveolin 1 Degradation and Impairs Caveolae Functions in Skeletal Muscle Cells

    PubMed Central

    Mougeolle, Alexis; Poussard, Sylvie; Decossas, Marion; Lamaze, Christophe

    2015-01-01

    Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2) at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle. PMID:25799323

  12. Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice.

    PubMed

    Shivshankar, Pooja; Brampton, Christopher; Miyasato, Shelley; Kasper, Michael; Thannickal, Victor J; Le Saux, Claude Jourdan

    2012-07-01

    Idiopathic pulmonary fibrosis is associated with a decreased expression of caveolin-1 (cav-1), yet its role remains unclear. To investigate the role of cav-1, we induced pulmonary fibrosis in wild-type (WT) and cav-1-deficient (cav-1(-/-)) mice using intratracheal instillation of bleomycin. Contrary to expectations, significantly less collagen deposition was measured in tissue from cav-1(-/-) mice than in their WT counterparts, consistent with reduced mRNA expression of procollagen1a2 and procollagen3a1. Moreover, cav-1(-/-) mice demonstrated 77% less α-smooth muscle actin staining, suggesting reduced mesenchymal cell activation. Levels of pulmonary injury, assessed by tenascin-C mRNA expression and CD44v10 detection, were significantly increased at Day 21 after injury in WT mice, an effect significantly attenuated in cav-1(-/-) mice. The apparent protective effect against bleomycin-induced fibrosis in cav-1(-/-) mice was attributed to reduce cellular senescence and apoptosis in cav-1(-/-) epithelial cells during the early phase of lung injury. Reduced matrix metalloproteinase (MMP)-2 and MMP-9 expressions indicated a low profile of senescence-associated secretory phenotype (SASP) in the bleomycin-injured cav-1(-/-) mice. However, IL-6 and macrophage inflammatory protein 2 were increased in WT and cav-1(-/-) mice after bleomycin challenge, suggesting that bleomycin-induced inflammatory response substantiated the SASP pool. Thus, loss of cav-1 attenuates early injury response to bleomycin by limiting stress-induced cellular senescence/apoptosis in epithelial cells. In contrast, decreased cav-1 expression promotes fibroblast activation and collagen deposition, effects that may be relevant in later stages of reparative response. Hence, therapeutic strategies to modulate the expression of cav-1 should take into account cell-specific effects in the regenerative responses of the lung epithelium to injury. PMID:22362388

  13. Vascular smooth muscle cell proliferation depends on caveolin-1-regulated polyamine uptake

    PubMed Central

    Grossi, Mario; Rippe, Catarina; Sathanoori, Ramasri; Swärd, Karl; Forte, Amalia; Erlinge, David; Persson, Lo; Hellstrand, Per; Nilsson, Bengt-Olof

    2014-01-01

    Much evidence highlights the importance of polyamines for VSMC (vascular smooth muscle cell) proliferation and migration. Cav-1 (caveolin-1) was recently reported to regulate polyamine uptake in intestinal epithelial cells. The aim of the present study was to assess the importance of Cav-1 for VSMC polyamine uptake and its impact on cell proliferation and migration. Cav-1 KO (knockout) mouse aortic cells showed increased polyamine uptake and elevated proliferation and migration compared with WT (wild-type) cells. Both Cav-1 KO and WT cells expressed the smooth muscle differentiation markers SM22 and calponin. Cell-cycle phase distribution analysis revealed a higher proportion of Cav-1 KO than WT cells in the S phase. Cav-1 KO cells were hyper-proliferative in the presence but not in the absence of extracellular polyamines, and, moreover, supplementation with exogenous polyamines promoted proliferation in Cav-1 KO but not in WT cells. Expression of the solute carrier transporters Slc7a1 and Slc43a1 was higher in Cav-1 KO than in WT cells. ODC (ornithine decarboxylase) protein and mRNA expression as well as ODC activity were similar in Cav-1 KO and WT cells showing unaltered synthesis of polyamines in Cav-1 KO cells. Cav-1 was reduced in migrating cells in vitro and in carotid lesions in vivo. Our data show that Cav-1 negatively regulates VSMC polyamine uptake and that the proliferative advantage of Cav-1 KO cells is critically dependent on polyamine uptake. We provide proof-of-principle for targeting Cav-1-regulated polyamine uptake as a strategy to fight unwanted VSMC proliferation as observed in restenosis. PMID:25301005

  14. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    PubMed

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. PMID:26947806

  15. Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: Implication for dysregulation of neuronal function.

    PubMed

    Somkuwar, Sucharita S; Fannon, McKenzie J; Head, Brian P; Mandyam, Chitra D

    2016-07-22

    Role of striatal dopamine D1 receptors (D1Rs) in methamphetamine (Meth) taking and seeking is recognized from contingent Meth self-administration studies. For example, Meth increases levels of D1Rs in the dorsal striatum in animal models of Meth addiction, and blockade of striatal D1Rs decreased responding for Meth and reduced Meth priming-induced drug seeking. However, the mechanism underlying enhanced expression of striatal D1Rs in animals self-administering Meth is unknown and is hypothesized to involve maladaptive intracellular signal transduction mechanism via hyperphosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). D1Rs are predominantly localized to detergent-resistant membrane/lipid raft fractions (MLR fraction), and in vitro studies indicate that D1R signaling and recycling is regulated by the MLR-resident protein caveolin-1 (Cav-1), in an endocytotic-dependent manner. Notably, expression of Cav-1 is inversely regulated by ERK1/2 activation, suggesting a signaling interplay among D1Rs, ERK1/2 and Cav-1. We therefore evaluated the effects of extended access Meth self-administration on expression of striatal D1Rs, activated ERK1/2 and Cav-1. We first report that Cav-1 is heavily expressed in neurons located in the dorsal striatum. We also report that extended access Meth produces compulsive-like unregulated intake of the drug, and these behavioral outcomes are associated with enhanced expression of D1Rs, increased activity of ERK1/2, and reduced Cav-1 expression in the dorsal striatum. These data suggest a possible cellular mechanism that involves Cav-1 regulation of D1R expression in response to escalated Meth intake, and how this response of altered D1Rs and enhanced ERK1/2 activation to Meth self-administration contributes to contingent-related processes such as addiction. PMID:27138644

  16. Caveolin-1 protects against hepatic ischemia/reperfusion injury through ameliorating peroxynitrite-mediated cell death.

    PubMed

    Gao, Lei; Chen, Xingmiao; Peng, Tao; Yang, Dan; Wang, Qi; Lv, Zhiping; Shen, Jiangang

    2016-06-01

    Nitrative stress is considered as an important pathological process of hepatic ischemia and reperfusion injury but its regulating mechanisms are largely unknown. In this study, we tested the hypothesis that caveolin-1 (Cav-1), a plasma membrane scaffolding protein, could be an important cellular signaling against hepatic I/R injury through inhibiting peroxynitrite (ONOO(-))-induced cellular damage. Male wild-type mice and Cav-1 knockout (Cav-1(-/-)) were subjected to 1h hepatic ischemia following 1, 6 and 12h of reperfusion by clipping and releasing portal vessels respectively. Immortalized human hepatocyte cell line (L02) was subjected to 1h hypoxia and 6h reoxygenation and treated with Cav-1 scaffolding domain peptide. The major discoveries included: (1) the expression of Cav-1 in serum and liver tissues of wild-type mice was time-dependently elevated during hepatic ischemia-reperfusion injury. (2) Cav-1 scaffolding domain peptide treatment inhibited cleaved caspase-3 expression in the hypoxia-reoxygenated L02 cells; (3) Cav-1 knockout (Cav-1(-/-)) mice had significantly higher levels of serum transaminases (ALT&AST) and TNF-α, and higher rates of apoptotic cell death in liver tissues than wild-type mice after subjected to 1h hepatic ischemia and 6hour reperfusion; (4) Cav-1(-/-) mice revealed higher expression levels of iNOS, ONOO(-) and 3-nitrotyrosine (3-NT) in the liver than wild-type mice, and Fe-TMPyP, a representative peroxynitrite decomposition catalyst (PDC), remarkably reduced level of ONOO(-) and 3-NT and ameliorated the serum ALT, AST and TNF-α levels in both wild-type and Cav-1(-/-) mice. Taken together, we conclude that Cav-1 could play a critical role in preventing nitrative stress-induced liver damage during hepatic ischemia-reperfusion injury. PMID:27021966

  17. The Importance of Caveolin-1 as Key-Regulator of Three-Dimensional Growth in Thyroid Cancer Cells Cultured under Real and Simulated Microgravity Conditions.

    PubMed

    Riwaldt, Stefan; Bauer, Johann; Pietsch, Jessica; Braun, Markus; Segerer, Jürgen; Schwarzwälder, Achim; Corydon, Thomas J; Infanger, Manfred; Grimm, Daniela

    2015-01-01

    We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed to microgravity. The evidence is based on proteins detected in cells and their supernatants of the recent spaceflight experiment: "NanoRacks-CellBox-Thyroid Cancer". The culture supernatant had been collected in a special container adjacent to the flight hardware incubation chamber and stored at low temperature until it was analyzed by Multi-Analyte Profiling (MAP) technology, while the cells remaining in the incubation chamber were fixed by RNAlater and examined by mass spectrometry. The soluble proteins identified by MAP were investigated in regard to their mutual interactions and their influence on proteins, which were associated with the cells secreting the soluble proteins and had been identified in a preceding study. A Pathway Studio v.11 analysis of the soluble and cell-associated proteins together with protein kinase C alpha (PRKCA) suggests that caveolin-1 is involved, when plasminogen enriched in the extracellular space is not activated and the vascular cellular adhesion molecule (VCAM-1) mediated cell-cell adhesion is simultaneously strengthened and activated PRKCA is recruited in caveolae, while the thyroid cancer cells do not form spheroids. PMID:26633361

  18. The Importance of Caveolin-1 as Key-Regulator of Three-Dimensional Growth in Thyroid Cancer Cells Cultured under Real and Simulated Microgravity Conditions

    PubMed Central

    Riwaldt, Stefan; Bauer, Johann; Pietsch, Jessica; Braun, Markus; Segerer, Jürgen; Schwarzwälder, Achim; Corydon, Thomas J.; Infanger, Manfred; Grimm, Daniela

    2015-01-01

    We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed to microgravity. The evidence is based on proteins detected in cells and their supernatants of the recent spaceflight experiment: “NanoRacks-CellBox-Thyroid Cancer”. The culture supernatant had been collected in a special container adjacent to the flight hardware incubation chamber and stored at low temperature until it was analyzed by Multi-Analyte Profiling (MAP) technology, while the cells remaining in the incubation chamber were fixed by RNAlater and examined by mass spectrometry. The soluble proteins identified by MAP were investigated in regard to their mutual interactions and their influence on proteins, which were associated with the cells secreting the soluble proteins and had been identified in a preceding study. A Pathway Studio v.11 analysis of the soluble and cell-associated proteins together with protein kinase C alpha (PRKCA) suggests that caveolin-1 is involved, when plasminogen enriched in the extracellular space is not activated and the vascular cellular adhesion molecule (VCAM-1) mediated cell–cell adhesion is simultaneously strengthened and activated PRKCA is recruited in caveolae, while the thyroid cancer cells do not form spheroids. PMID:26633361

  19. Intragenic Suppressors of Folding Defects in the P22 Tailspike Protein

    PubMed Central

    Fane, B.; King, J.

    1991-01-01

    Within the amino acid sequences of polypeptide chains little is known of the distribution of sites and sequences critical for directing chain folding and assembly. Temperature-sensitive folding (tsf) mutations identifying such sites have been previously isolated and characterized in gene 9 of phage P22 encoding the tailspike endorhamnosidase. We report here the isolation of a set of second-site conformational suppressors which alleviate the defect in such folding mutants. The suppressors were selected for their ability to correct the defects of missense tailspike polypeptide chains, generated by growth of gene 9 amber mutants on Salmonella host strains inserting either tyrosine, serine, glutamine or leucine at the nonsense codons. Second-site suppressors were recovered for 13 of 22 starting sites. The suppressors of defects at six sites mapped within gene 9. (Suppressors for seven other sites were extragenic and distant from gene 9.) The missense polypeptide chains generated from all six suppressible sites displayed ts phenotypes. Temperature-sensitive alleles were isolated at these amber sites by pseudoreversion. The intragenic suppressors restored growth at the restrictive temperature of these presumptive tsf alleles. Characterization of protein maturation in cells infected with mutant phages carrying the intragenic suppressors indicates that the suppression is acting at the level of polypeptide chain folding and assembly. PMID:1825987

  20. Residue proximity information and protein model discrimination using saturation-suppressor mutagenesis

    PubMed Central

    Sahoo, Anusmita; Khare, Shruti; Devanarayanan, Sivasankar; Jain, Pankaj C.; Varadarajan, Raghavan

    2015-01-01

    Identification of residue-residue contacts from primary sequence can be used to guide protein structure prediction. Using Escherichia coli CcdB as the test case, we describe an experimental method termed saturation-suppressor mutagenesis to acquire residue contact information. In this methodology, for each of five inactive CcdB mutants, exhaustive screens for suppressors were performed. Proximal suppressors were accurately discriminated from distal suppressors based on their phenotypes when present as single mutants. Experimentally identified putative proximal pairs formed spatial constraints to recover >98% of native-like models of CcdB from a decoy dataset. Suppressor methodology was also applied to the integral membrane protein, diacylglycerol kinase A where the structures determined by X-ray crystallography and NMR were significantly different. Suppressor as well as sequence co-variation data clearly point to the X-ray structure being the functional one adopted in vivo. The methodology is applicable to any macromolecular system for which a convenient phenotypic assay exists. DOI: http://dx.doi.org/10.7554/eLife.09532.001 PMID:26716404

  1. Slightly modifying pseudoproline dipeptides incorporation strategy enables solid phase synthesis of a 54 AA fragment of caveolin-1 encompassing the intramembrane domain.

    PubMed

    Coïc, Yves-Marie; Lan, Charlotte Le; Neumann, Jean-Michel; Jamin, Nadège; Baleux, Françoise

    2010-02-01

    This work contributes to highlight the benefits of pseudoproline dipeptides introduction in difficult SPPS. We show how a slight modification in the positioning choice conditioned the synthesis achievement of a 54 amino acid long caveolin-1 peptide encompassing the intramembrane domain. Furthermore, we report a side reaction correlated with the coupling steps and generating truncated fragments with a mass deviation of + 42 Da. Considering the need of structural data for membrane proteins, most of which are considered as prevalent therapeutic targets, chemical synthesis provides an interesting alternative pathway to obtain hydrophobic domains by pushing back the frontiers of conventional RP methods of purification. PMID:20014324

  2. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway.

    PubMed

    Qin, Li; Yang, Yun-Bo; Yang, Yi-Xin; Zhu, Neng; Liu, Zheng; Ni, Ya-Guang; Li, Shun-Xiang; Zheng, Xi-Long; Liao, Duan-Fang

    2016-02-01

    Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, effectively reduces plasma cholesterol, but its effect on atherosclerosis is unclear. Foam cell formation has been implicated as a key mediator during the development of atherosclerosis. The purpose of this study was to investigate the effects of ezetimibe on foam cell formation and explore the underlying mechanism. The results presented here show that ezetimibe reduces atherosclerotic lesions in apolipoprotein E deficient (apoE-/-) mice by lowering cholesterol levels. Treatment of macrophages with Chol:MβCD resulted in foam cell formation, which was concentration-dependently inhibited by the presence of ezetimibe. Mechanically, ezetimibe treatment downregulated the expression of CD36 and scavenger receptor class B1 (SR-B1), but upregulated the expression of apoE and caveolin-1 in macrophage-derived foam cells, which kept consistent with our microarray results. Moreover, treatment with ezetimibe abrogated the increase of phospho-extracellular signal regulated kinase (ERK) 1/2 and their nuclear accumulation in foam cells. Inhibition of the MAPK pathway by the MEK inhibitor PD98059 attenuated the inhibitory effect of ezetimibe on the expression of p-ERK1/2 and caveolin-1. Taken together, these results showed that ezetimibe suppressed foam cell formation via the caveolin-1/MAPK signalling pathway, suggesting that inhibition of foam cell formation might be a novel mechanism underlying the anti-atherosclerotic effect of ezetimibe. PMID:26666965

  3. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1.

    PubMed

    Matsumura, Shigeru; Kojidani, Tomoko; Kamioka, Yuji; Uchida, Seiichi; Haraguchi, Tokuko; Kimura, Akatsuki; Toyoshima, Fumiko

    2016-01-01

    Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end of retraction fibres, where ganglioside GM1-enriched membrane domains with clusters of caveola-like structures are formed in an integrin and RhoA-dependent manner. Furthermore, Gαi1-LGN-NuMA, a well-known regulatory complex of spindle orientation, is targeted to the caveolin-1-enriched cortical region to guide the spindle axis towards the cellular edge retraction. We propose that retraction-induced cortical heterogeneity of caveolin-1 during mitotic cell rounding sets the spindle orientation in the context of adhesion geometry. PMID:27292265

  4. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1

    PubMed Central

    Matsumura, Shigeru; Kojidani, Tomoko; Kamioka, Yuji; Uchida, Seiichi; Haraguchi, Tokuko; Kimura, Akatsuki; Toyoshima, Fumiko

    2016-01-01

    Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end of retraction fibres, where ganglioside GM1-enriched membrane domains with clusters of caveola-like structures are formed in an integrin and RhoA-dependent manner. Furthermore, Gαi1–LGN–NuMA, a well-known regulatory complex of spindle orientation, is targeted to the caveolin-1-enriched cortical region to guide the spindle axis towards the cellular edge retraction. We propose that retraction-induced cortical heterogeneity of caveolin-1 during mitotic cell rounding sets the spindle orientation in the context of adhesion geometry. PMID:27292265

  5. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    SciTech Connect

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  6. The Citrus leaf blotch virus movement protein acts as silencing suppressor.

    PubMed

    Renovell, Águeda; Vives, Mari Carmen; Ruiz-Ruiz, Susana; Navarro, Luis; Moreno, Pedro; Guerri, José

    2012-02-01

    To counteract plant antiviral defense based on RNA silencing, many viruses express proteins that inhibit this mechanism at different levels. The genome of Citrus leaf blotch virus (CLBV) encodes a 227-kDa protein involved in replication, a 40-kDa movement protein (MP), and a 41-kDa coat protein (CP). To determine if any of these proteins might have RNA silencing suppressor activities, we have used Agrobacterium-mediated transient assays in the green fluorescent protein (GFP)-expressing Nicotiana benthamiana line 16c. Only CLBV MP was able to suppress intracellular GFP silencing induced by expression of either single- or double-stranded (ds) GFP RNA, but not cell-to-cell or long distance spread of the silencing signal. The MP suppressor activity was weak compared to other characterized viral suppressor proteins. Overall our data indicate that MP acts as a suppressor of local silencing probably by interfering in the silencing pathway downstream of the steps of dsRNA and small RNAs generation. PMID:21948005

  7. Inhibition of CaV2.3 channels by NK1 receptors is sensitive to membrane cholesterol but insensitive to caveolin-1.

    PubMed

    Licon, Yamhilette; Leandro, Deniss; Romero-Mendez, Catalina; Rodriguez-Menchaca, Aldo A; Sanchez-Armass, Sergio; Meza, Ulises

    2015-08-01

    Voltage-gated, CaV2.3 calcium channels and neurokinin-1 (NK1) receptors are both present in nuclei of the central nervous system. When transiently coexpressed in human embryonic kidney (HEK) 293 cells, CaV2.3 is primarily inhibited during strong, agonist-dependent activation of NK1 receptors. NK1 receptors localize to plasma membrane rafts, and their modulation by Gq/11 protein-coupled signaling is sensitive to plasma membrane cholesterol. Here, we show that inhibition of CaV2.3 by NK1 receptors is attenuated following methyl-β-cyclodextrin (MBCD)-mediated depletion of membrane cholesterol. By contrast, inhibition of CaV2.3 was unaffected by intracellular diffusion of caveolin-1 scaffolding peptide or by overexpression of caveolin-1. Interestingly, MΒCD treatment had no effect on the macroscopic biophysical properties of CaV2.3, though it significantly decreased whole-cell membrane capacitance. Our data indicate that (1) cholesterol supports at least one component of the NK1 receptor-linked signaling pathway that inhibits CaV2.3 and (2) caveolin-1 is dispensable within this pathway. Our findings suggest that NK1 receptors reside within non-caveolar membrane rafts and that CaV2.3 resides nearby but outside the rafts. Raft-dependent modulation of CaV2.3 could be important in the physiological and pathophysiological processes in which these channels participate, including neuronal excitability, synaptic plasticity, epilepsy, and chronic pain. PMID:25204428

  8. CAVEOLIN-1 expression in brain metastasis from lung cancer predicts worse outcome and radioresistance, irrespective of tumor histotype

    PubMed Central

    Pittaro, Alessandra; Verdun di Cantogno, Ludovica; Stella, Giulia; De Blasi, Pierpaolo; Zorzetto, Michele; Mantovani, Cristina; Papotti, Mauro; Cassoni, Paola

    2015-01-01

    Brain metastases develop in one-third of patients with non-small-cell lung cancer and are associated with a dismal prognosis, irrespective of surgery or chemo-radiotherapy. Pathological markers for predicting outcomes after surgical resection and radiotherapy responsiveness are still lacking. Caveolin 1 has been associated with chemo- and radioresistance in various tumors, including non-small-cell lung cancer. Here, caveolin 1 expression was assessed in a series of 69 brain metastases from non-small-cell lung cancer and matched primary tumors to determine its role in predicting survival and radiotherapy responsiveness. Only caveolin 1 expression in brain metastasis was associated with poor prognosis and an increased risk of death (log rank test, p = 0.015). Moreover, in the younger patients (median age of <54 years), caveolin 1 expression neutralized the favorable effect of young age on survival compared with the older patients. Among the radiotherapy-treated patients, an increased risk of death was detected in the group with caveolin 1-positive brain metastasis (14 out of 22 patients, HR=6.839, 95% CI 1.849 to 25.301, Wald test p = 0.004). Overall, caveolin 1 expression in brain metastasis from non-small-cell lung cancer is independently predictive of worse outcome and radioresistance and could become an additional tool for personalized therapy in the critical subset of brain-metastatic non-small-cell lung cancer patients. PMID:26315660

  9. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation.

    PubMed

    Baumberger, Nicolas; Tsai, Ching-Hsui; Lie, Miranda; Havecker, Ericka; Baulcombe, David C

    2007-09-18

    Plant and animal viruses encode suppressor proteins of an adaptive immunity mechanism in which viral double-stranded RNA is processed into 21-25 nt short interfering (si)RNAs. The siRNAs guide ARGONAUTE (AGO) proteins so that they target viral RNA. Most viral suppressors bind long dsRNA or siRNAs and thereby prevent production of siRNA or binding of siRNA to AGO. The one exception is the 2b suppressor of Cucumoviruses that binds to and inhibits AGO1. Here we describe a novel suppressor mechanism in which a Polerovirus-encoded F box protein (P0) targets the PAZ motif and its adjacent upstream sequence in AGO1 and mediates its degradation. F box proteins are components of E3 ubiquitin ligase complexes that add polyubiquitin tracts on selected lysine residues and thereby mark a protein for proteasome-mediated degradation. With P0, however, the targeted degradation of AGO is insensitive to inhibition of the proteasome, indicating that the proteasome is not involved. We also show that P0 does not block a mobile signal of silencing, indicating that the signal molecule does not have AGO protein components. The ability of P0 to block silencing without affecting signal movement may contribute to the phloem restriction of viruses in the Polerovirus group. PMID:17869110

  10. Role of G(i/o)-Src kinase-PI3K/Akt pathway and caveolin-1 in β₂-adrenoceptor coupling to endothelial NO synthase in mouse pulmonary artery.

    PubMed

    Banquet, Sébastien; Delannoy, Estelle; Agouni, Abdelali; Dessy, Chantal; Lacomme, Sabrina; Hubert, Fabien; Richard, Vincent; Muller, Bernard; Leblais, Véronique

    2011-07-01

    Activation of the β₂-adrenoceptor (β₂-AR) elicits an endothelial nitric oxide synthase (eNOS)-dependent relaxation in mouse pulmonary artery, which, contrary to the muscarinic receptor-dependent relaxation, is preserved in hypoxic pulmonary arterial hypertension. We therefore characterized the signaling pathways underlying the β₂-AR-mediated eNOS activation, with special focus on G(i/o) proteins, protein kinases and caveolae. Functional studies (for evaluation of vasorelaxant response), Western blotting (for assessment of eNOS and caveolin-1 phosphorylation) and transmission electron microscopy (for visualization of caveolae) were conducted in pulmonary arteries from wild-type or caveolin-1 knockout mice. In wild-type isolated arteries, relaxation to the selective β₂-AR agonist procaterol was reduced by inhibitors of G(i/o) proteins (pertussis toxin, PTX), phosphatidylinositol 3-kinase (PI3K; wortmannin or LY 294002), Akt (Akt inhibitor X) and Src-kinase (PP2) and by cholesterol depletion (using methyl-β-cyclodextrin). Procaterol induced eNOS phosphorylation at Ser(1177), which was prevented by PTX, PP2 or Akt inhibitor. Procaterol also promoted caveolin-1 phosphorylation at Tyr(14), which was decreased by PTX or PP2. Caveolin-1 gene deletion resulted in endothelial caveolae disruption in mouse pulmonary artery and in potentiation of procaterol-induced relaxation. Unlike procaterol, acetylcholine-induced relaxation was unaffected by PTX, methyl-β-cyclodextrin or caveolin-1 gene deletion. To conclude, the mouse pulmonary endothelial β₂-AR is coupled to a G(i/o)-Src kinase-PI3K/Akt pathway to promote eNOS phosphorylation at Ser(1177) leading to a NO-dependent vasorelaxation. Caveolin-1 exerts a negative control on this response that is abrogated by its phosphorylation at Tyr(14), through a G(i/o)-Src kinase pathway. Since pulmonary β₂-AR- and muscarinic receptor-mediated relaxations differentiate in their respective signaling pathways leading to e

  11. Identification of a third Protein 4.1 tumor suppressor, Protein 4.1R, in meningioma pathogenesis.

    PubMed

    Robb, Victoria A; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H

    2003-08-01

    Meningiomas are common central nervous system tumors; however, the mechanisms underlying their pathogenesis are largely undefined. In this report, we demonstrate that a third Protein 4.1 family member, Protein 4.1R, functions as a meningioma tumor suppressor. We observed loss of Protein 4.1R expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningiomas by immunohistochemistry and fluorescence in situ hybridization. In support of a meningioma tumor suppressor function, Protein 4.1R overexpression resulted in reduced IOMM-Lee and CH157-MN cell proliferation. Similar to the Protein 4.1B and merlin tumor suppressors, Protein 4.1R membrane localization increased significantly under conditions of growth arrest in vitro. Lastly, we show that Protein 4.1R interacted with a subset of merlin/Protein 4.1B interactors including CD44 and betaII-spectrin. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor in the molecular pathogenesis of meningioma. PMID:12901833

  12. Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation.

    PubMed

    Sun, Chun-Xiao; Robb, Victoria A; Gutmann, David H

    2002-11-01

    Members of the Protein 4.1 superfamily have highly conserved FERM domains that link cell surface glycoproteins to the actin cytoskeleton. Within this large and constantly expanding superfamily, at least five subgroups have been proposed. Two of these subgroups, the ERM and prototypic Protein 4.1 molecules, include proteins that function as tumor suppressors. The ERM subgroup member merlin/schwannomin is inactivated in the tumor-predisposition syndrome neurofibromatosis 2 (NF2), and the prototypic 4.1 subgroup member, Protein 4.1B, has been implicated in the molecular pathogenesis of breast, lung and brain cancers. This review focuses on what is known of mechanisms of action and critical protein interactions that may mediate the unique growth inhibitory signals of these two Protein 4.1 tumor suppressors. On the basis of insights derived from studying the NF2 tumor suppressor, we propose a model for merlin growth regulation in which CD44 links growth signals from plasma membrane to the nucleus by interacting with ERM proteins and merlin. PMID:12356905

  13. Caveolin-1 regulates cell apoptosis and invasion ability in paclitaxel-induced multidrug-resistant A549 lung cancer cells

    PubMed Central

    Han, Fei; Zhang, Long; Zhou, Yongxin; Yi, Xianghua

    2015-01-01

    The aim of the study was to investigate the effect and potential mechanism of caveolin-1 (Cav1) knockdown in paclitaxel-resistant lung cancer A549/Taxol cells. The human paclitaxel-resistant lung cancer cell line A549/Taxol was transfected with a Cav1 shRNA lentiviral vector. Interference efficiency for Cav1 was detected by real-time PCR and Western blotting. A MTT assay was used to determine cell proliferation, and flow cytometry was used to detect the cell cycle stage and apoptosis. Cell migration and invasion capability were detected by a transwell assay. Protein levels of related signaling molecules were detected by Western blotting. We successfully constructed a stable A549/Taxol cell line expressing low levels of Cav1. Cav1 knockdown significantly inhibited cell proliferation and induced G0/G1 arrest and cell apoptosis in vitro and in vivo. In addition, these effects correlated significantly with a reduction in cyclin D1 expression and activation of the Bcl-2/Bax-mediated mitochondrial apoptosis pathway. Furthermore, knockdown of Cav1 inhibited cell migration and invasion, and this may be related to the inhibition of AKT and the subsequent decreased protein expression of MMP2, MMP7 and MMP9. PMID:26464635

  14. Role of NF-kappaB-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide.

    PubMed

    Tiruppathi, Chinnaswamy; Shimizu, Jun; Miyawaki-Shimizu, Kayo; Vogel, Stephen M; Bair, Angela M; Minshall, Richard D; Predescu, Dan; Malik, Asrar B

    2008-02-15

    We investigated the role of NF-kappaB activation by the bacterial product lipopolysaccharide (LPS) in inducing caveolin-1 (Cav-1) expression and its consequence in contributing to the leakiness of the endothelial barrier. We observed that LPS challenge of human lung microvascular endothelial cells induced concentration- and time-dependent increases in expression of Cav-1 mRNA and protein. The NEMO (NF-kappaB essential modifier binding domain)-binding domain peptide (IkB kinase (IKK)-NEMO-binding domain (NBD) peptide), which prevents NF-kappaB activation by inhibiting the interaction of IKKgamma with the IKK complex, blocked LPS-induced Cav-1 mRNA and protein expression. Knockdown of NF-kappaB subunit p65/RelA expression with small interfering RNA also prevented LPS-induced Cav-1 expression. Caveolae open to the apical and basal plasmalemma of endothelial cells increased 2-4-fold within 4 h of LPS exposure. IKK-NBD peptide markedly reduced the LPS-induced increase in the number of caveolae as well as transendothelial albumin permeability. These observations were recapitulated in mouse studies in which IKK-NBD peptide prevented Cav-1 expression and interfered with the increase in lung microvessel permeability induced by LPS. Thus, LPS mediates NF-kappaB-dependent Cav-1 expression that results in increased caveolae number and thereby contributes to the mechanism of increased transendothelial albumin permeability. PMID:18077459

  15. Modulator of Apoptosis 1 (MOAP-1) Is a Tumor Suppressor Protein Linked to the RASSF1A Protein*

    PubMed Central

    Law, Jennifer; Salla, Mohamed; Zare, Alaa; Wong, Yoke; Luong, Le; Volodko, Natalia; Svystun, Orysya; Flood, Kayla; Lim, Jonathan; Sung, Miranda; Dyck, Jason R. B.; Tan, Chong Teik; Su, Yu-Chin; Yu, Victor C.; Mackey, John; Baksh, Shairaz

    2015-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databases, immunoblotting of cancer cells, proliferation, and xenograft assays as well as DNA microarray analysis to demonstrate the role of MOAP-1 as a tumor suppressor protein. Frequent loss of MOAP-1 expression, in at least some cancers, appears to be attributed to mRNA down-regulation and the rapid proteasomal degradation of MOAP-1 that could be reversed utilizing the proteasome inhibitor MG132. Overexpression of MOAP-1 in several cancer cell lines resulted in reduced tumorigenesis and up-regulation of genes involved in cancer regulatory pathways that include apoptosis (p53, Fas, and MST1), DNA damage control (poly(ADP)-ribose polymerase and ataxia telangiectasia mutated), those within the cell metabolism (IR-α, IR-β, and AMP-activated protein kinase), and a stabilizing effect on microtubules. The loss of RASSF1A (an upstream regulator of MOAP-1) is one of the earliest detectable epigenetically silenced tumor suppressor proteins in cancer, and we speculate that the additional loss of function of MOAP-1 may be a second hit to functionally compromise the RASSF1A/MOAP-1 death receptor-dependent pathway and drive tumorigenesis. PMID:26269600

  16. Identification and RNA binding characterization of plant virus RNA silencing suppressor proteins.

    PubMed

    Vargason, Jeffrey M; Burch, Carissa J; Wilson, Jesse W

    2013-11-01

    Suppression is a common mechanism employed by viruses to evade the antiviral effects of the host's RNA silencing pathway. The activity of suppression has commonly been localized to gene products in the virus, but the variety of mechanisms used in suppression by these viral proteins spans nearly the complete biochemical pathway of RNA silencing in the host. This review describes the agrofiltration assay and a slightly modified version of the agro-infiltration assay called co-infiltration, which are common methods used to observe RNA silencing and identify viral silencing suppressor proteins in plants, respectively. In addition, this review will provide an overview of two methods, electrophoretic mobility shift assay and fluorescence polarization, used to assess the binding of a suppressor protein to siRNA which has been shown to be a general mechanism to suppress RNA silencing by plant viruses. PMID:23981361

  17. DJ-1 deficiency impairs glutamate uptake into astrocytes via the regulation of flotillin-1 and caveolin-1 expression

    PubMed Central

    Kim, Jin-Mo; Cha, Seon-Heui; Choi, Yu Ree; Jou, Ilo; Joe, Eun-Hye; Park, Sang Myun

    2016-01-01

    Parkinson’s disease (PD) is a common chronic and progressive neurodegenerative disorder. Although the cause of PD is still poorly understood, mutations in many genes including SNCA, parkin, PINK1, LRRK2, and DJ-1 have been identified in the familial forms of PD. It was recently proposed that alterations in lipid rafts may cause the neurodegeneration shown in PD. Here, we observe that DJ-1 deficiency decreased the expression of flotillin-1 (flot-1) and caveolin-1 (cav-1), the main protein components of lipid rafts, in primary astrocytes and MEF cells. As a mechanism, DJ-1 regulated flot-1 stability by direct interaction, however, decreased cav-1 expression may not be a direct effect of DJ-1, but rather as a result of decreased flot-1 expression. Dysregulation of flot-1 and cav-1 by DJ-1 deficiency caused an alteration in the cellular cholesterol level, membrane fluidity, and alteration in lipid rafts-dependent endocytosis. Moreover, DJ-1 deficiency impaired glutamate uptake into astrocytes, a major function of astrocytes in the maintenance of CNS homeostasis, by altering EAAT2 expression. This study will be helpful to understand the role of DJ-1 in the pathogenesis of PD, and the modulation of lipid rafts through the regulation of flot-1 or cav-1 may be a novel therapeutic target for PD. PMID:27346864

  18. Caveolin-1 plays a critical role in host immunity against Klebsiella pneumoniae by regulating STAT5 and Akt activity.

    PubMed

    Guo, Qiang; Shen, Nan; Yuan, Kefei; Li, Jiaxin; Wu, Hong; Zeng, Yong; Fox, John; Bansal, Arvind K; Singh, Brij B; Gao, Hongwei; Wu, Min

    2012-06-01

    Caveolin-1 (Cav1) is a structural protein of caveolae. Although Cav1 is associated with certain bacterial infections, it is unknown whether Cav1 is involved in host immunity against Klebsiella pneumoniae, the third most commonly isolated microorganism from bacterial sepsis patients. Here, we showed that cav1 knockout mice succumbed to K. pneumoniae infection with markedly decreased survival rates, increased bacterial burdens, intensified tissue injury, hyperactive proinflammatory cytokines, and systemic bacterial dissemination as compared with WT mice. Knocking down Cav1 by a dominant negative approach in lung epithelial MLE-12 cells resulted in similar outcomes (decreased bacterial clearance and increased proinflammatory cytokine production). Furthermore, we revealed that STAT5 influences the GSK3β-β-catenin-Akt pathway, which contributes to the intensive inflammatory response and rapid infection dissemination seen in Cav1 deficiency. Collectively, our findings indicate that Cav1 may offer resistance to K. pneumoniae infection, by affecting both systemic and local production of proinflammatory cytokines via the actions of STAT5 and the GSK3β-β-catenin-Akt pathway. PMID:22678904

  19. Nitrosation-dependent caveolin 1 phosphorylation, ubiquitination, and degradation and its association with idiopathic pulmonary arterial hypertension.

    PubMed

    Bakhshi, Farnaz R; Mao, Mao; Shajahan, Ayesha N; Piegeler, Tobias; Chen, Zhenlong; Chernaya, Olga; Sharma, Tiffany; Elliott, W Mark; Szulcek, Robert; Bogaard, Harm Jan; Comhair, Suzy; Erzurum, Serpil; van Nieuw Amerongen, Geerten P; Bonini, Marcelo G; Minshall, Richard D

    2013-12-01

    In the present study, we tested the hypothesis that chronic inflammation and oxidative/nitrosative stress induce caveolin 1 (Cav-1) degradation, providing an underlying mechanism of endothelial cell activation/dysfunction and pulmonary vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). We observed reduced Cav-1 protein despite increased Cav-1 messenger RNA expression and also endothelial nitric oxide synthase (eNOS) hyperphosphorylation in human pulmonary artery endothelial cells (PAECs) from patients with IPAH. In control human lung endothelial cell cultures, tumor necrosis factor α-induced nitric oxide (NO) production and S-nitrosation (SNO) of Cav-1 Cys-156 were associated with Src displacement and activation, Cav-1 Tyr-14 phosphorylation, and destabilization of Cav-1 oligomers within 5 minutes that could be blocked by eNOS or Src inhibition. Prolonged stimulation (72 hours) with NO donor DETANONOate reduced oligomerized and total Cav-1 levels by 40%-80%, similar to that observed in IPAH patient-derived PAECs. NO donor stimulation of endothelial cells for >72 hours, which was associated with sustained Src activation and Cav-1 phosphorylation, ubiquitination, and degradation, was blocked by NOS inhibitor L-NAME, Src inhibitor PP2, and proteosomal inhibitor MG132. Thus, chronic inflammation, sustained eNOS and Src signaling, and Cav-1 degradation may be important causal factors in the development of IPAH by promoting PAEC dysfunction/activation via sustained oxidative/nitrosative stress. PMID:25006397

  20. Registered report: Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis.

    PubMed

    Fiering, Steven; Ang, Lay-Hong; Lacoste, Judith; Smith, Tim D; Griner, Erin

    2015-01-01

    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replicating selected results from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012 were selected on the basis of citations and Altimetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from 'Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis' by Goetz and colleagues, published in Cell in 2011 (Goetz et al., 2011). The key experiments being replicated are those reported in Figures 7C (a-d), Supplemental Figure S2A, and Supplemental Figure S7C (a-c) (Goetz et al., 2011). In these experiments, which are a subset of all the experiments reported in the original publication, Goetz and colleagues show in a subcutaneous xenograft model that stromal caveolin-1 remodels the intratumoral microenvironment, which is correlated with increased metastasis formation. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife. PMID:26179155

  1. Antenatal glucocorticoids counteract LPS changes in TGF-β pathway and caveolin-1 in ovine fetal lung.

    PubMed

    Collins, Jennifer J P; Kunzmann, Steffen; Kuypers, Elke; Kemp, Matthew W; Speer, Christian P; Newnham, John P; Kallapur, Suhas G; Jobe, Alan H; Kramer, Boris W

    2013-03-15

    Inflammation and antenatal glucocorticoids, the latter given to mothers at risk for preterm birth, affect lung development and may contribute to the development of bronchopulmonary dysplasia (BPD). The effects of the combined exposures on inflammation and antenatal glucocorticoids on transforming growth factor (TGF)-β signaling are unknown. TGF-β and its downstream mediators are implicated in the etiology of BPD. Therefore, we asked whether glucocorticoids altered intra-amniotic lipopolysaccharide (LPS) effects on TGF-β expression, its signaling molecule phosphorylated sma and mothers against decapentaplegic homolog 2 (pSmad2), and the downstream mediators connective tissue growth factor (CTGF) and caveolin-1 (Cav-1). Ovine singleton fetuses were randomized to receive either an intra-amniotic injection of LPS and/or maternal betamethasone (BTM) intramuscularly 7 and/or 14 days before delivery at 120 days gestational age (GA; term = 150 days GA). Saline was used for controls. Protein levels of TGF-β1 and -β2 were measured by ELISA. Smad2 phosphorylation was assessed by immunohistochemistry and Western blot. CTGF and Cav-1 mRNA and protein levels were determined by RT-PCR and Western blot. Free TGF-β1 and -β2 and total TGF-β1 levels were unchanged after LPS and/or BTM exposure, although total TGF-β2 increased in animals exposed to BTM 7 days before LPS. pSmad2 immunostaining increased 7 days after LPS exposure although pSmad2 protein expression did not increase. Similarly, CTGF mRNA and protein levels increased 7 days after LPS exposure as Cav-1 mRNA and protein levels decreased. BTM exposure before LPS prevented CTGF induction and Cav-1 downregulation. This study demonstrated that the intrauterine inflammation-induced TGF-β signaling can be inhibited by antenatal glucocorticoids in fetal lungs. PMID:23333802

  2. Involvement of Caveolin-1 in Repair of DNA Damage through Both Homologous Recombination and Non-Homologous End Joining

    PubMed Central

    Zhu, Hua; Yue, Jingyin; Pan, Zui; Wu, Hao; Cheng, Yan; Lu, Huimei; Ren, Xingcong; Yao, Ming; Shen, Zhiyuan; Yang, Jin-Ming

    2010-01-01

    Background Caveolin-1 (Cav-1), the major component of caveolae, is a 21–24 kDa integral membrane protein that interacts with a number of signaling molecules. By acting as a scaffolding protein, Cav-1 plays crucial roles in the regulation of various physiologic and patho-physiologic processes including oncogenic transformation and tumorigenesis, and tumor invasion and metastasis. Methodology/Principal Findings In the present study we sought to explore the role of Cav-1 in response to DNA damage and the mechanism involved. We found that the level of Cav-1 was up-regulated rapidly in cells treated with ionizing radiation. The up-regulation of Cav-1 following DNA damage occurred only in cells expressing endogenous Cav-1, and was associated with the activation of DNA damage response pathways. Furthermore, we demonstrated that the expression of Cav-1 protected cells against DNA damage through modulating the activities of both the homologous recombination (HR) and non-homologous end joining (NHEJ) repair systems, as evidenced by the inhibitory effects of the Cav-1-targeted siRNA on cell survival, HR frequency, phosphorylation of DNA-dependent protein kinase (DNA-PK), and nuclear translocation of epidermal growth factor receptor (EGFR) following DNA damage, and by the stimulatory effect of the forced expression of Cav-1 on NHEJ frequency. Conclusion/Significance Our results indicate that Cav-1 may play a critical role in sensing genotoxic stress and in orchestrating the response of cells to DNA damage through regulating the important molecules involved in maintaining genomic integrity. PMID:20700465

  3. Rab5 is required in metastatic cancer cells for Caveolin-1-enhanced Rac1 activation, migration and invasion.

    PubMed

    Díaz, Jorge; Mendoza, Pablo; Ortiz, Rina; Díaz, Natalia; Leyton, Lisette; Stupack, Dwayne; Quest, Andrew F G; Torres, Vicente A

    2014-06-01

    Rab5 is a small GTPase that regulates early endosome trafficking and other cellular processes, including cell adhesion and migration. Specifically, Rab5 promotes Rac1 activation and cancer cell migration, but little is known about the upstream regulators of Rab5. We have previously shown that the scaffolding protein Caveolin-1 (CAV1) promotes Rac1 activation and migration of cancer cells. Here, we hypothesized that CAV1 stimulates Rab5 activation, leading to increased Rac1 activity and cell migration. Expression of CAV1 in B16-F10 mouse melanoma and HT-29(US) human colon adenocarcinoma cells increased the GTP loading of Rab5, whereas shRNA-mediated targeting of endogenous CAV1 in MDA-MB-231 breast cancer cells decreased Rab5-GTP levels. Accordingly, shRNA-mediated downregulation of Rab5 decreased CAV1-mediated Rac1 activation, cell migration and invasion in B16-F10 and HT-29(US) cells. Expression of CAV1 was accompanied by increased recruitment of Tiam1, a Rac1 guanine nucleotide exchange factor (GEF), to Rab5-positive early endosomes. Using the inhibitor NSC23766, Tiam1 was shown to be required for Rac1 activation and cell migration induced by CAV1 and Rab5. Mechanistically, we provide evidence implicating p85α (also known as PIK3R1), a Rab5 GTPase-activating protein (GAP), in CAV1-dependent effects, by showing that CAV1 recruits p85α, precluding p85α-mediated Rab5 inactivation and increasing cell migration. In summary, these studies identify a novel CAV1-Rab5-Rac1 signaling axis, whereby CAV1 prevents Rab5 inactivation, leading to increased Rac1 activity and enhanced tumor cell migration and invasion. PMID:24659799

  4. Curcumin attenuates high glucose-induced podocyte apoptosis by regulating functional connections between caveolin-1 phosphorylation and ROS

    PubMed Central

    Sun, Li-na; Liu, Xiang-chun; Chen, Xiang-jun; Guan, Guang-ju; Liu, Gang

    2016-01-01

    Aim: Caveolin-1 (cav-1) is a major multifunctional scaffolding protein of caveolae. Cav-1 is primarily expressed in mesangial cells, renal proximal tubule cells and podocytes in kidneys. Recent evidence shows that the functional connections between cav-1 and ROS play a key role in many diseases. In this study we investigated whether regulating the functional connections between cav-1 and ROS in kidneys contributed to the beneficial effects of curcumin in treating diabetic nephropathy in vitro and in vivo. Methods: Cultured mouse podocytes (mpc5) were incubated in a high glucose (HG, 30 mmol/L) medium for 24, 48 or 72 h. Male rats were injected with STZ (60 mg/kg, ip) to induce diabetes. ROS generation, SOD activity, MDA content and caspase-3 activity in the cultured cells and kidney cortex homogenate were determined. Apoptotic proteins and cav-1 phosphorylation were analyzed using Western blot analyses. Results: Incubation in HG-containing medium time-dependently increased ROS production, oxidative stress, apoptosis, and cav-1 phosphorylation in podocytes. Pretreatment with curcumin (1, 5, and 10 μmol/L) dose-dependently attenuated these abnormalities in HG-treated podocytes. Furthermore, in HG-containing medium, the podocytes transfected with a recombinant plasmid GFP-cav-1 Y14F (mutation at a cav-1 phosphorylation site) exhibited significantly decreased ROS production and apoptosis compared with the cells transfected with empty vector. In diabetic rats, administration of curcumin (100 or 200 mg/kg body weight per day, ig, for 8 weeks) not only significantly improved the renal function, but also suppressed ROS levels, oxidative stress, apoptosis and cav-1 phosphorylation in the kidneys. Conclusion: Curcumin attenuates high glucose-induced podocyte apoptosis in vitro and diabetic nephropathy in vivo partly through regulating the functional connections between cav-1 phosphorylation and ROS. PMID:26838071

  5. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice.

    PubMed

    Sala-Vila, Aleix; Navarro-Lérida, Inmaculada; Sánchez-Alvarez, Miguel; Bosch, Marta; Calvo, Carlos; López, Juan Antonio; Calvo, Enrique; Ferguson, Charles; Giacomello, Marta; Serafini, Annalisa; Scorrano, Luca; Enriquez, José Antonio; Balsinde, Jesús; Parton, Robert G; Vázquez, Jesús; Pol, Albert; Del Pozo, Miguel A

    2016-01-01

    The mitochondria-associated membrane (MAM) is a specialized subdomain of the endoplasmic reticulum (ER) which acts as an intracellular signaling hub. MAM dysfunction has been related to liver disease. We report a high-throughput mass spectrometry-based proteomics characterization of MAMs from mouse liver, which portrays them as an extremely complex compartment involved in different metabolic processes, including steroid metabolism. Interestingly, we identified caveolin-1 (CAV1) as an integral component of hepatic MAMs, which determine the relative cholesterol content of these ER subdomains. Finally, a detailed comparative proteomics analysis between MAMs from wild type and CAV1-deficient mice suggests that functional CAV1 contributes to the recruitment and regulation of intracellular steroid and lipoprotein metabolism-related processes accrued at MAMs. The potential impact of these novel aspects of CAV1 biology on global cell homeostasis and disease is discussed. PMID:27272971

  6. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice

    PubMed Central

    Sala-Vila, Aleix; Navarro-Lérida, Inmaculada; Sánchez-Alvarez, Miguel; Bosch, Marta; Calvo, Carlos; López, Juan Antonio; Calvo, Enrique; Ferguson, Charles; Giacomello, Marta; Serafini, Annalisa; Scorrano, Luca; Enriquez, José Antonio; Balsinde, Jesús; Parton, Robert G.; Vázquez, Jesús; Pol, Albert; Del Pozo, Miguel A.

    2016-01-01

    The mitochondria-associated membrane (MAM) is a specialized subdomain of the endoplasmic reticulum (ER) which acts as an intracellular signaling hub. MAM dysfunction has been related to liver disease. We report a high-throughput mass spectrometry-based proteomics characterization of MAMs from mouse liver, which portrays them as an extremely complex compartment involved in different metabolic processes, including steroid metabolism. Interestingly, we identified caveolin-1 (CAV1) as an integral component of hepatic MAMs, which determine the relative cholesterol content of these ER subdomains. Finally, a detailed comparative proteomics analysis between MAMs from wild type and CAV1-deficient mice suggests that functional CAV1 contributes to the recruitment and regulation of intracellular steroid and lipoprotein metabolism-related processes accrued at MAMs. The potential impact of these novel aspects of CAV1 biology on global cell homeostasis and disease is discussed. PMID:27272971

  7. Identification of caveolin-1 as a potential causative factor in the generation of trastuzumab resistance in breast cancer cells.

    PubMed

    Sekhar, Sreeja C; Kasai, Tomonari; Satoh, Ayano; Shigehiro, Tsukasa; Mizutani, Akifumi; Murakami, Hiroshi; El-Aarag, Bishoy Ya; Salomon, David S; Massaguer, Anna; de Llorens, Rafael; Seno, Masaharu

    2013-01-01

    The oncogenic tyrosine kinase receptor ErbB2 is a prognostic factor and target for breast cancer therapeutics. In contrast with the other ErbB receptors, ErbB2 is hardly internalized by ligand induced mechanisms, indicating a prevalent surface expression. Elevated levels of ErbB2 in tumor cells are associated with its defective endocytosis and down regulation. Here we show that caveolin-1 expression in breast cancer derived SKBR-3 cells (SKBR-3/Cav-1) facilitates ligand induced ErbB2 endocytosis using an artificial peptide ligand EC-eGFP. Similarly, stimulation with humanized anti ErbB2 antibody Trastuzumab (Herceptin) was found to be internalized and co-localized with caveolin-1 in SKBR-3/Cav-1 cells. Internalized EC-eGFP and Trastuzumab in SKBR-3/Cav-1 cells were then delivered via caveolae to the caveolin-1 containing early endosomes. Consequently, attenuated Fc receptor mediated ADCC functions were observed when exposed to Trastuzumab and EC-Fc (EC-1 peptide conjugated to Fc part of human IgG). On the other hand, this caveolae dependent endocytic synergy was not observed in parental SKBR-3 cells. Therefore, caveolin-1 expression in breast cancer cells could be a predictive factor to estimate how cancer cells are likely to respond to Trastuzumab treatment. PMID:23833684

  8. Analysis of Protein Phosphatase-1 and Aurora Protein Kinase Suppressors Reveals New Aspects of Regulatory Protein Function in Saccharomyces cerevisiae

    PubMed Central

    Ghosh, Anuprita; Cannon, John F.

    2013-01-01

    Protein phosphatase-1 (PP1) controls many processes in eukaryotic cells. Modulation of mitosis by reversing phosphorylation of proteins phosphorylated by aurora protein kinase is a critical function for PP1. Overexpression of the sole PP1, Glc7, in budding yeast, Saccharomyces cerevisiae, is lethal. This work shows that lethality requires the function of Glc7 regulatory proteins Sds22, Reg2, and phosphorylated Glc8. This finding shows that Glc7 overexpression induced cell death requires a specific subset of the many Glc7-interacting proteins and therefore is likely caused by promiscuous dephosphorylation of a variety of substrates. Additionally, suppression can occur by reducing Glc7 protein levels by high-copy Fpr3 without use of its proline isomerase domain. This divulges a novel function of Fpr3. Most suppressors of GLC7 overexpression also suppress aurora protein kinase, ipl1, temperature-sensitive mutations. However, high-copy mutant SDS22 genes show reciprocal suppression of GLC7 overexpression induced cell death or ipl1 temperature sensitivity. Sds22 binds to many proteins besides Glc7. The N-terminal 25 residues of Sds22 are sufficient to bind, directly or indirectly, to seven proteins studied here including the spindle assembly checkpoint protein, Bub3. These data demonstrate that Sds22 organizes several proteins in addition to Glc7 to perform functions that counteract Ipl1 activity or lead to hyper Glc7 induced cell death. These data also emphasize that Sds22 targets Glc7 to nuclear locations distinct from Ipl1 substrates. PMID:23894419

  9. Overexpression of Aquaporin-1 and Caveolin-1 in the Rat Urinary Bladder Urothelium Following Bladder Outlet Obstruction

    PubMed Central

    Song, Seung Hee; Park, Kwangsung; Kwon, Dongdeuk

    2013-01-01

    Purpose This study was designed to investigate the effect of detrusor overactivity induced by partial bladder outlet obstruction (BOO) on the expression of aquaporin 1 (AQP1) and caveolin 1 (CAV1) in the rat urinary bladder, and to determine the role of these molecules in detrusor overactivity. Methods Female Sprague-Dawley rats were divided into control (n=30) and experimental (n=30) groups. The BOO group underwent partial BOO, and the control group underwent a sham operation. After 4 weeks, an urodynamic study was performed to measure the contraction interval and contraction pressure. The expression and cellular localization of AQP1 and CAV1 were determined by western blot and immunofluorescence experiments in the rat urinary bladder. Results In cystometrograms, the contraction interval was significantly lower in the BOO group (2.9±1.5 minutes) than in the control group (6.7±1.0 minutes) (P<0.05). Conversely, the average contraction pressure was significantly higher in the BOO group (21.2±3.3 mmHg) than in the control group (13.0±2.5 mmHg) (P<0.05). AQP1 and CAV1 were coexpressed in the capillaries, arterioles, and venules of the suburothelial layer. AQP1 and CAV1 protein expression was significantly increased in the BOO rats compared to the control rats (P<0.05). Conclusions Detrusor overactivity induced by BOO causes a significant increase in the expression of AQP1 and CAV1, which were coexpressed in the suburothelial microvasculature. This finding suggests that AQP1 and CAV1 might be closely related to bladder signal activity and may have a functional role in BOO-associated detrusor overactivity. PMID:24466464

  10. Caveolin-1 prevents sustained angiotensin II-induced resistance artery constriction and obesity-induced high blood pressure

    PubMed Central

    Czikora, Istvan; Feher, Attila; Lucas, Rudolf; Fulton, David J. R.

    2014-01-01

    The type 1 angiotensin II (ANG II) receptor (AT1R) undergoes internalization following stimulation by ANG II. Internalization reduces cell surface AT1Rs, and it is required for AT1R resensitization. In this process AT1R may interact with caveolin-1 (Cav1), the main scaffolding protein of caveolae. We hypothesized that the interaction between Cav1 and AT1R delays AT1R resensitization and thereby prevents sustained ANG II-induced resistance artery (RA) constriction under normal conditions and in experimental obesity. In rat and mouse skeletal muscle RA (diameter: ∼90–120 μm) ANG II-induced constrictions were reduced upon repeated (30-min apart) administrations. Upon disruption of caveolae with methyl-β-cyclodextrin or in RA of Cav1 knockout mice, repeated ANG II applications resulted in essentially maintained constrictions. In vascular smooth muscle cells, AT1R interacted with Cav1, and the degree of cell surface interactions was reduced by long-term (15-min), but not short-term (2-min), exposure to ANG II. When Cav1 was silenced, the amount of membrane-associated AT1R was significantly reduced by a short-term ANG II exposure. Moreover, Cav1 knockout mice fed a high-fat diet exhibited augmented and sustained RA constriction to ANG II and had elevated systemic blood pressure, when compared with normal or high-fat fed wild-type mice. Thus, Cav1, through a direct interaction, delays internalization and subsequent resensitization of AT1R. We suggest that this mechanism prevents sustained ANG II-induced RA constriction and elevated systemic blood pressure in diet-induced obesity. PMID:25527780

  11. The Ebola Virus VP35 Protein Is a Suppressor of RNA Silencing

    PubMed Central

    Geutjes, Ernst-Jan; Prins, Marcel; de Haan, Peter; Berkhout, Ben

    2007-01-01

    RNA silencing or interference (RNAi) is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs) that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs) that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication. PMID:17590081

  12. Microtubule-mediated transport of the tumor-suppressor protein Merlin and its mutants.

    PubMed

    Benseñor, Lorena B; Barlan, Kari; Rice, Sarah E; Fehon, Richard G; Gelfand, Vladimir I

    2010-04-20

    The neurofibromatosis type 2 (NF2) tumor-suppressor protein Merlin is a member of the ERM family of proteins that links the cytoskeleton to the plasma membrane. In humans, mutations in the NF2 gene cause neurofibromatosis type-2 (NF2), a cancer syndrome characterized by the development of tumors of the nervous system. Previous reports have suggested that the subcellular distribution of Merlin is critical to its function, and that several NF2 mutants that lack tumor-suppressor activity present improper localization. Here we used a Drosophila cell culture model to study the distribution and mechanism of intracellular transport of Merlin and its mutants. We found that Drosophila Merlin formed cytoplasmic particles that move bidirectionally along microtubules. A single NF2-causing amino acid substitution in the FERM domain dramatically inhibited Merlin particle movement. Surprisingly, the presence of this immotile Merlin mutant also inhibited trafficking of the WT protein. Analysis of the movement of WT protein using RNAi and pull-downs showed that Merlin particles are associated with and moved by microtubule motors (kinesin-1 and cytoplasmic dynein), and that binding of motors and movement is regulated by Merlin phosphorylation. Inhibition of Merlin transport by expression of the dominant-negative mutant or depletion of kinesin-1 results in increased nuclear accumulation of the transcriptional coactivator Yorkie. These results demonstrate the requirement of microtubule-dependent transport for Merlin function. PMID:20368450

  13. Microtubule-mediated transport of the tumor-suppressor protein Merlin and its mutants

    PubMed Central

    Benseñor, Lorena B.; Barlan, Kari; Rice, Sarah E.; Fehon, Richard G.; Gelfand, Vladimir I.

    2010-01-01

    The neurofibromatosis type 2 (NF2) tumor-suppressor protein Merlin is a member of the ERM family of proteins that links the cytoskeleton to the plasma membrane. In humans, mutations in the NF2 gene cause neurofibromatosis type-2 (NF2), a cancer syndrome characterized by the development of tumors of the nervous system. Previous reports have suggested that the subcellular distribution of Merlin is critical to its function, and that several NF2 mutants that lack tumor-suppressor activity present improper localization. Here we used a Drosophila cell culture model to study the distribution and mechanism of intracellular transport of Merlin and its mutants. We found that Drosophila Merlin formed cytoplasmic particles that move bidirectionally along microtubules. A single NF2-causing amino acid substitution in the FERM domain dramatically inhibited Merlin particle movement. Surprisingly, the presence of this immotile Merlin mutant also inhibited trafficking of the WT protein. Analysis of the movement of WT protein using RNAi and pull-downs showed that Merlin particles are associated with and moved by microtubule motors (kinesin-1 and cytoplasmic dynein), and that binding of motors and movement is regulated by Merlin phosphorylation. Inhibition of Merlin transport by expression of the dominant-negative mutant or depletion of kinesin-1 results in increased nuclear accumulation of the transcriptional coactivator Yorkie. These results demonstrate the requirement of microtubule-dependent transport for Merlin function. PMID:20368450

  14. Hydroxylation-Dependent Interaction of Substrates to the Von Hippel-Lindau Tumor Suppressor Protein (VHL).

    PubMed

    Heir, Pardeep; Ohh, Michael

    2016-01-01

    Oxygen-dependent hydroxylation of critical proline residues, catalyzed by prolyl hydroxylase (PHD1-3) enzymes, is a crucial posttranslational modification (PTM) within the canonical hypoxia-inducible factor (HIF)-centric cellular oxygen-sensing pathway. Alteration of substrates in this way often leads to proteasomal degradation mediated by the von Hippel-Lindau Tumor Suppressor protein (VHL) containing E3-ubiquitin ligase complex known as ECV (Elongins B/C, CUL2, VHL). Here, we outline in vitro protocols to demonstrate the ability of VHL to bind to a prolyl-hydroxylated substrate. PMID:27581016

  15. Modification of an apparatus for tumor-suppressor protein crystal growth in the International Space Station

    NASA Astrophysics Data System (ADS)

    de Morais Mendonca Teles, Antonio

    Some human diseases as tumors are being studied continuously for the development of vaccines against them. And a way of doing that is by means of proteins research. There are some kinds of proteins, like the p53 and p73 proteins, which are tumor suppressors. There are other diseases such as A.I.D.S., hansenosis, the Parkinson's and Chagas' diseases which are protein-related. The determination of how proteins geometrically order themselves, during its biological functions is very necessary to understand how a protein's structure affects its function, to design vaccines that intercede in tumor-protein activities and in other proteins related to those other diseases. The protein crystal growth in microgravity environment produces purer crystallization than on the ground, and it is a powerful tool to produce better vaccines. Several data have already been acquired using ground-based research and in spaceflight experiments aboard the Spacelab and Space Shuttle missions, and in the MIR and in the International Space Station (ISS). Here in this paper, I propose to be performed in the ISS Biological Research Facility (which is being developed), multiple crystal growth of proteins related to cancer (as tumors suppressors and oncoproteins), A.I.D.S., hansenosis, the Parkinson's and Chagas' diseases, for the future obtaining of possible vaccines against them. I also propose a simple and practical equipment, a modification of the crystallization plates (which use a vapor diffusion technique) inside each cylinder of the Protein Crystallization Apparatus in Microgravity (PCAM), with multiple chambers with different sizes. Instead of using some chambers with the same size it is better to use several chambers with different sizes. Why is that? The answer is: the energy associated with the surface tension of the liquid in the chamber is directly related to the circle area of it. So, to minimize the total energy of the surface tension of a proteins liquid -making it more stable

  16. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide.

    PubMed

    Tourkina, Elena; Bonner, Michael; Oates, James; Hofbauer, Ann; Richard, Mathieu; Znoyko, Sergei; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley

    2011-01-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the

  17. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation.

    PubMed

    Fusaro, Adriana F; Correa, Regis L; Nakasugi, Kenlee; Jackson, Craig; Kawchuk, Lawrence; Vaslin, Maite F S; Waterhouse, Peter M

    2012-05-10

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0(PE), in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0(PE) has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0(PE) destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery. PMID:22361475

  18. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    SciTech Connect

    Fusaro, Adriana F.; Correa, Regis L.; Nakasugi, Kenlee; Jackson, Craig; Kawchuk, Lawrence; Vaslin, Maite F.S.; Waterhouse, Peter M.

    2012-05-10

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0{sup PE}, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0{sup PE} has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0{sup PE} destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  19. Caveolin-1 Facilitates the Direct Coupling between Large Conductance Ca2+-activated K+ (BKCa) and Cav1.2 Ca2+ Channels and Their Clustering to Regulate Membrane Excitability in Vascular Myocytes*

    PubMed Central

    Suzuki, Yoshiaki; Yamamura, Hisao; Ohya, Susumu; Imaizumi, Yuji

    2013-01-01

    L-type voltage-dependent Ca2+ channels (LVDCC) and large conductance Ca2+-activated K+ channels (BKCa) are the major factors defining membrane excitability in vascular smooth muscle cells (VSMCs). The Ca2+ release from sarcoplasmic reticulum through ryanodine receptor significantly contributes to BKCa activation in VSMCs. In this study direct coupling between LVDCC (Cav1.2) and BKCa and the role of caveoline-1 on their interaction in mouse mesenteric artery SMCs were examined. The direct activation of BKCa by Ca2+ influx through coupling LVDCC was demonstrated by patch clamp recordings in freshly isolated VSMCs. Using total internal reflection fluorescence microscopy, it was found that a large part of yellow fluorescent protein-tagged BKCa co-localized with the cyan fluorescent protein-tagged Cav1.2 expressed in the plasma membrane of primary cultured mouse VSMCs and that the two molecules often exhibited FRET. It is notable that each BKα subunit of a tetramer in BKCa can directly interact with Cav1.2 and promotes Cav1.2 cluster in the molecular complex. Furthermore, caveolin-1 deficiency in knock-out (KO) mice significantly reduced not only the direct coupling between BKCa and Cav1.2 but also the functional coupling between BKCa and ryanodine receptor in VSMCs. The measurement of single cell shortening by 40 mm K+ revealed enhanced contractility in VSMCs from KO mice than wild type. Taken together, caveolin-1 facilitates the accumulation/clustering of BKCa-LVDCC complex in caveolae, which effectively regulates spatiotemporal Ca2+ dynamics including the negative feedback, to control the arterial excitability and contractility. PMID:24202214

  20. Direct measurement of formation of loops in DNA by a human tumor suppressor protein

    NASA Astrophysics Data System (ADS)

    Migliori, Amy; Kung, Samuel; Wang, Danielle; Smith, Douglas E.

    2013-09-01

    In previous work we developed methods using optical tweezers to measure protein-mediated formation of loops in DNA structures that can play an important role in regulating gene expression. We previously applied this method to study two-site restriction endonucleases, which were convenient model systems for studying this phenomenon. Here we report preliminary work in which we have applied this method to study p53, a human tumor suppressor protein, and show that we can measure formation of loops. Previous biophysical evidence for loops comes from relatively limited qualitative studies of fixed complexes by electron microscopy4. Our results provide independent corroboration and future opportunities for more quantitative studies investigating structure and mechanics.

  1. Significance of caveolin-1 and matrix metalloproteinase 14 gene expression in canine mammary tumours.

    PubMed

    Ebisawa, M; Iwano, H; Nishikawa, M; Tochigi, Y; Komatsu, T; Endou, Y; Hirayama, K; Taniyama, H; Kadosawa, T; Yokota, H

    2015-11-01

    Canine mammary tumours (CMTs) are the most common neoplasms affecting female dogs. There is an urgent need for molecular biomarkers that can detect early stages of the disease in order to improve accuracy of CMT diagnosis. The aim of this study was to examine whether caveolin-1 (Cav-1) and matrix metalloproteinase 14 (MMP14) are associated with CMT histological malignancy and invasion. Sixty-five benign and malignant CMT samples and six normal canine mammary glands were analysed using quantitative reverse transcription-polymerase chain reaction. Cav-1 and MMP14 genes were highly expressed in CMT tissues compared to normal tissues. Cav-1 especially was overexpressed in malignant and invasive CMT tissues. When a CMT cell line was cultured on fluorescent gelatin-coated coverslips, localisation of Cav-1 was observed at invadopodia-mediated degradation sites of the gelatin matrix. These findings suggest that Cav-1 may be involved in CMT invasion and that the markers may be useful for estimating CMT malignancy. PMID:26364240

  2. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1.

    PubMed

    Yamaguchi, Tomoya; Lu, Can; Ida, Lisa; Yanagisawa, Kiyoshi; Usukura, Jiro; Cheng, Jinglei; Hotta, Naoe; Shimada, Yukako; Isomura, Hisanori; Suzuki, Motoshi; Fujimoto, Toyoshi; Takahashi, Takashi

    2016-01-01

    The receptor tyrosine kinase-like orphan receptor 1 (ROR1) sustains prosurvival signalling directly downstream of the lineage-survival oncogene NKX2-1/TTF-1 in lung adenocarcinoma. Here we report an unanticipated function of this receptor tyrosine kinase (RTK) as a scaffold of cavin-1 and caveolin-1 (CAV1), two essential structural components of caveolae. This kinase-independent function of ROR1 facilitates the interactions of cavin-1 and CAV1 at the plasma membrane, thereby preventing the lysosomal degradation of CAV1. Caveolae structures and prosurvival signalling towards AKT through multiple RTKs are consequently sustained. These findings provide mechanistic insight into how ROR1 inhibition can overcome EGFR-tyrosine kinase inhibitor (TKI) resistance due to bypass signalling via diverse RTKs such as MET and IGF-IR, which is currently a major clinical obstacle. Considering its onco-embryonic expression, inhibition of the scaffold function of ROR1 in patients with lung adenocarcinoma is an attractive approach for improved treatment of this devastating cancer. PMID:26725982

  3. Lower Serum Caveolin-1 Is Associated with Cerebral Microbleeds in Patients with Acute Ischemic Stroke

    PubMed Central

    Zhang, Jun; Zhu, Wusheng; Xiao, Lulu; Cao, Qinqin; Zhang, Hao; Wang, Huaiming; Ye, Zusen; Hao, Yonggang; Dai, Qiliang; Sun, Wen; Liu, Xinfeng; Ye, Ruidong

    2016-01-01

    Caveolin-1 (Cav-1) plays pivotal roles in the endothelial damage following stroke. The present study aimed to investigate whether serum Cav-1 level is associated with the presence of cerebral small vessel disease (cSVD) in patients with acute ischemic stroke. To this end, 156 patients were consecutively enrolled. Cranial magnetic resonance imaging was analyzed to determine the surrogates of cSVD, including cerebral microbleeds (CMBs), silent lacunar infarcts (SLIs), and white matter hyperintensities (WMHs). After adjusting for potential confounders, patients with low Cav-1 level had a higher risk of CMBs than patients with high Cav-1 level (OR: 4.05, 95% CI: 1.77–9.30). However, there was no relationship between Cav-1 and the presence of SLIs or WMHs. When CMBs were stratified by location and number, a similar association was found in patients with deep or infratentorial CMBs (OR: 4.04, 95% CI: 1.59–10.25) and with multiple CMBs (OR: 3.18, 95% CI: 1.16–8.72). These results suggest lower serum Cav-1 levels may be associated with CMBs, especially those that are multiple and located in deep brain or infratentorial structures, in patients with acute ischemic stroke. Cav-1 may be involved in the pathophysiology of CMBs, and may act as a potential target for treating cSVD. PMID:27119011

  4. Caveolin-1 Expression Ameliorates Nephrotic Damage in a Rabbit Model of Cholesterol-Induced Hypercholesterolemia

    PubMed Central

    Chen, Ya-Hui; Lin, Wei-Wen; Liu, Chin-San; Hsu, Li-Sung; Lin, Yueh-Min; Su, Shih-Li

    2016-01-01

    Caveolin-1 (CAV-1) participates in regulating vesicular transport, signal transduction, tumor progression, and cholesterol homeostasis. In the present study, we tested the hypothesis that CAV-1 improves dyslipidemia, inhibits cyclophilin A (CypA)- mediated ROS production, prevents mitochondrial compensatory action and attenuates oxidative stress responses in cholesterol-induced hypercholesterolemia. To determine the role of CAV-1 in mediating oxidative and antioxidative as well as cholesterol homeostasis, hypercholesterolemic rabbits were intravenously administered antenapedia-CAV-1 (AP-CAV-1) peptide for 2 wk. AP-CAV-1 enhanced CAV-1 expression by ˃15%, inhibited CypA expression by ˃50% (P < 0.05) and significantly improved dyslipidemia, thus reducing neutral lipid peroxidation. Moreover, CAV-1 attenuated hypercholesterolemia-induced changes in mitochondrial morphology and biogenesis and preserved mitochondrial respiratory function. In addition, CAV-1 protected against hypercholesterol-induced oxidative stress responses by reducing the degree of oxidative damage and enhancing the expression of antioxidant enzymes. CAV-1 treatment significantly suppressed apoptotic cell death, as evidenced by the reduction in the number of terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells. We concluded that CAV-1 plays a critical role in inhibiting CypA-mediated ROS production, improving dyslipidemia, maintaining mitochondrial function, and suppressing oxidative stress responses that are vital for cell survival in hypercholesterol-affected renal organs. PMID:27124120

  5. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  6. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.

    PubMed

    Lobos-González, Lorena; Aguilar, Lorena; Diaz, Jorge; Diaz, Natalia; Urra, Hery; Torres, Vicente A; Silva, Veronica; Fitzpatrick, Christopher; Lladser, Alvaro; Hoek, Keith S; Leyton, Lisette; Quest, Andrew F G

    2013-07-01

    The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  7. Wogonin inhibits H2O2-induced vascular permeability through suppressing the phosphorylation of caveolin-1.

    PubMed

    Wang, Fei; Song, Xiuming; Zhou, Mi; Wei, Libin; Dai, Qinsheng; Li, Zhiyu; Lu, Na; Guo, Qinglong

    2013-03-01

    Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been reported for its anti-oxidant activity. However, it is still unclear whether wogonin can inhibit oxidant-induced vascular permeability. In this study, we evaluated the effects of wogonin on H2O2-induced vascular permeability in human umbilical vein endothelial cells (HUVECs). We found that wogonin can suppress the H2O2-stimulated actin remodeling and albumin uptake of HUVECs, as well as transendothelial cell migration of the human breast carcinoma cell MDA-MB-231. The mechanism revealed that wogonin inhibited H2O2-induced phosphorylation of caveolin-1 (cav-1) associating with the suppression of stabilization of VE-cadherin and β-catenin. Moreover, wogonin repressed anisomycin-induced phosphorylation of p38, cav-1 and vascular permeability. These results suggested that wogonin could inhibit H2O2-induced vascular permeability by downregulating the phosphorylation of cav-1, and that it might have a therapeutic potential for the diseases associated with the development of both oxidant and vascular permeability. PMID:23246481

  8. Static pressure drives proliferation of vascular smooth muscle cells via caveolin-1/ERK1/2 pathway

    SciTech Connect

    Luo, Di-xian; Cheng, Jiming; Xiong, Yan; Li, Junmo; Xia, Chenglai; Xu, Canxin; Wang, Chun; Zhu, Bingyang; Hu, Zhuowei; Liao, Duan-fang

    2010-01-22

    Intimal hyperplasia plays an important role in various types of vascular remodeling. Mechanical forces derived from blood flow are associated with the proliferation of vascular smooth muscle cells (VSMC). This contributes to many vascular disorders such as hypertension, atherosclerosis and restenosis after percutaneous transluminal angioplasty (PTA). In this study, we show that static pressure induces the proliferation of VSMC and activates its related signal pathway. VSMC from a rat aorta were treated with different pressures (0, 60, 90, 120, 150 and 180 mm Hg) in a custom-made pressure incubator for 24 h. The most active proliferation of VSMC was detected at a pressure of 120 mm Hg. VSMC was also incubated under a static pressure of 120 mm Hg for different time intervals (0, 2, 4, 8, 12 and 24 h). We found that static pressure significantly stimulates VSMC proliferation. Extracellular signal-regulated kinases 1/2 (ERK1/2) activation showed a peak at the pressure of 120 mm Hg at 4-h time point. Moreover, caveolin-1 expression was significantly inhibited by rising static pressure. Downregulation of VSMC proliferation could be found after PD98059 (ERK1/2 phosphorylation inhibitor) treatment. Our data also showed that a siRNA-mediated caveolin-1 knock down increased ERK1/2 phosphorylation and VSMC proliferation. These results demonstrate that static pressure promotes VSMC proliferation via the Caveolin-1/ERK1/2 pathway.

  9. SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis

    PubMed Central

    2014-01-01

    It is a well-established scientific observation that mammalian cells contain fidelity proteins that appear to protect against and adapt to various forms of endogenous and exogenous cellular conditions. Loss of function or genetic mutation of these fidelity proteins has also been shown to create a cellular environment that is permissive for the development of tumors, suggesting that these proteins also function as tumor suppressors (TSs). While the first identified TSs were confined to either the nucleus and/or the cytoplasm, it seemed logical to hypothesize that the mitochondria may also contain fidelity proteins that serve as TSs. In this regard, it now appears clear that at least two mitochondrial sirtuins function as sensing, watchdog, or TS proteins in vitro, in vivo, and in human tumor samples. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity/sensing proteins, SIRT3 and SIRT4, respond to changes in cellular nutrient status to alter the enzymatic activity of specific downstream targets to maintain energy production that matches energy availability and ATP consumption. As such, it is proposed that loss of function or genetic deletion of these mitochondrial genes results in a mismatch of mitochondrial energy metabolism, culminating in a cell phenotype permissive for transformation and tumorigenesis. In addition, these findings clearly suggest that loss of proper mitochondrial metabolism, via loss of SIRT3 and SIRT4, is sufficient to promote carcinogenesis. PMID:25332769

  10. SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis.

    PubMed

    Zhu, Yueming; Yan, Yufan; Principe, Daniel R; Zou, Xianghui; Vassilopoulos, Athanassios; Gius, David

    2014-01-01

    It is a well-established scientific observation that mammalian cells contain fidelity proteins that appear to protect against and adapt to various forms of endogenous and exogenous cellular conditions. Loss of function or genetic mutation of these fidelity proteins has also been shown to create a cellular environment that is permissive for the development of tumors, suggesting that these proteins also function as tumor suppressors (TSs). While the first identified TSs were confined to either the nucleus and/or the cytoplasm, it seemed logical to hypothesize that the mitochondria may also contain fidelity proteins that serve as TSs. In this regard, it now appears clear that at least two mitochondrial sirtuins function as sensing, watchdog, or TS proteins in vitro, in vivo, and in human tumor samples. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity/sensing proteins, SIRT3 and SIRT4, respond to changes in cellular nutrient status to alter the enzymatic activity of specific downstream targets to maintain energy production that matches energy availability and ATP consumption. As such, it is proposed that loss of function or genetic deletion of these mitochondrial genes results in a mismatch of mitochondrial energy metabolism, culminating in a cell phenotype permissive for transformation and tumorigenesis. In addition, these findings clearly suggest that loss of proper mitochondrial metabolism, via loss of SIRT3 and SIRT4, is sufficient to promote carcinogenesis. PMID:25332769

  11. Bromodomain-containing protein 7 (BRD7) as a potential tumor suppressor in hepatocellular carcinoma

    PubMed Central

    Pan, Qiu-Zhong; Tang, Yan; Wang, Qi-Jing; Pan, Ke; Huang, Li-Xi; He, Jia; Zhao, Jing-Jing; Jiang, Shan-Shan; Zhang, Xiao-Fei; Zhang, Hong-Xia; Zhou, Zi-Qi; Weng, De-Sheng; Xia, Jian-Chuan

    2016-01-01

    Bromodomain-containing protein 7 (BRD7) is a subunit of the PBAF complex, which functions as a transcriptional cofactor for the tumor suppressor protein p53. Down-regulation of BRD7 has been demonstrated in multiple types of cancer. This study aimed to investigate BRD7 expression and its tumor suppressive effect in hepatocellular carcinoma (HCC). The expression of BRD7 was examined in clinical specimens of primary HCC and in HCC cell lines through real-time quantitative PCR, western blot and immunohistochemistry. The prognostic value of BRD7 expression and its correlation with the clinicopathological features of HCC patients were statistically analyzed. The effect of BRD7 on the tumorigenicity of HCC was also examined using proliferation and colony-formation assays, cell-cycle assays, migration and cell-invasion assays, and xenograft nude mouse models. BRD7 was down-regulated in tumor tissues and HCC cell lines. BRD7 protein expression was strongly associated with clinical stage and tumor size. Kaplan-Meier survival curves revealed higher survival rates in patients with higher BRD7 expression levels compared to those with lower BRD7 levels. A multivariate analysis indicated that BRD7 expression was an independent prognostic marker. The re-introduction of BRD7 expression significantly inhibited proliferation, colony formation, migration and invasion and led to cell cycle arrest in HCC cells in vitro. Furthermore, experiments in mice suggested that BRD7 overexpression suppresses HCC tumorigenicity in vivo. In conclusions, our data indicated that BRD7 may serve as a tumor suppressor in HCC and may be a novel molecular target for the treatment of HCC. PMID:26919247

  12. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    PubMed Central

    2009-01-01

    Background Imaging tools such as scanning electron microscope (SEM) and atomic force microscope (AFM) can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK) 293, human breast cancer (MCF-7) and mouse melanoma (B16F1) cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor protein SMAR1 might be

  13. Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity

    PubMed Central

    Guo, Shuang; Cheng, Xiwen; Lim, Jun-Hee; Liu, Yu; Kao, Hung-Ying

    2014-01-01

    Oxidative stress is a consequence of an imbalance between reactive oxygen species (ROS) production and the ability of the cytoprotective system to detoxify the reactive intermediates. The tumor suppressor promyelocytic leukemia protein (PML) functions as a stress sensor. Loss of PML results in impaired mitochondrial complex II activity, increased ROS, and subsequent activation of nuclear factor erythroid 2–related factor 2 (Nrf2) antioxidative pathway. We also demonstrate that sulforaphane (SFN), an antioxidant, regulates Nrf2 activity by controlling abundance and subcellular distribution of PML and that PML is essential for SFN-mediated ROS increase, Nrf2 activation, antiproliferation, antimigration, and antiangiogenesis. Taking the results together, we have uncovered a novel antioxidative mechanism by which PML regulates cellular oxidant homeostasis by controlling complex II integrity and Nrf2 activity and identified PML as an indispensable mediator of SFN activity. PMID:24943846

  14. Lipopolysaccharide-induced caveolin-1 phosphorylation-dependent increase in transcellular permeability precedes the increase in paracellular permeability

    PubMed Central

    Wang, Nan; Zhang, Dan; Sun, Gengyun; Zhang, Hong; You, Qinghai; Shao, Min; Yue, Yang

    2015-01-01

    Background Lipopolysaccharide (LPS) was shown to induce an increase in caveolin-1 (Cav-1) expression in endothelial cells; however, the mechanisms regarding this response and the consequences on caveolae-mediated transcellular transport have not been completely investigated. This study aims to investigate the role of LPS-induced Cav-1 phosphorylation in pulmonary microvascular permeability in pulmonary microvascular endothelial cells (PMVECs). Methods Rat PMVECs were isolated, cultured, and identified. Endocytosis experiments were employed to stain the nuclei by DAPI, and images were obtained with a fluorescence microscope. Permeability of endothelial cultures was measured to analyze the barrier function of endothelial monolayer. Western blot assay was used to examine the expression of Cav-1, pCav-1, triton-insoluble Cav-1, and triton-soluble Cav-1 protein. Results The LPS treatment induced phosphorylation of Cav-1, but did not alter the total Cav-1 level till 60 min in both rat and human PMVECs. LPS treatment also increased the triton-insoluble Cav-1 level, which peaked 15 min after LPS treatment in both rat and human PMVECs. LPS treatment increases the intercellular cell adhesion molecule-1 expression. Src inhibitors, including PP2, PP1, Saracatinib, and Quercetin, partially inhibited LPS-induced phosphorylation of Cav-1. In addition, both PP2 and caveolae disruptor MβCD inhibited LPS-induced increase of triton-insoluble Cav-1. LPS induces permeability by activating interleukin-8 and vascular endothelial growth factor and targeting other adhesion markers, such as ZO-1 and occludin. LPS treatment also significantly increased the endocytosis of albumin, which could be blocked by PP2 or MβCD. Furthermore, LPS treatment for 15 min significantly elevated Evans Blue-labeled BSA transport in advance of a decrease in transendothelial electrical resistance of PMVEC monolayer at this time point. After LPS treatment for 30 min, transendothelial electrical resistance

  15. Identification of RNA-Binding Protein LARP4B as a Tumor Suppressor in Glioma.

    PubMed

    Koso, Hideto; Yi, Hungtsung; Sheridan, Paul; Miyano, Satoru; Ino, Yasushi; Todo, Tomoki; Watanabe, Sumiko

    2016-04-15

    Transposon-based insertional mutagenesis is a valuable method for conducting unbiased forward genetic screens to identify cancer genes in mice. We used this system to elucidate factors involved in the malignant transformation of neural stem cells into glioma-initiating cells. We identified an RNA-binding protein, La-related protein 4b (LARP4B), as a candidate tumor-suppressor gene in glioma. LARP4B expression was consistently decreased in human glioma stem cells and cell lines compared with normal neural stem cells. Moreover, heterozygous deletion of LARP4B was detected in nearly 80% of glioblastomas in The Cancer Genome Atlas database. LARP4B loss was also associated with low expression and poor patient survival. Overexpression of LARP4B in glioma cell lines strongly inhibited proliferation by inducing mitotic arrest and apoptosis in four of six lines as well as in two patient-derived glioma stem cell populations. The expression levels of CDKN1A and BAX were also upregulated upon LARP4B overexpression, and the growth-inhibitory effects were partially dependent on p53 (TP53) activity in cells expressing wild-type, but not mutant, p53. We further found that the La module, which is responsible for the RNA chaperone activity of LARP4B, was important for the growth-suppressive effect and was associated with BAX mRNA. Finally, LARP4B depletion in p53 and Nf1-deficient mouse primary astrocytes promoted cell proliferation and led to increased tumor size and invasiveness in xenograft and orthotopic models. These data provide strong evidence that LARP4B serves as a tumor-suppressor gene in glioma, encouraging further exploration of the RNA targets potentially involved in LARP4B-mediatd growth inhibition. Cancer Res; 76(8); 2254-64. ©2016 AACR. PMID:26933087

  16. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells

    PubMed Central

    Cui, Lei; Wang, Haiying; Ji, Yanxi; Yang, Jie; Xu, Shan; Huang, Xingyu; Wang, Zidao; Qin, Lei; Tien, Po; Zhou, Xi

    2015-01-01

    ABSTRACT RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic

  17. Interferon-Inducible Protein 16: Insight into the Interaction with Tumor Suppressor p53

    SciTech Connect

    Liao, Jack C.C.; Lam, Robert; Brazda, Vaclav; Duan, Shili; Ravichandran, Mani; Ma, Justin; Xiao, Ting; Tempel, Wolfram; Zuo, Xiaobing; Wang, Yun-Xing; Chirgadze, Nickolay Y.; Arrowsmith, Cheryl H.

    2011-08-24

    IFI16 is a member of the interferon-inducible HIN-200 family of nuclear proteins. It has been implicated in transcriptional regulation by modulating protein-protein interactions with p53 tumor suppressor protein and other transcription factors. However, the mechanisms of interaction remain unknown. Here, we report the crystal structures of both HIN-A and HIN-B domains of IFI16 determined at 2.0 and 2.35 {angstrom} resolution, respectively. Each HIN domain comprises a pair of tightly packed OB-fold subdomains that appear to act as a single unit. We show that both HIN domains of IFI16 are capable of enhancing p53-DNA complex formation and transcriptional activation via distinctive means. HIN-A domain binds to the basic C terminus of p53, whereas the HIN-B domain binds to the core DNA-binding region of p53. Both interactions are compatible with the DNA-bound state of p53 and together contribute to the effect of full-length IFI16 on p53-DNA complex formation and transcriptional activation.

  18. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae.

    PubMed

    Zimnicka, Adriana M; Husain, Yawer S; Shajahan, Ayesha N; Sverdlov, Maria; Chaga, Oleg; Chen, Zhenlong; Toth, Peter T; Klomp, Jennifer; Karginov, Andrei V; Tiruppathi, Chinnaswamy; Malik, Asrar B; Minshall, Richard D

    2016-07-01

    Caveolin 1 (Cav1) is a required structural component of caveolae, and its phosphorylation by Src is associated with an increase in caveolae-mediated endocytosis. Here we demonstrate, using quantitative live-cell 4D, TIRF, and FRET imaging, that endocytosis and trafficking of caveolae are associated with a Cav1 Tyr-14 phosphorylation-dependent conformational change, which spatially separates, or loosens, Cav1 molecules within the oligomeric caveolar coat. When tracked by TIRF and spinning-disk microscopy, cells expressing phosphomimicking Cav1 (Y14D) mutant formed vesicles that were greater in number and volume than with Y14F-Cav1-GFP. Furthermore, we observed in HEK cells cotransfected with wild-type, Y14D, or Y14F Cav1-CFP and -YFP constructs that FRET efficiency was greater with Y14F pairs than with Y14D, indicating that pY14-Cav1 regulates the spatial organization of Cav1 molecules within the oligomer. In addition, albumin-induced Src activation or direct activation of Src using a rapamycin-inducible Src construct (RapR-Src) led to an increase in monomeric Cav1 in Western blots, as well as a simultaneous increase in vesicle number and decrease in FRET intensity, indicative of a Src-mediated conformational change in CFP/YFP-tagged WT-Cav1 pairs. We conclude that phosphorylation of Cav1 leads to separation or "spreading" of neighboring negatively charged N-terminal phosphotyrosine residues, promoting swelling of caveolae, followed by their release from the plasma membrane. PMID:27170175

  19. Smooth muscle NOS, colocalized with caveolin-1, modulates contraction in mouse small intestine

    PubMed Central

    El-Yazbi, Ahmed F; Cho, Woo Jung; Cena, Jonathan; Schulz, Richard; Daniel, Edwin E

    2008-01-01

    Neuronal nitric oxide synthase (nNOS) in myenteric neurons is activated during peristalsis to produce nitric oxide which relaxes intestinal smooth muscle. A putative nNOS is also found in the membrane of intestinal smooth muscle cells in mouse and dog. In this study we studied the possible functions of this nNOS expressed in mouse small intestinal smooth muscle colocalized with caveolin-1(Cav-1). Cav-1 knockout mice lacked nNOS in smooth muscle and provided control tissues. 60 mM KCl was used to increase intracellular [Ca2+] through L-type Ca2+ channel opening and stimulate smooth muscle NOS activity in intestinal tissue segments. An additional contractile response to LNNA (100 μM, NOS inhibitor) was observed in KCl-contracted tissues from control mice and was almost absent in tissues from Cav-1 knockout mice. Disruption of caveolae with 40 mM methyl-β cyclodextrin in tissues from control mice led to the loss of Cav-1 and nNOS immunoreactivity from smooth muscle as shown by immunohistochemistry and a reduction in the response of these tissues to N-ω-nitro-L-arginine (LNNA). Reconstitution of membrane cholesterol using water soluble cholesterol in the depleted segments restored the immunoreactivity and the response to LNNA added after KCl. Nicardipine (1 μM) blocked the responses to KCl and LNNA confirming the role of L-type Ca2+ channels. ODQ (1 μM, soluble guanylate cyclase inhibitor) had the same effect as inhibition of NOS following KCl. We conclude that the activation of nNOS, localized in smooth muscle caveolae, by calcium entering through L-type calcium channels triggers nitric oxide production which modulates muscle contraction by a cGMP-dependent mechanism. PMID:18400048

  20. Loss of caveolin-1 and gain of MCT4 expression in the tumor stroma

    PubMed Central

    Martins, Diana; Beça, Francisco F; Sousa, Bárbara; Baltazar, Fátima; Paredes, Joana; Schmitt, Fernando

    2013-01-01

    The progression from in situ to invasive breast carcinoma is still an event poorly understood. However, it has been suggested that interactions between the neoplastic cells and the tumor microenvironment may play an important role in this process. Thus, the determination of differential tumor-stromal metabolic interactions could be an important step in invasiveness. The expression of stromal Caveolin-1 (Cav-1) has already been implicated in the progression from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). Additionally, stromal Cav-1 expression has been associated with the expression of stromal monocarboxylate transporter 4 (MCT4) in invasive breast cancer. However, the role of stromal MCT4 in invasiveness has never been explored, neither the association between Cav-1 and MCT4 in the transition from breast DCIS to IDC. Therefore, our aim was to investigate in a series of breast cancer samples including matched in situ and invasive components, if there was a relationship between stromal Cav-1 and MCT4 in the progression from in situ to invasive carcinoma. We found loss of stromal Cav-1 in the progression to IDC in 75% of the cases. In contrast, MCT4 stromal expression was acquired in 87% of the IDCs. Interestingly, a concomitant loss of Cav-1 and gain of MCT4 was observed in the stroma of 75% of the cases, when matched in situ and invasive carcinomas were compared. These results suggest that alterations in Cav-1 and MCT4 may thus mark a critical point in the progression from in situ to invasive breast cancer. PMID:23907124

  1. Prognostic value of caveolin-1 in genitourinary cancer: a meta-analysis

    PubMed Central

    Liu, Jia-Ming; Cheng, Si-Hang; Liu, Xiao-Xiao; Xia, Chao; Wang, Wei-Wen; Ma, Xue-Lei

    2015-01-01

    We aimed to obtain the most comprehensive picture to date of the prognostic value of caveolin-1 (Cav-1) in genitourinary carcinoma by meta-analyzing all eligible studies in PubMed and EMBASE. Data on patient clinical characteristics, cancer-specific survival (CSS) and recurrence-free survival (RFS) were extracted. The meta-analysis included 6 articles on prostate cancer, 5 on renal cancer, 1 on bladder cancer and 1 on transition cell carcinoma of the upper urinary tract. Two studies examining the association of ELISA-measured Cav-1 levels in serum with RFS in 621 patients with prostate cancer gave a combined hazard ratio (HR) of 1.25 (95% CI 0.36 to 4.36). The other 4 studies on prostate cancer examined the association of immunohistochemically determined Cav-1 levels in cancerous tissue with RFS and gave a combined HR of 1.83 (95% CI 1.36 to 2.47). Three studies on renal cancer examining the association of Cav-1 levels with CSS gave a multivariate HR of 1.98 (95% CI 1.35 to 2.90). The single studies on bladder carcinoma and upper urinary tract carcinoma gave, respectively, a multivariate HR of 2.28 (95% CI 1.09 to 4.74) for the relationship of Cav-1 levels to DFS, and a multivariate HR of 5.08 (95% CI 1.799 to 14.342) for the relationship of Cav-1 levels to CSS. This meta-analysis of available evidence suggests that elevated Cav-1 levels in serum can predict poor survival in patients with genitourinary cancer, which may help identify high-risk patients earlier and guide clinical decision-making. PMID:26884999

  2. Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma.

    PubMed

    Faggi, Fiorella; Chiarelli, Nicola; Colombi, Marina; Mitola, Stefania; Ronca, Roberto; Madaro, Luca; Bouche, Marina; Poliani, Pietro L; Vezzoli, Marika; Longhena, Francesca; Monti, Eugenio; Salani, Barbara; Maggi, Davide; Keller, Charles; Fanzani, Alessandro

    2015-06-01

    Rhabdomyosarcoma (RMS) is a childhood soft tissue tumor with broad expression of markers that are typically found in skeletal muscle. Cavin-1 is a recently discovered protein actively cooperating with Caveolin-1 (Cav-1) in the morphogenesis of caveolae and whose role in cancer is drawing increasing attention. Using a combined in silico and in vitro analysis here we show that Cavin-1 is expressed in myogenic RMS tumors as well as in human and primary mouse RMS cultures, exhibiting a broad subcellular localization, ranging from nuclei and cytosol to plasma membrane. In particular, the coexpression and plasma membrane interaction between Cavin-1 and Cav-1 characterized the proliferation of human and mouse RMS cell cultures, while a downregulation of their expression levels was observed during the myogenic differentiation. Knockdown of Cavin-1 or Cav-1 in the human RD and RH30 cells led to impairment of cell proliferation and migration. Moreover, loss of Cavin-1 in RD cells impaired the anchorage-independent cell growth in soft agar. While the loss of Cavin-1 did not affect the Cav-1 protein levels in RMS cells, Cav-1 overexpression and knockdown triggered a rise or depletion of Cavin-1 protein levels in RD cells, respectively, in turn reflecting on increased or decreased cell proliferation, migration and anchorage-independent cell growth. Collectively, these data indicate that the interaction between Cavin-1 and Cav-1 underlies the cell growth and migration in myogenic tumors. PMID:25822667

  3. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy

    PubMed Central

    Shi, Yin; Tan, Shi-Hao; Ng, Shukie; Zhou, Jing; Yang, Na-Di; Koo, Gi-Bang; McMahon, Kerrie-Ann; Parton, Robert G; Hill, Michelle M; del Pozo, Miguel A; Kim, You-Sun; Shen, Han-Ming

    2015-01-01

    CAV1 (caveolin 1, caveolae protein, 22kDa) is well known as a principal scaffolding protein of caveolae, a specialized plasma membrane structure. Relatively, the caveolae-independent function of CAV1 is less studied. Autophagy is a process known to involve various membrane structures, including autophagosomes, lysosomes, and autolysosomes for degradation of intracellular proteins and organelles. Currently, the function of CAV1 in autophagy remains largely elusive. In this study, we demonstrate for the first time that CAV1 deficiency promotes both basal and inducible autophagy. Interestingly, the promoting effect was found mainly in the late stage of autophagy via enhancing lysosomal function and autophagosome-lysosome fusion. Notably, the regulatory function of CAV1 in lysosome and autophagy was found to be caveolae-independent, and acts through lipid rafts. Furthermore, the elevated autophagy level induced by CAV1 deficiency serves as a cell survival mechanism under starvation. Importantly, downregulation of CAV1 and enhanced autophagy level were observed in human breast cancer cells and tissues. Taken together, our data reveal a novel function of CAV1 and lipid rafts in breast cancer development via modulation of lysosomal function and autophagy. PMID:25945613

  4. Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death

    PubMed Central

    Guan, D; Lim, J H; Peng, L; Liu, Y; Lam, M; Seto, E; Kao, H-Y

    2014-01-01

    The promyelocytic leukemia protein (PML) is a tumor suppressor that is expressed at a low level in various cancers. Although post-translational modifications including SUMOylation, phosphorylation, and ubiquitination have been found to regulate the stability or activity of PML, little is known about the role of its acetylation in the control of cell survival. Here we demonstrate that acetylation of lysine 487 (K487) and SUMO1 conjugation of K490 at PML protein are mutually exclusive. We found that hydrogen peroxide (H2O2) promotes PML deacetylation and identified SIRT1 and SIRT5 as PML deacetylases. Both SIRT1 and SIRT5 are required for H2O2-mediated deacetylation of PML and accumulation of nuclear PML protein in HeLa cells. Knockdown of SIRT1 reduces the number of H2O2-induced PML-nuclear bodies (NBs) and increases the survival of HeLa cells. Ectopic expression of wild-type PML but not the K487R mutant rescues H2O2-induced cell death in SIRT1 knockdown cells. Furthermore, ectopic expression of wild-type SIRT5 but not a catalytic defective mutant can also restore H2O2-induced cell death in SIRT1 knockdown cells. Taken together, our findings reveal a novel regulatory mechanism in which SIRT1/SIRT5-mediated PML deacetylation plays a role in the regulation of cancer cell survival. PMID:25032863

  5. Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target.

    PubMed

    Chemes, Lucía B; Sánchez, Ignacio E; de Prat-Gay, Gonzalo

    2011-09-16

    The retinoblastoma tumor suppressor (Rb) plays a key role in cell cycle control and is linked to various types of human cancer. Rb binds to the LxCxE motif, present in a number of cellular and viral proteins such as AdE1A, SV40 large T-antigen and human papillomavirus (HPV) E7, all instrumental in revealing fundamental mechanisms of tumor suppression, cell cycle control and gene expression. A detailed kinetic study of RbAB binding to the HPV E7 oncoprotein shows that an LxCxE-containing E7 fragment binds through a fast two-state reaction strongly favored by electrostatic interactions. Conversely, full-length E7 binds through a multistep process involving a pre-equilibrium between E7 conformers, a fast electrostatically driven association step guided by the LxCxE motif and a slow conformational rearrangement. This kinetic complexity arises from the conformational plasticity and intrinsically disordered nature of E7 and from multiple interaction surfaces present in both proteins. Affinity differences between E7N domains from high- and low-risk types are explained by their dissociation rates. In fact, since Rb is at the center of a large protein interaction network, fast and tight recognition provides an advantage for disruption by the viral proteins, where the balance of physiological and pathological interactions is dictated by kinetic ligand competition. The localization of the LxCxE motif within an intrinsically disordered domain provides the fast, diffusion-controlled interaction that allows viral proteins to outcompete physiological targets. We describe the interaction mechanism of Rb with a protein ligand, at the same time an LxCxE-containing model target, and a paradigmatic intrinsically disordered viral oncoprotein. PMID:21787785

  6. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins.

    PubMed Central

    Lasorella, A; Iavarone, A; Israel, M A

    1996-01-01

    Cells which are highly proliferative typically lack expression of differentiated, lineage-specific characteristics. Id2, a member of the helix-loop-helix (HLH) protein family known to inhibit cell differentiation, binds to the retinoblastoma protein (pRb) and abolishes its growth-suppressing activity. We found that Id2 but not Id1 or Id3 was able to bind in vitro not only pRb but also the related proteins p107 and p130. Also, an association between Id2 and p107 or p130 was observed in vivo in transiently transfected Saos-2 cells. In agreement with these results, expression of Id1 or Id3 did not affect the block of cell cycle progression mediated by pRb. Conversely, expression of Id2 specifically reversed the cell cycle arrest induced by each of the three members of the pRb family. Furthermore, the growth-suppressive activities of cyclin-dependent kinase inhibitors p16 and p21 were efficiently antagonized by high levels of Id2 but not by Id1 Id3. Consistent with the role of p16 as a selective inhibitor of pRb and pRb-related protein kinase activity, p16-imposed cell cycle arrest was completely abolished by Id2. Only a partial reversal of p21-induced growth suppression was observed, which correlated with the presence of a functional pRb. We also documented decreased levels of cyclin D1 protein and mRNA and the loss of cyclin D1-cdk4 complexes in cells constitutively expressing Id2. These data provide evidence for important Id2-mediated alterations in cell cycle components normally involved in the regulatory events of cell cycle progression, and they highlight a specific role for Id2 as an antagonist of multiple tumor suppressor proteins. PMID:8649364

  7. Tumor suppressor death-associated protein kinase attenuates inflammatory responses in the lung.

    PubMed

    Nakav, Sigal; Cohen, Shmuel; Feigelson, Sara W; Bialik, Shani; Shoseyov, David; Kimchi, Adi; Alon, Ronen

    2012-03-01

    Death-associated protein kinase (DAPk) is a tumor suppressor thought to inhibit cancer by promoting apoptosis and autophagy. Because cancer progression is linked to inflammation, we investigated the in vivo functions of DAPk in lung responses to various acute and chronic inflammatory stimuli. Lungs of DAPk knockout (KO) mice secreted higher concentrations of IL-6 and keratinocyte chemoattractant (or chemokine [C-X-C motif] ligand 1) in response to transient intranasal administrations of the Toll-like receptor-4 (TLR4) agonist LPS. In addition, DAPk-null macrophages and neutrophils were hyperresponsive to ex vivo stimulation with LPS. DAPk-null neutrophils were also hyperresponsive to activation via Fc receptor and Toll-like receptor-3, indicating that the suppressive functions of this kinase are not restricted to TLR4 pathways. Even after the reconstitution of DAPk-null lungs with DAPk-expressing leukocytes by transplanting wild-type (WT) bone marrow into lethally irradiated DAPk KO mice, the chimeric mice remained hypersensitive to both acute and chronic LPS challenges, as well as to tobacco smoke exposure. DAPk-null lungs reconstituted with WT leukocytes exhibited elevated neutrophil content and augmented cytokine secretion in the bronchoalveolar space, as well as enhanced epithelial cell injury in response to both acute and chronic inflammatory conditions. These results suggest that DAPk attenuates a variety of inflammatory responses, both in lung leukocytes and in lung epithelial cells. The DAPk-mediated suppression of lung inflammation and airway injury may contribute to the tumor-suppressor functions of this kinase in epithelial carcinogenesis. PMID:21997486

  8. Role of NF-κB-dependent Caveolin-1 Expression in the Mechanism of Increased Endothelial Permeability Induced by Lipopolysaccharide*S

    PubMed Central

    Tiruppathi, Chinnaswamy; Shimizu, Jun; Miyawaki-Shimizu, Kayo; Vogel, Stephen M.; Bair, Angela M.; Minshall, Richard D.; Predescu, Dan; Malik, Asrar B.

    2008-01-01

    We investigated the role of NF-κB activation by the bacterial product lipopolysaccharide (LPS) in inducing caveolin-1 (Cav-1) expression and its consequence in contributing to the leakiness of the endothelial barrier. We observed that LPS challenge of human lung microvascular endothelial cells induced concentration- and time-dependent increases in expression of Cav-1 mRNA and protein. The NEMO (NF-κB essential modifier binding domain)-binding domain peptide (IkB kinase (IKK)-NEMO-binding domain (NBD) peptide), which prevents NF-κB activation by inhibiting the interaction of IKKγ with the IKK complex, blocked LPS-induced Cav-1 mRNA and protein expression. Knockdown of NF-κB subunit p65/RelA expression with small interfering RNA also prevented LPS-induced Cav-1 expression. Caveolae open to the apical and basal plasmalemma of endothelial cells increased 2–4-fold within 4 h of LPS exposure. IKK-NBD peptide markedly reduced the LPS-induced increase in the number of caveolae as well as transendothelial albumin permeability. These observations were recapitulated in mouse studies in which IKK-NBD peptide prevented Cav-1 expression and interfered with the increase in lung microvessel permeability induced by LPS. Thus, LPS mediates NF-κB-dependent Cav-1 expression that results in increased caveolae number and thereby contributes to the mechanism of increased transendothelial albumin permeability. PMID:18077459

  9. High affinity binding sites for the Wilms' tumour suppressor protein WT1.

    PubMed Central

    Hamilton, T B; Barilla, K C; Romaniuk, P J

    1995-01-01

    The Wilms' tumour suppressor protein (WT1) is a putative transcriptional regulatory protein with four zinc fingers, the last three of which have extensive sequence homology to the early growth response-1 (EGR-1) protein. Although a peptide encoding the zinc finger domain of WT1[-KTS] can bind to a consensus 9 bp EGR-1 binding site, current knowledge about the mechanisms of zinc finger-DNA interactions would predict a more extended recognition site for WT1. Using a WT1[-KTS] zinc finger peptide (WT1-ZFP) and the template oligonucleotide GCG-TGG-GCG-NNNNN in a binding site selection assay, we have determined that the highest affinity binding sites for WT1[-KTS] consist of a 12 bp sequence GCG-TGG-GCG-(T/G)(G/A/T)(T/G). The binding of WT1-ZFP to a number of the selected sequences was measured by a quantitative nitrocellulose filter binding assay, and the results demonstrated that these sequences have a 4-fold higher affinity for the protein than the nonselected sequence GCG-TGG-GCG-CCC. The full length WT1 protein regulates transcription of reporter genes linked to these high affinity sequences. A peptide lacking the first zinc finger of WT1[-KTS], but containing the three zinc fingers homologous to EGR-1 failed to select any specific sequences downstream of the GCG-TGG-GCG consensus sequence in the binding site selection assay. DNA sequences in the fetal promoter of the insulin-like growth factor II gene that confer WT1 responsiveness in a transient transfection assay bind to the WT1-ZFP with affinities that vary according to the number of consensus bases each sequence possesses in the finger 1 subsite. PMID:7862533

  10. Negative regulation of RNA-binding protein HuR by tumor-suppressor ECRG2.

    PubMed

    Lucchesi, C; Sheikh, M S; Huang, Y

    2016-05-19

    Esophageal cancer-related gene 2 (ECRG2) is a newer tumor suppressor whose function in the regulation of cell growth and apoptosis remains to be elucidated. Here we show that ECRG2 expression was upregulated in response to DNA damage, and increased ECRG2 expression induced growth suppression in cancer cells but not in non-cancerous epithelial cells. ECRG2-mediated growth suppression was associated with activation of caspases and marked reduction in the levels of apoptosis inhibitor, X chromosome-linked inhibitor of apoptosis protein (XIAP). ECRG2, via RNA-binding protein human antigen R (HuR), regulated XIAP mRNA stability and expression. Furthermore, ECRG2 increased HuR ubiquitination and degradation but was unable to modulate the non-ubiquitinable mutant form of HuR. We also identified missense and frame-shift ECRG2 mutations in various human malignancies and noted that, unlike wild-type ECRG2, one cancer-derived ECRG2 mutant harboring glutamic acid instead of valine at position 30 (V30E) failed to induce cell death and activation of caspases. This naturally occurring V30E mutant also did not suppress XIAP and HuR. Importantly, the V30E mutant overexpressing cancer cells acquired resistance against multiple anticancer drugs, thus suggesting that ECRG2 mutations appear to have an important role in the acquisition of anticancer drug resistance in a subset of human malignancies. PMID:26434587

  11. Tumour suppressor death-associated protein kinase targets cytoplasmic HIF-1α for Th17 suppression

    PubMed Central

    Chou, Ting-Fang; Chuang, Ya-Ting; Hsieh, Wan-Chen; Chang, Pei-Yun; Liu, Hsin-Yu; Mo, Shu-Ting; Hsu, Tzu-Sheng; Miaw, Shi-Chuen; Chen, Ruey-Hwa; Kimchi, Adi; Lai, Ming-Zong

    2016-01-01

    Death-associated protein kinase (DAPK) is a tumour suppressor. Here we show that DAPK also inhibits T helper 17 (Th17) and prevents Th17-mediated pathology in a mouse model of autoimmunity. We demonstrate that DAPK specifically downregulates hypoxia-inducible factor 1α (HIF-1α). In contrast to the predominant nuclear localization of HIF-1α in many cell types, HIF-1α is located in both the cytoplasm and nucleus in T cells, allowing for a cytosolic DAPK–HIF-1α interaction. DAPK also binds prolyl hydroxylase domain protein 2 (PHD2) and increases HIF-1α-PHD2 association. DAPK thereby promotes the proline hydroxylation and proteasome degradation of HIF-1α. Consequently, DAPK deficiency leads to excess HIF-1α accumulation, enhanced IL-17 expression and exacerbated experimental autoimmune encephalomyelitis. Additional knockout of HIF-1α restores the normal differentiation of Dapk−/− Th17 cells and prevents experimental autoimmune encephalomyelitis development. Our results reveal a mechanism involving DAPK-mediated degradation of cytoplasmic HIF-1α, and suggest that raising DAPK levels could be used for treatment of Th17-associated inflammatory diseases. PMID:27312851

  12. Ovine caveolin-1: cDNA cloning, E. coli expression, and association with endothelial nitric oxide synthase.

    PubMed

    Chen, D; Zangl, A L; Zhao, Q; Markley, J L; Zheng, J; Bird, I M; Magness, R R

    2001-04-25

    Caveolin-1 (Cav-1), the principal coat protein of caveolae, plays an obligatory role in regulating the activity of endothelial nitric oxide (NO) synthase (eNOS). We propose that Cav-1 may be critical to eNOS-NO mediated uterine vasodilatation during pregnancy and estrogen replacement therapy. To test this hypothesis in the sheep model, we isolated the full-length cDNA of ovine Cav-1 (oCav-1) from a Lambda ZAP cDNA library of ovine placental artery endothelial cells. Thirty-two positive oCav-1 clones were recognized by a partial oCav-1 cDNA from this library, of which eight were sequenced. Restriction digestion of these clones revealed that the cDNAs of oCav-1 ranged from approximately 2.1 to 2.7 kb. Northern analysis of Cav-1 mRNAs in ovine uterine artery endothelial cells (UAEC) showed two transcripts of approximately 2.1 and 2.7 kb, respectively. Immunoreactive Cav-1 protein, but not caveolin-2 or caveolin-3, was detected in UAEC. Sequence analysis revealed that in addition to a 537-bp open reading frame encoding a 178 amino acid oCav-1 protein, full-length oCav-1 cDNAs apparently possess a approximately 1.6-2.1 kb 3'-untranslated region. Database searches with oCav-1 cDNA revealed that the coding region of mammalian Cav-1 genes is highly conserved. We prepared a recombinant full-length oCav-1 protein in which six consecutive histidine residues were tagged at the end of its COOH-terminus and developed a [His]6-tagged oCav-1 'pull-down assay' for studying the association of eNOS with Cav-1. Incubation of exogenous [His]6-tagged oCav-1 with resting UAEC extracts led to the formation of a [His]6-tagged oCav-1-eNOS complex. In the presence of a synthetic caveolin-scaffolding domain (CSD, aa 82-101) peptide, but not a mutated CSD peptide, [His]6-tagged oCav-1 associated eNOS was dose (0-10 microM)-dependently inhibited. eNOS association with Cav-1 in UAEC was further confirmed by the facts that eNOS co-immunoprecipitated with Cav-1 and vice versa, and that eNOS co

  13. Prolonged nitric oxide exposure enhances anoikis resistance and migration through epithelial-mesenchymal transition and caveolin-1 upregulation.

    PubMed

    Chanvorachote, Pithi; Pongrakhananon, Varisa; Chunhacha, Preedakorn

    2014-01-01

    Nitric oxide (NO) in tumor microenvironment may have a significant impact on metastatic behaviors of cancer. Noncytotoxic doses of NO enhanced anoikis resistance and migration in lung cancer H23 cells via an increase in lamellipodia, epithelial-mesenchymal transition (EMT) markers including vimentin and snail, and caveolin-1 (Cav-1). However, the induction of EMT was found in Cav-1-knock down cells treated with NO, suggesting that EMT was through Cav-1-independent pathway. These effects of NO were consistently observed in other lung cancer cells including H292 and H460 cells. These findings highlight the novel role of NO on EMT and metastatic behaviors of cancer cells. PMID:24967418

  14. Receptor protein-tyrosine phosphatase. gamma. is a candidate tumor suppressor gene at human chromosome region 3p21

    SciTech Connect

    LaForgia, S.; Cannizzaro, L.A.; Boghosian-Sell, L.; Croce, C.M.; Huebner, K. ); Morse, B. ); Levy, J.; Barnea, G.; Schlessinger, J. ); Li, F. ); Nowell, P.C.; Glick, J. ); Weston, A.; Harris, C.C. ); Drabkin, H. ); Patterson, D. )

    1991-06-01

    PTPG, the gene for protein-tyrosine phosphatase {gamma} (PTP{gamma}), maps to a region of human chromosome 3, 3p21, that is frequently deleted in renal cell carcinoma and lung carcinoma. One of the functions of protein-tyrosine phosphatases is to reverse the effect of protein-tyrosine kinases, many of which are oncogenes, suggesting that some protein-tyrosine phosphatase genes may act as tumor suppressor genes. A hallmark of tumor suppressor genes is that they are deleted in tumors in which their inactivation contributes to the malignant phenotype. In this study, one PTP {gamma} allele was lost in 3 of 5 renal carcinoma cell lines and 5 of 10 lung carcinoma tumor samples tested. Importantly, one PTP {gamma} allele was lost in three lung tumors that had not lost flanking loci. PTP {gamma} mRNA was expressed in kidney cell lines and lung cell lines but not expressed in several hematopoietic cell lines tested. Thus, the PTP {gamma} gene has characteristics that suggest it as a candidate tumor suppressor gene at 3p21.

  15. Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1)

    SciTech Connect

    Yates, Luke A. Durrant, Benjamin P.; Barber, Michael; Harlos, Karl; Fleurdépine, Sophie; Norbury, Chris J.; Gilbert, Robert J. C.

    2015-02-21

    The use of truncation and RNA-binding mutations of caffeine induced death suppressor protein 1 (Cid1) as a means to enhance crystallogenesis leading to an improvement of X-ray diffraction resolution by 1.5 Å is reported. The post-transcriptional addition of uridines to the 3′-end of RNAs is an important regulatory process that is critical for coding and noncoding RNA stability. In fission yeast and metazoans this untemplated 3′-uridylylation is catalysed by a single family of terminal uridylyltransferases (TUTs) whose members are adapted to specific RNA targets. In Schizosaccharomyces pombe the TUT Cid1 is responsible for the uridylylation of polyadenylated mRNAs, targeting them for destruction. In metazoans, the Cid1 orthologues ZCCHC6 and ZCCHC11 uridylate histone mRNAs, targeting them for degradation, but also uridylate microRNAs, altering their maturation. Cid1 has been studied as a model TUT that has provided insights into the larger and more complex metazoan enzyme system. In this paper, two strategies are described that led to improvements both in the crystallogenesis of Cid1 and in the resolution of diffraction by ∼1.5 Å. These advances have allowed high-resolution crystallo@@graphic studies of this TUT system to be initiated.

  16. Suppressing RNA silencing with small molecules and the viral suppressor of RNA silencing protein p19.

    PubMed

    Danielson, Dana C; Filip, Roxana; Powdrill, Megan H; O'Hara, Shifawn; Pezacki, John P

    2015-08-01

    RNA silencing is a gene regulatory and host defense mechanism whereby small RNA molecules are engaged by Argonaute (AGO) proteins, which facilitate gene knockdown of complementary mRNA targets. Small molecule inhibitors of AGO represent a convenient method for reversing this effect and have applications in human therapy and biotechnology. Viral suppressors of RNA silencing, such as p19, can also be used to suppress the pathway. Here we assess the compatibility of these two approaches, by examining whether synthetic inhibitors of AGO would inhibit p19-siRNA interactions. We observe that aurintricarboxylic acid (ATA) is a potent inhibitor of p19's ability to bind siRNA (IC50 = 0.43 μM), oxidopamine does not inhibit p19:siRNA interactions, and suramin is a mild inhibitor of p19:siRNA interactions (IC50 = 430 μM). We observe that p19 and suramin are compatible inhibitors of RNA silencing in human hepatoma cells. Our data suggests that at least some inhibitors of AGO may be used in combination with p19 to inhibit RNA silencing at different points in the pathway. PMID:26079891

  17. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast.

    PubMed

    Eid, Rawan; Sheibani, Sara; Gharib, Nada; Lapointe, Jason F; Horowitz, Avital; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2014-05-01

    The identification of a human ribosomal protein L9 (hRPL9) cDNA as a sequence capable of suppressing the lethal effects of heterologously expressed murine Bax in yeast led us to investigate its antiapoptotic potential. Using growth and viability assays, we show that yeast cells heterologously expressing hRPL9 are resistant to the growth inhibitory and lethal effects of exogenously supplied copper, indicating that it has pro-survival properties. To explore potential mechanisms, we used yeast mutants defective in all three types of programmed cell death (apoptosis, necrosis, and autophagy). The ability to retain pro-survival function in all the mutants suggests that hRPL9 may regulate a common pro-death process. In contrast, the yeast RPL9 orthologues, RPL9A and RPL9B, have opposite effects when overexpressed in yeast. In effect, instead of showing resistance to stress, RPL9A and RPL9B overexpressing cells show reduced cell growth. Further analysis indicates that the effects of overexpressed RPL9A and RPL9B are not in themselves lethal, instead, they serve to increase cell doubling time. Thus, yeast RPL9s are more representative of RPs whose extra-ribosomal function is similar to that of tumor suppressors. Taken together, our results demonstrate that RPL9 represents a species- and sequence-specific regulator of cell growth and survival. PMID:24305165

  18. Retinoblastoma tumor suppressor protein in pancreatic progenitors controls α- and β-cell fate.

    PubMed

    Cai, Erica P; Wu, Xiaohong; Schroer, Stephanie A; Elia, Andrew J; Nostro, M Cristina; Zacksenhaus, Eldad; Woo, Minna

    2013-09-01

    Pancreatic endocrine cells expand rapidly during embryogenesis by neogenesis and proliferation, but during adulthood, islet cells have a very slow turnover. Disruption of murine retinoblastoma tumor suppressor protein (Rb) in mature pancreatic β-cells has a limited effect on cell proliferation. Here we show that deletion of Rb during embryogenesis in islet progenitors leads to an increase in the neurogenin 3-expressing precursor cell population, which persists in the postnatal period and is associated with increased β-cell mass in adults. In contrast, Rb-deficient islet precursors, through repression of the cell fate factor aristaless related homeobox, result in decreased α-cell mass. The opposing effect on survival of Rb-deficient α- and β-cells was a result of opposing effects on p53 in these cell types. As a consequence, loss of Rb in islet precursors led to a reduced α- to β-cell ratio, leading to improved glucose homeostasis and protection against diabetes. PMID:23946427

  19. The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells

    PubMed Central

    Parasido, Erika; Tricoli, Lucas; Sivakumar, Angiela; Mikhaiel, John P.; Yenugonda, Venkata; Rodriguez, Olga C.; Karam, Sana D.; Rood, Brian R.; Avantaggiati, Maria Laura; Albanese, Chris

    2015-01-01

    Medulloblastoma (MB), a primitive neuroectodermal tumor, is the most common malignant childhood brain tumor and remains incurable in about a third of patients. Currently, survivors carry a significant burden of late treatment effects. The p53 tumor suppressor protein plays a crucial role in influencing cell survival in response to cellular stress and while the p53 pathway is considered a key determinant of anti-tumor responses in many tumors, its role in cell survival in MB is much less well defined. Herein, we report that the experimental drug VMY-1-103 acts through induction of a partial DNA damage-like response as well induction of non-survival autophagy. Surprisingly, the genetic or chemical silencing of p53 significantly enhanced the cytotoxic effects of both VMY and the DNA damaging drug, doxorubicin. The inhibition of p53 in the presence of VMY revealed increased late stage apoptosis, increased DNA fragmentation and increased expression of genes involved in apoptosis, including CAPN12 and TRPM8, p63, p73, BIK, EndoG, CIDEB, P27Kip1 and P21cip1. These data provide the groundwork for additional studies on VMY as a therapeutic drug and support further investigations into the intriguing possibility that targeting p53 function may be an effective means of enhancing clinical outcomes in MB. PMID:26540407

  20. The retinoblastoma protein tumor suppressor is important for appropriate osteoblast differentiation and bone development.

    PubMed

    Berman, Seth D; Yuan, Tina L; Miller, Emily S; Lee, Eunice Y; Caron, Alicia; Lees, Jacqueline A

    2008-09-01

    Mutation of the retinoblastoma (RB) tumor suppressor gene is strongly linked to osteosarcoma formation. This observation and the documented interaction between the retinoblastoma protein (pRb) and Runx2 suggests that pRb is important in bone development. To assess this hypothesis, we used a conditional knockout strategy to generate pRb-deficient embryos that survive to birth. Analysis of these embryos shows that Rb inactivation causes the abnormal development and impaired ossification of several bones, correlating with an impairment in osteoblast differentiation. We further show that Rb inactivation acts to promote osteoblast differentiation in vitro and, through conditional analysis, establish that this occurs in a cell-intrinsic manner. Although these in vivo and in vitro differentiation phenotypes seem paradoxical, we find that Rb-deficient osteoblasts have an impaired ability to exit the cell cycle both in vivo and in vitro that can explain the observed differentiation defects. Consistent with this observation, we show that the cell cycle and the bone defects in Rb-deficient embryos can be suppressed by deletion of E2f1, a known proliferation inducer that acts downstream of Rb. Thus, we conclude that pRb plays a key role in regulating osteoblast differentiation by mediating the inhibition of E2F and consequently promoting cell cycle exit. PMID:18819932

  1. Functional expression of NF1 tumor suppressor protein: association with keratin intermediate filaments during the early development of human epidermis

    PubMed Central

    Malminen, Maria; Peltonen, Sirkku; Koivunen, Jussi; Peltonen, Juha

    2002-01-01

    Background NF1 refers to type 1 neurofibromatosis syndrome, which has been linked with mutations of the large NF1 gene. NF1 tumor suppressor protein, neurofibromin, has been shown to regulate ras: the NF1 protein contains a GTPase activating protein (GAP) related domain which functions as p21rasGAP. Our studies have previously demonstrated that the NF1 protein forms a high affinity association with cytokeratin 14 during the formation of desmosomes and hemidesmosomes in cultured keratinocytes. Methods The expression of NF1 protein was studied in developing human epidermis using western transfer analysis, indirect immunofluorescence, confocal laser scanning microscopy, immunoelectron microscopy, and in situ hybridization. Results The expression of NF1 protein was noted to be highly elevated in the periderm at 8 weeks estimated gestational age (EGA) and in the basal cells at 8–14 weeks EGA. During this period, NF1 protein was associated with cytokeratin filaments terminating to desmosomes and hemidesmosomes. NF1 protein did not display colocalization with α-tubulin or actin of the cytoskeleton, or with adherens junction proteins. Conclusions These results depict an early fetal period when the NF1 tumor suppressor is abundantly expressed in epidermis and associated with cytokeratin filaments. This period is characterized by the initiation of differentiation of the basal cells, maturation of the basement membrane zone as well as accentuated formation of selected cellular junctions. NF1 tumor suppressor may function in the regulation of epidermal histogenesis via controlling the organization of the keratin cytoskeleton during the assembly of desmosomes and hemidesmosomes. PMID:12199909

  2. Cellular retinol binding protein 1 could be a tumor suppressor gene in cervical cancer

    PubMed Central

    Mendoza-Rodriguez, Mónica; Arreola, Hugo; Valdivia, Alejandra; Peralta, Raúl; Serna, Humberto; Villegas, Vanessa; Romero, Pablo; Alvarado-Hernández, Beatriz; Paniagua, Lucero; Marrero-Rodríguez, Daniel; Meraz, Marco A; Salcedo, Mauricio

    2013-01-01

    Aims: Cervical Cancer (CC) is one of the most important health problems in women. It frequently presents genetic changes at chromosome region 3q21. This region contains the Cellular Retinol Binding Protein 1 gene (CRBP1) which has been implicated as an important element in the development of other types of cancer. The main goal of the present work was to determine the molecular alterations of CRBP1 and its relationship to CC. Methods: To determine the molecular alterations of CRBP1 gene in CC; twenty-six CC and twenty-six healthy cervix samples were evaluated for: 1) Copy number gain by real-time PCR analysis, 2) expression levels by an immunohistochemistry assay on tissue microarray, and 3) the methylation status of the CRBP1 promoter region. Results: The increase in CRBP1 copy number was observed in 10 out of the 26 CC samples analyzed, while healthy cervices samples showed no changes in the copy number. In addition, there was a lack of expression of the CRBP1 gene in an important number of the CC samples (17/26), and the CRBP1 gene promoter was methylated in 15/26 of the CC samples. Interestingly, there was a significant association between the lack of expression of the CRBP1 gene and its methylation status. Conclusions: The data indicates that, both activating and inactivating changes in the CRBP1 gene could be significant events in the development and progression of CC, and the lack of expression of the CRBP1 protein could be related with to the development of CC. We believe that there is enough evidence to consider to CRBP1 gene as a tumor suppressor gene for CC. PMID:24040446

  3. Potential RNA Binding Proteins in Saccharomyces Cerevisiae Identified as Suppressors of Temperature-Sensitive Mutations in Npl3

    PubMed Central

    Henry, M.; Borland, C. Z.; Bossie, M.; Silver, P. A.

    1996-01-01

    The NPL3 gene of the yeast Saccharomyces cerevisiae encodes a protein with similarity to heterogeneous nuclear ribonucleoproteins (hnRNPs). Npl3p has been implicated in many nuclear-related events including RNA export, protein import, and rRNA processing. Several temperature-sensitive alleles of NPL3 have been isolated. We now report the sequence of these alleles. For one allele, npl3-1, four complementation groups of suppressors have been isolated. The cognate genes for the two recessive mutants were cloned. One of these is the previously known RNA15, which, like NPL3, also encodes a protein with similarity to the vertebrate hnRNP A/B protein family. The other suppressor corresponds to a newly defined gene we term HRP1, which also encodes a protein with similarity to the hnRNP A/B proteins of vertebrates. Mutations in HRP1 suppress all npl3 temperature-sensitive alleles but do not bypass an npl3 null allele. We show that HRP1 is essential for cell growth and that the corresponding protein is located in the nucleus. The discovery of two hnRNP homologues that can partially suppress the function of Np13p, also an RNA binding protein, will be discussed in terms of the possible roles for Npl3p in RNA metabolism. PMID:8770588

  4. Identification of a myeloid-derived suppressor cell cystatin-like protein that inhibits metastasis.

    PubMed

    Boutté, Angela M; Friedman, David B; Bogyo, Matthew; Min, Yongfen; Yang, Li; Lin, P Charles

    2011-08-01

    Myeloid-derived suppressor cells (MDSCs) are significantly increased in cancer patients and tumor bearing-animals. MDSCs infiltrate into tumors and promote tumor invasion and metastasis. To identify the mediator responsible for the prometastatic property of MDSCs, we used proteomics. We found neutrophilic granule protein (NGP) was decreased >2-fold in MDSCs from metastatic 4T1 tumor-bearing mice compared to nonmetastatic 67NR controls. NGP mRNA levels were decreased in bone marrow and in tumor-infiltrating MDSCs by 45 and 66%, respectively, in 4T1 tumor-bearing mice compared to 67NR controls. Interestingly, 4T1-conditioned medium reduced myeloid cell NGP expression by ∼ 40%, suggesting that a secreted factor mediates gene reduction. Sequence analysis shows a putative cystatin domain in NGP, and biochemical analysis confirms NGP a novel cathepsin inhibitor. It inhibited cathepsin B activity by nearly 40% in vitro. NGP expression in 4T1 tumor cells suppressed cell invasion, delayed primary tumor growth, and greatly reduced lung metastasis in vivo. A 2.8-fold reduction of cathepsin activity was found in tumors expressing NGP compared to controls. NGP significantly reduced tumor angiogenesis to 12.6 from 19.6 and lymphangiogenesis to 4.6 from 9.1 vessels/field. Necrosis was detectable only in NGP-expressing tumors, and the number of apoptotic cells increased to 22.4 from 8.3 in controls. Taken together, this study identifies a negative regulator of tumor metastasis in MDSCs, NGP, which is down-regulated in metastatic conditions. The finding suggests that malignant tumors promote invasion/metastasis not only through up-regulation of proteases but also down-regulation of protease inhibitors. PMID:21518852

  5. Ubiquitin-specific protease 11 functions as a tumor suppressor by modulating Mgl-1 protein to regulate cancer cell growth

    PubMed Central

    Lim, Key-Hwan; Suresh, Bharathi; Park, Jung-Hyun; Kim, Young-Soo; Ramakrishna, Suresh; Baek, Kwang-Hyun

    2016-01-01

    The Lethal giant larvae (Lgl) gene encodes a cortical cytoskeleton protein, Lgl, and is involved in maintaining cell polarity and epithelial integrity. Previously, we observed that Mgl-1, a mammalian homologue of the Drosophila tumor suppressor protein Lgl, is subjected to degradation via ubiquitin-proteasome pathway, and scaffolding protein RanBPM prevents the turnover of the Mgl-1 protein. Consequently, overexpression of RanBPM enhances Mgl-1-mediated cell proliferation and migration. Here, we analyzed the ability of ubiquitin-specific protease 11 (USP11) as a novel regulator of Mgl-1 and it requires RanBPM to regulate proteasomal degradation of Mgl-1. USP11 showed deubiquitinating activity and stabilized Mgl-1 protein. However, USP11-mediated Mgl-1 stabilization was inhibited in RanBPM-knockdown cells. Furthermore, in the cancer cell migration, the regulation of Mgl-1 by USP11 required RanBPM expression. In addition, an in vivo study revealed that depletion of USP11 leads to tumor formation. Taken together, the results indicated that USP11 functions as a tumor suppressor through the regulation of Mgl-1 protein degradation via RanBPM. PMID:26919101

  6. UV irradiation leads to transient changes in phosphorylation and stability of tumor suppressor protein p53.

    PubMed

    Scheidtmann, K; Landsberg, G

    1996-12-01

    Tumor suppressor protein p53 is thought to play a crucial role in maintaining the integrity of the genome. DNA damage caused by genotoxic drugs, UV or gamma-irradiation leads to accumulation of p53 and activation of its DNA binding and transcriptional activities and subsequently to cell cycle arrest or apoptosis. We investigated whether the apparent activation of p53 might be due to post-translational modification. The rat fibroblast cell lines REF52, 208F, and rat1 were irradiated with W-A and the synthesis, stability and phosphorylation state of p53 were investigated by pulse chase experiments, SDS-PAGE and two-dimensional phosphopeptide mapping. The three cell lines exhibited different sensitivities and biological responses to UV irradiation, REF52 cells responded with a growth arrest whereas 208F and rat1 cells underwent apoptosis. The fate of p53 was similar in all cases. Both the stability of p53 and its phosphorylation increased instantaneously but transiently. However, the amount of p53 that accumulated after UV treatment was much higher in 208F and rat1 than in REF52 cells. Interestingly, p53 that was synthesized early after irradiation was stable for more than 14 h whereas molecules synthesized 8 or more hours post irradiation were increasingly susceptible to degradation. Moreover, between 14 and 20 h after treatment, the rate of synthesis of p53 decreased to a level lower than in untreated cells suggesting negative feed back control. The expression of different p53-responsive genes, waf1/cip1, Gadd45, and bax was investigated by protein analyses. Surprisingly, p21(waf1) was expressed only in REF52 cells but not in the others. Furthermore, UV irradiation led only to a moderate increase of p21(waf1) expression. Expression of Gadd45 and box was detectable in both cell types but its expression did not change significantly upon UV treatment. Our results suggest i) that both cell types share a common pathway which upon UV irradiation results in enhanced

  7. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein.

    PubMed Central

    Munemitsu, S; Albert, I; Souza, B; Rubinfeld, B; Polakis, P

    1995-01-01

    The APC tumor-suppressor protein associates with beta-catenin, a cell adhesion protein that is upregulated by the WNT1 oncogene. We examined the effects of exogenous APC expression on the distribution and amount of beta-catenin in a colorectal cancer cell containing only mutant APC. Expression of wild-type APC caused a pronounced reduction in total beta-catenin levels by eliminating an excessive supply of cytoplasmic beta-catenin indigenous to the SW480 colorectal cancer cell line. This reduction was due to an enhanced rate of beta-catenin protein degradation. Truncated mutant APC proteins, characteristic of those associated with cancer, lacked this activity. Mutational analysis revealed that the central region of the APC protein, which is typically deleted or severely truncated in tumors, was responsible for the down-regulation of beta-catenin. These results suggest that the tumor-suppressor activity of mutant APC may be compromised due to a defect in its ability to regulate beta-catenin. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7708772

  8. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage.

    PubMed

    Liu, Jie; Jin, Xinchun; Liu, Ke J; Liu, Wenlan

    2012-02-29

    Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis. PMID:22378877

  9. Protective Effect of Ginsenoside Rg1 on Bleomycin-Induced Pulmonary Fibrosis in Rats: Involvement of Caveolin-1 and TGF-β1 Signal Pathway.

    PubMed

    Zhan, Heqin; Huang, Feng; Ma, Wenzhuo; Zhao, Zhenghang; Zhang, Haifang; Zhang, Chong

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis and high mortality rate. Panax Notoginseng Saponins (PNS), extracted from Panax Notoginseng as a traditional Asian medicine, displayed a significant anti-fibrosis effect in liver and lung. However, whether Ginsenoside Rg1 (Rg1), an important and active ingredient of PNS, exerts anti-fibrotic activity on IPF still remain unclear. In this study, we investigated the effect of Rg1 on bleomycin-induced pulmonary fibrosis in rats. Bleomycin (5 mg/kg body weight) was intratracheally administrated to male rats. Rg1 (18, 36 and 72 mg/kg) was orally administered on the next day after bleomycin. Lungs were harvested at day 7 and 28 for the further experiments. Histological analysis revealed that bleomycin successfully induced pulmonary fibrosis, and that Rg1 restored the histological alteration of bleomycin-induced pulmonary fibrosis (PF), significantly decreased lung coefficient, scores of alveolitis, scores of PF as well as contents of alpha smooth muscle actin (α-SMA) and hydroxyproline (Hyp) in a dose-dependent manner in PF rats. Moreover, Rg1 increased the expression levels of Caveolin-1 (Cav-1) mRNA and protein, lowered the expression of transforming growth factor-β1 (TGF-β1) mRNA and protein in the lung tissues of PF rats. These data suggest that Rg1 exhibits protective effect against bleomycin-induced PF in rats, which is potentially associated with the down-regulation of TGF-β1 and up-regulation of Cav-1. PMID:27476938

  10. Increase in caveolae and caveolin-1 expression modulates agonist-induced contraction and store- and receptor-operated Ca(2+) entry in pulmonary arteries of pulmonary hypertensive rats.

    PubMed

    Jiao, Hai-Xia; Mu, Yun-Ping; Gui, Long-Xin; Yan, Fu-Rong; Lin, Da-Cen; Sham, James S K; Lin, Mo-Jun

    2016-09-01

    Caveolin-1 (Cav-1) is a major component protein associated with caveolae in the plasma membrane and has been identified as a regulator of store-operated Ca(2+) entry (SOCE) and receptor-operated Ca(2+) entry (ROCE). However, the contributions of caveolae/Cav-1 of pulmonary arterial smooth muscle cells (PASMCs) to the altered Ca(2+) signaling pathways in pulmonary arteries (PAs) during pulmonary hypertension (PH) have not been fully characterized. The present study quantified caveolae number and Cav-1 expression, and determined the effects of caveolae disruption on ET-1, cyclopiazonic acid (CPA) and 1-Oleoyl-2-acetyl-glycerol (OAG)-induced contraction in PAs and Ca(2+) influx in PASMCs of chronic hypoxia (CH)- and monocrotaline (MCT)-induced PH rats. We found that the number of caveolae, and the Cav-1 mRNA and protein levels were increased significantly in PASMCs in both PH models. Disruption of caveolae by cholesterol depletion with methyl-β-cyclodextrin (MβCD) significantly inhibited the contractile response to ET-1, CPA and OAG in PAs of control rats. ET-1, SOCE and ROCE-mediated contractile responses were enhanced, and their susceptibility to MβCD suppression was potentiated in the two PH models. MβCD-induced inhibition was reversed by cholesterol repletion. Introduction of Cav-1 scaffolding domain peptide to mimic Cav-1 upregulation caused significant increase in CPA- and OAG-induced Ca(2+) entry in PASMCs of control, CH and MCT-treated groups. Our results suggest that the increase in caveolae and Cav-1 expression in PH contributes to the enhanced agonist-induced contraction of PA via modulation of SOCE and ROCE; and targeting caveolae/Cav-1 in PASMCs may provide a novel therapeutic strategy for the treatment of PH. PMID:27311393

  11. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment

    PubMed Central

    2011-01-01

    Cancer cells show a broad spectrum of bioenergetic states, with some cells using aerobic glycolysis while others rely on oxidative phosphorylation as their main source of energy. In addition, there is mounting evidence that metabolic coupling occurs in aggressive tumors, between epithelial cancer cells and the stromal compartment, and between well-oxygenated and hypoxic compartments. We recently showed that oxidative stress in the tumor stroma, due to aerobic glycolysis and mitochondrial dysfunction, is important for cancer cell mutagenesis and tumor progression. More specifically , increased autophagy/mitophagy in the tumor stroma drives a form of parasitic epithelial-stromal metabolic coupling. These findings explain why it is effective to treat tumors with either inducers or inhibitors of autophagy, as both would disrupt this energetic coupling. We also discuss evidence that glutamine addiction in cancer cells produces ammonia via oxidative mitochondrial metabolism. Ammonia production in cancer cells, in turn, could then help maintain autophagy in the tumor stromal compartment. In this vicious cycle, the initial glutamine provided to cancer cells would be produced by autophagy in the tumor stroma. Thus, we believe that parasitic epithelial-stromal metabolic coupling has important implications for cancer diagnosis and therapy, for example, in designing novel metabolic imaging techniques and establishing new targeted therapies. In direct support of this notion, we identified a loss of stromal caveolin-1 as a marker of oxidative stress, hypoxia, and autophagy in the tumor microenvironment, explaining its powerful predictive value. Loss of stromal caveolin-1 in breast cancers is associated with early tumor recurrence, metastasis, and drug resistance, leading to poor clinical outcome. PMID:21867571

  12. Integrin alpha1beta1 regulates epidermal growth factor receptor activation by controlling peroxisome proliferator-activated receptor gamma-dependent caveolin-1 expression.

    PubMed

    Chen, Xiwu; Whiting, Carrie; Borza, Corina; Hu, Wen; Mont, Stacey; Bulus, Nada; Zhang, Ming-Zhi; Harris, Raymond C; Zent, Roy; Pozzi, Ambra

    2010-06-01

    Integrin alpha1beta1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin alpha1beta1-mediated EGFR activation. Integrin alpha1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin alpha1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin alpha1-null MCs decreases EGFR-mediated ROS production. We further show that integrin alpha1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARgamma or inhibition of ERK increases Cav-1 levels in the integrin alpha1-null MCs. Finally, we show that glomeruli of integrin alpha1-null mice have reduced levels of Cav-1 and activated PPARgamma but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin alpha1beta1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARgamma axis plays a key role in regulating integrin alpha1beta1-dependent Cav-1 expression and consequent EGFR-mediated ROS production. PMID:20368353

  13. Integrin α1β1 Regulates Epidermal Growth Factor Receptor Activation by Controlling Peroxisome Proliferator-Activated Receptor γ-Dependent Caveolin-1 Expression ▿ # ‖

    PubMed Central

    Chen, Xiwu; Whiting, Carrie; Borza, Corina; Hu, Wen; Mont, Stacey; Bulus, Nada; Zhang, Ming-Zhi; Harris, Raymond C.; Zent, Roy; Pozzi, Ambra

    2010-01-01

    Integrin α1β1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin α1β1-mediated EGFR activation. Integrin α1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin α1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin α1-null MCs decreases EGFR-mediated ROS production. We further show that integrin α1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARγ or inhibition of ERK increases Cav-1 levels in the integrin α1-null MCs. Finally, we show that glomeruli of integrin α1-null mice have reduced levels of Cav-1 and activated PPARγ but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin α1β1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARγ axis plays a key role in regulating integrin α1β1-dependent Cav-1 expression and consequent EGFR-mediated ROS production. PMID:20368353

  14. Cyclin-dependent kinase inhibition by the KLF6 tumor suppressor protein through interaction with cyclin D1.

    PubMed

    Benzeno, Sharon; Narla, Goutham; Allina, Jorge; Cheng, George Z; Reeves, Helen L; Banck, Michaela S; Odin, Joseph A; Diehl, J Alan; Germain, Doris; Friedman, Scott L

    2004-06-01

    Kruppel-like factor 6 (KLF6) is a tumor suppressor gene inactivated in prostate and colon cancers, as well as in astrocytic gliomas. Here, we establish that KLF6 mediates growth inhibition through an interaction with cyclin D1, leading to reduced phosphorylation of the retinoblastoma protein (Rb) at Ser(795). Furthermore, introduction of KLF6 disrupts cyclin D1-cyclin-dependent kinase (cdk) 4 complexes and forces the redistribution of p21(Cip/Kip) onto cdk2, which promotes G(1) cell cycle arrest. Our data suggest that KLF6 converges with the Rb pathway to inhibit cyclin D1/cdk4 activity, resulting in growth suppression. PMID:15172998

  15. The HIV-1 Nef Protein Binds Argonaute-2 and Functions as a Viral Suppressor of RNA Interference

    PubMed Central

    Aqil, Madeeha; Naqvi, Afsar Raza; Bano, Aalia Shahr; Jameel, Shahid

    2013-01-01

    The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR). PMID:24023945

  16. The cAMP responsive element binding protein 1 transactivates epithelial membrane protein 2, a potential tumor suppressor in the urinary bladder urothelial carcinoma

    PubMed Central

    Wu, Wen-Ren; Liao, Yu-Jing; Chen, Lih-Ren; Huang, Chun-Nung; Li, Ching-Chia; Li, Wei-Ming; Huang, Hsuan-Ying; Chen, Yi-Ling; Liang, Shih-Shin; Chow, Nan-Haw; Shiue, Yow-Ling

    2015-01-01

    In this study, we report that EMP2 plays a tumor suppressor role by inducing G2/M cell cycle arrest, suppressing cell viability, proliferation, colony formation/anchorage-independent cell growth via regulation of G2/M checkpoints in distinct urinary bladder urothelial carcinoma (UBUC)-derived cell lines. Genistein treatment or exogenous expression of the cAMP responsive element binding protein 1 (CREB1) gene in different UBUC-derived cell lines induced EMP2 transcription and subsequent translation. Mutagenesis on either or both cAMP-responsive element(s) dramatically decreased the EMP2 promoter activity with, without genistein treatment or exogenous CREB1 expression, respectively. Significantly correlation between the EMP2 immunointensity and primary tumor, nodal status, histological grade, vascular invasion and mitotic activity was identified. Multivariate analysis further demonstrated that low EMP2 immunoexpression is an independent prognostic factor for poor disease-specific survival. Genistein treatments, knockdown of EMP2 gene and double knockdown of CREB1 and EMP2 genes significantly inhibited tumor growth and notably downregulated CREB1 and EMP2 protein levels in the mice xenograft models. Therefore, genistein induced CREB1 transcription, translation and upregulated pCREB1(S133) protein level. Afterward, pCREB1(S133) transactivated the tumor suppressor gene, EMP2, in vitro and in vivo. Our study identified a novel transcriptional target, which plays a tumor suppressor role, of CREB1. PMID:25940704

  17. The cAMP responsive element binding protein 1 transactivates epithelial membrane protein 2, a potential tumor suppressor in the urinary bladder urothelial carcinoma.

    PubMed

    Li, Chien-Feng; Wu, Wen-Jeng; Wu, Wen-Ren; Liao, Yu-Jing; Chen, Lih-Ren; Huang, Chun-Nung; Li, Ching-Chia; Li, Wei-Ming; Huang, Hsuan-Ying; Chen, Yi-Ling; Liang, Shih-Shin; Chow, Nan-Haw; Shiue, Yow-Ling

    2015-04-20

    In this study, we report that EMP2 plays a tumor suppressor role by inducing G2/M cell cycle arrest, suppressing cell viability, proliferation, colony formation/anchorage-independent cell growth via regulation of G2/M checkpoints in distinct urinary bladder urothelial carcinoma (UBUC)-derived cell lines. Genistein treatment or exogenous expression of the cAMP responsive element binding protein 1 (CREB1) gene in different UBUC-derived cell lines induced EMP2 transcription and subsequent translation. Mutagenesis on either or both cAMP-responsive element(s) dramatically decreased the EMP2 promoter activity with, without genistein treatment or exogenous CREB1 expression, respectively. Significantly correlation between the EMP2 immunointensity and primary tumor, nodal status, histological grade, vascular invasion and mitotic activity was identified. Multivariate analysis further demonstrated that low EMP2 immunoexpression is an independent prognostic factor for poor disease-specific survival. Genistein treatments, knockdown of EMP2 gene and double knockdown of CREB1 and EMP2 genes significantly inhibited tumor growth and notably downregulated CREB1 and EMP2 protein levels in the mice xenograft models. Therefore, genistein induced CREB1 transcription, translation and upregulated pCREB1(S133) protein level. Afterward, pCREB1(S133) transactivated the tumor suppressor gene, EMP2, in vitro and in vivo. Our study identified a novel transcriptional target, which plays a tumor suppressor role, of CREB1. PMID:25940704

  18. The Drosophila suppressor of sable gene encodes a polypeptide with regions similar to those of RNA-binding proteins.

    PubMed Central

    Voelker, R A; Gibson, W; Graves, J P; Sterling, J F; Eisenberg, M T

    1991-01-01

    The nucleotide sequence of the Drosophila melanogaster suppressor of sable [su(s)] gene has been determined. Comparison of genomic and cDNA sequences indicates that an approximately 7,860-nucleotide primary transcript is processed into an approximately 5-kb message, expressed during all stages of the life cycle, that contains an open reading frame capable of encoding a 1,322-amino-acid protein of approximately 150 kDa. The putative protein contains an RNA recognition motif-like region and a highly charged arginine-, lysine-, serine-, aspartic or glutamic acid-rich region that is similar to a region contained in several RNA-processing proteins. In vitro translation of in vitro-transcribed RNA from a complete cDNA yields a product whose size agrees with the size predicted by the open reading frame. Antisera against su(s) fusion proteins recognize the in vitro-translated protein and detect a protein of identical size in the nuclear fractions from tissue culture cells and embryos. The protein is also present in smaller amounts in cytoplasmic fractions of embryos. That the su(s) protein has regions similar in structure to RNA-processing protein is consistent with its known role in affecting the transcript levels of those alleles that it suppresses. Images PMID:1703632

  19. Analysis of Geminivirus AL2 and L2 Proteins Reveals a Novel AL2 Silencing Suppressor Activity

    PubMed Central

    Jackel, Jamie N.; Buchmann, R. Cody; Singhal, Udit

    2014-01-01

    ABSTRACT Both posttranscriptional and transcriptional gene silencing (PTGS and TGS, respectively) participate in defense against the DNA-containing geminiviruses. As a countermeasure, members of the genus Begomovirus (e.g., Cabbage leaf curl virus) encode an AL2 protein that is both a transcriptional activator and a silencing suppressor. The related L2 protein of Beet curly top virus (genus Curtovirus) lacks transcription activation activity. Previous studies showed that both AL2 and L2 suppress silencing by a mechanism that correlates with adenosine kinase (ADK) inhibition, while AL2 in addition activates transcription of cellular genes that negatively regulate silencing pathways. The goal of this study was to clarify the general means by which these viral proteins inhibit various aspects of silencing. We confirmed that AL2 inhibits systemic silencing spread by a mechanism that requires transcription activation activity. Surprisingly, we also found that reversal of PTGS and TGS by ADK inactivation depended on whether experiments were conducted in vegetative or reproductive Nicotiana benthamiana plants (i.e., before or after the vegetative-to-reproductive transition). While AL2 was able to reverse silencing in both vegetative and reproductive plants, L2 and ADK inhibition were effective only in vegetative plants. This suggests that silencing maintenance mechanisms can change during development or in response to stress. Remarkably, we also observed that AL2 lacking its transcription activation domain could reverse TGS in reproductive plants, revealing a third, previously unsuspected AL2 suppression mechanism that depends on neither ADK inactivation nor transcription activation. IMPORTANCE RNA silencing in plants is a multivalent antiviral defense, and viruses respond by elaborating multiple and sometimes multifunctional proteins that inhibit various aspects of silencing. The studies described here add an additional layer of complexity to this interplay. By examining

  20. Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster

    SciTech Connect

    Holdridge, C.; Dorsett, D. )

    1991-04-01

    The suppressor of hairy-wing [su(Hw)] locus of Drosophila melanogaster encodes a zinc finger protein that binds a repeated motif in the gypsy retroposon. Mutations of su(Hw) suppress the phenotypes associated with mutations caused by gypsy insertions. To examine the mechanisms by which su(Hw) alters gene expression, a fragment of gypsy containing multiple su(Hw) protein-binding sites was inserted into various locations in the well-characterized Drosophila hsp70 heat shock gene promoter. The authors found no evidence for activation of basal hsp70 transcription by su(Hw) protein in cultured Drosophila cells but observed that it can repress heat shock-induced transcription. Repression occurred only when su(Hw) protein-binding sites were positioned between binding sites for proteins required for heat shock transcription. They propose that su(Hw) protein interferes nonspecifically with protein-protein interactions required for heat shock transcription, perhaps sterically, or by altering the ability of DNA to bend or twist.

  1. Nasopharyngeal carcinomas frequently lack the p16/MTS1 tumor suppressor protein but consistently express the retinoblastoma gene product.

    PubMed Central

    Gulley, M. L.; Nicholls, J. M.; Schneider, B. G.; Amin, M. B.; Ro, J. Y.; Geradts, J.

    1998-01-01

    The p16/MTS1 gene is altered by deletion, mutation, or hypermethylation in a wide variety of human cancers. As a result of deficient p16 protein, these cancers lack a critical mechanism for halting G1/S cell cycle progression. In the current study, 59 cases of nasopharyngeal carcinoma were evaluated for expression of the p16 tumor suppressor protein by immunohistochemical analysis of paraffin-embedded tissue. There was no detectable p16 in 38/59 cases (64%), which implies a very high rate of p16 inactivation in this type of cancer. On the other hand, the retinoblastoma gene product, which also regulates the G1 to S phase transition of the cell cycle, was consistently expressed in nasopharyngeal carcinomas by immunohistochemical analysis. These results implicate p16 inactivation but not Rb alteration in the stepwise progression of nasopharyngeal carcinogenesis. Images Figure 1 Figure 2 PMID:9546345

  2. The protein 4.1 tumor suppressor, DAL-1, impairs cell motility, but regulates proliferation in a cell-type-specific fashion.

    PubMed

    Gutmann, D H; Hirbe, A C; Huang, Z Y; Haipek, C A

    2001-04-01

    The neurofibromatosis 2 (NF2) tumor suppressor belongs to the Protein 4.1 family of molecules that link the actin cytoskeleton to cell surface glycoproteins. We have previously demonstrated that the NF2 protein, merlin, can suppress cell growth in vitro and in vivo as well as impair actin cytoskeleton-associated processes, such as cell spreading, attachment, and motility. Recently, we determined that expression of a second Protein 4.1 tumor suppressor, DAL-1, was lost in 60% of sporadic meningiomas, but not schwannomas. In this report, we demonstrate that DAL-1 suppresses cell proliferation in meningioma, but not schwannoma cells. Similar to merlin, DAL-1 interacts with other ERM proteins and betaII-spectrin, but not the merlin interactor protein, SCHIP-1. In addition, we report the identification of the full-length DAL-1 tumor suppressor, termed KIAA0987. Collectively, these results suggest that the two Protein 4.1 meningioma tumor suppressors, merlin and DAL-1, may be functionally distinct proteins with different mechanisms of action. PMID:11300722

  3. Evidence for Dsg3 in regulating Src signaling by competing with it for binding to caveolin-1

    PubMed Central

    Wan, Hong; Lin, Kuang; Tsang, Siu Man; Uttagomol, Jutamas

    2015-01-01

    This data article contains extended, complementary analysis related to the research articles entitled “Desmoglein 3, via an interaction with E-cadherin, is associated with activation of Src” (Tsang et al., 2010) [1] and figures related to the review article entitled “Desmoglein 3: a help or a hindrance in cancer progression?” (Brown et al., 2014) [2]. We show here that both Src and caveolin-1 (Cav-1) associate with Dsg3 in a non-ionic detergent soluble pool and that modulation of Dsg3 levels inversely alters the expression of Src in the Cav-1 complex. Furthermore, immunofluorescence analysis revealed a reduced colocalization of Cav-1/total Src in cells with overexpression of Dsg3 compared to control cells. In support, the sequence analysis has identified a region within the carboxyl-terminus of human Dsg3 for a likelihood of binding to the scaffolding domain of Cav-1, the known Src binding site in Cav-1, and this region is highly conserved across most of 18 species as well as within desmoglein family members. Based on these findings, we propose a working model that Dsg3 activates Src through competing with its inactive form for binding to Cav-1, thus leading to release of Src followed by its auto-activation. PMID:26858977

  4. Tyrosine-Phosphorylated Caveolin-1 Blocks Bacterial Uptake by Inducing Vav2-RhoA-Mediated Cytoskeletal Rearrangements

    PubMed Central

    Kaushansky, Alexis; Pompaiah, Malvika; Thorn, Hans; Brinkmann, Volker; MacBeath, Gavin; Meyer, Thomas F.

    2010-01-01

    Certain bacterial adhesins appear to promote a pathogen's extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp)-producing Neisseria gonorrhoeae (P+GC) induces an immediate recruitment of caveolin-1 (Cav1) in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function. PMID:20808760

  5. Caveolin-1-negative head and neck squamous cell carcinoma primary tumors display increased epithelial to mesenchymal transition and prometastatic properties

    PubMed Central

    Jung, Alain C.; Ray, Anne-Marie; Ramolu, Ludivine; Macabre, Christine; Simon, Florian; Noulet, Fanny; Blandin, Anne-Florence; Renner, Guillaume; Lehmann, Maxime; Choulier, Laurence; Kessler, Horst; Abecassis, Joseph; Dontenwill, Monique; Martin, Sophie

    2015-01-01

    Distant metastases arise in 20-30% of patients with squamous cell carcinoma of the head and neck (HNSCC) in the 2 years following treatment. Therapeutic options are limited and the outcome of the patients is poor. The identification of predictive biomarkers of patient at risk for distant metastasis and therapies are urgently needed. We previously identified a clinical subgroup, called “R1” characterized by high propensity for rapid distant metastasis. Here, we showed that “R1” patients do not or at very low level express caveolin-1 (Cav1). Low or no expression of Cav1 is of bad prognosis. Disappearance of Cav1 enables cells to undergo epithelial-mesenchymal transition (EMT). EMT is associated with enhanced migration and invasion. Our study uncovered a new target, α5β1 integrin. Targeting α5β1 integrins might not only prevent metastasis of HNSCC but also delay the development of the primary tumor by reducing tumor cell viability. Cav1 detection might be taken into consideration in the future in the clinic not only to identify patients at high risk of metastasis but also to select patient who might benefit from an anti-integrin therapy. PMID:26474461

  6. CIZ1, a p21Cip1/Waf1-interacting protein, functions as a tumor suppressor in vivo.

    PubMed

    Nishibe, Rio; Watanabe, Wataru; Ueda, Takeshi; Yamasaki, Norimasa; Koller, Richard; Wolff, Linda; Honda, Zen-ichiro; Ohtsubo, Motoaki; Honda, Hiroaki

    2013-05-21

    CIZ1 is a nuclear protein involved in DNA replication and is also implicated in human diseases including cancers. To gain an insight into its function in vivo, we generated mice lacking Ciz1. Ciz1-deficient (Ciz1(-/-)) mice grew without any obvious abnormalities, and Ciz1(-/-) mouse embryonic fibroblasts (MEFs) did not show any defects in cell cycle status, cell growth, and DNA damage response. However, Ciz1(-/-) MEFs were sensitive to hydroxyurea-mediated replication stress and susceptible to oncogene-induced cellular transformation. In addition, Ciz1(-/-) mice developed various types of leukemias by retroviral insertional mutagenesis. These results indicate that CIZ1 functions as a tumor suppressor in vivo. PMID:23583447

  7. Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann-Pick type C1

    PubMed Central

    Mundy, Dorothy I.; Lopez, Adam M.; Posey, Kenneth S.; Chuang, Jen-Chieh; Ramirez, Charina M.; Scherer, Philipp E.; Turley, Stephen D.

    2014-01-01

    Caveolin-1 (Cav-1) is a major structural protein in caveolae in the plasma membranes of many cell types, particularly endothelial cells and adipocytes. Loss of Cav-1 function has been implicated in multiple diseases affecting the cardiopulmonary and central nervous systems, as well as in specific aspects of sterol and lipid metabolism in the liver and intestine. Lungs contain an exceptionally high level of Cav-1. Parameters of cholesterol metabolism in the lung were measured, initially in Cav-1-deficient mice (Cav-1−/−), and subsequently in Cav-1−/− mice that also lacked the lysosomal cholesterol transporter Niemann-Pick C1 (Npc1) was also absent (Cav-1−/−:Npc1−/−). In 50-day-old Cav-1−/− mice fed a low- or high-cholesterol chow diet, the total cholesterol concentration (mg/g) in the lungs was marginally lower than in the Cav-1+/+ controls, but due to an expansion in their lung mass exceeding 30%, whole-lung cholesterol content (mg/organ) was moderately elevated. Lung mass (g) in the Cav-1−/−:Npc1−/− mice (0.356 ± 0.022) markedly exceeded that in their Cav-1+/+:Npc1+/+ controls (0.137 ± 0.009), as well as in their Cav-1−/−:Npc1+/+ (0.191 ± 0.013) and Cav-1+/+:Npc1−/− (0.213 ± 0.022) littermates. The corresponding lung total cholesterol content (mg/organ) in mice of these genotypes was 6.74 ± 0.17, 0.71 ± 0.05, 0.96 ± 0.05 and 3.12 ± 0.43, respectively, with the extra cholesterol in the Cav-1−/−:Npc1−/− and Cav-1+/+:Npc1−/− mice being nearly all unesterified (UC). The exacerbation of the Npc1 lung phenotype and increase in the UC level in the Cav-1−/−:Npc1−/− mice imply a regulatory role of Cav-1 in pulmonary cholesterol metabolism when lysosomal sterol transport is disrupted. PMID:24747682

  8. The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins.

    PubMed Central

    Paces-Fessy, Mélanie; Boucher, Dominique; Petit, Emile; Paute-Briand, Sandrine; Blanchet-Tournier, Marie-Françoise

    2004-01-01

    Sufu (Suppressor of fused) is a negative regulator of the Hedgehog signal-transduction pathway, interacting directly with the Gli family of transcription factors. However, its function remains poorly understood. In the present study, we determined the expression, tissue distribution and biochemical properties of mSufu (mouse Sufu) protein. We identified several mSufu variants of which some were phosphorylated. A yeast two-hybrid screen with mSufu as bait allowed us to identify several nuclear proteins as potential partners of mSufu. Most of these partners, such as SAP18 (Sin3-associated polypeptide 18), pCIP (p300/CBP-cointegrator protein) and PIAS1 (protein inhibitor of activated signal transduction and activators of transcription 1), are involved in either repression or activation of transcription and two of them, Galectin3 and hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1), have a nuclear function in pre-mRNA splicing. We confirmed the mSufu-SAP18 and mSufu-Galectin3 interactions by independent biochemical assays. Using a cell transfection assay, we also demonstrated that mSufu protein (484 amino acids) is predominantly cytoplasmic but becomes mostly nuclear when a putative nuclear export signal is mutated or after treatment of the cells with leptomycin B. Moreover, mSufu is translocated to the nucleus when co-expressed with SAP18, which is normally found in this compartment. In contrast, Galectin3 is translocated to the cytoplasm when it is co-expressed with mSufu. Our findings indicate that mSufu is a shuttle protein that appears to be extremely versatile in its ability to bind different proteins in both the cytoplasm and nucleus. PMID:14611647

  9. Interaction of caveolin-1, nitric oxide, and nitric oxide synthases in hypoxic human SK-N-MC neuroblastoma cells.

    PubMed

    Shen, Jiangang; Lee, Waisin; Li, Yue; Lau, Chi Fai; Ng, Kwong Man; Fung, Man Lung; Liu, Ke Jian

    2008-10-01

    Neuroblastoma cells are capable of hypoxic adaptation, but the mechanisms involved are not fully understood. We hypothesized that caveolin-1 (cav-1), a plasma membrane signal molecule, might play a role in protecting neuroblastoma cells from oxidative injury by modulating nitric oxide (NO) production. We investigated the alterations of cav-1, cav-2, nitric oxide synthases (NOS), and NO levels in human SK-N-MC neuroblastoma cells exposed to hypoxia with 2% [O2]. The major discoveries include: (i) cav-1 but not cav-2 was up-regulated in the cells exposed to 15 h of hypoxia; (ii) NO donor 1-[N, N-di-(2-aminoethyl) amino] diazen-1-ium-1, 2-diolate up-regulated the expression of cav-1, whereas the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester and inducible NOS (iNOS) inhibitor 1400W each abolished the increase in cav-1 expression in the hypoxic SK-N-MC cells. These results suggest that iNOS-induced NO production contributes to the up-regulation of cav-1 in the hypoxic SK-N-MC cells. Furthermore, we studied the roles played by cav-1 in regulating NO, NOS, and apoptotic cell death in the SK-N-MC cells subjected to 15 h of hypoxic treatment. Both cav-1 transfection and cav-1 scaffolding domain peptide abolished the induction of iNOS, reduced the production of NO, and reduced the rates of apoptotic cell death in the hypoxic SK-N-MC cells. These results suggest that increased expression of cav-1 in response to hypoxic stimulation could prevent oxidative injury induced by reactive oxygen species. The interactions of cav-1, NO, and NOS could be an important signal pathway in protecting the neuroblastoma cells from oxidative injury, contributing to the hypoxic tolerance of neuroblastoma cells. PMID:18717816

  10. Roles of Caveolin-1 in Angiotensin II-Induced Hypertrophy and Inward Remodeling of Cerebral Pial Arterioles.

    PubMed

    Umesalma, Shaikamjad; Houwen, Frederick Keith; Baumbach, Gary L; Chan, Siu-Lung

    2016-03-01

    Angiotensin II (Ang II) is a major determinant of inward remodeling and hypertrophy in pial arterioles that may have an important role in stroke during chronic hypertension. Previously, we found that epidermal growth factor receptor is critical in Ang II-mediated hypertrophy that may involve caveolin-1 (Cav-1). In this study, we examined the effects of Cav-1 and matrix metalloproteinase-9 (MMP9) on Ang II-mediated structural changes in pial arterioles. Cav-1-deficient (Cav-1(-/-)), MMP9-deficient (MMP9(-/-)), and wild-type mice were infused with either Ang II (1000 ng/kg per minute) or saline via osmotic minipumps for 28 days (n=6-8 per group). Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of pial arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area of the wall was determined histologically in pressurized fixed pial arterioles. Expression of Cav-1, MMP9, phosphorylated epidermal growth factor receptor, and Akt was determined by Western blotting and immunohistochemistry. Deficiency of Cav-1 or MMP9 did not affect Ang II-induced hypertension. Ang II increased the expression of Cav-1, phosphorylated epidermal growth factor receptor, and Akt in wild-type mice, which was attenuated in Cav-1(-/-) mice. Ang II-induced hypertrophy, inward remodeling, and increased MMP9 expression in pial arterioles were prevented in Cav-1(-/-) mice. Ang II-mediated increases in MMP9 expression and inward remodeling, but not hypertrophy, were prevented in MMP9(-/-) mice. In conclusion, Cav-1 is essential in Ang II-mediated inward remodeling and hypertrophy in pial arterioles. Cav-1-induced MMP9 is exclusively involved in inward remodeling, not hypertrophy. Further studies are needed to determine the role of Akt in Ang II-mediated hypertrophy. PMID:26831194