Science.gov

Sample records for surface receptor aggregates

  1. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell surface receptor aggregates

    SciTech Connect

    Monine, Michael; Posner, Richard; Savage, Paul; Faeder, James; Hlavacek, William S

    2008-01-01

    Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.

  2. Aggregation Limits Surface Expression of Homomeric GluA3 Receptors.

    PubMed

    Coleman, Sarah K; Hou, Ying; Willibald, Marina; Semenov, Artur; Möykkynen, Tommi; Keinänen, Kari

    2016-04-15

    AMPA receptors are glutamate-gated cation channels assembled from GluA1-4 subunits and have properties that are strongly dependent on the subunit composition. The subunits have different propensities to form homomeric or various heteromeric receptors expressed on cell surface, but the underlying mechanisms are still poorly understood. Here, we examined the biochemical basis for the poor ability of GluA3 subunits to form homomeric receptors, linked previously to two amino acid residues, Tyr-454 and Arg-461, in its ligand binding domain (LBD). Surface expression of GluA3 was improved by co-assembly with GluA2 but not with stargazin, a trafficking chaperone and modulator of AMPA receptors. The secretion efficiency of GluA2 and GluA3 LBDs paralleled the transport difference between the respective full-length receptors and was similarly dependent on Tyr-454/Arg-461 but not on LBD stability. In comparison to GluA2, GluA3 homomeric receptors showed a strong and Tyr-454/Arg-461-dependent tendency to aggregate both in the macroscopic scale measured as lower solubility in nonionic detergent and in the microscopic scale evident as the preponderance of hydrodynamically large structures in density gradient centrifugation and native gel electrophoresis. We conclude that the impaired surface expression of homomeric GluA3 receptors is caused by nonproductive assembly and aggregation to which LBD residues Tyr-454 and Arg-461 strongly contribute. This aggregation inhibits the entry of newly synthesized GluA3 receptors to the secretory pathway. PMID:26912664

  3. Electron microscopic localization of receptors for aggregated beta 2-microglobulin on the surface of beta-hemolytic streptococci.

    PubMed Central

    Wagner, M; Wagner, B; Kronvall, G; Björck, L

    1983-01-01

    The presence and location of receptors for aggregated human beta 2-microglobulin (beta 2m) on the surface of group A, C, and G streptococci were studied by electron microscopic techniques. Ferritin-conjugated aggregates of human beta 2m were used in direct binding experiments. Ferritin-conjugated antibodies against beta 2m were employed in a two-step indirect binding assay where the streptococci were incubated with unlabeled beta 2m aggregates before the addition of antibodies. Similar results were obtained with these two methods. Among tested group C and G strains, some showed binding of beta 2m, whereas others were negative. In group A streptococci, beta 2m binding was localized to filamentous structures typical of M protein. In two M protein-negative group A strains, the reactivity was heterogeneous, revealing a majority of unlabeled, but also some heavily labeled streptococci. Morphologically, these beta 2m-binding bacteria exhibited M protein-like projections in contrast to the smooth surfaces of unlabeled cells. Images PMID:6352498

  4. Implications of epidermal growth factor (EGF) induced egf receptor aggregation.

    PubMed Central

    Wofsy, C; Goldstein, B; Lund, K; Wiley, H S

    1992-01-01

    To investigate the role of receptor aggregation in EGF binding, we construct a mathematical model describing receptor dimerization (and higher levels of aggregation) that permits an analysis of the influence of receptor aggregation on ligand binding. We answer two questions: (a) Can Scatchard plots of EGF binding data be analyzed productively in terms of two noninteracting receptor populations with different affinities if EGF induced receptor aggregation occurs? No. If two affinities characterize aggregated and monomeric EGF receptors, we show that the Scatchard plot should have curvature characteristic of positively cooperative binding, the opposite of that observed. Thus, the interpretation that the high affinity population represents aggregated receptors and the low affinity population nonaggregated receptors is wrong. If the two populations are interpreted without reference to receptor aggregation, an important determinant of Scatchard plot shape is ignored. (b) Can a model for EGF receptor aggregation and EGF binding be consistent with the "negative curvature" (i.e., curvature characteristic of negatively cooperative binding) observed in most Scatchard plots of EGF binding data? Yes. In addition, the restrictions on the model parameters required to obtain negatively curved Scatchard plots provide new information about binding and aggregation. In particular, EGF binding to aggregated receptors must be negatively cooperative, i.e., binding to a receptor in a dimer (or higher oligomer) having one receptor already bound occurs with lower affinity than the initial binding event. A third question we consider is whether the model we present can be used to detect the presence of mechanisms other than receptor aggregation that are contributing to Scatchard plot curvature. For the membrane and cell binding data we analyzed, the best least squares fits of the model to each of the four data sets deviate systematically from the data, indicating that additional factors are

  5. Diffusion-limited aggregation on curved surfaces

    NASA Astrophysics Data System (ADS)

    Choi, J.; Crowdy, D.; Bazant, M. Z.

    2010-08-01

    We develop a general theory of transport-limited aggregation phenomena occurring on curved surfaces, based on stochastic iterated conformal maps and conformal projections to the complex plane. To illustrate the theory, we use stereographic projections to simulate diffusion-limited aggregation (DLA) on surfaces of constant Gaussian curvature, including the sphere (K>0) and the pseudo-sphere (K<0), which approximate "bumps" and "saddles" in smooth surfaces, respectively. Although the curvature affects the global morphology of the aggregates, the fractal dimension (in the curved metric) is remarkably insensitive to curvature, as long as the particle size is much smaller than the radius of curvature. We conjecture that all aggregates grown by conformally invariant transport on curved surfaces have the same fractal dimension as DLA in the plane. Our simulations suggest, however, that the multifractal dimensions increase from hyperbolic (K<0) to elliptic (K>0) geometry, which we attribute to curvature-dependent screening of tip branching.

  6. Embryonic brain extract induces collagen biosynthesis in cultured muscle cells: involvement in acetylcholine receptor aggregation.

    PubMed Central

    Kalcheim, C; Vogel, Z; Duksin, D

    1982-01-01

    The involvement of extracellular matrix components in induction of the aggregation of acetylcholine (AcCho) receptors by factor(s) present in embryonic brain extract was investigated. Embryonic brain extract induced a three-fold increase in the number of AcCho receptor aggregates on the surface of cultured myotubes and a 5- to 10-fold increase in the synthesis of procollagen, which was secreted into the medium and converted to collagen. Adult brain extract, embryonic serum, and embryonic liver extract were less active in stimulating both collagen synthesis and AcCho receptor aggregation. A physiological connection between the two processes is suggested, since the number of AcCho receptor aggregates could be reduced to control levels by treating brain extract-stimulated myotubes with purified bacterial collagenase. In addition, stimulation of collagen secretion by ascorbic acid (50 micrograms/ml) promoted a 1.6-fold increase in AcCho receptor aggregation. When ascorbic acid was added together with the brain extract, further increases in both collagen synthesis and AcCho receptor aggregation were observed. Images PMID:6285338

  7. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate.

    PubMed

    Yoo, Hyuk Sang; Park, Tae Gwan

    2004-11-24

    For folate-receptor-targeted anti-cancer therapy, doxorubicin aggregates in a nano-scale size were produced employing doxorubicin-polyethylene glycol-folate (DOX-PEG-FOL) conjugate. Doxorubicin and folate were respectively conjugated to alpha- and omega-terminal end group of a PEG chain. The conjugates assisted to form doxorubicin nano-aggregates with an average size of 200 nm in diameter when combined with an excess amount of deprotonated doxorubicin in an aqueous phase. Hydrophobically deprotonated doxorubicin molecules were aggregated within the core, while the DOX-PEG-FOL conjugates stabilized the aggregates with exposing folate moieties on the surface. The doxorubicin nano-aggregates showed a greater extent of intracellular uptake against folate-receptor-positive cancer cells than folate-receptor-negative cells, indicating that the cellular uptake occurred via a folate-receptor-mediated endocytosis mechanism. They also exhibited more potent cytotoxic effect on KB cells than free doxorubicin. In a human tumor xenograft nude mouse model, folate-targeted doxorubicin nano-aggregates significantly reduced the tumor volume compared to non-targeted doxorubicin aggregates or free doxorubicin. These results suggested that folate-targeted doxorubicin nano-aggregates could be a potentially useful delivery system for folate-receptor-positive cancer cells. PMID:15544872

  8. Receptors for fibrinogen and aggregated beta 2-microglobulin detected in strains of group B streptococci.

    PubMed Central

    Schönbeck, C; Björck, L; Kronvall, G

    1981-01-01

    Binding of radiolabeled human fibrinogen and aggregated beta-microglobulin was measured in 60 strains of beta-hemolytic group B streptococci. Positive fibrinogen binding was detected in seven of the strains. Six of the group B strains showed an uptake of aggregated beta 2-microglobulin. Four individual strains carried both receptors, indicating a positive correlation between their occurrence. Inhibition studies showed that fibrinogen competed sterically with beta 2-microglobulin binding. Receptors for both proteins were trypsin sensitive. The presence of receptors did not correlate with the serological type of the 49 group B strains tested. However, all seven type II strains were negative. No uptake of fibrinogen was noted in any of 40 group D strains tested. Binding structures for fibrinogen and aggregated beta 2-microglobulin detected in group B streptococci were similar to receptors for the same proteins in group A, C, and G streptococci in terms of mutual correlation and steric interference of binding. The occasional occurrence of these receptors also in group B strains might reflect a common origin of some types of surface proteins in gram-positive cocci. PMID:6164650

  9. Hydrodynamic effects and receptor interactions of platelets and their aggregates in linear shear flow.

    PubMed Central

    Tandon, P; Diamond, S L

    1997-01-01

    We have modeled platelet aggregation in a linear shear flow by accounting for two body collision hydrodynamics, platelet activation and receptor biology. Considering platelets and their aggregates as unequal-sized spheres with DLVO interactions (psi(platelet) = -15 mV, Hamaker constant = 10(-19) J), detailed hydrodynamics provided the flow field around the colliding platelets. Trajectory calculations were performed to obtain the far upstream cross-sectional area and the particle flux through this area provided the collision frequency. Only a fraction of platelets brought together by a shearing fluid flow were held together if successfully bound by fibrinogen cross-bridging GPIIb/IIIa receptors on the platelet surfaces. This fraction was calculated by modeling receptor-mediated aggregation using the formalism of Bell (Bell, G. I. 1979. A theoretical model for adhesion between cells mediated by multivalent ligands. Cell Biophys. 1:133-147) where the forward rate of bond formation dictated aggregation during collision and was estimated from the diffusional limited rate of lateral association of receptors multiplied by an effectiveness factor, eta, to give an apparent rate. For a value of eta = 0.0178, we calculated the overall efficiency (including both receptor binding and hydrodynamics effects) for equal-sized platelets with 50,000 receptors/platelet to be 0.206 for G = 41.9 s(-1), 0.05 for G = 335 s(-1), and 0.0086 for G = 1920 s(-1), values which are in agreement with efficiencies determined from initial platelet singlet consumption rates in flow through a tube. From our analysis, we predict that bond formation proceeds at a rate of approximately 0.1925 bonds/microm2 per ms, which is approximately 50-fold slower than the diffusion limited rate of association. This value of eta is also consistent with a colloidal stability of unactivated platelets at low shear rates. Fibrinogen was calculated to mediate aggregation quite efficiently at low shear rates but not at

  10. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces

    PubMed Central

    Monier, J.-M.; Lindow, S. E.

    2003-01-01

    The survival of individual Pseudomonas syringae cells was determined on bean leaf surfaces maintained under humid conditions or periodically exposed to desiccation stress. Cells of P. syringae strain B728a harboring a GFP marker gene were visualized by epifluorescence microscopy, either directly in situ or after recovery from leaves, and dead cells were identified as those that were stained with propidium iodide in such populations. Under moist, conducive conditions on plants, the proportion of total live cells was always high, irrespective of their aggregated state. In contrast, the proportion of the total cells that remained alive on leaves that were periodically exposed to desiccation stress decreased through time and was only ≈15% after 5 days. However, the fraction of cells in large aggregates that were alive on such plants in both condition was much higher than more solitary cells. Immediately after inoculation, cells were randomly distributed over the leaf surface and no aggregates were observed. However, a very aggregated pattern of colonization was apparent within 7 days, and >90% of the living cells were located in aggregates of 100 cells or more. Our results strongly suggest that, although conducive conditions favor aggregate formation, such cells are much more capable of tolerating environmental stresses, and the preferential survival of cells in aggregates promotes a highly clustered spatial distribution of bacteria on leaf surfaces. PMID:14665692

  11. Thermally induced aggregation of rigid spheres on a liquid surface

    NASA Astrophysics Data System (ADS)

    Forgoston, Eric; Hentschker, Leo; Soltau, Siobhan; Truitt, Patrick; Vaidya, Ashwin

    2016-01-01

    Fluids provide the optimal setting to explore natural patterns far from thermodynamic equilibrium. Experiments suggest that randomly dispersed particles on a liquid surface tend to aggregate on the surface of liquid over time, and the process is enhanced by an increase in the temperature of the liquid. We show that the agglomeration radii increases monotonically with temperature up until the point where all particles in the system form a single, large aggregate. The aggregation dynamics is related to changes in the material properties of the liquid including its viscosity and surface tension as well as the convection driven flow generated on the fluid surface. In this article we compare our experimental observations with analytical asymptotic results. The analytical arguments are seen to agree well with the experimental observations.

  12. Anion binding and controlled aggregation of human interleukin-1 receptor antagonist.

    PubMed

    Raibekas, Andrei A; Bures, Edward J; Siska, Christine C; Kohno, Tadahiko; Latypov, Ramil F; Kerwin, Bruce A

    2005-07-26

    Highly concentrated human recombinant interleukin-1 receptor antagonist (IL-1ra) aggregates at elevated temperature without perturbation in its secondary structure. The protein aggregation can be suppressed depending on the buffer ionic strength and the type of anion present in the sample solution. Phosphate is an approximately 4-fold weaker suppressant than either citrate or pyrophosphate on the basis of the measured protein aggregation rates. This is in agreement with the strength of protein-anion interactions at the IL-1ra single anion-binding site as judged by the estimated dissociation constant values of 2.9 mM, 3.8 mM, and 13.7 mM for pyrophosphate, citrate, and phosphate, respectively. The strength of binding also correlates with the anion size and with the number of ionized groups available per molecule at a given pH. Affinity probing of IL-1ra with methyl acetyl phosphate (MAP) in combination with proteolytic digestion and mass spectral analysis show that an anion-binding site location on the IL-1ra surface is contributed by lysine-93 and lysine-96 of the loop 84-98 as well as by lysine-6 of the unstructured N-terminal region 1-7. The replacement of lysine-93 with alanine by site-directed mutagenesis results in dramatically suppressed IL-1ra aggregation. Furthermore, when the unstructured N-terminal region of IL-1ra is removed by limited proteolysis, a 2-fold increase in the time course of the aggregation lag phase is observed for the truncated protein. An anion-controlled mechanism of IL-1ra aggregation is proposed by which the anion competition for the protein cationic site prevents formation of intermolecular cation-pi interactions and, thus, interferes with the protein asymmetric self-association pathway. PMID:16026159

  13. F-actin binding regions on the androgen receptor and huntingtin increase aggregation and alter aggregate characteristics.

    PubMed

    Angeli, Suzanne; Shao, Jieya; Diamond, Marc I

    2010-01-01

    Protein aggregation is associated with neurodegeneration. Polyglutamine expansion diseases such as spinobulbar muscular atrophy and Huntington disease feature proteins that are destabilized by an expanded polyglutamine tract in their N-termini. It has previously been reported that intracellular aggregation of these target proteins, the androgen receptor (AR) and huntingtin (Htt), is modulated by actin-regulatory pathways. Sequences that flank the polyglutamine tract of AR and Htt might influence protein aggregation and toxicity through protein-protein interactions, but this has not been studied in detail. Here we have evaluated an N-terminal 127 amino acid fragment of AR and Htt exon 1. The first 50 amino acids of ARN127 and the first 14 amino acids of Htt exon 1 mediate binding to filamentous actin in vitro. Deletion of these actin-binding regions renders the polyglutamine-expanded forms of ARN127 and Htt exon 1 less aggregation-prone, and increases the SDS-solubility of aggregates that do form. These regions thus appear to alter the aggregation frequency and type of polyglutamine-induced aggregation. These findings highlight the importance of flanking sequences in determining the propensity of unstable proteins to misfold. PMID:20140226

  14. Protease Activated Receptor-1 (PAR-1) Mediated Platelet Aggregation is Dependant on Clopidogrel Response

    PubMed Central

    Kreutz, Rolf P.; Breall, Jeffrey A.; Kreutz, Yvonne; Owens, Janelle; Lu, Deshun; Bolad, Islam; von der Lohe, Elisabeth; Sinha, Anjan; Flockhart, David A.

    2012-01-01

    Introduction Clopidogrel inhibits ADP mediated platelet aggregation through inhibition of the P2Y12 receptor by its active metabolite. Thrombin induces platelet aggregation by binding to protease activated receptor-1 (PAR-1), and inhibition of PAR-1 has been evaluated in patients treated with clopidogrel to reduce ischemic events after acute coronary syndromes. Residual PAR-1 mediated platelet aggregation may be dependent on extent of clopidogrel response. Material and Methods Platelet aggregation was measured in 55 patients undergoing elective PCI at 16-24 hours after 600mg clopidogrel loading dose by light transmittance aggregometry using ADP 20μM and thrombin receptor agonist peptide (TRAP) at 15 μM and 25 μM as agonists. Genomic DNA was genotyped for common CYP2C19 variants. Results Increasing quartiles of 20 μM ADP induced platelet aggregation after clopidogrel loading were associated with increasing levels of TRAP mediated platelet aggregation. Patients in the highest quartile (clopidogrel non-responders) of post treatment ADP aggregation had significantly higher TRAP mediated aggregation than the patients in the lowest quartile (clopidogrel responders) [TRAP 15 μM: 79.6±5% vs. 69.5±8%, p<0.001]. Conclusions Non-responders to clopidogrel show increased residual platelet aggregation induced by TRAP, whereas clopidogrel responders exhibit attenuated response to TRAP. Addition of PAR-1 antiplatelet drugs may be most effective in patients with reduced clopidogrel response and high residual TRAP mediated platelet aggregation. PMID:22459907

  15. Reversible surface aggregation in pore formation by pardaxin.

    PubMed Central

    Rapaport, D; Peled, R; Nir, S; Shai, Y

    1996-01-01

    The mechanism of leakage induced by surface active peptides is not yet fully understood. To gain insight into the molecular events underlying this process, the leakage induced by the peptide pardaxin from phosphatidylcholine/ phosphatidylserine/cholesterol large unilamellar vesicles was studied by monitoring the rate and extent of dye release and by theoretical modeling. The leakage occurred by an all-or-none mechanism: vesicles either leaked or retained all of their contents. We further developed a mathematical model that includes the assumption that certain peptides become incorporated into the vesicle bilayer and aggregate to form a pore. The current experimental results can be explained by the model only if the surface aggregation of the peptide is reversible. Considering this reversibility, the model can explain the final extents of calcein leakage for lipid/peptide ratios of > 2000:1 to 25:1 by assuming that only a fraction of the bound peptide forms pores consisting of M = 6 +/- 3 peptides. Interestingly, less leakage occurred at 43 degrees C, than at 30 degrees C, although peptide partitioning into the bilayer was enhanced upon elevation of the temperature. We deduced that the increased leakage at 30 degrees C was due to an increase in the extent of reversible surface aggregation at the lower temperature. Experiments employing fluorescein-labeled pardaxin demonstrated reversible aggregation of the peptide in suspension and within the membrane, and exchange of the peptide between liposomes. In summary, our experimental and theoretical results support reversible surface aggregation as the mechanism of pore formation by pardaxin. Images FIGURE 7 PMID:8744290

  16. Identification of aggregates for Tennessee bituminous surface courses

    NASA Astrophysics Data System (ADS)

    Sauter, Heather Jean

    Tennessee road construction is a major venue for federal and state spending. Tax dollars each year go to the maintenance and construction of roads. One aspect of highway construction that affects the public is the safety of its state roads. There are many factors that affect the safety of a given road. One factor that was focused on in this research was the polish resistance capabilities of aggregates. Several pre-evaluation methods have been used in the laboratory to predict what will happen in a field situation. A new pre-evaluation method was invented that utilized AASHTO T 304 procedure upscaled to accommodate surface bituminous aggregates. This new method, called the Tennessee Terminal Textural Condition Method (T3CM), was approved by Tennessee Department of Transportation to be used as a pre-evaluation method on bituminous surface courses. It was proven to be operator insensitive, repeatable, and an accurate indication of particle shape and texture. Further research was needed to correlate pre-evaluation methods to the current field method, ASTM E 274-85 Locked Wheel Skid Trailer. In this research, twenty-five in-place bituminous projects and eight source evaluations were investigated. The information gathered would further validate the T3CM and find the pre-evaluation method that best predicted the field method. In addition, new sources of aggregates for bituminous surface courses were revealed. The results of this research have shown T3CM to be highly repeatable with an overall coefficient of variation of 0.26% for an eight sample repeatability test. It was the best correlated pre-evaluation method with the locked wheel skid trailer method giving an R2 value of 0.3946 and a Pearson coefficient of 0.710. Being able to predict field performance of aggregates prior to construction is a powerful tool capable of saving time, money, labor, and possibly lives.

  17. Aggregation of macrophages and fibroblasts is inhibited by a monoclonal antibody to the hyaluronate receptor

    SciTech Connect

    Green, S.J.; Underhill, C.B. ); Tarone, G. )

    1988-10-01

    To examine the role of the hyaluronate receptor in cell to cell adhesion, the authors have employed the K-3 monoclonal antibody (MAb) which specifically binds to the hyaluronate receptor and blocks its ability to interact with hyaluronate. In the first set of experiments, they investigated the spontaneous aggregation of SV-3T3 cells, which involves two distinct mechanisms, one of which is dependent upon the presence of divalent cation and the other is independent. The divalent cation-independent aggregation was found to be completely inhibited by both intact and Fab fragments of the K-3 MAb. In contrast, the K-3 MAb had no effect on the divalent cation-dependent aggregation of cells. In a second set of experiments, we examined alveolar macrophages. The presence of hyaluronate receptors on alveolar macrophages was demonstrated by the fact that detergent extracts of these cells could bind ({sup 3})hyaluronate, and this binding was blocked by the K-3 MAb. Immunoblot analysis of alveolar macrophages showed that the hyaluronate receptor had a M{sub r} of 99,500, which is considerably larger than the 85,000 M{sub r} for that on BHK cells. When hyaluronate was added to suspensions of alveolar macrophages, the cells were induced to aggregate. This effect was inhibited by the K-3 MAb, suggesting that the hyaluronate-induced aggregation was mediated by the receptor.

  18. A Human Platelet Receptor Protein Microarray Identifies the High Affinity Immunoglobulin E Receptor Subunit α (FcεR1α) as an Activating Platelet Endothelium Aggregation Receptor 1 (PEAR1) Ligand*

    PubMed Central

    Sun, Yi; Vandenbriele, Christophe; Kauskot, Alexandre; Verhamme, Peter; Hoylaerts, Marc F.; Wright, Gavin J.

    2015-01-01

    Genome-wide association studies to identify loci responsible for platelet function and cardiovascular disease susceptibility have repeatedly identified polymorphisms linked to a gene encoding platelet endothelium aggregation receptor 1 (PEAR1), an “orphan” cell surface receptor that is activated to stabilize platelet aggregates. To investigate how PEAR1 signaling is initiated, we sought to identify its extracellular ligand by creating a protein microarray representing the secretome and receptor repertoire of the human platelet. Using an avid soluble recombinant PEAR1 protein and a systematic screening assay designed to detect extracellular interactions, we identified the high affinity immunoglobulin E (IgE) receptor subunit α (FcεR1α) as a PEAR1 ligand. FcεR1α and PEAR1 directly interacted through their membrane-proximal Ig-like and 13th epidermal growth factor domains with a relatively strong affinity (KD ∼ 30 nm). Precomplexing FcεR1α with IgE potently inhibited the FcεR1α-PEAR1 interaction, and this was relieved by the anti-IgE therapeutic omalizumab. Oligomerized FcεR1α potentiated platelet aggregation and led to PEAR1 phosphorylation, an effect that was also inhibited by IgE. These findings demonstrate how a protein microarray resource can be used to gain important insight into the function of platelet receptors and provide a mechanistic basis for the initiation of PEAR1 signaling in platelet aggregation. PMID:25713122

  19. Reduced receptor aggregation and altered cytoskeleton in cultured myocytes after space-flight

    NASA Technical Reports Server (NTRS)

    Gruener, R.; Roberts, R.; Reitstetter, R.

    1994-01-01

    We carried out parallel experiments first on the slow clinostat and then in space-flight to examine the effects of altered gravity on the aggregation of the nicotinic acetylcholine receptors and the structure of the cytoskeleton in cultured Xenopus embryonic muscle cells. By examining the concordance between results from space flight and the clinostat, we tested whether the slow clinostat is a relevant simulation paradigm. Space-flown cells showed marked changes in the distribution and organization of actin filaments and had a reduced incidence of acetylcholine receptor aggregates at the site of contact with polystyrene beads. Similar effects were found after clinostat rotation. The sensitivity of synaptic receptor aggregation and cytoskeletal morphology suggests that in the microgravity of space cell behavior may be importantly altered.

  20. Studies of the cAMP mediated aggregation in Dictyostelium discoideum: receptor mediated activation of the adenylate cyclase

    SciTech Connect

    Theibert, W.E.A.B.

    1985-01-01

    Dictyostelium discoideum, a eukaryotic amoeba of the cellular slime mold family, provides an interesting paradigm in developmental biology. During development, hundreds of thousands of cells aggregate to form a multicellular aggregate. Aggregation is mediated by chemotaxis and chemical signaling. Waves of adenosine 3'-5' cyclic monophosphate (cAMP) propagate through the monolayer and provide transient gradients for chemotaxis. The author has used a reversible inhibitor of the cAMP signaling response to demonstrate that adaptation to cAMP is independent of the activation of the adenylate cyclase and therefore is not caused by the rise in intracellular cAMP. Next, it is shown that adenosine inhibits the cAMP signaling response. Inhibition is rapid, reversible, and depends on the cAMP stimulus concentration. Then the specificity of the cAMP receptors which mediates signaling is determined and compared with the receptors which mediate chemotaxis, the cGMP response, and cAMP binding antagonism. The cAMP surface receptor has been identified by photoaffinity labeling intact cells with (/sup 32/P)-8-N/sub 3/-cAMP using an ammonium sulfate binding stabilization technique. The photoactivated ligand specifically labels a polypeptide, localized to the membrane fraction, which migrates as a closely spaced doublet on SDS Page.

  1. Cell surface receptors for CCN proteins.

    PubMed

    Lau, Lester F

    2016-06-01

    The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvβ3, αvβ5, α5β1, α6β1, αIIbβ3, αMβ2, and αDβ2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities. PMID:27098435

  2. Cytoplasmic Localization and the Choice of Ligand Determine Aggregate Formation by Androgen Receptor with Amplified Polyglutamine Stretch

    PubMed Central

    Becker, Matthias; Martin, Elke; Schneikert, Jean; Krug, Harald F.; Cato, Andrew C.B.

    2000-01-01

    Polyglutamine tract expansion in androgen receptor is a recognized cause of spinal and bulbar muscular atrophy (SBMA), an X-linked motor neuronopathy. Similar mutations have been identified in proteins associated with other neurodegenerative diseases. Recent studies have shown that amplified polyglutamine repeat stretches form cellular aggregates that may be markers for these neurodegenerative diseases. Here we describe conditions that lead to aggregate formation by androgen receptor with polyglutamine stretch amplification. In transfection experiments, the mutant, compared with the wild-type receptor, was delayed in its cytoplasmic–nuclear translocation and formed large cytoplasmic aggregates in the presence of androgen. The cytoplasmic environment appears crucial for this aggregation, since retention of both the wild-type and mutant receptors in this cellular compartment by the deletion of their nuclear localization signals resulted in massive aggregation. Conversely, rapid nuclear transport of both receptors brought about by deletion of their ligand binding domains did not result in aggregate formation. However, androgen antagonists that altered the conformation of the ligand binding domain and promoted varying rates of cytoplasmic–nuclear translocation all inhibited aggregate formation. This demonstrates that in addition to the cytoplasmic localization, a distinct contribution of the ligand binding domain of the receptor is necessary for the aggregation. The finding that antiandrogens inhibit aggregate formation may provide the basis for in vivo determination of the role of these structures in SBMA. PMID:10769019

  3. Antipsychotic Drugs Inhibit Platelet Aggregation via P2Y1 and P2Y12 Receptors

    PubMed Central

    Wu, Chang-Chieh; Tsai, Fu-Ming; Chen, Mao-Liang; Wu, Semon; Lee, Ming-Cheng; Tsai, Tzung-Chieh; Wang, Lu-Kai; Wang, Chun-Hua

    2016-01-01

    Antipsychotic drugs (APDs) used to treat clinical psychotic syndromes cause a variety of blood dyscrasias. APDs suppress the aggregation of platelets; however, the underlying mechanism remains unknown. We first analyzed platelet aggregation and clot formation in platelets treated with APDs, risperidone, clozapine, or haloperidol, using an aggregometer and rotational thromboelastometry (ROTEM). Our data indicated that platelet aggregation was inhibited, that clot formation time was increased, and that clot firmness was decreased in platelets pretreated with APDs. We also examined the role two major adenosine diphosphate (ADP) receptors, P2Y1 and P2Y12, play in ADP-mediated platelet activation and APD-mediated suppression of platelet aggregation. Our results show that P2Y1 receptor stimulation with ADP-induced calcium influx was inhibited by APDs in human and rats' platelets, as assessed by in vitro or ex vivo approach, respectively. In contrast, APDs, risperidone and clozapine, alleviated P2Y12-mediated cAMP suppression, and the release of thromboxane A2 and arachidonic acid by activated platelets decreased after APD treatment in human and rats' platelets. Our data demonstrate that each APD tested significantly suppressed platelet aggregation via different mechanisms. PMID:27069920

  4. Mechanism for benzyl alcohol-induced aggregation of recombinant human interleukin-1 receptor antagonist in aqueous solution.

    PubMed

    Zhang, Ye; Roy, Shouvik; Jones, Latoya S; Krishnan, Sampathkumar; Kerwin, Bruce A; Chang, Byeong S; Manning, Mark C; Randolph, Theodore W; Carpenter, John F

    2004-12-01

    Benzyl alcohol, an antimicrobial preservative, accelerates aggregation and precipitation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) in aqueous solution. The loss of native monomer during incubation at 37 degrees C was determined by analysis of sample aliquots with size exclusion high performance liquid chromatography (SE-HPLC). Benzyl alcohol caused minor perturbation of the tertiary structure of the protein without changing its secondary structure, documenting that the preservative caused a minor shift in the protein molecular population toward partially unfolded species. Consistent with this conclusion, in the presence of benzyl alcohol the rate of H-D exchange was accelerated and the fluorescence of 1-anilinonaphthalene-8-sulfonic acid in the presence of rhIL1ra was increased. Benzyl alcohol did not alter the free energy of unfolding based on unfolding experiments in urea or guanidine HCl. With differential scanning calorimetry it was determined that benzyl alcohol reduced the apparent Tm of rhIL-1ra, but this effect occurred because the preservative lowered the temperature at which the protein aggregated during heating. Isothermal calorimetry documented that the interaction of benzyl alcohol with rhIL-1ra is relatively weak and hydrophobically driven. Thus, benzyl alcohol accelerates protein aggregation by binding to the protein and favoring an increase in the level of partially unfolded, aggregation-competent species. Sucrose partially inhibited benzyl alcohol-induced aggregation and tertiary structural change. Sucrose is preferentially excluded from the surface of the protein, favoring most compact native state species over expanded aggregation-prone forms. PMID:15514986

  5. The Rhone-Aggregation Land Surface Scheme Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Boone, A. A.; Habets, F.; Noilhan and Working Group, J.

    2002-05-01

    The Rhone-AGGregation (Rhone-AGG) Land Surface Scheme intercomparison project is an initiative within the Global Energy and Water Cycle Experiment (GEWEX) Global Land-Atmosphere System Study (GLASS)/Global Soil Wetness Project (GSWP) panel of the World Climate Research Programme (WCRP). This project makes use of the Rhone modeling system, which was developed in recent years by the French research community in order to study the continental water cycle on a regional scale. Three distinct components comprise this system: an analysis system to determine the near-surface atmospheric forcing, a Land Surface Scheme (LSS) interface and a distributed hydrological model. The coupling between the three components of the system is 1-way. It was created in an attempt to ensure a consistent dialogue between the atmosphere (precipitation, radiative fluxes, state variables) and the hydrological variables (evaporation, soil moisture, runoff, ground water and river flow). The atmospheric data, which have been mapped to an 8 km grid, consist of standard screen level observations at approximately 60 Météo-France weather network sites within the domain, European Centre for Medium-Range Weather Forecasts (ECMWF) analysis, climatological data and total daily precipitation data from over 1500 gauges. The system utilizes high spatial resolution European soil and vegetation databases, but it has been designed such that it is transferable to other regions. The size of the entire Rhone basin (86,996 km 2) is comparable to the area of a typical coarse-resolution Global atmospheric Climate Model (GCM) grid element, so that it is of interest to examine how the simulations from a wide range of LSSs, which are used in GCMs, numerical weather prediction models, mesoscale atmospheric models or hydrological models, are impacted by changing the spatial resolution over the domain from 8 km to approximately 69 km (1 degree). The main issues addressed by the Rhone-AGG project are how various state of

  6. Characterization of nanoparticle formation and aggregation on mineral surfaces

    SciTech Connect

    Glenn Waychunas; Young-Shin Jun

    2007-04-19

    The research effort in the Waychunas group is focused on the characterization and measurement of processes at the mineral-water interfaces specifically related to the onset of precipitation. This effort maps into one of the main project groups with the Penn State University EMSI (CEKA) known as PIG (Precipitation Interest Group), and involves collaborations with several members of that group. Both synchrotron experimentation and technique development are objectives, with the goals of allowing precipitation from single molecule attachment to sub-monolayer coverage to be detected and analyzed. The problem being addressed is the change in reactivity of mineral interfaces due to passivation or activation by precipitates or sorbates. In the case of passivation, fewer active sites may be involved in reactions with environmental fluids, while in the activated case the precipitate may be much more reactive than the substrate, or result in the creation of a higher density of active sites. We approach this problem by making direct measurements of several types of precipitation reactions: iron-aluminum oxide formation on quartz and other substrates from both homogeneous (in solution) nucleation, and heterogeneous (on the surface) nucleation; precipitation and sorption of silicate monomers and polymers on Fe oxide surfaces; and development of grazing-incidence small angle x-ray scattering (GISAXS) as a tool for in-situ measurement of precipitate growth, morphology and aggregation. We expect that these projects will produce new fundamental information on reactive interface growth, passivation and activation, and be applicable to a wide range of environmental interfaces.

  7. Thrombin action decreases acetylcholine receptor aggregate number and stability in cultured mouse myotubes.

    PubMed

    Davenport, R W; Lanuza, M; Kim, S; Jia, M; Snyder, E; Nelson, P G

    2000-08-30

    Neurons develop and make very stable, long-term synaptic connections with other nerve cells and with muscle. Synaptic stability at the neuromuscular junction changes over development in that a proliferation of synaptic input are made to individual myotubes and synapses from all but one neuron are lost during development. In an established co-culture paradigm in which spinal motoneurons synaptically contact myotubes, thrombin and associated protease inhibitors have been shown to affect the loss of functional synaptic contacts [6]. Evidence has not been provided which clearly demonstrate whether protease/protease inhibitors affect either the pre- or postsynaptic terminal, or both. In an effort to determine whether these reagents directly affect postsynaptic receptors on myotubes, myotubes were cultured in the absence of neurons and the spontaneous presence and stability of aggregates of acetylcholine receptors (AChR) in control and thrombin-containing media were evaluated. In dishes fixed after treatment and in dishes in which individual aggregates were observed live, thrombin action appeared to increase loss of AChR aggregates over time. Hirudin, a specific inhibitor of the thrombin protease, diminished this loss. Neither reagent affected the overall incorporation or degradation of AChR; therefore, it appears these protease/protease inhibitors affect the state of AChR aggregation. PMID:10960680

  8. Frequency, Size, and Localization of Bacterial Aggregates on Bean Leaf Surfaces

    PubMed Central

    Monier, J.-M.; Lindow, S. E.

    2004-01-01

    Using epifluorescence microscopy and image analysis, we have quantitatively described the frequency, size, and spatial distribution of bacterial aggregates on leaf surfaces of greenhouse-grown bean plants inoculated with the plant-pathogenic bacterium Pseudomonas syringae pv. syringae strain B728a. Bacterial cells were not randomly distributed on the leaf surface but occurred in a wide range of cluster sizes, ranging from single cells to over 104 cells per aggregate. The average cluster size increased through time, and aggregates were more numerous and larger when plants were maintained under conditions of high relative humidity levels than under dry conditions. The large majority of aggregates observed were small (less than 100 cells), and aggregate sizes exhibited a strong right-hand-skewed frequency distribution. While large aggregates are not frequent on a given leaf, they often accounted for the majority of cells present. We observed that up to 50% of cells present on a leaf were located in aggregates containing 103 cells or more. Aggregates were associated with several different anatomical features of the leaf surface but not with stomates. Aggregates were preferentially associated with glandular trichomes and veins. The biological and ecological significance of aggregate formation by epiphytic bacteria is discussed. PMID:14711662

  9. Membrane lipid heterogeneity associated with acetylcholine receptor particle aggregates in Xenopus embryonic muscle cells.

    PubMed Central

    Bridgman, P C; Nakajima, Y

    1981-01-01

    Filipin, digitonin, and saponin react with membrane cholesterol to produce unique membrane alterations (sterol-specific complexes) that are easily discernible in freeze-fracture replicas. We have treated both noninnervated and innervated Xenopus embryonic muscle cells in culture with these agents. Freeze-fracture of these treated muscle cells showed that most areas of the muscle plasma membrane contain sterol-specific complexes (19- to 40-nm protuberances and dimples with filipin, a scalloped appearance with digitonin, or an irregular, rough appearance with saponin). However, these complexes were virtually absent from membrane areas of junctional and nonjunctional aggregates of acetylcholine receptor particles. This result suggests that the membrane matrix of these aggregates is low in cholesterol and that this membrane lipid heterogeneity may be linked to the mechanisms involved in their formation and stabilization on muscle cells in culture. Images PMID:6940140

  10. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. PMID:25586667

  11. Influence of surface potential on aggregation and transport of titania nanoparticles.

    PubMed

    Guzman, Katherine A Dunphy; Finnegan, Michael P; Banfield, Jillian F

    2006-12-15

    To investigate the effect of pH on nanoparticle aggregation and transport in porous media, we quantified nanoparticle transport in two-dimensional structures. Titania was used as a model compound to explore the effects of surface potential on particle mobility in the subsurface. Results show that pH, and therefore, surface potential and aggregate size, dominate nanoparticle interactions with each other and surfaces. In each solution, nanoparticle aggregate size distributions were bimodal or trimodal, and aggregate sizes increased as the pH approached the pH of the point of zero charge (pHzpc). Over 80% of suspended particles and aggregates were mobile over the pH range of 1-12, except close to the pHzpc of the surfaces, where the particles are highly aggregated. The effect of pH on transport is not symmetric around the pHzpc of the particles due to charging of the channel surfaces. However, transport speed of nanoparticle aggregates did not vary with pH. The surface element integration technique, which takes into account the effect of curvature of particles on interaction energy, was used to evaluate the ability of theory to predict nanoparticle transport. PMID:17256514

  12. Biophysical Insights into How Surfaces, Including Lipid Membranes, Modulate Protein Aggregation Related to Neurodegeneration

    PubMed Central

    Burke, Kathleen A.; Yates, Elizabeth A.; Legleiter, Justin

    2013-01-01

    There are a vast number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), associated with the rearrangement of specific proteins to non-native conformations that promotes aggregation and deposition within tissues and/or cellular compartments. These diseases are commonly classified as protein-misfolding or amyloid diseases. The interaction of these proteins with liquid/surface interfaces is a fundamental phenomenon with potential implications for protein-misfolding diseases. Kinetic and thermodynamic studies indicate that significant conformational changes can be induced in proteins encountering surfaces, which can play a critical role in nucleating aggregate formation or stabilizing specific aggregation states. Surfaces of particular interest in neurodegenerative diseases are cellular and subcellular membranes that are predominately comprised of lipid components. The two-dimensional liquid environments provided by lipid bilayers can profoundly alter protein structure and dynamics by both specific and non-specific interactions. Importantly for misfolding diseases, these bilayer properties can not only modulate protein conformation, but also exert influence on aggregation state. A detailed understanding of the influence of (sub)cellular surfaces in driving protein aggregation and/or stabilizing specific aggregate forms could provide new insights into toxic mechanisms associated with these diseases. Here, we review the influence of surfaces in driving and stabilizing protein aggregation with a specific emphasis on lipid membranes. PMID:23459674

  13. Requirement of aggregation propensity of Alzheimer amyloid peptides for neuronal cell surface binding

    PubMed Central

    Bateman, David A; McLaurin, JoAnne; Chakrabartty, Avijit

    2007-01-01

    Background Aggregation of the amyloid peptides, Aβ40 and Aβ42, is known to be involved in the pathology of Alzheimer's disease (AD). Here we investigate the relationship between peptide aggregation and cell surface binding of three forms of Aβ (Aβ40, Aβ42, and an Aβ mutant). Results Using confocal microscopy and flow cytometry with fluorescently labelled Aβ, we demonstrate a correlation between the aggregation propensity of the Alzheimer amyloid peptides and their neuronal cell surface association. We find that the highly aggregation prone Aβ42 associates with the surface of neuronal cells within one hour, while the less aggregation prone Aβ40 associates over 24 hours. We show that a double mutation in Aβ42 that reduces its aggregation propensity also reduces its association with the cell surface. Furthermore, we find that a cell line that is resistant to Aβ cytotoxicity, the non-neuronal human lymphoma cell line U937, does not bind either Aβ40 or Aβ42. Conclusion Taken together, our findings reveal that amyloid peptide aggregation propensity is an essential determinant of neuronal cell surface association. We anticipate that our approach, involving Aβ imaging in live cells, will be highly useful for evaluating the efficacy of therapeutic drugs that prevent toxic Aβ association with neuronal cells. PMID:17475015

  14. Inhibition of platelet aggregation by vanilloid-like agents is not mediated by transient receptor potential vanilloid-1 channels or cannabinoid receptors.

    PubMed

    Almaghrabi, Safa; Geraghty, Dominic; Ahuja, Kiran; Adams, Murray

    2016-06-01

    Vanilloid-like agents, including capsaicin, N-arachidonoyl-dopamine and N-oleoyldopamine inhibit platelet aggregation, however little is known about the precise mechanism(s) of action. The authors have previously shown that blocking of the capsaicin receptor, transient receptor potential vanilloid-1 (TRPV1), does not interfere with capsaicin action during adenosine diphosphate (ADP)-induced aggregation. This research is extended to investigate the effect of these vanilloid-like-agents on platelet count, and to test whether the effect of these agents is mediated through TRPV1 and/or cannabinoid (CB1 and CB2) receptors in the presence of other agonists, including collagen and arachidonic acid. Incubation of platelets with each of the individual vanilloids, or with receptor antagonists of TRPV1 (SB452533), CB1 (AM251) and CB2 (AM630), for up to 2 h did not significantly affect the platelet count. Similarly, the effect of individual vanilloids on the inhibition of platelet aggregation was not significantly different in the presence of receptor agonists compared to control, irrespective of the agonist used, suggesting that the inhibitory effect of vanilloids on platelet aggregation is independent of TRPV1, CB1 and CB2 receptors. Further research on the antiplatelet activity of vanilloids should focus on mechanisms other than those associated with vanilloid receptors. PMID:26991025

  15. Surface Pressure Study of Lipid Aggregates at the Air Water Interface

    NASA Astrophysics Data System (ADS)

    Shew, Woody; Ploplis Andrews, Anna

    1996-11-01

    Qualitative and quantitative descriptions of the growth of fatty acid aggregates on a water/air interface were made by analyzing surface pressure measurements taken with a Langmuir Balance. High concentrations of palmitic acid, lauric acid, myristic acid, and also phosphatidylethanolamine in solution with chloroform were applied with a syringe to the surface of the Langmuir Balance and surface pressure was monitored as aggregates assembled spontaneously. The aggregation process for palmitic acid was determined to consist of three distinct parts. Exponential curves were fit to the individual regions of the data and growth and decay constants were determined. Surface pressure varied in very complex ways for lauric acid, myristic acid, and phosphatidylethanolamine yet kinetic measurements yield qualitative information about assembly of those aggregates. This research was supported by NSF Grant No. DMR-93-22301.

  16. Diffusion limited aggregation. The role of surface diffusion

    NASA Astrophysics Data System (ADS)

    García-Ruiz, Juan M.; Otálora, Fermín

    1991-11-01

    We present a growth model in which the hitting particles are able to diffuse to more stable growth sites in the perimeter of a cluster growing by diffusion limited aggregation. By tuning the diffusion path Ls, the morphological output - from disordered fractal to perfect single crystals - can be controlled. Instabilities appear when the mean length of the crystal faces Lf are greater than 2 Ls.

  17. Monolayers of charged particles in a Langmuir trough: Could particle aggregation increase the surface pressure?

    PubMed

    Petkov, Plamen V; Danov, Krassimir D; Kralchevsky, Peter A

    2016-01-15

    The effect of aggregation on the surface pressure, Π, of monolayers from charged micrometer-sized colloidal particles on the air/water interface is investigated. Π is completely due to the long-range electrostatic repulsion between the particles mediated by their electrostatic field in the air. The most probable origin of particle aggregation is the attraction between capillary quadrupoles due to undulated contact lines on particle surfaces. Aggregates have higher charge and repel each other stronger than single particles. The data analysis by means of a theoretical model implies that Π linearly increases with n(1/2); n is the mean aggregation number, which can be determined from the experimental Π vs. area curves. The presence of electrolyte promotes aggregation, which tends to increase Π, but simultaneously reduces the surface charge that leads to lower Π. For our system, the first effect prevails and apparently paradoxical behavior is observed: the addition of salt in water enhances the electrostatic surface pressure. The data indicate limited aggregation: the rise of the electrostatic barrier prevents the further coalescence of aggregates if they have become sufficiently large. The results contribute for a better understanding of the factors that control the interactions in monolayers of charged particles at liquid interfaces. PMID:26454382

  18. Soft electrostatic repulsion in particle monolayers at liquid interfaces: surface pressure and effect of aggregation.

    PubMed

    Kralchevsky, Peter A; Danov, Krassimir D; Petkov, Plamen V

    2016-07-28

    Non-densely packed interfacial monolayers from charged micrometre-sized colloid particles find applications for producing micropatterned surfaces. The soft electrostatic repulsion between the particles in a monolayer on an air/water (or oil/water) interface is mediated by the non-polar fluid, where Debye screening is absent and the distances between the particles are considerably greater than their diameters. Surface pressure versus area isotherms were measured at the air/water interface. The experiments show that asymptotically the surface pressure is inversely proportional to the third power of the interparticle distance. A theoretical model is developed that predicts not only the aforementioned asymptotic law but also the whole surface pressure versus area dependence. An increase in the surface pressure upon aggregation of charged particles in the interfacial monolayers is experimentally established. This effect is explained by the developed theoretical model, which predicts that the surface pressure should linearly increase with the square root of the particle mean aggregation number. The effect of added electrolyte on the aggregation is also investigated. The data lead to the conclusion that 'limited aggregation' exists in the monolayers of charged particles. In brief, the stronger electrostatic repulsion between the bigger aggregates leads to a higher barrier to their coalescence that, in turn, prevents any further aggregation, i.e. negative feedback is present.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298437

  19. Effects of Ocean Acidification on the Ballast of Surface Aggregates Sinking through the Twilight Zone

    PubMed Central

    de Jesus Mendes, Pedro A.; Thomsen, Laurenz

    2012-01-01

    The dissolution of CaCO3 is one of the ways ocean acidification can, potentially, greatly affect the ballast of aggregates. A diminution of the ballast could reduce the settling speed of aggregates, resulting in a change in the carbon flux to the deep sea. This would mean lower amounts of more refractory organic matter reaching the ocean floor. This work aimed to determine the effect of ocean acidification on the ballast of sinking surface aggregates. Our hypothesis was that the decrease of pH will increase the dissolution of particulate inorganic carbon ballasting the aggregates, consequently reducing their settling velocity and increasing their residence time in the upper twilight zone. Using a new methodology for simulation of aggregate settling, our results suggest that future pCO2 conditions can significantly change the ballast composition of sinking aggregates. The change in aggregate composition had an effect on the size distribution of the aggregates, with a shift to smaller aggregates. A change also occurred in the settling velocity of the particles, which would lead to a higher residence time in the water column, where they could be continuously degraded. In the environment, such an effect would result in a reduction of the carbon flux to the deep-sea. This reduction would impact those benthic communities, which rely on the vertical flow of carbon as primary source of energy. PMID:23272075

  20. SIZE AND SURFACE AREA OF ICY DUST AGGREGATES AFTER A HEATING EVENT AT A PROTOPLANETARY NEBULA

    SciTech Connect

    Sirono, Sin-iti

    2013-03-01

    The activity of a young star rises abruptly during an FU Orionis outburst. This event causes a temporary temperature increase in the protoplanetary nebula. H{sub 2}O icy grains are sublimated by this event, and silicate cores embedded inside the ice are ejected. During the high-temperature phase, the silicate grains coagulate to form silicate core aggregates. After the heating event, the temperature drops, and the ice recondenses onto the aggregates. I determined numerically the size distribution of the ice-covered aggregates. The size of the aggregates exceeds 10 {mu}m around the snow line. Because of the migration of the ice to large aggregates, only a small fraction of the silicate core aggregate is covered with H{sub 2}O ice. After the heating event, the surface of an ice-covered aggregate is totally covered by silicate core aggregates. This might reduce the fragmentation velocity of aggregates when they collide. It is possible that the covering silicate cores shield the UV radiation field which induces photodissociation of H{sub 2}O ice. This effect may cause the shortage of cold H{sub 2}O vapor observed by Herschel.

  1. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Menéndez, Guillermo O.; Cortés, Emiliano; Grumelli, Doris; Méndez de Leo, Lucila P.; Williams, Federico J.; Tognalli, Nicolás G.; Fainstein, Alejandro; Vela, María Elena; Jares-Erijman, Elizabeth A.; Salvarezza, Roberto C.

    2012-01-01

    Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show

  2. A novel thromboxane receptor antagonist, nstpbp5185, inhibits platelet aggregation and thrombus formation in animal models.

    PubMed

    Huang, Shiu-Wen; Kuo, Heng-Lan; Hsu, Ming-Tsung; Tseng, Yufeng Jane; Lin, Shu-Wha; Kuo, Sheng-Chu; Peng, Hui-Chin; Lien, Jin-Cherng; Huang, Tur-Fu

    2016-08-01

    A novel benzimidazole derivative, nstpbp5185, was discovered through in vitro and in vivo evaluations for antiplatelet activity. Thromaboxane receptor (TP) is important in vascular physiology, haemostasis and pathophysiological thrombosis. Nstpbp5185 concentration-dependently inhibited human platelet aggregation caused by collagen, arachidonic acid and U46619. Nstpbp5185 caused a right-shift of the concentration-response curve of U46619 and competitively inhibited the binding of 3H-SQ-29548 to TP receptor expressed on HEK-293 cells, with an IC50 of 0.1 µM, indicating that nstpbp5185 is a TP antagonist. In murine thrombosis models, nstpbp5185 significantly prolonged the latent period in triggering platelet plug formation in mesenteric and FeCl3-induced thrombi formation, and increased the survival rate in pulmonary embolism model with less bleeding than aspirin. This study suggests nstpbp5185, an orally selective anti-thrombotic agent, acting through blockade of TXA2 receptor, may be efficacious for prevention or treatment of pathologic thrombosis. PMID:27173725

  3. Phenotypes of Non-Attached Pseudomonas aeruginosa Aggregates Resemble Surface Attached Biofilm

    PubMed Central

    Alhede, Morten; Kragh, Kasper Nørskov; Qvortrup, Klaus; Allesen-Holm, Marie; van Gennip, Maria; Christensen, Louise D.; Jensen, Peter Østrup; Nielsen, Anne K.; Parsek, Matt; Wozniak, Dan; Molin, Søren; Tolker-Nielsen, Tim; Høiby, Niels; Givskov, Michael; Bjarnsholt, Thomas

    2011-01-01

    For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance) and resistance to phagocytes were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis media; soft tissue fillers and non-healing wounds, and we propose that aggregated cells exhibit enhanced survival in the hostile host environment, compared with non-aggregated bacterial

  4. Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucas, Leanne J.; Chen, Xiaoke K.; Smith, Aaron J.; Korbelik, Mladen; Zeng, Haishan; Lee, Patrick W. K.; Hewitt, Kevin Cecil

    2015-01-01

    The purpose of this study was to explore the use of surface-enhanced Raman spectroscopy (SERS) to image the distribution of epidermal growth factor receptor (EGFR) in cells. To accomplish this task, 30-nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per mL) were incubated with cells (106 per mL) of the A431 human epidermoid carcinoma and normal human bronchial epithelial cell lines. Using the 632.8-nm excitation line of a He-Ne laser, Raman spectroscopy measurements were performed using a point mapping scheme. Normal cells show little to no enhancement. SERS signals were observed inside the cytoplasm of A431 cells with an overall enhancement of 4 to 7 orders of magnitude. Raman intensity maps of the 1450 and 1583 cm-1 peaks correlate well with the expected distribution of EGFR and AuNPs, aggregated following uptake by endosomes and lysosomes. Spectral features from tyrosine and tryptophan residues dominate the SERS signals.

  5. Two cell surface proteins bind the sponge Microciona prolifera aggregation factor.

    PubMed

    Varner, J A; Burger, M M; Kaufman, J F

    1988-06-15

    Two extracellular matrix cell surface proteins which bind the proteoglycan-like aggregation factor from the marine sponge Microciona prolifera (MAF) and which may function as physiological receptors for MAF were identified and characterized for the first time. By probing nitrocellulose blots of nonreducing sodium dodecyl sulfate gels containing whole sponge cell protein with iodinated MAF, a 210- and a 68-kDa protein, which have native molecular masses of approximately 200-400 and 70 kDa, were identified. MAF binding to blots is species-specific. It is also sensitive to reduction and is completely abolished by pretreatment of live cells with proteases, as was cellular aggregation, indicating that the 210- and 68-kDa proteins may be located on the cell surface. The additional observations that the 68 kDa is an endoglycosidase F-sensitive glycoprotein and that antisera against whole sponge cells or membranes can immunoprecipitate the 210 kDa when prebound to intact cells are consistent with a cell surface location. Both proteins can be isolated from sponge cell membranes and from the sponge skeleton (insoluble extracellular matrix), but the 210-kDa MAF-binding protein can also be found in the soluble extracellular matrix (buffer washes of cells and skeleton) as well. A third MAF-binding protein of molecular mass 95 kDa was also found in the sponge extracellular matrix but rarely on cells. Both of the cell-associated 210- and 68-kDa proteins are nonintegral membrane proteins, based on Triton X-114 phase separation, flotation of liposomes containing sponge membrane lysates, and their extraction from membranes by buffer washes. Both proteins bind MAF affinity resins, indicating that they each exhibit a moderate affinity for MAF under native conditions. They can also be separated from each other and from the bulk of the protein in an octylpolyoxyethylene extract of membranes by fast protein liquid chromatography Mono Q anion exchange chromatography, as assessed by native

  6. Influence of surface modification on structure formation and micromechanical properties of spray-dried silica aggregates.

    PubMed

    Zellmer, Sabrina; Lindenau, Maylin; Michel, Stephanie; Garnweitner, Georg; Schilde, Carsten

    2016-02-15

    Spray drying processes were utilized for the production of hierarchical materials with defined structures. The structure formation during the spray drying process and the micromechanical properties of the obtained aggregates depend on the particle-particle interactions, the primary particle size and morphology as well as the process parameters of the spray drying process. Hence, the effect of different primary particle systems prepared as stable dispersions with various surface modifications were investigated on the colloidal structure formation and the micromechanical properties of silica particles as model aggregates and compared to theoretical considerations. The obtained results show that the structure formation of aggregates during the spray drying process for stable suspensions is almost independent on the functional groups present at the particle surface. Further, the mechanical properties of these aggregates differ considerably with the content of the bound ligand. This allows the defined adjustment of the aggregate properties, such as the strength and surface properties, as well as the formation of defined hierarchical aggregate structures. PMID:26619128

  7. Protein structural and surface water rearrangement constitute major events in the earliest aggregation stages of tau

    PubMed Central

    Pavlova, Anna; Cheng, Chi-Yuan; Kinnebrew, Maia; Lew, John; Dahlquist, Frederick W.; Han, Songi

    2016-01-01

    Protein aggregation plays a critical role in the pathogenesis of neurodegenerative diseases, and the mechanism of its progression is poorly understood. Here, we examine the structural and dynamic characteristics of transiently evolving protein aggregates under ambient conditions by directly probing protein surface water diffusivity, local protein segment dynamics, and interprotein packing as a function of aggregation time, along the third repeat domain and C terminus of Δtau187 spanning residues 255–441 of the longest isoform of human tau. These measurements were achieved with a set of highly sensitive magnetic resonance tools that rely on site-specific electron spin labeling of Δtau187. Within minutes of initiated aggregation, the majority of Δtau187 that is initially homogeneously hydrated undergoes structural transformations to form partially structured aggregation intermediates. This is reflected in the dispersion of surface water dynamics that is distinct around the third repeat domain, found to be embedded in an intertau interface, from that of the solvent-exposed C terminus. Over the course of hours and in a rate-limiting process, a majority of these aggregation intermediates proceed to convert into stable β-sheet structured species and maintain their stacking order without exchanging their subunits. The population of β-sheet structured species is >5% within 5 min of aggregation and gradually grows to 50–70% within the early stages of fibril formation, while they mostly anneal block-wisely to form elongated fibrils. Our findings suggest that the formation of dynamic aggregation intermediates constitutes a major event occurring in the earliest stages of tau aggregation that precedes, and likely facilitates, fibril formation and growth. PMID:26712030

  8. Microstructured block copolymer surfaces for control of microbe capture and aggregation

    SciTech Connect

    Hansen, Ryan R; Shubert, Katherine R; Morrell, Jennifer L.; Lokitz, Bradley S; Doktycz, Mitchel John; Retterer, Scott T

    2014-01-01

    The capture and arrangement of surface-associated microbes is influenced by biochemical and physical properties of the substrate. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe capture. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line or square grid patterns with 5 m wide features and varied edge spacing. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates captured was dependent on the pattern dimensions. Line patterns with edge spacing of 5 m or less led to the capture of individual microbes with minimal formation of aggregates, while grid patterns with the same spacing also captured individual microbes with further reduction in aggregation. Both geometries allowed for increases in aggregate size distribution with increased in edge spacing. These engineered surfaces combine spatial confinement with affinity-based microbe capture based on exopolysaccharide content to control the degree of microbe aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.

  9. Effects of TRA-418, a novel TP-receptor antagonist, and IP-receptor agonist, on human platelet activation and aggregation.

    PubMed

    Miyamoto, Mitsuko; Yamada, Naohiro; Ikezawa, Shiho; Ohno, Michihiro; Otake, Atsushi; Umemura, Kazuo; Matsushita, Teruo

    2003-11-01

    [4-[2-(1,1-Diphenylethylsulfanyl)-ethyl]-3,4-dihydro-2H-benzo[1,4]oxazin-8-yloxy]-acetic acid N-Methyl-d-glucamine salt (TRA-418) has both thromboxane A2 (TP)-receptor antagonist and prostacyclin (IP)-receptor agonist properties. The present study examined the advantageous effects of TRA-418 based on the dual activities, over an agent having either activity alone and also the difference in the effects of TRA-418 and a glycoprotein alphaIIb/beta3 integrin (GPIIb/IIIa) inhibitor. TRA-418 inhibited platelet GPIIb/IIIa activation as well as P-selectin expression induced by adenosine 5'-diphosphate, thrombin receptor agonist peptide 1-6 (Ser-Phe-Leu-Leu-Arg-Asn-NH2), and U-46619 in the presence of epinephrine (U-46619+ epinephrine). TRA-418 also inhibited platelet aggregation induced by those platelet-stimulants in Ca2+ chelating anticoagulant, citrate and in nonchelating anticoagulant, d-phenylalanyl-l-prolyl-l-arginyl-chloromethyl ketone (PPACK). The TP-receptor antagonist SQ-29548 inhibited only U-46619+epinephrine-induced GPIIb/IIIa activation, P-selectin expression, and platelet aggregation. The IP-receptor agonist beraprost sodium inhibited platelet activation. Beraprost also inhibited platelet aggregation induced by platelet stimulants we tested in citrate and in PPACK. The GPIIb/IIIa inhibitor abciximab blocked GPIIb/IIIa activation and platelet aggregation. However, abciximab showed slight inhibitory effects on P-selectin expression. TRA-418 is more advantageous as an antiplatelet agent than TP-receptor antagonists or IP-receptor agonists separately used. TRA-418 showed a different inhibitory profile from abciximab in the effects on P-selectin expression. PMID:14504133

  10. Aggregate breakdown and surface seal development influenced by rain intensity, slope gradient and soil particle size

    NASA Astrophysics Data System (ADS)

    Arjmand Sajjadi, S.; Mahmoodabadi, M.

    2014-12-01

    Aggregate breakdown is an important process which controls infiltration rate (IR) and the availability of fine materials necessary for structural sealing under rainfall. The purpose of this study was to investigate the effects of different slope gradients, rain intensities and particle size distributions on aggregate breakdown and IR to describe the formation of surface sealing. To address this issue, 60 experiments were carried out in a 35 cm x 30 cm x 10 cm detachment tray using a rainfall simulator. By sieving a sandy loam soil, two sub-samples with different maximum aggregate sizes of 2 mm (Dmax 2 mm) and 4.75 mm (Dmax 4.75 mm) were prepared. The soils were exposed to two different rain intensities (57 and 80 mm h-1) on several slopes (0.5, 2.5, 5, 10, and 20%) each at three replications. The result showed that the most fraction percentages in soils Dmax 2 mm and Dmax 4.75 mm were in the finest size classes of 0.02 and 0.043 mm, respectively for all slope gradients and rain intensities. The soil containing finer aggregates exhibited higher transportability of pre-detached material than the soil containing larger aggregates. Also, IR increased with increasing slope gradient, rain intensity and aggregate size under unsteady state conditions because of less development of surface seal. But under steady state conditions, no significant relationship was found between slope and IR. The finding of this study revealed the importance of rain intensity, slope steepness and soil aggregate size on aggregate breakdown and seal formation, which can control infiltration rate and the consequent runoff and erosion rates.

  11. Measurement of receptor cross-linking at the cell surface via multiparameter flow cytometry

    NASA Astrophysics Data System (ADS)

    Posner, Richard G.; Bold, Jennifer; Bernstein, Yael; Rasor, Joe; Braslow, Joshua; Hlavacek, William S.; Perelson, Alan S.

    1998-05-01

    Many cellular responses, particularly in the immune system, are triggered by ligand binding to a cell-surface receptor. However, as indicated by bell-shaped dose-response curves, ligand binding alone is sometimes insufficient to trigger a response. Often, ligand binding must also induce the aggregation of cell-surface receptors through crosslinking, which occurs when a ligand binds simultaneously to two or more receptors. Thus, an important goal in cell biology has been to establish quantitative relationships between the amount of ligand present on a cell surface and the number of crosslinked ligand-specific cell-surface receptors. To better understand ligand-induced receptor aggregation, we have been investigating the binding of a model multivalent antigen (DNP25PE) to cell-surface anti-DNP FITC-labeled IgE (FITC- IgE). To determine the kinetic and equilibrium parameters that characterize crosslinking in this system, we have developed a combined theoretical and experimental approach that is based on multiparameter flow cytometry. With this approach, we can measure both the average number of ligand molecules that are bound per cell and the average number of receptor binding sites that are bound per cell. The average number of DNP25PE per cell is determined by measuring the fluorescence of phycoerythrin. The average number of occupied IgE sites per cell is determined by measuring the fluorescence of FITC, which is quenched upon ligand binding. This novel approach, together with conventional methods for changes in intracellular calcium, allows us to correlate for the first time the dynamics of IgE crosslinking with cell activation.

  12. Real-time protein aggregation monitoring with a Bloch surface wave-based approach

    NASA Astrophysics Data System (ADS)

    Santi, Sara; Barakat, Elsie; Descrovi, Emiliano; Neier, Reinhard; Herzig, Hans Peter

    2014-05-01

    The misfolding and aggregation of amyloid proteins has been associated with incurable diseases such as Alzheimer's or Parkinson's disease. In the specific case of Alzheimer's disease, recent studies have shown that cell toxicity is caused by soluble oligomeric forms of aggregates appearing in the early stages of aggregation, rather than by insoluble fibrils. Research on new strategies of diagnosis is imperative to detect the disease prior to the onset of clinical symptoms. Here, we propose the use of an optical method for protein aggregation dynamic studies using a Bloch surface wave based approach. A one dimension photonic crystal made of a periodic stack of silicon oxide and silicon nitride layers is used to excite a Bloch surface wave, which is sensitive to variation of the refractive index of an aqueous solution. The aim is to detect the early dynamic events of protein aggregation and fibrillogenesis of the amyloid-beta peptide Aβ42, which plays a central role in the onset of the Alzheimer's disease. The detection principle relies on the refractive index changes caused by the depletion of the Aβ42 monomer concentration during oligomerization and fibrillization. We demonstrate the efficacy of the Bloch surface wave approach by monitoring in real-time the first crucial steps of Aβ42 oligomerization.

  13. Response to platelet-activating factor in human platelets stored and aged in plasma. Decrease in aggregation, phosphoinositide turnover, and receptor affinity

    SciTech Connect

    Shukla, S.D.; Morrison, W.J.; Klachko, D.M.

    1989-07-01

    Human platelet concentrates were stored in polyolefin bags at 22 to 24 degrees C on a horizontal shaker for up to 8 days. At different intervals, aliquots of platelet-rich plasma (PRP) were removed aseptically and five variables, i.e., platelet counts, morphology, platelet-activating factor (PAF)-stimulated aggregation, phosphoinositide turnover, and (3H)PAF binding to platelet receptors, were studied. The number of platelets did not change during the 8 days of storage. Scanning electron microscopy of the platelets revealed a gradual morphologic change from biconcave flat discs to irregular, crenated forms. The PAF-induced aggregation of platelets declined with time of storage. A decrease to 50 percent of the Day 1 aggregatory response to PAF was evident on Day 2, and there was a further decline to about 20 percent by Day 6. Similarly, PAF receptor-coupled phosphoinositide turnover, as monitored by 32P incorporation into individual phosphoinositides, decreased dramatically with storage. After 2 to 3 days of storage, the phosphoinositide turnover was reduced to 50 percent of the original response, and it continued to decline to about 25 percent of original response by Day 5 or 6. The binding of (3H)PAF to washed human platelets indicated subtle changes between Days 2 and 4, which became more noticeable by Day 6. These results have raised the possibility of changes in the number of the receptors and/or their affinity for the ligand during storage. We conclude that although the number of platelets was maintained during storage for 8 days, a general deterioration of their responses to PAF occurred at the levels of cell surface receptor, transmembrane signaling (phosphoinositide turnover), and response (aggregation).

  14. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices. PMID:24308778

  15. Aggregation process of optical properties and temperature over heterogeneous surfaces in infrared domain

    SciTech Connect

    Fontanilles, Guillaume; Briottet, Xavier; Fabre, Sophie; Lefebvre, Sidonie; Vandenhaute, Pierre-Francois

    2010-08-20

    We propose a modeling of the aggregation processes of optical properties and temperature over the heterogeneous landscape in the infrared domain (3-14{mu}m). The main objectives of the modeling are to understand how these parameters aggregate and to study their links at different spatial scales. As the landscape is described at each scale by its radiative parameters, general equations linking the radiative parameters at a given high spatial scale to those at a rough scale are proposed. Then these equations are applied to several synthetic landscapes. An analysis based on a design of experiments is conducted to point out the influence of each of the input factors. The results show the importance of the intrinsic parameters (reflectance, emissivity, and surface temperature) of each surface element and also the directional and spectral behaviors of the aggregated parameters.

  16. Highly Oriented J-Aggregates of Nitroazo Dye and Its Surface-Induced Chromism.

    PubMed

    Tanaka, Toshihiko; Ishitobi, Masamitsu; Aoyama, Tetsuya; Matsumoto, Shinya

    2016-05-17

    Highly oriented J-aggregates of a nitroazo dye were obtained in solid thin films on aligned poly(tetrafluoroethylene) surfaces. During film deposition on a friction-transferred poly(tetrafluoroethylene) layer, a sharp peak grew in the polarized absorption spectra around 613 nm, which was red-shifted 117 nm from the peak in dilute dichloromethane solution. The peak showed remarkable optical anisotropy: dichroic ratios D of up to 22 were observed, and the intrinsic D value should substantially exceed this value. These results indicate that the peak is attributable to highly oriented J-aggregates. On glass, however, H-like aggregates grew, exhibiting an absorption peak at 410 nm. Hence, the substrate surface induced the remarkable chromism observed as a 203 nm red shift. PMID:27088848

  17. Design of peptidyl compounds that affect beta-amyloid aggregation: importance of surface tension and context.

    PubMed

    Gibson, Todd J; Murphy, Regina M

    2005-06-21

    Self-association of beta-amyloid (Abeta) peptide into cross-beta-sheet fibrils induces cellular toxicity in vitro and is linked with progression of Alzheimer's disease. Previously, we demonstrated that hybrid peptides, containing a recognition domain that binds to Abeta and a disrupting domain consisting of a chain of charged amino acids, inhibited Abeta-associated toxicity in vitro and increased the rate of Abeta aggregation. In this work we examine the design parameter space of the disrupting domain. Using KLVFFKKKKKK as a base case, we tested hybrid compounds with a branched rather than linear lysine oligomer, with l-lysine replaced by d-lysine, and with lysine replaced by diaminopropionic acid. We synthesized a compound with a novel anionic disrupting domain that contained cysteine thiols oxidized to sulfates, as well as other compounds in which alkyl or ether chains were appended to KLVFF. In all cases, the hybrid compound's ability to increase solvent surface tension was the strongest predictor of its effect on Abeta aggregation kinetics. Finally, we investigated the effects of arginine on Abeta aggregation. Arginine is a well-known chaotrope but increases surface tension of water. Arginine modestly decreased Abeta aggregation. In contrast, RRRRRR slightly, and KLVFFRRRRRR greatly, increased Abeta aggregation. Thus, the influence of arginine on Abeta aggregation depends strongly on the context in which it is presented. The effect of arginine, RRRRRR, and KLVFFRRRRRR on Abeta aggregation was examined in detail using laser light scattering, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, thioflavin T fluorescence, and transmission electron microscopy. PMID:15952797

  18. Mapping Surface Cover Parameters Using Aggregation Rules and Remotely Sensed Cover Classes. Version 1.9

    NASA Technical Reports Server (NTRS)

    Arain, Altaf M.; Shuttleworth, W. James; Yang, Z-Liang; Michaud, Jene; Dolman, Johannes

    1997-01-01

    A coupled model, which combines the Biosphere-Atmosphere Transfer Scheme (BATS) with an advanced atmospheric boundary-layer model, was used to validate hypothetical aggregation rules for BATS-specific surface cover parameters. The model was initialized and tested with observations from the Anglo-Brazilian Amazonian Climate Observational Study and used to simulate surface fluxes for rain forest and pasture mixes at a site near Manaus in Brazil. The aggregation rules are shown to estimate parameters which give area-average surface fluxes similar to those calculated with explicit representation of forest and pasture patches for a range of meteorological and surface conditions relevant to this site, but the agreement deteriorates somewhat when there are large patch-to-patch differences in soil moisture. The aggregation rules, validated as above, were then applied to remotely sensed 1 km land cover data set to obtain grid-average values of BATS vegetation parameters for 2.8 deg x 2.8 deg and 1 deg x 1 deg grids within the conterminous United States. There are significant differences in key vegetation parameters (aerodynamic roughness length, albedo, leaf area index, and stomatal resistance) when aggregate parameters are compared to parameters for the single, dominant cover within the grid. However, the surface energy fluxes calculated by stand-alone BATS with the 2-year forcing, data from the International Satellite Land Surface Climatology Project (ISLSCP) CDROM were reasonably similar using aggregate-vegetation parameters and dominant-cover parameters, but there were some significant differences, particularly in the western USA.

  19. Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction

    PubMed Central

    Fisch, Adam S.; Yerges-Armstrong, Laura M.; Backman, Joshua D.; Wang, Hong; Donnelly, Patrick; Ryan, Kathleen A.; Parihar, Ankita; Pavlovich, Mary A.; Mitchell, Braxton D.; O’Connell, Jeffrey R.; Herzog, William; Harman, Christopher R.; Wren, Jonathan D.; Lewis, Joshua P.

    2015-01-01

    Platelet Endothelial Aggregation Receptor 1 (PEAR1) is a newly identified membrane protein reported to be involved in multiple vascular and thrombotic processes. While most studies to date have focused on the effects of this receptor in platelets, PEAR1 is located in multiple tissues including the endothelium, where it is most highly expressed. Our first objective was to evaluate the role of PEAR1 in endothelial function by examining flow-mediated dilation of the brachial artery in 641 participants from the Heredity and Phenotype Intervention Heart Study. Our second objective was to further define the impact of PEAR1 on cardiovascular disease computationally through meta-analysis of 75,000 microarrays, yielding insights regarding PEAR1 function, and predictions of phenotypes and diseases affected by PEAR1 dysregulation. Based on the results of this meta-analysis we examined whether genetic variation in PEAR1 influences endothelial function using an ex vivo assay of endothelial cell migration. We observed a significant association between rs12041331 and flow-mediated dilation in participants of the Heredity and Phenotype Intervention Heart Study (P = 0.02). Meta-analysis results revealed that PEAR1 expression is highly correlated with several genes (e.g. ANG2, ACVRL1, ENG) and phenotypes (e.g. endothelial cell migration, angiogenesis) that are integral to endothelial function. Functional validation of these results revealed that PEAR1 rs12041331 is significantly associated with endothelial migration (P = 0.04). Our results suggest for the first time that genetic variation of PEAR1 is a significant determinant of endothelial function through pathways implicated in cardiovascular disease. PMID:26406321

  20. Capsaicin-induced inhibition of platelet aggregation is not mediated by transient receptor potential vanilloid type 1.

    PubMed

    Mittelstadt, Scott W; Nelson, Richard A; Daanen, Jerome F; King, Andrew J; Kort, Michael E; Kym, Philip R; Lubbers, Nathan L; Cox, Bryan F; Lynch, James J

    2012-01-01

    Capsaicin is an agonist of transient receptor potential vanilloid type 1 (TRPV1), in which it can act as a neuronal stimulant and result in nociception. Capsaicin also affects a variety of nonneuronal tissues, in which its mechanisms of action are less certain. The present study investigated whether the inhibitory effects of capsaicin on platelet aggregation are mediated via TRPV1. Venous whole blood obtained from beagle dogs (n = 6) was preincubated with capsaicin and/or the potent and selective competitive TRPV1 antagonist, A-993610 and then exposed to collagen (2 μg/ml). An aggregometer was used to quantify the platelet response. Capsaicin exposure inhibited collagen-induced platelet aggregation in a concentration-dependent manner, with significant effects at 10 and 30 μg capsaicin per millilitre. A-993610 alone (0.1-1.0 μg/ml) had no effects on collagen-induced platelet aggregation, nor did it have any effects on capsaicin's ability to inhibit platelet aggregation. The current results agree with previous findings that capsaicin can inhibit platelet aggregation. In addition, the present study demonstrates that capsaicin's inhibitory effect on collagen-induced canine platelet aggregation is not mediated by TRPV1. PMID:22089942

  1. Density functional theory of equilibrium random copolymers: application to surface adsorption of aggregating peptides

    NASA Astrophysics Data System (ADS)

    Wang, Haiqiang; Forsman, Jan; Woodward, Clifford E.

    2016-06-01

    We generalize a recently developed polymer density functional theory (PDFT) for polydisperse polymer fluids to the case of equilibrium random copolymers. We show that the generalization of the PDFT to these systems allows us to obtain a remarkable simplification compared to the monodispersed polymers. The theory is used to treat a model for protein aggregation into linear filaments in the presence of surfaces. Here we show that, for attractive surfaces, there is evidence of significant enhancement of protein aggregation. This behaviour is a consequence of a surface phase transition, which has been shown to occur with ideal equilibrium polymers in the presence of sufficiently attractive surfaces. For excluding monomers, this transition is suppressed, though an echo of the underlying ideal transition is present in the sudden change in the excess adsorption.

  2. Density functional theory of equilibrium random copolymers: application to surface adsorption of aggregating peptides.

    PubMed

    Wang, Haiqiang; Forsman, Jan; Woodward, Clifford E

    2016-06-22

    We generalize a recently developed polymer density functional theory (PDFT) for polydisperse polymer fluids to the case of equilibrium random copolymers. We show that the generalization of the PDFT to these systems allows us to obtain a remarkable simplification compared to the monodispersed polymers. The theory is used to treat a model for protein aggregation into linear filaments in the presence of surfaces. Here we show that, for attractive surfaces, there is evidence of significant enhancement of protein aggregation. This behaviour is a consequence of a surface phase transition, which has been shown to occur with ideal equilibrium polymers in the presence of sufficiently attractive surfaces. For excluding monomers, this transition is suppressed, though an echo of the underlying ideal transition is present in the sudden change in the excess adsorption. PMID:27115518

  3. Glucagon-Like Peptide 1 Receptor Activation Attenuates Platelet Aggregation and Thrombosis.

    PubMed

    Cameron-Vendrig, Alison; Reheman, Adili; Siraj, M Ahsan; Xu, Xiaohong Ruby; Wang, Yiming; Lei, Xi; Afroze, Talat; Shikatani, Eric; El-Mounayri, Omar; Noyan, Hossein; Weissleder, Ralph; Ni, Heyu; Husain, Mansoor

    2016-06-01

    Short-term studies in subjects with diabetes receiving glucagon-like peptide 1 (GLP-1)-targeted therapies have suggested a reduced number of cardiovascular events. The mechanisms underlying this unexpectedly rapid effect are not known. We cloned full-length GLP-1 receptor (GLP-1R) mRNA from a human megakaryocyte cell line (MEG-01), and found expression levels of GLP-1Rs in MEG-01 cells to be higher than those in the human lung but lower than in the human pancreas. Incubation with GLP-1 and the GLP-1R agonist exenatide elicited a cAMP response in MEG-01 cells, and exenatide significantly inhibited thrombin-, ADP-, and collagen-induced platelet aggregation. Incubation with exenatide also inhibited thrombus formation under flow conditions in ex vivo perfusion chambers using human and mouse whole blood. In a mouse cremaster artery laser injury model, a single intravenous injection of exenatide inhibited thrombus formation in normoglycemic and hyperglycemic mice in vivo. Thrombus formation was greater in mice transplanted with bone marrow lacking a functional GLP-1R (Glp1r(-/-)), compared with those receiving wild-type bone marrow. Although antithrombotic effects of exenatide were partly lost in mice transplanted with bone marrow from Glp1r(-/-) mice, they were undetectable in mice with a genetic deficiency of endothelial nitric oxide synthase. The inhibition of platelet function and the prevention of thrombus formation by GLP-1R agonists represent potential mechanisms for reduced atherothrombotic events. PMID:26936963

  4. Distribution of type I Fc epsilon-receptors on the surface of mast cells probed by fluorescence resonance energy transfer.

    PubMed Central

    Kubitscheck, U; Schweitzer-Stenner, R; Arndt-Jovin, D J; Jovin, T M; Pecht, I

    1993-01-01

    The aggregation state of type I Fc epsilon-receptors (Fc epsilon RI) on the surface of single living mast cells was investigated by resonance fluorescence energy transfer. Derivatization of Fc epsilon RI specific ligands, i.e., immunoglobulin E or Fab fragments of a Fc epsilon RI specific monoclonal antibody, with donor and acceptor fluorophores provided a means for measuring receptor clustering through energy transfer between the receptor probes. The efficiency of energy transfer between the ligands carrying distinct fluorophores was determined on single cells in a microscope by analyzing the photobleaching kinetics of the donor fluorophore in the presence and absence of receptor ligands labeled with acceptor fluorophores. To rationalize the energy transfer data, we developed a theoretical model describing the dependence of the energy transfer efficiency on the geometry of the fluorescently labeled macromolecular ligands and their aggregation state on the cell surface. To this end, the transfer process was numerically calculated first for one pair and then for an ensemble of Fc epsilon RI bound ligands on the cell surface. The model stipulates that the aggregation state of the Fc epsilon RI is governed by an attractive lipid-protein mediated interaction potential. The corresponding pair-distribution function characterizes the spatial distribution of the ensemble. Using this approach, the energy transfer efficiency of the ensemble was calculated for different degrees of receptor aggregation. Comparison of the theoretical modeling results with the experimental energy transfer data clearly suggests that the Fc epsilon RI are monovalent, randomly distributed plasma membrane proteins. The method provides a novel approach for determining the aggregation state of cell surface components. PMID:8431535

  5. Surfaces modulate beta-amyloid peptide aggregation associated with Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Yates, Elizabeth Anne

    A hallmark of Alzheimer's disease, a late onset neurodegenerative disease, is the presence of neuritic amyloid plaques deposited within the brain composed of beta-amyloid (Abeta) peptide aggregates. Abeta can aggregate into a variety of polymorphic aggregate structures under different chemical environments, specifically affected by the presence of differing surfaces. There are several point mutations clustered around the central hydrophobic core of Abeta (E22G Arctic mutation, E22K Italian mutation, D23N Iowa mutation, and A21G Flemish mutation). These mutations are associated with hereditary diseases ranging from almost pure cerebral amyloid angiopathy to typical Alzheimer's disease pathology with both plaques and tangles. To determine how these different point mutations, which modify both peptide charge and hydrophobic character, altered Abeta aggregation and morphology under free solution conditions, at an anionic surface/liquid interface and in the presence of supported lipid bilayers, atomic force microscopy was used. Additionally, the non-native conformation of Abeta leads to the formation of nanoscale, toxic aggregates which have been shown to strongly interact with supported lipid bilayers, which may represent a key step in potential toxic mechanisms. Understanding how specific regions of Abeta regulate its aggregation in the absence and presence of surfaces can provide insight into the fundamental interaction of Abeta with cellular surfaces. Specific fragments of Abeta (Abeta1-11, Abeta 1-28, Abeta10-26, Abeta12-24, Abeta 16-22, Abeta22-35, and Abeta1-40), represent a variety of chemically unique regions along Abeta, i.e., the extracellular domain, the central hydrophobic core, and transmembrane domain. Using various scanning probe microscopic techniques, the interaction of these Abeta sequences with lipid membranes was shown to alter aggregate morphology and induce mechanical changes of lipid bilayers compared to aggregates formed under free solution

  6. Asp-Gly based peptides confined at the surface of cationic gemini surfactant aggregates.

    PubMed

    Brizard, Aurélie; Dolain, Christel; Huc, Ivan; Oda, Reiko

    2006-04-11

    Cationic gemini surfactants complexed with anionic oligoglycine-aspartate (called gemini peptides hereafter) were synthesized, and their aggregation behaviors were studied. The effects of the hydrophobic chain length (C10-C22) and the length of the oligoglycine (0-4) were investigated, and it was clearly shown by critical micellar concentration, Krafft temperature, and isothermal surface pressure measurements that the hydrophobic effect and interpeptidic interaction influence the aggregation behavior in a cooperative manner. Below their Krafft temperatures, some of them formed both hydro- and organogels with three-dimensional networks and the Fourier transform infrared measurements show the presence of interpeptidic hydrogen bonds. PMID:16584231

  7. Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments.

    PubMed

    Hua, Zulin; Tang, Zhiqiang; Bai, Xue; Zhang, Jianan; Yu, Lu; Cheng, Haomiao

    2015-10-01

    A series of experiments were performed to simulate the environmental behavior and fate of graphene oxide nanoparticles (GONPs) involved in the surface environment relating to divalent cations, natural organic matter (NOM), and hydraulics. The electrokinetic properties and hydrodynamic diameters of GONPs was systematically determined to characterize GONPs stability and the results indicated Ca(2+) (Mg(2+)) significantly destabilized GONPs with high aggregate strength factors (SF) and fractal dimension (FD), whereas NOM decreased aggregate SF with lower FD and improved GONPs stability primarily because of increasing steric repulsion and electrostatic repulsion. Furthermore, the GONPs resuspension from the sand bed into overlying water with shear flow confirmed that the release would be restricted by Ca(2+) (Mg(2+)), however, enhanced by NOM. The interaction energy based on Derjaguin-Landau-Verwey-Overbeek theory verifies the aggregation and resuspension well. Overall, these experiments provide an innovative look and more details to study the behavior and fate of GONPs. PMID:26071942

  8. Challenges in imaging cell surface receptor clusters

    NASA Astrophysics Data System (ADS)

    Medda, Rebecca; Giske, Arnold; Cavalcanti-Adam, Elisabetta Ada

    2016-01-01

    Super-resolution microscopy offers unique tools for visualizing and resolving cellular structures at the molecular level. STED microscopy is a purely optical method where neither complex sample preparation nor mathematical post-processing is required. Here we present the use of STED microscopy for imaging receptor cluster composition. We use two-color STED to further determine the distribution of two different receptor subunits of the family of receptor serine/threonine kinases in the presence or absence of their ligands. The implications of receptor clustering on the downstream signaling are discussed, and future challenges are also presented.

  9. Methyl-methacrylate bone cement surface does not promote platelet aggregation or plasma coagulation in vitro.

    PubMed

    Blinc, Ales; Bozic, Mojca; Vengust, Rok; Stegnar, Mojca

    2004-01-01

    Leakage of viscous bone cement into venous blood possibly resulting in pulmonary embolism may occur during percutaneous vertebroplasty. Our aim was to study if bone cement surface or cement liquid component could induce platelet aggregation or plasma coagulation in vitro. Two types of commonly used methyl-methacrylate bone cement, Palacos (Heraeus Kulzer, Germany) and Vertebroplastic (DePuy, Acro Med, England), were smeared on thin glass slides that were inserted over the bottom of cuvettes immediately or after 24 h, and platelet aggregation was recorded over 10 min. Bone cement liquid component, containing methyl-methacrylate monomer and N,N-dimethyl-p-toluidine, was tested in 2% and 4% final concentration. Partial thromboplastin time (PTT) was determined by the hook method in the presence of bone cement-smeared glass slides or 6% bone cement liquid. Both types of bone cement, either fresh or aged, did not promote platelet aggregation, whereas collagen-coated glass slides induced substantial platelet aggregation (65 +/- 37%). On the other hand, bone cement liquids reduced platelet aggregation induced by collagen solution to an average of less than 15% (p < 0.01). Bone cement, fresh or aged, had no effect on PTT, but bone cement liquids significantly prolonged PTT: median and 1st-3rd interquartile range 149 (96-171) s for Vertebroplastic and 132 (99-194) s for Palacos, p = 0.03 for both comparisons with normal pool plasma without additives that had PTT of 69 (62-71) s. We conclude that the surface of fresh or aged bone cement is not thrombogenic in vitro. The bone cement liquid inhibits platelet aggregation and plasma clotting in relatively high concentrations that cannot be expected in vivo. PMID:15342214

  10. Fabrication and surface properties of hydrophobic barium sulfate aggregates based on sodium cocoate modification

    NASA Astrophysics Data System (ADS)

    Hu, Linna; Wang, Guangxiu; Cao, Rong; Yang, Chun; Chen, Xi

    2014-10-01

    Hydrophobic barium sulfate aggregates were fabricated by the direction of cocoate anions. At 30 °C, when the weight ratio of sodium cocoate to BaSO4 particles was 2.0 wt.%, the active ratio of the product reached 99.43% and the contact angle was greater than 120°. This method could not only simplify the complex modification process, but reduce energy consumption. The surface morphology, chemical structure and composition of BaSO4 aggregates were characterized by SEM, XRD, and FTIR. The results indicated that the as-synthesized BaSO4 particles were almond-liked and were composed of many interconnected nanoballs and that their surfaces were affected by cocoate anions. The adsorption of cocoate anions reversed the charge and weakened the surface polarity of BaSO4 particles, driving the formation of aggregates. And cocoate anions induced a change of the BaSO4 particles surface from hydrophilic to hydrophobic by a self-assembly and transformation process. Due to the self-assembled structure and the surface hydrophobicity, when adding the hydrophobic BaSO4 into PVC, the mechanical properties of PVC composite materials were significantly improved.

  11. Spatial Organization of Dual-Species Bacterial Aggregates on Leaf Surfaces

    PubMed Central

    Monier, J.-M.; Lindow, S. E.

    2005-01-01

    The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% ± 8.2%) than that in monospecific aggregates of these two strains (1.6% ± 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial interactions

  12. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion.

    PubMed

    Morlé, A; Garrido, C; Micheau, O

    2015-01-01

    TRAIL is involved in immune tumor surveillance and is considered a promising anti-cancer agent owing to its limited side effects on healthy cells. However, some cancer cells display resistance, or become resistant to TRAIL-induced cell death. Hyperthermia can enhance sensitivity to TRAIL-induced cell death in various resistant cancer cell lines, including lung, breast, colon or prostate carcinomas. Mild heat shock treatment has been proposed to restore Fas ligand or TRAIL-induced apoptosis through c-FLIP degradation or the mitochondrial pathway. We demonstrate here that neither the mitochondria nor c-FLIP degradation are required for TRAIL-induced cell death restoration during hyperthermia. Our data provide evidence that insolubilization of c-FLIP, alone, is sufficient to enhance apoptosis induced by death receptors. Hyperthermia induced c-FLIP depletion from the cytosolic fraction, without apparent degradation, thereby preventing c-FLIP recruitment to the TRAIL DISC and allowing efficient caspase-8 cleavage and apoptosis. Hyperthermia-induced c-FLIP depletion was independent of c-FLIP DED2 FL chain assembly motif or ubiquitination-mediated c-FLIP degradation, as assessed using c-FLIP point mutants on lysine 167 and 195 or threonine 166, a phosphorylation site known to regulate ubiquitination of c-FLIP. Rather, c-FLIP depletion was associated with aggregation, because addition of glycerol not only prevented the loss of c-FLIP from the cytosol but also enabled c-FLIP recruitment within the TRAIL DISC, thus inhibiting TRAIL-induced apoptosis during hyperthermia. Altogether our results demonstrate that c-FLIP is a thermosensitive protein whose targeting by hyperthermia allows restoration of apoptosis induced by TNF ligands, including TRAIL. Our findings suggest that combining TRAIL agonists with whole-body or localized hyperthermia may be an interesting approach in cancer therapy. PMID:25675293

  13. Tetracene Aggregation on Polar and Nonpolar Surfaces: Implications for Singlet Fission.

    PubMed

    Strong, Steven E; Eaves, Joel D

    2015-04-01

    In molecular crystals that exhibit singlet fission, quantum yields depend strongly on intermolecular configurations that control the relevant electronic couplings. Here, we explore how noncovalent interactions between molecules and surfaces stabilize intermolecular structures with strong singlet fission couplings. Using molecular dynamics simulations, we studied the aggregation patterns of tetracene molecules on a solid surface as a function of surface polarity. Even at low surface concentrations, tetracene self-assembled into nanocrystallites where about 10-20% of the clustered molecules were part of at least one herringbone structure. The herringbone structure is the native structure of crystalline tetracene, which exhibits a high singlet fission quantum yield. Increasing the polarity of the surface reduced both the amount of clustering and the relative number of herringbone configurations, but only when the dipoles on the surface were orientationally disordered. These results have implications for the application of singlet fission in dye-sensitized solar cells. PMID:26262973

  14. Static and Dynamic Aspects of Surfactant Surface Aggregates studied by AFM

    NASA Astrophysics Data System (ADS)

    Schniepp, Hannes; Saville, Dudley; Aksay, Ilhan

    2006-03-01

    Using AFM, we show that surfactants form micellar aggregates of varying morphology, depending on the surface structure. While all previous studies were limited to atomically flat substrates, we achieve imaging the micelles on rough gold. By gradually annealing these surfaces, we show the influence of roughness on the aggregate structures. For crystalline gold (111), aligned, hemi-cylindrical micelles that recognize the symmetry axes of the gold lattice are found. With increasing roughness, the degree of organization of the aggregates decreases. We also show that the micellar pattern on HOPG and gold(111) surfaces changes with time and responds to perturbations in a self-healing way. Our results suggest that this organization happens at the molecular scale. Theoretical analysis for HOPG, however, show that the micelle orientation cannot be explained on the molecular level, but the anisotropic van der Waals interaction between micelles and HOPG has to be considered as well [1]. [1] Saville, D. A.; Chun, J.; Li, J.-L.; Schniepp, H. C.; Car, R.; Aksay, I. A., accepted by Physical Review Letters.

  15. Analysis of the cell surface expression of cytokine receptors using the surface protein biotinylation method.

    PubMed

    Pavel, Mahmud Arif; Lam, Clarissa; Kashyap, Parul; Salehi-Najafabadi, Zahra; Singh, Gurpreet; Yu, Yong

    2014-01-01

    Cytokines are pleiotropic, low-molecular-weight proteins that regulate the immune responses to infection and inflammation. They stimulate the immune responses by binding to cytokine receptors on the cell plasma membrane. Thus, knowledge of the expression level of particular cytokine receptors on cell surface is crucial for understanding the cytokine function and regulation. One of the techniques to explore the membrane embedded cytokine receptors is cell surface biotinylation. Biotinylated surface proteins can be rapidly purified through the strong interaction between biotin and streptavidin. Here, we describe the procedure for surface biotinylation and purification of biotinylated cytokine receptors for further downstream analysis. PMID:24908305

  16. Solid-State Synthesized Nanostructured Au Dendritic Aggregates Towards Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gentile, A.; Ruffino, F.; D'Andrea, C.; Gucciardi, P. G.; Reitano, R.; Grimaldi, M. G.

    2016-06-01

    Micrometric Au structures, presenting a dendritic nano-structure, have been fabricated on a Si-based substrate. The fabrication method involves the deposition of a thin Au film on the substrate and a high-temperature annealing (1100°C) using fast heating and cooling ramps. The thermal process produces the growth, from the substrate, of Si micro-pillars whose top surfaces, covered by a crystalline Au layer, present a nanodendritic morphology. In addition to the micro-pillars, the sample surface presents a complex structural and chemical composition including Si3N4 regions due to the silicon-nitrogen intermixing during the heating stage. By studying the kinetic processes at the Au-Si interface during the thermal treatment, we describe the stages involved in the micro-pillars growth, in the dendritic morphology development, and in the Au atoms entrapment at the top of the dendritic surfaces. Finally, we present the analyses of the optical and surface enhanced Raman scattering properties of the Au dendritic aggregates. We show, in particular, that: (1) the Au dendrites aggregates act as effective scattering elements for the electromagnetic radiation in the infrared spectral region; and (2) the higher surface area due to the branched dendritic structure is responsible for the improvement in the sensitivity of the surface enhanced Raman scattering activity.

  17. Chemokine Detection Using Receptors Immobilized on an SPR Sensor Surface.

    PubMed

    Rodríguez-Frade, José Miguel; Martínez-Muñoz, Laura; Villares, Ricardo; Cascio, Graciela; Lucas, Pilar; Gomariz, Rosa P; Mellado, Mario

    2016-01-01

    Chemokines and their receptors take part in many physiological and pathological processes, and their dysregulated expression is linked to chronic inflammatory and autoimmune diseases, immunodeficiencies, and cancer. The chemokine receptors, members of the G protein-coupled receptor family, are integral membrane proteins, with seven-transmembrane domains that bind the chemokines and transmit signals through GTP-binding proteins. Many assays used to study the structure, conformation, or activation mechanism of these receptors are based on ligand-binding measurement, as are techniques to detect new agonists and antagonists that modulate chemokine function. Such methods require labeling of the chemokine and/or its receptor, which can alter their binding characteristics. Surface plasmon resonance (SPR) is a powerful technique for analysis of the interaction between immobilized receptors and ligands in solution, in real time, and without labeling. SPR measurements nonetheless require expression and purification steps that can alter the conformation, stability, and function of the chemokine and/or the chemokine receptor. In this review, we focus on distinct methods to immobilize chemokine receptors on the surface of an optical biosensor. We expose the advantages and disadvantages of different protocols used and describe in detail the method to retain viral particles as receptor carriers that can be used for SPR determinations. PMID:26921939

  18. Interactions between human serum proteins and oral streptococci reveal occurrence of receptors for aggregated beta 2-microglobulin.

    PubMed Central

    Ericson, D; Bratthall, D; Björck, L; Myhre, E; Kronvall, G

    1979-01-01

    A total of 31 strains of oral streptococci representing Streptococcus mutans, Streptococcus sanguis, Streptococcus mitior, Streptococcus salivarius, and Streptococcus milleri were tested for possible binding of human immunoglobulins G, G1, G2, G3, G4, A1, A2, M1, and M2 and haptoglobin, hemoglobin, fibrinogen, and aggregated beta 2-microglobulin. Radiolabeled beta 2-microglobulin in aggregated form showed affinity for 20 of the 31 strains tested. Binding activity for the protein was found in strains belonging to all five species. The bacterial receptor was resistant to trypsin. Monomeric, unlabeled beta 2-microglobulin did not interfere with the binding of the aggregated form. Of the other proteins tested, only the immunoglobulin A1 protein showed positive binding, and that was only with a single strain of S. milleri. beta 2-Microglobulin is present on all nucleated cell membranes in vivo. The reaction between aggregated beta 2-microglobulin and oral streptococci is a new type of human-bacterium interaction which should be considered in studies of bacterial adherence. PMID:90015

  19. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Kumar, Naresh; Manefield, Mike

    2013-01-01

    Pyocyanin is an electrochemically active metabolite produced by the human pathogen Pseudomonas aeruginosa. It is a recognized virulence factor and is involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognized as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. eDNA has also been demonstrated to be a major component in establishing P. aeruginosa biofilms. In this study we discovered that production of pyocyanin influences the binding of eDNA to P. aeruginosa PA14 cells, mediated through intercalation of pyocyanin with eDNA. P. aeruginosa cell surface properties including cell size (hydrodynamic diameter), hydrophobicity and attractive surface energies were influenced by eDNA in the presence of pyocyanin, affecting physico-chemical interactions and promoting aggregation. A ΔphzA-G PA14 mutant, deficient in pyocynain production, could not bind with eDNA resulting in a reduction in hydrodynamic diameter, a decrease in hydrophobicity, repulsive physico-chemical interactions and reduction in aggregation in comparison to the wildtype strain. Removal of eDNA by DNase I treatment on the PA14 wildtype strain resulted in significant reduction in aggregation, cell surface hydrophobicity and size and an increase in repulsive physico-chemical interactions, similar to the level of the ΔphzA-G mutant. The cell surface properties of the ΔphzA-G mutant were not affected by DNase I treatment. Based on these findings we propose that pyocyanin intercalation with eDNA promotes cell-to-cell interactions in P. aeruginosa cells by influencing their cell surface properties and physico-chemical interactions. PMID:23505483

  20. Self-assembled nanoparticle aggregates: Organizing disorder for high performance surface-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Fasolato, C.; Domenici, F.; Brasili, F.; Mura, F.; Sennato, S.; De Angelis, L.; Mazzi, E.; Bordi, F.; Postorino, P.

    2015-06-01

    The coherent oscillations of the surface electron gas, known as surface plasmons, in metal nanostructures can give rise to the localization of intense electromagnetic fields at the metal-dielectric interface. These strong fields are exploited in surface enhanced spectroscopies, such as Surface Enhanced Raman Scattering (SERS), for the detection and characterization of molecules at very low concentration. Still, the implementation of SERS-based biosensors requires a high level of reproducibility, combined with cheap and simple fabrication methods. For this purpose, SERS substrates based on self-assembled aggregates of commercial metallic nanoparticles (Nps) can meet all the above requests. Following this line, we report on a combined micro-Raman and Atomic Force Microscopy (AFM) analysis of the SERS efficiency of micrometric silver Np aggregates (enhancement factors up to 109) obtained by self-assembly. Despite the intrinsic disordered nature of these Np clusters, we were able to sort out some general rules relating the specific aggregate morphology to its plasmonic response. We found strong evidences of cooperative effects among the NPs within the cluster and namely a clear dependence of the SERS-efficiency on both the cluster area (basically linear) and the number of stacked NPs layers. A cooperative action among the superimposed layers has been proved also by electromagnetic simulations performed on simplified nanostructures consisting of stacking planes of ordered Nps. Being clear the potentialities of these disordered self-assembled clusters, in terms of both easy fabrication and signal enhancement, we developed a specific nanofabrication protocol, based on electron beam lithography and molecular functionalization, that allowed for a fine control of the Np assemblies into designed shapes fixing their area and height. In particular, we fabricated 2D ordered arrays of disordered clusters choosing gold Nps owing to their high stability. AFM measurements confirmed

  1. Self-assembled nanoparticle aggregates: Organizing disorder for high performance surface-enhanced spectroscopy

    SciTech Connect

    Fasolato, C.; Domenici, F.; Brasili, F.; Mazzi, E.; Postorino, P.; Mura, F.; Sennato, S.; De Angelis, L.; Bordi, F.

    2015-06-23

    The coherent oscillations of the surface electron gas, known as surface plasmons, in metal nanostructures can give rise to the localization of intense electromagnetic fields at the metal-dielectric interface. These strong fields are exploited in surface enhanced spectroscopies, such as Surface Enhanced Raman Scattering (SERS), for the detection and characterization of molecules at very low concentration. Still, the implementation of SERS-based biosensors requires a high level of reproducibility, combined with cheap and simple fabrication methods. For this purpose, SERS substrates based on self-assembled aggregates of commercial metallic nanoparticles (Nps) can meet all the above requests. Following this line, we report on a combined micro-Raman and Atomic Force Microscopy (AFM) analysis of the SERS efficiency of micrometric silver Np aggregates (enhancement factors up to 10{sup 9}) obtained by self-assembly. Despite the intrinsic disordered nature of these Np clusters, we were able to sort out some general rules relating the specific aggregate morphology to its plasmonic response. We found strong evidences of cooperative effects among the NPs within the cluster and namely a clear dependence of the SERS-efficiency on both the cluster area (basically linear) and the number of stacked NPs layers. A cooperative action among the superimposed layers has been proved also by electromagnetic simulations performed on simplified nanostructures consisting of stacking planes of ordered Nps. Being clear the potentialities of these disordered self-assembled clusters, in terms of both easy fabrication and signal enhancement, we developed a specific nanofabrication protocol, based on electron beam lithography and molecular functionalization, that allowed for a fine control of the Np assemblies into designed shapes fixing their area and height. In particular, we fabricated 2D ordered arrays of disordered clusters choosing gold Nps owing to their high stability. AFM measurements

  2. Beyond the cell surface: new mechanisms of receptor function.

    PubMed

    Ibáñez, Carlos F

    2010-05-21

    The text book view of cell surface receptors depicts them at the top of a vertical chain of command that starts with ligand binding and proceeds in a lineal fashion towards the cell nucleus. Although pedagogically useful, this view is incomplete and recent findings suggest that the extracellular domain of cell surface receptors can be a transmitter as much as a receiver in intercellular communication. GFRalpha1 is a GPI-anchored receptor for GDNF (glial cell line-derived neurotrophic factor), a neuronal growth factor with widespread functions in the developing and adult nervous system. GFRalpha1 partners with transmembrane proteins, such as the receptor tyrosine kinase RET or the cell adhesion molecule NCAM, for intracellular transmission of the GDNF signal. In addition to this canonical role, GFRalpha1 can also engage in horizontal interactions and thereby modify the function of other cell surface components. GFRalpha1 can also function as a ligand-induced adhesion cell molecule, mediating homophilic cell-cell interactions in response to GDNF. Finally, GFRalpha1 can also be released from the cell surface and act at a distance as a soluble factor together with its ligand. This plethora of unconventional mechanisms is likely to be a feature common to several other receptors and considerably expands our view of cell surface receptor function. PMID:20494105

  3. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. Methods and Materials: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. Results: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. Conclusion: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.

  4. A pancake-shaped nano-aggregate for focusing surface plasmons

    NASA Astrophysics Data System (ADS)

    Ying Huang, Shao; Cho Chew, Weng; Liu, Yang G.; Wu, Bae-Ian; Choi, H. W.

    2012-02-01

    We proposed a pancake-shaped nano-aggregate that highly focuses surface plasmons. The structure is a superposition of bowtie-shaped dimers, where surface plasmons are excited, resonated with the structure, and coupled. Surface integral equation method (Poggio-Miller-Chang-Harrington-Wu-Tsai method) is used to predict the performance of the proposed structure. It is a method which can accurately calculate the near-fields of nanoparticles. Based on the numerical prediction, the proposed structure shows an electric field (E-field) enhancement of more than 400 times, which is equivalent to a Raman enhancement factor of more than 2.5e10 times. It is promising for single molecule detections using surface-enhanced Raman scattering. The physics of the proposed structure are revealed. It is useful to design nanostructures for high E-field enhancement.

  5. Protein PEGylation attenuates adsorption and aggregation on a negatively charged and moderately hydrophobic polymer surface.

    PubMed

    Pai, Sheetal S; Przybycien, Todd M; Tilton, Robert D

    2010-12-01

    Covalent grafting of poly(ethylene glycol) chains to proteins ("PEGylation") is emerging as an effective technique to increase the in vivo circulation time and efficacy of protein drugs. PEGylated protein adsorption at a variety of solid/aqueous interfaces is a critical aspect of their manufacture, storage, and delivery. A special category of block copolymer, PEGylated proteins have one or more water-soluble linear polymer (PEG) blocks and a single globular protein block that each exert distinct intermolecular and surface interaction forces. We report the impact of PEGylation on protein adsorption at the interface between aqueous solutions and solid films of poly(lactide-co-glycolide) (PLG), a moderately hydrophobic and negatively charged polymer. Using the model protein lysozyme with controlled degrees of PEGylation, we employ total internal reflection fluorescence techniques to measure adsorption isotherms, adsorption reversibility, and the extent of surface-induced aggregation. Lysozyme PEGylation reduces the extent of protein adsorption and surface-induced aggregation and increases the reversibility of adsorption compared to the unconjugated protein. Results are interpreted in terms of steric forces among grafted PEG chains and their effects on protein-protein interactions and protein orientation on the surface. PMID:21067142

  6. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  7. Estradiol signaling via sequestrable surface receptors.

    PubMed

    Benten, W P; Stephan, C; Lieberherr, M; Wunderlich, F

    2001-04-01

    Estradiol (E(2))-signaling is widely considered to be exclusively mediated through the transcription-regulating intracellular estrogen receptor (ER) alpha and ERbeta. The aim of this study was to investigate transcription-independent E(2)-signaling in mouse IC-21 macrophages. E(2) and E(2)-BSA induce a rapid rise in the intracellular free Ca(2+) concentration ([Ca(2+)](i)) of Fura-2 loaded IC-21 cells as examined by spectrofluorometry. These changes in [Ca(2+)](i) can be inhibited by pertussis toxin, but not by the ER-blockers tamoxifen and raloxifene. The E(2)-signaling initiated at the plasma membrane is mediated through neither ERalpha nor ERbeta, but rather through a novel G protein-coupled membrane E(2)-receptor as revealed by RT-PCR, flow cytometry, and confocal laser scanning microscopy. A special feature of this E(2)-receptor is its sequestration upon agonist stimulation. Sequestration depends on energy and temperature, and it proceeds through a clathrin- and caveolin-independent pathway. PMID:11250949

  8. Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface sites.

    PubMed

    De Spirito, Marco; Brunelli, Roberto; Mei, Giampiero; Bertani, Francesca R; Ciasca, Gabriele; Greco, Giulia; Papi, Massimiliano; Arcovito, Giuseppe; Ursini, Fulvio; Parasassi, Tiziana

    2006-06-01

    In early phases of atherogenesis, droplets and vesicles accumulate in the subendothelial extracellular space of arterial intima. There is much evidence to suggest that these droplets, ranging between 100 and 400 nm, derive from modified low-density lipoprotein (LDL). In investigations of the formation mechanism of these droplets, LDL fusion was previously induced in vitro by proteolysis, lipolysis, oxidation, and vigorous shaking, but all treatments failed to reproduce the size distribution range of in vivo droplets, mostly resulting, instead, in particles with a diameter intermediate between that of one and two LDL. Our approach was meant to mimic LDL aging in plasma. LDL isolated from plasma that was incubated overnight at 37 degrees C is slightly modified in the secondary structure of its protein component and is primed to form very large aggregates according to a reaction-limited mechanism. This mechanism requires interactions between selected surface sites, whereas massive fusion is ruled out. In the frame of the general theory for colloids, the aggregation of LDL aged in plasma fulfills all the requirements of the reaction-limited mechanism, encompassing 1), exponential growth; 2), fractal structure, with the dimension of elementary constituent still consistent with a single LDL; and 3), extreme polydispersity of aggregates, with shape and dimension very close to that of droplets observed in vivo. PMID:16533854

  9. Low Density Lipoprotein Aged in Plasma Forms Clusters Resembling Subendothelial Droplets: Aggregation via Surface Sites

    PubMed Central

    De Spirito, Marco; Brunelli, Roberto; Mei, Giampiero; Bertani, Francesca R.; Ciasca, Gabriele; Greco, Giulia; Papi, Massimiliano; Arcovito, Giuseppe; Ursini, Fulvio; Parasassi, Tiziana

    2006-01-01

    In early phases of atherogenesis, droplets and vesicles accumulate in the subendothelial extracellular space of arterial intima. There is much evidence to suggest that these droplets, ranging between 100 and 400 nm, derive from modified low-density lipoprotein (LDL). In investigations of the formation mechanism of these droplets, LDL fusion was previously induced in vitro by proteolysis, lipolysis, oxidation, and vigorous shaking, but all treatments failed to reproduce the size distribution range of in vivo droplets, mostly resulting, instead, in particles with a diameter intermediate between that of one and two LDL. Our approach was meant to mimic LDL aging in plasma. LDL isolated from plasma that was incubated overnight at 37°C is slightly modified in the secondary structure of its protein component and is primed to form very large aggregates according to a reaction-limited mechanism. This mechanism requires interactions between selected surface sites, whereas massive fusion is ruled out. In the frame of the general theory for colloids, the aggregation of LDL aged in plasma fulfills all the requirements of the reaction-limited mechanism, encompassing 1), exponential growth; 2), fractal structure, with the dimension of elementary constituent still consistent with a single LDL; and 3), extreme polydispersity of aggregates, with shape and dimension very close to that of droplets observed in vivo. PMID:16533854

  10. Enhanced hydrophobicity of polyurethane via non-solvent induced surface aggregation of silica nanoparticles.

    PubMed

    Seyfi, Javad; Hejazi, Iman; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Simon, Frank

    2016-09-15

    Fabrication of superhydrophobic surfaces from hydrophilic polymers has always been regarded as a challenge. In this study, to achieve superhydrophobic polyurethane (PU) surfaces, silica nanoparticles and ethanol as non-solvent were simultaneously utilized during a solution casting-based process. Such modified version of phase separation process was found to be highly efficient, and also it required much lower concentration of nanoparticles to achieve superhydrophobicity as compared to the previously reported methods in the literature. According to the proposed mechanism, non-solvent induces a more profound aggregation of silica nanoparticles at the surface's top layer causing the surface energy to be highly diminished, and thus, the water repellency is improved. Morphology and topography results showed that a unique "triple-sized" structure was formed on the surface of superhydrophobic samples. X-ray photoelectron spectroscopy results proved that both PU macromolecules and silica nanoparticles were concurrently present at the surface layer of the superhydrophobic sample. It was concluded that surface composition and roughness could be regarded as competing factors in achieving superhydrophobicity. Based on the obtained results, the proposed method exhibits a promising potential in large-scale fabrication of surface layers with superhydrophobic property. Moreover, a mechanism was also presented to further explicate the physics behind the suggested method. PMID:27288577

  11. A physical scaling model for aggregation and disaggregation of field-scale surface soil moisture dynamics

    NASA Astrophysics Data System (ADS)

    Ojha, Richa; Govindaraju, Rao S.

    2015-07-01

    Scaling relationships are needed as measurements and desired predictions are often not available at concurrent spatial support volumes or temporal discretizations. Surface soil moisture values of interest to hydrologic studies are estimated using ground based measurement techniques or utilizing remote sensing platforms. Remote sensing based techniques estimate field-scale surface soil moisture values, but are unable to provide the local-scale soil moisture information that is obtained from local measurements. Further, obtaining field-scale surface moisture values using ground-based measurements is exhaustive and time consuming. To bridge this scale mismatch, we develop analytical expressions for surface soil moisture based on sharp-front approximation of the Richards equation and assumed log-normal distribution of the spatial surface saturated hydraulic conductivity field. Analytical expressions for field-scale evolution of surface soil moisture to rainfall events are utilized to obtain aggregated and disaggregated response of surface soil moisture evolution with knowledge of the saturated hydraulic conductivity. The utility of the analytical model is demonstrated through numerical experiments involving 3-D simulations of soil moisture and Monte-Carlo simulations for 1-D renderings—with soil moisture dynamics being represented by the Richards equation in each instance. Results show that the analytical expressions developed here show promise for a principled way of scaling surface soil moisture.

  12. Probing surface characteristics of diffusion-limited-aggregation clusters with particles of variable size

    NASA Astrophysics Data System (ADS)

    Menshutin, A. Yu.; Shchur, L. N.; Vinokur, V. M.

    2007-01-01

    We develop a technique for probing the harmonic measure of a diffusion-limited-aggregation (DLA) cluster surface with variable-size particles and generate 1000 clusters with 50×106 particles using an original off-lattice killing-free algorithm. Taking, in sequence, the limit of the vanishing size of the probing particles and then sending the growing cluster size to infinity, we achieve unprecedented accuracy in determining the fractal dimension D=1.7100(2) crucial to the characterization of the geometric properties of DLA clusters.

  13. Input of 137Cs and 90Sr into plants from the surface of soil aggregates and the intraped space

    NASA Astrophysics Data System (ADS)

    Fokin, A. D.; Torshin, S. P.; Bebneva, Yu. M.; Gadzhiagaeva, R. A.; Zolotareva, Yu. I.; Umer, M. I.

    2014-12-01

    Soil aggregates with different localization of radionuclides—(a) only on the aggregate surface, (b) only in the intraped space, and (c) uniformly distributed throughout the aggregate volume—have been obtained under laboratory conditions, which has allowed separately assessing the roles of different aggregate parts in the uptake of radionuclides by plant roots and the reaggregation rate of the soil material. The uptake rate of the radionuclides localized on the surface of soil aggregates, especially 137Cs, by plants manifold exceeds their uptake observed at the localization of pollutants throughout the aggregate volume or only in their intraped material. The input rate of radionuclides into plants decreases with time. For 137Cs, this decrease is due to the strengthening of the sorption fixation of the radionuclide (about 15%) and the reaggregation of the soil material (85%). Under natural conditions, at a depth of 10 cm in the dark gray forest soil of a forest belt, aggregates 7-10 mm in size are subjected to 40-75% destruction and reaggregation on the average within a year, which corresponds, with consideration for the statistical dispersion of the initial data, to the aggregate lifetime of 1.5 to 3 years.

  14. Aggregation and antigenicity of virus like particle in salt solution--A case study with hepatitis B surface antigen.

    PubMed

    Chen, Yi; Zhang, Yan; Quan, Can; Luo, Jian; Yang, Yanli; Yu, Mengran; Kong, Yingjun; Ma, Guanghui; Su, Zhiguo

    2015-08-20

    The phenomenon of aggregation of virus-like particles (VLPs) in salt solution and the corresponding effect upon antigenicity was reported. Asymmetrical flow field-flow fractionation (AF4) combined with multi-angle laser light scattering (MALLS) was used to characterize the size and the aggregation behavior of hepatitis B surface antigen (HBsAg). The average diameter of HBsAg VLP was 22.8±0.4 nm and it tended to aggregate in salt solution to form large particles and the antigenicity changed accordingly. In 0-4 M NaCl solution, part of HBsAg molecules aggregated rapidly into oligomeric particles (OP), whose diameter distributed from 25 to 40 nm, and the antigenicity slightly decreased about 10%. The aggregation reaction is reversible. After removing NaCl, both size and antigenicity could recover to normal level (92-96%). By contrast, the aggregation process is more complicated in (NH4)2SO4 solution. Most of HBsAg particles aggregated into OP and further aggregated into polymeric particles (PP). The diameter of the PP could reach 40 to 140 nm. The concentration of (NH4)2SO4 had remarkable influence upon the rate of aggregation. When concentration of (NH4)2SO4 was below 1 M, most of HBsAg aggregated only into OP in 1 h. While with concentration of (NH4)2SO4 above 1 M, most of particles formed PP within 1 h. The aggregation process to PP was irreversible. After removing (NH4)2SO4, the large aggregates could not recover to normal particles and the remaining antigenicity was below 30%. PMID:25862298

  15. Time-dependent inhibition by glyceryl trinitrate of platelet aggregation caused by U46619 (a thromboxane/endoperoxide receptor agonist).

    PubMed

    Kampf, G; Ritter, J M

    1994-07-01

    Glyceryl trinitrate is a weak inhibitor of platelet aggregation in vitro. Its effect on platelet aggregation in response to U46619 (a thromboxane/endoperoxide receptor agonist) was studied turbidometrically in platelet-rich plasma from healthy volunteers. The object was to determine whether inhibition was influenced by a period of preincubation between preparation of platelet-rich plasma and addition of glyceryl trinitrate. Incubation was performed at 37 degrees C and 22 degrees C. Samples were removed at intervals and transferred to an aggregometer cuvette at 37 degrees C. Glyceryl trinitrate (100 microM) or an equal volume of distilled water was added 5 min before U46619 (2 microM), and aggregation recorded as change in light transmission. Inhibition by glyceryl trinitrate was markedly time and temperature dependent, with a progressive increase in inhibitory potency between 120 and 300 min preincubation at 37 degrees C but not at 22 degrees C. The explanation of this is unknown but the effect was not influenced by lipopolysaccharide or by cycloheximide, so it does not appear to be due to exposure to endotoxin or to enzyme induction in vitro. PMID:7946941

  16. Antiplatelet aggregation and platelet activating factor (PAF) receptor antagonistic activities of the essential oils of five Goniothalamus species.

    PubMed

    Moharam, Bushra Abdulkarim; Jantan, Ibrahim; Ahmad, Fasihuddin bin; Jalil, Juriyati

    2010-08-01

    Nine essential oils, hydrodistilled from different parts of five Goniothalamus species (G. velutinus Airy-Shaw, G. woodii Merr., G. clemensii Ban, G. tapis Miq. and G. tapisoides Mat Salleh) were evaluated for their ability to inhibit platelet aggregation in human whole blood using an electrical impedance method and their inhibitory effects on platelet activating factor (PAF) receptor binding with rabbit platelets using 3H-PAF as a ligand. The chemical composition of the oils was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The bark oil of G. velutinus was the most effective sample as it inhibited both arachidonic acid (AA) and ADP-induced platelet aggregation with IC(50) values of 93.6 and 87.7 microg/mL, respectively. Among the studied oils, the bark oils of G. clemensii, G. woodii, G. velutinus and the root oil of G. tapis showed significant inhibitory effects on PAF receptor binding, with IC(50 )values ranging from 3.5 to 10.5 microg/mL. The strong PAF antagonistic activity of the active oils is related to their high contents of sesquiterpenes and sesquiterpenoids, and the individual components in the oils could possibly produce a synergistic effect in the overall antiplatelet activity of the oils. PMID:20714290

  17. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  18. Kinin B1 receptor homo-oligomerization is required for receptor trafficking to the cell surface.

    PubMed

    Sandén, Caroline; Leeb-Lundberg, L M Fredrik

    2013-01-01

    The kinin B1 receptor (B1R) is a G protein-coupled receptor with pro-inflammatory activity that is latent in healthy tissues but induced by tissue insult. Here, we investigated if B1R homo-oligomerization is a possible mechanism regulating the presentation of this receptor at the level of maturation and trafficking to the cell surface. To this end, we used HEK293 cells stably expressing N-terminal FLAG and HA epitope-tagged wild-type human B1R and an N-terminal receptor fragment, B1stop135, which terminates at the C-terminal end of the third transmembrane domain and has previously been shown to oligomerize with B1R. Receptors were monitored by immunoblotting and immunoprecipitation, receptor function by agonist binding and agonist-promoted phosphoinositide hydrolysis, and receptor trafficking by confocal immunofluorescence microscopy. When expressed alone, B1R is core N-glycosylated and forms oligomers localized intracellularly and on the cell surface. B1stop135 also exists as core N-glycosylated oligomers but is localized exclusively intracellularly. When co-expressed, B1stop135 prevents specifically B1R homo-oligomerization by forming nonfunctional B1R-B1stop135 hetero-oligomers, retains B1R intracellularly at least in part in the endoplasmatic reticulum (ER), increases calnexin binding to the receptor, and increases receptor degradation. We conclude that B1R homo-oligomerization is necessary for B1R maturation and trafficking to the cell surface. Modulating this mechanism may be a novel therapeutic avenue in inflammatory disease. PMID:23201435

  19. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  20. Folate Receptor-targeted Aggregation-enhanced Near-IR Emitting Silica Nanoprobe for One-photon in vivo and Two-photon ex vivo Fluorescence Bioimaging

    PubMed Central

    Wang, Xuhua; Morales, Alma R.; Urakami, Takeo; Zhang, Lifu; Bondar, Mykhailo V.; Komatsu, Masanobu; Belfield, Kevin D.

    2011-01-01

    A two-photon absorbing (2PA) and aggregation-enhanced near infrared (NIR) emitting pyran derivative, encapsulated in and stabilized by silica nanoparticles (SiNPs), is reported as a nanoprobe for two-photon fluorescence microscopy (2PFM) bioimaging that overcomes fluorescence quenching associated with high chromophore loading. The new SiNP probe exhibited aggregate-enhanced emission producing nearly twice as strong signal as the unaggregated dye, a three-fold increase in two-photon absorption relative to the DFP in solution, and approx. four-fold increase in photostability. The surface of the nanoparticles was functionalized with a folic acid (FA) derivative for folate-mediated delivery of the nanoprobe for 2PFM bioimaging. Surface modification of SiNPs with the FA derivative was supported by zeta potential variation and 1H NMR spectral characterization of the SiNPs as a function of surface modification. In vitro studies using HeLa cells expressing folate receptor (FR) indicated specific cellular uptake of the functionalized nanoparticles. The nanoprobe was demonstrated for FRtargeted one-photon in vivo imaging of HeLa tumor xenograft in mice upon intravenous injection of the probe. The FR-targeting nanoprobe not only exhibited highly selective tumor targeting but also readily extravasated from tumor vessels, penetrated into the tumor parenchyma, and was internalized by the tumor cells. Two-photon fluorescence microscopy bioimaging provided three-dimensional (3D) cellular-level resolution imaging up to 350 µm deep in the HeLa tumor. PMID:21688841

  1. A Generalizable Platform for the Photoactivation of Cell Surface Receptors.

    PubMed

    Duc, Thinh Nguyen; Huse, Morgan

    2015-11-20

    Polarized signal transduction from cell surface receptors plays a central role in the development and homeostasis of multicellular organisms, and it also contributes to cellular dysfunction in many disease states. Understanding the molecular and cellular bases of polarized signaling requires experimental methods that provide precise spatiotemporal control of receptor activation. However, we currently lack strategies for inducing both sustained and spatially constrained signal transduction. In the present study, we combined synthetic and cell biological tools to develop a generalizable photoactivation approach for the stimulation of cell surface receptors. Our system, which is based upon the local decaging of a "universal" peptide ligand, is particularly well suited for the live imaging of single cells. We anticipate that it will greatly facilitate future mechanistic analyses of polarized signal transduction in a variety of cell types. PMID:26295186

  2. Purification of the surface cAMP receptor in Dictyostelium

    SciTech Connect

    Klein, P.; Knox, B.; Borleis, J.; Devreotes, P.

    1987-01-05

    We have previously identified and demonstrated reversible ligand-induced modification of the major cell surface cAMP receptor in Dictyostelium discoideum. The receptor, or a subunit of it, has been purified to homogeneity by hydroxylapatite chromatography followed by two-dimensional preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purification was monitored by following /sup 32/Pi incorporated by photoaffinity labeling with 8-azido-(/sup 32/P)cAMP or by in vivo labeling with /sup 32/Pi. Two interconvertible forms of the receptor, designated R (Mr 40,000) and D (Mr 43,000), co-purified. Two-dimensional peptide maps of independently purified and /sup 125/I-iodinated R and D forms of the receptor were nearly identical but did have several distinct peptides. The estimated 6000-fold purification required is consistent with the number of cell surface binding sites assuming there are not multiple binding sites/polypeptide. In the accompanying article we report the generation of a monospecific polyclonal antiserum which has helped to further elucidate the physical properties and developmental regulation of the cAMP receptor.

  3. Progress in detecting cell-surface protein receptors: the erythropoietin receptor example.

    PubMed

    Elliott, Steve; Sinclair, Angus; Collins, Helen; Rice, Linda; Jelkmann, Wolfgang

    2014-02-01

    Testing for the presence of specific cell-surface receptors (such as EGFR or HER2) on tumor cells is an integral part of cancer care in terms of treatment decisions and prognosis. Understanding the strengths and limitations of these tests is important because inaccurate results may occur if procedures designed to prevent false-negative or false-positive outcomes are not employed. This review discusses tests commonly used to identify and characterize cell-surface receptors, such as the erythropoietin receptor (EpoR). First, a summary is provided on the biology of the Epo/EpoR system, describing how EpoR is expressed on erythrocytic progenitors and precursors in the bone marrow where it mediates red blood cell production in response to Epo. Second, studies are described that investigated whether erythropoiesis-stimulating agents could stimulate tumor progression in cancer patients and whether EpoR is expressed and functional on tumor cells or on endothelial cells. The methods used in these studies included immunohistochemistry, Northern blotting, Western blotting, and binding assays. This review summarizes the strengths and limitations of these methods. Critically analyzing data from tests for cell-surface receptors such as EpoR requires understanding the techniques utilized and demonstrating that results are consistent with current knowledge about receptor biology. PMID:24337485

  4. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    PubMed Central

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; De Marinis, Marta; Tafuri, Domenico; Cinelli, Mariapia; Ammendola, Rosario

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we

  5. A Rapid Method for Refolding Cell Surface Receptors and Ligands

    PubMed Central

    Zhai, Lu; Wu, Ling; Li, Feng; Burnham, Robert S.; Pizarro, Juan C.; Xu, Bin

    2016-01-01

    Production of membrane-associated cell surface receptors and their ligands is often a cumbersome, expensive, and time-consuming process that limits detailed structural and functional characterization of this important class of proteins. Here we report a rapid method for refolding inclusion-body-based, recombinant cell surface receptors and ligands in one day, a speed equivalent to that of soluble protein production. This method efficiently couples modular on-column immobilized metal ion affinity purification and solid-phase protein refolding. We demonstrated the general utility of this method for producing multiple functionally active immunoreceptors, ligands, and viral decoys, including challenging cell surface proteins that cannot be produced using typical dialysis- or dilution-based refolding approaches. PMID:27215173

  6. Surface enhanced Raman spectroscopy on dielectrophoresis induced diffusion limited aggregation of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chowdhury, Faisal Khair

    Wires formed by diffusion limited aggregation (DLA) induced by dielectrophoresis (DEP) of gold nanoparticles were investigated as an effective sample preparation method for surface enhanced Raman spectroscopy (SERS). Thymine was used as a test molecule and its SERS was measured to investigate the effectiveness of this technique that reproducibly resulted in x10 9 enhancement. It is known that molecules adsorbed near or at the surface of certain nanostructures produce strongly increased Raman signals and such phenomena is attributed to the concentration of electromagnetic (EM) optical fields at "hotspots" that usually occur at nanoscale junctions or clefts in metal nanostructures. Similarly, the enhancement obtained is attributed to the localized surface Plasmon's of the gold nanoparticles and the formation of "hotspots" in DEP wires. There are other methods that reproducibly yield in excess of x108 enhancement in SERS using tunable lasers and very elaborate Raman spectroscopy. The results presented here are obtained using a fixed laser excitation source at 785 nm and a simple spectrometer (5 cm-1 resolution).

  7. Deletion of vitamin D receptor leads to premature emphysema/COPD by increased matrix metalloproteinases and lymphoid aggregates formation

    SciTech Connect

    Sundar, Isaac K.; Hwang, Jae-Woong; Wu, Shaoping; Sun, Jun; Rahman, Irfan

    2011-03-04

    Research highlights: {yields} Vitamin D deficiency is linked to accelerated decline in lung function. {yields} Levels of vitamin D receptor (VDR) are decreased in lungs of patients with COPD. {yields} VDR knock-out mouse showed increased lung inflammation and emphysema. {yields} This was associated with decline in lung function and increased MMPs. {yields} VDR knock-out mouse model is useful for studying the mechanisms of lung diseases. -- Abstract: Deficiency of vitamin D is associated with accelerated decline in lung function. Vitamin D is a ligand for nuclear hormone vitamin D receptor (VDR), and upon binding it modulates various cellular functions. The level of VDR is reduced in lungs of patients with chronic obstructive pulmonary disease (COPD) which led us to hypothesize that deficiency of VDR leads to significant alterations in lung phenotype that are characteristics of COPD/emphysema associated with increased inflammatory response. We found that VDR knock-out (VDR{sup -/-}) mice had increased influx of inflammatory cells, phospho-acetylation of nuclear factor-kappaB (NF-{kappa}B) associated with increased proinflammatory mediators, and up-regulation of matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MMP-12 in the lung. This was associated with emphysema and decline in lung function associated with lymphoid aggregates formation compared to WT mice. These findings suggest that deficiency of VDR in mouse lung can lead to an early onset of emphysema/COPD because of chronic inflammation, immune dysregulation, and lung destruction.

  8. Detection of CXCR2 cytokine receptor surface expression using immunofluorescence.

    PubMed

    Lam, Clarissa; Pavel, Mahmud Arif; Kashyap, Parul; Salehi-Najafabadi, Zahra; Valentino, Victoria; Yu, Yong

    2014-01-01

    The interleukin-8 (IL-8, CXCL8) chemokine, also known as the neutrophil chemotactic factor, is a cytokine that plays a key role in inflammatory response, cell proliferation, migration, and survival. IL-8 expression is increased not only in inflammatory disorders, but also in many types of cancer, including prostate cancer. IL-8 acts as a ligand for the C-X-C chemokine receptor 2 (CXCR2) protein present on the cell plasma membrane. Binding of the IL-8 ligand to the CXCR2 receptor results in an intracellular signaling pathway mediated by GTP binding proteins coupled to the receptor itself. Knowledge of the CXCR2 expression levels facilitates the understanding of the role and function of IL-8. In this chapter, we describe a protocol that uses the immunofluorescence method and confocal microscopy to analyze the CXCR2 surface expression in human prostate cancer cells. However, this protocol is easily adaptable to analyze the surface expression of other cytokine receptors in different cell types. PMID:24908306

  9. Theory and simulations of adhesion receptor dimerization on membrane surfaces.

    PubMed

    Wu, Yinghao; Honig, Barry; Ben-Shaul, Avinoam

    2013-03-19

    The equilibrium constants of trans and cis dimerization of membrane bound (2D) and freely moving (3D) adhesion receptors are expressed and compared using elementary statistical-thermodynamics. Both processes are mediated by the binding of extracellular subdomains whose range of motion in the 2D environment is reduced upon dimerization, defining a thin reaction shell where dimer formation and dissociation take place. We show that the ratio between the 2D and 3D equilibrium constants can be expressed as a product of individual factors describing, respectively, the spatial ranges of motions of the adhesive domains, and their rotational freedom within the reaction shell. The results predicted by the theory are compared to those obtained from a novel, to our knowledge, dynamical simulations methodology, whereby pairs of receptors perform realistic translational, internal, and rotational motions in 2D and 3D. We use cadherins as our model system. The theory and simulations explain how the strength of cis and trans interactions of adhesive receptors are affected both by their presence in the constrained intermembrane space and by the 2D environment of membrane surfaces. Our work provides fundamental insights as to the mechanism of lateral clustering of adhesion receptors after cell-cell contact and, more generally, to the formation of lateral microclusters of proteins on cell surfaces. PMID:23528081

  10. Erythrocyte Aggregation due to Surface Nanobubble Interactions During the Onset of Thermal Burn Injury

    NASA Astrophysics Data System (ADS)

    Seidner, Harrison S.

    Red Blood Cell (RBC) aggregation is an important hemorheological phenomenon especially in microcirculation. In healthy individuals, RBCs are known to aggregate and gravitate toward the faster flow in the center of vessels to increase their throughput for more efficient oxygen delivery. Their aggregation is known to occur during a variety of environmental, pathological, and physiological conditions and is reversible when aggregates are subject to the relatively high shear forces in the circulation. The likelihood that aggregates will monodisperse in flow is dependent on the conditions during which they form. In situations where such aggregates are not sheared to monodispersion their presence can impact the perfusion of microvascular networks. More specifically, aggregates subject to the low shear rates in the zone of stasis near regions of thermal burn injury are capable of occluding vessels in the microcirculation and inhibiting the delivery of oxygen and nutrients to tissue downstream. The basic mechanism leading to erythrocyte aggregation at the onset of thermal injury is unknown. This dissertation investigates parameters involved in erythrocyte aggregation, methods of measuring and testing erythrocyte aggregation, and incorporates modeling based on first principles ultimately to propose a mechanism of this phenomenon.

  11. Surface microhardness of three thicknesses of mineral trioxide aggregate in different setting conditions

    PubMed Central

    Jafargholizadeh, Leila; Khoshkhounejad, Mehrfam; Nekoofar, Mohammad Hossein; Raoof, Maryam

    2014-01-01

    Objectives This study aimed to compare the surface microhardness of mineral trioxide aggregate (MTA) samples having different thicknesses and exposed to human blood from one side and with or without a moist cotton pellet on the other side. Materials and Methods Ninety cylindrical molds with three heights of 2, 4, and 6 mm were fabricated. In group 1 (dry condition), molds with heights of 2, 4, and 6 mm (10 molds of each) were filled with ProRoot MTA (Dentsply Tulsa Dental), and the upper surface of the material was not exposed to any additional moisture. In groups 2 and 3, a distilled water- or phosphate-buffered saline (PBS)-moistened cotton pellet was placed on the upper side of MTA, respectively. The lower side of the molds in all the groups was in contact with human blood-wetted foams. After 4 day, the Vickers microhardness of the upper surface of MTA was measured. Results In the dry condition, the 4 and 6 mm-thick MTA samples showed significantly lower microhardness than the 2 mm-thick samples (p = 0.003 and p = 0.001, respectively). However, when a distilled water- or PBS-moistened cotton pellet was placed over the MTA, no significant difference was found between the surface microhardness of samples having the abovementioned three thicknesses of the material (p = 0.210 and p = 0.112, respectively). Conclusions It could be concluded that a moist cotton pellet must be placed over the 4 to 6 mm-thick MTA for better hydration of the material. However, this might not be necessary when 2 mm-thick MTA is used. PMID:25383342

  12. Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots

    PubMed Central

    Borys, Nicholas J.; Shafran, Eyal; Lupton, John M.

    2013-01-01

    The plasmonic resonances of nanostructured silver films produce exceptional surface enhancement, enabling reproducible single-molecule Raman scattering measurements. Supporting a broad range of plasmonic resonances, these disordered systems are difficult to investigate with conventional far-field spectroscopy. Here, we use nonlinear excitation spectroscopy and polarization anisotropy of single optical hot spots of supercontinuum generation to track the transformation of these plasmon modes as the mesoscopic structure is tuned from a film of discrete nanoparticles to a semicontinuous layer of aggregated particles. We demonstrate how hot spot formation from diffractively-coupled nanoparticles with broad spectral resonances transitions to that from spatially delocalized surface plasmon excitations, exhibiting multiple excitation resonances as narrow as 13 meV. Photon-localization microscopy reveals that the delocalized plasmons are capable of focusing multiple narrow radiation bands over a broadband range to the same spatial region within 6 nm, underscoring the existence of novel plasmonic nanoresonators embedded in highly disordered systems. PMID:23807624

  13. Surface modification of ZnO nanorods with Hamilton receptors.

    PubMed

    Zeininger, Lukas; Klaumünzer, Martin; Peukert, Wolfgang; Hirsch, Andreas

    2015-01-01

    A new prototype of a Hamilton receptor suitable for the functionalization of inorganic nanoparticles was synthesized and characterized. The hydrogen bonding receptor was coupled to a catechol moiety, which served as anchor group for the functionalization of metal oxides, in particular zinc oxide. Synthesized zinc oxide nanorods [ZnO] were used for surface functionalization. The wet-chemical functionalization procedure towards monolayer-grafted particles [ZnO-HR] is described and a detailed characterization study is presented. In addition, the detection of specific cyanurate molecules is demonstrated. The hybrid structures [ZnO-HR-CA] were stable towards agglomeration and exhibited enhanced dispersability in apolar solvents. This observation, in combination with several spectroscopic experiments gave evidence of the highly directional supramolecular recognition at the surface of nanoparticles. PMID:25872141

  14. Surface Modification of ZnO Nanorods with Hamilton Receptors

    PubMed Central

    Zeininger, Lukas; Klaumünzer, Martin; Peukert, Wolfgang; Hirsch, Andreas

    2015-01-01

    A new prototype of a Hamilton receptor suitable for the functionalization of inorganic nanoparticles was synthesized and characterized. The hydrogen bonding receptor was coupled to a catechol moiety, which served as anchor group for the functionalization of metal oxides, in particular zinc oxide. Synthesized zinc oxide nanorods [ZnO] were used for surface functionalization. The wet-chemical functionalization procedure towards monolayer-grafted particles [ZnO-HR] is described and a detailed characterization study is presented. In addition, the detection of specific cyanurate molecules is demonstrated. The hybrid structures [ZnO-HR-CA] were stable towards agglomeration and exhibited enhanced dispersability in apolar solvents. This observation, in combination with several spectroscopic experiments gave evidence of the highly directional supramolecular recognition at the surface of nanoparticles. PMID:25872141

  15. TGF-β induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid β plaques in Alzheimer's disease

    PubMed Central

    Lee, M-H; Lin, S-R; Chang, J-Y; Schultz, L; Heath, J; Hsu, L-J; Kuo, Y-M; Hong, Q; Chiang, M-F; Gong, C-X; Sze, C-I; Chang, N-S

    2010-01-01

    The role of a small transforming growth factor beta (TGF-β)-induced TIAF1 (TGF-β1-induced antiapoptotic factor) in the pathogenesis of Alzheimer's disease (AD) was investigated. TIAF1 physically interacts with mothers against DPP homolog 4 (Smad4), and blocks SMAD-dependent promoter activation when overexpressed. Accordingly, knockdown of TIAF1 by small interfering RNA resulted in spontaneous accumulation of Smad proteins in the nucleus and activation of the promoter governed by the SMAD complex. TGF-β1 and environmental stress (e.g., alterations in pericellular environment) may induce TIAF1 self-aggregation in a type II TGF-β receptor-independent manner in cells, and Smad4 interrupts the aggregation. Aggregated TIAF1 induces apoptosis in a caspase-dependent manner. By filter retardation assay, TIAF1 aggregates were found in the hippocampi of nondemented humans and AD patients. Total TIAF1-positive samples containing amyloid β (Aβ) aggregates are 17 and 48%, respectively, in the nondemented and AD groups, suggesting that TIAF1 aggregation occurs preceding formation of Aβ. To test this hypothesis, in vitro analysis showed that TGF-β-regulated TIAF1 aggregation leads to dephosphorylation of amyloid precursor protein (APP) at Thr668, followed by degradation and generation of APP intracellular domain (AICD), Aβ and amyloid fibrils. Polymerized TIAF1 physically interacts with amyloid fibrils, which would favorably support plaque formation in vivo. PMID:21368882

  16. Regional Study of No-Till Impacts on Near-Surface Aggregate Properties that Influence Soil Erodibility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extent to which tillage systems modify the near-surface soil aggregate properties affecting soil’s susceptibility to erosion by water and wind is not well understood. We hypothesized that an increase in soil organic carbon (SOC) content with conservation tillage systems, particularly NT, may imp...

  17. Research Resource: Androgen Receptor Activity Is Regulated Through the Mobilization of Cell Surface Receptor Networks

    PubMed Central

    Hsiao, Jordy J.; Ng, Brandon H.; Smits, Melinda M.; Martinez, Harryl D.; Jasavala, Rohini J.; Hinkson, Izumi V.; Fermin, Damian; Eng, Jimmy K.; Nesvizhskii, Alexey I.

    2015-01-01

    The aberrant expression of androgen receptor (AR)-dependent transcriptional programs is a defining pathology of the development and progression of prostate cancers. Transcriptional cofactors that bind AR are critical determinants of prostate tumorigenesis. To gain a deeper understanding of the proteins linked to AR-dependent gene transcription, we performed a DNA-affinity chromatography-based proteomic screen designed to identify proteins involved in AR-mediated gene transcription in prostate tumor cells. Functional experiments validated the coregulator roles of known AR-binding proteins in AR-mediated transcription in prostate tumor cells. More importantly, novel coregulatory functions were detected in components of well-established cell surface receptor-dependent signal transduction pathways. Further experimentation demonstrated that components of the TNF, TGF-β, IL receptor, and epidermal growth factor signaling pathways modulated AR-dependent gene transcription and androgen-dependent proliferation in prostate tumor cells. Collectively, our proteomic dataset demonstrates that the cell surface receptor- and AR-dependent pathways are highly integrated, and provides a molecular framework for understanding how disparate signal-transduction pathways can influence AR-dependent transcriptional programs linked to the development and progression of human prostate cancers. PMID:26181434

  18. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    NASA Astrophysics Data System (ADS)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  19. Protein aggregates stimulate macropinocytosis facilitating their propagation.

    PubMed

    Yerbury, Justin J

    2016-03-01

    Temporal and spatial patterns of pathological changes such as loss of neurons and presence of pathological protein aggregates are characteristic of neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Frontotemporal Dementia, Alzheimer's disease and Parkinson's disease. These patterns are consistent with the propagation of protein misfolding and aggregation reminiscent of the prion diseases. There is a surge of evidence that suggests that large protein aggregates of a range of proteins are able to enter cells via macropinocytosis. Our recent work suggests that this process is activated by the binding of aggregates to the neuron cell surface. The current review considers the potential role of cell surface receptors in the triggering of macropinocytosis by protein aggregates and the possibility of utilizing macropinocytosis pathways as a therapeutic target. PMID:26963158

  20. Effect of Surface Curvature and Chemistry on Protein Stability, Adsorption and Aggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun

    Enzyme immobilization has been of great industrial importance because of its use in various applications like bio-fuel cells, bio-sensors, drug delivery and bio-catalytic films. Although research on enzyme immobilization dates back to the 1970's, it has been only in the past decade that scientists have started to address the problems involved systematically. Most of the previous works on enzyme immobilization have been retrospective in nature i.e enzymes were immobilized on widely used substrates without a compatibility study between the enzyme and the substrate. Consequently, most of the enzymes lost their activity upon immobilization onto these substrates due to many governing factors like protein-surface and inter-protein interactions. These interactions also play a major role biologically in cell signaling, cell adhesion and inter-protein interactions specifically is believed to be the major cause for neurodegenerative diseases like Alzheimer's and Parkinson's disease. Therefore understanding the role of these forces on proteins is the need of the hour. In my current research, I have mainly focused on two factors a) Surface Curvature b) Surface Chemistry as both of these play a pivotal role in influencing the activity of the enzymes upon immobilization. I study the effect of these factors computationally using a stochastic method known as Monte Carlo simulations. My research work carried out in the frame work of a Hydrophobic-Polar (HP) lattice model for the protein shows that immobilizing enzymes inside moderately hydrophilic or hydrophobic pores results in an enhancement of the enzymatic activity compared to that in the bulk. Our results also indicate that there is an optimal value of surface curvature and hydrophobicity/hydrophilicity where this enhancement of enzymatic activity is highest. Further, our results also show that immobilization of enzymes inside hydrophobic pores of optimal sizes are most effective in mitigating protein-aggregation. These

  1. The Impact of Temporal Aggregation of Land Surface Temperature Data for Urban Heat Island Monitoring

    NASA Astrophysics Data System (ADS)

    Hu, L.; Brunsell, N. A.

    2012-12-01

    Temporally composited remote sensing products are widely used in monitoring the urban heat island (UHI). In order to quantify the impact of temporal aggregation for assessing the UHI, we examined MODIS land surface temperature (LST) products for 11 years focusing on Houston, Texas and its surroundings. By using the daily LST from 2000 to 2010, the urban and rural daily LST were presented for the 8-day period and annual comparisons for both day and night. Statistics based on the rural-urban LST differences show that the 8-day composite mean UHI effects are generally more intensive than that calculated by daily UHI images. Moreover, the seasonal pattern shows that the summer daytime UHI has the largest magnitude and variation while nighttime UHI magnitudes are much smaller and less variable. Regression analyses enhance the results showing an apparently higher UHI derived from 8-day composite dataset. The summer mean UHI maps were compared, indicating a land cover related pattern. We introduced yearly MODIS land cover type product to explore the spatial differences caused by temporal aggression of LST product. The mean bias caused by land cover types are calculated about 0.5 ~ 0.7K during the daytime, and less than 0.1K at night. The potential causes of the higher UHI are discussed. The analysis shows that the land-atmosphere interactions, which result in the regional cloud formation, are the primary reason.

  2. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles

    SciTech Connect

    Illes, E.; Tombacz, E.

    2006-03-01

    The pH-dependent adsorption of humic acid (HA) on magnetite and its effect on the surface charging and the aggregation of oxide particles were investigated. HA was extracted from brown coal. Synthetic magnetite was prepared by alkaline hydrolysis of iron(II) and iron(III) salts. The pH-dependent particle charge and aggregation, and coagulation kinetics at pH around to 4 were measured by laser Doppler electrophoresis and dynamic light scattering. The charge of pure magnetite reverses from positive to negative at pH around 8, which may consider as isoelectric point (IEP). Near this pH, large aggregates form, while stable sols exist further from it. In the presence of increasing HA loading, the IEP shifts to lower pH, then at higher loading, magnetite becomes negatively charged even at low pHs, which indicate the neutralization and gradual recharging positive charges on surface. In acidic region, the trace HA amounts are adsorbed on magnetite surface as oppositely charged patches, systems become highly unstable due to heterocoagulation. Above the adsorption saturation, however, the nanoparticles are stabilized in a way of combined steric and electrostatic effects. The HA coated magnetite particles form stable colloidal dispersion, particle aggregation does not occur in a wide range of pH and salt tolerance is enhanced.

  3. Major Histocompatibility Complex Class II Inhibits Fas Antigen-Mediated Gastric Mucosal Cell Apoptosis through Actin-Dependent Inhibition of Receptor Aggregation

    PubMed Central

    Stoicov, Calin; Cai, Xun; Li, Hanchen; Klucevsek, Kristine; Carlson, Jane; Saffari, Reza; Houghton, JeanMarie

    2005-01-01

    Escape from normal apoptotic controls is thought to be essential for the development of cancer. During Helicobacter pylori infection, the leading cause of gastric cancer, activation of the Fas antigen (Fas Ag) apoptotic pathway is responsible for early atrophy and tissue loss. As disease progresses, metaplastic and dysplastic glands arise which express Fas Ag but are resistant to apoptosis and are believed to be the precursor cells for adenocarcinoma. In this report, we show that one mechanism of acquired Fas resistance is inhibition of receptor aggregation via a major histocompatibility complex class II (MHCII)-mediated, actin-dependent mechanism. For these studies we used the well-described C57BL/6 mouse model of Helicobacter pylori and Helicobacter felis infection. Under normal conditions, Fas Ag is expressed at low levels, and MHCII expression on gastric mucosal cells is negligible. With infection and inflammation, both receptors are upregulated, and 6.1% of gastric mucosal cells express MHCII in combination with Fas Ag. Using the rat gastric mucosal cell line RGM-1 transfected with murine Fas Ag and MHCIIαβ chains, we demonstrate that MHCII prevents Fas receptor aggregation and inhibits Fas-mediated signaling through its effects on the actin cytoskeleton. Depolymerization of actin with cytochalasin D allows receptors to aggregate and restores Fas sensitivity. These findings offer one mechanism by which gastric mucosal cells acquire Fas resistance. PMID:16177302

  4. Horse chestnut extract contracts bovine vessels and affects human platelet aggregation through 5-HT(2A) receptors: an in vitro study.

    PubMed

    Felixsson, Emma; Persson, Ingrid A-L; Eriksson, Andreas C; Persson, Karin

    2010-09-01

    Extract from seeds and bark of horse chestnut (Aesculus hippocastanum L) is used as an herbal medicine against chronic venous insufficiency. The effect and mechanism of action on veins, arteries, and platelets are not fully understood. The aim of this study was to investigate the effects and mechanisms of action of horse chestnut on the contraction of bovine mesenteric veins and arteries, and human platelet aggregation. Contraction studies showed that horse chestnut extract dose-dependently contracted both veins and arteries, with the veins being the most sensitive. Contraction of both veins and arteries were significantly inhibited by the 5-HT(2A) receptor antagonist ketanserin. No effect on contraction was seen with the cyclooxygenase inhibitor indomethacin, the alpha(1) receptor antagonist prazosin or the angiotensin AT(1) receptor antagonist saralasin neither in veins nor arteries. ADP-induced human platelet aggregation was significantly reduced by horse chestnut. A further reduction was seen with the extract in the presence of ketanserin. In conclusion, horse chestnut contraction of both veins and arteries is, at least partly, mediated through 5-HT(2A) receptors. Human platelet aggregation is reduced by horse chestnut. The clinical importance of these findings concerning clinical use, possible adverse effects, and drug interactions remains to be investigated. PMID:20148408

  5. Graphene Oxides in Water: Correlating Morphology and Surface Chemistry with Aggregation Behavior.

    PubMed

    Jiang, Yi; Raliya, Ramesh; Fortner, John D; Biswas, Pratim

    2016-07-01

    Aqueous aggregation processes can significantly impact function, effective toxicity, environmental transport, and ultimate fate of advanced nanoscale materials, including graphene and graphene oxide (GO). In this work, we have synthesized flat graphene oxide (GO) and five physically crumpled GOs (CGO, with different degrees of thermal reduction, and thus oxygen functionality) using an aerosol method, and characterized the evolution of surface chemistry and morphology using a suite of spectroscopic (UV-vis, FTIR, XPS) and microscopic (AFM, SEM, and TEM) techniques. For each of these materials, critical coagulation concentrations (CCC) were determined for NaCl, CaCl2, and MgCl2 electrolytes. The CCCs were correlated with material ζ-potentials (R(2) = 0.94-0.99), which were observed to be mathematically consistent with classic DLVO theory. We further correlated CCC values with CGO chemical properties including C/O ratios, carboxyl group concentrations, and C-C fractions. For all cases, edge-based carboxyl functional groups are highly correlated to observed CCC values (R(2) = 0.89-0.95). Observations support the deprotonation of carboxyl groups with low acid dissociation constants (pKa) as the main contributors to ζ-potentials and thus material aqueous stability. We also observe CCC values to significantly increase (by 18-80%) when GO is physically crumpled as CGO. Taken together, the findings from both physical and chemical analyses clearly indicate that both GO shape and surface functionality are critical to consider with regard to understanding fundamental material behavior in water. PMID:27248211

  6. 5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling.

    PubMed

    Oberdorf, Christoph; Schmidt, Thomas J; Wünsch, Bernhard

    2010-07-01

    Based on a contiguous and structurally as well as biologically diverse set of 87 sigma(1) ligands, a 5D-QSAR study was conducted in which a quasi-atomistic receptor surface modeling approach (program package Quasar) was applied. The superposition of the ligands was performed with the tool Pharmacophore Elucidation (MOE-package), which takes all conformations of the ligands into account. This procedure led to four pharmacophoric structural elements with aromatic, hydrophobic, cationic and H-bond acceptor properties. Using the aligned structures a 3D-model of the ligand binding site of the sigma(1) receptor was obtained, whose general features are in good agreement with previous assumptions on the receptor structure, but revealed some novel insights since it represents the receptor surface in more detail. Thus, e.g., our model indicates the presence of an H-bond acceptor moiety in the binding site as counterpart to the ligands' cationic ammonium center, rather than a negatively charged carboxylate group. The presented QSAR model is statistically valid and represents the biological data of all tested compounds, including a test set of 21 ligands not used in the modeling process, with very good to excellent accuracy [q(2) (training set, n=66; leave 1/3 out) = 0.84, p(2) (test set, n=21)=0.64]. Moreover, the binding affinities of 13 further spirocyclic sigma(1) ligands were predicted with reasonable accuracy (mean deviation in pK(i) approximately 0.8). Thus, in addition to novel insights into the requirements for binding of spirocyclic piperidines to the sigma(1) receptor, the presented model can be used successfully in the rational design of new sigma(1) ligands. PMID:20427100

  7. An antagonistic activity of etizolam on platelet-activating factor (PAF). In vitro effects on platelet aggregation and PAF receptor binding.

    PubMed

    Mikashima, H; Takehara, S; Muramoto, Y; Khomaru, T; Terasawa, M; Tahara, T; Maruyama, Y

    1987-08-01

    The antagonistic effect of etizolam, an anti-anxiety drug, on platelet-activating factor (PAF) was investigated in rabbit platelets in vitro. Etizolam inhibited PAF-induced aggregation in a dose-dependent manner, with an IC50 of 3.8 microM, about one tenth that of triazolam (IC50 = 30 microM). At 300 microM, it inhibited both ADP and arachidonic acid-induced aggregation only slightly, while the other anti-anxiety drugs tested had no effect on PAF-induced aggregation even at this concentration. Etizolam and triazolam inhibited the specific binding of 3H-PAF to PAF receptor sites on washed rabbit platelets with IC50 values of 22 nM and 320 nM, respectively. Diazepam and estazolam were inactive even at 1 microM. These results indicate that etizolam is a specific antagonist of PAF. PMID:2890779

  8. Highly ordered surface structure of large-scale porphyrin aggregates assembled from protonated TPP and water

    NASA Astrophysics Data System (ADS)

    Udal'tsov, Alexander V.; Bolshakova, Anastasia V.; Vos, Johannes G.

    2014-05-01

    Large-scale aggregates assembled from protonated meso-tetraphenylporphine (TPP) dimers and water have been investigated by IR and resonance Raman spectroscopy and also by scanning electron microscopy (SEM). It was found that the properties of water confined in the aggregates depend on the physical state of the support. When the aggregates were deposited on a solid CaF2 plate, they showed properties consistent with a quasi-crystalline structure. But when the aggregates were dispersed in oil, their IR characteristics were different; the vibration bands of the confined water were like those of water in liquid state. A doublet at about 1000 cm-1, components of which have been attributed to specific vibrations of H3O+ and H2O bound in the structure of water-porphyrin dimeric complex, was found in IR and resonance Raman spectra (λex = 441.6 nm) of protonated TPP aggregates. This doublet indicates the hydrogen ion involving in the vibrational system of water-porphyrin dimeric complex with hydrogen bonding by similar way as in so-called Zundel cation. The resonance Raman spectrum shows evidence for proton sharing between protonated water dimer and N groups of the pyrrole rings. SEM results indicate that the large-scale aggregates of the protonated porphyrin possess highly ordered structure, are only observed when using extremely pure water.

  9. Influence of hydrogen surface passivation on Sn segregation, aggregation, and distribution in GeSn/Ge(001) materials

    NASA Astrophysics Data System (ADS)

    Johll, Harman; Samuel, Milla; Koo, Ruey Yi; Kang, Hway Chuan; Yeo, Yee-Chia; Tok, Eng Soon

    2015-05-01

    Plane-wave density functional theory is used to investigate the impact of hydrogen passivation of the p(2×2) reconstructed Ge1-xSnx surface on Sn segregation, aggregation, and distribution. On a clean surface, Sn preferentially segregates to the surface layer, with surface coverages of 25%, 50%, and 100% for total Sn concentrations of 2.5%, 5.0%, and 10.0%, respectively. In contrast, a hydrogen passivated surface increases interlayer migration of Sn to subsurface layers, in particular, to the third layer from the surface, and results in surface coverages of 0%, 0%, and 50% corresponding to Sn concentrations of 2.5%, 5.0%, and 10.0%, respectively. Hydrogen transfer from a Ge-capped surface to the one enriched with increasing Sn surface coverage is also an unfavorable process. The presence of hydrogen therefore reduces the surface energy by passivating the reactive dangling bonds and enhancing Sn interlayer migration to the subsurface layers. For both clean and hydrogenated surfaces, aggregation of Sn at the surface layer is also not favored. We explain these results by considering bond enthalpies and the enthalpies of hydrogenation for various surface reactions. Our results thus point to reduced Sn segregation to the surface in a Ge1-xSnx epitaxial thin film if CVD growth, using hydride precursors in the hydrogen limited growth regime, is used. This would lead to a more abrupt interface and is consistent with recent experimental observation. Hydrogenation is therefore a promising method for controlling and manipulating elemental population of Sn in a Ge1-xSnx epitaxial thin film.

  10. Surface plasmon resonance applied to G protein-coupled receptors

    PubMed Central

    Locatelli-Hoops, Silvia; Yeliseev, Alexei A.; Gawrisch, Klaus; Gorshkova, Inna

    2013-01-01

    G protein-coupled receptors (GPCR) are integral membrane proteins that transmit signals from external stimuli to the cell interior via activation of GTP-binding proteins (G proteins) thereby mediating key sensorial, hormonal, metabolic, immunological, and neurotransmission processes. Elucidating their structure and mechanism of interaction with extracellular and intracellular binding partners is of fundamental importance and highly relevant to rational design of new effective drugs. Surface plasmon resonance (SPR) has become a method of choice for studying biomolecular interactions at interfaces because measurements take place in real-time and do not require labeling of any of the interactants. However, due to the particular challenges imposed by the high hydrophobicity of membrane proteins and the great diversity of receptor-stimulating ligands, the application of this technique to characterize interactions of GPCR is still in the developmental phase. Here we give an overview of the principle of SPR and analyze current approaches for the preparation of the sensor chip surface, capture and stabilization of GPCR, and experimental design to characterize their interaction with ligands, G proteins and specific antibodies. PMID:24466506

  11. High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands

    NASA Astrophysics Data System (ADS)

    Diaz-Egea, Carlos; Sigle, Wilfried; van Aken, Peter A.; Molina, Sergio I.

    2013-07-01

    We present the mapping of the full plasmonic mode spectrum for single and aggregated gold nanoparticles linked through DNA strands to a silicon nitride substrate. A comprehensive analysis of the electron energy loss spectroscopy images maps was performed on nanoparticles standing alone, dimers, and clusters of nanoparticles. The experimental results were confirmed by numerical calculations using the Mie theory and Gans-Mie theory for solving Maxwell's equations. Both bright and dark surface plasmon modes have been unveiled.

  12. Roles for glycosylation of cell surface receptors involved in cellular immune recognition.

    PubMed

    Rudd, P M; Wormald, M R; Stanfield, R L; Huang, M; Mattsson, N; Speir, J A; DiGennaro, J A; Fetrow, J S; Dwek, R A; Wilson, I A

    1999-10-22

    The majority of cell surface receptors involved in antigen recognition by T cells and in the orchestration of the subsequent cell signalling events are glycoproteins. The length of a typical N-linked sugar is comparable with that of an immunoglobulin domain (30 A). Thus, by virtue of their size alone, oligosaccharides may be expected to play a significant role in the functions and properties of the cell surface proteins to which they are attached. A databank of oligosaccharide structures has been constructed from NMR and crystallographic data to aid in the interpretation of crystal structures of glycoproteins. As unambiguous electron density can usually only be assigned to the glycan cores, the remainder of the sugar is then modelled into the crystal lattice by superimposing the appropriate oligosaccharide from the database. This approach provides insights into the roles that glycosylation might play in cell surface receptors, by providing models that delineate potential close packing interactions on the cell surface. It has been proposed that the specific recognition of antigen by T cells results in the formation of an immunological synapse between the T cell and the antigen-presenting cell. The cell adhesion glycoproteins, such as CD2 and CD48, help to form a cell junction, providing a molecular spacer between opposing cells. The oligosaccharides located on the membrane proximal domains of CD2 and CD48 provide a scaffold to orient the binding faces, which leads to increased affinity. In the next step, recruitment of the peptide major histocompatibility complex (pMHC) by the T-cell receptors (TCRs) requires mobility on the membrane surface. The TCR sugars are located such that they could prevent non-specific aggregation. Importantly, the sugars limit the possible geometry and spacing of TCR/MHC clusters which precede cell signalling. We postulate that, in the final stage, the sugars could play a general role in controlling the assembly and stabilisation of the

  13. Synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates

    NASA Astrophysics Data System (ADS)

    Marquez, Maricel

    The subject of this work is the synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates, also termed Template Assisted Admicellar Polymerization (TAAP). The first chapter reviews some of the most current nanopatterning techniques (including both top-down and bottom-up approaches), with particular emphasis on the fabrication of organic and inorganic patterned nanostructures via particle lithography. In chapter 2, highly ordered hexagonal arrays of latex spheres were prepared on highly ordered pyrolytic graphite (HOPG) from a variation of the Langmuir Blodgett technique, using an anionic surfactant (SDS), and a low molecular weight (ca. 10000) polyacrylamide as spreading agents. When a nonionic polyethoxylated (EO = 9) surfactant was used as the spreading agent, no ordered arrays were observed. Based on the correlation found between the surface tension in the presence of the latex particles and the critical concentration at which hexagonal arrangements of latex spheres occurs; a model was proposed to explain the role of the spreading agent in forming stable monolayers at the air/liquid interface, which in turn are necessary for the formation of well-ordered monolayers on a solid substrate from the LB technique. According to this model, solid-like regions of small numbers of latex spheres form at the liquid-air interface, which are then transferred to the substrate. These ordered regions then act as nuclei for the formation of 2D arrays of latex spheres on the surface upon water evaporation. The role of other factors such as relative humidity, substrate and solvent choice, and pulling vs. compression speed were also found to affect the quality of the monolayers formed. Finally, a simple, easy to automate, yet effective surface tension method was proposed to predict the optimal conditions for the formation of ordered monolayers using a variation of the LB deposition method from any monodisperse set of spheres. In chapter 3, a novel

  14. High-pressure studies of aggregation of recombinant human interleukin-1 receptor antagonist: Thermodynamics, kinetics, and application to accelerated formulation studies

    PubMed Central

    Seefeldt, Matthew B.; Kim, Yong-Sung; Tolley, Kevin P.; Seely, Jim; Carpenter, John F.; Randolph, Theodore W.

    2005-01-01

    Recombinant human interleukin-1 receptor antagonist (IL-1ra) in aqueous solutions unfolds and aggregates when subjected to hydrostatic pressures greater than about 180 MPa. This study examined the mechanism and thermodynamics of pressure-induced unfolding and aggregation of IL-1ra. The activation free energy for growth of aggregates (ΔG∓aggregation) was found to be 37 ± 3 kJ/mol, whereas the activation volume (ΔV∓aggregation) was −120 ± 20 mL/mol. These values compare closely with equilibrium values for denaturation: The free energy for denaturation, ΔGdenaturation, was 20 ± 5 kJ/mol, whereas the partial specific volume change for denaturation, ΔVdenaturation, was −110 ± 30 mL/mol. When IL-1ra begins to denature at pressures near 140 MPa, cysteines that are normally buried in the native state become exposed. Under oxidizing conditions, this results in the formation of covalently cross-linked aggregates containing nonnative, intermolecular disulfide bonds. The apparent activation free energy for nucleation of aggregates, ΔG∓nuc, was 42 ± 4 kJ/mol, and the activation volume for nucleation, ΔV∓nuc,was −175 ± 37 mL/mol, suggesting that a highly solvent-exposed conformation is needed for nucleation. We hypothesize that the large specific volume of IL-1ra, 0.752 ± 0.004 mL/g, coupled with its relatively low conformational stability, leads to its susceptibility to denaturation at relatively low pressures. The positive partial specific adiabatic compressibility of IL-1ra, 4.5 ± 0.7 ± 10−12 cm2/dyn, suggests that a significant component of the ΔVdenaturation is attributable to the elimination of solvent-free cavities. Lastly, we propose that hydrostatic pressure is a useful variable to conduct accelerated formulation studies of therapeutic proteins. PMID:16081653

  15. Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation, solubility, and aggregation

    PubMed Central

    Rissman, Robert A.; Staup, Michael A.; Lee, Allyson Roe; Justice, Nicholas J.; Rice, Kenner C.; Sawchenko, Paul E.

    2012-01-01

    Exposure and/or sensitivity to stress have been implicated as conferring risk for development of Alzheimer's disease (AD). Although the basis for such a link remains unclear, we previously reported differential involvement of corticotropin-releasing factor receptor (CRFR) 1 and 2 in acute stress-induced tau phosphorylation (tau-P) and solubility in the hippocampus. Here we examined the role of CRFRs in tau-P induced by repeated stress and the structural manifestations of altered tau solubility. Robust tau-P responses were seen in WT and CRFR2 null mice exposed to repeated stress, which were sustained at even 24 h after the final stress exposure. A portion of phosphorylated tau in these mice was sequestered in detergent-soluble cellular fractions. In contrast, CRFR1 and CRFR double-KO mice did not exhibit repeated stress-induced alterations in tau-P or solubility. Similarly, treatment with CRFR1 antagonist attenuated repeated stress-induced tau-P. Using histochemical approaches in a transgenic CRFR1 reporter mouse line, we found substantial overlap between hippocampal CRFR1 expression and cells positive for phosphorylated tau after exposure to repeated stress. Ultrastructural analysis of negatively stained extracts from WT and CRFR2 null mice identified globular aggregates that displayed positive immunogold labeling for tau-P, as well as conformational changes in tau (MC1) seen in early AD. Given that repeated stress exposure results in chronic increases in hippocampal tau-P and its sequestration in an insoluble (and potentially prepathogenic) form, our data may define a link between stress and an AD-related pathogenic mechanism. PMID:22451915

  16. Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During In Situ Urea-Formaldehyde Polymerization.

    PubMed

    Diwan, Anubhav; Jensen, David S; Gupta, Vipul; Johnson, Brian I; Evans, Delwyn; Telford, Clive; Linford, Matthew R

    2015-12-01

    We present a new method for the preparation of superhydrophobic materials by in situ aggregation of silica nanoparticles on a surface during a urea-formaldehyde (UF) polymerization. This is a one-step process in which a two-tier topography is obtained. The polymerization is carried out for 30, 60, 120, 180, and 240 min on silicon shards. Silicon surfaces are sintered to remove the polymer. SEM and AFM show both an increase in the area covered by the nanoparticles and their aggregation with increasing polymerization time. Chemical vapor deposition of a fluorinated silane in the presence of a basic catalyst gives these surfaces hydrophobicity. Deposition of this low surface energy silane is confirmed by the F 1s signal in XPS. The surfaces show advancing water contact angles in excess of 160 degrees with very low hysteresis (< 7) after 120 min and 60 min polymerization times for 7 nm and 14 nm silica, respectively. Depositions are successfully demonstrated on glass substrates after they are primed with a UF polymer layer. Superhydrophobic surfaces can also be prepared on unsintered substrates. PMID:26682448

  17. Exposure of fibrinogen receptors in human platelets by surface proteolysis with elastase.

    PubMed Central

    Kornecki, E; Ehrlich, Y H; De Mars, D D; Lenox, R H

    1986-01-01

    Human platelets that were preincubated with porcine elastase aggregated spontaneously upon the addition of fibrinogen. Maximal aggregation to fibrinogen was observed with platelets pretreated with an elastase concentration of 111 micrograms/ml, and half-maximal aggregation occurred after treatment with 11 micrograms/ml elastase. Binding of radiolabeled fibrinogen to elastase-treated platelets was specific, saturable, and showed a single class of 48,400 +/- 9,697 fibrinogen-binding sites per platelet with a dissociation constant of 6.30 +/- 1.48 X 10(-7) M. ATP, apyrase, and the stimulators of platelet adenylate cyclase forskolin, prostaglandin E1, prostacyclin, and N6, 2'-O-dibutyryl cyclic AMP did not inhibit the fibrinogen-induced aggregation of elastase-treated platelets. EDTA completely blocked the initiation of aggregation and reversed the fibrinogen-induced aggregation of elastase-treated platelets. Monoclonal and polyclonal antibodies directed against glycoproteins (GP) IIb and IIIa completely blocked the fibrinogen-induced aggregation of elastase-treated platelets. Immunoprecipitates with these antibodies obtained from detergent extracts of surface-radiolabeled, intact, and elastase-treated platelets contained the glycoproteins IIb and IIIa. We conclude that surface proteolysis by low concentrations of elastase can expose fibrinogen-binding sites associated with GPIIb and GPIIIa on the platelet surface, resulting in spontaneous aggregation upon the addition of fibrinogen. These findings may be relevant to hemostatic changes observed in patients with increased levels of circulating elastase. Images PMID:3005363

  18. Caged Agonist of P2Y1 and P2Y12 Receptors for Light-Directed Facilitation of Platelet Aggregation

    PubMed Central

    Gao, Zhan-Guo; Hechler, Béatrice; Besada, Pedro; Gachet, Christian; Jacobson, Kenneth A.

    2008-01-01

    We have prepared a caged form (MRS2703) of a potent dual agonist of the P2Y1 and P2Y12 nucleotide receptors, 2-MeSADP, by blocking the β-phosphate group with a 1-(3,4-dimethyloxyphenyl)eth-1-yl phosphoester. Although MRS2703 is itself inactive at human P2Y1 and P2Y12 receptors expressed heterologously in 1321N1 astrocytoma cells or in washed human platelets, this derivative readily regenerates the parent agonist upon mild irradiation with long-wave UV light (360 nm). The functional effect of the regenerated agonist was demonstrated by a rise in intracellular calcium mediated by either P2Y1 or P2Y12 receptors in transfected cells. Washed human platelets exposed to a solution of MRS2703 were induced to aggregate upon UV irradiation. At 1.0 μM MRS2703, full aggregation was achieved within one minute of irradiation. Thus, this caged nucleotide promises to be a useful probe for potent P2Y receptor activation with light-directed spatial and temporal control. PMID:18199424

  19. Caged agonist of P2Y1 and P2Y12 receptors for light-directed facilitation of platelet aggregation.

    PubMed

    Gao, Zhan-Guo; Hechler, Béatrice; Besada, Pedro; Gachet, Christian; Jacobson, Kenneth A

    2008-03-15

    We have prepared a caged form (MRS2703) of a potent dual agonist of the P2Y(1) and P2Y(12) nucleotide receptors, 2-MeSADP, by blocking the beta-phosphate group with a 1-(3,4-dimethyloxyphenyl)eth-1-yl phosphoester. Although MRS2703 is itself inactive at human P2Y(1) and P2Y(12) receptors expressed heterologously in 1321N1 astrocytoma cells or in washed human platelets, this derivative readily regenerates the parent agonist upon mild irradiation with long-wave UV light (360 nm). The functional effect of the regenerated agonist was demonstrated by a rise in intracellular calcium mediated by either P2Y(1) or P2Y(12) receptors in transfected cells. Washed human platelets exposed to a solution of MRS2703 were induced to aggregate upon UV irradiation. At 1.0 microM MRS2703, full aggregation was achieved within 1 min of irradiation. Thus, this caged nucleotide promises to be a useful probe for potent P2Y receptor activation with light-directed spatial and temporal control. PMID:18199424

  20. A novel thromboxane A2 receptor N42S variant results in reduced surface expression and platelet dysfunction.

    PubMed

    Nisar, Shaista P; Lordkipanidzé, Marie; Jones, Matthew L; Dawood, Ban; Murden, Sherina; Cunningham, Margaret R; Mumford, Andrew D; Wilde, Jonathan T; Watson, Steve P; Mundell, Stuart J; Lowe, Gillian C

    2014-05-01

    A small number of thromboxane receptor variants have been described in patients with a bleeding history that result in platelet dysfunction. We have identified a patient with a history of significant bleeding, who expresses a novel heterozygous thromboxane receptor variant that predicts an asparagine to serine substitution (N42S). This asparagine is conserved across all class A GPCRs, suggesting a vital role for receptor structure and function.We investigated the functional consequences of the TP receptor heterozygous N42S substitution by performing platelet function studies on platelet-rich plasma taken from the patient and healthy controls. We investigated the N42S mutation by expressing the wild-type (WT) and mutant receptor in human embryonic kidney (HEK) cells. Aggregation studies showed an ablation of arachidonic acid responses in the patient, whilst there was right-ward shift of the U46619 concentration response curve (CRC). Thromboxane generation was unaffected. Calcium mobilisation studies in cells lines showed a rightward shift of the U46619 CRC in N42S-expressing cells compared to WT. Radioligand binding studies revealed a reduction in BMax in platelets taken from the patient and in N42S-expressing cells, whilst cell studies confirmed poor surface expression. We have identified a novel thromboxane receptor variant, N42S, which results in platelet dysfunction due to reduced surface expression. It is associated with a significant bleeding history in the patient in whom it was identified. This is the first description of a naturally occurring variant that results in the substitution of this highly conserved residue and confirms the importance of this residue for correct GPCR function. PMID:24452735

  1. Aggregation and Particle Formation of Therapeutic Proteins in Contact With a Novel Fluoropolymer Surface Versus Siliconized Surfaces: Effects of Agitation in Vials and in Prefilled Syringes.

    PubMed

    Teska, Brandon M; Brake, Jeffrey M; Tronto, Gregory S; Carpenter, John F

    2016-07-01

    We examined the effects of an accelerated agitation protocol on 2 protein therapeutics, intravenous immunoglobulin (IVIG) and Avastin (bevacizumab), in contact with a novel fluoropolymer surface and more typical siliconized surfaces. The fluoropolymer surface provides "solid-phase" lubrication for the syringe plunger-obviating the need for silicone oil lubrication in prefilled syringes. We tested the 2 surfaces in a vial system and in prefilled glass syringes. We also examined the effects of 2 buffers, phosphate-buffered saline (PBS) and 0.2-M glycine, with and without the addition of polysorbate 20, on agitation-induced aggregation of IVIG. Aggregation was monitored by measuring subvisible particle formation and soluble protein loss. In both vials and syringes, protein particle formation was much lower during agitation with the fluoropolymer surface than with the siliconized surface. Also, particle formation was greater in PBS than in glycine buffer, an effect attributed to lower colloidal stability of IVIG in PBS. Polysorbate 20 in the formulation greatly inhibited protein particle formation. Overall, the fluoropolymer plunger surface in an unsiliconized glass barrel was demonstrated to be a viable solution for eliminating silicone oil droplets from prefilled syringe formulations and providing a consistent system for rationale formulation development and simplified particle analysis. PMID:27233685

  2. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates

    SciTech Connect

    Erdem, Savas Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-02-15

    The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity - sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing. In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.

  3. Surface-promoted aggregation of amphiphilic quadruplex ligands drives their selectivity for alternative DNA structures.

    PubMed

    Laguerre, Aurélien; Chang, Yi; Pirrotta, Marc; Desbois, Nicolas; Gros, Claude P; Lesniewska, Eric; Monchaud, David

    2015-07-01

    Scientists are currently truly committed to enhance the specificity of chemotherapeutics that target DNA. To this end, sequence-specific drugs have progressively given way to structure-specific therapeutics. However, while numerous strategies have been implemented to design high-affinity candidates, strategies devoted to the design of high-selectivity ligands are still rare. Here we report on such an approach via the study of an amphiphilic compound, TEGPy, that self-assembles at a liquid/solid interface to provide nanosized objects that are stable in water. The resulting aggregates, identified through atomic force microscopy measurements, were found to disassemble upon interaction with DNA in a structure-specific manner (quadruplex- versus duplex-DNA). Our results provide a fertile ground for devising new strategies aiming at concomitantly enhancing DNA structural specificity and the water-solubility of aggregation-prone ligands. PMID:26040925

  4. Observation and quantification of chondrocyte aggregation behavior on fibroin surfaces using Voronoi partition.

    PubMed

    Otaka, Akihisa; Kachi, Naoyoshi D; Hatano, Naoya; Kuwana, Yoshihiko; Tamada, Yasushi; Tomita, Naohide

    2013-05-01

    Cell migration is one of the fundamental processes in histogenesis, and it is necessary to investigate such multicellular behavior quantitatively in cell regeneration studies. In this study, Voronoi diagram analysis was first confirmed in simulation testing, and then used to evaluate the multicellular behavior of chondrocytes on three different substrates: (1) wild-type fibroin (FIB); (2) L-RGDSx2 transgenic fibroin; (3) and collagen. The indices for the round factor average, round factor homogeneity, and area disorder (AD), calculated from Voronoi diagram analysis, were used to characterize the difference in spatiotemporal changes for the different chondrocyte populations, and a regression analysis of the AD index was used to measure the speed of cell aggregation. The results suggested that the arginine-glycine-aspartic acid-serine sequence affects aggregate formation of chondrocytes cultured on FIB. The Voronoi diagram analysis represents one of the promising quantitative analyses for cell regeneration studies. PMID:23083372

  5. A Cell Surface Molecule Involved in Aggregation of Embryonic Liver Cells

    NASA Astrophysics Data System (ADS)

    Bertolotti, Roger; Rutishauser, Urs; Edelman, Gerald M.

    1980-08-01

    Aggregation of chicken embryo hepatocytes can be inhibited by Fab' fragments of antibodies prepared against the cells. An aqueous extract of liver cell membranes contained antigens that neutralized the adhesion-blocking properties of the Fab' fragments. This neutralization activity was associated with a polypeptide of Mr 68,000 in NaDodSO4; the polypeptide was distinct from serum albumin. Specific antibodies prepared against the 80-fold purified active fraction inhibited liver cell adhesion and immunoprecipitated the 68,000 Mr polypeptide from active fractions as well as from a detergent extract of liver cell membranes. In hepatocyte cultures, Fab' fragments of antibodies against the liver molecule prevented both colony formation and appearance of histotypic patterns. Liver cell adhesion was compared at the cellular and molecular levels to that of embryonic neural retina cells. Antibodies against the cell adhesion molecule from neural tissue inhibited retinal but not liver cell aggregation; conversely, antibodies against the liver polypeptide inhibited liver but not retinal cell aggregation. By means of antibody absorption and immunoprecipitation, it was confirmed that the two cell adhesion molecules are antigenically unrelated.

  6. Testosterone signaling through internalizable surface receptors in androgen receptor-free macrophages.

    PubMed

    Benten, W P; Lieberherr, M; Stamm, O; Wrehlke, C; Guo, Z; Wunderlich, F

    1999-10-01

    Testosterone acts on cells through intracellular transcription-regulating androgen receptors (ARs). Here, we show that mouse IC-21 macrophages lack the classical AR yet exhibit specific nongenomic responses to testosterone. These manifest themselves as testosterone-induced rapid increase in intracellular free [Ca(2+)], which is due to release of Ca(2+) from intracellular Ca(2+) stores. This Ca(2+) mobilization is also inducible by plasma membrane-impermeable testosterone-BSA. It is not affected by the AR blockers cyproterone and flutamide, whereas it is completely inhibited by the phospholipase C inhibitor U-73122 and pertussis toxin. Binding sites for testosterone are detectable on the surface of intact IC-21 cells, which become selectively internalized independent on caveolae and clathrin-coated vesicles upon agonist stimulation. Internalization is dependent on temperature, ATP, cytoskeletal elements, phospholipase C, and G-proteins. Collectively, our data provide evidence for the existence of G-protein-coupled, agonist-sequestrable receptors for testosterone in plasma membranes, which initiate a transcription-independent signaling pathway of testosterone. PMID:10512854

  7. Testosterone Signaling through Internalizable Surface Receptors in Androgen Receptor-free Macrophages

    PubMed Central

    Benten, W. Peter M.; Lieberherr, Michèle; Stamm, Olaf; Wrehlke, Christian; Guo, Zhiyong; Wunderlich, Frank

    1999-01-01

    Testosterone acts on cells through intracellular transcription-regulating androgen receptors (ARs). Here, we show that mouse IC-21 macrophages lack the classical AR yet exhibit specific nongenomic responses to testosterone. These manifest themselves as testosterone-induced rapid increase in intracellular free [Ca2+], which is due to release of Ca2+ from intracellular Ca2+ stores. This Ca2+ mobilization is also inducible by plasma membrane-impermeable testosterone-BSA. It is not affected by the AR blockers cyproterone and flutamide, whereas it is completely inhibited by the phospholipase C inhibitor U-73122 and pertussis toxin. Binding sites for testosterone are detectable on the surface of intact IC-21 cells, which become selectively internalized independent on caveolae and clathrin-coated vesicles upon agonist stimulation. Internalization is dependent on temperature, ATP, cytoskeletal elements, phospholipase C, and G-proteins. Collectively, our data provide evidence for the existence of G-protein-coupled, agonist-sequestrable receptors for testosterone in plasma membranes, which initiate a transcription-independent signaling pathway of testosterone. PMID:10512854

  8. Downregulation of transferrin receptor surface expression by intracellular antibody

    SciTech Connect

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin . E-mail: guanxin_shen@yahoo.com.cn

    2007-03-23

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 {+-} 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors.

  9. Expression of surface platelet receptors (CD62P and CD41/61) in horses with recurrent airway obstruction (RAO).

    PubMed

    Iwaszko-Simonik, Alicja; Niedzwiedz, Artur; Graczyk, Stanislaw; Slowikowska, Malwina; Pliszczak-Krol, Aleksandra

    2015-03-15

    Recurrent airway obstruction (RAO) is an allergic disease of horses similar to human asthma, which is characterized by airway inflammation and activation of neutrophils, lymphocytes and platelets. Platelet activation and an increase in circulating platelet-leukocyte aggregates may lead to airway remodeling. The aim of this study was to investigate platelet status in RAO-affected horses based on the platelet morphology and platelet surface expression of CD41/61 and CD62P. Ten RAO-affected horses and ten healthy horses were included in this study. Blood samples were obtained to determine the platelet count (PLT), mean platelet volume (MPV) and platelet large cell ratio (P-LCR). Expression of CD62P and CD41/61 was detected by flow cytometry on activated platelets. The median PLT was significantly reduced in horses with RAO compared to the controls. The MPV and the P-LCR values were significantly higher in RAO horses than controls. Expression of CD41/61 on platelets was increased in RAO horses, while CD62P expression was reduced. This study demonstrated the morphological changes in platelets and expression of platelet surface receptors. Despite the decrease of CD62P expression, the observed increased surface expression of CD41/61 on platelets in horses with RAO may contribute to the formation of platelet aggregates in their respiratory system. PMID:25665521

  10. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. PMID:25956790

  11. Oriented-aggregation of organic organization: Morphology-controllable synthesis, surface photovoltage spectroscopy and morphology-dependent optical property

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Qian, Xuefeng

    2010-08-01

    Assembled ZnQ 2·2H 2O microstructures, such as microsheet, sandwich-like structure and hexangular microflake, have been successfully prepared in CTAB microemulsion system through the stacking of ZnQ 2·2H 2O molecules and oriented aggregation of ZnQ 2·2H 2O original building blocks. Controlled experiments demonstrated that the morphologies of building block and final product could be readily tuned by reaction parameters, and a formation mechanism, involving re-precipitation, growth and oriented aggregation process, has been proposed on the basis of time-dependent experimental results. The obtained products were carefully characterized by X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), transmission electron microscope (TEM), field-emission scanning electron microscope (FESEM), FT-IR spectrum, UV-vis spectrum and photoluminescence (PL) spectrum. The surface photovoltage (SPV) of the obtained ZnQ 2·2H 2O microstructures was investigated by means of surface photovoltage spectroscopy (SPS) and field-induced surface photovoltage spectroscopy (FISPS). The SPS and FISPS revealed that the photogenerated charges of ZnQ 2·2H 2O could be separated distinctly and ZnQ 2·2H 2O possessed p-type semiconductor characteristics, respectively. Furthermore, UV-vis and PL spectra evidenced the optical properties of ZnQ 2·2H 2O were sensitive to its microstructure or morphology.

  12. CSF-1 receptor signalling is governed by pre-requisite EHD1 mediated receptor display on the macrophage cell surface.

    PubMed

    Cypher, Luke R; Bielecki, Timothy Alan; Huang, Lu; An, Wei; Iseka, Fany; Tom, Eric; Storck, Matthew D; Hoppe, Adam D; Band, Vimla; Band, Hamid

    2016-09-01

    Colony stimulating factor-1 receptor (CSF-1R), a receptor tyrosine kinase (RTK), is the master regulator of macrophage biology. CSF-1 can bind CSF-1R resulting in receptor activation and signalling essential for macrophage functions such as proliferation, differentiation, survival, polarization, phagocytosis, cytokine secretion, and motility. CSF-1R activation can only occur after the receptor is presented on the macrophage cell surface. This process is reliant upon the underlying macrophage receptor trafficking machinery. However, the mechanistic details governing this process are incompletely understood. C-terminal Eps15 Homology Domain-containing (EHD) proteins have recently emerged as key regulators of receptor trafficking but have not yet been studied in the context of macrophage CSF-1R signalling. In this manuscript, we utilize primary bone-marrow derived macrophages (BMDMs) to reveal a novel function of EHD1 as a regulator of CSF-1R abundance on the cell surface. We report that EHD1-knockout (EHD1-KO) macrophages cell surface and total CSF-1R levels are significantly decreased. The decline in CSF-1R levels corresponds with reduced downstream macrophage functions such as cell proliferation, migration, and spreading. In EHD1-KO macrophages, transport of newly synthesized CSF-1R to the macrophage cell surface was reduced and was associated with the shunting of the receptor to the lysosome, which resulted in receptor degradation. These findings reveal a novel and functionally important role for EHD1 in governing CSF-1R signalling via regulation of anterograde transport of CSF-1R to the macrophage cell surface. PMID:27224507

  13. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization.

    PubMed

    Kuver, Aarti; Smith, Sheryl S

    2016-01-01

    Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM-100 μM, IC50=∼1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM)+THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ∼60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil. PMID:26592470

  14. Interaction of Biofunctionalized Nanoparticles with Receptors on Cell Surfaces: MC Simulations

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena; Wang, Shihu

    2015-03-01

    One of the areas of active development of modern nanomedicine is drug/gene delivery and imaging application of nanoparticles functionalized by ligands, aptamers or antibodies capable of specific interactions with cell surface receptors. Being a complex multifunctional system different structural aspects of nanoparticles affect their interactions with cell surfaces and the surface properties of cells can be different (e.g. density, distribution and mobility of receptors). Computer simulations allow a systematic investigation of the influence of multiple factors and provide a unified platform for the comparison. Using Monte Carlo simulations we investigate the influence of the nanoparticle properties (nanoparticle size, polymer tether length, polydispersity, density, ligand energy, valence and density) on nanoparticle-cell surface interactions and make predictions regarding favorable nanoparticle design for achieving multiple ligand-receptor binding. We will also discuss the implications of nanoparticle design on the selectivity of attachment to cells with high receptor density while ``ignoring'' cells with a low density of receptors.

  15. Inhibition and reversal of endotoxin-, aggregated IgG- and paf-induced hypotension in the rat by SRI 63-072, a paf receptor antagonist.

    PubMed

    Handley, D A; Van Valen, R G; Melden, M K; Flury, S; Lee, M L; Saunders, R N

    1986-08-01

    Platelet activating factor (paf) given intravenously produces systemic hypotension in the rat. Similar effects can be induced using endotoxin or heat-aggregated IgG challenges, which are thought to involve endogenous paf release. Extending this concept, we have examined the ability of the paf antagonist SRI 63-072 to inhibit or reverse systemic hypotension induced with paf, heat-aggregated IgG or endotoxin 0111-B4 in rats. At 100 ng kg-1 paf, there occurred a 38.6 +/- 5.1% decrease in carotid mean arterial pressure (MAP) followed by a 3.2 +/- 0.7 min recovery period (RP) to return to normal pressure values. The ED50 of SRI 63-072 was 0.16 mg kg-1 i.v. (MAP) and 0.25 mg kg-1 (RP) when given 1-5 min before the paf challenge. Endotoxin (15 mg kg-1 i.v.) produced a hypotensive response (54 +/- 8% decrease in MAP) and a corresponding 80% decrease in mesenteric artery blood flow. When given 2-8 min after endotoxin, 1.0 mg kg-1 i.v. SRI 63-072 totally restored blood pressure and artery blood flow. SRI 63-072 similarly reversed heat-aggregated IgG (10 mg kg-1) induced reduction of MAP, with an ED50 of 0.05 mg kg-1 i.v. The observations that SRI 63-072 can inhibit or reverse systemic vascular effects produced from paf and other provocators of endogenous paf release strongly implicates paf as a common final mediator of hypotension and shock. As SRI 63-072 is a competitive receptor antagonist, the hypotensive effects of these provocators appear to be mediated by vascular receptors for paf. PMID:3019921

  16. The effects of a selective 5-HT2 receptor antagonist (ICI 170,809) on platelet aggregation and pupillary responses in healthy volunteers.

    PubMed Central

    Millson, D S; Jessup, C L; Swaisland, A; Haworth, S; Rushton, A; Harry, J D

    1992-01-01

    1. ICI 170,809 (2-(2-dimethylamino-2-methylpropylthio)-3-phenylquinoline hydrochloride) is a potent 5-hydroxytryptamine (5-HT) type 2 postsynaptic receptor antagonist. 2. Effects of ICI 170,809 as single oral doses (3, 7, 15 and 30 mg) or placebo were studied on the duration of antagonism for the ex vivo platelet aggregatory response to 5-HT and to the pupillary light constrictor response in eight healthy male volunteers. 3. Pupillary dark adapted responses to a 0.5 s light stimulus were measured using a portable infrared pupillometer, for up to 24 h after dosing. 4. The in vitro platelet 5-HT aggregation response was reduced by ICI 170,809, with depression of the dose-response curve to 5-HT at all concentrations of 5-HT and with no evidence for a parallel shift. 5. The ex vivo platelet 5-HT response demonstrated a dose related significant (P less than 0.02) decrease in aggregation reaching a maximum at 2 h after dosing with the effect persisting for at least 8 h after dosing with the 7 and 15 mg doses. 6. Resting pupil diameter (RPD), and light induced pupillary responses in the dark adapted pupil, showed a significant (P less than 0.01) dose related reduction with significant (P less than 0.05) effects still present with the 15 and 30 mg doses at 8 h after dosing. 7. We conclude that, changes in both ex vivo platelet aggregation to 5-HT and dark adapted pupil size, are significantly correlated (P less than 0.0001) with log plasma concentrations (ng ml-1) of ICI 170,809, enabling the assessment of 5-HT2-receptor antagonism in man. PMID:1576048

  17. Real-time protein aggregation monitoring based on a simultaneous light scattering investigation and a Bloch surface wave-based approach

    NASA Astrophysics Data System (ADS)

    Santi, Sara; Barakat, Elsie; Neier, Reinhard; Herzig, Hans Peter

    2015-08-01

    We present a study of the dynamics of protein aggregation using a Bloch surface wave (BSW) label-free sensing scheme. In a previous work, we demonstrated the ability to detect the early dynamic events of fibrillogenesis of amyloid betapeptides (Aβ), linked to Alzheimer's Disease. Here, we demonstrate the efficacy of the BSW sensor by describing a simultaneous light scattering measurement, with the purpose of real-time monitoring the size change of the Aβ aggregates, throughout fibrillization.

  18. Role of paf-acether in the mediation of pathophysiological responses to aggregated immunoglobulins. Studies with the platelet-activating factor receptor antagonist BN 52021.

    PubMed

    Fernandez-Gallardo, S; Cano, E; Braquet, P; Sanchez Crespo, M

    1988-01-01

    Sprague-Dawley rats were challenged with an intravenous (i.v.) infusion of soluble aggregates of immunoglobulin G. Animals receiving a dose of aggregates of 40 mg/kg showed a significantly reduced time of lysis of diluted blood clot, which paralleled the appearance in plasma of tissue-type plasminogen activator. These changes occurred about 5-10 min after the challenge, which is a more protracted time-course than that observed in response to paf-acether. A significant increase in serum levels of N-acetylglucosaminidase was also observed in the animals several minutes after challenge. Blood neutrophil count showed a 50% reduction that reached its maximum at 10 min and was followed by an overshoot after 30 min. In experiments in rats previously depleted of circulating PMN by treatment with vinblastine, no significant differences were observed in N-acetylglucosaminidase release as compared to non-treated animals. Since prior evidence indicated that endogenously generated paf-acether could be a mediator responsible for these changes, at least to some extent, the compound BN 52021, a specific antagonist of the paf-acether receptor was given to these animals prior to the challenge with the complexes. All the above mentioned responses were significantly reduced by BN 52021, which is in keeping with the hypothesis involving endogenous paf-acether release in the mediation of these changes. By contrast, BN 52021 did not interfere with the clearance of the aggregates from the circulation, which seems to be a beneficial mechanism to reduce immune-mediated tissue injury. These data extend the number of paf-acether mediated pathophysiological changes that can be observed in response to immune aggregates. PMID:3139574

  19. Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells.

    PubMed

    Jin, Takashi; Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M

    2010-11-01

    To use quantum dots (QDs) as fluorescent probes for receptor imaging, QD surface should be modified with biomolecules such as antibodies, peptides, carbohydrates, and small-molecule ligands for receptors. Among these QDs, antibody conjugated QDs are the most promising fluorescent probes. There are many kinds of coupling reactions that can be used for preparing antibody conjugated QDs. Most of the antibody coupling reactions, however, are non-selective and time-consuming. In this paper, we report a facile method for preparing antibody conjugated QDs for surface receptor imaging. We used ProteinA as an adaptor protein for binding of antibody to QDs. By using ProteinA conjugated QDs, various types of antibodies are easily attached to the surface of the QDs via non-covalent binding between the F(c) (fragment crystallization) region of antibody and ProteinA. To show the utility of ProteinA conjugated QDs, HER2 (anti-human epidermal growth factor receptor 2) in KPL-4 human breast cancer cells were stained by using anti-HER2 antibody conjugated ProteinA-QDs. In addition, multiplexed imaging of HER2 and CXCR4 (chemokine receptor) in the KPL-4 cells was performed. The result showed that CXCR4 receptors coexist with HER2 receptors in the membrane surface of KPL-4 cells. ProteinA mediated antibody conjugation to QDs is very useful to prepare fluorescent probes for multiplexed imaging of surface receptors in living cells. PMID:20835432

  20. Cell surface receptors for signal transduction and ligand transport - a design principles study

    SciTech Connect

    Shankaran, Harish; Resat, Haluk; Wiley, H. S.

    2007-06-01

    Although many different receptors undergo endocytosis, the system-level design principles that govern the evolution of receptor dynamics are far from fully understood. We have constructed a generalized mathematical model to understand how receptor internalization dynamics encodes receptor function and regulation. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptors can be categorized a being: i) avidity-controlled where the response control depends primarily on the extracelluar ligand capture efficiency, ii) consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii) dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled and epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to anhance the accuracy of signaling receptors rather than serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulations.

  1. Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Roca, A. G.; Carmona, D.; Miguel-Sancho, N.; Bomatí-Miguel, O.; Balas, F.; Piquer, C.; Santamaría, J.

    2012-04-01

    We report here a detailed structural and magnetic study of different silica nanocapsules containing uniform and highly crystalline maghemite nanoparticles. The magnetic phase consists of 5 nm triethylene glycol (TREG)- or dimercaptosuccinic acid (DMSA)-coated maghemite particles. TREG-coated nanoparticles were synthesized by thermal decomposition. In a second step, TREG ligands were exchanged by DMSA. After the ligand exchange, the ζ potential of the particles changed from - 10 to - 40 mV, whereas the hydrodynamic size remained constant at around 15 nm. Particles coated by TREG and DMSA were encapsulated in silica following a sol-gel procedure. The encapsulation of TREG-coated nanoparticles led to large magnetic aggregates, which were embedded in coalesced silica structures. However, DMSA-coated nanoparticles led to small magnetic clusters inserted in silica spheres of around 100 nm. The final nanostructures can be described as the result of several competing factors at play. Magnetic measurements indicate that in the TREG-coated nanoparticles the interparticle magnetic interaction scenario has not dramatically changed after the silica encapsulation, whereas in the DMSA-coated nanoparticles, the magnetic interactions were screened due to the function of the silica template. Moreover, the analysis of the AC susceptibility suggests that our systems essentially behave as cluster spin glass systems.

  2. Surface and Aggregation Behavior of Pentablock Copolymer PNIPAM7-F127-PNIPAM7 in Aqueous Solutions.

    PubMed

    Parekh, P; Ohno, S; Yusa, S; Lage, Emílio V; Casas, Matilde; Sández-Macho, I; Aswal, V K; Bahadur, P

    2016-08-01

    The triblock Pluronic F127 was modified by introducing poly(N-isopropylacrylamide) (PNIPAM) at both the poly(ethylene oxide) ends, and the pentablock copolymer so-prepared was characterized by gel permeation chromatography and (1)H NMR. The degree of polymerization of NIPAM blocks at the two ends was 7. The solution behavior and microstructure of copolymer aggregates in water and aqueous salt solution were examined and compared with F127 by UV-visible absorption spectroscopy, microdifferential scanning calorimetry, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The behavior of the pentablock copolymer at the air/water interface was determined by Langmuir film balance. Two lower critical solution temperatures were observed for pentablock copolymer, corresponding to poly(propylene oxide) and PNIPAM blocks, respectively. DLS studies show that micelle size increased with increase in temperature and in the presence of salt. SANS measurements provided temperature-dependent structural evolution of copolymer micelles in water and salt solution. The copolymer displays an isotherm with four classical regions (pancake, mushroom, brush, and condensed state). The study has potential applications in controlled drug delivery due to the tunable phase behavior and biocompatibility of the copolymer. PMID:27385006

  3. Cell shape-dependent rectification of surface receptor transport in a sinusoidal electric field.

    PubMed Central

    Lee, R C; Gowrishankar, T R; Basch, R M; Patel, P K; Golan, D E

    1993-01-01

    In the presence of an extracellular electric field, transport dynamics of cell surface receptors represent a balance between electromigration and mutual diffusion. Because mutual diffusion is highly dependent on surface geometry, certain asymmetrical cell shapes effectively create an anisotropic resistance to receptor electromigration. If the resistance to receptor transport along a single axis is anisotropic, then an applied sinusoidal electric field will drive a net time-average receptor displacement, effectively rectifying receptor transport. To quantify the importance of this effect, a finite difference mathematical model was formulated and used to describe charged receptor transport in the plane of a plasma membrane. Representative values for receptor electromigration mobility and diffusivity were used. Model responses were examined for low frequency (10(-4)-10 Hz) 10-V/cm fields and compared with experimental measurements of receptor back-diffusion in human fibroblasts. It was found that receptor transport rectification behaved as a low-pass filter; at the tapered ends of cells, sinusoidal electric fields in the 10(-3) Hz frequency range caused a time-averaged accumulation of receptors as great as 2.5 times the initial uniform concentration. The extent of effective rectification of receptor transport was dependent on the rate of geometrical taper. Model studies also demonstrated that receptor crowding could alter transmembrane potential by an order of magnitude more than the transmembrane potential directly induced by the field. These studies suggest that cell shape is important in governing interactions between alternating current (ac) electric fields and cell surface receptors. PMID:8381681

  4. Gold-Induced Fibril Growth: The Mechanism of Surface-Facilitated Amyloid Aggregation.

    PubMed

    Gladytz, Anika; Abel, Bernd; Risselada, Herre Jelger

    2016-09-01

    The question of how amyloid fibril formation is influenced by surfaces is crucial for a detailed understanding of the process in vivo. We applied a combination of kinetic experiments and molecular dynamics simulations to elucidate how (model) surfaces influence fibril formation of the amyloid-forming sequences of prion protein SUP35 and human islet amyloid polypeptide. The kinetic data suggest that structural reorganization of the initial peptide corona around colloidal gold nanoparticles is the rate-limiting step. The molecular dynamics simulations reveal that partial physisorption to the surface results in the formation of aligned monolayers, which stimulate the formation of parallel, critical oligomers. The general mechanism implies that the competition between the underlying peptide-peptide and peptide-surface interactions must strike a balance to accelerate fibril formation. PMID:27513605

  5. Effect of soil surface conditions on runoff velocity and sediment mean aggregate diameter

    NASA Astrophysics Data System (ADS)

    César Ramos, Júlio; Bertol, Ildegardis; Paz González, Antonio; de Souza Werner, Romeu; Marioti, Juliana; Henrique Bandeira, Douglas; Andrighetti Leolatto, Lidiane

    2013-04-01

    Soil cover and soil management are the factors that most influence soil erosion by water, because they directly affect soil surface roughness and surface cover. The main effect of soil cover by crop residues consists in dissipation of kinetic energy of raindrops and also partly kinetic energy of runoff, so that the soil disaggregation is considerably reduced but, in addition, soil cover captures detached soil particles, retains water on its surface and decreases runoff volume and velocity. In turn, soil surface roughness, influences soil surface water storage and infiltration and also runoff volume and velocity, sediment retention and subsequently water and sediment losses. Based on the above rationale, we performed a field experiment to assess the influence of soil cover and soil surface roughness on decay of runoff velocity as well as on mean diameter of transported sediments (D50 index). The following treatments were evaluated: SRR) residues of Italian ryegrass (Lolium multiflorum) on a smooth soil surfcace, SRV) residues of common vetch (Vicia sativa) on a smooth soil surface, SSR) scarification after cultivation of Italian ryegrass resulting in a rough surface, SSV) scarification after cultivation of common vetch resulting in a rough surface, and SBS) scarified bare soil with high roughness as a control. The field experiments was performed on an Inceptisol in South Brazil under simulated rainfall conditions during 2012. Experimental plots were 11 m long and 3.5 m wide with an area of 38.5 m2. Six successive simulated rainfall tests were applied using a rotating-boom rain simulator. During each test, rain intensity was 60 mmhr-1, whereas rain duration was 90 minutes. Runoff velocity showed no significant differences between cultivated treatments. However, when compared to bare soil treatment, SBS (0.178 m s-1) and irrespective of the presence of surface crop residues or scarification operations, cultivated soil treatments significantly reduced runoff velocity

  6. Investigating the structural changes of β-amyloid peptide aggregation using attenuated-total-reflection surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiu, K.-C.; Yu, L.-Y.; Yih, J.-N.; Chen, S.-J.

    2007-02-01

    This study utilizes a surface-enhanced Raman spectroscopy (SERS) based on the attenuated-total-reflection (ATR) method to investigate that the structural information of the biomolecular monolayer on sensing surface can be dynamically observed with a higher signal-to-noise ratio signal. The secondary structures of long oligonucleotides and their influence on the DNA hybridization on the sensing surface are investigated. The SERS spectrum provides the structural information of the oligonucleotides with the help of a silver colloidal nanoparticle monolayer by control of the size and distribution of the nanoparticles adapted as a Raman active substrate. It is found that the ring-breathing modes of adenine, thymine, guanine, and cytosine in Raman fingerprint associated with three 60mer oligonucleotides with prominent secondary structures are lower than those observed for the two oligonucleotides with no obvious secondary structures. It is also determined that increasing the DNA hybridization temperature from 35°C to 45°C reduces secondary structure effects. The ATR-SERS biosensing technique will be used to provide valuable structural information regarding the short-term reversible interactions and long-term polymerization events in the Aβ aggregates on the sensing surface.

  7. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    PubMed Central

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-01-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface. PMID:27353000

  8. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  9. Differentiation of salivary agglutinin-mediated adherence and aggregation of mutans streptococci by use of monoclonal antibodies against the major surface adhesin P1.

    PubMed Central

    Brady, L J; Piacentini, D A; Crowley, P J; Oyston, P C; Bleiweis, A S

    1992-01-01

    The ability to adhere to salivary agglutinin-coated hydroxyapatite beads and to aggregate in the presence of fluid-phase salivary agglutinin was tested by using 25 isolates of mutants streptococci representing eight serotypes. Both adherence and aggregation activity correlated with expression of the Mr-185,000 cell surface antigen P1 on Streptococcus mutans serotype c, e, and f strains. In addition, it was shown that the P1 molecule itself served as the adhesin of S. mutans serotype c, since adherence was significantly inhibited by the presence of recombinant-specified Mr-150,000 P1. The ability of S. sobrinus strains to adhere or aggregate did not correlate with expression of the P1 cross-reactive antigen SpaA. There was also evidence for interaction with salivary agglutinin, as manifested by aggregation but not adherence of S. rattus serotype b, which does not express a P1 cross-reactive antigen. To understand the interaction of P1 with salivary agglutinin at the molecular level, a panel of 11 anti-P1 monoclonal antibodies was tested for inhibitory activity in adherence and aggregation inhibition assays. Overlapping, but not identical, subsets of monoclonal antibodies were found to inhibit adherence and aggregation, indicating that the interactions of P1 with salivary agglutinin which mediate these two phenomena are different. The localization of functional domains of P1 which may mediate the aggregation and adherence reactions is discussed. PMID:1541515

  10. Wellcome Prize Lecture. Cell surface, ion-sensing receptors.

    PubMed

    Riccardi, Daniela

    2002-07-01

    Changes in extracellular calcium (Ca(2+)o) concentration ([Ca2+]o) affect kidney function both under basal and hormone-stimulated conditions. The molecular identification of an extracellular Ca(2+)-sensing receptor (CaR) has confirmed a direct role of Ca(2+)o on parathyroid and kidney function (i.e. independent of calciotropic hormones) as a modulator of Ca2+ homeostasis. In addition, evidence accumulated over the last 10 years has shown that CaR is also expressed in regions outside the calcium homeostatic system where its role is largely undefined but seems to be linked to regulation of local ionic homeostasis. The parathyroid and kidney CaRs are 1081 and 1079 amino acids long, respectively, and belong to the type III family of G protein-coupled receptors (GPCRs), which includes other CaRs, metabotropic glutamate receptors and putative vomeronasal organ receptors. For the CaR, its low (millimolar) affinity for Ca2+, its positive cooperativity and its large ion-sensing extracellular domain, indicate that the receptor is more sensitive to changes in net cationic charge rather than to a specific ligand. Mg2+, trivalent cations of the lanthanide series and polyvalent cations such as spermine and aminoglycoside antibiotics can all activate the receptor in vitro with EC50 values in the micromolar range for trivalent and polyvalent cations or in the millimolar range for Ca2+ and Mg2+. In addition to true CaR agonists, CaR sensitivity to Ca(2+)o is also susceptible to allosteric modulation by ionic strength, L-amino acids and by pharmacological agents. This review will address endogenous and exogenous CaR agonists, the role of the receptor in the calcium homeostatic system and some speculation on possible role(s) of the CaR in regions not involved in mineral ion homeostasis. PMID:12392104

  11. Basis for receptor specificity of nonecotropic murine leukemia virus surface glycoprotein gp70SU.

    PubMed Central

    Ott, D; Rein, A

    1992-01-01

    Murine leukemia viruses (MuLVs) initiate infection of NIH 3T3 cells by binding of the viral envelope (Env) protein to a cell surface receptor. Interference assays have shown that MuLVs can be divided into four groups, each using a distinct receptor: ecotropic, polytropic, amphotropic, and 10A1. In this study, we have attempted to map the determinants within viral Env proteins by constructing chimeric env genes. Chimeras were made in all six pairwise combinations between Moloney MCF (a polytropic MuLV), amphotropic MuLV, and 10A1, using a conserved EcoRI site in the middle of the Env coding region. The receptor specificity of each chimera was determined by using an interference assay. We found that amphotropic receptor specificity of each chimera was determined by using an interference assay. We found that amphotropic receptor specificity seems to map to the N-terminal portion of surface glycoprotein gp70SU. The difference between amphotropic and 10A1 receptor specificity can be attributed to one or more of only six amino acid differences in this region. Nearly all other cases showed evidence of interaction between Env domains in the generation of receptor specificity. Thus, a chimera composed exclusively of MCF and amphotropic sequences was found to exhibit 10A1 receptor specificity. None of the chimeras were able to infect cells by using the MCF receptor; however, two chimeras containing the C-terminal portion of MCF gp70SU could bind to this receptor, while they were able to infect cells via the amphotropic receptor. This result raises the possibility that receptor binding maps to the C-terminal portion of MCF gp70SU but requires MCF N-terminal sequences for a functional interaction with the MCF receptor. Images PMID:1321266

  12. PREDICTING AND FORECASTING SURFACE WATER ACIDIFICATION: A PLAN FOR ASSESSING DATA AGGREGATION EFFECTS

    EPA Science Inventory

    A major goal of the Direct/Delayed Response Project (DDRP), a project within the U.S. Environmental Protection Agency's (EPA) Aquatic Effects Research Program (AERP) is to project potential changes in surface water chemistry in lakes in the northeastern U.S. and streams in the Mi...

  13. Aggregation of human polymorphonuclear leucocytes during phagocytosis of bacteria.

    PubMed Central

    Henricks, P A; van der Tol, M E; Verhoef, J

    1984-01-01

    The process of aggregation of human polymorphonuclear leucocytes (PMN) during the uptake of bacteria was studied. Radiolabelled S. aureus were opsonized in different sera, washed, resuspended in buffer and added to the PMN. Uptake of the bacteria and aggregation of the PMN were measured simultaneously. Maximal aggregation occurred within 6 min, when 5 X 10(6) PMN had phagocytosed 2.5 X 10(8) S. aureus. Also the effects of serum concentrations and different sera for opsonization of the bacteria on PMN aggregation were studied. Despite normal uptake, aggregation of PMN was low when bacteria were opsonized in complement-deficient sera. Furthermore when PMN were treated with pronase to inactivate complement receptors on the cell surface of the PMN, and bacteria preopsonized in immune serum were added, no change in uptake occurred, although the degree of aggregation halved compared to control PMN. So, interaction between the bacteria and the complement receptor of the PMN cell membrane is needed for triggering the process of aggregation. By using dansylcadaverin and diphenylamine to modulate lysosomal enzyme release, azide or PMN from a chronic granulomatous disease patient to study the effect of the formation of oxygen species, and theophylline, DB-cAMP or 8 Br-cAMP to increase cAMP levels, it was concluded that aggregation of PMN during phagocytosis was not dependent on oxygen metabolism, degranulation or cAMP levels of PMN. PMID:6086503

  14. Palladium 1D nanoscale aggregates on a graphite surface using CTAB hemicylindrical micelle templates.

    PubMed

    Nizameev, I R; Kadirov, M K; Semyonov, V A; Zakharova, L Ya; Ismaev, T I; Safiullin, R A; Rizvanov, I Kh; Babaev, V M

    2016-07-01

    Nanoscale palladium clusters in the form of parallel strips have been formed on the surface of graphite with the help of a surface micellar template of cetyltrimethylammonium bromide using a chemical deposition method. The repeat period of the palladium strips deposited at 25 °C is 65 nm, with a width of 40 nm and height of 2 nm. The elemental composition of the metal clusters was confirmed using X-ray fluorescence analysis and TEM-EDX. The fact that the strips are composed of metallic palladium was also confirmed by testing the membrane electrode assembly with the strips in a commercial fuel cell. Using the obtained micellar template, the radius of the curvature of the AFM probe tip was estimated with the help of a unique method. The radius is equal to 10 nm and matches the value provided by the manufacturer. PMID:27315147

  15. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant.

    PubMed

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-04-19

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein-surfactant interfacial interactions. The adsorption at, and nonlinear dilatational rheological behavior of, the air-water interface were studied by combining drop shape analysis tensiometry, ellipsometry, and large-amplitude oscillatory dilatational rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. The heat treatment generates a mixture of long fibrils and unconverted peptides. The presence of small peptides in 11S fibril samples resulted in a faster adsorption kinetics than that of native 11S. The addition of STE affected the adsorption of 11S significantly, whereas no apparent effect on the adsorption of the 11S fibril-peptide system was observed. The rheological response of interfaces stabilized by 11S-STE mixtures also differed significantly from the response for 11S fibril-peptide-STE mixtures. For 11S, the STE reduces the degree of strain hardening in extension and increases strain hardening in compression, suggesting the interfacial structure may change from a surface gel to a mixed phase of protein patches and STE domains. The foams generated from the mixtures displayed comparable foam stability to that of pure 11S. For 11S fibril-peptide mixtures STE only significantly affects the response in extension, where the degree of strain softening is decreased compared to the pure fibril-peptide system. The foam stability of the fibril-peptide system was significantly reduced by STE. These findings indicate that fibrillization of globular proteins could be a potential strategy to modify the complex surface and foaming behaviors of protein-surfactant mixtures. PMID:27043221

  16. Platelet-adenovirus vs. inert particles interaction: effect on aggregation and the role of platelet membrane receptors.

    PubMed

    Gupalo, Elena; Kuk, Cynthia; Qadura, Mohammad; Buriachkovskaia, Liudmila; Othman, Maha

    2013-01-01

    Platelets are involved in host defense via clearance of bacteria from the circulation, interaction with virus particles, and uptake of various size particulates. There is a growing interest in micro- and nanoparticles for drug delivery and there is evidence that the properties of these particles critically influence their interaction and uptake by various tissues and cells including platelets. Virus mediated gene therapy applications are still challenged by the resultant thrombocytopenia and the mechanism(s) of platelet-foreign particles interaction remains unclear. We studied the specifics of platelet interaction with an active biological agent (adenovirus) and inert latex microspheres (MS) and investigated the role of platelet proteins in this interaction. We show that activated and not resting platelets internalize MS, without influencing platelet aggregation. In contrast, adenovirus induces and potentiates ADP-induced platelet aggregation and results in rapid expression of P-selectin. Platelets then internalize adenovirus and viral particles appear inside the open canalicular system. Inhibition of platelet αIIbβ3, GPIbα, and P-selectin decreases both platelet aggregation and internalization of MS. Inhibition of αIIbβ3 and αVβ3 does not abolish adenovirus platelet internalization and adenovirus-induced platelet activation is maintained. Our study demonstrates that platelets react differentially with foreign particles and that αIIbβ3 is a key player in platelet engulfing of foreign particles but not in mediating adenovirus internalization. Other platelet candidate molecules remain to be investigated as potential targets for management of adenovirus-induced thrombocytopenia. PMID:22812520

  17. Fibronectin and asialoglyprotein receptor mediate hepatitis B surface antigen binding to the cell surface.

    PubMed

    Yang, Jing; Wang, Feng; Tian, Linlin; Su, Jing; Zhu, Xiangqian; Lin, Li; Ding, Xiaoran; Wang, Xuejun; Wang, Shengqi

    2010-06-01

    Both fibronectin and the asialoglycoprotein receptor (ASGPR) have been identified by some investigators as partners for hepatitis B virus (HBV) envelope proteins. Because fibronectin is a natural ligand for ASGPR, we speculated that HBV might attach to ASGPR expressed on the hepatocyte surface via fibronectin. To test this hypothesis, we first confirmed by co-immunoprecipitation that ASGPR, fibronectin and HBsAg bind to each other in HepG2.2.15 cells, and possible binding domains were identified by GST pull-down. In addition, by measuring binding of HBsAg to cells, we found that ASGPR and fibronectin enhanced the binding capability of HBsAg to HepG2 cells, and even to 293T and CHO cells, which normally do not bind HBV. In conclusion, our findings suggest that both fibronectin and ASGPR mediate HBsAg binding to the cell surface, which provides further evidence for the potential roles of these two proteins in mediating HBV binding to liver cells. PMID:20364278

  18. Effects of Added Salts on Surface Tension and Aggregation of Crown Ether Surfactants.

    PubMed

    Suzuki, Maki; Fujio, Katsuhiko

    2016-01-01

    Two crown ether surfactants, dodecanoyloxymethyl- (C11Φ6) and octanoyloxymethyl-18-crown-6 (C7Φ6), were synthesized and the surface tension dependence on surfactant concentration of their aqueous solutions was measured both in the absence and presence of alkali chlorides to confirm the critical micelle concentration (CMC) is highest for the added cation that have an ionic diameter comparable to the hole size of the crown ether ring and that several break points on the surface tension vs. concentration curves occur for these crown ether surfactants. For C11Φ6 and C7Φ6, in the absence of salt, the surface tension vs. concentration curves had two break points. Using the solubilization of a water-insoluble dye as an indicator, we found that the break point at the higher concentration (m0) for C7Φ6 was due to micelle formation. Two break points were also observed for the aqueous solution of C11Φ6 in the presence of NaCl, KCl, RbCl, and CsCl salts at concentrations of 0.22 mol kg(-1) and for C7Φ6 with 0.22 mol kg(-1) KCl added. The CMC (m0) was found to be the highest for solutions containing K(+) salts because K(+) has an ionic diameter comparable to the hole size of 18-crown-6 ring. Furthermore, the CMC decreased as the ionic diameters of the added cations deviated from the hole size. The molecular areas at two break points, estimated by the Gibbs adsorption isotherm, except for that at the break point at mI of C7Φ6, were very small for an adsorbed monolayer. Further investigation is required to elucidate the reason for the break point at mI. PMID:26666275

  19. Effect of initial temperature on water aggregation at a cold surface.

    PubMed

    Kier, Lemont B; Cheng, Chao-Kun

    2013-01-01

    Cellular automata models of water at two initial temperatures were created. Each model was exposed to a freezing surface. The formation of fully bonded water cells, f(4), was observed over time, beginning with a model of initially warm water and with initially cool water. The warm water formed more f(4) cells earlier than the initially cool water. A high percentage of f(4) cells is interpreted as the formation of ice. This is a model of the Mpemba effect. A description of the initial states for these two temperatures is offered in explanation of this effect. PMID:23341213

  20. Surface-Enhanced Raman Spectroscopy of Single Molecules and Single Nano-Aggregates

    NASA Astrophysics Data System (ADS)

    Kleinman, Samuel Louis

    Although plasmonic nanoparticles are widely utilized in spectroscopy and sensing applications, a quantitative structure-function relationship is lacking. In this dissertation, we discuss measurements of single noble metal nanoparticles using localized surface plasmon resonance spectroscopy, surface-enhanced Raman spectroscopy (SERS), and transmission electron microscopy to elucidate structure-function relationships. Correlated studies involving two or all three of these techniques relate optical properties of the same nanoparticle to its structure. Through these correlated techniques we have been able to elucidate some of the structural motifs which give rise to the largest SERS enhancements. A variety of SERS substrates are used and the strengths and weaknesses of each type are compared. This information can be applied to sensing and detection methodologies. The utility of SERS is further explored through the use of SER spectroelectrochemistry. This confluence of techniques provided unique insight into the intermolecular interactions present in self-assembled monolayers of tetrathiafulvalene-modified thiolates on gold. Both ensemble-averaged and single-molecule SERS are thoroughly explored and with their benefits and limitations used synergistically to access the most fundamental physics of the light-matter interaction.

  1. Effect of Blood Contamination on Marginal Adaptation and Surface Microstructure of Mineral Trioxide Aggregate: A SEM Study

    PubMed Central

    Salem Milani, Amin; Rahimi, Saeed; Froughreyhani, Mohammad; Vahid Pakdel, Mahdi

    2013-01-01

    Background and aims In various clinical situations, mineral trioxide aggregate (MTA) may come into direct contact or even be mixed with blood. The aim of the present study was to evaluate the effect of exposure to blood on marginal adaptation and surface microstructure of MTA. Materials and methods Thirty extracted human single-rooted teeth were used. Standard root canal treatment was carried out. Root-ends were resected, and retrocavities were prepared. The teeth were randomly divided into two groups (n = 15): in group 1, the internal surface of the cavities was coated with fresh blood. Then, the cavities were filled with MTA. The roots were immersed in molds containing fresh blood. In group 2, the aforementioned procedures were performed except that synthetic tissue fluid (STF) was used instead of blood. To assess the marginal adaptation, “gap perimeter” and “maximum gap width” were measured under scanning electron microscope. The surface microstructure was also examined. Independent samples t-test and Mann-Whitney U test were used to analyze the data. Results Maximum gap width and gap perimeter in the blood-exposed group were significantly larger than those in the STF-exposed group (p < 0.01). In the blood-exposed group, the crystals tended to be more rounded and less angular compared with the STF-exposed group, and there was a general lack of needle-like crystals. Conclusion Exposure to blood during setting has a negative effect on marginal adaptation of MTA, and blood-exposed MTA has a different surface microstructure compared to STF-exposed MTA. PMID:24082987

  2. Screening Ingredients from Herbs against Pregnane X Receptor in the Study of Inductive Herb-Drug Interactions: Combining Pharmacophore and Docking-Based Rank Aggregation

    PubMed Central

    Cui, Zhijie; Kang, Hong; Tang, Kailin; Liu, Qi; Cao, Zhiwei; Zhu, Ruixin

    2015-01-01

    The issue of herb-drug interactions has been widely reported. Herbal ingredients can activate nuclear receptors and further induce the gene expression alteration of drug-metabolizing enzyme and/or transporter. Therefore, the herb-drug interaction will happen when the herbs and drugs are coadministered. This kind of interaction is called inductive herb-drug interactions. Pregnane X Receptor (PXR) and drug-metabolizing target genes are involved in most of inductive herb-drug interactions. To predict this kind of herb-drug interaction, the protocol could be simplified to only screen agonists of PXR from herbs because the relations of drugs with their metabolizing enzymes are well studied. Here, a combinational in silico strategy of pharmacophore modelling and docking-based rank aggregation (DRA) was employed to identify PXR's agonists. Firstly, 305 ingredients were screened out from 820 ingredients as candidate agonists of PXR with our pharmacophore model. Secondly, DRA was used to rerank the result of pharmacophore filtering. To validate our prediction, a curated herb-drug interaction database was built, which recorded 380 herb-drug interactions. Finally, among the top 10 herb ingredients from the ranking list, 6 ingredients were reported to involve in herb-drug interactions. The accuracy of our method is higher than other traditional methods. The strategy could be extended to studies on other inductive herb-drug interactions. PMID:26339628

  3. Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Banks, M. E.; Beyer, R. A.; Chuang, F. C.; Noe Dobrea, E. Z.; Herkenhoff, K. E.; Keszthelyi, L. P.; Fishbaugh, K. E.; McEwen, A. S.; Michaels, T. I.; Thomson, B. J.; Wray, J. J.

    2010-01-01

    HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these "reticulate" bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and "accordion" morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked "honeycomb" texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent "duststone" formed when aggregates reach a particle size below the threshold curve, such that they become stabilized and subsequently undergo cementation.

  4. Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates

    USGS Publications Warehouse

    Bridges, N.T.; Banks, M.E.; Beyer, R.A.; Chuang, F.C.; Noe Dobrea, E.Z.; Herkenhoff, K. E.; Keszthelyi, L.P.; Fishbaugh, K.E.; McEwen, A.S.; Michaels, T.I.; Thomson, B.J.; Wray, J.J.

    2010-01-01

    HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these "reticulate" bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and "accordion" morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked "honeycomb" texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent "duststone" formed when aggregates reach a particle size below the threshold curve, such that they become stabilized and subsequently undergo cementation. ?? 2009 Elsevier Inc.

  5. β2-Adrenergic Receptors Chaperone Trapped Bitter Taste Receptor 14 to the Cell Surface as a Heterodimer and Exert Unidirectional Desensitization of Taste Receptor Function.

    PubMed

    Kim, Donghwa; Pauer, Susan H; Yong, Hwan M; An, Steven S; Liggett, Stephen B

    2016-08-19

    Bitter taste receptors (TAS2Rs) are G-protein-coupled receptors now recognized to be expressed on extraoral cells, including airway smooth muscle (ASM) where they evoke relaxation. TAS2Rs are difficult to express in heterologous systems, with most receptors being trapped intracellularly. We find, however, that co-expression of β2-adrenergic receptors (β2AR) in HEK-293T routes TAS2R14 to the cell surface by forming receptor heterodimers. Cell surface TAS2R14 expression was increased by ∼5-fold when β2AR was co-expressed. Heterodimer formation was shown by co-immunoprecipitation with tagged receptors, biomolecular fluorescence complementation, and merged confocal images. The dynamic nature of this interaction was shown by: a gene-dose relationship between transfected β2AR and TAS2R14 expression, enhanced (up to 3-fold) TAS2R14 agonist stimulation of [Ca(2+)]i with β2AR co-transfection, ∼53% decrease in [Ca(2+)]i signaling with shRNA knockdown of β2AR in H292 cells, and ∼60% loss of [Ca(2+)]i responsiveness in βAR knock-out mouse ASM. Once expressed on the surface, we detected unidirectional, conformation-dependent, interaction within the heterodimer, with β2AR activation rapidly uncoupling TAS2R14 function (∼65% desensitization). Cross-talk was independent of β2AR internalization and cAMP/PKA, and not accompanied by TAS2R14 internalization. With prolonged β-agonist exposure, TAS2R14 internalized, consistent with slow recycling of naked TAS2R14 in the absence of the heterodimeric milieu. In studies of ASM mechanics, rapid cross-talk was confirmed at the physiologic level, where relaxation from TAS2R14 agonist was decreased by ∼50% with β-agonist co-treatment. Thus the β2AR acts as a double-edged sword: increasing TAS2R14 cell surface expression, but when activated by β-agonist, partially offsetting the expression phenotype by direct receptor:receptor desensitization of TAS2R14 function. PMID:27342779

  6. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  7. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  8. Down-Regulation of Cell Surface Receptors Is Modulated by Polar Residues within the Transmembrane Domain

    PubMed Central

    Zaliauskiene, Lolita; Kang, Sunghyun; Brouillette, Christie G.; Lebowitz, Jacob; Arani, Ramin B.; Collawn, James F.

    2000-01-01

    How recycling receptors are segregated from down-regulated receptors in the endosome is unknown. In previous studies, we demonstrated that substitutions in the transferrin receptor (TR) transmembrane domain (TM) convert the protein from an efficiently recycling receptor to one that is rapidly down regulated. In this study, we demonstrate that the “signal” within the TM necessary and sufficient for down-regulation is Thr11Gln17Thr19 (numbering in TM). Transplantation of these polar residues into the wild-type TR promotes receptor down-regulation that can be demonstrated by changes in protein half-life and in receptor recycling. Surprisingly, this modification dramatically increases the TR internalization rate as well (∼79% increase). Sucrose gradient centrifugation and cross-linking studies reveal that propensity of the receptors to self-associate correlates with down-regulation. Interestingly, a number of cell surface proteins that contain TM polar residues are known to be efficiently down-regulated, whereas recycling receptors for low-density lipoprotein and transferrin conspicuously lack these residues. Our data, therefore, suggest a simple model in which specific residues within the TM sequences dramatically influence the fate of membrane proteins after endocytosis, providing an alternative signal for down-regulation of receptor complexes to the well-characterized cytoplasmic tail targeting signals. PMID:10930460

  9. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia.

    PubMed

    Walters, R W; Grunst, T; Bergelson, J M; Finberg, R W; Welsh, M J; Zabner, J

    1999-04-01

    Recent identification of two receptors for the adenovirus fiber protein, coxsackie B and adenovirus type 2 and 5 receptor (CAR), and the major histocompatibility complex (MHC) Class I alpha-2 domain allows the molecular basis of adenoviral infection to be investigated. Earlier work has shown that human airway epithelia are resistant to infection by adenovirus. Therefore, we examined the expression and localization of CAR and MHC Class I in an in vitro model of well differentiated, ciliated human airway epithelia. We found that airway epithelia express CAR and MHC Class I. However, neither receptor was present in the apical membrane; instead, both were polarized to the basolateral membrane. These findings explain the relative resistance to adenovirus infection from the apical surface. In contrast, when the virus was applied to the basolateral surface, gene transfer was much more efficient because of an interaction of adenovirus fiber with its receptors. In addition, when the integrity of the tight junctions was transiently disrupted, apically applied adenovirus gained access to the basolateral surface and enhanced gene transfer. These data suggest that the receptors required for efficient infection are not available on the apical surface, and interventions that allow access to the basolateral space where fiber receptors are located increase gene transfer efficiency. PMID:10187807

  10. High spatial resolution mapping of individual and collective localized surface plasmon resonance modes of silver nanoparticle aggregates: correlation to optical measurements.

    PubMed

    Diaz-Egea, Carlos; Abargues, Rafael; Martínez-Pastor, Juan P; Sigle, Wilfried; van Aken, Peter A; Molina, Sergio I

    2015-12-01

    Non-isolated nanoparticles show a plasmonic response that is governed by the localized surface plasmon resonance (LSPR) collective modes created by the nanoparticle aggregates. The individual and collective LSPR modes of silver nanoparticle aggregated by covalent binding by means of bifunctional molecular linkers are described in this study. Individual contributions to the collective modes are investigated at nanometer scale by means of energy-filtering transmission electron microscopy and compared to ultraviolet-visible spectroscopy. It is found that the aspect ratio and the shape of the clusters are the two main contributors to the low-energy collective modes. PMID:26239880

  11. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces.

    PubMed

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui

    2015-06-30

    A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4×10(6)cellsmL(-1) with a detection limit of 40cellsmL(-1) was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35×10(5) with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening. PMID:26041531

  12. Ambient water and visible-light irradiation drive changes in graphene morphology, structure, surface chemistry, aggregation, and toxicity.

    PubMed

    Hu, Xiangang; Zhou, Ming; Zhou, Qixing

    2015-03-17

    The environmental behaviors and risks associated with graphene have attracted considerable attention. However, the fundamental effects of ambient water and visible-light irradiation on the properties and toxicity of graphene remain unknown. This work revealed that hydration and irradiation result in the transformation of large-sheet graphene to long-ribbon graphene. The thickness of the treated graphene decreased, and oxides were formed through the generation of singlet oxygen. In addition, hydration and irradiation resulted in greater disorder in the graphene structure and in the expansion of the d-spacing of the structure due to the introduction of water molecules and modifications of the functional groups. Oxidative modifications with two-stage (fast and low) kinetics enhanced the number of negative surface charges on the graphene and enhanced graphene aggregation. The above property alterations reduced the nanotoxicity of graphene to algal cells by reducing the generation of reactive oxygen species, diminishing protein carbonylation and decreasing tail DNA. A comparative study using graphene oxide suggested that oxidative modifications could play an important role in inhibiting toxicological activity. This study provides a preliminary approach for understanding the environmental behaviors of graphene and avoids overestimating the risks of graphene in the natural environment. PMID:25686198

  13. Silver nanoparticle aggregates on metal fibers for solid phase microextraction-surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons.

    PubMed

    Liu, Cuicui; Zhang, Xiaoli; Li, Limei; Cui, Jingcheng; Shi, Yu-e; Wang, Le; Zhan, Jinhua

    2015-07-01

    Solid phase microextraction (SPME), a solvent free technique for sample preparation, has been successfully coupled with GC, GC-MS, and HPLC for environmental analysis. In this work, a method combining solid phase microextraction with surface enhanced Raman spectroscopy (SERS) is developed for detection of polycyclic aromatic hydrocarbons (PAHs). Silver nanoparticle aggregates were deposited on the Ag-Cu fibers via layer-by-layer deposition, which were modified with propanethiol (PTH). The SERS-active SPME fiber was immersed in water directly to extract PAHs and then detected using a portable Raman spectrometer. The pronounced valence vibration of the C-C bond at 1030 cm(-1) was chosen as an internal standard peak for the constant concentration of PTH. The RSD values of the stability and the uniformity of the SERS-active SPME fiber are 2.97% and 5.66%, respectively. A log-log plot of the normalized SERS intensity versus fluoranthene concentration showed a linear relationship (R(2) = 0.95). The detection limit was 7.56 × 10(-10) M and the recovery rate of water samples was in the range of 95% to 115%. The method can also be applied to detection of PAH mixtures, and each component of the mixtures can be distinguished by Raman characteristic peaks. The SERS-active SPME fiber could be further confirmed by GC-MS. PMID:25988666

  14. Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4.

    PubMed

    Nagy, Attila; Xu, Yunfeng; Bauchan, Gary R; Shelton, Daniel R; Nou, Xiangwu

    2016-07-16

    The Shiga toxigenic Escherichia coli O104:H4 isolated during the 2011 European outbreak expresses Shiga toxin 2a and possess virulence genes associated with the enteroaggregative E. coli (EAEC) pathotype. It produces plasmid encoded aggregative adherence fimbriae I (AAF/I) which mediate cell aggregation and biofilm formation in human intestine and promote Shiga-toxin adsorption, but it is not clear whether the AAF/I fimbriae are involved in the colonization and biofilm formation on food and environmental matrices such as the surface of fresh produce. We deleted the gene encoding for the AAF/I fimbriae main subunit (AggA) from an outbreak associated E. coli O104:H4 strain, and evaluated the role of AAF/I fimbriae in the adherence and colonization of E. coli O104:H4 to spinach and abiotic surfaces. The deletion of aggA did not affect the adherence of E. coli O104:H4 to these surfaces. However, it severely diminished the colonization and biofilm formation of E. coli O104:H4 on these surfaces. Strong aggregation and biofilm formation on spinach and abiotic surfaces were observed with the wild type strain but not the isogenic aggA deletion mutant, suggesting that AAF/I fimbriae play a crucial role in persistence of O104:H4 cells outside of the intestines of host species, such as on the surface of fresh produce. PMID:27099984

  15. Cell surface-associated aggregation-promoting factor from Lactobacillus gasseri SBT2055 facilitates host colonization and competitive exclusion of Campylobacter jejuni.

    PubMed

    Nishiyama, Keita; Nakazato, Akiko; Ueno, Shintaro; Seto, Yasuyuki; Kakuda, Tsutomu; Takai, Shinji; Yamamoto, Yuji; Mukai, Takao

    2015-11-01

    Campylobacter jejuni, one of the most common causes of gastroenteritis worldwide, is transmitted to humans through poultry. We previously reported that Lactobacillus gasseri SBT2055 (LG2055) reduced C. jejuni infection in human epithelial cells in vitro and inhibited pathogen colonization of chickens in vivo. This suggested that the LG2055 adhesion and/or co-aggregation phenotype mediated by cell-surface aggregation-promoting factors (APFs) may be important for the competitive exclusion of C. jejuni. Here, we show that cell surface-associated APF1 promoted LG2055 self-aggregation and adhesion to human epithelial cells and exhibited high affinity for the extracellular matrix component fibronectin. These effects were absent in the apf1 knockout mutant, indicating the role of APF1 in LG2055-mediated inhibition of C. jejuni in epithelial cells and chicken colonization. Similar to APF1, APF2 promoted the co-aggregation of LG2055 and C. jejuni but did not inhibit C. jejuni infection. Our data suggest a pivotal role for APF1 in mediating the interaction of LG2055 with human intestinal cells and in inhibiting C. jejuni colonization of the gastrointestinal tract. We thus provide new insight into the health-promoting effects of probiotics and mechanisms of competitive exclusion in poultry. Further research is needed to determine whether the probiotic strains reach the epithelial surface. PMID:26239091

  16. A Conserved Ectodomain-Transmembrane Domain Linker Motif Tunes the Allosteric Regulation of Cell Surface Receptors.

    PubMed

    Schmidt, Thomas; Ye, Feng; Situ, Alan J; An, Woojin; Ginsberg, Mark H; Ulmer, Tobias S

    2016-08-19

    In many families of cell surface receptors, a single transmembrane (TM) α-helix separates ecto- and cytosolic domains. A defined coupling of ecto- and TM domains must be essential to allosteric receptor regulation but remains little understood. Here, we characterize the linker structure, dynamics, and resulting ecto-TM domain coupling of integrin αIIb in model constructs and relate it to other integrin α subunits by mutagenesis. Cellular integrin activation assays subsequently validate the findings in intact receptors. Our results indicate a flexible yet carefully tuned ecto-TM coupling that modulates the signaling threshold of integrin receptors. Interestingly, a proline at the N-terminal TM helix border, termed NBP, is critical to linker flexibility in integrins. NBP is further predicted in 21% of human single-pass TM proteins and validated in cytokine receptors by the TM domain structure of the cytokine receptor common subunit β and its P441A-substituted variant. Thus, NBP is a conserved uncoupling motif of the ecto-TM domain transition and the degree of ecto-TM domain coupling represents an important parameter in the allosteric regulation of diverse cell surface receptors. PMID:27365391

  17. Selectivity of Ligand-Receptor Interactions between Nanoparticle and Cell Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Shihu; Dormidontova, Elena E.

    2012-12-01

    Selectivity of interactions between nanoparticles functionalized by tethered ligands and cell surfaces with different densities of receptors plays an essential role in biorecognition and its implementation in nanobiomedicine. We show that the onset of nanoparticle adsorption has a universal character for a range of nanoparticles: the onset receptor density decreases exponentially with the energy of ligand-receptor binding and inversely with the ligand density. We demonstrate that a bimodal tether distribution, which permits shielding ligands by longer nonfunctional tethers, leads to extra loss of entropy at the adsorption onset, enhancing the selectivity.

  18. GGA3 Interacts with a G Protein-Coupled Receptor and Modulates Its Cell Surface Export.

    PubMed

    Zhang, Maoxiang; Davis, Jason E; Li, Chunman; Gao, Jie; Huang, Wei; Lambert, Nevin A; Terry, Alvin V; Wu, Guangyu

    2016-01-01

    Molecular mechanisms governing the anterograde trafficking of nascent G protein-coupled receptors (GPCRs) are poorly understood. Here, we have studied the regulation of cell surface transport of α2-adrenergic receptors (α2-ARs) by GGA3 (Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding protein 3), a multidomain clathrin adaptor protein that sorts cargo proteins at the trans-Golgi network (TGN) to the endosome/lysosome pathway. By using an inducible system, we demonstrated that GGA3 knockdown significantly inhibited the cell surface expression of newly synthesized α2B-AR without altering overall receptor synthesis and internalization. The receptors were arrested in the TGN. Furthermore, GGA3 knockdown attenuated α2B-AR-mediated signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) activation and cyclic AMP (cAMP) inhibition. More interestingly, GGA3 physically interacted with α2B-AR, and the interaction sites were identified as the triple Arg motif in the third intracellular loop of the receptor and the acidic motif EDWE in the VHS domain of GGA3. In contrast, α2A-AR did not interact with GGA3 and its cell surface export and signaling were not affected by GGA3 knockdown. These data reveal a novel function of GGA3 in export trafficking of a GPCR that is mediated via a specific interaction with the receptor. PMID:26811329

  19. Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles.

    PubMed

    Fleischer, Candace C; Payne, Christine K

    2014-12-11

    Nanoparticles used for biological and biomedical applications encounter a host of extracellular proteins. These proteins rapidly adsorb onto the nanoparticle surface, creating a protein corona. Poly(ethylene glycol) can reduce, but not eliminate, the nonspecific adsorption of proteins. As a result, the adsorbed proteins, rather than the nanoparticle itself, determine the cellular receptors used for binding, the internalization mechanism, the intracellular transport pathway, and the subsequent immune response. Using fluorescence microscopy and flow cytometry, we first characterize a set of polystyrene nanoparticles in which the same adsorbed protein, bovine serum albumin, leads to binding to two different cell surface receptors: native albumin receptors and scavenger receptors. Using a combination of circular dichroism spectroscopy, isothermal titration calorimetry, and fluorescence spectroscopy, we demonstrate that the secondary structure of the adsorbed bovine serum albumin protein controls the cellular receptors used by the protein-nanoparticle complexes. These results show that protein secondary structure is a key parameter in determining the cell surface receptor used by a protein-nanoparticle complex. We expect this link between protein structure and cellular outcomes will provide a molecular basis for the design of nanoparticles for use in biological and biomedical applications. PMID:24779411

  20. Intrabody-mediated diverting of HP1β to the cytoplasm induces co-aggregation of H3-H4 histones and lamin-B receptor.

    PubMed

    Cardinale, Alessio; Filesi, Ilaria; Singh, Prim B; Biocca, Silvia

    2015-10-15

    Diverting a protein from its intracellular location is a unique property of intrabodies. To interfere with the intracellular traffic of heterochromatin protein 1β (HP1β) in living cells, we have generated a cytoplasmic targeted anti-HP1β intrabody, specifically directed against the C-terminal portion of the molecule. HP1β is a conserved component of mouse and human constitutive heterochromatin involved in diverse nuclear functions including gene silencing, DNA repair and nuclear membrane assembly. We found that the anti-HP1β intrabody sequesters HP1β into cytoplasmic aggregates, inhibiting its traffic to the nucleus. Lamin B receptor (LBR) and a subset of core histones (H3/H4) are also specifically co-sequestered in the cytoplasm of anti-HP1β intrabody-expressing cells. Methylated histone H3 at K9 (Me9H3), a marker of constitutive heterochromatin, is not affected by the anti-HP1β intrabody expression. Hyper-acetylating conditions completely dislodge H3 from HP1β:LBR containing aggregates. The expression of anti-HP1β scFv fragments induces apoptosis, associated with an alteration of nuclear morphology. Both these phenotypes are specifically rescued either by overexpression of recombinant full length HP1β or by HP1β mutant containing the chromoshadow domain, but not by recombinant LBR protein. The HP1β-chromodomain mutant, on the other hand, does not rescue the phenotypes, but does compete with LBR for binding to HP1β. These findings provide new insights into the mode of action of cytoplasmic-targeted intrabodies and the interaction between HP1β and its binding partners involved in peripheral heterochromatin organisation. PMID:26364738

  1. Decoupling competing surface binding kinetics and reconfiguration of receptor footprint for ultrasensitive stress assays

    NASA Astrophysics Data System (ADS)

    Patil, Samadhan B.; Vögtli, Manuel; Webb, Benjamin; Mazza, Giuseppe; Pinzani, Massimo; Soh, Yeong-Ah; McKendry, Rachel A.; Ndieyira, Joseph W.

    2015-10-01

    Cantilever arrays have been used to monitor biochemical interactions and their associated stress. However, it is often necessary to passivate the underside of the cantilever to prevent unwanted ligand adsorption, and this process requires tedious optimization. Here, we show a way to immobilize membrane receptors on nanomechanical cantilevers so that they can function without passivating the underlying surface. Using equilibrium theory, we quantitatively describe the mechanical responses of vancomycin, human immunodeficiency virus type 1 antigens and coagulation factor VIII captured on the cantilever in the presence of competing stresses from the top and bottom cantilever surfaces. We show that the area per receptor molecule on the cantilever surface influences ligand-receptor binding and plays an important role on stress. Our results offer a new way to sense biomolecules and will aid in the creation of ultrasensitive biosensors.

  2. Decoupling competing surface binding kinetics and reconfiguration of receptor footprint for ultrasensitive stress assays.

    PubMed

    Patil, Samadhan B; Vögtli, Manuel; Webb, Benjamin; Mazza, Giuseppe; Pinzani, Massimo; Soh, Yeong-Ah; McKendry, Rachel A; Ndieyira, Joseph W

    2015-10-01

    Cantilever arrays have been used to monitor biochemical interactions and their associated stress. However, it is often necessary to passivate the underside of the cantilever to prevent unwanted ligand adsorption, and this process requires tedious optimization. Here, we show a way to immobilize membrane receptors on nanomechanical cantilevers so that they can function without passivating the underlying surface. Using equilibrium theory, we quantitatively describe the mechanical responses of vancomycin, human immunodeficiency virus type 1 antigens and coagulation factor VIII captured on the cantilever in the presence of competing stresses from the top and bottom cantilever surfaces. We show that the area per receptor molecule on the cantilever surface influences ligand-receptor binding and plays an important role on stress. Our results offer a new way to sense biomolecules and will aid in the creation of ultrasensitive biosensors. PMID:26280409

  3. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells

    PubMed Central

    Zhuang, Hanyi; Matsunami, Hiroaki

    2009-01-01

    A fundamental question in olfaction is which odorant receptors (ORs) are activated by a given odorant. A major roadblock to investigate odorant-OR relationship in mammals has been an inability to express ORs in heterologous cells suitable for screening active ligands for ORs. The discovery of the receptor-transporting protein (RTP) family has facilitated the effective cell-surface expression of ORs in heterologous cells. The establishment of a robust heterologous expression system for mammalian ORs facilitates the high-throughput “deorphanization” of these receptors by matching them to their cognate ligands. This protocol details the method used for evaluating the cell-surface expression and measuring the functional activation of ORs of transiently-expressed mammalian odorant receptors in HEK293T cells. The stages of odorant receptor cell-surface expression include cell culture preparation, transfer of cells, transfection, and immunocytochemistry/flow cytometry, odorant stimulation, and luciferase assay. This protocol can be completed in a period of 3 days from transfer of cells to cell-surface expression detection and/or measurement of functional activation. PMID:18772867

  4. Enterohaemorrhagic Escherichia coli inhibits recycling endosome function and trafficking of surface receptors

    PubMed Central

    Clements, Abigail; Stoneham, Charlotte A; Furniss, R Christopher D; Frankel, Gad

    2014-01-01

    Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC/EHEC) manipulate many cell processes by injecting effector proteins from the bacteria into the host cell via a Type III secretion system. In this paper we report that the effector protein EspG disrupts recycling endosome function. In particular, we found that following transferrin binding and endocytosis EspG reduces recycling of the transferrin receptor (TfR), the prototypical recycling protein, from an intracellular location to the cell surface, resulting in an accumulation of TfR within the cell. The surface levels of three receptors [TfR, epidermal growth factor receptor (EGFR) and β1 integrin] were tested and found to be reduced dependent on EspG translocation. Furthermore, disruption of recycling endosome function and the reduced surface presentation of receptors was dependent on the previously reported RabGAP activity and ARF binding ability of EspG. This paper therefore supports the previous hypothesis that EspG acts as an enzyme scaffold perturbing cell signalling events, in this case altering recycling endosome function and cell surface receptor levels during infection. PMID:24898821

  5. Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor.

    PubMed

    Kuwasako, Kenji; Sekiguchi, Toshio; Nagata, Sayaka; Jiang, Danfeng; Hayashi, Hidetaka; Murakami, Manabu; Hattori, Yuichi; Kitamura, Kazuo; Kato, Johji

    2016-02-19

    Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM1 receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM1 receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM1 receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [(125)I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β2-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449-453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM1 receptor and further determined the region of the CLR C-tail responsible for this GRK function. PMID:26820533

  6. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    SciTech Connect

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-04-11

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism.

  7. Expression, surface immobilization, and characterization of functional recombinant cannabinoid receptor CB2

    PubMed Central

    Locatelli-Hoops, Silvia C.; Gorshkova, Inna; Gawrisch, Klaus; Yeliseev, Alexei A.

    2013-01-01

    Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces. Expression of CB2 as a fusion with Rho-tag (peptide composed of the last nine amino acids of rhodopsin) in E. coli was evaluated in terms of protein levels, accessibility of the tag, and activity of the receptor. The structural integrity of CB2 was tested by ligand binding to the receptor solubilized in detergent micelles, captured on tag-specific monoclonal 1D4 antibody-coated resin. Highly pure and functional CB2 was obtained by sequential chromatography on a 1D4- and Ni-NTA- resin and its affinity to the 1D4 antibody characterized by surface plasmon resonance (SPR). Either the purified receptor or fusion CB2 from the crude cell extract was captured onto a 1D4 -coated CM4 chip (Biacore) in a quantitative fashion at uniform orientation as demonstrated by the SPR signal. Furthermore, the accessibility of the extracellular surface of immobilized CB2 and the affinity of interaction with a novel monoclonal antibody NAA-1 was studied by SPR. In summary, we present an integral strategy for purification, surface immobilization, ligand- and antibody binding studies of functional cannabinoid receptor CB2. PMID:23777860

  8. DEVELOPMENT AND EVALUATION OF AN AGGREGATE SURFACE SAMPLING METHOD FOR USE IN ASSESSING DERMAL EXPOSURES OF YOUNG CHILDREN

    EPA Science Inventory

    In the macroactivity approach, dermal exposure is estimated using empirically-derived transfer coefficients to aggregate the mass transfer associated with a series of contacts with a contaminated medium. The macroactivity approach affords the possibility of developing screenin...

  9. Targeting vault nanoparticles to specific cell surface receptors.

    PubMed

    Kickhoefer, Valerie A; Han, Muri; Raval-Fernandes, Sujna; Poderycki, Michael J; Moniz, Raymond J; Vaccari, Dana; Silvestry, Mariena; Stewart, Phoebe L; Kelly, Kathleen A; Rome, Leonard H

    2009-01-27

    As a naturally occurring nanocapsule abundantly expressed in nearly all-eukaryotic cells, the barrel-shaped vault particle is perhaps an ideal structure to engineer for targeting to specific cell types. Recombinant vault particles self-assemble from 96 copies of the major vault protein (MVP), have dimensions of 72.5 x 41 nm, and have a hollow interior large enough to encapsulate hundreds of proteins. In this study, three different tags were engineered onto the C-terminus of MVP: an 11 amino acid epitope tag, a 33 amino acid IgG-binding peptide, and the 55 amino acid epidermal growth factor (EGF). These modified vaults were produced using a baculovirus expression system. Our studies demonstrate that recombinant vaults assembled from MVPs containing C-terminal peptide extensions display these tags at the top and bottom of the vault on the outside of the particle and can be used to specifically bind the modified vaults to epithelial cancer cells (A431) via the epidermal growth factor receptor (EGFR), either directly (EGF modified vaults) or as mediated by a monoclonal antibody (anti-EGFR) bound to recombinant vaults containing the IgG-binding peptide. The ability to target vaults to specific cells represents an essential advance toward using recombinant vaults as delivery vehicles. PMID:19206245

  10. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking

    PubMed Central

    Herrera, Cristina; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten

    2016-01-01

    JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin’s enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin’s bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells. PMID:27300140

  11. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking.

    PubMed

    Herrera, Cristina; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten; Mantis, Nicholas J

    2016-01-01

    JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin's enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin's bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells. PMID:27300140

  12. Ubiquitin-like epitopes associated with Candida albicans cell surface receptors.

    PubMed Central

    Sepulveda, P; Lopez-Ribot, J L; Gozalbo, D; Cervera, A; Martinez, J P; Chaffin, W L

    1996-01-01

    We have recently reported the cloning of a Candida albicans polyubiquitin gene and the presence of ubiquitin in the cell wall of this fungus. The polyubiquitin cDNA clone was isolated because of its reactivity with antibodies generated against the candidal 37-kDa laminin-binding protein. In the present study, we have further investigated the relationship between ubiquitin and cell wall components displaying receptor-like activities, including the 37-kDa laminin receptor, the 58-kDa fibrinogen-binding mannoprotein, and the candidal C3d receptor. Two-dimensional electrophoretic analysis and immunoblot experiments with antibodies against ubiquitin and the individually purified receptor-like molecules confirmed that these cell surface components are ubiquitinated. In an enzyme-linked immunosorbent assay, polyclonal antisera to each receptor reacted with ubiquitin, thus demonstrating that the purified receptor preparations used as immunogens contained ubiquitin-like epitopes. It is proposed that ubiquitin may play a role in modulating the activity of these receptors and in the interaction of C. albicans cells with host structures. PMID:8926122

  13. Widespread histologic distribution of the alpha 2 beta 1 integrin cell-surface collagen receptor.

    PubMed Central

    Zutter, M. M.; Santoro, S. A.

    1990-01-01

    The alpha 2 beta 1 integrin (platelet membrane glycoprotein Ia-IIa, VLA-2, ECMR-II) functions as a cell surface receptor for collagen. The authors have determined the histologic distribution of the alpha 2 beta 1 receptor in normal tissues by immunohistochemical technique. The studies revealed that the alpha 2 beta 1 receptor was expressed on fibroblasts, endothelial cells, and epithelial cells from multiple sites including skin, tonsil, breast, sweat gland, gastrointestinal tract, lung, bladder, cervix, and prostate. Follicular dendritic cells of the lymph node, tonsil, and spleen and dendritic cells of the thymus also expressed the alpha 2 beta 1 receptor. The receptor also was present on Schwann cells of ganglia and on neuroglia. Greatly enhanced expression of the receptor in regions of proliferating epithelium suggests that enhanced expression of alpha 2 beta 1 is associated with orderly, regulated cell proliferation. The circumferential staining pattern of the alpha 2 beta 1 integrin within many epithelia is virtually identical to that observed for other adhesive receptors, such as the cadherins, which have been implicated in cell-cell adhesion. Images Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 16 Figure 17 PMID:2164774

  14. Activation of monocytes and platelets by monoclonal antibodies or malaria-infected erythrocytes binding to the CD36 surface receptor in vitro.

    PubMed Central

    Ockenhouse, C F; Magowan, C; Chulay, J D

    1989-01-01

    The CD36 leukocyte differentiation antigen, recognized by MAbs OKM5 and OKM8 and found on human monocytes and endothelial cells, has been implicated as a sequestration receptor for erythrocytes infected with the human malaria parasite Plasmodium falciparum (IRBC). CD36 is also expressed on platelets and appears to be identical to platelet glycoprotein IV. We investigated receptor activation of monocytes and platelets by anti-CD36 MAbs and by IRBC. Incubation of human monocytes with anti-CD36 MAbs or IRBC resulted in stimulation of the respiratory burst as measured by reduction of nitroblue tetrazolium and generation of chemiluminescence. Incubation of human platelets with anti-CD36 MAbs resulted in platelet activation as measured by aggregation or ATP secretion. Activation of monocytes and platelets required appropriate intracellular transmembrane signaling and was inhibited by calcium antagonists or by specific inhibitors of protein kinase C or guanine nucleotide binding proteins. Soluble CD36 inhibited binding of IRBC to both monocytes and platelets, suggesting that these interactions are mediated by the CD36 receptor. Using a cytochemical electron microscopic technique, the presence of reactive oxygen intermediates was identified at the interface between human monocytes and IRBC. These data provide support for the hypothesis that reactive oxygen intermediates produced by monocytes when IRBC ligands interact with cell surface receptors may play a role in the pathophysiology of falciparum malaria. Images PMID:2474569

  15. Cell Surface Vimentin Is an Attachment Receptor for Enterovirus 71

    PubMed Central

    Du, Ning; Cong, Haolong; Tian, Hongchao; Zhang, Hua; Zhang, Wenliang; Song, Lei

    2014-01-01

    ABSTRACT Enterovirus 71 (EV71) is a highly transmissible pathogenic agent that causes severe central nervous system diseases in infected infants and young children. Here, we reported that EV71 VP1 protein could bind to vimentin intermediate filaments expressed on the host cell surface. Soluble vimentin or an antibody against vimentin could inhibit the binding of EV71 to host cells. Accompanied with the reduction of vimentin expression on the cell surface, the binding of EV71 to cells was remarkably decreased. Further evidence showed that the N terminus of vimentin is responsible for the interaction between EV71 and vimentin. These results indicated that vimentin on the host cell surface may serve as an attachment site that mediated the initial binding and subsequently increased the infectivity of EV71. IMPORTANCE This study delivers important findings on the roles of vimentin filaments in relation to EV71 infection and provides information that not only improves our understanding of EV71 pathogenesis but also presents us with potentially new strategies for the treatment of diseases caused by EV71 infections. PMID:24623428

  16. The astrocyte surface NAAG receptor and NAAG peptidase signaling complex as a therapeutic target.

    PubMed

    Baslow, Morris H

    2008-06-01

    There is evidence that schizophrenia and other neuropathies may involve malfunction of a unique N-acetylaspartylglutamate (NAAG) receptor and its associated NAAG peptidase, a receptor and enzyme found together on the astrocyte surface. NAAG is a peptide neurotransmitter released by stimulated neurons and specifically targeted to the group II metabotropic glutamate receptor 3 (mGlu(3)), activation of which initiates astrocyte Ca(2+) waves responsible for astrocyte-astrocyte and astrocyte-vascular system signaling and induction of vascular hyperemic responses that increase energy supplies to stimulated neurons. In this review, it is hypothesized that the receptor and enzyme exist as a cytostructural unit on the astrocyte surface, and the nature of this proposed mGlu(3)-NAAG peptidase complex is considered in terms of its physiological signaling role, and of the effect of drugs on this role. The mGlu(3) receptor has been the target of extrinsic antagonists and agonists that mimic NAAG structure and compete with natural NAAG for the receptor site. NAAG metabolism has also been the target of extrinsic NAAG-like substances that inhibit NAAG peptidase, competing with NAAG for the enzyme active site. Several drugs that affect the mGlu(3) receptor or NAAG peptidase have reached a stage of human testing. Two are agonists of the mGlu(3) receptor, and another is an NAAG peptidase inhibitor. These substances appear to have potential for treating schizophrenia and other cognitive neuropathies by interfering with a homeostatic NAAG activated neuron-astrocyte-vascular energy supply system. PMID:18596989

  17. Roles of regulated internalization in the polarization of cell surface receptors

    PubMed Central

    Tian, Wei; Cao, Youfang; Ismael, Amber; Stone, David

    2016-01-01

    Cell polarization, the generation of cellular asymmetries, is a fundamental biological process. Polarity of different molecules can arise through several mechanisms. Among these, internalization has been shown to play an important role in the polarization of cell surface receptors. The internalization of cell surface receptors can be upregulated upon ligand binding. Additional regulatory mechanism can downregulate the internalization process. Here we describe a general model, which incorporates these two opposing processes, to study the role of internalization in the establishment of cell polarity. We find that the competition between these two processes is sufficient to induce receptor polarization. Our results show that regulated internalization provides additional regulation on polarization as well. In addition, we discuss applications of our model to the yeast system, which shows the capability and potential of the model. PMID:25570171

  18. A novel surface acoustic wave-based biosensor for highly sensitive functional assays of olfactory receptors.

    PubMed

    Wu, Chunsheng; Du, Liping; Wang, Di; Wang, Le; Zhao, Luhang; Wang, Ping

    2011-04-01

    Olfactory receptors, which are responsible for sensing odor molecules, form the largest G protein-coupled receptor (GPCR) family in mammalian animals. These proteins play an important role in the detection of chemical signals and signal transduction to the brain. Currently, only a limited number of olfactory receptors have been characterized, which is mainly due to the lack of sensitive and efficient tools for performing functional assays of these receptors. This paper describes a novel surface acoustic wave (SAW)-based biosensor for highly sensitive functional assays of olfactory receptors. An olfactory receptor of Caenorhabditis elegans, ODR-10, was expressed on the plasma membrane of human breast cancer MCF-7 cells, which was used as a model system for this study. For specific odorant response assays, the membrane fraction of MCF-7 cells containing ODR-10 was extracted and integrated with our SAW sensors. The response of ODR-10 to various odorants was monitored by recording the resonance frequency shifts of SAWs applied to the sensor. Our results show that heterologously expressed ODR-10 receptors can specifically respond to diacetyl, its natural ligand. Dose-dependent responses were obtained by performing measurements using various concentrations of diacetyl. The sensitivity of this biosensor is 2kHz/ng and can detect concentrations as low as 10(-10)mM, which is 10× lower than what has previously been reported. This biosensor can be used to characterize odorant response profiles of olfactory receptors and provide information rich data for functional assays of olfactory receptors. In addition to providing a greater understanding of the biological mechanisms of GPCRs, such data holds great potential in many other fields such as food industry, biomedicine, and environmental protection. PMID:21333624

  19. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata.

    PubMed

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin; Pedreira, Maria Eugenia; Freudenthal, Ramiro

    2016-08-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation. PMID:27421895

  20. Fluorogen Activating Proteins in Flow Cytometry for the Study of Surface Molecules and Receptors

    PubMed Central

    Saunders, Matthew J.; Szent-Gyorgyi, Christopher; Fisher, Gregory W.; Jarvik, Jonathan W.; Bruchez, Marcel P.; Waggoner, Alan S.

    2012-01-01

    The use of fluorescent proteins, particularly when genetically fused to proteins of biological interest, have greatly advanced many flow cytometry research applications. However, there remains a major limitation to this methodology in that only total cellular fluorescence is measured. Commonly used fluorescent proteins (e.g. EGFP and its variants) are fluorescent whether the fusion protein exists on the surface or in sub-cellular compartments. A flow cytometer cannot distinguish between these separate sources of fluorescence. This can be of great concern when using flow cytometry, plate readers or microscopy to quantify cell surface receptors or other surface proteins genetically fused to fluorescent proteins. Recently developed fluorogen activating proteins (FAPs) solve many of these issues by allowing the selective visualization of only those cell surface proteins that are exposed to the extra cellular milieu. FAPs are GFP-sized single chain antibodies that specifically bind to and generate fluorescence from otherwise non-fluorescent dyes (‘activate the fluorogen’). Like the fluorescent proteins, FAPs can be genetically fused to proteins of interest. When exogenously added fluorogens bind FAPs, fluorescence immediately increases by as much as 20,000 fold, rendering the FAP fusion proteins highly fluorescent. Moreover, since fluorogens can be made membrane impermeant, fluorescence can be limited to only those receptors expressed on the cell surface. Using cells expressing beta-2 adrenergic receptor (β2AR) fused at its N-terminus to a FAP, flow cytometry based receptor internalization assays have been developed and characterized. The fluorogen/FAP system is ideally suited to the study of cell surface proteins by fluorescence and avoids drawbacks of using receptor/fluorescent protein fusions, such as internal accumulation. We also briefly comment on extending FAP-based technologies to the study of events occurring inside of the cell as well. PMID:22366230

  1. Characterization of the formyl peptide chemotactic receptor appearing at the phagocytic cell surface after exposure to phorbol myristate acetate

    SciTech Connect

    Gardner, J.P.; Melnick, D.A.; Malech, H.L.

    1986-02-15

    The biochemistry and subcellular source of new formyl peptide chemotactic receptor appearing at the human neutrophil and differentiated HL-60 (d-HL-60) cell surface after stimulation with phorbol myristate acetate (PMA) were examined. Formyl peptide receptor was analyzed by affinity labeling with formyl-norleu-leu-phe-norleu- (/sup 125/I)iodotyr-lys and ethylene glycol bis(succinimidyl succinate) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometric analysis of autoradiographs. PMA, a specific granule secretagogue, increases affinity labeling of formyl peptide receptors on the neutrophil surface by 100%, and on d-HL-60, which lack specific granule markers, by 20%. Papain treatment markedly reduces surface labeling of formyl peptide receptor in both neutrophils and d-HL-60, and results in the appearance of a lower m.w. membrane-bound receptor fragment. PMA stimulation of papain-treated cells increases uncleaved surface receptor on neutrophils by 400%, and on D-HL-60 by only 45%. This newly appearing receptor is the same apparent m.w. (55,000 to 75,000 for neutrophils; 62,000 to 80,000 for d-HL-60) and yields the same papain cleavage product as receptor on the surface of unstimulated cells. These observations suggest that specific granule membranes contain large amounts of formyl peptide receptor, which is biochemically identical to that found on the cell surface and can be mobilized to the cell surface with appropriate stimulation.

  2. Fluorescence biosensing strategy based on energy transfer between fluorescently labeled receptors and a metallic surface.

    PubMed

    Pérez-Luna, Víctor H; Yang, Saipeng; Rabinovich, Emmanuil M; Buranda, Tione; Sklar, Larry A; Hampton, Philip D; López, Gabriel P

    2002-01-01

    A new fluorescence-based biosensor is presented. The biosensing scheme is based on the fact that a fluorophore in close proximity to a metal film (<100 A) experiences strong quenching of fluorescence and a dramatic reduction in the lifetime of the excited state. By immobilizing the analyte of interest (or a structural analog of the analyte) to a metal surface and exposing it to a labeled receptor (e.g. antibody), the fluorescence of the labeled receptor becomes quenched upon binding because of the close proximity to the metal. Upon exposure to free analyte, the labeled receptor dissociates from the surface and diffuses into the bulk of the solution. This increases its separation from the metal and an increase of fluorescence intensity and/or lifetime of the excited state is observed that indicates the presence of the soluble analyte. By enclosing this system within a small volume with a semipermeable membrane, a reversible device is obtained. We demonstrate this scheme using a biotinylated self-assembled monolayer (SAM) on gold as our surface immobilized analyte analog, fluorescently labeled anti-biotin as a receptor, and a solution of biotin in PBS as a model analyte. This scheme could easily be extended to transduce a wide variety of protein-ligand interactions and other biorecognition phenomena (e.g. DNA hybridization) that result in changes in the architecture of surface immobilized biomolecules such that a change in the separation distance between fluorophores and the metal film is obtained. PMID:11742737

  3. Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection.

    PubMed

    Astefanei, Alina; Kok, Wim Th; Bäuerlein, Patrick; Núñez, Oscar; Galceran, Maria Teresa; de Voogt, Pim; Schoenmakers, Peter J

    2015-08-21

    Fullerenes are carbon nanoparticles with widespread biomedical, commercial and industrial applications. Attributes such as their tendency to aggregate and aggregate size and shape impact their ability to be transported into and through the environment and living tissues. Knowledge of these properties is therefore valuable for their human and environmental risk assessment as well as to control their synthesis and manufacture. In this work, asymmetrical flow-field flow fractionation (AF4) coupled to multi-angle light scattering (MALS) was used for the first time to study the size distribution of surface modified fullerenes with both polyhydroxyl and carboxyl functional groups in aqueous solutions having different pH (6.5-11) and ionic strength values (0-200mM) of environmental relevance. Fractionation key parameters such as flow rates, flow programming, and membrane material were optimized for the selected fullerenes. The aggregation of the compounds studied appeared to be indifferent to changes in solution pH, but was affected by changes in the ionic strength. Polyhydroxy-fullerenes were found to be present mostly as 4nm aggregates in water without added salt, but showed more aggregation at high ionic strength, with an up to 10-fold increase in their mean hydrodynamic radii (200mM), due to a decrease in the electrostatic repulsion between the nanoparticles. Carboxy-fullerenes showed a much stronger aggregation degree in water (50-100nm). Their average size and recoveries decreased with the increase in the salt concentration. This behavior can be due to enhanced adsorption of the large particles to the membrane at high ionic strength, because of their higher hydrophobicity and much larger particle sizes compared to polyhydroxy-fullerenes. The method performance was evaluated by calculating the run-to-run precision of the retention time (hydrodynamic radii), and the obtained RSD values were lower than 1%. MALS measurements showed aggregate sizes that were in good

  4. Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping.

    PubMed

    Büchner, Tina; Drescher, Daniela; Traub, Heike; Schrade, Petra; Bachmann, Sebastian; Jakubowski, Norbert; Kneipp, Janina

    2014-11-01

    The cellular response to nanoparticle exposure is essential in various contexts, especially in nanotoxicity and nanomedicine. Here, 14-nm gold nanoparticles in 3T3 fibroblast cells are investigated in a series of pulse-chase experiments with a 30-min incubation pulse and chase times ranging from 15 min to 48 h. The gold nanoparticles and their aggregates are quantified inside the cellular ultrastructure by laser ablation inductively coupled plasma mass spectrometry micromapping and evaluated regarding the surface-enhanced Raman scattering (SERS) signals. In this way, both information about their localization at the micrometre scale and their molecular nanoenvironment, respectively, is obtained and can be related. Thus, the nanoparticle pathway from endocytotic uptake, intracellular processing, to cell division can be followed. It is shown that the ability of the intracellular nanoparticles and their accumulations and aggregates to support high SERS signals is neither directly related to nanoparticle amount nor to high local nanoparticle densities. The SERS data indicate that aggregate geometry and interparticle distances in the cell must change in the course of endosomal maturation and play a critical role for a specific gold nanoparticle type in order to act as efficient SERS nanoprobe. This finding is supported by TEM images, showing only a minor portion of aggregates that present small interparticle spacing. The SERS spectra obtained after different chase times show a changing composition and/or structure of the biomolecule corona of the gold nanoparticles as a consequence of endosomal processing. PMID:25120183

  5. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays.

    PubMed

    Wang, Hai; Toma, Andrea; Wang, Hai-Yu; Bozzola, Angelo; Miele, Ermanno; Haddadpour, Ali; Veronis, Georgios; De Angelis, Francesco; Wang, Lei; Chen, Qi-Dai; Xu, Huai-Liang; Sun, Hong-Bo; Zaccaria, Remo Proietti

    2016-07-21

    We have investigated the influence of Rabi splitting tuning on the dynamics of strongly coupled J-aggregate/surface plasmon polariton systems. In particular, the Rabi splitting was tuned by modifying the J-aggregate molecule concentration while a polaritonic system was provided by a nanostructure formed by holes array in a golden layer. From the periodic and concentration changes we have identified, through numerical and experimental steady-state analyses, the best geometrical configuration for maximizing Rabi splitting, which was then used for transient absorption measurements. It was found that in transient absorption spectra, under upper band excitation, two bleaching peaks appear when a nanostructured polaritonic pattern is used. Importantly, their reciprocal distance increases upon increase of J-aggregate concentration, a result confirmed by steady-state analysis. In a similar manner it was also found that the lifetime of the upper band is intimately related to the coupling strength. In particular, we argue that with strong coupling strength, i.e. high J-aggregate concentration, a short lifetime of the upper band has to be expected due to the suppression of the bottleneck effect. This result supports the idea that the dynamics of hybrid systems is profoundly dependent on Rabi splitting. PMID:27350590

  6. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Toma, Andrea; Wang, Hai-Yu; Bozzola, Angelo; Miele, Ermanno; Haddadpour, Ali; Veronis, Georgios; de Angelis, Francesco; Wang, Lei; Chen, Qi-Dai; Xu, Huai-Liang; Sun, Hong-Bo; Zaccaria, Remo Proietti

    2016-07-01

    We have investigated the influence of Rabi splitting tuning on the dynamics of strongly coupled J-aggregate/surface plasmon polariton systems. In particular, the Rabi splitting was tuned by modifying the J-aggregate molecule concentration while a polaritonic system was provided by a nanostructure formed by holes array in a golden layer. From the periodic and concentration changes we have identified, through numerical and experimental steady-state analyses, the best geometrical configuration for maximizing Rabi splitting, which was then used for transient absorption measurements. It was found that in transient absorption spectra, under upper band excitation, two bleaching peaks appear when a nanostructured polaritonic pattern is used. Importantly, their reciprocal distance increases upon increase of J-aggregate concentration, a result confirmed by steady-state analysis. In a similar manner it was also found that the lifetime of the upper band is intimately related to the coupling strength. In particular, we argue that with strong coupling strength, i.e. high J-aggregate concentration, a short lifetime of the upper band has to be expected due to the suppression of the bottleneck effect. This result supports the idea that the dynamics of hybrid systems is profoundly dependent on Rabi splitting.

  7. Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA.

    PubMed

    Chen, Xuguang; Kube, Dianne M; Cooper, Mark J; Davis, Pamela B

    2008-02-01

    Compacted DNA nanoparticles deliver transgenes efficiently to the lung following intrapulmonary dosing. Here we show that nucleolin, a protein known to shuttle between the nucleus, cytoplasm, and cell surface, is a receptor for DNA nanoparticles at the cell surface. By using surface plasmon resonance (SPR), we demonstrate that nucleolin binds to DNA nanoparticles directly. The presence of nucleolin on the surface of HeLa and 16HBEo- cells was confirmed by surface biotinylation assay and immunofluorescence. Rhodamine-labeled DNA nanoparticles colocalize with nucleolin on the cell surface, as well as in the cytoplasm and nucleus, but not with transferrin or markers of early endosome or lysosome following cellular uptake. Reducing nucleolin on the cell surface by serum-free medium or siRNA against nucleolin treatment leads to significant reduction in luciferase reporter gene activity, while overexpressing nucleolin has the opposite effect. Competition for binding to DNA nanoparticles with exogenous purified nucleolin decreases the transfection efficiency by 60-90% in a dose-dependent manner. Therefore, the data strongly suggest that cell surface nucleolin serves as a receptor for DNA nanoparticles, and that nucleolin is essential for internalization and/or transport of the nanoparticles from cell surface to the nucleus. PMID:18059369

  8. Matricryptins Network with Matricellular Receptors at the Surface of Endothelial and Tumor Cells

    PubMed Central

    Ricard-Blum, Sylvie; Vallet, Sylvain D.

    2016-01-01

    The extracellular matrix (ECM) is a source of bioactive fragments called matricryptins or matrikines resulting from the proteolytic cleavage of extracellular proteins (e.g., collagens, elastin, and laminins) and proteoglycans (e.g., perlecan). Matrix metalloproteinases (MMPs), cathepsins, and bone-morphogenetic protein-1 release fragments, which regulate physiopathological processes including tumor growth, metastasis, and angiogenesis, a pre-requisite for tumor growth. A number of matricryptins, and/or synthetic peptides derived from them, are currently investigated as potential anti-cancer drugs both in vitro and in animal models. Modifications aiming at improving their efficiency and their delivery to their target cells are studied. However, their use as drugs is not straightforward. The biological activities of these fragments are mediated by several receptor families. Several matricryptins may bind to the same matricellular receptor, and a single matricryptin may bind to two different receptors belonging or not to the same family such as integrins and growth factor receptors. Furthermore, some matricryptins interact with each other, integrins and growth factor receptors crosstalk and a signaling pathway may be regulated by several matricryptins. This forms an intricate 3D interaction network at the surface of tumor and endothelial cells, which is tightly associated with other cell-surface associated molecules such as heparan sulfate, caveolin, and nucleolin. Deciphering the molecular mechanisms underlying the behavior of this network is required in order to optimize the development of matricryptins as anti-cancer agents. PMID:26869928

  9. Matricryptins Network with Matricellular Receptors at the Surface of Endothelial and Tumor Cells.

    PubMed

    Ricard-Blum, Sylvie; Vallet, Sylvain D

    2016-01-01

    The extracellular matrix (ECM) is a source of bioactive fragments called matricryptins or matrikines resulting from the proteolytic cleavage of extracellular proteins (e.g., collagens, elastin, and laminins) and proteoglycans (e.g., perlecan). Matrix metalloproteinases (MMPs), cathepsins, and bone-morphogenetic protein-1 release fragments, which regulate physiopathological processes including tumor growth, metastasis, and angiogenesis, a pre-requisite for tumor growth. A number of matricryptins, and/or synthetic peptides derived from them, are currently investigated as potential anti-cancer drugs both in vitro and in animal models. Modifications aiming at improving their efficiency and their delivery to their target cells are studied. However, their use as drugs is not straightforward. The biological activities of these fragments are mediated by several receptor families. Several matricryptins may bind to the same matricellular receptor, and a single matricryptin may bind to two different receptors belonging or not to the same family such as integrins and growth factor receptors. Furthermore, some matricryptins interact with each other, integrins and growth factor receptors crosstalk and a signaling pathway may be regulated by several matricryptins. This forms an intricate 3D interaction network at the surface of tumor and endothelial cells, which is tightly associated with other cell-surface associated molecules such as heparan sulfate, caveolin, and nucleolin. Deciphering the molecular mechanisms underlying the behavior of this network is required in order to optimize the development of matricryptins as anti-cancer agents. PMID:26869928

  10. New Insights into VacA Intoxication Mediated through Its Cell Surface Receptors

    PubMed Central

    Yahiro, Kinnosuke; Hirayama, Toshiya; Moss, Joel; Noda, Masatoshi

    2016-01-01

    Helicobacter pylori (H. pylori), a major cause of gastroduodenal diseases, produces VacA, a vacuolating cytotoxin associated with gastric inflammation and ulceration. The C-terminal domain of VacA plays a crucial role in receptor recognition on target cells. We have previously identified three proteins (i.e., RPTPα, RPTPβ, and LRP1) that serve as VacA receptors. These receptors contribute to the internalization of VacA into epithelial cells, activate signal transduction pathways, and contribute to cell death and gastric ulceration. In addition, other factors (e.g., CD18, sphingomyelin) have also been identified as cell-surface, VacA-binding proteins. Since we believe that, following interactions with its host cell receptors, VacA participates in events leading to disease, a better understanding of the cellular function of VacA receptors may provide valuable information regarding the mechanisms underlying the pleiotropic actions of VacA and the pathogenesis of H. pylori-mediated disease. In this review, we focus on VacA receptors and their role in events leading to cell damage. PMID:27187473

  11. New Insights into VacA Intoxication Mediated through Its Cell Surface Receptors.

    PubMed

    Yahiro, Kinnosuke; Hirayama, Toshiya; Moss, Joel; Noda, Masatoshi

    2016-01-01

    Helicobacter pylori (H. pylori), a major cause of gastroduodenal diseases, produces VacA, a vacuolating cytotoxin associated with gastric inflammation and ulceration. The C-terminal domain of VacA plays a crucial role in receptor recognition on target cells. We have previously identified three proteins (i.e., RPTPα, RPTPβ, and LRP1) that serve as VacA receptors. These receptors contribute to the internalization of VacA into epithelial cells, activate signal transduction pathways, and contribute to cell death and gastric ulceration. In addition, other factors (e.g., CD18, sphingomyelin) have also been identified as cell-surface, VacA-binding proteins. Since we believe that, following interactions with its host cell receptors, VacA participates in events leading to disease, a better understanding of the cellular function of VacA receptors may provide valuable information regarding the mechanisms underlying the pleiotropic actions of VacA and the pathogenesis of H. pylori-mediated disease. In this review, we focus on VacA receptors and their role in events leading to cell damage. PMID:27187473

  12. High Cell Surface Death Receptor Expression Determines Type I Versus Type II Signaling*

    PubMed Central

    Meng, Xue Wei; Peterson, Kevin L.; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D.; Gores, Gregory J.; Kaufmann, Scott H.

    2011-01-01

    Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression. PMID:21865165

  13. Enterovirus 71 Uses Cell Surface Heparan Sulfate Glycosaminoglycan as an Attachment Receptor

    PubMed Central

    Tan, Chee Wah; Poh, Chit Laa; Sam, I-Ching

    2013-01-01

    Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor. PMID:23097443

  14. An Entirely Cell-based System to Generate Single-Chain Antibodies Against Cell Surface Receptors

    PubMed Central

    Lipes, Barbara D.; Chen, Yu-Hsun; Ma, HongZheng; Staats, Herman F.; Kenan, Daniel J.; Gunn, Michael Dee

    2008-01-01

    Summary The generation of recombinant antibodies (Abs) using phage display is a proven method to obtain a large variety of Abs that bind with high affinity to a given antigen (Ag). Traditionally, the generation of single chain Abs depends on the use of recombinant proteins in several stages of the procedure. This can be a problem, especially in the case of cell surface receptors, because Abs generated and selected against recombinant proteins may not bind the same protein expressed on a cell surface in its native form and because the expression of some receptors as recombinant proteins is problematic. To overcome these difficulties, we developed a strategy to generate single chain Abs that does not require the use of recombinant protein at any stage of the procedure. In this strategy, stably transfected cells are used for the immunization of mice, measuring Ab responses to immunization, panning the phage library, high throughput screening of arrayed phage clones, and characterization of recombinant single chain variable regions (scFvs). This strategy was used to generate a panel of single chain Abs specific for the innate immunity receptor Toll-like receptor 2 (TLR2). Once generated, individual scFvs were subcloned into an expression vector allowing the production of recombinant Abs in insect cells, thus avoiding the contamination of recombinant Abs with microbial products. This cell-based system efficiently generates Abs that bind to native molecules on the cell surface, bypasses the requirement of recombinant protein production, and avoids risks of microbial component contamination. PMID:18455737

  15. Detection of CXCR4 receptors on cell surface using a fluorescent metal nanoshell

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Fu, Yi; Li, Ge; Zhao, Richard Y.; Lakowicz, Joseph R.

    2011-01-01

    Fluorescence cell imaging can be used for disease diagnosis and cellular signal transduction. Using a metal nanoshell as molecular imaging agent, we develop a cellular model system to detect CXCR4 chemokine receptor on T-lymphatic cell surface. These metal nanoshells are observed to express enhanced emission intensity and shortened lifetimes due to the near-field interactions. They are covalently bound with anti-CXCR4 monoclonal antibodies for immunoreactions with the target sites of the CXCR4 receptors on the CEM-SS cells. The fluorescence intensity and lifetime cell images are recorded with a time-resolved confocal microscopy. As expected, the emission signals from the metal nanoshells are clearly isolated from the cellular autofluorescence due to strong intensities and distinctive lifetimes. The number of emission spots on the single cell image is estimated by direct count to the emission signals. Analyzing a pool of cell images, a maximal count number is obtained in a range of 200+/-50. Because there is an average of ~6000 binding sites on the cell surface, we estimate that one emission spot from the metal nanoshell may represent ~30 CXCR5 receptors. In addition, the CXCR4 receptors are estimated to distribute on ~70% area of the cell surface.

  16. Cell surface expression of LDL receptor in chronic hepatitis C: correlation with viral load.

    PubMed

    Petit, Jean-Michel; Minello, Anne; Duvillard, Laurence; Jooste, Valérie; Monier, Serge; Texier, Véronique; Bour, Jean-Baptiste; Poussier, Alix; Gambert, Philippe; Verges, Bruno; Hillon, Patrick

    2007-07-01

    The LDL receptor (LDL-R) has been proposed as the viral receptor for Hepatitis C virus (HCV). This hypothesis has been based exclusively on in vitro studies. In human mononuclear cells, LDL-R gene expression has been demonstrated to be parallel and be coordinately regulated to gene expression in the human liver. The purpose of the current study was to determine the mononuclear cell surface expression of the LDL receptor in patients with HCV chronic infection according to viral load. Sixty-eight consecutive untreated chronic hepatitis C patients were studied to determine the mononuclear cell surface expression of the LDL-R. LDL-Rs were quantified at the surface of mononuclear cells in fresh blood samples taken after fasting using flow cytometry. LDL-R expression was significantly associated with LDL-cholesterol (r = -0.25; P = 0.03) and HCV-viral load (r = 0.37, P = 0.002). In multivariate analysis, the LDL-R expression was significantly associated with HCV viral load, whereas genotype, age, body mass index, and fibrosis were not. In conclusion, our data provided by a human study, suggest that the LDL-R may be one of the receptors implicated in HCV replication. PMID:17473053

  17. Inhibition of experimental ascending urinary tract infection by an epithelial cell-surface receptor analogue

    NASA Astrophysics Data System (ADS)

    Edén, C. Svanborg; Freter, R.; Hagberg, L.; Hull, R.; Hull, S.; Leffler, H.; Schoolnik, G.

    1982-08-01

    It has been shown that the establishment of urinary tract infection by Escherichia coli is dependent on attachment of the bacteria to epithelial cells1-4. The attachment involves specific epithelial cell receptors, which have been characterized as glycolipids5-10. Reversible binding to cell-surface mannosides may also be important4,11-13. This suggests an approach to the treatment of infections-that of blocking bacterial attachment with cell membrane receptor analogues. Using E. coli mutants lacking one or other of the two binding specificities (glycolipid and mannose), we show here that glycolipid analogues can block in vitro adhesion and in vivo urinary tract infection.

  18. A Dual Receptor and Reporter for Multi-Modal Cell Surface Engineering.

    PubMed

    Luo, Wei; Westcott, Nathan; Dutta, Debjit; Pulsipher, Abigail; Rogozhnikov, Dmitry; Chen, Jean; Yousaf, Muhammad N

    2015-10-16

    The rapid development of new small molecule drugs, nanomaterials, and genetic tools to modulate cellular function through cell surface manipulation has revolutionized the diagnosis, study, and treatment of disorders in human health. Since the cell membrane is a selective gateway barrier that serves as the first line of defense/offense and communication to its environment, new approaches that molecularly engineer or tailor cell membrane surfaces would allow for a new era in therapeutic design, therapeutic delivery, complex coculture tissue construction, and in situ imaging probe tracking technologies. In order to develop the next generation of multimodal therapies, cell behavior studies, and biotechnologies that focus on cell membrane biology, new tools that intersect the fields of chemistry, biology, and engineering are required. Herein, we develop a liposome fusion and delivery strategy to present a novel dual receptor and reporter system at cell surfaces without the use of molecular biology or metabolic biosynthesis. The cell surface receptor is based on bio-orthogonal functional groups that can conjugate a range of ligands while simultaneously reporting the conjugation through the emission of fluorescence. We demonstrate this dual receptor and reporter system by conjugating and tracking various cell surface ligands for temporal control of cell fluorescent signaling, cell-cell interaction, and tissue assembly construction. PMID:26204094

  19. Bond formation of surface-tethered receptor-ligand pairs in relative separation

    NASA Astrophysics Data System (ADS)

    Qian, Jin; Lin, Yuan; Jiang, Hongyuan; Yao, Haimin

    2013-11-01

    We theoretically and numerically investigate the interplay between diffusion of a surface-bound receptor and its reaction with an opposing ligand. Special attention has been paid to the mechanical regulation of bond association by varying the initial gap distance and relative separation speed between the protein-bearing surfaces. Such diffusion-reaction coupling effects can cause the apparent on-rate or reciprocal of the average waiting time for bond formation, to be not constant, but instead a function sensitive to the system parameters that affect the transport of proteins. The results provide a quantitative understanding of how significantly the transport mechanism can affect overall binding behavior of molecular interactions and call for a paradigm shift in modeling receptor-ligand bond association when the protein-bearing surfaces are in relative separation.

  20. Competition between solution and cell surface receptors for ligand. Dissociation of hapten bound to surface antibody in the presence of solution antibody.

    PubMed Central

    Goldstein, B; Posner, R G; Torney, D C; Erickson, J; Holowka, D; Baird, B

    1989-01-01

    We present a joint theoretical and experimental study on the effects of competition for ligand between receptors in solution and receptors on cell surfaces. We focus on the following experiment. After ligand and cell surface receptors equilibrate, solution receptors are introduced, and the dissociation of surface bound ligand is monitored. We derive theoretical expressions for the dissociation rate and compare with experiment. In a standard dissociation experiment (no solution receptors present) dissociation may be slowed by rebinding, i.e., at high receptor densities a ligand that dissociates from one receptor may rebind to other receptors before separating from the cell. Our theory predicts that rebinding will be prevented when S much greater than N2Kon/(16 pi 2D a4), where S is the free receptor site concentration in solution, N the number of free surface receptor sites per cell, Kon the forward rate constant for ligand-receptor binding in solution, D the diffusion coefficient of the ligand, and a the cell radius. The predicted concentration of solution receptors needed to prevent rebinding is proportional to the square of the cell surface receptor density. The experimental system used in these studies consists of a monovalent ligand, 2,4-dinitrophenyl (DNP)-aminocaproyl-L-tyrosine (DCT), that reversibly binds to a monoclonal anti-DNP immunoglobulin E (IgE). This IgE is both a solution receptor and, when anchored to its high affinity Fc epsilon receptor on rat basophilic leukemia (RBL) cells, a surface receptor. For RBL cells with 6 x 10(5) binding sites per cell, our theory predicts that to prevent DCT rebinding to cell surface IgE during dissociation requires S much greater than 2,400 nM. We show that for S = 200-1,700 nM, the dissociation rate of DCT from surface IgE is substantially slower than from solution IgE where no rebinding occurs. Other predictions are also tested and shown to be consistent with experiment. PMID:2532552

  1. Aggregate stability, surface-water runoff, and soil loss in wheat-sunflower and corn-soybean rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing improved management options that limit soil erosion requires a greater understanding of the interactions between crop rotation, residue management, and precipitation patterns. We conducted a six-year study to evaluate how seasonal variation in aggregate stability, ground cover, soil moist...

  2. Manipulating the Lateral Diffusion of Surface-Anchored EGF Demonstrates that Receptor Clustering Modulates its Phosphorylation Levels

    SciTech Connect

    Stabley, Daniel; Retterer, Scott T; Marshal, Stephen; Salaita, Khalid

    2013-01-01

    Upon activation, the epidermal growth factor (EGF) receptor becomes phosphorylated and triggers a vast signaling network that has profound effects on cell growth. The EGF receptor is observed to assemble into clusters after ligand binding and tyrosine kinase autophosphorylation, but the role of these assemblies in the receptor signaling pathway remains unclear. To address this question, we measured the phosphorylation of EGFR when the EGF ligand was anchored onto laterally mobile and immobile surfaces. We found that cells generated clusters of ligand-receptor complex on mobile EGF surfaces, and generated a lower ratio of phosphorylated EGFR to EGF than when compared to immobilized EGF that is unable to cluster. This result was verified by tuning the lateral assembly of ligand-receptor complexes on the surface of living cells using patterned supported lipid bilayers. Nanoscale metal lines fabricated into the supported membrane constrained lipid diffusion and EGF receptor assembly into micron and sub-micron scale corrals. Single cell analysis indicated that clustering impacts EGF receptor activation, and larger clusters (> 1 m2) of ligand-receptor complex generated lower EGF receptor phosphorylation per ligand than smaller assemblies (< 1 m2) in HCC1143 cells that were engaged to ligand-functionalized surfaces. We investigated EGFR clustering by treating cells with compounds that disrupt the cytoskeleton (Latrunculin-B), clathrin-mediated endocytosis (Pitstop2), and inhibit EGFR activation (Gefitinib). These results help elucidate the nature of large-scale EGFR clustering, thus underscoring the general significance of receptor spatial organization in tuning function.

  3. Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form

    PubMed Central

    Pagani, Alessia; Vieillevoye, Maud; Nai, Antonella; Rausa, Marco; Ladli, Meriem; Lacombe, Catherine; Mayeux, Patrick; Verdier, Frédérique; Camaschella, Clara; Silvestri, Laura

    2015-01-01

    Transferrin receptor-2 is a transmembrane protein whose expression is restricted to hepatocytes and erythroid cells. Transferrin receptor-2 has a regulatory function in iron homeostasis, since its inactivation causes systemic iron overload. Hepatic transferrin receptor-2 participates in iron sensing and is involved in hepcidin activation, although the mechanism remains unclear. Erythroid transferrin receptor-2 associates with and stabilizes erythropoietin receptors on the erythroblast surface and is essential to control erythrocyte production in iron deficiency. We identified a soluble form of transferrin receptor-2 in the media of transfected cells and showed that cultured human erythroid cells release an endogenous soluble form. Soluble transferrin receptor-2 originates from a cleavage of the cell surface protein, which is inhibited by diferric transferrin in a dose-dependent manner. Accordingly, the shedding of the transferrin receptor-2 variant G679A, mutated in the Arginine-Glycine-Aspartic acid motif and unable to bind diferric transferrin, is not modulated by the ligand. This observation links the process of transferrin receptor-2 removal from the plasma membrane to iron homeostasis. Soluble transferrin receptor-2 does not affect the binding of erythropoietin to erythropoietin receptor or the consequent signaling and partially inhibits hepcidin promoter activation only in vitro. Whether it is a component of the signals released by erythropoiesis in iron deficiency remains to be investigated. Our results indicate that membrane transferrin receptor-2, a sensor of circulating iron, is released from the cell membrane in iron deficiency. PMID:25637053

  4. Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form.

    PubMed

    Pagani, Alessia; Vieillevoye, Maud; Nai, Antonella; Rausa, Marco; Ladli, Meriem; Lacombe, Catherine; Mayeux, Patrick; Verdier, Frédérique; Camaschella, Clara; Silvestri, Laura

    2015-04-01

    Transferrin receptor-2 is a transmembrane protein whose expression is restricted to hepatocytes and erythroid cells. Transferrin receptor-2 has a regulatory function in iron homeostasis, since its inactivation causes systemic iron overload. Hepatic transferrin receptor-2 participates in iron sensing and is involved in hepcidin activation, although the mechanism remains unclear. Erythroid transferrin receptor-2 associates with and stabilizes erythropoietin receptors on the erythroblast surface and is essential to control erythrocyte production in iron deficiency. We identified a soluble form of transferrin receptor-2 in the media of transfected cells and showed that cultured human erythroid cells release an endogenous soluble form. Soluble transferrin receptor-2 originates from a cleavage of the cell surface protein, which is inhibited by diferric transferrin in a dose-dependent manner. Accordingly, the shedding of the transferrin receptor-2 variant G679A, mutated in the Arginine-Glycine-Aspartic acid motif and unable to bind diferric transferrin, is not modulated by the ligand. This observation links the process of transferrin receptor-2 removal from the plasma membrane to iron homeostasis. Soluble transferrin receptor-2 does not affect the binding of erythropoietin to erythropoietin receptor or the consequent signaling and partially inhibits hepcidin promoter activation only in vitro. Whether it is a component of the signals released by erythropoiesis in iron deficiency remains to be investigated. Our results indicate that membrane transferrin receptor-2, a sensor of circulating iron, is released from the cell membrane in iron deficiency. PMID:25637053

  5. High-speed centrifugation induces aggregation of extracellular vesicles

    PubMed Central

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Arraud, Nicolas; Brisson, Alain R.

    2015-01-01

    Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins. PMID:26700615

  6. Weighted aggregation

    NASA Technical Reports Server (NTRS)

    Feiveson, A. H. (Principal Investigator)

    1979-01-01

    The use of a weighted aggregation technique to improve the precision of the overall LACIE estimate is considered. The manner in which a weighted aggregation technique is implemented given a set of weights is described. The problem of variance estimation is discussed and the question of how to obtain the weights in an operational environment is addressed.

  7. Structure-activity relationships of seco-prezizaane and picrotoxane/picrodendrane terpenoids by Quasar receptor-surface modeling.

    PubMed

    Schmidt, Thomas J; Gurrath, Marion; Ozoe, Yoshihisa

    2004-08-01

    The seco-prezizaane-type sesquiterpenes pseudoanisatin and parviflorolide from Illicium are noncompetitive antagonists at housefly (Musca domestica) gamma-aminobutyric acid (GABA) receptors. They show selectivity toward the insect receptor and thus represent new leads toward selective insecticides. Based on the binding data for 13 seco-prezizaane terpenoids and 17 picrotoxane and picrodendrane-type terpenoids to housefly and rat GABA receptors, a QSAR study was conducted by quasi-atomistic receptor-surface modeling (Quasar). The resulting models provide insight into the structural basis of selectivity and properties of the binding sites at GABA receptor-coupled chloride channels of insects and mammals. PMID:15246092

  8. Ex-vivo tissue classification of cell surface receptor concentrations using kinetic modeling

    NASA Astrophysics Data System (ADS)

    Sinha, Lagnojita; Wang, Yu; Yang, Cynthia; Khan, Altaz; Liu, Jonathan T.; Tichauer, Kenneth M.

    2015-03-01

    One of the major challenges in the complete resection of cancer is the difficulty of distinctly classifying tumor and healthy tissue. This paper investigates the capability of competing kinetic modeling approaches for identifying different tissue types based on differential cell-surface receptor expressions. These approaches require fresh resected tissues to be stained with a mixture of two probes: one targeted to a cancer specific cell-surface receptor, and another left "untargeted" to account for nonspecific retention of the targeted agent, with subsequent repeated rinsing and imaging of the probe concentrations. Analysis of the results were carried out in simulations and in animal experiments for the cancer target, epidermal growth factor receptor (EGFR), a cell surface receptor overexpressed by many cancers. In the animal experiments, subcutaneous xenografts of human glioma (U251; moderate EGFR) and human epidermoid (A431; high EGFR) tumors, grown in six athymic mice, were excised and stained with an EGFR targeted surface-enhanced Raman scattering nanoparticle (SERS NP) and untargeted SERS NP pair. The salient finding in this study was that significant non-specific retention was observed for the EGFR targeted probe [anti-EGFR antibody labeled with a surface-enhanced Raman scattering (SERS) nanoparticle], but could be corrected for by the equivalent non-specific retention of the untargeted probe (isotype control antibody labeled with a different SERS nanoparticle). Once this non-specific binding was accounted for, the kinetic model was able to predict the expected differences in EGFR concentration among different tissue types: healthy, U251, and A431 in accordance with an ex vivo flow cytometry analysis, successfully classifying different tissue types.

  9. Direct method for detection and characterization of cell surface receptors for insulin by means of 125I-labeled autoantibodies against the insulin receptor.

    PubMed Central

    Jarrett, D B; Roth, J; Kahn, C R; Flier, J S

    1976-01-01

    Autoantibodies directed against the cell surface receptors for insulin are found in some patients with extreme insulin resistance. These antibodies specifically inhibit the binding of insulin to its receptor. A purified IgG fraction from one patient's plasma was labeled with 125I. The 125I-labeled antireceptor antibody, which initially represented about 0.3% of the total 125I-IgG, was enriched by selective adsorption and subsequent elution from cells rich in insulin receptors. The 125I-antireceptor antibody bound to cells and the binding was inhibited by whole plasma and purified IgG from this patient, as well as whole plasma from another patient with autoantibodies to the insulin receptor. Insulins that differed 300-fold in biological potency and affinity inhibited binding of 125I-antireceptor antibody in direct proportion to their ability to bind to the insulin receptor. The binding of 125I-antireceptor antibody was closely correlated with the binding of 125I-insulin over a wide range of receptor concentrations on different cell types. Experimentally induced reduction of the insulin receptor concentration was associated with parallel decreases in the binding of 125I-antireceptor antibody and 125I-insulin. The preparation of 125I-antireceptor antibody with a high specific activity by cytoadsorption and elution has provided a sensitive method for the detection of receptors and autoantibodies to cell surface components. PMID:1069300

  10. Vitamin A Transport Mechanism of the Multitransmembrane Cell-Surface Receptor STRA6

    PubMed Central

    Kawaguchi, Riki; Zhong, Ming; Kassai, Miki; Ter-Stepanian, Mariam; Sun, Hui

    2015-01-01

    Vitamin A has biological functions as diverse as sensing light for vision, regulating stem cell differentiation, maintaining epithelial integrity, promoting immune competency, regulating learning and memory, and acting as a key developmental morphogen. Vitamin A derivatives have also been used in treating human diseases. If vitamin A is considered a drug that everyone needs to take to survive, evolution has come up with a natural drug delivery system that combines sustained release with precise and controlled delivery to the cells or tissues that depend on it. This “drug delivery system” is mediated by plasma retinol binding protein (RBP), the principle and specific vitamin A carrier protein in the blood, and STRA6, the cell-surface receptor for RBP that mediates cellular vitamin A uptake. The mechanism by which the RBP receptor absorbs vitamin A from the blood is distinct from other known cellular uptake mechanisms. This review summarizes recent progress in elucidating the fundamental molecular mechanism mediated by the RBP receptor and multiple newly discovered catalytic activities of this receptor, and compares this transport system with retinoid transport independent of RBP/STRA6. How to target this new type of transmembrane receptor using small molecules in treating diseases is also discussed. PMID:26343735

  11. Analysis of Cell-Surface Receptor Dynamics through Covalent Labeling by Catalyst-Tethered Antibody.

    PubMed

    Hayashi, Takahiro; Yasueda, Yuki; Tamura, Tomonori; Takaoka, Yousuke; Hamachi, Itaru

    2015-04-29

    A general technique for introducing biophysical probes into selected receptors in their native environment is valuable for the study of their structure, dynamics, function, and molecular interactions. A number of such techniques rely on genetic engineering, which is not applicable for the study of endogenous proteins, and such approaches often suffer from artifacts due to the overexpression and bulky size of the probes/protein tags used. Here we designed novel catalyst-antibody conjugates capable of introducing small chemical probes into receptor proteins such as epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) in a selective manner on the surface of living cells. Because of the selectivity and efficiency of this labeling technique, we were able to monitor the cellular dynamics and lifetime of HER2 endogenously expressed on cancer cells. More significantly, the current labeling technique comprises a stable covalent bond, which combined with a peptide mass fingerprinting analysis allowed epitope mapping of antibodies on living cells and identification of potential binding sites of anti-EGFR affibody. Although as yet unreported in the literature, the binding sites predicted by our labeling method were consistently supported by the subsequent mutation and binding assay experiments. In addition, this covalent labeling method provided experimental evidence that HER2 exhibits a more dynamic structure than expected on the basis of crystallographic analysis alone. Our novel catalyst-antibody conjugates are expected to provide a general tool for investigating the protein trafficking, fluctuation, and molecular interactions of an important class of cell-surface receptors on live cell surfaces. PMID:25853648

  12. Assembly, organization and regulation of cell-surface receptors by lectin-glycan complexes.

    PubMed

    Elola, María T; Blidner, Ada G; Ferragut, Fátima; Bracalente, Candelaria; Rabinovich, Gabriel A

    2015-07-01

    Galectins are a family of β-galactoside-binding lectins carrying at least one consensus sequence in the carbohydrate-recognition domain. Properties of glycosylated ligands, such as N- and O-glycan branching, LacNAc (N-acetyl-lactosamine) content and the balance of α2,3- and α2,6-linked sialic acid dramatically influence galectin binding to a preferential set of counter-receptors. The presentation of specific glycans in galectin-binding partners is also critical, as proper orientation and clustering of oligosaccharide ligands on multiple carbohydrate side chains increase the binding avidity of galectins for particular glycosylated receptors. When galectins are released from the cells, they typically concentrate on the cell surface and the local matrix, raising their local concentration. Thus galectins can form their own multimers in the extracellular milieu, which in turn cross-link glycoconjugates on the cell surface generating galectin-glycan complexes that modulate intracellular signalling pathways, thus regulating cellular processes such as apoptosis, proliferation, migration and angiogenesis. Subtle changes in receptor expression, rates of protein synthesis, activities of Golgi enzymes, metabolite concentrations supporting glycan biosynthesis, density of glycans, strength of protein-protein interactions at the plasma membrane and stoichiometry may modify galectin-glycan complexes. Although galectins are key contributors to the formation of these extended glycan complexes leading to promotion of receptor segregation/clustering, and inhibition of receptor internalization by surface retention, when these complexes are disrupted, some galectins, particularly galectin-3 and -4, showed the ability to drive clathrin-independent mechanisms of endocytosis. In the present review, we summarize the data available on the assembly, hierarchical organization and regulation of conspicuous galectin-glycan complexes, and their implications in health and disease. PMID:26173257

  13. Recognition of silver nanoparticles surface-adsorbed citrate anions by macrocyclic polyammonium cations: a spectrophotometric approach to study aggregation kinetics and evaluation of association constant.

    PubMed

    Choudhury, Rupasree; Purkayastha, Atanu; Debnath, Diptanu; Misra, Tarun Kumar

    2016-09-01

    In this report, we have studied the recognition of citrate anions adsorbed on the surface of silver nanoparticles (cit-Ag-NPs), by macrocyclic polyammonium cations (MCPACs): Me6 [14]ane-N4 H8 (4+) (Tet-A/Tet-B cations) and [32]ane-N8 H16 (8+) , which are well reputed anion recognizers and are treated as to mimic of biological polyamines. The study was monitored on ultraviolet-visible spectroscopy by performing a titration of the aqueous dispersion of the cit-Ag-NPs by the aqueous solution of MCPACs. The ultraviolet-visible time-scan plots over the reduction of the absorption band of surface plasmon resonance of cit-Ag-NPs at 390 nm are well fitted with fourth-order polynomial equation and are employed to determine the initial aggregation rate constants. It has been stated that the aggregation is the result in electrostatic attraction followed by H-bond formation between the surface-adsorbed citrate anions and added MCPACs. The atomic force microscopy results have evidenced aggregation of cit-Ag-NPs in presence of MCPACs. The evaluated H-bonded association constant (Kasso ) using Benesi-Hildebrand method reveals that [32]ane-N8 H16 (8+) cations form stronger association complex, as expected, with the citrate anions than the Me6 [14]ane-N4 H8 (4+) cations. The study would thus provide the insight of molecular interactions involved in nanoparticle surface-adsorbed anions with biological polyamines. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27146323

  14. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1.

    PubMed

    Blind, Raymond D; Sablin, Elena P; Kuchenbecker, Kristopher M; Chiu, Hsiu-Ju; Deacon, Ashley M; Das, Debanu; Fletterick, Robert J; Ingraham, Holly A

    2014-10-21

    The signaling phosphatidylinositol lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP2 and PIP3 show the lipid hydrophobic tails sequestered in the hormone pocket, as predicted. However, unlike classic nuclear receptor hormones, the phosphoinositide head groups are fully solvent-exposed and complete the LBD fold by organizing the receptor architecture at the hormone pocket entrance. The highest affinity phosphoinositide ligand PIP3 stabilizes the coactivator binding groove and increases coactivator peptide recruitment. This receptor-ligand topology defines a previously unidentified regulatory protein-lipid surface on SF-1 with the phosphoinositide head group at its nexus and poised to interact with other proteins. This surface on SF-1 coincides with the predicted binding site of the corepressor DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region on chromosome X), and importantly harbors missense mutations associated with human endocrine disorders. Our data provide the structural basis for this poorly understood cluster of human SF-1 mutations and demonstrates how signaling phosphoinositides function as regulatory ligands for NR5As. PMID:25288771

  15. Expression of CD36 by Olfactory Receptor Cells and Its Abundance on the Epithelial Surface in Mice

    PubMed Central

    Tsuzuki, Satoshi; Matsumura, Shigenobu; Inoue, Kazuo; Iwanaga, Toshihiko; Masuda, Daisaku; Yamashita, Shizuya; Fushiki, Tohru

    2015-01-01

    CD36 is a transmembrane protein that is involved in the recognition of certain amphiphilic molecules such as polar lipids in various tissues and body fluids. So far, CD36 homologues in insects have been demonstrated to be present on the surface of olfactory dendrites and to participate in the perception of exogenous compounds. However, little is known about the relationship between CD36 and mammalian olfaction. Indeed, the detection of only CD36 mRNA in the mouse olfactory epithelium has been reported to date. In the present study, to provide potential pieces of evidence for the involvement of CD36 in mammalian olfactory perception, we extensively investigated the localisation of this protein in the mouse olfactory mucosa. In situ hybridisation analysis using antisense oligonucleotides to CD36 mRNA detected aggregated signals within the deeper epithelial layer of olfactory mucosa. The mRNA signals were also detected consistently in the superficial layer of the olfactory epithelium, which is occupied by supporting cells. Immunostaining with an anti-CD36 polyclonal antibody revealed that CD36 localises in the somata and dendrites of distinct olfactory receptor cells and that it occurs abundantly on the olfactory epithelial surface. However, immunoreactive CD36 was rarely detectable in the nerve bundles running in the lamina propria of olfactory mucosa, the axons forming the olfactory nerve layer in the outermost layer of the bulb and axon terminals in the glomeruli. We also obtained electron microscopic evidence for the association of CD36 protein with olfactory cilia. Altogether, we suggest that CD36 plays a role in the mammalian olfaction. In addition, signals for CD36 protein were also detected on or around the microvilli of olfactory supporting cells and the cilia of nasal respiratory epithelium, suggesting a role for this protein other than olfaction in the nasal cavity. PMID:26186589

  16. Enhancement of cell surface expression and receptor functions of membrane progestin receptor α (mPRα) by progesterone receptor membrane component 1 (PGRMC1): evidence for a role of PGRMC1 as an adaptor protein for steroid receptors.

    PubMed

    Thomas, Peter; Pang, Yefei; Dong, Jing

    2014-03-01

    A variety of functions have been proposed for progesterone receptor membrane component 1 (PGRMC1), including acting as a component of a membrane progestin receptor and as an adaptor protein. Here we show that stable overexpression of human PGRMC1 in nuclear progesterone receptor (PR)-negative breast cancer cell lines causes increased expression of PGRMC1 and membrane progesterone receptor α (mPRα) on cell membranes that is associated with increased specific [(3)H]progesterone binding. The membrane progestin binding affinity and specificity were characteristic of mPRα, with a Kd of 4.7 nM and high affinity for the mPR-specific agonist, Org OD 02-0, and low affinity for corticosteroids. Progestin treatment caused activation of G proteins, further evidence for increased expression of functional mPRs on PGRMC1-transfected cell membranes. Immunocytochemical and coimmunoprecipitation studies showed a close association of PGRMC1 with mPRα in cell membranes. Transfection of PGRMC1 into spontaneously immortalized rat granulosa cells was associated with membrane expression of PGRMC1 and mPRα as well as antiapoptotic effects of progestins that were abolished after cotransfection with small interfering RNA for mPRα. These data demonstrate that PGRMC1 can act as an adaptor protein, transporting mPRα to the cell surface, and that the progestin binding and apoptotic functions previously ascribed to PGRMC1 are dependent on cell surface expression of mPRα. Collectively, the results suggest PGRMC1 and mPRα are components of a membrane progesterone receptor protein complex. Increased expression of estrogen receptor β was also observed in the membranes of PGRMC1-transfected cells, suggesting that PGRMC1 can act as an adaptor protein for multiple classes of steroid receptors. PMID:24424068

  17. Studies of activated GPIIb/IIIa receptors on the luminal surface of adherent platelets. Paradoxical loss of luminal receptors when platelets adhere to high density fibrinogen.

    PubMed Central

    Coller, B S; Kutok, J L; Scudder, L E; Galanakis, D K; West, S M; Rudomen, G S; Springer, K T

    1993-01-01

    The accessibility of activated GPIIb/IIIa receptors on the luminal surface of platelets adherent to damaged blood vessels or atherosclerotic plaques is likely to play a crucial role in subsequent platelet recruitment. To define better the factors involved in this process, we developed a functional assay to assess the presence of activated, luminal GPIIb/IIIa receptors, based on their ability to bind erythrocytes containing a high density of covalently coupled RGD-containing peptides (thromboerythrocytes). Platelets readily adhered to wells coated with purified type I rat skin collagen and the adherent platelets bound a dense lawn of thromboerythrocytes. With fibrinogen-coated wells, platelet adhesion increased as the fibrinogen-coating concentration increased, reaching a plateau at about 11 micrograms/ml. Thromboerythrocyte binding to the platelets adherent to fibrinogen showed a paradoxical response, increasing at fibrinogen coating concentrations up to approximately 4-6 micrograms/ml and then dramatically decreasing at higher fibrinogen-coating concentrations. Scanning electron microscopy demonstrated that the morphology of platelets adherent to collagen was similar to that of platelets adherent to low density fibrinogen, with extensive filopodia formation and ruffling. In contrast, platelets adherent to high density fibrinogen showed a bland, flattened appearance. Immunogold staining of GPIIb/IIIa receptors demonstrated concentration of the receptors on the filopodia, and depletion of receptors on the flattened portion of the platelets. Thus, there is a paradoxical loss of accessible, activated GPIIb/IIIa receptors on the luminal surface of platelets adherent to high density fibrinogen. Two factors may contribute to this result: engagement of GPIIb/IIIa receptors with fibrinogen on the abluminal surface leading to the loss of luminal receptors, and loss of luminal filopodia that interact with thromboerythrocytes. These data provide insight into the differences

  18. Chemosensory receptor specificity and regulation.

    PubMed

    Dalton, Ryan P; Lomvardas, Stavros

    2015-07-01

    The senses provide a means by which data on the physical and chemical properties of the environment may be collected and meaningfully interpreted. Sensation begins at the periphery, where a multitude of different sensory cell types are activated by environmental stimuli as different as photons and odorant molecules. Stimulus sensitivity is due to expression of different cell surface sensory receptors, and therefore the receptive field of each sense is defined by the aggregate of expressed receptors in each sensory tissue. Here, we review current understanding on patterns of expression and modes of regulation of sensory receptors. PMID:25938729

  19. Both host and parasite MIF molecules bind to chicken macrophages via CD74 surface receptor.

    PubMed

    Kim, Sungwon; Cox, Chasity M; Jenkins, Mark C; Fetterer, Ray H; Miska, Katarzyna B; Dalloul, Rami A

    2014-12-01

    Macrophage migration inhibitory factor (MIF) is recognized as a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. Our group has identified both chicken and Eimeria MIFs, and characterized their function in enhancing innate immune responses during inflammation. In this study, we report that chicken CD74 (ChCD74), a type II transmembrane protein, functions as a macrophage surface receptor that binds to MIF molecules. First, to examine the binding of MIF to chicken monocytes/macrophages, fresh isolated chicken peripheral blood mononuclear cells (PBMCs) were stimulated with rChIFN-γ and then incubated with recombinant chicken MIF (rChMIF). Immunofluorescence staining with anti-ChMIF followed by flow cytometry revealed the binding of MIF to stimulated PBMCs. To verify that ChCD74 acts as a surface receptor for MIF molecules, full-length ChCD74p41 was cloned, expressed and its recombinant protein (rChCD74p41) transiently over-expressed with green fluorescent protein in chicken fibroblast DF-1 cells. Fluorescence analysis revealed a higher population of cells double positive for CD74p41 and rChMIF, indicating the binding of rChMIF to DF-1 cells via rChCD74p41. Using a similar approach, it was found that Eimeria MIF (EMIF), which is secreted by Eimeria sp. during infection, bound to chicken macrophages via ChCD74p41 as a surface receptor. Together, this study provides conclusive evidence that both host and parasite MIF molecules bind to chicken macrophages via the surface receptor ChCD74. PMID:25086294

  20. Membrane Environment Can Enhance the Interaction of Glycan Binding Protein to Cell Surface Glycan Receptors

    PubMed Central

    2015-01-01

    The binding of lectins to glycan receptors on the host cell surface is a key step contributing to the virulence and species specificity of most viruses. This is exemplified by the viral protein hemagglutinin (HA) of the influenza A virus, whose binding specificity is modulated by the linkage pattern of terminal sialic acids on glycan receptors of host epithelial cells. Such specificity dictates whether transmission is confined to a particular animal species or jumps between species. Here, we show, using H5N1 avian influenza as a model, that the specific binding of recombinant HA to α2-3 linked sialic acids can be enhanced dramatically by interaction with the surface of the lipid membrane. This effect can be quantitatively accounted for by a two-stage process in which weak association of HA with the membrane surface precedes more specific and tighter binding to the glycan receptor. The weak protein–membrane interaction discovered here in the model system may play an important secondary role in the infection and pathogenesis of the influenza A virus. PMID:24949798

  1. Crosslinking of surface antibodies and Fc sub. gamma. receptors: Theory and application

    SciTech Connect

    Wofsy, C.; Goldstein, B. Los Alamos National Lab., NM )

    1991-03-15

    In an immune response, the crosslinking of surface immunoglobulin (sIg) on B cells by multiply-bound ligand activates a range of cell responses, culminating in the production of antibody-secreting cells. However, when the crosslinking agent is itself an antibody, B cell activation is inhibited. Solution antibody (IgG) can bind simultaneously to sIg and to another cell surface receptor, Fc{sub {gamma}}R, co-crosslinking' the distinct receptors. Experiments point to co-crosslinking as the inhibitory signal. It is not clear how co-crosslinking inhibits B cell stimulation. The authors construct and analyze a mathematical model aimed at clarifying the nature and mechanisms of action of the separate cell signals controlling B cell responses to antibodies. Basophils and mast cells respond to the crosslinking of cell surface antibody by releasing histamine. Like B cells, basophils also express FC{sub {gamma}}R. They use their model to analyze new data on the effect of antibody-induced co-crosslinking of the two types of receptor on this family of cells. Predictions of the model indicate that an observed difference between the response patterns induced by antibodies and by antibody fragments that cannot bind to FC{sub {gamma}}R can be explained if co-crosslinking is neither inhibitory nor stimulatory in this system.

  2. Dextran-induced aggregation in a mutant of Streptococcus sobrinus 6715-13.

    PubMed Central

    Freedman, M L; Guggenheim, B

    1983-01-01

    A mutant of wild-type Streptococcus sobrinus 6715-13 has been isolated which resists aggregation by exogenous dextran. This variant is able to form adherent plaque deposits in vitro when cultured in the presence of sucrose and has dextranase activity. In these respects it is the complement of previously described isolates which are plaque formation defective but aggregation normal. Measurements of the incorporation of glucose from glucosyl-labeled sucrose into glucan by cell-associated glucosyltransferase enzyme activity and the thermal labilities of catalytic and receptor functions, as well as the binding of labeled dextrans to the cells, provide evidence that neither dextranase nor glucosyltransferase is the receptor involved in dextran-induced aggregation. Blockage of such bacterial aggregation by anti-glucosyltransferase or anti-dextranase sera suggests cross-reactivity between the antigenic determinants of proteins which recognize alpha(1-6) glucan linkages. A model is proposed, consistent with these and previous findings, in which enzymatic function precedes dextran receptor activity in emergence from the cell. It is also proposed that dextran receptor components of the multireactive glucosyltransferase enzyme(s) and dextranase(s) are spatially separate from, although functionally and antigenically related to, the receptors on the bacterial surface involved in dextran-induced aggregation. Images PMID:6190754

  3. The Presence of VEGF Receptors on the Luminal Surface of Endothelial Cells Affects VEGF Distribution and VEGF Signaling

    PubMed Central

    Stefanini, Marianne O.; Wu, Florence T. H.; Mac Gabhann, Feilim; Popel, Aleksander S.

    2009-01-01

    Vascular endothelial growth factor (VEGF) is a potent cytokine that binds to specific receptors on the endothelial cells lining blood vessels. The signaling cascade triggered eventually leads to the formation of new capillaries, a process called angiogenesis. Distributions of VEGF receptors and VEGF ligands are therefore crucial determinants of angiogenic events and, to our knowledge, no quantification of abluminal vs. luminal receptors has been performed. We formulate a molecular-based compartment model to investigate the VEGF distribution in blood and tissue in humans and show that such quantification would lead to new insights on angiogenesis and VEGF-dependent diseases. Our multiscale model includes two major isoforms of VEGF (VEGF121 and VEGF165), as well as their receptors (VEGFR1 and VEGFR2) and the non-signaling co-receptor neuropilin-1 (NRP1). VEGF can be transported between tissue and blood via transendothelial permeability and the lymphatics. VEGF receptors are located on both the luminal and abluminal sides of the endothelial cells. In this study, we analyze the effects of the VEGF receptor localization on the endothelial cells as well as of the lymphatic transport. We show that the VEGF distribution is affected by the luminal receptor density. We predict that the receptor signaling occurs mostly on the abluminal endothelial surface, assuming that VEGF is secreted by parenchymal cells. However, for a low abluminal but high luminal receptor density, VEGF binds predominantly to VEGFR1 on the abluminal surface and VEGFR2 on the luminal surface. Such findings would be pertinent to pathological conditions and therapies related to VEGF receptor imbalance and overexpression on the endothelial cells and will hopefully encourage experimental receptor quantification for both luminal and abluminal surfaces on endothelial cells. PMID:20041209

  4. Construction aggregates

    USGS Publications Warehouse

    Langer, W.H.; Tepordei, V.V.; Bolen, W.P.

    2000-01-01

    Construction aggregates consist primarily of crushed stone and construction sand and gravel. Total estimated production of construction aggregates increased in 1999 by about 2% to 2.39 Gt (2.64 billion st) compared with 1998. This record production level continued an expansion that began in 1992. By commodities, crushed stone production increased 3.3%, while sand and gravel production increased by about 0.5%.

  5. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1994-01-01

    Part of a special section on industrial minerals in 1993. The 1993 production of construction aggregates increased 6.3 percent over the 1992 figure, to reach 2.01 Gt. This represents the highest estimated annual production of combined crushed stone and construction sand and gravel ever recorded in the U.S. The outlook for construction aggregates and the issues facing the industry are discussed.

  6. Introduced Amino Terminal Epitopes Can Reduce Surface Expression of Neuronal Nicotinic Receptors

    PubMed Central

    Bracamontes, John R.; Akk, Gustav; Steinbach, Joe Henry

    2016-01-01

    Epitopes accessible on the surface of intact cells are extremely valuable in studies of membrane proteins, allowing quantification and determination of the distribution of proteins as well as identification of cells expressing large numbers of proteins. However for many membrane proteins there are no suitable antibodies to native sequences, due to lack of availability, low affinity or lack of specificity. In these cases the use of an introduced epitope at specific sites in the protein of interest can often provide a suitable tool for studies. However, the introduction of the epitope sequence has the potential to affect protein expression, the assembly of multisubunit proteins or transport to the surface membrane. We find that surface expression of heteromeric neuronal nicotinic receptors containing the α4 and β4 subunits can be affected by introduced epitopes when inserted near the amino terminus of a subunit. The FLAG epitope greatly reduces surface expression when introduced into either α4 or β4 subunits, the V5 epitope has little effect when placed in either, while the Myc epitope reduces expression more when inserted into β4 than α4. These results indicate that the extreme amino terminal region is important for assembly of these receptors, and demonstrate that some widely used introduced epitopes may severely reduce surface expression. PMID:26963253

  7. Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes

    SciTech Connect

    Mascalchi, Patrice; Lamort, Anne Sophie; Salome, Laurence; Dumas, Fabrice

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer We studied the diffusion of single CD4 receptors on living lymphocytes. Black-Right-Pointing-Pointer This study reveals that CD4 receptors have either a random or confined diffusion. Black-Right-Pointing-Pointer The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. Black-Right-Pointing-Pointer The dynamics of confined CD4 receptors was unchanged by a temperature raise. Black-Right-Pointing-Pointer Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 Degree-Sign C and 37 Degree-Sign C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.

  8. Detection of cavitated approximal surfaces using cone beam CT and intraoral receptors

    PubMed Central

    Wenzel, A; Hirsch, E; Christensen, J; Matzen, L H; Scaf, G; Frydenberg, M

    2013-01-01

    Objectives The aim of this study was to compare cone beam CT (CBCT) in a small field of view (FOV) with a solid-state sensor and a photostimulable phosphor plate system for detection of cavitated approximal surfaces. Methods 257 non-filled approximal surfaces from human permanent premolars and molars were recorded by two intraoral digital receptors, a storage phosphor plate (Digora Optime, Soredex) and a solid-state CMOS sensor (Digora Toto, Soredex), and scanned in a cone beam CT unit (3D Accuitomo FPD80, Morita) with a FOV of 4 cm and a voxel size of 0.08 mm. Image sections were carried out in the axial and mesiodistal tooth planes. Six observers recorded surface cavitation in all images. Validation of the true absence or presence of surface cavitation was performed by inspecting the surfaces under strong light with the naked eye. Differences in sensitivity, specificity and agreement were estimated by analysing the binary data in a generalized linear model using an identity link function. Results : A significantly higher sensitivity was obtained by all observers with CBCT (p < 0.001), which was not compromised by a lower specificity. Therefore, a significantly higher overall agreement was obtained with CBCT (p < 0.001). There were no significant differences between the Digora Optime phosphor plate system and the Digora Toto CMOS sensor for any parameter. Conclusions CBCT was much more accurate in the detection of surface cavitation in approximal surfaces than intraoral receptors. The differences are interpreted as clinically significant. A CBCT examination performed for other reasons should also be assessed for approximal surface cavities in teeth without restorations.

  9. Agonist-dependent modulation of cell surface expression of the cold receptor TRPM8.

    PubMed

    Toro, Carlos A; Eger, Stephanie; Veliz, Luis; Sotelo-Hitschfeld, Pamela; Cabezas, Deny; Castro, Maite A; Zimmermann, Katharina; Brauchi, Sebastian

    2015-01-14

    The spatial and temporal distribution of receptors constitutes an important mechanism for controlling the magnitude of cellular responses. Several members of the transient receptor potential (TRP) ion channel family can regulate their function by modulating their expression at the plasma membrane (PM) through rapid vesicular translocation and fusion. The mechanisms underlying this regulation are not completely understood, and the contribution of vesicular trafficking to physiological function is unknown. TRPM8 receptors are expressed in mammalian peripheral sensory neurons and are essential for the detection of cold temperatures. Previously, we showed that TRPM8-containing vesicles are segregated into three main pools, immobile at the PM, simple diffusive and corralled-hopping. Here, we show that channel expression at the PM is modulated by TRPM8 agonists in F11 and HEK293T cells. Our results support a model in which the activation of TRPM8 channels, located at the PM, induces a short-lived recruitment of a TRPM8-containing vesicular pool to the cell surface causing a transitory increase in the number of functional channels, affecting intrinsic properties of cold receptor responses. We further demonstrate the requirement of intact vesicular trafficking to support sustained cold responses in the skin of mice. PMID:25589752

  10. Density enhanced phosphatase-1 down-regulates urokinase receptor surface expression in confluent endothelial cells

    PubMed Central

    Brunner, Patrick M.; Heier, Patricia C.; Mihaly-Bison, Judit; Priglinger, Ute; Binder, Bernd R.

    2011-01-01

    VEGF165, the major angiogenic growth factor, is known to activate various steps in proangiogenic endothelial cell behavior, such as endothelial cell migration and invasion, or endothelial cell survival. Thereby, the urokinase-type plasminogen activator (uPA) system has been shown to play an essential role not only by its proteolytic capacities, but also by induction of intracellular signal transduction. Therefore, expression of its cell surface receptor uPAR is thought to be an essential regulatory mechanism in angiogenesis. We found that uPAR expression on the surface of confluent endothelial cells was down-regulated compared with subconfluent proliferating endothelial cells. Regulation of uPAR expression was most probably affected by extracellular signal-regulated kinase 1/2 (ERK1/2) activation, a downstream signaling event of the VEGF/VEGF-receptor system. Consistently, the receptor-like protein tyrosine phosphatase DEP-1 (density enhanced phosphatase-1/CD148), which is abundantly expressed in confluent endothelial cells, inhibited the VEGF-dependent activation of ERK1/2, leading to down-regulation of uPAR expression. Overexpression of active ERK1 rescued the DEP-1 effect on uPAR. That DEP-1 plays a biologic role in angiogenic endothelial cell behavior was demonstrated in endothelial cell migration, proliferation, and capillary-like tube formation assays in vitro. PMID:21304107

  11. Surface expression of functional T cell receptor chains formed by interlocus recombination on human T lymphocytes.

    PubMed

    Davodeau, F; Peyrat, M A; Gaschet, J; Hallet, M M; Triebel, F; Vié, H; Kabelitz, D; Bonneville, M

    1994-11-01

    Structural diversity of lymphocyte antigen receptors (the immunoglobulin [Ig] of B cells and the alpha/beta or gamma/delta T cell receptor [TCR] of T cells) is generated through somatic rearrangements of V, D, and J gene segments. Classically, these recombination events involve gene segments from the same Ig or TCR locus. However, occurrence of "trans" rearrangements between distinct loci has also been described, although in no instances was the surface expression of the corresponding protein under normal physiological conditions demonstrated. Here we show that hybrid TCR genes generated by trans rearrangement between V gamma and (D) J beta elements are translated into functional antigen receptor chains, paired with TCR alpha chains. Like classical alpha/beta T cells, cells expressing these hybrid TCR chains express either CD4 or CD8 coreceptors and are frequently alloreactive. These results have several implications in terms of T cell repertoire selection and relationships between TCR structure and specificity. First, they suggest that TCR alloreactivity is determined by the repertoire selection processes operating during lymphocyte development rather than by structural features specific to V alpha V beta regions. Second, they suggest the existence of close structural relationships between gamma/delta and alpha/beta TCR and more particularly, between V gamma and V beta regions. Finally, since a significant fraction of PBL (at least 1/10(4)) expressed hybrid TCR chains on their surface, these observations indicate that trans rearrangements significantly contribute to the combinatorial diversification of the peripheral immune repertoire. PMID:7964454

  12. The influence of mixed salts on the capacity of HIC adsorbers: A predictive correlation to the surface tension and the aggregation temperature.

    PubMed

    Baumgartner, Kai; Amrhein, Sven; Oelmeier, Stefan A; Hubbuch, Jürgen

    2016-03-01

    Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in downstream processing of biopharmaceuticals. During HIC, salts are the governing additives contributing to binding strength, binding capacity, and protein solubility in the liquid phase. A relatively recent approach to increase the dynamic binding capacity (DBC) of HIC adsorbers is the use of salt mixtures. By mixing chaotropic with kosmotropic salts, the DBC can strongly be influenced. For salt mixtures with a higher proportion of chaotropic than kosmotropic salt, higher DBCs were achieved compared with single salt approaches. By measuring the surface tensions of the protein salt solutions, the cavity theory-proposed by Melander and Horváth-that higher surface tensions lead to higher DBCs, was found to be invalid for salt mixtures. Aggregation temperatures of lysozyme in the salt mixtures, as a degree of hydrophobic forces, were correlated to the DBCs. Measuring the aggregation temperatures has proven to be a fast analytical methodology to estimate the hydrophobic interactions and thus can be used as a measure for an increase or decrease in the DBCs. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:346-354, 2016. PMID:26358156

  13. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides.

    PubMed

    Hofmann, M A; Drury, S; Fu, C; Qu, W; Taguchi, A; Lu, Y; Avila, C; Kambham, N; Bierhaus, A; Nawroth, P; Neurath, M F; Slattery, T; Beach, D; McClary, J; Nagashima, M; Morser, J; Stern, D; Schmidt, A M

    1999-06-25

    S100/calgranulin polypeptides are present at sites of inflammation, likely released by inflammatory cells targeted to such loci by a range of environmental cues. We report here that receptor for AGE (RAGE) is a central cell surface receptor for EN-RAGE (extracellular newly identified RAGE-binding protein) and related members of the S100/calgranulin superfamily. Interaction of EN-RAGEs with cellular RAGE on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Blockade of EN-RAGE/RAGE quenches delayed-type hypersensitivity and inflammatory colitis in murine models by arresting activation of central signaling pathways and expression of inflammatory gene mediators. These data highlight a novel paradigm in inflammation and identify roles for EN-RAGEs and RAGE in chronic cellular activation and tissue injury. PMID:10399917

  14. Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors

    SciTech Connect

    McGinnis, J.F.; de Vellis, J.

    1981-02-01

    The concentration of glycerol-3-phosphate dehydrogenase (GPDH; sn-glycerol-3-phosphate:NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) had previously been determined to be regulated by glucocorticoids in rat brain cells in vivo and in cell culture. We now demonstrate that concanavalin A (Con A) can inhibit the induction of GPDH in a dose-dependent manner in C6 rat glioma cells and in primary cultures of rat brain oligodendrocytes. The inhibition specifically prevents the appearance of new molecules of GPDH, although Con A does not significantly inhibit protein synthesis in these cells, nor does it affect the activity of another solube enzyme, lactate dehydrogenase. The ability to block enzyme induction is not limited to Con A, because other lectins also inhibit induction. The molecular mechanism by which Con A inhibits GPDH induction appears to be by the down regulation of the cytoplasmic glucocorticoid receptors, because exposure to Con A results in the loss of more than 90% of the receptor activity. Con A does not inhibit the receptor assay and no direct interaction between the receptor and Con A could be demonstrated. This down regulation is not tumor cell specific and appears to be a general phenomenon, because it occurs in normal oligodendrocytes and even in normal astrocytes (a cell type in which the gene for GPDH is not expressed). The down regulation of glucocorticoid receptors in normal brain cells suggests two important corollaries. First, it demonstrates the existence of a rate-limiting step controlling the glucocorticoid-dependent gene expression in brain cells and possibly represents a regulatory site common to all glucocorticoid target cells. Second, it suggests that the response to glucocorticoids of oligodendrocytes and astrocytes can be regulated in vivo by cell surface contact with endogenous lectins, neighboring cells, or both.

  15. Abnormally increased surface expression of AMPA receptors in the cerebellum, cortex and striatum of Cln3(-/-) mice.

    PubMed

    Kovács, Attila D; Hof, Caitlin; Pearce, David A

    2015-10-21

    Mutations in the CLN3 gene cause a fatal neurodegenerative disorder, juvenile CLN3 disease. Exploring the cause of the motor coordination deficit in the Cln3(-/-) mouse model of the disease we have previously found that attenuation of AMPA receptor activity in 1-month-old Cln3(-/-) mice significantly improves their motor coordination [20]. To elucidate the mechanism of the abnormally increased AMPA receptor function in Cln3(-/-) mice, we examined the surface expression of AMPA receptors using surface cross-linking in brain slices from 1-month-old wild type (WT) and Cln3(-/-) mice. In surface cross-linked brain samples, Western blotting for AMPA receptor subunits revealed significantly increased surface levels of GluA1 and GluA2 in the cerebellum, and of GluA2 in the cortex and striatum of Cln3(-/-) mice as compared to WT mice. Expression levels of the GluA4 subunit were similar in the cerebellum of WT and Cln3(-/-) mice. While intracellular GluA1 levels in the WT and Cln3(-/-) cerebellum or cortex were similar, the intracellular expression of GluA1 in the Cln3(-/-) striatum was decreased to 56% of the WT level. Our results show a prominent increase in AMPA receptor surface expression in the brain of Cln3(-/-) mice and suggest that CLN3 is involved in the regulation of AMPA receptor surface expression. PMID:26375929

  16. Invited review: Growth-promoting effects of colostrum in calves based on interaction with intestinal cell surface receptors and receptor-like transporters.

    PubMed

    Ontsouka, Edgar C; Albrecht, Christiane; Bruckmaier, Rupert M

    2016-06-01

    The postnatal development and maturation of the gastrointestinal (GI) tract of neonatal calves is crucial for their survival. Major morphological and functional changes in the calf's GI tract initiated by colostrum bioactive substances promote the establishment of intestinal digestion and absorption of food. It is generally accepted that colostrum intake provokes the maturation of organs and systems in young calves, illustrating the significance of the cow-to-calf connection at birth. These postnatal adaptive changes of the GI tissues in neonatal calves are especially induced by the action of bioactive substances such as insulin-like growth factors, hormones, or cholesterol carriers abundantly present in colostrum. These substances interact with specific cell-surface receptors or receptor-like transporters expressed in the GI wall of neonatal calves to elicit their biological effects. Therefore, the abundance and activity of cell surface receptors and receptor-like transporters binding colostral bioactive substances are a key aspect determining the effects of the cow-to-calf connection at birth. The present review compiles the information describing the effects of colostrum feeding on selected serum metabolic and endocrine traits in neonatal calves. In this context, the current paper discusses specifically the consequences of colostrum feeding on the GI expression and activity of cell-receptors and receptor-like transporters binding growth hormone, insulin-like growth factors, insulin, or cholesterol acceptors in neonatal calves. PMID:26874414

  17. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1

    DOE PAGESBeta

    Blind, Raymond D.; Sablin, Elena P.; Kuchenbecker, Kristopher M.; Chiu, Hsiu-Ju; Deacon, Ashley M.; Das, Debanu; Fletterick, Robert J.; Ingraham, Holly A.

    2014-10-06

    We previously reported that lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP2 and PIP3 bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIPn headgroups. We find that stabilization by the PIP3 ligand propagates a signal that increases coactivator recruitment to SF-1, consistent with our earlier work showing that PIP3 increases SF-1 activity. This newly created surface harbors a cluster of human mutations that lead to endocrine disorders, thus explaining how these puzzling mutations cripple SF-1 activity. Finally, we propose that thismore » new surface acts as a PIP3-regulated interface between SF-1 and coregulatory proteins, analogous to the function of membrane-bound phosphoinositides.« less

  18. Regulation of the surface expression of the platelet-activating factor receptor in IC-21 peritoneal macrophages. Effects of lipopolysaccharide.

    PubMed

    Liu, H; Chao, W; Olson, M S

    1992-10-15

    The effect of bacterial lipopolysaccharide (LPS) on the expression of the receptor for platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; AGEPC) was examined in cultured IC-21 peritoneal macrophages. AGEPC binding to its receptors reached saturation within 20 min at 25 degrees C and was reversible. Scatchard analysis revealed a single class of AGEPC receptors with a Bmax of approximately 170 fmol/mg cellular protein and a Kd of 0.25 nM. Preincubation of IC-21 cells with LPS (0.01-1,000 ng/ml) induced an increase in the surface expression of AGEPC receptors in a time- and concentration-dependent fashion. The maximal effect of LPS on the AGEPC receptor was observed between 5 and 8 h, with a typical increase between 150 and 200%. Scatchard analysis indicated that LPS treatment of IC-21 cells increased the number of AGEPC receptors on the cell surface without any apparent change in the affinity of the receptor for the ligand. The effect of LPS on the surface expression of the AGEPC receptor was nearly abolished by cycloheximide (0.1 mM) and by actinomycin D (3 microM), suggesting the involvement of enhanced receptor protein synthesis and mRNA production in this event. Moreover, LPS treatment increased the capability of the IC-21 cell to respond to AGEPC addition by elevating intracellular free Ca2+ without causing an increase in the basal level of intracellular Ca2+. The present study demonstrates that IC-21 peritoneal macrophages possess high affinity AGEPC receptors and provides the evidence that the number of functional AGEPC receptors on a cell can be increased significantly upon exposure to LPS. PMID:1328211

  19. Molecular aggregation of humic substances

    USGS Publications Warehouse

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  20. Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates on Mars

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Kern, R. G.

    2003-01-01

    In order to minimize the forward contamination of Mars, spacecraft are assembled under clean-room conditions that often require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival by protecting spores from sterilizing agents, including UV irradiation on the surface of Mars. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.

  1. AMPAR interacting protein CPT1C enhances surface expression of GluA1-containing receptors

    PubMed Central

    Gratacòs-Batlle, Esther; Yefimenko, Natalia; Cascos-García, Helena; Soto, David

    2015-01-01

    AMPARs mediate the vast majority of fast excitatory synaptic transmission in the brain and their biophysical and trafficking properties depend on their subunit composition and on several posttranscriptional and posttranslational modifications. Additionally, in the brain AMPARs associate with auxiliary subunits, which modify the properties of the receptors. Despite the abundance of AMPAR partners, recent proteomic studies have revealed even more interacting proteins that could potentially be involved in AMPAR regulation. Amongst these, carnitine palmitoyltransferase 1C (CPT1C) has been demonstrated to form an integral part of native AMPAR complexes in brain tissue extracts. Thus, we aimed to investigate whether CPT1C might be able to modulate AMPAR function. Firstly, we confirmed that CPT1C is an interacting protein of AMPARs in heterologous expression systems. Secondly, CPT1C enhanced whole-cell currents of GluA1 homomeric and GluA1/GluA2 heteromeric receptors. However, CPT1C does not alter the biophysical properties of AMPARs and co-localization experiments revealed that AMPARs and CPT1C are not associated at the plasma membrane despite a strong level of co-localization at the intracellular level. We established that increased surface GluA1 receptor number was responsible for the enhanced AMPAR mediated currents in the presence of CPT1C. Additionally, we revealed that the palmitoylable residue C585 of GluA1 is important in the enhancement of AMPAR trafficking to the cell surface by CPT1C. Nevertheless, despite its potential as a depalmitoylating enzyme, CPT1C does not affect the palmitoylation state of GluA1. To sum up, this work suggests that CPT1C plays a role as a novel regulator of AMPAR surface expression in neurons. Fine modulation of AMPAR membrane trafficking is fundamental in normal synaptic activity and in plasticity processes and CPT1C is therefore a putative candidate to regulate neuronal AMPAR physiology. PMID:25698923

  2. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules.

    PubMed

    Ghosh, R N; Webb, W W

    1994-05-01

    We have developed a technique to detect, recognize, and track each individual low density lipoprotein receptor (LDL-R) molecule and small receptor clusters on the surface of human skin fibroblasts. Molecular recognition and high precision (30 nm) simultaneous automatic tracking of all of the individual receptors in the cell surface population utilize quantitative time-lapse low light level digital video fluorescence microscopy analyzed by purpose-designed algorithms executed on an image processing work station. The LDL-Rs are labeled with the biologically active, fluorescent LDL derivative dil-LDL. Individual LDL-Rs and unresolved small clusters are identified by measuring the fluorescence power radiated by the sub-resolution fluorescent spots in the image; identification of single particles is ascertained by four independent techniques. An automated tracking routine was developed to track simultaneously, and without user intervention, a multitude of fluorescent particles through a sequence of hundreds of time-lapse image frames. The limitations on tracking precision were found to depend on the signal-to-noise ratio of the tracked particle image and mechanical drift of the microscope system. We describe the methods involved in (i) time-lapse acquisition of the low-light level images, (ii) simultaneous automated tracking of the fluorescent diffraction limited punctate images, (iii) localizing particles with high precision and limitations, and (iv) detecting and identifying single and clustered LDL-Rs. These methods are generally applicable and provide a powerful tool to visualize and measure dynamics and interactions of individual integral membrane proteins on living cell surfaces. PMID:8061186

  3. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules.

    PubMed Central

    Ghosh, R N; Webb, W W

    1994-01-01

    We have developed a technique to detect, recognize, and track each individual low density lipoprotein receptor (LDL-R) molecule and small receptor clusters on the surface of human skin fibroblasts. Molecular recognition and high precision (30 nm) simultaneous automatic tracking of all of the individual receptors in the cell surface population utilize quantitative time-lapse low light level digital video fluorescence microscopy analyzed by purpose-designed algorithms executed on an image processing work station. The LDL-Rs are labeled with the biologically active, fluorescent LDL derivative dil-LDL. Individual LDL-Rs and unresolved small clusters are identified by measuring the fluorescence power radiated by the sub-resolution fluorescent spots in the image; identification of single particles is ascertained by four independent techniques. An automated tracking routine was developed to track simultaneously, and without user intervention, a multitude of fluorescent particles through a sequence of hundreds of time-lapse image frames. The limitations on tracking precision were found to depend on the signal-to-noise ratio of the tracked particle image and mechanical drift of the microscope system. We describe the methods involved in (i) time-lapse acquisition of the low-light level images, (ii) simultaneous automated tracking of the fluorescent diffraction limited punctate images, (iii) localizing particles with high precision and limitations, and (iv) detecting and identifying single and clustered LDL-Rs. These methods are generally applicable and provide a powerful tool to visualize and measure dynamics and interactions of individual integral membrane proteins on living cell surfaces. Images FIGURE 1 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 PMID:8061186

  4. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    PubMed Central

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P < 0.05) and formed endothelial-like networks to a greater extent (P < 0.05) than SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P < 0.05), and an increased percentage of dNK cells expressed NKG2D at 10% oxygen (P < 0.05) compared to other oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  5. The Role of Surface Receptor Density in Surface-Initiated Polymerizations for Cancer Cell Isolation.

    PubMed

    Lilly, Jacob L; Berron, Brad J

    2016-06-01

    Fluid biopsies potentially offer a minimally invasive alternative to traditional tissue biopsies for the continual monitoring of metastatic cancer. Current established technologies for isolating circulating tumor cells (CTCs) suffer from poor purity and yield and require fixatives that preclude the collection of viable cells for longitudinal analyses of biological function. Antigen specific lysis (ASL) is a rapid, high-purity method of cell isolation based on targeted protective coatings on antigen-presenting cells and lysis depletion of unprotected antigen-negative cells. In ASL, photoinitiators are specifically labeled on cell surfaces that enable subsequent surface-initiated polymerization. Critically, the significant determinants of process yield have yet to be investigated for this emerging technology. In this work, we show that the labeling density of photoinitiators is strongly correlated with the yield of intact cells during ASL by flow cytometry analysis. Results suggest ASL is capable of delivering ∼25% of targeted cells after isolation using traditional antibody labeling approaches. Monomer formulations of two molecular weights of PEG-diacrylate (Mn ∼ 575 and 3500) are examined. The gelation response during ASL polymerization is also investigated via protein microarray analogues on planar glass. Finally, a density threshold of photoinitiator labeling required for protection during lysis is determined for both monomer formulations. These results indicate ASL is a promising technology for high yield CTC isolation for rare-cell function assays and fluid biopsies. PMID:27206735

  6. Cell-surface receptor control that depends on the size of a synthetic equilateral-triangular RNA-protein complex

    PubMed Central

    Fujita, Yoshihiko; Furushima, Rie; Ohno, Hirohisa; Sagawa, Fumihiko; Inoue, Tan

    2014-01-01

    A human cell surface displays many complex-structured receptors for receiving extracellular signals to regulate cellular functions. The use of precisely regulated signal-controls of the receptors could have possibilities beyond the current synthetic biology research that begins with the transfection of exogenous molecules to rewire intracellular circuits. However, by using a current ligand-receptor technique, the configuration of the artificially assembled cell surface molecules has been undefined because the assemblage is an unsystematic molecular clustering. Thus, the system bears improvements for precisely regulating receptor functions. We report here a new tool that refines stereochemically-controlled positioning of an assembled surface receptor. The tool performs rationally as an ON/OFF switch and is finely tunable so that a 3 to 6 nm size difference of the device precisely distinguishes the efficiency of apoptosis induced via cell-surface receptor binding. We discuss the potential use of the device in next-generation synthetic biology and in cell surface studies. PMID:25234354

  7. Quantitatively Resolving Ligand–Receptor Bonds on Cell Surfaces Using Force-Induced Remnant Magnetization Spectroscopy

    PubMed Central

    2016-01-01

    Molecule-specific noncovalent bonding on cell surfaces is the foundation for cellular recognition and functioning. A major challenge in probing these bonds is to resolve the specific bonds quantitatively and efficiently from the nonspecific interactions in a complex environment. Using force-induced remnant magnetization spectroscopy (FIRMS), we were able to resolve quantitatively three different interactions for magnetic beads bearing anti-CD4 antibodies with CD4+ T cell surfaces based upon their binding forces. The binding force of the CD4 antibody–antigen bonds was determined to be 75 ± 3 pN. For comparison, the same bonds were also studied on a functionalized substrate surface, and the binding force was determined to be 90 ± 6 pN. The 15 pN difference revealed by high-resolution FIRMS illustrates the significant impact of the bonding environment. Because the force difference was unaffected by the cell number or the receptor density on the substrate, we attributed it to the possible conformational or local environmental differences of the CD4 antigens between the cell surface and substrate surface. Our results show that the high force resolution and detection efficiency afforded by FIRMS are valuable for studying protein–protein interactions on cell surfaces. PMID:27163031

  8. A SUB-PIXEL COEFFICIENT MODEL TO FORM AGGREGATE IMPERVIOUUS SURFACE ESTIMATES FROM NATIONAL LAND COVER DATA

    EPA Science Inventory

    Using GIS to produce impervious surface coefficients from National Land Cover Data

    National Laud Cover Data (NLCD) and county level planimetric impervious surface data were utilized to derive an impervious coefficient per NLCD class. Results show that coefficients fall in...

  9. Cell surface nucleolin interacts with CXCR4 receptor via the 212 c-terminal portion.

    PubMed

    Niu, Hongxin; Yang, Xiangshan; Xu, Zhongfa; Du, Tong; Wang, Ruogu

    2015-02-01

    Previously, we reported that CXCR4 receptor interacted with cell surface nucleolin, and the synergy of CXCR4 and nucleolin plays an essential role in malignant transformation. Here, we continued to conduct a structure-function analysis of nucleolin to identify which portion can efficaciously bind to CXCR4. In the present study, the expression of CXCR4 and nucleolin in 100 cases of papillary thyroid cancer (PTC) samples was investigated through immunohistochemistry (IHC). Subsequently, using nucleolin mutants and pull-down assay, we investigated precise interactions between CXCR4 and nucleolin in HEK-293 cells. A previous study demonstrated CXCR4 and nucleolin co-expressed in cell lines, and the present study further identified that CXCR4 and nucleolin co-expressed in PTC tissues, instead of normal tissues. The nucleolin mutant analysis revealed that nucleolin can efficaciously bind CXCR4 to activate CXCR4 signaling by 212 C-terminal domain. Conversely, N-terminal, RBD and GAR mutants of nucleolin showed no sign of activation of CXCR4 signaling, and differences were statistically insignificant (p > 0.05). In conclusion, these results suggested nucleolin is essential to activate CXCR4 signaling via 212 C-terminal domain, which is required for cell growth, migration, and invasiveness. Furthermore, nucleolin may interact with more G protein-coupled receptors, at least chemokine receptor. Our study will lay a new foundation for cancer therapy by antagonizing nucleolin and CXCR4. PMID:25326811

  10. Cell membrane mediated (-)-epicatechin effects on upstream endothelial cell signaling: evidence for a surface receptor.

    PubMed

    Moreno-Ulloa, Aldo; Romero-Perez, Diego; Villarreal, Francisco; Ceballos, Guillermo; Ramirez-Sanchez, Israel

    2014-06-15

    The consumption of cacao-derived products, particularly in the form of dark chocolate is known to provide beneficial cardiovascular effects in normal individuals and in those with vascular dysfunction (reduced nitric oxide [NO] bioavailability and/or synthesis). Upstream mechanisms by which flavonoids exert these effects are poorly understood and may involve the participation of cell membrane receptors. We previously demonstrated that the flavanol (-)-epicatechin (EPI) stimulates NO production via Ca(+2)-independent eNOS activation/phosphorylation. We wished to investigate the plausible participation of a cell surface receptor using a novel cell-membrane impermeable EPI-Dextran conjugate (EPI-Dx). Under Ca(2+)-free conditions, human coronary artery endothelial cells (HCAEC) were treated for 10min with EPI or EPI-Dx at equimolar concentrations (100nM). Results demonstrate that both EPI and EPI-Dx induced the phosphorylation/activation of PI3K, PDK-1, AKT and eNOS. Interestingly, EPI-Dx effects were significantly higher in magnitude than those of EPI alone. The capacity of EPI-Dx to stimulate cell responses supports the existence of an EPI cell membrane receptor mediating eNOS activation. PMID:24794111

  11. Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus

    PubMed Central

    Lee, Benhur; Pernet, Olivier; Ahmed, Asim A.; Zeltina, Antra; Beaty, Shannon M.; Bowden, Thomas A.

    2015-01-01

    The discovery of African henipaviruses (HNVs) related to pathogenic Hendra virus (HeV) and Nipah virus (NiV) from Southeast Asia and Australia presents an open-ended health risk. Cell receptor use by emerging African HNVs at the stage of host-cell entry is a key parameter when considering the potential for spillover and infection of human populations. The attachment glycoprotein from a Ghanaian bat isolate (GhV-G) exhibits <30% sequence identity with Asiatic NiV-G/HeV-G. Here, through functional and structural analysis of GhV-G, we show how this African HNV targets the same human cell-surface receptor (ephrinB2) as the Asiatic HNVs. We first characterized this virus−receptor interaction crystallographically. Compared with extant HNV-G–ephrinB2 structures, there was significant structural variation in the six-bladed β-propeller scaffold of the GhV-G receptor-binding domain, but not the Greek key fold of the bound ephrinB2. Analysis revealed a surprisingly conserved mode of ephrinB2 interaction that reflects an ongoing evolutionary constraint among geographically distal and phylogenetically divergent HNVs to maintain the functionality of ephrinB2 recognition during virus–host entry. Interestingly, unlike NiV-G/HeV-G, we could not detect binding of GhV-G to ephrinB3. Comparative structure–function analysis further revealed several distinguishing features of HNV-G function: a secondary ephrinB2 interaction site that contributes to more efficient ephrinB2-mediated entry in NiV-G relative to GhV-G and cognate residues at the very C terminus of GhV-G (absent in Asiatic HNV-Gs) that are vital for efficient receptor-induced fusion, but not receptor binding per se. These data provide molecular-level details for evaluating the likelihood of African HNVs to spill over into human populations. PMID:25825759

  12. Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus.

    PubMed

    Lee, Benhur; Pernet, Olivier; Ahmed, Asim A; Zeltina, Antra; Beaty, Shannon M; Bowden, Thomas A

    2015-04-28

    The discovery of African henipaviruses (HNVs) related to pathogenic Hendra virus (HeV) and Nipah virus (NiV) from Southeast Asia and Australia presents an open-ended health risk. Cell receptor use by emerging African HNVs at the stage of host-cell entry is a key parameter when considering the potential for spillover and infection of human populations. The attachment glycoprotein from a Ghanaian bat isolate (GhV-G) exhibits <30% sequence identity with Asiatic NiV-G/HeV-G. Here, through functional and structural analysis of GhV-G, we show how this African HNV targets the same human cell-surface receptor (ephrinB2) as the Asiatic HNVs. We first characterized this virus-receptor interaction crystallographically. Compared with extant HNV-G-ephrinB2 structures, there was significant structural variation in the six-bladed β-propeller scaffold of the GhV-G receptor-binding domain, but not the Greek key fold of the bound ephrinB2. Analysis revealed a surprisingly conserved mode of ephrinB2 interaction that reflects an ongoing evolutionary constraint among geographically distal and phylogenetically divergent HNVs to maintain the functionality of ephrinB2 recognition during virus-host entry. Interestingly, unlike NiV-G/HeV-G, we could not detect binding of GhV-G to ephrinB3. Comparative structure-function analysis further revealed several distinguishing features of HNV-G function: a secondary ephrinB2 interaction site that contributes to more efficient ephrinB2-mediated entry in NiV-G relative to GhV-G and cognate residues at the very C terminus of GhV-G (absent in Asiatic HNV-Gs) that are vital for efficient receptor-induced fusion, but not receptor binding per se. These data provide molecular-level details for evaluating the likelihood of African HNVs to spill over into human populations. PMID:25825759

  13. Molecular-scale investigations of structures and surface charge distribution of surfactant aggregates by three-dimensional force mapping

    SciTech Connect

    Suzuki, Kazuhiro; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi; Kobayashi, Kei

    2014-02-07

    Surface charges on nanoscale structures in liquids, such as biomolecules and nano-micelles, play an essentially important role in their structural stability as well as their chemical activities. These structures interact with each other through electric double layers (EDLs) formed by the counter ions in electrolyte solution. Although static-mode atomic force microscopy (AFM) including colloidal-probe AFM is a powerful technique for surface charge density measurements and EDL analysis on a submicron scale in liquids, precise surface charge density analysis with single-nanometer resolution has not been made because of its limitation of the resolution and the detection sensitivity. Here we demonstrate molecular-scale surface charge measurements of self-assembled micellar structures, molecular hemicylinders of sodium dodecyl sulfate (SDS), by three-dimensional (3D) force mapping based on frequency modulation AFM. The SDS hemicylindrical structures with a diameter of 4.8 nm on a graphite surface were clearly imaged. We have succeeded in visualizing 3D EDL forces on the SDS hemicylinder surfaces and obtaining the molecular-scale charge density for the first time. The results showed that the surface charge on the trench regions between the hemicylinders was much smaller than that on the hemicylinder tops. The method can be applied to a wide variety of local charge distribution studies, such as spatial charge variation on a single protein molecule.

  14. Aggregation of Individual Sensing Units for Signal Accumulation: Conversion of Liquid-Phase Colorimetric Assay into Enhanced Surface-Tethered Electrochemical Analysis.

    PubMed

    Wei, Tianxiang; Dong, Tingting; Wang, Zhaoyin; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui

    2015-07-22

    A novel concept is proposed for converting liquid-phase colorimetric assay into enhanced surface-tethered electrochemical analysis, which is based on the analyte-induced formation of a network architecture of metal nanoparticles (MNs). In a proof-of-concept trial, thymine-functionalized silver nanoparticle (Ag-T) is designed as the sensing unit for Hg(2+) determination. Through a specific T-Hg(2+)-T coordination, the validation system based on functionalized sensing units not only can perform well in a colorimetric Hg(2+) assay, but also can be developed into a more sensitive and stable electrochemical Hg(2+) sensor. In electrochemical analysis, the simple principle of analyte-induced aggregation of MNs can be used as a dual signal amplification strategy for significantly improving the detection sensitivity. More importantly, those numerous and diverse colorimetric assays that rely on the target-induced aggregation of MNs can be augmented to satisfy the ambitious demands of sensitive analysis by converting them into electrochemical assays via this approach. PMID:26149108

  15. Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases.

    PubMed

    Chen, Lingxin; Fu, Xiuli; Li, Jinhua

    2013-07-01

    In this work, a simple and sensitive surface-enhanced Raman scattering (SERS) strategy was developed for recognition and detection of trypsin, by using anti-aggregation of 4-mercaptopyridine (4-MPY)-functionalized silver nanoparticles (AgNPs) based on the interaction between protamine and trypsin. The polycationic protamine not only served as a substrate for enzyme hydrolysis but also worked as a medium for SERS enhancement, which could bind negatively charged 4-MPY-functionalized AgNPs and induce their aggregation. The hydrolysis catalyzed with trypsin in sample solution decreased the concentration of free protamine, resulting in the dispersion of AgNPs and thus decreasing the Raman intensity of 4-MPY, by which the trypsin could be sensed optically. A detection level down to 0.1 ng mL(-1) for trypsin was obtained. The induced accumulation of AgNPs modified with Raman reporter 4-MPY largely enhanced the SERS responses. A good linearity was found within the wide range over five orders of magnitude and reasonable relative standard deviations (between 2.4 and 11.6%) were attained. By using trypsin as a model, the new concept can provide an excellent platform for ultrasensitive SERS measurements of various proteases/enzymes which can lead to nanoparticles stability change through catalyzed hydrolysis toward substrate. PMID:23703031

  16. Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates on Mars

    NASA Astrophysics Data System (ADS)

    Schuerger, A. C.; Kern, R. G.

    2003-07-01

    The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated martian conditions.

  17. A Hydrophobic Gold Surface Triggers Misfolding and Aggregation of the Amyloidogenic Josephin Domain in Monomeric Form, While Leaving the Oligomers Unaffected

    PubMed Central

    Apicella, Alessandra; Soncini, Monica; Deriu, Marco Agostino; Natalello, Antonino; Bonanomi, Marcella; Dellasega, David; Tortora, Paolo; Regonesi, Maria Elena; Casari, Carlo Spartaco

    2013-01-01

    Protein misfolding and aggregation in intracellular and extracellular spaces is regarded as a main marker of the presence of degenerative disorders such as amyloidoses. To elucidate the mechanisms of protein misfolding, the interaction of proteins with inorganic surfaces is of particular relevance, since surfaces displaying different wettability properties may represent model systems of the cell membrane. Here, we unveil the role of surface hydrophobicity/hydrophilicity in the misfolding of the Josephin domain (JD), a globular-shaped domain of ataxin-3, the protein responsible for the spinocerebellar ataxia type 3. By means of a combined experimental and theoretical approach based on atomic force microscopy, Fourier transform infrared spectroscopy and molecular dynamics simulations, we reveal changes in JD morphology and secondary structure elicited by the interaction with the hydrophobic gold substrate, but not by the hydrophilic mica. Our results demonstrate that the interaction with the gold surface triggers misfolding of the JD when it is in native-like configuration, while no structural modification is observed after the protein has undergone oligomerization. This raises the possibility that biological membranes would be unable to affect amyloid oligomeric structures and toxicity. PMID:23527026

  18. A protein crosslinking assay for measuring cell surface expression of glutamate receptor subunits in the rodent brain after in vivo treatments

    PubMed Central

    Boudreau, Amy C.; Milovanovic, Mike; Conrad, Kelly L.; Nelson, Christopher; Ferrario, Carrie R.; Wolf, Marina E.

    2012-01-01

    Trafficking of neurotransmitter receptors between intracellular and cell surface compartments is important for regulating neurotransmission. We developed a method for determining if an in vivo treatment has altered receptor distribution in a particular region of rodent brain. After the treatment, brain slices are rapidly prepared from the region of interest. Then cell surface-expressed receptors are covalently crosslinked to nearby proteins using the membrane-impermeable, bifunctional crosslinker bis(sulfosuccinimidyl)suberate (BS3). This increases the apparent molecular weight of surface receptors, while intracellular receptors are not modified. Thus, surface and intracellular receptor pools can be separated and quantified using SDS-PAGE and immunoblotting. This method is particularly useful for analyzing AMPA receptor subunits, offering advantages in accuracy, efficiency and cost compared to biotinylation. A disadvantage is that some antibodies no longer recognize their target protein after crosslinking. We have used this method to quantify changes in receptor distribution after acute and chronic exposure to psychomotor stimulants. PMID:22470150

  19. Macrophage recognition of toxic advanced glycosylation end products through the macrophage surface-receptor nucleolin.

    PubMed

    Miki, Yuichi; Dambara, Hikaru; Tachibana, Yoshihiro; Hirano, Kazuya; Konishi, Mio; Beppu, Masatoshi

    2014-01-01

    Advanced glycosylation end-products (AGEs) are non-enzymatically glycosylated proteins that play an important role in several diseases and aging processes, including angiopathy, renal failure, diabetic complications, and some neurodegenerative diseases. In particular, glyceraldehyde (GCA)- and glycolaldehyde (GOA)-derived AGEs are deemed toxic AGEs, due to their cytotoxicity. Recently, the shuttling-protein nucleolin has been shown to possess scavenger receptor-activity. Here, we investigated whether or not macrophages recognize toxic AGEs through nucleolin receptors expressed on their surface. Free amino acid groups and arginine residues found in bovine serum albumin (BSA) were time-dependently modified by incubation with GCA and GOA. In addition, average molecular size was increased by incubation with GCA and GOA. While GCA-treated BSA (GCA-BSA) and GOA-treated BSA (GOA-BSA) were recognized by thioglycollate-elicited mouse peritoneal macrophages in proportion to their respective aldehyde-modification ratios, aldehyde-untreated control-BSA was not. Surface plasmon-resonance analysis revealed that nucleolin strongly associated with GCA-BSA and GOA-BSA, but not with control-BSA. Further, pretreating macrophages with anti-nucleolin antibody, but not control-Immunoglobulin G, inhibited recognition of GCA-BSA and GOA-BSA by macrophages. Additionally, AGRO, a nucleolin-specific oligonucleotide aptamer, inhibited recognition of GCA-BSA and GOA-BSA. Moreover, nucleolin-transfected HEK293 cells recognized more GCA-BSA and GOA-BSA than control HEK cells did. Binding of nucleolin and GCA-BSA/GOA-BSA was also blocked by anti-nucleolin antibody at molecular level. These results indicate that nucleolin is a receptor that allows macrophages to recognize toxic AGEs. PMID:24818254

  20. Modeling study of surface ozone source-receptor relationships in East Asia

    NASA Astrophysics Data System (ADS)

    Li, Jie; Yang, Wenyi; Wang, Zifa; Chen, Huansheng; Hu, Bo; Li, Jianjun.; Sun, Yele.; Fu, Pingqing; Zhang, Yuqia

    2016-01-01

    Ozone source-receptor relationships over East Asia have been quantitatively investigated using a chemical transport model including an on-line tracer-tagged procedure, with a particular focus on the source regions of different daily ozone mixing ratios. Comparison with observations showed that the model reproduced surface ozone and tropospheric nitrogen dioxide column densities. Long-range transport from outside East Asia contributed the greatest fraction to annual surface ozone over remote regions, the Korean peninsula, and Japan, reaching 50%-80% of total ozone. Self-contributions accounted for 5%-20% ozone in the Korean peninsula and Japan, whereas the contribution of trans-boundary transport from photochemical production in China was less than 5%-10%. At extra-high ozone levels, self-contributions reached 50%-60% in the Korean peninsula. Ozone source-receptor relationships showed high seasonal variability over East Asia. Significant transport was also found between sub-regions in China, which presents a great challenge to policy-makers because most current control strategies are confined to specific regions.

  1. Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-03-10

    The contributions of localized surface plasmon resonance (LSPR) and Drude (free electrons) absorption to the complex dielectric function of ultrathin Au films were investigated with spectroscopic ellipsometry. When the Au film thickness is thinner than ~10 nm, Au nanoparticles (NPs) are formed as a result of the discontinuity in the films, leading to the emergence of LSPR of Au NPs; and the LSPR exhibits a splitting when the films thinner than ~8 nm, which could be attributed to the near-field coupling of the Au NPs and/or the inhomogeneous polarizations of the Au NPs. On the other hand, the delocalization of electrons in Au NPs due to the aggregation of Au NPs in a thicker film leads to an increase in the free-electron absorption and a suppression of the LSPR. PMID:24663852

  2. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1993-01-01

    Part of a special section on the market performance of industrial minerals in 1992. Production of construction aggregates increased by 4.6 percent in 1992. This increase was due, in part, to the increased funding for transportation and infrastructure projects. The U.S. produced about 1.05 Gt of crushed stone and an estimated 734 Mt of construction sand and gravel in 1992. Demand is expected to increase by about 5 percent in 1993.

  3. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1996-01-01

    Part of the Annual Commodities Review 1995. Production of construction aggregates such as crushed stone and construction sand and gravel showed a marginal increase in 1995. Most of the 1995 increases were due to funding for highway construction work. The major areas of concern to the industry included issues relating to wetlands classification and the classification of crystalline silica as a probable human carcinogen. Despite this, an increase in demand is anticipated for 1996.

  4. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  5. Synthesis of an endothelial cell mimicking surface containing thrombomodulin and endothelial protein C receptor

    NASA Astrophysics Data System (ADS)

    Kador, Karl Erich

    Synthetic materials for use in blood contacting applications have been studied for many years with limited success. One of the main areas of need for these materials is the design of synthetic vascular grafts for use in the hundreds of thousands of patients who have coronary artery bypass grafting, many without suitable veins for autologous grafts. The design of these grafts is constrained by two common modes of failure, the formation of intimal hyperplasia (IH) and thrombosis. IH formation has been previously linked to a mismatching of the mechanical properties of the graft and has been overcome by creating grafts using materials whose compliance mimics that of the native artery. Several techniques and surface modification have been designed to limit thrombosis on the surface of synthetic materials. One which has shown the greatest promise is the immobilization of Thrombomodulin (TM), a protein found on the endothelial cell membrane lining native blood vessels involved in the activation of the anticoagulant Protein C (PC). While TM immobilization has been shown to arrest thrombin formation and limit fibrous formations in in-vitro and in-vivo experiments, it has shown to be transport limiting under arterial flow. On the endothelial cell surface, TM is co-localized with Endothelial Protein C Receptor (EPCR), which increases PC transport onto the cell surface and increases PC activation via TM between 20-100 fold. This dissertation will describe the chemical modification of medical grade polyurethane (PU), whose compliance has been shown to match that of native arteries. This modification will enable the immobilization of two proteins on an enzymatically relevant scale estimated at less than 10 nm. This dissertation will further describe the immobilization of the proteins TM and EPCR, and analyze the ability of a surface co-immobilized with these proteins to activate the anticoagulant PC. Finally, it will compare the ability of this co-immobilized surface to delay

  6. The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor regulates cell surface plasminogen activator activity on human trophoblast cells.

    PubMed

    Zhang, J C; Sakthivel, R; Kniss, D; Graham, C H; Strickland, D K; McCrae, K R

    1998-11-27

    The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor (LRP/alpha2MR) mediates the internalization of numerous ligands, including prourokinase (pro-UK) and complexes between two-chain urokinase (tc-u-PA) and plasminogen activator inhibitor type-1 (PAI-1). It has been suggested that through its ability to internalize these ligands, LRP/alpha2MR may regulate the expression of plasminogen activator activity on cell surfaces; this hypothesis, however, has not been experimentally confirmed. To address this issue, we assessed the ability of LRP/alpha2MR to regulate plasminogen activator activity on human trophoblast cells, which express both LRP/alpha2MR and the urokinase receptor (uPAR). Trophoblasts internalized and degraded exogenous 125I-pro-UK (primarily following its conversion to tc-u-PA and incorporation into tc-u-PA.PAI complexes) in an LRP/alpha2MR-dependent manner, which was inhibited by the LRP/alpha2MR receptor-associated protein. Receptor-associated protein also caused a approximately 50% reduction in cell surface plasminogen activator activity and delayed the regeneration of unoccupied uPAR by cells on which uPAR were initially saturated with pro-UK. Identical effects were caused by anti-LRP/alpha2MR antibodies. These results demonstrate that LRP/alpha2MR promotes the expression of cell surface plasminogen activator activity on trophoblasts by facilitating the clearance of tc-u-PA.PAI complexes and regeneration of unoccupied cell surface uPAR. PMID:9822706

  7. Reversible Palmitoylation Regulates Surface Stability of AMPA Receptors in the Nucleus Accumbens in Response to Cocaine in vivo

    PubMed Central

    Van Dolah, Dustin K.; Mao, Li-Min; Shaffer, Christopher; Guo, Ming-Lei; Fibuch, Eugene E.; Chu, Xiang-Ping; Buch, Shilpa; Wang, John Q.

    2010-01-01

    Background Palmitoylation is emerging as one of the most important posttranslational modifications of excitatory synaptic proteins in mammalian brain cells. As a reversible and regulatable modification sensitive to changing synaptic inputs, palmitoylation of ionotropic glutamate receptors contributes to not only the modulation of normal receptor and synaptic activities, but also the pathogenesis of various neuropsychiatric disorders. Here, we report that palmitoylation of the AMPA receptor is regulated by the psychostimulant, cocaine, and such regulation is involved in cocaine action. Methods We tested palmitoylation and surface expression of AMPA receptors in striatal neurons and psychomotor behavior in responses to cocaine in rats. Results All four AMPA receptor subunits (GluA1-4 or GluR1-4) are palmitoylated in the nucleus accumbens (NAc) of adult rats. Among them, GluA1 and GluA3 are preferentially upregulated in their palmitoylation levels by a systemic injection of cocaine. The upregulated GluA1 and 3 palmitoylation is a transient and reversible event. Consequently, it increases the susceptibility of surface-expressed GluA1 and 3 to internalization trafficking, leading to a temporal loss of surface receptor expression. Blockade of the regulated GluA1/3 palmitoylation with a palmitoylation inhibitor in the local NAc reverses the loss of surface GluA1/3. The inhibition of palmitoylation also concurrently sustains behavioral responsivity to cocaine. Conclusions Our data identify a novel drug-palmitoylation coupling in the center of limbic reward circuits. Through palmitoylating selective AMPA receptor subunits, cocaine activity-dependently regulates trafficking and subcellular localization of the receptor in NAc neurons and dynamically controls psychomotor sensitivity to the psychoactive drug in vivo. PMID:21216391

  8. Synapse-associated protein-97 isoform-specific regulation of surface AMPA receptors and synaptic function in cultured neurons.

    PubMed

    Rumbaugh, Gavin; Sia, Gek-Ming; Garner, Craig C; Huganir, Richard L

    2003-06-01

    Members of the synapse-associated protein-97 (SAP97) family of scaffold proteins have been implicated as central organizers of synaptic junctions to build macromolecular signaling complexes around specific postsynaptic neurotransmitter receptors. In this regard, SAP97 has been suggested to regulate the synaptic localization of glutamate receptor type 1 subunits of the AMPA-type glutamate receptors. To test this hypothesis directly, we assessed the effects of SAP97 overexpression on surface expression of synaptic AMPA receptors. We find that recombinant SAP97 not only becomes concentrated at synaptic junctions but also leads to an increase in synaptic AMPA receptors, spine enlargement, and an increase in miniature EPSC (mEPSC) frequency, indicating that SAP97 has both postsynaptic and presynaptic effects on synaptic transmission. Synaptic targeting of SAP97, increased surface AMPA receptors, and increased mEPSC frequency are dependent on the presence of specific alternatively spliced sequences in SAP97 that encode a protein 4.1 binding site. These results suggest that SAP97 can affect the synaptic recruitment of AMPA receptors and spine morphology and that these effects may be regulated by alternative splicing. PMID:12805297

  9. Aggregation Behavior of Imidazolium-Based Surface-Active Ionic Liquids with Photoresponsive Cinnamate Counterions in the Aqueous Solution.

    PubMed

    Bi, Yanhui; Zhao, Liuchen; Hu, Qiongzheng; Gao, Yan'an; Yu, Li

    2015-11-24

    Two imidazolium-based surface active ionic liquids (SAILs) with photoresponsive cinnamate aromatic counterions, viz. 1-dodecyl-3-methylimidazolium cinnamate ([C12mim][CA]) and 1-dodecyl-3-methylimidazolium para-hydroxy-cinnamate ([C12mim][PCA]), were newly synthesized, and their self-assembly behaviors in aqueous solutions were systematically explored. Results of surface tension and conductivity measurements show that both [C12mim][CA] and [C12mim][PCA] display a superior surface activity in aqueous solutions compared to the common imidazolium-based SAIL, 1-dodecyl-3-methylimidazolium bromide (C12mimBr), which implies the incorporation of cinnamate aromatic counterions can promote the micellar formation. Furthermore, [C12mim][CA] shows higher surface activity due to the higher hydrophobicity of its counterion in comparison to [C12mim][PCA] that has a hydroxyl group. Both hexagonal liquid-crystalline phase (H1) and cubic liquid-crystalline phase (V2) were constructed in the [C12mim][CA] aqueous solutions. In contrast, the [C12mim][PCA]/H2O system only exhibits a single hexagonal liquid-crystalline phase (H1) in a broad concentration region. These lyotropic liquid crystal (LLC) phases were comprehensively characterized by polarized optical microscopy (POM), small-angle X-ray scattering (SAXS), and rheometer. Investigation on the temperature-dependent self-assembly nanostructures demonstrates that the higher temperature leads to a looser arrangement. Under UV irradiation, trans-cis photoisomerization of the phenylalkene group results in inferior surface activity of the prepared SAILs in aqueous solution with higher cmc values. Moreover, UV light irradiation induces obvious change of the structural parameters without altering the LLC phases. This work is expected to enrich the investigations of phase behaviors formed in SAILs systems and receive particular attention due to their unique properties and potential applications in drug delivery, biochemistry, materials

  10. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins.

    PubMed

    Neeper, M; Schmidt, A M; Brett, J; Yan, S D; Wang, F; Pan, Y C; Elliston, K; Stern, D; Shaw, A

    1992-07-25

    Advanced glycosylation end products of proteins (AGEs) are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes. A approximately 35-kDa polypeptide with a unique NH2-terminal sequence has been isolated from bovine lung and found to be present on the surface of endothelial cells where it mediates the binding of AGEs (receptor for advanced glycosylation end product or RAGE). Using an oligonucleotide probe based on the amino-terminal sequence of RAGE, an apparently full-length cDNA of 1.5 kilobases was isolated from a bovine lung cDNA library. This cDNA encoded a 394 amino acid mature protein comprised of the following putative domains: an extracellular domain of 332 amino acids, a single hydrophobic membrane spanning domain of 19 amino acids, and a carboxyl-terminal domain of 43 amino acids. A partial clone encoding the human counterpart of RAGE, isolated from a human lung library, was found to be approximately 90% homologous to the bovine molecule. Based on computer analysis of the amino acid sequence of RAGE and comparison with databases, RAGE is a new member of the immunoglobulin superfamily of cell surface molecules and shares significant homology with MUC 18, NCAM, and the cytoplasmic domain of CD20. Expression of the RAGE cDNA in 293 cells allowed them to bind 125I-AGE-albumin in a saturable and dose-dependent manner (Kd approximately 100 nM), blocked by antibody to RAGE. Western blots of 293 cells transfected with RAGE cDNA probed with anti-RAGE IgG demonstrated expression of immunoreactive protein compared to its absence in mock-transfected cells. These results suggest that RAGE functions as a cell surface receptor for AGEs, which could potentially mediate cellular effects of this class of glycosylated proteins. PMID:1378843

  11. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    PubMed

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium. PMID:10490972

  12. A Cleavable N-Terminal Signal Peptide Promotes Widespread Olfactory Receptor Surface Expression in HEK293T Cells

    PubMed Central

    Shepard, Blythe D.; Natarajan, Niranjana; Protzko, Ryan J.; Acres, Omar W.; Pluznick, Jennifer L.

    2013-01-01

    Olfactory receptors (ORs) are G protein-coupled receptors that detect odorants in the olfactory epithelium, and comprise the largest gene family in the genome. Identification of OR ligands typically requires OR surface expression in heterologous cells; however, ORs rarely traffic to the cell surface when exogenously expressed. Therefore, most ORs are orphan receptors with no known ligands. To date, studies have utilized non-cleavable rhodopsin (Rho) tags and/or chaperones (i.e. Receptor Transporting Protein, RTP1S, Ric8b and Gαolf) to improve surface expression. However, even with these tools, many ORs still fail to reach the cell surface. We used a test set of fifteen ORs to examine the effect of a cleavable leucine-rich signal peptide sequence (Lucy tag) on OR surface expression in HEK293T cells. We report here that the addition of the Lucy tag to the N-terminus increases the number of ORs reaching the cell surface to 7 of the 15 ORs (as compared to 3/15 without Rho or Lucy tags). Moreover, when ORs tagged with both Lucy and Rho were co-expressed with previously reported chaperones (RTP1S, Ric8b and Gαolf), we observed surface expression for all 15 receptors examined. In fact, two-thirds of Lucy-tagged ORs are able to reach the cell surface synergistically with chaperones even when the Rho tag is removed (10/15 ORs), allowing for the potential assessment of OR function with only an 8-amino acid Flag tag on the mature protein. As expected for a signal peptide, the Lucy tag was cleaved from the mature protein and did not alter OR-ligand binding and signaling. Our studies demonstrate that widespread surface expression of ORs can be achieved in HEK293T cells, providing promise for future large-scale deorphanization studies. PMID:23840901

  13. Partial molar volume, surface area, and hydration changes for equilibrium unfolding and formation of aggregation transition state: High-pressure and cosolute studies on recombinant human IFN-γ

    PubMed Central

    Webb, Jonathan N.; Webb, Serena D.; Cleland, Jeffrey L.; Carpenter, John F.; Randolph, Theodore W.

    2001-01-01

    The equilibrium dissociation of recombinant human IFN-γ was monitored as a function of pressure and sucrose concentration. The partial molar volume change for dissociation was −209 ± 13 ml/mol of dimer. The specific molar surface area change for dissociation was 12.7 ± 1.6 nm2/molecule of dimer. The first-order aggregation rate of recombinant human IFN-γ in 0.45 M guanidine hydrochloride was studied as a function of sucrose concentration and pressure. Aggregation proceeded through a transition-state species, N*. Sucrose reduced aggregation rate by shifting the equilibrium between native state (N) and N* toward the more compact N. Pressure increased aggregation rate through increased solvation of the protein, which exposes more surface area, thus shifting the equilibrium away from N toward N*. The changes in partial molar volume and specific molar surface area between the N* and N were −41 ± 9 ml/mol of dimer and 3.5 ± 0.2 nm2/molecule, respectively. Thus, the structural change required for the formation of the transition state for aggregation is small relative to the difference between N and the dissociated state. Changes in waters of hydration were estimated from both specific molar surface area and partial molar volume data. From partial molar volume data, estimates were 25 and 128 mol H2O/mol dimer for formation of the aggregation transition state and for dissociation, respectively. From surface area data, estimates were 27 and 98 mol H2O/mol dimer. Osmotic stress theory yielded values ≈4-fold larger for both transitions. PMID:11381145

  14. Regulation of AMPA receptor subunit GluA1 surface expression by PAK3 phosphorylation

    PubMed Central

    Hussain, Natasha K.; Thomas, Gareth M.; Luo, Junjie; Huganir, Richard L.

    2015-01-01

    AMPA receptors (AMPARs) are the major excitatory receptors of the brain and are fundamental to synaptic plasticity, memory, and cognition. Dynamic recycling of AMPARs in neurons is regulated through several types of posttranslational modification, including phosphorylation. Here, we identify a previously unidentified signal transduction cascade that modulates phosphorylation of serine residue 863 (S863) in the GluA1 AMPAR subunit and controls surface trafficking of GluA1 in neurons. Activation of the EphR–Ephrin signal transduction pathway enhances S863 phosphorylation. Further, EphB2 can interact with Zizimin1, a guanine–nucleotide exchange factor that activates Cdc42 and stimulates S863 phosphorylation in neurons. Among the numerous targets downstream of Cdc42, we determined that the p21-activated kinase-3 (PAK3) phosphorylates S863 in vitro. Moreover, specific loss of PAK3 expression and pharmacological inhibition of PAK both disrupt activity-dependent phosphorylation of S863 in cortical neurons. EphB2, Cdc42, and PAKs are broadly capable of controlling dendritic spine formation and synaptic plasticity and are implicated in multiple cognitive disorders. Collectively, these data delineate a novel signal cascade regulating AMPAR trafficking that may contribute to the molecular mechanisms that govern learning and cognition. PMID:26460013

  15. Specific modulation of surface receptors in J. 774 macrophages by anchorage

    SciTech Connect

    Ventura, M.A.; Rouis, M.; Thomopoulos, P. ); Louache, F. ); Erlich, D.; Goldstein, S. , Paris ); Testa, U. )

    1987-06-01

    The J.774 murine macrophage cells were cultured in suspension in Teflon flasks. When allowed to attach on culture plastic dishes, a 2-3-fold increase in transferrin binding was observed. This occurred in 10 min, reached a steady state at 60 min, remained stable for several hours and was reversible after resuspension of the cells at 37{degree}C. The phenomenon was not dependent on the synthesis of new protein. An opposite change of acetyl {sup 125}I-LDL receptors was observed, with a threefold decrease of the binding 1 h after the attachment of the cells. The increase of {sup 125}I-transferrin binding affected almost equally the cell surface and the intracellular sites; therefore it could not be related to a simple shift between these two compartments. It is suggested that the attachment of the cells induced a recruitment of binding sites from a silent pool of receptors. Serum factors, as well as phorbol esters and db-cAMP potentiated the effect of anchorage.

  16. Studying G protein-coupled receptors: immunoblotting, immunoprecipitation, phosphorylation, surface labeling, and cross-linking protocols.

    PubMed

    Pal, Kasturi; Badgandi, Hemant; Mukhopadhyay, Saikat

    2015-01-01

    Primary cilia are signaling organelles that have been shown to coordinate cellular responses to extracellular cues during physiological processes ranging from organ patterning to cell cycle regulation. A variety of receptors, including G protein-coupled receptors (GPCRs), downstream effectors (adenylyl cyclases), and second messengers, such as calcium, accumulate in the ciliary compartment. Isolation of GPCRs is essential for studying posttranslational modifications, intracellular trafficking, and protein-protein interactions that are important in downstream signaling. However, the presence of multiple hydrophobic transmembrane domains, and the inherent conformational flexibility of GPCRs make their extraction from membranes and solubilization particularly challenging. Here, we describe detailed methods for immunoblotting and immunoprecipitation of GPCRs from whole cell extracts. These methods are applicable for studying other multipass transmembrane proteins (such as adenylyl cyclases). We also describe methods for determining GPCR phosphorylation, surface labeling by biotinylation, and cross-linking to detect transient interactions with other proteins. These methods are amenable for studying both ciliary and nonciliary GPCRs in the context of cellular signaling pathways. PMID:25837398

  17. Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases

    NASA Astrophysics Data System (ADS)

    Chen, Lingxin; Fu, Xiuli; Li, Jinhua

    2013-06-01

    In this work, a simple and sensitive surface-enhanced Raman scattering (SERS) strategy was developed for recognition and detection of trypsin, by using anti-aggregation of 4-mercaptopyridine (4-MPY)-functionalized silver nanoparticles (AgNPs) based on the interaction between protamine and trypsin. The polycationic protamine not only served as a substrate for enzyme hydrolysis but also worked as a medium for SERS enhancement, which could bind negatively charged 4-MPY-functionalized AgNPs and induce their aggregation. The hydrolysis catalyzed with trypsin in sample solution decreased the concentration of free protamine, resulting in the dispersion of AgNPs and thus decreasing the Raman intensity of 4-MPY, by which the trypsin could be sensed optically. A detection level down to 0.1 ng mL-1 for trypsin was obtained. The induced accumulation of AgNPs modified with Raman reporter 4-MPY largely enhanced the SERS responses. A good linearity was found within the wide range over five orders of magnitude and reasonable relative standard deviations (between 2.4 and 11.6%) were attained. By using trypsin as a model, the new concept can provide an excellent platform for ultrasensitive SERS measurements of various proteases/enzymes which can lead to nanoparticles stability change through catalyzed hydrolysis toward substrate.In this work, a simple and sensitive surface-enhanced Raman scattering (SERS) strategy was developed for recognition and detection of trypsin, by using anti-aggregation of 4-mercaptopyridine (4-MPY)-functionalized silver nanoparticles (AgNPs) based on the interaction between protamine and trypsin. The polycationic protamine not only served as a substrate for enzyme hydrolysis but also worked as a medium for SERS enhancement, which could bind negatively charged 4-MPY-functionalized AgNPs and induce their aggregation. The hydrolysis catalyzed with trypsin in sample solution decreased the concentration of free protamine, resulting in the dispersion of AgNPs and

  18. Construction aggregates

    USGS Publications Warehouse

    Bolen, W.P.; Tepordei, V.V.

    2001-01-01

    The estimated production during 2000 of construction aggregates, crushed stone, and construction sand and gravel increased by about 2.6% to 2.7 Gt (3 billion st), compared with 1999. The expansion that started in 1992 continued with record production levels for the ninth consecutive year. By commodity, construction sand and gravel production increased by 4.5% to 1.16 Gt (1.28 billion st), while crushed stone production increased by 1.3% to 1.56 Gt (1.72 billion st).

  19. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows. PMID:24871934

  20. Chronic Morphine Reduces Surface Expression of δ-Opioid Receptors in Subregions of Rostral Striatum.

    PubMed

    Leah, Paul M; Heath, Emily M L; Balleine, Bernard W; Christie, Macdonald J

    2016-03-01

    The delta opioid receptor (DOPr), whilst not the primary target of clinically used opioids, is involved in development of opioid tolerance and addiction. There is growing evidence that DOPr trafficking is involved in drug addiction, e.g., a range of studies have shown increased plasma membrane DOPr insertion during chronic treatment with opioids. The present study used a transgenic mouse model in which the C-terminal of the DOPr is tagged with enhanced-green fluorescence protein to examine the effects of chronic morphine treatment on surface membrane expression in striatal cholinergic interneurons that are implicated in motivated learning following both chronic morphine and morphine sensitization treatment schedules in male mice. A sex difference was noted throughout the anterior striatum, which was most prominent in the nucleus accumbens core region. Incontrast with previous studies in other neurons, chronic exposure to a high dose of morphine for 6 days had no effect, or slightly decreased (anterior dorsolateral striatum) surface DOPr expression. A morphine sensitization schedule produced similar results with a significant decrease in surface DOPr expression in nucleus accumbens shell. These results suggest that chronic morphine and morphine sensitisation treatment may have effects on instrumental reward-seeking behaviours and learning processes related to drug addiction, via effects on striatal DOPr function. PMID:26093651

  1. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels.

    PubMed

    Nagarajan, Arvindhan; Petersen, Max C; Nasiri, Ali R; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J; Green, Michael R; Shulman, Gerald I; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  2. Calreticulin, a potential cell surface receptor involved in cell penetration of anti-DNA antibodies.

    PubMed

    Seddiki, N; Nato, F; Lafaye, P; Amoura, Z; Piette, J C; Mazié, J C

    2001-05-15

    A 50-kDa protein was purified as a potential receptor, using an affinity matrix containing biotinylated F14.6 or H9.3 anti-DNA mAbs derived from autoimmune (New Zealand Black x New Zealand White)F(1) mouse and membrane extracts from cells. This protein was identified as calreticulin (CRT) by microsequencing. Confocal microscopy and FACS analysis showed that CRT was present on the surface of various cells. CRT protein was recognized by a panel of anti-DNA mAbs in ELISA. The binding of F14.6 to lymphocytes and Chinese hamster ovary cells was inhibited by soluble CRT or SPA-600. Thus, the anti-DNA mAbs used in this study bound to CRT, suggesting that CRT may mediate their penetration into the cells and play an important role in lupus pathogenesis. PMID:11342668

  3. One Protein to Rule them All: Modulation of Cell Surface Receptors and Molecules by HIV Nef

    PubMed Central

    Landi, Alessia; Iannucci, Veronica; Nuffel, Anouk Van; Meuwissen, Pieter; Verhasselt, Bruno

    2011-01-01

    The HIV-1, HIV-2 and SIV Nef protein are known to modulate the expression of several cell surface receptors and molecules to escape the immune system, to alter T cell activation, to enhance viral replication, infectivity and transmission and overall to ensure the optimal environment for infection outcome. Consistent and continuous efforts have been made over the years to characterize the modulation of expression of each of these molecules, in the hope that a better understanding of these processes essential for HIV infection and/or pathogenesis will eventually highlight new therapeutic targets. In this article we provide an extensive review of the knowledge gained so far on this important and evolving topic. PMID:22103833

  4. Biosynthesis, surface expression and function of the fibronectin receptor after rat liver cell transformation to tumorigenicity.

    PubMed Central

    Decastel, M; Doyennette-Moyne, M A; Gouet, E; Aubery, M; Codogno, P

    1993-01-01

    . Furthermore, both the abnormal mature 130-kDa and precursor 100-kDa beta 1-subunits were detected on the surface of Zajdela hepatoma cells, associated with the alpha 5-subunit. The relationship between these structural alterations in the fibronectin receptor and the impaired Zajdela hepatoma cell binding to soluble fibronectin or to a coated fibronectin matrix that was observed in this study is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:8471041

  5. Native serotonin 5-HT2C receptors are expressed as homodimers on the apical surface of choroid plexus epithelial cells.

    PubMed

    Herrick-Davis, Katharine; Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E

    2015-04-01

    G protein-coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti-5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10(-9) cm(2)/s and were expressed at 32 receptors/μm(2) on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  6. Native Serotonin 5-HT2C Receptors Are Expressed as Homodimers on the Apical Surface of Choroid Plexus Epithelial Cells

    PubMed Central

    Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E.

    2015-01-01

    G protein–coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti–5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10−9 cm2/s and were expressed at 32 receptors/μm2 on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  7. An in vitro study to assess the setting and surface crazing of conventional glass ionomer cement when layered over partially set mineral trioxide aggregate.

    PubMed

    Ballal, Suma; Venkateshbabu, Nagendrababu; Nandini, Suresh; Kandaswamy, Deivanayagam

    2008-04-01

    The aim of our study was to assess the setting time and surface crazing of glass ionomer cement when layered over partially set mineral trioxide aggregate (MTA). To assess setting time, 40 hollow, cylindrical stainless steel molds were taken and equally divided into 4 groups. In groups I, II, and III glass ionomer cement was layered over partially setting MTA at 45 minutes, 4 hours, and 3 days, respectively. Group IV was used as a control. An additional 50 specimens were prepared for assessment of surface crazing. Twenty specimens (groups I and II) were prepared to study normal and desiccated patterns of conventional glass ionomer cement, respectively. Thirty specimens (groups III, IV, and V) were prepared by layering glass ionomer cement over partially set MTA at various time intervals. All the specimens were stained with red ink and analyzed for craze lines by light microscopy. From our study, it was observed that there was no statistical difference in setting time of glass ionomer cement when layered over partially set MTA in comparison to that of the control group. No craze lines were observed in those specimens (groups III, IV, and V) when viewed under staining and light microscopy. It could be concluded that conventional glass ionomer cement might be layered over partially set MTA after 45 minutes and could be used for single visit procedures. PMID:18358902

  8. Surface aggregation of urinary proteins and aspartic acid-rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy

    SciTech Connect

    Weaver, M L; Qiu, S R; Hoyer, J R; Casey, W H; Nancollas, G H; De Yoreo, J J

    2008-05-28

    The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin (OPN), and the 27-residue synthetic peptides (DDDS){sub 6}DDD and (DDDG){sub 6}DDD [where D = aspartic acid and X = S (serine) or G (glycine)] was investigated via in situ atomic force microscopy (AFM). The results show that these three growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition or increase of the step speeds (with respect to the impurity-free system) depending on a range of factors that include peptide or protein concentration, supersaturation and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the (-101) face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we argue for a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at crystal surface.

  9. Surface receptors for serum albumin in group C and G streptococci show three different types of albumin specificity.

    PubMed Central

    Wideback, K; Kronvall, G

    1982-01-01

    A total of 100 bacterial strains were tested for binding uptake of radiolabeled albumin preparations from 15 mammalian species. Three types of surface structures with specific binding sites for albumin were defined. A previously described receptor for albumin was separated into type a in Streptococcus equisimilis strains and in human group G streptococcal strains and type b in bovine group C streptococci. A new type of albumin receptor, type c, was found in Streptococcus dysgalactiae strains, the only receptor type so far with high affinity for bovine serum albumin. Type of albumin receptor correlated with bacterial species. The three receptor types showed high binding capacities; 2 X 10(8) bacterial organisms bound from 5 to 16 micrograms of albumin. All types of albumin receptors were stable to heat treatment at 80 degrees C for 5 min, but susceptible to both pepsin and trypsin treatment. Bacteria-bound albumin preparations were eluted at various concentrations of KSCN, reflecting differences in affinity. Up to 500 micrograms of human fibrinogen or polyclonal human immunoglobulin G had no inhibitory effect on the uptake of albumin, indicating a separate molecular localization of receptors for these proteins. PMID:6295942

  10. Binding kinetics and multi-bond: Finding correlations by synthesizing interactions between ligand-coated bionanoparticles and receptor surfaces.

    PubMed

    Wang, Wenjing; Voigt, Andreas; Wolff, Michael W; Reichl, Udo; Sundmacher, Kai

    2016-07-15

    The number of bonds formed between one single bionanoparticle and many surface receptors is an important subject to be studied but is seldom quantitatively investigated. A new evaluation of the correlation between binding kinetics and number of bonds is presented by varying ligand density and receptor density. An experimental system was developed using measurements with surface plasmon resonance spectroscopy. A corresponding multi-site adsorption model elucidated the correlation. The results show that with the increase of the receptor density, the adsorption rate first decreased when the number of bonds was below a maximum value and then increased when the number of bonds stayed at this maximum value. The investigation on ligand density variation suggests that the coating density on top of the bionanoparticle surface may have a particular value below which more ligand will accelerate the adsorption rate. The ratio of ligand amount bound by the receptors to the total ligand amount associated with a single bionanoparticle will remain constant even if one attaches more ligands to a bionanoparticle. We envision that the bionanoparticle desorption will not depend on density changes from either ligand or receptor when the number of bonds reaches a specific efficient value. PMID:27108189

  11. The HIV coat protein gp120 promotes forward trafficking and surface clustering of NMDA receptors in membrane microdomains

    PubMed Central

    Xu, Hangxiu; Bae, Mihyun; Tovar-y-Romo, Luis B.; Patel, Neha; Bandaru, Veera Venkata Ratnam; Pomerantz, Daniel; Steiner, Joseph; Haughey, Norman J.

    2011-01-01

    Infection by the Human immunodeficiency virus (HIV) can result in debilitating neurological syndromes collectively known as HIV associated neurocognitive disorders (HAND). While the HIV coat protein gp120 has been identified as a potent neurotoxin that enhances NMDA receptor function, the exact mechanisms for effect are not known. Here we provide evidence that gp120 activates two separate signaling pathways that converge to enhance NMDA-evoked calcium flux by clustering NMDA receptors in modified membrane microdomains. HIV gp120 enlarged, and stabilized the structure of lipid rafts on neuronal dendrites by mechanisms that involved a redox-regulated translocation of a sphingomyelin hydrolase (neutral sphingomyelinase-2; nSMase2) to the plasma membrane. A concurrent pathway was activated that enhanced the forward traffic of NMDA receptors by promoting a PKA-dependent phopshorylation of the NR1 C-terminal serine 897 (that masks an ER retention signal), followed by a PKC-dependent phosphorylation of serine 896 (important for surface expression). NMDA receptors were preferentially targeted to synapses, and clustered in modified membrane microdomains. In these conditions, NMDA receptors were unable to laterally disperse, and did not internalize, even in response to strong agonist induction. Focal NMDA-evoked calcium bursts were enhanced three-fold in these regions. Inhibiting membrane modification or NR1 phosphorylation prevented gp120 from enhancing the surface localization and clustering of NMDA receptors, while disrupting the structure of membrane microdomains restored the ability of NMDA receptors to disperse and internalize following gp120. These findings demonstrate that gp120 contributes to synaptic dysfunction in the setting of HIV-infection by interfering with the traffic of NMDA receptors. PMID:22114277

  12. Generation of Soluble Advanced Glycation End Products Receptor (sRAGE)-Binding Ligands during Extensive Heat Treatment of Whey Protein/Lactose Mixtures Is Dependent on Glycation and Aggregation.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; Wichers, Harry J; van Boekel, Martinus A J S; Hettinga, Kasper A

    2016-08-24

    Heating of protein- and sugar-containing materials is considered the primary factor affecting the formation of advanced glycation end products (AGEs). This study aimed to investigate the influence of heating conditions, digestion, and aggregation on the binding capacity of AGEs to the soluble AGE receptor (sRAGE). Samples consisting of mixtures of whey protein and lactose were heated at 130 °C. An in vitro infant digestion model was used to study the influence of heat treatment on the digestibility of whey proteins. The amount of sRAGE-binding ligands before and after digestion was measured by an ELISA-based sRAGE-binding assay. Water activity did not significantly affect the extent of digestibility of whey proteins dry heated at pH 5 (ranging from 3.3 ± 0.2 to 3.6 ± 0.1% for gastric digestion and from 53.5 ± 1.5 to 64.7 ± 1.1% for duodenal digestion), but there were differences in cleavage patterns of peptides among the samples heated at different pH values. Formation of sRAGE-binding ligands depended on the formation of aggregates and was limited in the samples heated at pH 5. Moreover, the sRAGE-binding activity of digested sample was changed by protease degradation and correlated with the digestibility of samples. In conclusion, generation of sRAGE-binding ligands during extensive heat treatment of whey protein/lactose mixtures is limited in acidic heating condition and dependent on glycation and aggregation. PMID:27460534

  13. Estrogen and androgen receptor expression in surface epithelium and inclusion cyst in the ovary of premenopausal and postmenopausal women

    PubMed Central

    2013-01-01

    Background The importance of surface epithelium and epithelial inclusion cysts in the ovary arises from studies demonstrating that these structures are susceptible to epithelial ovarian cancer development. The expression of estrogen receptor alpha (ER alpha), androgen receptor (AR), in epithelial cells of the ovary from premenopausal and postmenopausal women is interesting because sexual steroid hormones are involved in cell growth and differentiation. Methods The presence of ER alpha, AR, and the orphan G protein-coupled receptor 30 (GPR30) was demonstrated by immunofluorescence in ovaries obtained from 79 pre and postmenopausal patients, undergoing histero-salpingo-oophorectomy for proliferative gynecological diseases. The proportion of patients that displayed positive reaction for estrogen and androgen receptors in epithelial cells of the ovary was evaluated according to menopausal status and associated pathology. Results The proportion of patients that displayed a positive receptor expression in the epithelial cells of the ovarian surface and cortical inclusion cysts shows that ER alpha is present in 20 of 79 patients (0.25), AR in 33 of 79 (0.42) and GPR30 in 38 of 55 (0.69). There are no differences in ER alpha, AR, and GPR30 expression between pre and postmenopausal patients and considering the associated pathology, proportions for ER alpha and GPR30 are similar. The patients with cervical cancer show a higher proportion of AR expression in epithelial cells of the ovary, which is statistically significant (P < 0.01) compared with patients with other proliferative diseases. Conclusions The presence of ER alpha, AR, and GPR30 in the surface epithelial ovarian cells and its derivatives are observed with a proportion that is specific for each receptor. The proportion of expression for these receptors in the epithelial cells of the ovary does not change after menopause. The proportion of ovaries with AR positive epithelial cells in patients with cervical

  14. Detection and aggregation of the antitumoral drug parietin in ethanol/water mixture and on plasmonic metal nanoparticles studied by surface-enhanced optical spectroscopy: Effect of pH and ethanol concentration.

    PubMed

    Lopez-Tobar, Eduardo; Verebova, Valeria; Blascakova, Ludmila; Jancura, Daniel; Fabriciova, Gabriela; Sanchez-Cortes, Santiago

    2016-04-15

    In the present paper, we have investigated the effect of ethanol in aqueous media, the pH and the presence of Ag nanoparticles (NPs) on the aggregation processes of the antitumoral anthraquinone parietin in aqueous media and on the metal surface. UV-visible absorption, fluorescence and Raman spectra of parietin were used for such purpose. The present study provides information about the deprotonation and molecular aggregation processes occurring in parietin under different environments: ethanol/water mixture and when adsorbed onto Ag nanoparticles. The effect of ethanol on the optical properties of parietin in alcohol-water mixtures was also investigated at different ethanol concentrations with the time. For the case of the adsorption and organization of parietin molecules on the surface of Ag NPs, special attention was paid to the use of surface-enhanced optical techniques, SEF (surface-enhanced fluorescence) and SERS (surface-enhanced Raman scattering), for the characterization of the parietin aggregates and the ionization of the molecule on the surface. In particular, we have studied the variation of the SEF signal with the pH, which depends on the molecular organization of the molecule on the surface. Furthermore, a detailed analysis of the SERS spectra at different pH was accomplished and the main Raman bands of the protonated, mono-deprotonated and di-deprotonated parietin were identified. Finally, the second ionization pK of parietin on metal NPs was deduced from the SERS spectra. PMID:26836455

  15. Detection and aggregation of the antitumoral drug parietin in ethanol/water mixture and on plasmonic metal nanoparticles studied by surface-enhanced optical spectroscopy: Effect of pH and ethanol concentration

    NASA Astrophysics Data System (ADS)

    Lopez-Tobar, Eduardo; Verebova, Valeria; Blascakova, Ludmila; Jancura, Daniel; Fabriciova, Gabriela; Sanchez-Cortes, Santiago

    2016-04-01

    In the present paper, we have investigated the effect of ethanol in aqueous media, the pH and the presence of Ag nanoparticles (NPs) on the aggregation processes of the antitumoral anthraquinone parietin in aqueous media and on the metal surface. UV-visible absorption, fluorescence and Raman spectra of parietin were used for such purpose. The present study provides information about the deprotonation and molecular aggregation processes occurring in parietin under different environments: ethanol/water mixture and when adsorbed onto Ag nanoparticles. The effect of ethanol on the optical properties of parietin in alcohol-water mixtures was also investigated at different ethanol concentrations with the time. For the case of the adsorption and organization of parietin molecules on the surface of Ag NPs, special attention was paid to the use of surface-enhanced optical techniques, SEF (surface-enhanced fluorescence) and SERS (surface-enhanced Raman scattering), for the characterization of the parietin aggregates and the ionization of the molecule on the surface. In particular, we have studied the variation of the SEF signal with the pH, which depends on the molecular organization of the molecule on the surface. Furthermore, a detailed analysis of the SERS spectra at different pH was accomplished and the main Raman bands of the protonated, mono-deprotonated and di-deprotonated parietin were identified. Finally, the second ionization pK of parietin on metal NPs was deduced from the SERS spectra.

  16. Delineating PAS-HAMP interaction surfaces and signalling-associated changes in the aerotaxis receptor Aer.

    PubMed

    Garcia, Darysbel; Watts, Kylie J; Johnson, Mark S; Taylor, Barry L

    2016-04-01

    The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and redox potential via FAD bound to a cytosolic PAS domain. Here, we show that Aer-PAS controls aerotaxis through direct, lateral interactions with a HAMP domain. This contrasts with most chemoreceptors where signals propagate along the protein backbone from an N-terminal sensor to HAMP. We mapped the interaction surfaces of the Aer PAS, HAMP and proximal signalling domains in the kinase-off state by probing the solvent accessibility of 129 cysteine substitutions. Inaccessible PAS-HAMP surfaces overlapped with a cluster of PAS kinase-on lesions and with cysteine substitutions that crosslinked the PAS β-scaffold to the HAMP AS-2 helix. A refined Aer PAS-HAMP interaction model is presented. Compared to the kinase-off state, the kinase-on state increased the accessibility of HAMP residues (apparently relaxing PAS-HAMP interactions), but decreased the accessibility of proximal signalling domain residues. These data are consistent with an alternating static-dynamic model in which oxidized Aer-PAS interacts directly with HAMP AS-2, enforcing a static HAMP domain that in turn promotes a dynamic proximal signalling domain, resulting in a kinase-off output. When PAS-FAD is reduced, PAS interaction with HAMP is relaxed and a dynamic HAMP and static proximal signalling domain convey a kinase-on output. PMID:26713609

  17. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    PubMed Central

    Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.

    2015-01-01

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702

  18. Structure of Viral Aggregates

    NASA Astrophysics Data System (ADS)

    Barr, Stephen; Luijten, Erik

    2010-03-01

    The aggregation of virus particles is a particular form of colloidal self-assembly, since viruses of a give type are monodisperse and have identical, anisotropic surface charge distributions. In small-angle X-ray scattering experiments, the Qbeta virus was found to organize in different crystal structures in the presence of divalent salt and non-adsorbing polymer. Since a simple isotropic potential cannot explain the occurrence of all observed phases, we employ computer simulations to investigate how the surface charge distribution affects the virus interactions. Using a detailed model of the virus particle, we find an asymmetric ion distribution around the virus which gives rise to the different phases observed.

  19. Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Shiga toxigenic Escherichia coli O104:H4 bares the characteristics of both enterohemorrhagic (EHEC) and enteroaggregative (EAEC) E. coli. It produces plasmid encoded aggregative adherence fimbriae I (AAF/I) which mediate cell aggregation and biofilm formation in human intestine and promote Shiga...

  20. Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy

    PubMed Central

    Boudejltia, Karim Zouaoui; Ribeiro de Sousa, Daniel; Uzureau, Pierrick; Yourassowsky, Catherine; Perez-Morga, David; Courbebaisse, Guy; Chopard, Bastien; Dubois, Frank

    2015-01-01

    Platelet spreading and retraction play a pivotal role in the platelet plugging and the thrombus formation. In routine laboratory, platelet function tests include exhaustive information about the role of the different receptors present at the platelet surface without information on the 3D structure of platelet aggregates. In this work, we develop, a method in Digital Holographic Microscopy (DHM) to characterize the platelet and aggregate 3D shapes using the quantitative phase contrast imaging. This novel method is suited to the study of platelets physiology in clinical practice as well as the development of new drugs. PMID:26417523

  1. Transient Cholesterol Effects on Nicotinic Acetylcholine Receptor Cell-Surface Mobility

    PubMed Central

    Almarza, Gonzalo; Sánchez, Francisco; Barrantes, Francisco J.

    2014-01-01

    To what extent do cholesterol-rich lipid platforms modulate the supramolecular organization of the nicotinic acetylcholine receptor (AChR)? To address this question, the dynamics of AChR particles at high density and its cholesterol dependence at the surface of mammalian cells were studied by combining total internal reflection fluorescence microscopy and single-particle tracking. AChR particles tagged with a monovalent ligand, fluorescent α-bungarotoxin (αBTX), exhibited two mobile pools: i) a highly mobile one undergoing simple Brownian motion (16%) and ii) one with restricted motion (∼50%), the rest being relatively immobile (∼44%). Depletion of membrane cholesterol by methyl-α-cyclodextrin increased the fraction of the first pool to 22% and 33% after 15 and 40 min, respectively; the pool undergoing restricted motion diminished from 50% to 44% and 37%, respectively. Monoclonal antibody binding results in AChR crosslinking-internalization after 2 h; here, antibody binding immobilized within minutes ∼20% of the totally mobile AChR. This proportion dramatically increased upon cholesterol depletion, especially during the initial 10 min (83.3%). Thus, antibody crosslinking and cholesterol depletion exhibited a mutually synergistic effect, increasing the average lifetime of cell-surface AChRs∼10 s to ∼20 s. The instantaneous (microscopic) diffusion coefficient D2–4 of the AChR obtained from the MSD analysis diminished from ∼0.001 µm2 s−1 to ∼0.0001–0.00033 µm2 s−1 upon cholesterol depletion, ∼30% of all particles falling into the stationary mode. Thus, muscle-type AChR exhibits heterogeneous motional regimes at the cell surface, modulated by the combination of intrinsic (its supramolecular organization) and extrinsic (membrane cholesterol content) factors. PMID:24971757

  2. Aggregated silver nanoparticles based surface-enhanced Raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules.

    PubMed

    Liang, Jiajie; Liu, Hongwu; Huang, Caihong; Yao, Cuize; Fu, Qiangqiang; Li, Xiuqing; Cao, Donglin; Luo, Zhi; Tang, Yong

    2015-06-01

    Lowering the detection limit is critical to the design of bioassays required for medical diagnostics, environmental monitoring, and food safety regulations. The current sensitivity of standard color-based analyte detection limits the further use of enzyme-linked immunosorbent assays (ELISAs) in research and clinical diagnoses. Here, we demonstrate a novel method that uses the Raman signal as the signal-generating system of an ELISA and combines surface-enhanced Raman scattering (SERS) with silver nanoparticles aggregation for ultrasensitive analyte detection. The enzyme label of the ELISA controls the dissolution of Raman reporter-labeled silver nanoparticles through hydrogen peroxide and generates a strong Raman signal when the analyte is present. Using this assay, prostate-specific antigen (PSA) and the adrenal stimulant ractopamine (Rac) were detected in whole serum and urine at the ultralow concentrations of 10(-9) and 10(-6) ng/mL, respectively. The methodology proposed here could potentially be applied to other molecules detection as well as PSA and Rac. PMID:25928837

  3. Identification of a response regulator involved in surface attachment, cell-cell aggregation, exopolysaccharide production and virulence in the plant pathogen Xylella fastidiosa.

    PubMed

    Voegel, Tanja M; Doddapaneni, Harshavardhan; Cheng, Davis W; Lin, Hong; Stenger, Drake C; Kirkpatrick, Bruce C; Roper, M Caroline

    2013-04-01

    Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, possesses several two-component signal transduction systems that allow the bacterium to sense and respond to changes in its environment. Signals are perceived by sensor kinases that autophosphorylate and transfer the phosphate to response regulators (RRs), which direct an output response, usually by acting as transcriptional regulators. In the X. fastidiosa genome, 19 RRs were found. A site-directed knockout mutant in one unusual RR, designated XhpT, composed of a receiver domain and a histidine phosphotransferase output domain, was constructed. The resulting mutant strain was analysed for changes in phenotypic traits related to biofilm formation and gene expression using microarray analysis. We found that the xhpT mutant was altered in surface attachment, cell-cell aggregation, exopolysaccharide (EPS) production and virulence in grapevine. In addition, this mutant had an altered transcriptional profile when compared with wild-type X. fastidiosa in genes for several biofilm-related traits, such as EPS production and haemagglutinin adhesins. PMID:23186359

  4. Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell

    PubMed Central

    1995-01-01

    Receptor desensitization is a key process for the protection of the cell from continuous or repeated exposure to high concentrations of an agonist. Well-established mechanisms for desensitization of guanine nucleotide-binding protein (G protein)-coupled receptors include phosphorylation, sequestration/internalization, and down-regulation. In this work, we have examined some mechanisms for desensitization of the cholecystokinin (CCK) receptor which is native to the pancreatic acinar cell, and have found the predominant mechanism to be distinct from these recognized processes. Upon fluorescent agonist occupancy of the native receptor, it becomes "insulated" from the effects of acid washing and becomes immobilized on the surface of the plasma membrane in a time- and temperature-dependent manner. This localization was assessed by ultrastructural studies using a colloidal gold conjugate of CCK, and lateral mobility of the receptor was assessed using fluorescence recovery after photobleaching. Of note, recent application of the same morphologic techniques to a CCK receptor-bearing Chinese hamster ovary cell line demonstrated prominent internalization via the clathrin-dependent endocytic pathway, as well as entry into caveolae (Roettger, B.F., R.U. Rentsch, D. Pinon, E. Holicky, E. Hadac, J.M. Larkin, and L.J. Miller, 1995, J. Cell Biol. 128: 1029-1041). These organelles are not observed to represent prominent compartments for the same receptor to traverse in the acinar cell, although fluorescent insulin is clearly internalized in these cells via receptor-mediated endocytosis. In this work, the rate of lateral mobility of the CCK receptor is observed to be similar in both cell types (1-3 x 10(-10) cm2/s), while the fate of the agonist-occupied receptor is quite distinct in each cell. This supports the unique nature of desensitization processes which occur in a cell-specific manner. A plasmalemmal site of insulation of this important receptor on the pancreatic acinar cell

  5. Identification of Hyal2 as the cell-surface receptor for jaagsiekte sheep retrovirus and ovine nasal adenocarcinoma virus.

    PubMed

    Miller, A D

    2003-01-01

    Jaagsiekte sheep retrovirus (JSRV) and ovine nasal adenocarcinoma virus (ONAV) replicate in the airway and cause epithelial cell tumors through the activity of their envelope (Env) proteins. Identification of the receptor(s) that mediate cell entry by these viruses is crucial to understanding the oncogenic activity of Env and for the development of gene therapy vectors based on these viruses that are capable of targeting airway cells. To identify the viral receptor(s) and to further study the biology of JSRV and ONAV, we developed retroviral vectors containing Moloney murine leukemia virus components and the Env proteins of JSRV or ONAV. We used a new technique involving positional cloning by phenotypic mapping in radiation hybrid cells to identify and clone the human receptor for JSRV, Hyal2, which also serves as the receptor for ONAV. Hyal2 is a glycosylphosphatidylinositol-anchored cell-surface protein that has low hyaluronidase activity and is a member of a large family that includes sperm hyaluronidase (Spam) and serum hyaluronidase (Hyal1). Hyal2 is located in a region of human chromosome 3p21.3 that is often deleted in lung cancer, suggesting that it may be a tumor suppressor. However, its role in JSRV or ONAV tumorigenesis, if any, is still unclear. JSRV vectors are capable of transducing various human cells, and are being further evaluated for gene therapy purposes. PMID:12596899

  6. Multiple tyrosine residues at the GABA binding pocket influence surface expression and mediate kinetics of the GABAA receptor.

    PubMed

    Laha, Kurt T; Tran, Phu N

    2013-01-01

    The prevalence of aromatic residues in the ligand binding site of the GABA(A) receptor, as with other cys-loop ligand-gated ion channels, is undoubtedly important for the ability of neurotransmitters to bind and trigger channel opening. Here, we have examined three conserved tyrosine residues at the GABA binding pocket (β(2) Tyr97, β(2) Tyr157, and β(2) Tyr205), making mutations to alanine and phenylalanine. We fully characterized the effects each mutation had on receptor function using heterologous expression in HEK-293 cells, which included examining surface expression, kinetics of macroscopic currents, microscopic binding and unbinding rates for an antagonist, and microscopic binding rates for an agonist. The assembly or trafficking of GABA(A) receptors was disrupted when tyrosine mutants were expressed as αβ receptors, but interestingly not when expressed as αβγ receptors. Mutation of each tyrosine accelerated deactivation and slowed GABA binding. This provides strong evidence that these residues influence the binding of GABA. Qualitatively, mutation of each tyrosine has a very similar effect on receptor function; however, mutations at β(2) Tyr157 and β(2) Tyr205 are more detrimental than β(2) Tyr97 mutations, particularly to the GABA binding rate. Overall, the results suggest that interactions involving multiple tyrosine residues are likely during the binding process. PMID:23121119

  7. Quantification of cell surface receptor expression in live tissue culture media using a dual-tracer stain and rinse approach

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Sinha, Lagnojita; Singh, Aparna; Yang, Cynthia; Xiang, Jialing; Tichauer, Kenneth M.

    2015-03-01

    Immunofluorescence staining is a robust way to visualize the distribution of targeted biomolecules invasively in in fixed tissues and tissue culture. Despite the fact that these methods has been a well-established method in fixed tissue imaging for over 70 years, quantification of receptor concentration still simply assumes that the signal from the targeted fluorescent marker after incubation and sufficient rinsing is directly proportional to the concentration of targeted biomolecules, thus neglecting the experimental inconsistencies in incubation and rinsing procedures and assuming no, nonspecific binding of the fluorescent markers. This work presents the first imaging approach capable of quantifying the concentration of cell surface receptor on cancer cells grown in vitro based on compartment modeling in a nondestructive way. The approach utilizes a dual-tracer protocol where any non-specific retention or variability in incubation and rinsing of a receptor-targeted imaging agent is corrected by simultaneously imaging the retention of a chemically similar, "untargeted" imaging agent. Various different compartment models were used to analyze the data in order to find the optimal procedure for extracting estimates of epidermal growth factor receptor (EGFR) concentration (a receptor overexpressed in many cancers and a key target for emerging molecular therapies) in tissue cultures with varying concentrations of human glioma cells (U251). Preliminary results demonstrated a need to model nonspecific binding of both the targeted and untargeted imaging agents used. The approach could be used to carry out the first repeated measures of cell surface receptor dynamics during 3D tumor mass development, in addition to the receptor response to therapies.

  8. Molecular recognition of trigonal oxyanions using a ditopic salt receptor: evidence for anisotropic shielding surface around nitrate anion.

    PubMed

    Mahoney, Joseph M; Stucker, Kenneth A; Jiang, Hua; Carmichael, Ian; Brinkmann, Nicole R; Beatty, Alicia M; Noll, Bruce C; Smith, Bradley D

    2005-03-01

    A ditopic, macrobicyclic receptor with adjacent anion and cation binding sites is able to extract a range of monovalent salts into chloroform solution. The structures of the receptor complexed with KAcO, LiNO(3), NaNO(3), KNO(3), and NaNO(2) are characterized in solution by NMR spectroscopy and in the solid state by X-ray crystallography. The sodium and potassium salts are bound to the receptor as contact ion-pairs, with the metal cation located in the receptor's crown ether ring and the trigonal oxyanion hydrogen bonded to the receptor NH residues. The solid-state structure of the LiNO(3) complex has a bridging water molecule between the cation and anion. In all solid-state structures, the trigonal oxyanion is not located symmetrically inside the receptor cavity. It appears that anion orientation is controlled by a complex interplay of steric factors, coordination bonding to the metal cation, and hydrogen bonding with the receptor NH residues. An important feature with this latter effect is the fact that hydrogen bonds directed toward the oxygen lone pairs on a trigonal oxyanion are stronger than hydrogen bonds to the pi-electrons. In solution, the (1)H NMR spectra of the nitrate and nitrite salt complexes are noteworthy because several receptor signals, including the NH protons, undergo unusual upfield movements in chemical shift upon complexation. This is a reflection of the diamagnetic anisotropy of these trigonal oxyanions. The magnetic shielding surface for the NO(3)(-) anion is calculated using density functional theory and shown to have a shielding region directly above the central nitrogen. PMID:15740128

  9. Compaction, Fusion, and Functional Activation of Three-Dimensional Human Mesenchymal Stem Cell Aggregate

    PubMed Central

    Tsai, Ang-Chen; Liu, Yijun; Yuan, Xuegang

    2015-01-01

    Human mesenchymal stem cells (hMSCs) are primary candidates in cell therapy and tissue engineering and are being tested in clinical trials for a wide range of diseases. Originally isolated and expanded as plastic adherent cells, hMSCs have intriguing properties of in vitro self-assembly into three-dimensional (3D) aggregates that improve a range of biological properties, including multilineage potential, secretion of therapeutic factors, and resistance against ischemic condition. While cell–cell contacts and cell–extracellular matrix interactions mediate 3D cell aggregation, the adaptive changes of hMSC cytoskeleton during self-assembly and associated metabolic reconfiguration may also influence aggregate properties and functional activation. In this study, we investigated the role of actin in regulating 3D hMSC aggregate compaction, fusion, spreading and functional activation. Individual hMSC aggregates with controlled initial cell number were formed by seeding a known number of hMSCs (500, 2000, and 5000 cells/well) in multi-well plates of an ultra-low adherent surface to form multicellular aggregates in individual wells. To assess the influence of actin-mediated contractility on hMSC aggregation and properties, actin modulators, including cytochalasin D (cytoD), nocodazole, lysophosphatidic acid (LPA), and Y-27632, were added at different stages of aggregation and their impacts on hMSC aggregate compaction and apoptosis were monitored. The results suggest that actin-mediated contractility influences hMSC aggregation, compaction, fusion, and spreading on adherent surface. Formation of multi-cellular aggregates significantly upregulated caspase 3/7 expression, expression of C-X-C chemokine receptor type 4 (CXCR-4), cell migration, secretion of prostaglandin E2 (PGE-2) and interleukin 6 (IL-6), and resistance to in vitro ischemic stress. The functional enhancement, however, is dependent on caspase activation, because treatment with Q-VD-OPh, a pan

  10. Experimental and DFT studies on the aggregation behavior of imidazolium-based surface-active ionic liquids with aromatic counterions in aqueous solution.

    PubMed

    Xu, Wenwen; Wang, Tao; Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Gong, Yanjun; Yu, Li

    2015-02-01

    Two imidazolium-based surface-active ionic liquids with aromatic counterions, namely, 1-dodecyl-3-methylimidazolium salicylate (C12mimSal) and 1-dodecyl-3-methylimidazolium 3-hydroxy-2-naphthoate (C12mimHNC), were synthesized, and their aggregate behavior in aqueous solutions was systematically explored. Surface tension and conductivity measurements indicate that both C12mimSal and C12mimHNC show superior surface activity compared to the common imidazolium-based SAIL with the same hydrocarbon chain length, 1-dodecyl-3-methylimidazolium bromide (C12mimBr). This result demonstrates that the incorporation of aromatic counterions favors the formation of micelles. C12mimHNC displays a higher surface activity than C12mimSal, resulting from the different hydrophobicities of the counterions. In comparison with C12mimBr, C12mimSal not only can form hexagonal liquid-crystalline phase (H1) in aqueous solution, but also exhibits a broad region of cubic liquid-crystalline phase (V2) at higher concentration. As for the C12mimHNC/H2O system, a lamellar liquid-crystalline (L(α)) phase was observed. These lyotropic liquid crystals (LLCs) were characterized by polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS). Structural parameters calculated from SAXS patterns suggest that a higher concentration of the SAIL leads to a denser arrangement whereas a higher temperature results in the opposite effect. The rheological results manifest that the formed H1 phase in the C12mimSal/H2O system exhibits an impressive viscoelastic behavior, indicated by a modulus (G' and G″) that is 1 order of magnitude higher than that of C12mimBr. Density functional theory (DFT) calculations reveal that C12mimSal has a more negative interaction energy with a water molecule and the Sal(-) counterion presents a stronger electronegativity than the HNC(-) counterion. The specific phase behavior of the C12mimSal/H2O and C12mimHNC/H2O systems can be attributed to the strong synergic

  11. Distribution and Dynamics of Rat Basophilic Leukemia Immunoglobulin E Receptors (FcɛRI) on Planar Ligand-Presenting Surfaces

    PubMed Central

    Spendier, Kathrin; Carroll-Portillo, Amanda; Lidke, Keith A.; Wilson, Bridget S.; Timlin, Jerilyn A.; Thomas, James L.

    2010-01-01

    Abstract There is considerable interest in the signaling mechanisms of immunoreceptors, especially when triggered with membrane-bound ligands. We have quantified the spatiotemporal dynamics of the redistribution of immunoglobulin E-loaded receptors (IgE-FcɛRI) on rat basophilic leukemia-2H3 mast cells in contact with fluid and gel-phase membranes displaying ligands for immunoglobulin E, using total internal reflection fluorescence microscopy. To clearly separate the kinetics of receptor redistribution from cell spreading, and to precisely define the initial contact time (±50 ms), micropipette cell manipulation was used to bring individual cells into contact with surfaces. On ligand-free surfaces, there are micron-scale heterogeneities in fluorescence that likely reflect regions of the cell that are more closely apposed to the substrate. When ligands are present, receptor clusters form with this same size scale. The initial rate of accumulation of receptors into the clusters is consistent with diffusion-limited trapping with D ∼10−1μm2/s. These results support the hypothesis that clusters form by diffusion to cell-surface contact regions. Over longer timescales (>10 s), individual clusters moved with both diffusive and directed motion components. The dynamics of the cluster motion is similar to the dynamics of membrane fluctuations of cells on ligand-free fluid membranes. Thus, the same cellular machinery may be responsible for both processes. PMID:20643056

  12. Investigating ligand-receptor interactions at bilayer surface using electronic absorption spectroscopy and Fluorescence Resonance Energy Transfer

    PubMed Central

    Dogra, Navneet; Li, Xuelian; Kohli, Punit

    2012-01-01

    We investigate interactions between receptors and ligands at bilayer surface of polydiacetylene (PDA) liposomal nanoparticles using changes in electronic absorption spectroscopy and Fluorescence Resonance Energy Transfer (FRET). We study the effect of mode of linkage (covalent versus non-covalent) between the receptor and liposome bilayer. We also examine the effect of size dependent interactions between liposome and analyte through electronic absorption and FRET responses. Glucose (receptor) molecules were either covalently or non-covalently attached at the bilayer of nanoparticles, and they provided selectivity for molecular interactions between glucose and glycoprotein ligands of E. coli. The receptor-ligand interactions between glucose and ligand on E. Coli surface induced stress on conjugated PDA chain which resulted in changes (blue to red) in the absorption spectrum of PDA. The changes in electronic absorbance also led to changes in FRET efficiency between conjugated PDA chains (acceptor) and fluorophores (Sulphorhodamine-101) (donor) attached to the bilayer surface. Interestingly, we did not find significant differences in UV-Vis and FRET responses for covalently- and non-covalently-bound glucose to liposomes following their interactions with E. Coli. We attributed these results to close proximity of glucose receptor molecules to the liposome bilayer surface such that induced stress were similar in both the cases. We also found that PDA emission from direct excitation mechanism was ~ 2 - 10 times larger than that of FRET based response. These differences in emission signals were attributed to three major reasons: non-specific interactions between E. Coli and liposomes; size differences between analyte and liposomes; and a much higher PDA concentration with respect to sulpho-rhodamine (SR-101). We have proposed a model to explain our experimental observations. Our fundamental studies reported here will help in enhancing our knowledge regarding interactions

  13. The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism.

    PubMed

    Wootten, Denise; Reynolds, Christopher A; Smith, Kevin J; Mobarec, Juan C; Koole, Cassandra; Savage, Emilia E; Pabreja, Kavita; Simms, John; Sridhar, Rohan; Furness, Sebastian G B; Liu, Mengjie; Thompson, Philip E; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2016-06-16

    Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists. PMID:27315480

  14. The Dentin Sialoprotein (DSP) Domain Regulates Dental Mesenchymal Cell Differentiation through a Novel Surface Receptor

    PubMed Central

    Wan, Chunyan; Yuan, Guohua; Luo, Daoshu; Zhang, Lu; Lin, Heng; Liu, Huan; Chen, Lei; Yang, Guobin; Chen, Shuo; Chen, Zhi

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is a dentin extracellular matrix protein that is processed into dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP). DSP is mainly expressed in odontoblasts. We hypothesized that DSP interacts with cell surface receptors and subsequently activates intracellular signaling. Using DSP as bait for screening a protein library, we demonstrate that DSP acts as a ligand and binds to integrin β6. The 36 amino acid residues of DSP are sufficient to bind to integrin β6. This peptide promoted cell attachment, migration, differentiation and mineralization of dental mesenchymal cells. In addition, DSP aa183-219 stimulated phosphorylation of ERK1/2 and P38 kinases. This activation was inhibited by an anti-integrin β6 antibody and siRNA. Furthermore, we demonstrate that this DSP fragment induces SMAD1/5/8 phosphorylation and nuclear translocation via ERK1/2 and P38 signaling. SMAD1/5/8 binds to SMAD binding elements (SBEs) in the DSPP gene promoter. SBE mutations result in a decrease in DSPP transcriptional activity. Endogenous DSPP expression was up-regulated by DSP aa183-219 in dental mesenchymal cells. The data in the current study demonstrate for the first time that this DSP domain acts as a ligand in a RGD-independent manner and is involved in intracellular signaling via interacting with integrin β6. The DSP domain regulates DSPP expression and odontoblast homeostasis via a positive feedback loop. PMID:27430624

  15. The Dentin Sialoprotein (DSP) Domain Regulates Dental Mesenchymal Cell Differentiation through a Novel Surface Receptor.

    PubMed

    Wan, Chunyan; Yuan, Guohua; Luo, Daoshu; Zhang, Lu; Lin, Heng; Liu, Huan; Chen, Lei; Yang, Guobin; Chen, Shuo; Chen, Zhi

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is a dentin extracellular matrix protein that is processed into dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP). DSP is mainly expressed in odontoblasts. We hypothesized that DSP interacts with cell surface receptors and subsequently activates intracellular signaling. Using DSP as bait for screening a protein library, we demonstrate that DSP acts as a ligand and binds to integrin β6. The 36 amino acid residues of DSP are sufficient to bind to integrin β6. This peptide promoted cell attachment, migration, differentiation and mineralization of dental mesenchymal cells. In addition, DSP (aa183-219) stimulated phosphorylation of ERK1/2 and P38 kinases. This activation was inhibited by an anti-integrin β6 antibody and siRNA. Furthermore, we demonstrate that this DSP fragment induces SMAD1/5/8 phosphorylation and nuclear translocation via ERK1/2 and P38 signaling. SMAD1/5/8 binds to SMAD binding elements (SBEs) in the DSPP gene promoter. SBE mutations result in a decrease in DSPP transcriptional activity. Endogenous DSPP expression was up-regulated by DSP (aa183-219) in dental mesenchymal cells. The data in the current study demonstrate for the first time that this DSP domain acts as a ligand in a RGD-independent manner and is involved in intracellular signaling via interacting with integrin β6. The DSP domain regulates DSPP expression and odontoblast homeostasis via a positive feedback loop. PMID:27430624

  16. HFE and transferrin directly compete for transferrin receptor in solution and at the cell surface.

    PubMed

    Giannetti, Anthony M; Björkman, Pamela J

    2004-06-11

    Transferrin receptor (TfR) is a dimeric cell surface protein that binds both the serum iron transport protein transferrin (Fe-Tf) and HFE, the protein mutated in patients with the iron overload disorder hereditary hemochromatosis. HFE and Fe-Tf can bind simultaneously to TfR to form a ternary complex, but HFE binding to TfR lowers the apparent affinity of the Fe-Tf/TfR interaction. This apparent affinity reduction could result from direct competition between HFE and Fe-Tf for their overlapping binding sites on each TfR polypeptide chain, from negative cooperativity, or from a combination of both. To explore the mechanism of the affinity reduction, we constructed a heterodimeric TfR that contains mutations such that one TfR chain binds only HFE and the other binds only Fe-Tf. Binding studies using a heterodimeric form of soluble TfR demonstrate that TfR does not exhibit cooperativity in heterotropic ligand binding, suggesting that some or all of the effects of HFE on iron homeostasis result from competition with Fe-Tf for TfR binding. Experiments using transfected cell lines demonstrate a physiological role for this competition in altering HFE trafficking patterns. PMID:15056661

  17. Tomato Ve disease resistance genes encode cell surface-like receptors

    PubMed Central

    Kawchuk, Lawrence M.; Hachey, John; Lynch, Dermot R.; Kulcsar, Frank; van Rooijen, Gijs; Waterer, Doug R.; Robertson, Albert; Kokko, Eric; Byers, Robert; Howard, Ronald J.; Fischer, Rainer; Prüfer, Dirk

    2001-01-01

    In tomato, Ve is implicated in race-specific resistance to infection by Verticillium species causing crop disease. Characterization of the Ve locus involved positional cloning and isolation of two closely linked inverted genes. Expression of individual Ve genes in susceptible potato plants conferred resistance to an aggressive race 1 isolate of Verticillium albo-atrum. The deduced primary structure of Ve1 and Ve2 included a hydrophobic N-terminal signal peptide, leucine-rich repeats containing 28 or 35 potential glycosylation sites, a hydrophobic membrane-spanning domain, and a C-terminal domain with the mammalian E/DXXXLφ or YXXφ endocytosis signals (φ is an amino acid with a hydrophobic side chain). A leucine zipper-like sequence occurs in the hydrophobic N-terminal signal peptide of Ve1 and a Pro-Glu-Ser-Thr (PEST)-like sequence resides in the C-terminal domain of Ve2. These structures suggest that the Ve genes encode a class of cell-surface glycoproteins with receptor-mediated endocytosis-like signals and leucine zipper or PEST sequences. PMID:11331751

  18. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii.

    PubMed Central

    Holmes, A R; Gopal, P K; Jenkinson, H F

    1995-01-01

    Candida albicans ATCC 10261 and CA2 bound to cells of the oral bacteria Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguis when these bacteria were immobilized onto microtiter plate wells, but they did not bind to cells of Streptococcus mutans or Streptococcus salivarius. Cell wall polysaccharide was extracted with alkali from S. gordonii NCTC 7869, the streptococcal species to which C. albicans bound with highest affinity, and was effective in blocking the coaggregation of C. albicans and S. gordonii cells in the fluid phase. When fixed to microtiter plate wells, the S. gordonii polysaccharide was bound by all strains of C. albicans tested. The polysaccharide contained Rha, Glc, GalNAc, GlcNAc, and Gal and was related compositionally to previously characterized cell wall polysaccharides from strains of S. oralis and S. sanguis. The adherence of yeast cells to the immobilized polysaccharide was not inhibitable by a number of saccharides. Antiserum raised to the S. gordonii NCTC 7869 polysaccharide blocked adherence of C. albicans ATCC 10261 to the polysaccharide. The results identify a complex cell wall polysaccharide of S. gordonii as the coaggregation receptor for C. albicans. Adherent interactions of yeast cells with streptococci and other bacteria may be important for colonization of both hard and soft oral surfaces by C. albicans. PMID:7729891

  19. CC chemokine receptor 10 cell surface presentation in melanocytes is regulated by the novel interaction partner S100A10

    PubMed Central

    Hessner, F.; Dlugos, C. P.; Chehab, T.; Schaefer, C.; Homey, B.; Gerke, V.; Weide, T.; Pavenstädt, H.; Rescher, U.

    2016-01-01

    The superfamily of G-protein-coupled receptors (GPCR) conveys signals in response to various endogenous and exogenous stimuli. Consequently, GPCRs are the most important drug targets. CCR10, the receptor for the chemokines CCL27/CTACK and CCL28/MEC, belongs to the chemokine receptor subfamily of GPCRs and is thought to function in immune responses and tumour progression. However, there is only limited information on the intracellular regulation of CCR10. We find that S100A10, a member of the S100 family of Ca2+ binding proteins, binds directly to the C-terminal cytoplasmic tail of CCR10 and that this interaction regulates the CCR10 cell surface presentation. This identifies S100A10 as a novel interaction partner and regulator of CCR10 that might serve as a target for therapeutic intervention. PMID:26941067

  20. Micro-structured peptide surfaces for the detection of high-affinity peptide-receptor interactions in living cells.

    PubMed

    Lipp, Anna-Maria; Ji, Bozhi; Hager, Roland; Haas, Sandra; Schweiggl, Simone; Sonnleitner, Alois; Haselgrübler, Thomas

    2015-12-15

    Peptide ligands have great potential as selective agents for diagnostic imaging and therapeutic targeting of human cancers. A number of high-throughput assays for screening potential candidate peptides have been developed. Although these screening assays are indispensable for the identification of peptide ligands at a large scale, it is crucial to validate peptide binding and selectivity for targeted receptors in a live-cell context. For testing high-affinity peptide-receptor interactions in the plasma membrane of living cells, we developed cell-resistant, micro-structured glass surfaces with high-density and high-contrast peptide features. Cell adhesion and recruitment of fluorescent receptors to micro-patterned peptides in the live-cell membrane were evaluated by reflection interference contrast (RIC) and total internal reflection (TIRF) microscopy, respectively. To demonstrate both the specificity and modularity of the assay, co-patterning of fluorescent receptors with three different immobilized micro-structured ligands was shown: first, interaction of green fluorescent protein (GFP)-tagged epidermal growth factor (EGF) receptor expressed in Jurkat cells with immobilized EGF was detected and quantified. Second, using Jurkat cells, we demonstrated specific interaction of yellow fluorescent protein (YFP)-tagged β3 integrin with c(RGDfK) peptide. Third, we identified indirect recruitment of GFP-tagged α5 integrin to an 11-mer peptide. In summary, our results show that the developed micro-structured surfaces are a useful tool for the validation and quantification of peptide-receptor interactions in their natural cellular environment. PMID:26210593

  1. Optimization of cell receptor-specific targeting through multivalent surface decoration of polymeric nanocarriers

    PubMed Central

    D’Addio, Suzanne M.; Baldassano, Steven; Shi, Lei; Cheung, Lila; Adamson, Douglas H.; Bruzek, Matthew; Anthony, John E.; Laskin, Debra L.; Sinko, Patrick J.; Prud’homme, Robert K.

    2013-01-01

    Treatment of tuberculosis is impaired by poor drug bioavailability, systemic side effects, patient non-compliance, and pathogen resistance to existing therapies. The mannose receptor (MR) is known to be involved in the recognition and internalization of Mycobacterium tuberculosis. We present a new assembly process to produce nanocarriers with variable surface densities of mannose targeting ligands in a single step, using kinetically-controlled, block copolymer-directed assembly. Nanocarrier association with murine macrophage J774 cells expressing the MR is examined as a function of incubation time and temperature, nanocarrier size, dose, and PEG corona properties. Amphiphilic diblock copolymers are prepared with terminal hydroxyl, methoxy, or mannoside functionality and incorporated into nanocarrier formulations at specific ratios by Flash NanoPrecipitation. Association of nanocarriers protected by a hydroxyl-terminated PEG corona with J774 cells is size dependent, while nanocarriers with methoxy-terminated PEG coronas do not associate with cells, regardless of size. Specific targeting of the MR is investigated using nanocarriers having 0-75% mannoside-terminated PEG chains in the PEG corona. This is a wider range of mannose densities than has been previously studied. Maximum nanocarrier association is attained with 9% mannoside-terminated PEG chains, increasing uptake more than 3-fold compared to non-targeted nanocarriers with a 5 kg mol−1 methoxy-terminated PEG corona. While a 5 kg mol−1 methoxy-terminated PEG corona prevents non-specific uptake, a 1.8 kg mol−1 methoxy-terminated PEG corona does not sufficiently protect the nanocarriers from nonspecific association. There is continuous uptake of MR-targeted nanocarriers at 37°C, but a saturation of association at 4°C. The majority of targeted nanocarriers associate with J774E cells are internalized at 37°C and uptake is receptor-dependent, diminishing with competitive inhibition by dextran. This

  2. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes

    PubMed Central

    Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S.; Taube, Ran

    2015-01-01

    Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential. PMID:26629902

  3. Scavenger Receptor C-Type Lectin Binds to the Leukocyte Cell Surface Glycan Lewis By a Novel Mechanism

    SciTech Connect

    Feinberg, H.; Taylor, M.E.; Weis, W.I.; /Stanford U., Med. School /Imperial Coll., London

    2007-07-10

    The scavenger receptor C-type lectin (SRCL) is unique in the family of class A scavenger receptors, because in addition to binding sites for oxidized lipoproteins it also contains a C-type carbohydrate-recognition domain (CRD) that interacts with specific glycans. Both human and mouse SRCL are highly specific for the Lewis(x) trisaccharide, which is commonly found on the surfaces of leukocytes and some tumor cells. Structural analysis of the CRD of mouse SRCL in complex with Lewis(x) and mutagenesis show the basis for this specificity. The interaction between mouse SRCL and Lewis(x) is analogous to the way that selectins and DC-SIGN bind to related fucosylated glycans, but the mechanism of the interaction is novel, because it is based on a primary galactose-binding site similar to the binding site in the asialoglycoprotein receptor. Crystals of the human receptor lacking bound calcium ions reveal an alternative conformation in which a glycan ligand would be released during receptor-mediated endocytosis.

  4. Propranolol Restricts the Mobility of Single EGF-Receptors on the Cell Surface before Their Internalization

    PubMed Central

    Otero, Carolina; Linke, Max; Sanchez, Paula; González, Alfonso; Schaap, Iwan A. T.

    2013-01-01

    The epidermal growth factor receptor is involved in morphogenesis, proliferation and cell migration. Its up-regulation during tumorigenesis makes this receptor an interesting therapeutic target. In the absence of the ligand, the inhibition of phosphatidic acid phosphohydrolase activity by propranolol treatment leads to internalization of empty/inactive receptors. The molecular events involved in this endocytosis remain unknown. Here, we quantified the effects of propranolol on the mobility of single quantum-dot labelled receptors before the actual internalization took place. The single receptors showed a clear stop-and-go motion; their diffusive tracks were continuously interrupted by sub-second stalling events, presumably caused by transient clustering. In the presence of propranolol we found that: i) the diffusion rate reduced by 22 %, which indicates an increase in drag of the receptor. Atomic force microscopy measurements did not show an increase of the effective membrane tension, such that clustering of the receptor remains the likely mechanism for its reduced mobility. ii) The receptor got frequently stalled for longer periods of multiple seconds, which may signal the first step of the internalization process. PMID:24349439

  5. Cell-surface targeting of α2-adrenergic receptors — Inhibition by a transport deficient mutant through dimerization

    PubMed Central

    Zhou, Fuguo; Filipeanu, Catalin M.; Duvernay, Matthew T.; Wu, Guangyu

    2009-01-01

    We previously demonstrated that the α2B-adrenergic receptor mutant, in which the F(x)6IL motif in the membrane-proximal carboxyl terminus were mutated to alanines (α2B-ARm), is deficient in export from the endoplasmic reticulum (ER). In this report, we determined if α2B-ARm could modulate transport from the ER to the cell surface and signaling of its wild-type counterpart. Transient expression of α2B-ARm in HEK293T cells markedly inhibited cell-surface expression of wild-type α2B-AR, as measured by radioligand binding. Subcellular localization demonstrated that α2B-ARm trapped α2B-AR in the ER. The α2B-AR was shown to form homodimers and heterodimers with α2B-ARm as measured by co-immunoprecipitation of the receptors tagged with green fluorescent protein and hemagglutinin epitopes. In addition to α2B-AR, the transport of α2A-AR and α2C-AR to the cell surface was also inhibited by α2B-ARm. Furthermore, transient expression of α2B-ARm significantly reduced cell-surface expression of endogenous α2-AR in NG108-15 and HT29 cells. Consistent with its effect on α2-AR cell-surface expression, α2B-ARm attenuated α2A-AR- and α2B-AR-mediated ERK1/2 activation. These data demonstrated that the ER-retained mutant α2B-ARm conferred a dominant negative effect on the cell-surface expression of wild-type α2-AR, which is likely mediated through heterodimerization. These data indicate a crucial role of ER export in the regulation of cell-surface targeting and signaling of G protein-coupled receptors. PMID:15961277

  6. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    NASA Astrophysics Data System (ADS)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  7. Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors.

    PubMed

    Chowdhury, Dhrubajyoti; Marco, Sonia; Brooks, Ian M; Zandueta, Aitor; Rao, Yijian; Haucke, Volker; Wesseling, John F; Tavalin, Steven J; Pérez-Otaño, Isabel

    2013-02-27

    Selective control of receptor trafficking provides a mechanism for remodeling the receptor composition of excitatory synapses, and thus supports synaptic transmission, plasticity, and development. GluN3A (formerly NR3A) is a nonconventional member of the NMDA receptor (NMDAR) subunit family, which endows NMDAR channels with low calcium permeability and reduced magnesium sensitivity compared with NMDARs comprising only GluN1 and GluN2 subunits. Because of these special properties, GluN3A subunits act as a molecular brake to limit the plasticity and maturation of excitatory synapses, pointing toward GluN3A removal as a critical step in the development of neuronal circuitry. However, the molecular signals mediating GluN3A endocytic removal remain unclear. Here we define a novel endocytic motif (YWL), which is located within the cytoplasmic C-terminal tail of GluN3A and mediates its binding to the clathrin adaptor AP2. Alanine mutations within the GluN3A endocytic motif inhibited clathrin-dependent internalization and led to accumulation of GluN3A-containing NMDARs at the cell surface, whereas mimicking phosphorylation of the tyrosine residue promoted internalization and reduced cell-surface expression as shown by immunocytochemical and electrophysiological approaches in recombinant systems and rat neurons in primary culture. We further demonstrate that the tyrosine residue is phosphorylated by Src family kinases, and that Src-activation limits surface GluN3A expression in neurons. Together, our results identify a new molecular signal for GluN3A internalization that couples the functional surface expression of GluN3A-containing receptors to the phosphorylation state of GluN3A subunits, and provides a molecular framework for the regulation of NMDAR subunit composition with implications for synaptic plasticity and neurodevelopment. PMID:23447623

  8. Role of Multicellular Aggregates in Biofilm Formation

    PubMed Central

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.

    2016-01-01

    ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463

  9. Alpha2B-adrenergic receptor interaction with tubulin controls its transport from the endoplasmic reticulum to the cell surface.

    PubMed

    Duvernay, Matthew T; Wang, Hong; Dong, Chunmin; Guidry, Jesse J; Sackett, Dan L; Wu, Guangyu

    2011-04-22

    It is well recognized that the C terminus (CT) plays a crucial role in modulating G protein-coupled receptor (GPCR) transport from the endoplasmic reticulum (ER) to the cell surface. However the molecular mechanisms that govern CT-dependent ER export remain elusive. To address this issue, we used α(2B)-adrenergic receptor (α(2B)-AR) as a model GPCR to search for proteins interacting with the CT. By using peptide-conjugated affinity matrix combined with proteomics and glutathione S-transferase fusion protein pull-down assays, we identified tubulin directly interacting with the α(2B)-AR CT. The interaction domains were mapped to the acidic CT of tubulin and the basic Arg residues in the α(2B)-AR CT, particularly Arg-437, Arg-441, and Arg-446. More importantly, mutation of these Arg residues to disrupt tubulin interaction markedly inhibited α(2B)-AR transport to the cell surface and strongly arrested the receptor in the ER. These data provide the first evidence indicating that the α(2B)-AR C-terminal Arg cluster mediates its association with tubulin to coordinate its ER-to-cell surface traffic and suggest a novel mechanism of GPCR export through physical contact with microtubules. PMID:21357695

  10. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  11. A Novel Approach to Identify Two Distinct Receptor Binding Surfaces of Insulin-like Growth Factor II*S⃞

    PubMed Central

    Alvino, Clair L.; McNeil, Kerrie A.; Ong, Shee Chee; Delaine, Carlie; Booker, Grant W.; Wallace, John C.; Whittaker, Jonathan; Forbes, Briony E.

    2009-01-01

    Very little is known about the residues important for the interaction of insulin-like growth factor II (IGF-II) with the type 1 IGF receptor (IGF-1R) and the insulin receptor (IR). Insulin, to which IGF-II is homologous, is proposed to cross-link opposite halves of the IR dimer through two receptor binding surfaces, site 1 and site 2. In the present study we have analyzed the contribution of IGF-II residues equivalent to insulin's two binding surfaces toward the interaction of IGF-II with the IGF-1R and IR. Four “site 1” and six “site 2” analogues were produced and analyzed in terms of IGF-1R and IR binding and activation. The results show that Val43, Phe28, and Val14 (equivalent to site 1) are critical to IGF-1R and IR binding, whereas mutation to alanine of Gln18 affects only IGF-1R and not IR binding. Alanine substitutions at Glu12, Asp15, Phe19, Leu53, and Glu57 analogues resulted in significant (>2-fold) decreases in affinity for both the IGF-1R and IR. Furthermore, taking a novel approach using a monomeric, single-chain minimized IGF-1R we have defined a distinct second binding surface formed by Glu12, Phe19, Leu53, and Glu57 that potentially engages the IGF-1R at one or more of the FnIII domains. PMID:19139090

  12. Label-free and dynamic evaluation of cell-surface epidermal growth factor receptor expression via an electrochemiluminescence cytosensor.

    PubMed

    Qiu, Youyi; Wen, Qingqing; Zhang, Lin; Yang, Peihui

    2016-04-01

    A label-free electrochemiluminescence (ECL) cytosensor was developed for dynamically evaluating of epidermal growth factor receptor (EGFR) expression on MCF-7 cancer cells based on the specific recognition of epidermal growth factor (EGF) with its receptor (EGFR). EGF-cytosensor was fabricated by in-situ electro-polymerization of polyaniline as substrate, using CdS quantum dots (CdS QDs) as ECL probe and gold nanoparticles (AuNPs) as a carrier for loading of EGF. AuNPs and CdS QDs were jointly attached on polyaniline surface to provide a sensitive and stable sensing interface, as well as a simple and label-free mode for ECL assay. Electron microscopy, atomic force microscopy (AFM) and electrochemical methods were employed to characterize the multilayer construction process of the sensing interface. The proposed EGF-cytosensor exhibited excellent analytical performance for MCF-7 cancer cells, ranging from 12 to 1.2 × 10(6) cells mL(-1), with a low detection limit of 12 cells mL(-1). Also, it was successfully applied in evaluating EGFR expression of cells surface, which was stimulated by some inhibitors or activator, and the results were confirmed by using flow cytometry and laser scanning confocal microscopy analysis. The proposed ECL cytosensor has potential applications in monitoring the dynamic variation of receptor molecules expression on cell surfaces in response to external stimulation by drugs and screening anti-cancer therapeutic agents. PMID:26838410

  13. Plasma binding proteins for platelet-derived growth factor that inhibit its binding to cell-surface receptors.

    PubMed Central

    Raines, E W; Bowen-Pope, D F; Ross, R

    1984-01-01

    Evidence is presented that the binding of platelet-derived growth factor (PDGF) to plasma constituents inhibits the binding of PDGF to its cell-surface mitogen receptor. Approximately equivalent amounts of PDGF-binding activity were found in plasma from a number of different species known by radioreceptor assay to contain PDGF homologues in their clotted blood. Activation of the coagulation cascade did not significantly alter the PDGF-binding activity of the plasma components. Three molecular weight classes of plasma fractions that inhibit PDGF binding to its cell-surface receptor were defined by gel filtration: approximately equal to 40,000, 150,000, and greater than 500,000. Specific binding of 125I-labeled PDGF to the highest molecular weight plasma fraction could also be demonstrated by gel filtration. The binding of PDGF to these plasma components was reversible under conditions of low pH or with guanidine X HCl, and active PDGF could be recovered from the higher molecular weight fractions. Immunologic and functional evidence is presented that the highest molecular weight plasma fraction may be alpha 2-macroglobulin. A model is proposed in which the activity of PDGF released in vivo may be regulated by association with these plasma binding components and by high-affinity binding to cell-surface PDGF receptors. PMID:6203121

  14. Rab1 Small GTP-Binding Protein Regulates Cell Surface Trafficking of the Human Calcium-Sensing Receptor

    PubMed Central

    Zhuang, Xiaolei; Adipietro, Kaylin A.; Datta, Shomik; Northup, John K.; Ray, Kausik

    2010-01-01

    The human calcium-sensing receptor (hCaR) is a family-3/C G-protein-coupled receptor that regulates Ca2+ homeostasis by controlling parathyroid hormone secretion. Here we investigated the role of Rab1, a small GTP-binding protein that specifically regulates protein transport from the endoplasmic reticulum to the Golgi, in cell surface transport of the hCaR. Cell surface expression of hCaR transiently expressed in human embryonic kidney 293 cells was strongly augmented by coexpression of Rab1 and attenuated by disruption of endogenous Rab1 function by expression of the dominant-negative Rab1N124I mutant or depletion of Rab1 with small interfering RNA. Rab1N124I expression also partially attenuated cell surface expression and signaling response to gain-of-function mutants of hCaR with truncated carboxyl-terminal sequences at positions 895 and 903. These carboxyl-tail truncations are similar to a deletion between residues S895 and V1075 found in a patient family causing autosomal dominant hypocalcemia. In addition, coexpression with wild-type Rab1 increased cell surface expression of the loss-of-function missense mutation R185Q, located on the hCaR amino-terminal extracellular ligand-binding domain (ECD), which causes familial hypocalciuric hypercalcemia. Truncated hCaR variants containing either the ECD with the first transmembrane helix or only the ECD also display Rab1-dependent cell surface expression or secretion into the culture medium, respectively. These data reveal a role for Rab1 in hCaR trafficking from the endoplasmic reticulum to the Golgi that regulates receptor cell surface expression and thereby cell signaling responsiveness to extracellular calcium. PMID:20861236

  15. Making Graphene Resist Aggregation

    NASA Astrophysics Data System (ADS)

    Luo, Jiayan

    Graphene-based sheets have stimulated great interest in many scientific disciplines and shown promise for wide potential applications. Among various ways of creating single atomic layer carbon sheets, a promising route for bulk production is to first chemically exfoliate graphite powders to graphene oxide (GO) sheets, followed by reduction to form chemically modified graphene (CMG). Due to the strong van der Waals attraction between graphene sheets, CMG tends to aggregate. The restacking of sheets is largely uncontrollable and irreversible, thus it reduces their processability and compromises properties such as accessible surface area. Strategies based on colloidal chemistry have been applied to keep CMG dispersed in solvents by introducing electrostatic repulsion to overcome the van der Waals attraction or adding spacers to increase the inter-sheet spacing. In this dissertation, two very different ideas that can prevent CMG aggregation without extensively modifying the material or introducing foreign spacer materials are introduced. The van der Waals potential decreases with reduced overlapping area between sheets. For CMG, reducing the lateral dimension from micrometer to nanometer scale should greatly enhance their colloidal stability with additional advantages of increased charge density and decreased probability to interact. The enhanced colloidal stability of GO and CMG nanocolloids makes them especially promising for spectroscopy based bio-sensing applications. For potential applications in a compact bulk solid form, the sheets were converted into paper-ball like structure using capillary compression in evaporating aerosol droplets. The crumpled graphene balls are stabilized by locally folded pi-pi stacked ridges, and do not unfold or collapse during common processing steps. They can tightly pack without greatly reducing the surface area. This form of graphene leads to scalable performance in energy storage. For example, planer sheets tend to aggregate and

  16. HIV-1 Nef and Vpu Are Functionally Redundant Broad-Spectrum Modulators of Cell Surface Receptors, Including Tetraspanins

    PubMed Central

    Haller, Claudia; Müller, Birthe; Fritz, Joëlle V.; Lamas-Murua, Miguel; Stolp, Bettina; Pujol, François M.; Keppler, Oliver T.

    2014-01-01

    ABSTRACT HIV-1 Nef and Vpu are thought to optimize virus replication in the infected host, at least in part via their ability to interfere with vesicular host cell trafficking. Despite the use of distinct molecular mechanisms, Nef and Vpu share specificity for some molecules such as CD4 and major histocompatibility complex class I (MHC-I), while disruption of intracellular transport of the host cell restriction factor CD317/tetherin represents a specialized activity of Vpu not exerted by HIV-1 Nef. To establish a profile of host cell receptors whose intracellular transport is affected by Nef, Vpu, or both, we comprehensively analyzed the effect of these accessory viral proteins on cell surface receptor levels on A3.01 T lymphocytes. Thirty-six out of 105 detectable receptors were significantly downregulated by HIV-1 Nef, revealing a previously unappreciated scope with which HIV-1 Nef remodels the cell surface of infected cells. Remarkably, the effects of HIV-1 Vpu on host cell receptor exposure largely matched those of HIV-1 Nef in breadth and specificity (32 of 105, all also targeted by Nef), even though the magnitude was generally less pronounced. Of particular note, cell surface exposure of all members of the tetraspanin (TSPAN) protein family analyzed was reduced by both Nef and Vpu, and the viral proteins triggered the enrichment of TSPANs in a perinuclear area of the cell. While Vpu displayed significant colocalization and physical association with TSPANs, interactions of Nef with TSPANs were less robust. TSPANs thus emerge as a major target of deregulation in host cell vesicular transport by HIV-1 Nef and Vpu. The conservation of this activity in two independent accessory proteins suggests its importance for the spread of HIV-1 in the infected host. IMPORTANCE In this paper, we define that HIV-1 Nef and Vpu display a surprising functional overlap and affect the cell surface exposure of a previously unexpected breadth of cellular receptors. Our analyses

  17. Nanoarchitectonics of Molecular Aggregates: Science and Technology

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Hong, Kunlun; Ji, Dr. Qingmin; Hill, Dr. Jonathan P; Ariga, Katsuhiko; Yusuke, Yonamine

    2014-01-01

    The field of making, studying and using molecular aggregates, in which the individual molecules (monomers) are arranged in a regular fashion, has come a long way. Taking control over the aggregation of small molecules and polymers in bulk, on surfaces and at interfaces pose a considerable challenge for their utilization in modern high tech applications. In this review we provide a detailed insight into recent trends in molecular aggregates from the perspectives of nanoarchitectonics.

  18. Bubble-induced aggregation of platelets: effects of gas species, proteins, and decompression.

    PubMed

    Thorsen, T; Klausen, H; Lie, R T; Holmsen, H

    1993-06-01

    We show that bubbles containing different gases (N2, He, Ne, Ar, or an O2-CO2-N2 mixture) are equally potent platelet agonists. The synergistic effect of different platelet antagonists does not seem to be affected by the type of gas in the bubbles. In contrast to aggregation in platelet-rich plasma (PRP), bubbles cause only a weak response in gel-filtered platelets (GFP), i.e., comparison of aggregation in protein-rich and protein-poor platelet suspensions may shed light on the role of different plasma proteins. Extracellular fibrinogen promotes bubble-induced platelet aggregation similar to known physiologic agonists, whereas albumin counteracts this aggregation. Bubble-induced aggregation is inhibited in GFP-fibrinogen by 2-deoxy-D-glucose plus antimycin A, suggesting dependency on ATP generation in the platelets and evidence for direct exposure of the "cryptic" fibrinogen receptor by bubbles. Hyperbaric compression and subsequent rapid, inadequate decompression of PRP caused little change in the aggregation response to gas bubbles and epinephrine at 1 bar, but reduced the response to ADP. Bubbles tended not to form before the surface film was broken. Pressure-induced aggregation was apparently metabolically active and not due to passive agglutination; electron microscopic studies and PRP with added glutaraldehyde did not show platelet activation, clumping, or reduced platelet count. In contrast to aggregation caused by pressure, bubble-induced aggregation in PRP at 1 bar (after treatment in the pressure chamber) was nearly completely inhibited by theophylline, a phosphodiesterase inhibitor that increases intracellular platelet cyclic AMP. PMID:8392414

  19. The growth-defense pivot: Crisis management in plants mediated by LRR-RK surface receptors

    PubMed Central

    Belkhadir, Youssef; Yang, Li; Hetzel, Jonathan; Dangl, Jeffery L.; Chory, Joanne

    2014-01-01

    Plants must adapt to their environment and require mechanisms for sensing their surroundings and responding appropriately. An expanded family of greater than 200 leucine-rich repeat receptor kinases (LRR-RKs) transduces fluctuating and often contradictory signals from the environment into changes in nuclear gene expression. Two LRR-RKs, BRASSINOSTEROID INSENSITIVE 1 (BRI1), a steroid receptor, and FLAGELLIN-SENSITIVE 2 (FLS2), an innate immune receptor that recognizes bacterial flagellin, act cooperatively to partition necessary growth-defense tradeoffs. BRI1 and FLS2 share common signaling components and slightly different activation mechanisms. BRI1 and FLS2 are paradigms for understanding signaling mechanisms of LRR-containing receptors in plants. PMID:25089011

  20. Characterization of surface interleukin-2 receptor expression on gated populations of peripheral blood mononuclear cells from manatees, Trichechus manatus latirostris.

    PubMed

    Sweat, J M; Johnson, C M; Marikar, Y; Gibbs, E P

    2005-12-15

    An in vitro system to determine surface interleukin-2 receptor (IL-2R) expression on mitogen-stimulated peripheral blood mononuclear cells (PBMC) from free-ranging manatees, Trichechus manatus latirostris was developed. Human recombinant IL-2, conjugated with a fluorescein dye was used in conjunction with flow cytometric analysis to determine changes in surface expression of IL-2R at sequential times over a 48-h period of in vitro stimulation. Surface expression of IL-2R was detected on manatee PBMC, which also cross-reacted with an anti-feline pan T-cell marker. An expression index (EI) was calculated by comparing mitogen-activated and non-activated PBMC. Based on side- and forward-scatter properties, flow cytometric analysis showed an increase in the number of larger, more granular "lymphoblasts" following concanavalin A (Con A) stimulation. The appearance of lymphoblasts was correlated with an increase in their surface expression of IL-2 receptors. Surface IL-2R expression, in Con A-stimulated PBMC, was detected at 16 h, peaked at 24-36 h, and began to decrease by 48 h. Characterization of the IL-2R expression should provide additional information on the health status of manatees, and the effect of their sub lethal exposure to brevetoxin. PMID:16112745

  1. Regulation of cell surface receptors for different hematopoietic growth factors on myeloid leukemic cells.

    PubMed Central

    Lotem, J; Sachs, L

    1986-01-01

    There are clones of myeloid leukemic cells which are different from normal myeloid cells in that they have become independent of hematopoietic growth factor for cell viability and growth. The ability of these clones to bind three types of hematopoietic growth factors (MGI-1GM = GM-CSF, IL-3 = multi-CSF and MGI-1M = M-CSF = CSF-1) was measured using the method of quantitative absorption at 1 degree C and low pH elution of cell-bound biological activity. Results of binding to normal myeloid and lymphoid cells were similar to those obtained by radioreceptor assays. The results indicate that the number of receptors on different clones of these leukemic cells varied from 0 to 1,300 per cell. The receptors have a high binding affinity. Receptors for different growth factors can be independently expressed in different clones. There was no relationship between expression of receptors for these growth factors and the phenotype of the leukemic cells regarding their ability to be induced to differentiate. The number of receptors on the leukemic cells was lower than on normal mature macrophages. Myeloid leukemic cells induced to differentiate by normal myeloid cell differentiation factor MGI-2 (= DF), or by low doses of actinomycin D or cytosine arabinoside, showed an up-regulation of the number of MGI-1GM and IL-3 receptors. Induction of differentiation of leukemic cells by MGI-2 also induced production and secretion of the growth factor MGI-1GM, and this induced MGI-1GM saturated the up-regulated MGI-1GM receptors. It is suggested that up-regulation of these receptors during differentiation is required for the functioning of differentiated cells. PMID:3023059

  2. A selective defect in IgM antigen receptor synthesis and transport causes loss of cell surface IgM expression on tolerant B lymphocytes.

    PubMed Central

    Bell, S E; Goodnow, C C

    1994-01-01

    To explore the biochemical basis for maintaining immunological tolerance by functional inactivation of self-reactive B lymphocytes, transgenic mice carrying rearranged anti-lysozyme immunoglobulin transgenes and a lysozyme transgene were used as a source of large numbers of tolerant self-reactive B cells. Antigen receptors of the IgD isotype were expressed at normal levels on tolerant B cells, contained the heterodimeric MB1/B29 signalling component of the receptor complex and were structurally indistinguishable from IgD on nontolerant B cells. In contrast, cell surface expression of IgM receptor complexes on tolerant B cells was greatly reduced, despite normal expression of mRNA encoding the receptor components. Three-fold fewer immunoreactive mu heavy chains were detectable after a short period of biosynthetic labelling and the immunoreactive mu chains produced were paired with kappa light chains and assembled normally into intact receptor complexes containing the MB1/B29 heterodimer. Nascent IgM receptor complexes nevertheless failed to be processed into an endoglycosidase H-resistant form in the tolerant B cells and thus appeared to be selectively blocked in their transport from the endoplasmic reticulum to the medial Golgi. These findings demonstrate that intracellular trafficking of antigen receptor complexes is regulated by exposure to receptor stimuli at the cell surface causing a long-lasting decrease in surface receptor expression on tolerant B cells. Images PMID:8112296

  3. Elimination of soluble sup 123 I-labeled aggregates of IgG in patients with systemic lupus erythematosus. Effect of serum IgG and numbers of erythrocyte complement receptor type 1

    SciTech Connect

    Halma, C.; Breedveld, F.C.; Daha, M.R.; Blok, D.; Evers-Schouten, J.H.; Hermans, J.; Pauwels, E.K.; van Es, L.A. )

    1991-04-01

    Using soluble {sup 123}I-labeled aggregates of human IgG ({sup 123}I-AHIgG) as a probe, we examined the function of the mononuclear phagocyte system in 22 patients with systemic lupus erythematosus (SLE) and 12 healthy controls. In SLE patients, a decreased number of erythrocyte complement receptor type 1 was associated with less binding of {sup 123}I-AHIgG to erythrocytes and a faster initial rate of elimination of {sup 123}I-AHIgG (mean +/- SEM half-maximal clearance time 5.23 +/- 0.2 minutes, versus 6.58 +/- 0.2 minutes in the controls), with possible spillover of the material outside the mononuclear phagocyte system of the liver and spleen. However, multiple regression analysis showed that serum concentrations of IgG were the most important factor predicting the rate of {sup 123}I-AHIgG elimination. IgG concentration may thus reflect immune complex clearance, which in turn, would influence the inflammatory reaction, in SLE.

  4. A "turn-on" fluorescent receptor for detecting tyrosine phosphopeptide using the surface imprinting procedure and the epitope approach.

    PubMed

    Li, Dong-Yan; Qin, Ya-Ping; Li, Hong-Yu; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2015-04-15

    A new strategy for the manufacture of a turn-on fluorescent molecularly imprinted polymer (CdTe/SiO2/MIP) receptor for detecting tyrosine phosphopeptide (pTyr peptide) was proposed. The receptor was prepared by the surface imprinting procedure and the epitope approach with silica-capped CdTe quantum dots (QDs) as core substrate and fluorescent signal, phenylphosphonic acid (PPA) as the dummy template, 1-[3-(trimethoxysilyl) propyl] urea as the functional monomer, and octyltrimethoxysilane as the cross-linker. The synthetic CdTe/SiO2/MIP was able to selectively capture the template PPA and corresponding target pTyr peptide with fluorescence enhancement via the special interaction between them and the recognition cavities. The receptor exhibited the linear fluorescence enhancement to pTyr peptide in the range of 0.5-35μM, and the detection limit was 0.37μM. The precision for five replicate detections of pTyr peptide at 20μM was 2.60% (relative standard deviation). Combining the fluorescence property of the CdTe QDs with the merits of the surface imprinting technique and the epitope approach, the receptor not only owned high recognition site accessibility and good binding affinities for target pTyr peptide, but also improved the fluorescence selectivity of the CdTe QDs, as well revealed the feasibility of fabrication of a turn-on fluorescence probe using the surface imprinting procedure and the epitope approach. PMID:25437356

  5. Nonconserved Tryptophan 38 of the Cell Surface Receptor for Subgroup J Avian Leukosis Virus Discriminates Sensitive from Resistant Avian Species

    PubMed Central

    Kučerová, Dana; Plachý, Jiří; Reinišová, Markéta; Šenigl, Filip; Trejbalová, Kateřina; Geryk, Josef

    2013-01-01

    Subgroup J avian leukosis virus (ALV-J) is unique among the avian sarcoma and leukosis viruses in using the multimembrane-spanning cell surface protein Na+/H+ exchanger type 1 (NHE1) as a receptor. The precise localization of amino acids critical for NHE1 receptor activity is key in understanding the virus-receptor interaction and potential interference with virus entry. Because no resistant chicken lines have been described until now, we compared the NHE1 amino acid sequences from permissive and resistant galliform species. In all resistant species, the deletion or substitution of W38 within the first extracellular loop was observed either alone or in the presence of other incidental amino acid changes. Using the ectopic expression of wild-type or mutated chicken NHE1 in resistant cells and infection with a reporter recombinant retrovirus of subgroup J specificity, we studied the effect of individual mutations on the NHE1 receptor capacity. We suggest that the absence of W38 abrogates binding of the subgroup J envelope glycoprotein to ALV-J-resistant cells. Altogether, we describe the functional importance of W38 for virus entry and conclude that natural polymorphisms in NHE1 can be a source of host resistance to ALV-J. PMID:23698309

  6. Aggregate breakdown of nanoparticulate titania

    NASA Astrophysics Data System (ADS)

    Venugopal, Navin

    Six nanosized titanium dioxide powders synthesized from a sulfate process were investigated. The targeted end-use of this powder was for a de-NOx catalyst honeycomb monolith. Alteration of synthesis parameters had resulted principally in differences in soluble ion level and specific surface area of the powders. The goal of this investigation was to understand the role of synthesis parameters in the aggregation behavior of these powders. Investigation via scanning electron microscopy of the powders revealed three different aggregation iterations at specific length scales. Secondary and higher order aggregate strength was investigated via oscillatory stress rheometry as a means of simulating shear conditions encountered during extrusion. G' and G'' were measured as a function of the applied oscillatory stress. Oscillatory rheometry indicated a strong variation as a function of the sulfate level of the particles in the viscoelastic yield strengths. Powder yield stresses ranged from 3.0 Pa to 24.0 Pa of oscillatory stress. Compaction curves to 750 MPa found strong similarities in extrapolated yield point of stage I and II compaction for each of the powders (at approximately 500 MPa) suggesting that the variation in sulfate was greatest above the primary aggregate level. Scanning electron microscopy of samples at different states of shear in oscillatory rheometry confirmed the variation in the linear elastic region and the viscous flow regime. A technique of this investigation was to approach aggregation via a novel perspective: aggregates are distinguished as being loose open structures that are highly disordered and stochastic in nature. The methodology used was to investigate the shear stresses required to rupture the various aggregation stages encountered and investigate the attempt to realign the now free-flowing constituents comprising the aggregate into a denser configuration. Mercury porosimetry was utilized to measure the pore size of the compact resulting from

  7. Effect of Spatial Inhomogeneities on the Membrane Surface on Receptor Dimerization and Signal Initiation

    PubMed Central

    Kerketta, Romica; Halász, Ádám M.; Steinkamp, Mara P.; Wilson, Bridget S.; Edwards, Jeremy S.

    2016-01-01

    Important signal transduction pathways originate on the plasma membrane, where microdomains may transiently entrap diffusing receptors. This results in a non-random distribution of receptors even in the resting state, which can be visualized as “clusters” by high resolution imaging methods. Here, we explore how spatial in-homogeneities in the plasma membrane might influence the dimerization and phosphorylation status of ErbB2 and ErbB3, two receptor tyrosine kinases that preferentially heterodimerize and are often co-expressed in cancer. This theoretical study is based upon spatial stochastic simulations of the two-dimensional membrane landscape, where variables include differential distributions and overlap of transient confinement zones (“domains”) for the two receptor species. The in silico model is parameterized and validated using data from single particle tracking experiments. We report key differences in signaling output based on the degree of overlap between domains and the relative retention of receptors in such domains, expressed as escape probability. Results predict that a high overlap of domains, which favors transient co-confinement of both receptor species, will enhance the rate of hetero-interactions. Where domains do not overlap, simulations confirm expectations that homo-interactions are favored. Since ErbB3 is uniquely dependent on ErbB2 interactions for activation of its catalytic activity, variations in domain overlap or escape probability markedly alter the predicted patterns and time course of ErbB3 and ErbB2 phosphorylation. Taken together, these results implicate membrane domain organization as an important modulator of signal initiation, motivating the design of novel experimental approaches to measure these important parameters across a wider range of receptor systems. PMID:27570763

  8. Effect of Spatial Inhomogeneities on the Membrane Surface on Receptor Dimerization and Signal Initiation.

    PubMed

    Kerketta, Romica; Halász, Ádám M; Steinkamp, Mara P; Wilson, Bridget S; Edwards, Jeremy S

    2016-01-01

    Important signal transduction pathways originate on the plasma membrane, where microdomains may transiently entrap diffusing receptors. This results in a non-random distribution of receptors even in the resting state, which can be visualized as "clusters" by high resolution imaging methods. Here, we explore how spatial in-homogeneities in the plasma membrane might influence the dimerization and phosphorylation status of ErbB2 and ErbB3, two receptor tyrosine kinases that preferentially heterodimerize and are often co-expressed in cancer. This theoretical study is based upon spatial stochastic simulations of the two-dimensional membrane landscape, where variables include differential distributions and overlap of transient confinement zones ("domains") for the two receptor species. The in silico model is parameterized and validated using data from single particle tracking experiments. We report key differences in signaling output based on the degree of overlap between domains and the relative retention of receptors in such domains, expressed as escape probability. Results predict that a high overlap of domains, which favors transient co-confinement of both receptor species, will enhance the rate of hetero-interactions. Where domains do not overlap, simulations confirm expectations that homo-interactions are favored. Since ErbB3 is uniquely dependent on ErbB2 interactions for activation of its catalytic activity, variations in domain overlap or escape probability markedly alter the predicted patterns and time course of ErbB3 and ErbB2 phosphorylation. Taken together, these results implicate membrane domain organization as an important modulator of signal initiation, motivating the design of novel experimental approaches to measure these important parameters across a wider range of receptor systems. PMID:27570763

  9. Membrane particle aggregates in innervated and noninnervated cultures of Xenopus embryonic muscle cells.

    PubMed Central

    Peng, H B; Nakajima, Y

    1978-01-01

    Clusters of membrane particle aggregates were found in the cultures of Xenopus embryonic muscle cells. In innervated cultures, the aggregates were usually found in the vicinity of the nerve. In terms of particle density and morphology, they resembled the postsynaptic particle aggregates of adult skeletal muscle fibers, suggesting that they may be related to acetylcholine receptors. Similar particle aggregates were also found in noninnervated cultures. They may correspond to extrajunctional clusters of acetylcholine receptors or "hot spots." Images PMID:272667

  10. Ephrinb1 and Ephrinb2 Are Associated with Interleukin-7 Receptor α and Retard Its Internalization from the Cell Surface*

    PubMed Central

    Luo, Hongyu; Wu, Zenghui; Qi, Shijie; Jin, Wei; Han, Bing; Wu, Jiangping

    2011-01-01

    IL-7 plays vital roles in thymocyte development, T cell homeostasis, and the survival of these cells. IL-7 receptor α (IL-7Rα) on thymocytes and T cells is rapidly internalized upon IL-7 ligation. Ephrins (Efns) are cell surface molecules and ligands of the largest receptor kinase family, Eph kinases. We discovered that T cell-specific double gene knock-out (dKO) of Efnb1 and Efnb2 in mice led to reduced IL-7Rα expression in thymocytes and T cells, and that IL-7Rα down-regulation was accelerated in dKO CD4 cells upon IL-7 treatment. On the other hand, Efnb1 and Efnb2 overexpression on T cell lymphoma EL4 cells retarded IL-7Rα down-regulation. dKO T cells manifested compromised STAT5 activation and homeostatic proliferation, an IL-7-dependent process. Fluorescence resonance energy transfer and immunoprecipitation demonstrated that Efnb1 and Efnb2 interacted physically with IL-7Rα. Such interaction likely retarded IL-7Rα internalization, as Efnb1 and Efnb2 were not internalized. Therefore, we revealed a novel function of Efnb1 and Efnb2 in stabilizing IL-7Rα expression at the post-translational level, and a previously unknown modus operandi of Efnbs in the regulation of expression of other vital cell surface receptors. PMID:22069310

  11. Characterization of a Putative Receptor Binding Surface on Skint-1, a Critical Determinant of Dendritic Epidermal T Cell Selection*

    PubMed Central

    Salim, Mahboob; Knowles, Timothy J.; Hart, Rosie; Mohammed, Fiyaz; Woodward, Martin J.; Willcox, Carrie R.; Overduin, Michael; Hayday, Adrian C.; Willcox, Benjamin E.

    2016-01-01

    Dendritic epidermal T cells (DETC) form a skin-resident γδ T cell population that makes key contributions to cutaneous immune stress surveillance, including non-redundant contributions to protection from cutaneous carcinogens. How DETC become uniquely associated with the epidermis was in large part solved by the identification of Skint-1, the prototypic member of a novel B7-related multigene family. Expressed only by thymic epithelial cells and epidermal keratinocytes, Skint-1 drives specifically the development of DETC progenitors, making it the first clear candidate for a selecting ligand for non-MHC/CD1-restricted T cells. However, the molecular mechanisms underpinning Skint-1 activity are unresolved. Here, we provide evidence that DETC selection requires Skint-1 expression on the surface of thymic epithelial cells, and depends upon specific residues on the CDR3-like loop within the membrane-distal variable domain of Skint-1 (Skint-1 DV). Nuclear magnetic resonance of Skint-1 DV revealed a core tertiary structure conserved across the Skint family, but a highly distinct surface charge distribution, possibly explaining its unique function. Crucially, the CDR3-like loop formed an electrostatically distinct surface, featuring key charged and hydrophobic solvent-exposed residues, at the membrane-distal tip of DV. These results provide the first structural insights into the Skint family, identifying a putative receptor binding surface that directly implicates Skint-1 in receptor-ligand interactions crucial for DETC selection. PMID:26917727

  12. Characterization of a Putative Receptor Binding Surface on Skint-1, a Critical Determinant of Dendritic Epidermal T Cell Selection.

    PubMed

    Salim, Mahboob; Knowles, Timothy J; Hart, Rosie; Mohammed, Fiyaz; Woodward, Martin J; Willcox, Carrie R; Overduin, Michael; Hayday, Adrian C; Willcox, Benjamin E

    2016-04-22

    Dendritic epidermal T cells (DETC) form a skin-resident γδ T cell population that makes key contributions to cutaneous immune stress surveillance, including non-redundant contributions to protection from cutaneous carcinogens. How DETC become uniquely associated with the epidermis was in large part solved by the identification of Skint-1, the prototypic member of a novel B7-related multigene family. Expressed only by thymic epithelial cells and epidermal keratinocytes, Skint-1 drives specifically the development of DETC progenitors, making it the first clear candidate for a selecting ligand for non-MHC/CD1-restricted T cells. However, the molecular mechanisms underpinning Skint-1 activity are unresolved. Here, we provide evidence that DETC selection requires Skint-1 expression on the surface of thymic epithelial cells, and depends upon specific residues on the CDR3-like loop within the membrane-distal variable domain of Skint-1 (Skint-1 DV). Nuclear magnetic resonance of Skint-1 DV revealed a core tertiary structure conserved across the Skint family, but a highly distinct surface charge distribution, possibly explaining its unique function. Crucially, the CDR3-like loop formed an electrostatically distinct surface, featuring key charged and hydrophobic solvent-exposed residues, at the membrane-distal tip of DV. These results provide the first structural insights into the Skint family, identifying a putative receptor binding surface that directly implicates Skint-1 in receptor-ligand interactions crucial for DETC selection. PMID:26917727

  13. Removal of cell surface heparan sulfate increases TACE activity and cleavage of ErbB4 receptor

    PubMed Central

    Määttä, Jorma A; Olli, Kaisa; Henttinen, Tiina; Tuittila, Minna T; Elenius, Klaus; Salmivirta, Markku

    2009-01-01

    Background Nuclear localization of proteolytically formed intracellular fragment of ErbB4 receptor tyrosine kinase has been shown to promote cell survival, and nuclear localization of ErbB4 receptor has been described in human breast cancer. Tumor necrosis factor alpha converting enzyme (TACE) initiates the proteolytic cascade leading to ErbB4 intracellular domain formation. Interactions between matrix metalloproteases and heparan sulfate have been described, but the effect of cell surface heparan sulfate on TACE activity has not been previously described. Results As indicated by immunodetection of increased ErbB4 intracellular domain formation and direct enzyme activity analysis, TACE activity was substantially amplified by enzymatic removal of cell surface heparan sulfate but not chondroitin sulfate. Conclusion In this communication, we suggest a novel role for cell surface heparan sulfate. Removal of cell surface heparan sulfate led to increased formation of ErbB4 intracellular domain. As ErbB4 intracellular domain has previously been shown to promote cell survival this finding may indicate a novel mechanism how HS degradation active in tumor tissue may favor cell survival. PMID:19171023

  14. A dimeric peptide with erythropoiesis-stimulating activity uniquely affects erythropoietin receptor ligation and cell surface expression.

    PubMed

    Verma, Rakesh; Green, Jennifer M; Schatz, Peter J; Wojchowski, Don M

    2016-08-01

    Erythropoiesis-stimulating agents (ESAs) that exert long-acting antianemia effects have been developed recently, but their mechanisms are poorly understood. Analyses reveal unique erythropoietin receptor (EPOR)-binding properties for one such ESA, the synthetic EPOR agonist peginesatide. Compared with recombinant human EPO and darbepoietin, peginesatide exhibited a slow on rate, but sustained EPOR residency and resistant displacement. In EPO-dependent human erythroid progenitor UT7epo cells, culture in peginesatide unexpectedly upmodulated endogenous cell surface EPOR levels with parallel increases in full-length EPOR-68K levels. These unique properties are suggested to contribute to the durable activity of this (and perhaps additional) dimeric peptide hematopoietic growth factor receptor agonist. PMID:27174804

  15. Syndecans as Cell Surface Receptors in Cancer Biology. A Focus on their Interaction with PDZ Domain Proteins

    PubMed Central

    Cheng, Bill; Montmasson, Marine; Terradot, Laurent; Rousselle, Patricia

    2016-01-01

    Syndecans are transmembrane receptors with ectodomains that are modified by glycosaminoglycan chains. The ectodomains can interact with a wide variety of molecules, including growth factors, cytokines, proteinases, adhesion receptors, and extracellular matrix (ECM) components. The four syndecans in mammals are expressed in a development-, cell-type-, and tissue-specific manner and can function either as co-receptors with other cell surface receptors or as independent adhesion receptors that mediate cell signaling. They help regulate cell proliferation and migration, angiogenesis, cell/cell and cell/ECM adhesion, and they may participate in several key tumorigenesis processes. In some cancers, syndecan expression regulates tumor cell proliferation, adhesion, motility, and other functions, and may be a prognostic marker for tumor progression and patient survival. The short cytoplasmic tail is likely to be involved in these events through recruitment of signaling partners. In particular, the conserved carboxyl-terminal EFYA tetrapeptide sequence that is present in all syndecans binds to some PDZ domain-containing proteins that may function as scaffold proteins that recruit signaling and cytoskeletal proteins to the plasma membrane. There is growing interest in understanding these interactions at both the structural and biological levels, and recent findings show their high degree of complexity. Parameters that influence the recruitment of PDZ domain proteins by syndecans, such as binding specificity and affinity, are the focus of active investigations and are important for understanding regulatory mechanisms. Recent studies show that binding may be affected by post-translational events that influence regulatory mechanisms, such as phosphorylation within the syndecan cytoplasmic tail. PMID:26869927

  16. The novel platelet activation receptor CLEC-2.

    PubMed

    Suzuki-Inoue, Katsue; Inoue, Osamu; Ozaki, Yukio

    2011-01-01

    The c-type lectin-like receptor 2 (CLEC-2) was first identified from a bio-informatic screen for c-type lectin-like receptors. However, neither its function nor its ligand(s) had been elucidated for several years. In 2006, we reported that the receptor is expressed on the surface of platelets and serves as a receptor for the snake venom rhodocytin, which potently stimulates platelet aggregation. Since then CLEC-2 has been intensively investigated, and its endogenous/exogenous ligands and several physiological/pathological roles have been clarified. In this article and its accompanying poster, we outline the structure, distribution, signal transduction mechanism and functions of CLEC-2. PMID:21714702

  17. A Single and a Dual-Fractal Analysis of Analyte-Receptor Binding Kinetics for Surface Plasmon Resonance Biosensor Applications.

    PubMed

    Ramakrishnan; Sadana

    1999-05-15

    The diffusion-limited binding kinetics of analyte in solution to either a receptor immobilized on a surface or to a receptorless surface is analyzed within a fractal framework for a surface plasmon resonance biosensor. The data is adequately described by a single- or a dual-fractal analysis. Initially, the data was modeled by a single-fractal analysis. If an inadequate fit was obtained then a dual-fractal analysis was utilized. The regression analysis provided by Sigmaplot (32) was used to determine if a single fractal analysis is sufficient or if a dual-fractal analysis is required. In general, it is of interest to note that the binding rate coefficient and the fractal dimension exhibit changes in the same direction (except for a single example) for the analyte-receptor systems analyzed. Binding rate coefficient expressions as a function of the fractal dimension developed for the analyte-receptor binding systems indicate, in general, the high sensitivity of the binding rate coefficient on the fractal dimension when both a single- and a dual-fractal analysis is used. For example, for a single-fractal analysis and for the binding of human endothelin-1 (ET-1) antibody in solution to ET-115-21.BSA immobilized on a surface plasmon resonance (SPR) surface (33), the order of dependence of the binding rate coefficient, k, on the fractal dimension, Df, is 6.4405. Similarly, for a dual-fractal analysis and for the binding of 10(-6) to 10(-4) M bSA in solution to a receptorless surface (direct binding to SPR surface) (41) the order of dependence of k1 and k2 on Df1 and Df2 were -2.356 and 6.241, respectively. Binding rate coefficient expressions are also developed as a function of the analyte concentration in solution. The binding rate coefficient expressions developed as a function of the fractal dimension(s) are of particular value since they provide a means to better control SPR biosensor performance by linking it to the degree of heterogeneity that exists on the SPR

  18. Investigating the mechanisms leading to protein aggregation

    NASA Astrophysics Data System (ADS)

    McNamara, Ruth; McManus, Jennifer J.

    2014-03-01

    The formation of protein aggregates is a feature of several diseases and is a problem during the manufacture of biopharmaceutical and protein based food products. During processing, stability may become compromised leading to the condensation of proteins to form non-native aggregates. The aim of this work is to induce aggregation on model proteins by the imposition of a particular stress to evaluate the extent of aggregation and to assess the degree of structural change to the protein. Aggregation of two proteins, lysozyme and bovine serum albumin has been induced by several mechanisms. Using various techniques (electrophoresis, HPLC, spectroscopic analysis, and microscopic techniques) both the level of aggregation extent of protein unfolding has been investigated for a range of solution conditions. Our results show that the amount of aggregation depends strongly on the mechanism by which non-native aggregation proceeds, and within each mechanism, solution conditions are an important factor. With the exception of aggregation by self-association (which is concentration dependent), the appearance of aggregation is driven by structural changes induced by the applied stress (heat, chemical denaturant, oxidation or contact with a surface). Author would like to acknowledge support from Science Foundation Ireland (SFI), National University of Maynooth John and Pat Hume Scholarship.

  19. Crystal aggregation in kidney stones; a polymer aggregation problem?

    NASA Astrophysics Data System (ADS)

    Wesson, J.; Beshensky, A.; Viswanathan, P.; Zachowicz, W.; Kleinman, J.

    2008-03-01

    Kidney stones most frequently form as aggregates of calcium oxalate monohydrate (COM) crystals with organic layers between them, and the organic layers contain principally proteins. The pathway leading to the formation of these crystal aggregates in affected people has not been identified, but stone forming patients are thought to have a defect in the structure or distribution of urinary proteins, which normally protect against stone formation. We have developed two polyelectrolyte models that will induce COM crystal aggregation in vitro, and both are consistent with possible urinary protein compositions. The first model was based on mixing polyanionic and polycationic proteins, in portions such that the combined protein charge is near zero. The second model was based on reducing the charge density on partially charged polyanionic proteins, specifically Tamm-Horsfall protein, the second most abundant protein in urine. Both models demonstrated polymer phase separation at solution conditions where COM crystal aggregation was observed. Correlation with data from other bulk crystallization measurements suggest that the anionic side chains form critical binding interactions with COM surfaces that are necessary along with the phase separation process to induce COM crystal aggregation.

  20. CD4+ T Cells and Toll-Like Receptors Recognize Salmonella Antigens Expressed in Bacterial Surface Organelles

    PubMed Central

    Bergman, Molly A.; Cummings, Lisa A.; Barrett, Sara L. Rassoulian; Smith, Kelly D.; Lara, J. Cano; Aderem, Alan; Cookson, Brad T.

    2005-01-01

    A better understanding of immunity to infection is revealed from the characteristics of microbial ligands recognized by host immune responses. Murine infection with the intracellular bacterium Salmonella generates CD4+ T cells that specifically recognize Salmonella proteins expressed in bacterial surface organelles such as flagella and membrane vesicles. These natural Salmonella antigens are also ligands for Toll-like receptors (TLRs) or avidly associated with TLR ligands such as lipopolysaccharide (LPS). PhoP/PhoQ, a regulon controlling Salmonella virulence and remodeling of LPS to resist innate immunity, coordinately represses production of surface-exposed antigens recognized by CD4+ T cells and TLRs. These data suggest that genetically coordinated surface modifications may provide a growth advantage for Salmonella in host tissues by limiting both innate and adaptive immune recognition. PMID:15731032

  1. Evaporation effects in elastocapillary aggregation

    NASA Astrophysics Data System (ADS)

    Vella, Dominic; Hadjittofis, Andreas; Singh, Kiran; Lister, John

    2015-11-01

    We consider the effect of evaporation on the aggregation of a number of elastic objects due to a liquid's surface tension. In particular, we consider an array of spring-block elements in which the gaps between blocks are filled by thin liquid films that evaporate during the course of an experiment. Using lubrication theory to account for the fluid flow within the gaps, we study the dynamics of aggregation. We find that a non-zero evaporation rate causes the elements to aggregate more quickly and, indeed, to contact within finite time. However, we also show that the number of elements within each cluster decreases as the evaporation rate increases. We explain these results quantitatively by comparison with the corresponding two-body problem and discuss their relevance for controlling pattern formation in carbon nanotube forests.

  2. Receptor Surface Models in the Classroom: Introducing Molecular Modeling to Students in a 3-D World

    ERIC Educational Resources Information Center

    Geldenhuys, Werner J.; Hayes, Michael; Van der Schyf, Cornelis J.; Allen, David D.; Malan, Sarel F.

    2007-01-01

    A simple, novel and generally applicable method to demonstrate structure-activity associations of a group of biologically interesting compounds in relation to receptor binding is described. This method is useful for undergraduates and graduate students in medicinal chemistry and computer modeling programs.

  3. Computational modeling indicates that surface pressure can be reliably conveyed to tactile receptors even amidst changes in skin mechanics.

    PubMed

    Wang, Yuxiang; Baba, Yoshichika; Lumpkin, Ellen A; Gerling, Gregory J

    2016-07-01

    Distinct patterns in neuronal firing are observed between classes of cutaneous afferents. Such differences may be attributed to end-organ morphology, distinct ion-channel complements, and skin microstructure, among other factors. Even for just the slowly adapting type I afferent, the skin's mechanics for a particular specimen might impact the afferent's firing properties, especially given the thickness and elasticity of skin can change dramatically over just days. Here, we show computationally that the skin can reliably convey indentation magnitude, rate, and spatial geometry to the locations of tactile receptors even amid changes in skin's structure. Using finite element analysis and neural dynamics models, we considered the skin properties of six mice that span a representative cohort. Modeling the propagation of the surface stimulus to the interior of the skin demonstrated that there can be large variance in stresses and strains near the locations of tactile receptors, which can lead to large variance in static firing rate. However, variance is significantly reduced when the stimulus tip is controlled by surface pressure and compressive stress is measured near the end organs. This particular transformation affords the least variability in predicted firing rates compared with others derived from displacement, force, strain energy density, or compressive strain. Amid changing skin mechanics, stimulus control by surface pressure may be more naturalistic and optimal and underlie how animals actively explore the tactile environment. PMID:27098029

  4. The interaction of protein-coated bionanoparticles and surface receptors reevaluated: how important is the number of bonds?

    PubMed

    Wang, Wenjing; Voigt, Andreas; Sundmacher, Kai

    2016-08-14

    Specifically designed bionanoparticles with a function-oriented protein-coating layer interact with self-prepared receptor surfaces as the counterpart. Based on surface plasmon resonance biosensing experiments, a model framework is validated to estimate the number of bonds formed between these bionanoparticles and the receptor surface based on multivalent interactions. Our multi-site kinetic model is able to analyze the adsorption rate constants and the number of bonds from experimental data of natural and synthetic bionanoparticles. The influence of the mass transport on the adsorption kinetics is modeled including a diffusional boundary layer where a helpful analytical solution has been derived. Our model framework extends previous studies to include a higher number of bonds, ranging from 1 up to 1000. An almost linear relationship between the number of bonds and the adsorption amount of bionanoparticles makes the model framework suitable to predict, for example, ligand density and to further assess coating performance. The proposed model framework can serve as a design tool for multivalent interaction experiments under variable process conditions. PMID:27411954

  5. CD22 is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells

    PubMed Central

    O‘Reilly, Mary K.; Tian, Hua; Paulson, James C.

    2010-01-01

    CD22 is a member of the sialic acid-binding Ig-like lectin (Siglec) family that is known to be a regulator of B cell signaling. Its B cell-specific expression makes it an attractive target for immunotoxin-mediated B cell depletion therapy for the treatment of B cell lymphomas and autoimmune diseases. Although CD22 is well documented to be an endocytic receptor, it is believed that following internalization it is targeted for degradation. We show here that CD22 is instead constitutively recycled to the cell surface. We also find that glycan ligand–based cargo is released from CD22 and accumulates intracellularly as CD22 recycles between the cell surface and endosomal compartments. In contrast, antibodies to CD22 do not accumulate, but remain bound to CD22 and recycle to the cell surface. The results have implications for development of agents that target CD22 as an endocytic receptor for delivery of cytotoxic cargo to B cells. PMID:21178016

  6. Platelet aggregation test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003669.htm Platelet aggregation test To use the sharing features on this page, please enable JavaScript. The platelet aggregation blood test checks how well platelets , a ...

  7. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  8. Platelet aggregation test

    MedlinePlus

    The platelet aggregation blood test checks how well platelets , a part of blood, clump together and cause blood to clot. ... Decreased platelet aggregation may be due to: Autoimmune ... Fibrin degradation products Inherited platelet function defects ...

  9. Impact of Particle Aggregation on Nanoparticle Reactivity

    NASA Astrophysics Data System (ADS)

    Jassby, David

    2011-12-01

    The prevalence of nanoparticles in the environment is expected to grow in the coming years due to their increasing pervasiveness in consumer and industrial applications. Once released into the environment, nanoparticles encounter conditions of pH, salinity, UV light, and other solution conditions that may alter their surface characteristics and lead to aggregation. The unique properties that make nanoparticles desirable are a direct consequence of their size and increased surface area. Therefore, it is critical to recognize how aggregation alters the reactive properties of nanomaterials, if we wish to understand how these properties are going to behave once released into the environment. The size and structure of nanoparticle aggregates depend on surrounding conditions, including hydrodynamic ones. Depending on these conditions, aggregates can be large or small, tightly packed or loosely bound. Characterizing and measuring these changes to aggregate morphology is important to understanding the impact of aggregation on nanoparticle reactive properties. Examples of decreased reactivity due to aggregation include the case where tightly packed aggregates have fewer available surface sites compared to loosely packed ones; also, photocatalytic particles embedded in the center of large aggregates will experience less light when compared to particles embedded in small aggregates. However, aggregation also results in an increase in solid-solid interfaces between nanoparticles. This can result in increased energy transfer between neighboring particles, surface passivation, and altered surface tension. These phenomena can lead to an increase in reactivity. The goal of this thesis is to examine the impacts of aggregation on the reactivity of a select group of nanomaterials. Additionally, we examined how aggregation impacts the removal efficiency of fullerene nanoparticles using membrane filtration. The materials we selected to study include ZnS---a metal chalcogenide

  10. Subdomain 2 of the Autotransporter Pet Is the Ligand Site for Recognizing the Pet Receptor on the Epithelial Cell Surface.

    PubMed

    Chavez-Dueñas, Lucia; Serapio-Palacios, Antonio; Nava-Acosta, Raul; Navarro-Garcia, Fernando

    2016-07-01

    Most autotransporter passenger domains, regardless of their diversity in function, fold or are predicted to fold as right-handed β-helices carrying various loops that are presumed to confer functionality. Our goal here was to identify the subdomain (loop) or amino acid sequence of the Pet passenger domain involved in the receptor binding site on the host cell for Pet endocytosis. Here, we show that d1 and d2 subdomains, as well as the amino acid sequence linking the subdomain d2 and the adjacent β-helix (PDWET), are not required for Pet secretion through the autotransporter system and that none of our deletion mutants altered the predicted long right-handed β-helical structure. Interestingly, Pet lacking the d2 domain (PetΔd2) was unable to bind on the epithelial cell surface, in contrast to Pet lacking d1 (PetΔd1) subdomain or PDWET sequences. Moreover, the purified d1 subdomain, the biggest subdomain (29.8 kDa) containing the serine protease domain, was also unable to bind the cell surface. Thus, d2 sequence (54 residues without the PDWET sequence) was required for Pet binding to eukaryotic cells. In addition, this d2 sequence was also needed for Pet internalization but not for inducing cell damage. In contrast, PetΔd1, which was able to bind and internalize inside the cell, was unable to cause cell damage. Furthermore, unlike Pet, PetΔd2 was unable to bind cytokeratin 8, a Pet receptor. These data indicate that the surface d2 subdomain is essential for the ligand-receptor (Pet-Ck8) interaction for Pet uptake and to start the epithelial cell damage by this toxin. PMID:27113356

  11. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region.

    PubMed

    Kassotis, Christopher D; Tillitt, Donald E; Davis, J Wade; Hormann, Annette M; Nagel, Susan C

    2014-03-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized that a selected subset of chemicals used in natural gas drilling operations and also surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas-related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operations may result in elevated endocrine-disrupting chemical activity in surface and ground water. PMID:24424034

  12. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. 2; Aggregation

    NASA Technical Reports Server (NTRS)

    Schamschula, Marius; Crosson, William L.; Inguva, Ramarao; Yates, Thomas; Laymen, Charles A.; Caulfield, John

    1998-01-01

    This is a follow up on the preceding presentation by Crosson. The grid size for remote microwave measurements is much coarser than the hydrological model computational grids. To validate the hydrological models with measurements we propose mechanisms to aggregate the hydrological model outputs for soil moisture to allow comparison with measurements. Weighted neighborhood averaging methods are proposed to facilitate the comparison. We will also discuss such complications as misalignment, rotation and other distortions introduced by a generalized sensor image.

  13. Modification of the aggregation behaviour of the environmental Ralstonia eutropha-like strain AE815 is reflected by both surface hydrophobicity and amplified fragment length polymorphism (AFLP) patterns.

    PubMed

    Bossier, P; Top, E M; Huys, G; Kersters, K; Boonaert, C J; Rouxhet, P G; Verstraete, W

    2000-02-01

    After inoculation of the plasmid-free non-aggregative Ralstonia eutropha-like strain AE815 in activated sludge, followed by reisolation on a selective medium, a mutant strain A3 was obtained, which was characterized by an autoaggregative behaviour. Strain A3 had also acquired an IncP1 plasmid, pLME1, co-aggregated with yeast cells when co-cultured, and stained better with Congo red than did the AE815 strain. Contact angle measurements showed that the mutant strain was considerably more hydrophobic than the parent strain AE815, and scanning electron microscopy (SEM) revealed the production of an extracellular substance. A similar hydrophobic mutant (AE176R) could be isolated from the AE815-isogenic R. eutropha-like strain AE176. With the DNA fingerprinting technique repetitive extragenic palindromic-polymerase chain reaction (REP-PCR), no differences between these four strains, AE815, A3, AE176 and AE176R, could be revealed. However, using the amplified fragment length polymorphism (AFLP) DNA fingerprinting technique with three different primer combinations, small but clear reproducible differences between the banding patterns of the autoaggregative mutants and their non-autoaggregative parent strains were observed for each primer set. These studies demonstrate that, upon introduction of a strain in an activated sludge microbial community, minor genetic changes readily occur, which can nevertheless have major consequences for the phenotype of the strain and its aggregation behaviour. PMID:11243262

  14. K Domain CR9 of Low Density Lipoprotein (LDL) Receptor-related Protein 1 (LRP1) Is Critical for Aggregated LDL-induced Foam Cell Formation from Human Vascular Smooth Muscle Cells*

    PubMed Central

    Costales, Paula; Fuentes-Prior, Pablo; Castellano, Jose; Revuelta-Lopez, Elena; Corral-Rodríguez, Maria Ángeles; Nasarre, Laura; Badimon, Lina; Llorente-Cortes, Vicenta

    2015-01-01

    Low density lipoprotein receptor-related protein (LRP1) mediates the internalization of aggregated LDL (AgLDL), which in turn increases the expression of LRP1 in human vascular smooth muscle cells (hVSMCs). This positive feedback mechanism is thus highly efficient to promote the formation of hVSMC foam cells, a crucial vascular component determining the susceptibility of atherosclerotic plaque to rupture. Here we have determined the LRP1 domains involved in AgLDL recognition with the aim of specifically blocking AgLDL internalization in hVSMCs. The capacity of fluorescently labeled AgLDL to bind to functional LRP1 clusters was tested in a receptor-ligand fluorometric assay made by immobilizing soluble LRP1 “minireceptors” (sLRP1-II, sLRP1-III, and sLRP1-IV) recombinantly expressed in CHO cells. This assay showed that AgLDL binds to cluster II. We predicted three well exposed and potentially immunogenic peptides in the CR7–CR9 domains of this cluster (termed P1 (Cys1051–Glu1066), P2 (Asp1090–Cys1104), and P3 (Gly1127–Cys1140)). AgLDL, but not native LDL, bound specifically and tightly to P3-coated wells. Rabbit polyclonal antibodies raised against P3 prevented AgLDL uptake by hVSMCs and were almost twice as effective as anti-P1 and anti-P2 Abs in reducing intracellular cholesteryl ester accumulation. Moreover, anti-P3 Abs efficiently prevented AgLDL-induced LRP1 up-regulation and counteracted the down-regulatory effect of AgLDL on hVSMC migration. In conclusion, domain CR9 appears to be critical for LRP1-mediated AgLDL binding and internalization in hVSMCs. Our results open new avenues for an innovative anti-VSMC foam cell-based strategy for the treatment of vascular lipid deposition in atherosclerosis. PMID:25918169

  15. Nanoarchitectured electrochemical cytosensors for selective detection of leukemia cells and quantitative evaluation of death receptor expression on cell surfaces.

    PubMed

    Zheng, Tingting; Fu, Jia-Ju; Hu, Lihui; Qiu, Fan; Hu, Minjin; Zhu, Jun-Jie; Hua, Zi-Chun; Wang, Hui

    2013-06-01

    The variable susceptibility to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment observed in various types of leukemia cells is related to the difference in the expression levels of death receptors, DR4 and DR5, on the cell surfaces. Quantifying the DR4/DR5 expression status on leukemia cell surfaces is of vital importance to the development of diagnostic tools to guide death receptor-based leukemia treatment. Taking the full advantages of novel nanobiotechnology, we have developed a robust electrochemical cytosensing approach toward ultrasensitive detection of leukemia cells with detection limit as low as ~40 cells and quantitative evaluation of DR4/DR5 expression on leukemia cell surfaces. The optimization of electron transfer and cell capture processes at specifically tailored nanobiointerfaces and the incorporation of multiple functions into rationally designed nanoprobes provide unique opportunities of integrating high specificity and signal amplification on one electrochemical cytosensor. The high sensitivity and selectivity of this electrochemical cytosensing approach also allows us to evaluate the dynamic alteration of DR4/DR5 expression on the surfaces of living cells in response to drug treatments. Using the TRAIL-resistant HL-60 cells and TRAIL-sensitive Jurkat cells as model cells, we have further verified that the TRAIL susceptibility of various types of leukemia cells is directly correlated to the surface expression levels of DR4/DR5. This versatile electrochemical cytosensing platform is believed to be of great clinical value for the early diagnosis of human leukemia and the evaluation of therapeutic effects on leukemia patients after radiation therapy or drug treatment. PMID:23621478

  16. Highly Aggregated Antibody Therapeutics Can Enhance the in Vitro Innate and Late-stage T-cell Immune Responses

    PubMed Central

    Joubert, Marisa K.; Hokom, Martha; Eakin, Catherine; Zhou, Lei; Deshpande, Meghana; Baker, Matthew P.; Goletz, Theresa J.; Kerwin, Bruce A.; Chirmule, Naren; Narhi, Linda O.; Jawa, Vibha

    2012-01-01

    Aggregation of biotherapeutics has the potential to induce an immunogenic response. Here, we show that aggregated therapeutic antibodies, previously generated and determined to contain a variety of attributes (Joubert, M. K., Luo, Q., Nashed-Samuel, Y., Wypych, J., and Narhi, L. O. (2011) J. Biol. Chem. 286, 25118–25133), can enhance the in vitro innate immune response of a population of naive human peripheral blood mononuclear cells. This response depended on the aggregate type, inherent immunogenicity of the monomer, and donor responsiveness, and required a high number of particles, well above that detected in marketed drug products, at least in this in vitro system. We propose a cytokine signature as a potential biomarker of the in vitro peripheral blood mononuclear cell response to aggregates. The cytokines include IL-1β, IL-6, IL-10, MCP-1, MIP-1α, MIP-1β, MMP-2, and TNF-α. IL-6 and IL-10 might have an immunosuppressive effect on the long term immune response. Aggregates made by stirring induced the highest response compared with aggregates made by other methods. Particle size in the 2–10 μm range and the retention of some folded structure were associated with an increased response. The mechanism of aggregate activation at the innate phase was found to occur through specific cell surface receptors (the toll-like receptors TLR-2 and TLR-4, FcγRs, and the complement system). The innate signal was shown to progress to an adaptive T-cell response characterized by T-cell proliferation and secretion of T-cell cytokines. Investigating the ability of aggregates to induce cytokine signatures as biomarkers of immune responses is essential for determining their risk of immunogenicity. PMID:22584577

  17. Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors.

    PubMed

    Luo, Yi; Zhou, Jun; Li, Ming-Xing; Wu, Peng-Fei; Hu, Zhuang-Li; Ni, Lan; Jin, You; Chen, Jian-Guo; Wang, Fang

    2015-04-01

    Aging-related emotional memory deficit is a well-known complication in Alzheimer's disease and normal aging. However, little is known about its molecular mechanism. To address this issue, we examined the role of norepinephrine (NE) and its relevant drug desipramine in the regulation of hippocampal long-term potentiation (LTP), surface expression of AMPA receptor, and associative fear memory in rats. We found that there was a defective regulation of NE content and AMPA receptor trafficking during fear conditioning, which were accompanied by impaired emotional memory and LTP in aged rats. Furthermore, we also found that the exogenous upregulation of NE ameliorated the impairment of LTP and emotional memory via enhancing AMPA receptor trafficking in aged rats, and the downregulation of NE impaired LTP in adult rats. Finally, acute treatment with NE or desipramine rescued the impaired emotional memory in aged rats. These results imply a pivotal role for NE in synaptic plasticity and associative fear memory in aging rats and suggest that desipramine is a potential candidate for treating aging-related emotional memory deficit. PMID:25564942

  18. Extracellular surface residues of the α1B-adrenoceptor critical for G protein-coupled receptor function.

    PubMed

    Ragnarsson, Lotten; Andersson, Åsa; Thomas, Walter G; Lewis, Richard J

    2015-01-01

    Ligand binding and conformational changes that accompany signaling from G protein-coupled receptors (GPCRs) have mostly focused on the role of transmembrane helices and intracellular loop regions. However, recent studies, including several GPCRs cocrystallized with bound ligands, suggest that the extracellular surface (ECS) of GPCRs plays an important role in ligand recognition, selectivity, and binding, as well as potentially contributing to receptor activation and signaling. This study applied alanine-scanning mutagenesis to investigate the role of the complete ECS of the α1B-adrenoreceptor on norepinephrine (NE) potency, affinity, and efficacy. Half (24 of 48) of the ECS mutations significantly decreased NE potency in an inositol 1-phosphate assay. Most mutations reduced NE affinity (17) determined from [(3)H]prazosin displacement studies, whereas four mutations at the entrance to the NE binding pocket enhanced NE affinity. Removing the influence of NE affinity and receptor expression levels on NE potency gave a measure of NE efficacy, which was significantly decreased for 11 of 48 ECS mutants. These different effects tended to cluster to different regions of the ECS, which is consistent with different regions of the ECS playing discrete functional roles. Exposed ECS residues at the entrance to the NE binding pocket mostly affected NE affinity, whereas buried or structurally significant residues mostly affected NE efficacy. The broad potential for ECS mutations to affect GPCR function has relevance for the increasing number of nonsynonymous single nucleotide polymorphisms now being identified in GPCRs. PMID:25352041

  19. Phenomenology of optical scattering from plasmonic aggregates for application to biological imaging and clinical therapeutics

    NASA Astrophysics Data System (ADS)

    Travis, Kort; Aaron, Jesse; Harrison, Nathan; Sokolov, Konstantin

    2008-02-01

    Near-field coupling between plasmonic resonant nanoparticles and the associated shifts in scattering spectra enables the accomplishment of unprecedented observation of the co-localization dynamics of in-situ biomolecules on nanometer length-scales. We have recently shown that resonant nanoparticles conjugated to antibodies for cell-surface receptors provide a sensitive probe allowing the unambiguous resolution of not only the time sequence, but also the details of the intracellular pathway, for receptor-mediated endocytosis in live cells. In terms of general principles, the classical electrodynamics determining the scattering cross-section for nanoparticle aggregates is straightforward. However, the specifics of the angular dependence of the differential cross-section at a single wavelength, the wavelength dependence of this cross-section, and the correct implementation and interpretation of statistical averages of cross-section properties over an ensemble of aggregate morphologies are generally quite complicated, and in fact are often misinterpreted in the literature. Despite this complexity, we have constructed a set of few-parameter formulae describing optical scattering from nanoparticle aggregates by judicious combination of experimental results with extensive, near-exact simulation using the T-matrix technique. These phenomenological results facilitate the practical use of nanoparticle aggregates for biological measurement and clinical therapeutic applications.

  20. An extended surface of binding to Trk tyrosine kinase receptors in NGF and BDNF allows the engineering of a multifunctional pan-neurotrophin.

    PubMed Central

    Ibáñez, C F; Ilag, L L; Murray-Rust, J; Persson, H

    1993-01-01

    Neurotrophin-mediated cell survival and differentiation of vertebrate neurons is caused by ligand-specific binding to the Trk family of tyrosine kinase receptors. However, sites in the neurotrophins responsible for the binding to Trk receptors and the mechanisms whereby this interaction results in receptor activation and biological activity are unknown. Here we show that in nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), discontinuous stretches of amino acid residues group together on one side of the neurotrophin dimer forming a continuous surface responsible for binding to and activation of TrkA and TrkB receptors. Two symmetrical surfaces are formed along the two-fold axis of the neurotrophin dimer providing a model for ligand-mediated receptor dimerization. Mutated neurotrophins inducing similar levels of receptor phosphorylation showed different biological activities, suggesting that structural differences in a ligand may result in dissimilar responses in a given tyrosine kinase receptor. Our results allowed us to combine structural elements from NGF, BDNF and neurotrophin-3 to engineer a pan-neurotrophin that efficiently activates all Trk receptors and displays multiple neurotrophic specificities. Images PMID:8508763

  1. Lactococcal 949 Group Phages Recognize a Carbohydrate Receptor on the Host Cell Surface

    PubMed Central

    Mahony, Jennifer; Randazzo, Walter; Neve, Horst; Settanni, Luca

    2015-01-01

    Lactococcal bacteriophages represent one of the leading causes of dairy fermentation failure and product inconsistencies. A new member of the lactococcal 949 phage group, named WRP3, was isolated from cheese whey from a Sicilian factory in 2011. The genome sequence of this phage was determined, and it constitutes the largest lactococcal phage genome currently known, at 130,008 bp. Detailed bioinformatic analysis of the genomic region encoding the presumed initiator complex and baseplate of WRP3 has aided in the functional assignment of several open reading frames (ORFs), particularly that for the receptor binding protein required for host recognition. Furthermore, we demonstrate that the 949 phages target cell wall phospho-polysaccharides as their receptors, accounting for the specificity of the interactions of these phages with their lactococcal hosts. Such information may ultimately aid in the identification of strains/strain blends that do not present the necessary saccharidic target for infection by these problematic phages. PMID:25746988

  2. An insulin receptor mutant (Asp707 --> Ala), involved in leprechaunism, is processed and transported to the cell surface but unable to bind insulin.

    PubMed

    Hart, L M; Lindhout, D; Van der Zon, G C; Kayserilli, H; Apak, M Y; Kleijer, W J; Van der Vorm, E R; Maassen, J A

    1996-08-01

    We have identified a homozygous mutation near the carboxyl terminus of the insulin receptor (IR) alpha subunit from a leprechaun patient, changing Asp707 into Ala. Fibroblasts from this patient had no high affinity insulin binding sites. To examine the effect of the mutation on IR properties, the mutant IR was stably expressed in Chinese hamster ovary cells. Western blot analysis and metabolic labeling showed a normal processing of the mutant receptor to alpha and beta subunits. No increase in high affinity insulin binding sites was observed on Chinese hamster ovary cells expressing the mutant receptor, and also, affinity cross-linking of 125I-labeled insulin by disuccinimidyl suberate to these cells failed to label the mutant alpha subunit. Biotinylation of cell surface proteins by biotin succinimidyl ester resulted in efficient biotinylation of the mutant IR alpha and beta subunits, showing its presence on the cell surface. On solubilization of the mutant insulin receptor in Triton X-100-containing buffers, 125I-insulin was efficiently cross-linked to the receptor alpha subunit by disuccinimidyl suberate. These studies demonstrate that Ala707 IR is normally processed and transported to the cell surface and that the mutation distorts the insulin binding site. Detergent restores this site. This is an example of a naturally occurring mutation in the insulin receptor that affects insulin binding without affecting receptor transport and processing. This mutation points to a major contribution of the alpha subunit carboxyl terminus to insulin binding. PMID:8702527

  3. Metal concentrations in aggregate interiors, exteriors, whole aggregates, and bulk of Costa Rican soils

    SciTech Connect

    Wilcke, W.; Kretzschmar, S.; Bundt, M.; Zech, W.

    1999-10-01

    In many temperate soils the preferential weathering and leaching of aggregate surfaces and the nonaggregated material between aggregates depletes geogenic metals. It also shifts metals from strongly to more weakly bound metal forms. Deposited metals are sorbed preferentially on aggregate surfaces and between aggregates. The authors examined whether preferential desilication under tropical climate causes an enrichment in the aggregate exteriors in oxidic forms of metals. They also studied where deposited metals are bound in these soils. Aggregates (2--20 mm) were selected manually from the A horizons of eight Oxisols, six Andisols, two Mollisols, and two Inceptisols in Costa Rica. All samples were fractionated into interior and exterior portions and treated with a seven-step sequence to extract Al, Cd, Cu, Fe, Mn, Pb, and Zn. Total concentrations of all metals except Zn were higher in the aggregate exteriors than in the interiors. The average Cd and Pb concentrations in easily extractable fractions were significantly higher in the aggregate exteriors. There were no significant differences in metal partitioning between interiors and exteriors except for Pb, which had higher proportions in extractable forms with NH{sub 2}OH {center{underscore}dot} HCl {gt} NH{sub 4} - acetate, pH 6.0 {gt} EDTA in the exteriors. There were few significant differences in metal concentrations and partitioning between bulk soil and whole aggregates. The results may be explained by (i) preferential desilication of the aggregate exteriors and (ii) preferential sorption of deposited heavy metals mainly in easily extractable forms.

  4. Antibodies against amino acids 1-15 of tumor necrosis factor block its binding to cell-surface receptor.

    PubMed Central

    Socher, S H; Riemen, M W; Martinez, D; Friedman, A; Tai, J; Quintero, J C; Garsky, V; Oliff, A

    1987-01-01

    Human tumor necrosis factor (hTNF) mediates a variety of biologic activities, which are dependent on the attachment of hTNF to cell-surface receptors. To identify regions of the hTNF protein involved in binding hTNF to its receptor, we prepared five synthetic peptides [hTNF-(1-15), hTNF-(1-31), hTNF-(65-79), hTNF-(98-111), and hTNF-(124-141)] and two hydroxylamine cleavage fragments [hTNF-(1-39) and hTNF-(40-157)] of hTNF. The hTNF-synthetic peptides and hTNF fragments were tested in hTNF receptor binding assays and in two biologic assays: cytolysis of tumor cells and suppression of lipoprotein lipase in adipocytes. Neither the synthetic peptides nor hTNF fragments were active agonists or antagonists in these assays. The synthetic peptides were also conjugated to thyroglobulin, and peptide-specific antisera were raised. All five peptide-thyroglobulin conjugates induced antibody responses to the immunizing peptide and to hTNF. Each antiserum was tested for antagonist activity in hTNF binding assays. Only antisera raised against hTNF-(1-15) or hTNF-(1-31) and antisera against whole hTNF blocked binding. IgGs purified from these three antisera also block hTNF-induced cytolysis and lipoprotein lipase suppression. We conclude that antibodies that recognize the N-terminus of hTNF block the attachment of hTNF to its cellular receptor and inhibit the biologic effects of hTNF. PMID:2827156

  5. Simulations of kinetically irreversible protein aggregate structure.

    PubMed Central

    Patro, S Y; Przybycien, T M

    1994-01-01

    We have simulated the structure of kinetically irreversible protein aggregates in two-dimensional space using a lattice-based Monte-Carlo routine. Our model specifically accounts for the intermolecular interactions between hydrophobic and hydrophilic protein surfaces and a polar solvent. The simulations provide information about the aggregate density, the types of inter-monomer contacts and solvent content within the aggregates, the type and extent of solvent exposed perimeter, and the short- and long-range order all as a function of (i) the extent of monomer hydrophobic surface area and its distribution on the model protein surface and (ii) the magnitude of the hydrophobic-hydrophobic contact energy. An increase in the extent of monomer hydrophobic surface area resulted in increased aggregate densities with concomitant decreased system free energies. These effects are accompanied by increases in the number of hydrophobic-hydrophobic contacts and decreases in the solvent-exposed hydrophobic surface area of the aggregates. Grouping monomer hydrophobic surfaces in a single contiguous stretch resulted in lower aggregate densities and lower short range order. More favorable hydrophobic-hydrophobic contact energies produced structures with higher densities but the number of unfavorable protein-protein contacts was also observed to increase; greater configurational entropy produced the opposite effect. Properties predicted by our model are in good qualitative agreement with available experimental observations. Images FIGURE 6 FIGURE 13 PMID:8061184

  6. A competitive aggregation model for flash nanoprecipitation.

    PubMed

    Cheng, Janine Chungyin; Vigil, R D; Fox, R O

    2010-11-15

    Flash NanoPrecipitation (FNP) is a novel approach for producing functional nanoparticles stabilized by amphiphilic block copolymers. FNP involves the rapid mixing of a hydrophobic active (organic) and an amphiphilic di-block copolymer with a non-solvent (water) and subsequent co-precipitation of nanoparticles composed of both the organic and copolymer. During this process, the particle size distribution (PSD) is frozen and stabilized by the hydrophilic portion of the amphiphilic di-block copolymer residing on the particle surface. That is, the particle growth is kinetically arrested and thus a narrow PSD can be attained. To model the co-precipitation process, a bivariate population balance equation (PBE) has been formulated to account for the competitive aggregation of the organic and copolymer versus pure organic-organic or copolymer-copolymer aggregation. Aggregation rate kernels have been derived to account for the major aggregation events: free coupling, unimer insertion, and aggregate fusion. The resulting PBE is solved both by direct integration and by using the conditional quadrature method of moments (CQMOM). By solving the competitive aggregation model under well-mixed conditions, it is demonstrated that the PSD is controlled primarily by the copolymer-copolymer aggregation process and that the energy barrier to aggregate fusion plays a key role in determining the PSD. It is also shown that the characteristic aggregation times are smaller than the turbulent mixing time so that the FNP process is always mixing limited. PMID:20800847

  7. Expression and function of a putative cell surface receptor for fibronectin in hamster and human cell lines

    SciTech Connect

    Brown, P.J.; Juliano, R.L.

    1986-10-01

    The authors have previously reported the use of monoclonal antibodies to identify a 140-kD cell surface glycoprotein in mammalian cells that is specifically involved in fibronectin-mediated cell adhesion. They now report the purification of this molecule using immunoaffinity chromatography and the subsequent generation of polyclonal antibodies that selectively immunoprecipitate 140-kD putative fibronectin receptor glycoprotein (gp140) extracted from rodent or human cells; these antibodies also specifically block fibronectin-mediated cell adhesion but not adhesion mediated by other factors in serum. Expression of gp140-like molecules was detected on the surfaces of several adherent human cell lines (HDF, WISH, and EFC) but not on erythrocytes; however, gp140 was also detected on a nonadherent human lymphoid line (DAUDI). Analysis of gp140 on nonreducing SDS gels revealed two closely migrating bands. Protease digestion and peptide mapping suggests that the two bnads are closely related polypeptides.

  8. Natural aggregates of the conterminous United States

    USGS Publications Warehouse

    Langer, William H.

    1988-01-01

    Crushed stone and sand and gravel are the two main sources of natural aggregates. These materials are commonly used construction materials and frequently can be interchanged with one another. They are widely used throughout the United States, with every State except two producing crushed stone. Together they amount to about half the mining volume in the United States. Approximately 96 percent of sand and gravel and 77 percent of the crushed stone produced in the United States are used in the construction industry. Natural aggregates are widely distributed throughout the United States in a variety of geologic environments. Sand and gravel deposits commonly are the results of the weathering of bedrock and subsequent transportation and deposition of the material by water or ice (glaciers). As such, they commonly occur as river or stream deposits or in glaciated areas as glaciofluvial and other deposits. Crushed stone aggregates are derived from a wide variety of parent bedrock materials. Limestone and other carbonates account for approximately three quarters of the rocks used for crushed stone, with granite and other igneous rocks making up the bulk of the remainder. Limestone deposits are widespread throughout the Central and Eastern United States and are scattered in the West. Granites are widely distributed in the Eastern and Western United States, with few exposures in the Midwest. Igneous rocks (excluding granites) are largely concentrated in the Western United States and in a few isolated localities in the East. Even though natural aggregates are widely distributed throughout the United States, they are not universally available for consumptive use. Some areas are devoid of sand and gravel, and potential sources of crushed stone may be covered with sufficient unconsolidated material to make surface mining impractical. In some areas many aggregates do not meet the physical property requirements for certain uses, or they may contain mineral constituents that react

  9. Probing the interaction of a membrane receptor with a surface-attached ligand using whole cells on acoustic biosensors.

    PubMed

    Saitakis, Michael; Tsortos, Achilleas; Gizeli, Electra

    2010-03-15

    Two different types of acoustic sensors, a surface acoustic wave device supporting a Love-wave (Love-SAW) and a quartz crystal microbalance system with dissipation (QCM-D), were used to demonstrate the potential of acoustic devices to probe the binding of a cell membrane receptor to an immobilized ligand. The class I Major Histocompatibility Complex molecule HLA-A2 on the surface of whole cells and anti-HLA monoclonal antibodies immobilized on the sensor were used as an interaction pair. Acoustic measurements consisted of recording the energy and velocity or frequency of the acoustic wave. Results showed that both devices could detect the number of cells in solution as well as the cells bound to the surface. In addition, the Love-wave sensor, which can sense binding events within the relatively short distance of approximately 50 nm from the device surface, was sensitive to the number of bonds formed between the cell membrane and the device surface while the QCM-D, which can sense deeper within the liquid, was found to respond well to stimuli that affected the cell membrane rigidity (cytochalasin D treatment). The above results suggest that acoustic biosensors can be a powerful tool in the study of cell/substrate interactions and acoustic devices of different type can be used in a complementary way. PMID:20045307

  10. Immunomodulatory oligonucleotides inhibit neutrophil migration by decreasing the surface expression of interleukin-8 and leukotriene B4 receptors

    PubMed Central

    Admyre, Charlotte; Axelsson, Lars-Göran; von Stein, Oliver; Zargari, Arezou

    2015-01-01

    Neutrophils play important roles in many inflammatory diseases. The migration of neutrophils to the inflammatory site is tightly regulated by specific chemokines, of which interleukin-8 (IL-8) and leukotriene B4 (LTB4) constitute key mediators by binding to the surface receptors CXCR1/2 and BLT1, respectively. Oligonucleotides (ODN) containing CpG motifs mediate potent immunomodulatory effects through binding to Toll-like receptor 9. So far, knowledge on how ODN can affect neutrophil migration during inflammation is lacking. This study demonstrates that several novel CpG ODN significantly down-regulate the surface expression of CXCR1/2 and BLT1. In addition, the ODN significantly blocked IL-8-induced and LTB4-induced neutrophil migration in vitro, as well as leucocyte migration in vivo demonstrated in mice by intravital microscopy and in a model of airway inflammation. The down-regulation of CXCR1 is rapid, occurring 15 min after ODN stimulation, and can be mediated through an endosomally independent mechanism. Inhibition of the IL-8 and LTB4 pathways may provide new opportunities of therapeutic intervention using ODN to reduce neutrophil infiltration during inflammation. PMID:25100544

  11. Reactive oxygen species (ROS) modulate AMPA receptor phosphorylation and cell-surface localization in concert with pain-related behavior

    PubMed Central

    Lee, Daniel Z.; Chung, Jin M.; Chung, Kyungsoon; Kang, Myoung-Goo

    2012-01-01

    Sensitization of dorsal horn neurons (DHNs) in the spinal cord is dependent on pain-related synaptic plasticity and causes persistent pain. The DHN sensitization is mediated by a signal transduction pathway initiated by the activation of NMDA receptors (NMDA-Rs). Recent studies have shown that elevated levels of reactive oxygen species (ROS) and phosphorylation-dependent trafficking of GluA2 subunit of AMPA receptors (AMPA-Rs) are a part of the signaling pathway for DHN sensitization. However, the relationship between ROS and AMPA-R phosphorylation and trafficking is not known. Thus, this study investigated the effects of ROS scavengers on the phosphorylation and cell-surface localization of GluA1 and GluA2. Intrathecal NMDA- and intradermal capsaicin-induced hyperalgesic mice were used for this study since both pain models share the NMDA-R activation-dependent DHN sensitization in the spinal cord. Our behavioral, biochemical, and immunohistochemical analyses demonstrated that: 1) NMDA-R activation in vivo increased the phosphorylation of AMPA-Rs at GluA1 (S818, S831, and S845) and GluA2 (S880) subunits, 2) NMDA-R activation in vivo increased cell-surface localization of GluA1 but decreased that of GluA2, and 3) reduction of ROS levels by ROS scavengers PBN or TEMPOL reversed these changes in AMPA-Rs, as well as pain-related behavior. Given that AMPA-R trafficking to the cell surface and synapse is regulated by NMDA-R activation-dependent phosphorylation of GluA1 and GluA2, our study suggests that the ROS-dependent changes in the phosphorylation and cell-surface localization of AMPA-Rs are necessary for DHN sensitization and thus pain-related behavior. We further suggest that ROS reduction will ameliorate these molecular changes and pain. PMID:22770842

  12. Molecular Aspects of HTLV-1 Entry: Functional Domains of the HTLV-1 Surface Subunit (SU) and Their Relationships to the Entry Receptors

    PubMed Central

    Jones, Kathryn S.; Lambert, Sophie; Bouttier, Manuella; Bénit, Laurence; Ruscetti, Frank W.; Hermine, Olivier; Pique, Claudine

    2011-01-01

    The initial step in retroviral infection involves specific interactions between viral envelope proteins (Env) and specific receptors on the surface of target cells. For many years, little was known about the entry receptors for HTLV-1. During this time, however, functional domains of the HTLV-1 Env were identified by analyzing the effects of neutralizing antibodies and specific mutations in Env on HTLV-1 infectivity. More recent studies have revealed that HTLV-1 infectivity involves interactions with three different molecules: heparan sulfate proteoglycans (HSPG), the VEGF-165 receptor Neuropilin 1 (NRP-1) and glucose transporter type 1 (GLUT1). Here, we revisit previously published data on the functional domains of Env in regard to the recent knowledge acquired about this multi-receptor complex. We also discuss the similarities and differences between HTLV-1 and other deltaretroviruses in regards to receptor usage. PMID:21994754

  13. The INs and OUTs of pattern recognition receptors at the cell surface.

    PubMed

    Beck, Martina; Heard, William; Mbengue, Malick; Robatzek, Silke

    2012-08-01

    Pattern recognition receptors (PRRs) enable plants to sense non-self molecules displayed by microbes to mount proper defense responses or establish symbiosis. In recent years the importance of PRR subcellular trafficking to plant immunity has become apparent. PRRs traffic through the endoplasmatic reticulum (ER) and the Golgi apparatus to the plasma membrane, where they recognize their cognate ligands. At the plasma membrane, PRRs can be recycled or internalized via endocytic pathways. By using genetic and biochemical tools in combination with bioimaging, the trafficking pathways and their role in PRR perception of microbial molecules are now being revealed. PMID:22664220

  14. Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N-linked actin cytoskeletal association.

    PubMed

    Shen, L; Liang, F; Walensky, L D; Huganir, R L

    2000-11-01

    The synaptic localization, clustering, and immobilization of neurotransmitter receptors and ion channels play important roles in synapse formation and synaptic transmission. Although several proteins have been identified that interact with AMPA receptors and that may regulate their synaptic targeting, little is known about the interaction of AMPA receptors with the cytoskeleton. In studies examining the interaction of the AMPA receptor GluR1 subunit with neuronal proteins, we determined that GluR1 interacts with the 4.1G and 4.1N proteins, homologs of the erythrocyte membrane cytoskeletal protein 4.1. Using the yeast two-hybrid system and a heterologous cell system, we demonstrated that both 4.1G and 4.1N bind to a membrane proximal region of the GluR1 C terminus, and that a region within the C-terminal domain of 4.1G or 4.1N is sufficient to mediate the interaction. We also found that 4.1N can associate with GluR1 in vivo and colocalizes with AMPA receptors at excitatory synapses. Disruption of the interaction of GluR1 with 4.1N or disruption of actin filaments decreased the surface expression of GluR1 in heterologous cells. Moreover, disruption of actin filaments in cultured cortical neurons dramatically reduced the level of surface AMPA receptors. These results suggest that protein 4.1N may link AMPA receptors to the actin cytoskeleton. PMID:11050113

  15. M-CSF receptor mutations in hereditary diffuse leukoencephalopathy with spheroids impair not only kinase activity but also surface expression

    SciTech Connect

    Hiyoshi, Masateru; Hashimoto, Michihiro; Yukihara, Mamiko; Bhuyan, Farzana; Suzu, Shinya

    2013-11-01

    Highlights: •Many mutations were identified in Fms as a putative genetic cause of HDLS. •All of the mutations tested severely impair the kinase activity. •Most of the mutations also impair the trafficking to the cell surface. •These defects further suggest that HDLS is caused by a loss of Fms function. -- Abstract: The tyrosine kinase Fms, the cell surface receptor for M-CSF and IL-34, is critical for microglial proliferation and differentiation in the brain. Recently, a number of mutations have been identified in Fms as a putative genetic cause of hereditary diffuse leukoencephalopathy with spheroids (HDLS), implying an important role of microglial dysfunction in HDLS pathogenesis. In this study, we initially confirmed that 11 mutations, which reside within the ATP-binding or major tyrosine kinase domain, caused a severe impairment of ligand-induced Fms auto-phosphorylation. Intriguingly, we found that 10 of the 11 mutants also showed a weak cell surface expression, which was associated with a concomitant increase in the low molecular weight hypo-N-glycosylated immature gp130Fms-like species. Indeed, the mutant proteins heavily accumulated to the Golgi-like perinuclear regions. These results indicate that all of the Fms mutations tested severely impair the kinase activity and most of the mutations also impair the trafficking to the cell surface, further suggesting that HDLS is caused by the loss of Fms function.

  16. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor

    SciTech Connect

    Pytela, R.; Pierschbacher, M.D.; Ruoslahti, E.

    1985-01-01

    Affinity chromatography was used to identify a putative cell surface receptor for fibronectin. A large cell-attachment-promoting fibronectin fragment was used as the affinity matrix, and specific elution was effected by using synthetic peptides containing the sequence Arg-Gly-Asp, which is derived from the cell recognition sequence in the fibronectin cell attachment site. A 140 kd protein was bound by the affinity matrix from octylglucoside extracts of MG-63 human osteosarcoma cells and specifically eluted with the synthetic peptide Gly-Arg-Gly-Asp-Ser-Pro. The 140 kd protein was labeled by cell surface specific radioiodination and became incorporated into liposomes at a high efficiency. Liposomes containing this protein showed specific affinity toward fibronectin-coated surfaces, and this binding could be selectively inhibited by the synthetic cell-attachment peptide but not by inactive peptides. Affinity chromatography on wheat germ agglutinin-Sepharose showed that the 140 kd protein is a glycoprotein and, in combination with the fibronectin fragment chromatography, gave highly enriched preparations of the 140 kd protein. These properties suggest that the 140 kd glycoprotein is a membrane-embedded cell surface protein directly involved in the initial step of cell adhesion to fibronectin substrates.

  17. The Relaxin Receptor (RXFP1) Utilizes Hydrophobic Moieties on a Signaling Surface of Its N-terminal Low Density Lipoprotein Class A Module to Mediate Receptor Activation*

    PubMed Central

    Kong, Roy C. K.; Petrie, Emma J.; Mohanty, Biswaranjan; Ling, Jason; Lee, Jeremy C. Y.; Gooley, Paul R.; Bathgate, Ross A. D.

    2013-01-01

    The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true “ligand” of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation. PMID:23926099

  18. The relaxin receptor (RXFP1) utilizes hydrophobic moieties on a signaling surface of its N-terminal low density lipoprotein class A module to mediate receptor activation.

    PubMed

    Kong, Roy C K; Petrie, Emma J; Mohanty, Biswaranjan; Ling, Jason; Lee, Jeremy C Y; Gooley, Paul R; Bathgate, Ross A D

    2013-09-27

    The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true "ligand" of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation. PMID:23926099

  19. Concanavalin A receptors on the surface membrane of lymphocytes from patients with acute leukemia.

    PubMed

    Ben-Bassat, H; Anor, E; Penchas, S; Shlomai, Z; Prokocimer, M; Or, R; Polliack, A

    1984-01-01

    Peripheral blood mononuclear cells (PBM) isolated from 23 patients with acute lymphoblastic leukemia (ALL) and 24 with acute non-lymphoblastic leukemia (ANLL) were studied for binding and mobility of Concanavalin A (Con A) receptors, using fluorescent Con A (F-Con-A). The cap forming ability of PBM from all patients was 18.7 (+/- 9.3%) and 18.9 (+/- 9.9%) for ANLL patients at the time of diagnosis or during relapse. During clinical complete remission the cap forming ability of the PBM did not change significantly. No correlation was observed between the percentage of blasts present in the peripheral blood at the time of examination and the extent of cap formation, for both types of leukemia. The pattern of F-Con-A binding to PBM in ANLL patients was different compared to that seen in ALL. In ANLL, the fluorescent stain was concentrated in a round body on the cell ("button form") after binding to the membrane, while the rest of the cell showed almost no fluorescence. The present results indicate that PBM cells from patients with acute leukemia are characterized by a high degree of Con-A receptor mobility. PMID:6471903

  20. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling & paired-agent principles from nuclear medicine and optical imaging

    PubMed Central

    Tichauer, Kenneth M.; Wang, Yu; Pogue, Brian W.; Liu, Jonathan T. C.

    2015-01-01

    The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche. PMID:26134619

  1. Crystal Structure of Botulinum Neurotoxin Type a in Complex With the Cell Surface Co-Receptor GT1b-Insight Into the Toxin-Neuron Interaction

    SciTech Connect

    Stenmark, P.; Dupuy, J.; Inamura, A.; Kiso, M.; Stevens, R.C.

    2009-05-26

    Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in the toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.

  2. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging

    NASA Astrophysics Data System (ADS)

    Tichauer, Kenneth M.; Wang, Yu; Pogue, Brian W.; Liu, Jonathan T. C.

    2015-07-01

    The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche.

  3. β-Adrenergic receptor stimulation increases surface NKCC2 expression in rat thick ascending limbs in a process inhibited by phosphodiesterase 4.

    PubMed

    Haque, Mohammed Z; Caceres, Paulo S; Ortiz, Pablo A

    2012-11-01

    The thick ascending limb of the loop of Henle (THAL) reabsorbs ∼30% of the filtered NaCl in a process mediated by the apical Na-K-2Cl cotransporter NKCC2. Stimulation of β-adrenergic receptors in the THAL enhances NaCl reabsorption and increases intracellular cAMP. We found that intracellular cAMP stimulates NKCC2 trafficking to the apical membrane via protein kinase A (PKA). Several cAMP-specific phosphodiesterases (PDE) have been identified in rat THALs, and PDE4 decreases cAMP generated by β-adrenergic stimulation in other cells. However, it is not known whether β-adrenergic receptors activation stimulates NKCC2 trafficking. Thus we hypothesized that β-adrenergic receptor stimulation enhances THAL apical membrane NKCC2 expression via the PKA pathway and PDE4 blunts this effect. THAL suspensions were obtained from Sprague-Dawley rats, and surface NKCC2 expression was measured by surface biotinylation and Western blot. Incubation of THALs with the β-adrenergic receptor agonist isoproterenol at 0.5 and 1.0 μM increased surface NKCC2 by 17 ± 1 and 29 ± 5% respectively (P < 0.05). Preventing cAMP degradation with 3-isobutyl-methylxanthine (IBMX; a nonselective phosphodiesterase inhibitor) enhanced isoproterenol-stimulated surface NKCC2 expression to 51 ± 7% (P < 0.05 vs. isoproterenol). The β-adrenergic receptor antagonist propranolol or the PKA inhibitor H-89 completely blocked isoproterenol + IBMX-induced increase on surface NKCC2, while propranolol or H-89 alone had no effect. Selective inhibition of PDE4 with rolipram (20 μM) potentiated the effect of isoproterenol on surface NKCC2 and increased cAMP levels. We concluded that β-adrenergic receptor stimulation enhances surface NKCC2 expression in the THALs via PKA and PDE4 blunts this effect. PMID:22933300

  4. ERK and β-arrestin interaction: a converging-point of signaling pathways for multiple types of cell-surface receptors

    PubMed Central

    Eishingdrelo, Haifeng; Sun, Wei; Li, Hua; Wang, Li; Eishingdrelo, Alex; Dai, Sheng; McKew, John C.; Zheng, Wei

    2016-01-01

    β-arrestin, a signal adaptor protein, mediates intracellular signal transductions through protein-protein interactions by bringing two or more proteins in proximity. Extracellular signal-regulated kinase (ERK), a protein kinase in the family of mitogen-activated protein kinases (MAPKs), is involved in various receptor signal pathways. Interaction of ERK with β-arrestin or formation of ERK/β-arrestin signal complex occurs in response to activation of a variety of cell-surface receptors. The ERK/β-arrestin signal complex may be a common transducer to converge a variety of extracellular stimuli to similar downstream intracellular signaling pathways. By using a cell based protein-protein interaction LinkLight assay technology, we demonstrate a direct interaction between ERK and β-arrestin in respond to extracellular stimuli, which can be sensitively and quantitatively monitored. Activations of G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors promote formation of the ERK/β-arrestin signal complex. Our data indicate that the ERK/β-arrestin signal complex is a common transducer participated in a variety of receptor signaling pathways. Furthermore, we demonstrate that receptor antagonists or kinase inhibitors can block the agonist induced ERK and β-arrestin interaction. Thus, the ERK/β-arrestin interaction assay is useful for screening of new receptor modulators. PMID:25361946

  5. Impact of Cell-surface Antigen Expression on Target Engagement and Function of an Epidermal Growth Factor Receptor × c-MET Bispecific Antibody*

    PubMed Central

    Jarantow, Stephen W.; Bushey, Barbara S.; Pardinas, Jose R.; Boakye, Ken; Lacy, Eilyn R.; Sanders, Renouard; Sepulveda, Manuel A.; Moores, Sheri L.; Chiu, Mark L.

    2015-01-01

    The efficacy of engaging multiple drug targets using bispecific antibodies (BsAbs) is affected by the relative cell-surface protein levels of the respective targets. In this work, the receptor density values were correlated to the in vitro activity of a BsAb (JNJ-61186372) targeting epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-MET). Simultaneous binding of the BsAb to both receptors was confirmed in vitro. By using controlled Fab-arm exchange, a set of BsAbs targeting EGFR and c-MET was generated to establish an accurate receptor quantitation of a panel of lung and gastric cancer cell lines expressing heterogeneous levels of EGFR and c-MET. EGFR and c-MET receptor density levels were correlated to the respective gene expression levels as well as to the respective receptor phosphorylation inhibition values. We observed a bias in BsAb binding toward the more highly expressed of the two receptors, EGFR or c-MET, which resulted in the enhanced in vitro potency of JNJ-61186372 against the less highly expressed target. On the basis of these observations, we propose an avidity model of how JNJ-61186372 engages EGFR and c-MET with potentially broad implications for bispecific drug efficacy and design. PMID:26260789

  6. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons

    PubMed Central

    Reimers, Jeremy M.; Loweth, Jessica A.; Wolf, Marina E.

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in plasticity at glutamate synapses and the effects of repeated cocaine exposure. We recently showed that intracranial injection of BDNF into the rat nucleus accumbens (NAc), a key region for cocaine addiction, rapidly increases AMPA receptor (AMPAR) surface expression. To further characterize BDNF’s role in both rapid AMPAR trafficking and slower, homeostatic changes in AMPAR surface expression, we investigated the effects of acute (30 min) and long-term (24 h) treatment with BDNF on AMPAR distribution in NAc medium spiny neurons from postnatal rats co-cultured with mouse prefrontal cortex (PFC) neurons to restore excitatory inputs. Immunocytochemical studies showed that acute BDNF treatment increased cell surface GluA1 and GluA2 levels, as well as their co-localization, on NAc neurons. This effect of BDNF, confirmed using a protein crosslinking assay, was dependent on ERK but not AKT signaling. In contrast, long-term BDNF treatment decreased AMPAR surface expression on NAc neurons. Based on this latter result, we tested the hypothesis that BDNF plays a role in AMPAR “scaling down” in response to a prolonged increase in neuronal activity produced by bicuculline (24 h). Supporting this hypothesis, decreasing BDNF signaling with the extracellular BDNF scavenger TrkB-Fc prevented the scaling down of GluA1 and GluA2 surface levels in NAc neurons normally produced by bicuculline. In conclusion, BDNF exerts bidirectional effects on NAc AMPAR surface expression, depending on duration of exposure. Furthermore, BDNF’s involvement in synaptic scaling in the NAc differs from its previously described role in the visual cortex. PMID:24712995

  7. Modulation of ecotropic murine retroviruses by N-linked glycosylation of the cell surface receptor/amino acid transporter.

    PubMed Central

    Wang, H; Klamo, E; Kuhmann, S E; Kozak, S L; Kavanaugh, M P; Kabat, D

    1996-01-01

    The cell surface receptor for ecotropic host-range (infection limited to mice or rats) murine leukemia viruses (MuLVs) is the widely expressed system y+ transporter for cationic amino acids (CAT-1). Like other retroviruses, ecotropic MuLV infection eliminates virus-binding sites from cell surfaces and results in complete interference to superinfection. Surprisingly, infection causes only partial (ca 40 to 60%) loss of mouse CAT-1 transporter activity. The NIH/Swiss mouse CAT-1 (mCAT-1) contains 622 amino acids with 14 hydrophobic potential membrane-spanning sequences, and it is known that the third extracellular loop from the amino terminus is required for virus binding. Although loop 3 is hypervariable in different species and mouse strains, consistent with its proposed role in virus-host coevolution, loop 3 sequences of both susceptible and resistant species contain consensus sites for N-linked glycosylation. Both of the consensus sites in loop 3 of mCAT-1 are known to be glycosylated and to contain oligosaccharides with diverse sizes (J. W. Kim and J. M. Cunningham, J. Biol. Chem. 268:16316-16320, 1993). We confirmed by several lines of evidence that N-linked glycosylation occludes a potentially functional virus-binding site in the CAT-1 protein of hamsters, thus contributing to resistance of that species. To study the role of receptor glycosylation in animals susceptible to infection, we eliminated loop 3 glycosylation sites by mutagenesis of an mCAT-1 cDNA clone, and we expressed wild-type and mutant receptors in mink fibroblasts and Xenopus oocytes. These receptors had indistinguishable transport properties, as determined by kinetic and voltage-jump electrophysiological studies of arginine uptake in oocytes and by analyses Of L-[3H]arginine uptake in mink cells. Bindings of ecotropic envelope glycoprotein gp7O to the accessible receptor sites on surfaces of mink cells expressing wild-type or mutant mCAT-1 were not significantly different in kinetics or in

  8. NPP4 is a procoagulant enzyme on the surface of vascular endothelium

    PubMed Central

    Albright, Ronald A.; Chang, William C.; Robert, Donna; Ornstein, Deborah L.; Cao, Wenxiang; Liu, Lynn; Redick, Meredith E.; Young, J. Isaac; De La Cruz, Enrique M.

    2012-01-01

    Ap3A is a platelet-dense granule component released into the extracellular space during the second wave of platelet aggregation on activation. Here, we identify an uncharacterized enzyme, nucleotide pyrophosphatase/phosphodiesterase-4 (NPP4), as a potent hydrolase of Ap3A capable of stimulating platelet aggregation and secretion. We demonstrate that NPP4 is present on the surface of vascular endothelium, where it hydrolyzes Ap3A into AMP and ADP, and Ap4A into AMP and ATP. Platelet aggregation assays with citrated platelet-rich plasma reveal that the primary and secondary waves of aggregation and dense granule release are strongly induced by nanomolar NPP4 in a concentration-dependent manner in the presence of Ap3A, while Ap3A alone initiates a primary wave of aggregation followed by rapid disaggregation. NPP2 and an active site NPP4 mutant, neither of which appreciably hydrolyzes Ap3A, have no effect on platelet aggregation and secretion. Finally, by using ADP receptor blockade we confirm that NPP4 mediates platelet aggregation via release of ADP from Ap3A and activation of ADP receptors. Collectively, these studies define the biologic and enzymatic basis for NPP4 and Ap3A activity in platelet aggregation in vitro and suggest that NPP4 promotes hemostasis in vivo by augmenting ADP-mediated platelet aggregation at the site of vascular injury. PMID:22995898

  9. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Richards, Jeffrey T.; Hintze, Paul E.; Kern, Roger G.

    2005-01-01

    Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.

  10. Surface Characteristics of Spacecraft Components Affect the Aggregation of Microorganisms and May Lead to Different Survival Rates of Bacteria on Mars Landers

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew W.; Richards, Jeffrey T.; Hintze, Paul E.; Kern, Roger G.

    2005-08-01

    Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10°C), and high CO2 gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.

  11. Surface expression and cytolytic function of natural killer cell receptors is altered in chronic hepatitis C

    PubMed Central

    Nattermann, J; Feldmann, G; Ahlenstiel, G; Langhans, B; Sauerbruch, T; Spengler, U

    2006-01-01

    Introduction Impaired activity of natural killer (NK) cells has been proposed as a mechanism contributing to viral persistence in hepatitis C virus (HCV) infection. As the function of NK cells is primarily regulated by NK cell receptors (NKR), we analysed whether decreased NK cell function in hepatitis C may be related to dysregulated NKR expression. Patients and methods Expression of NK cell was analysed by flow cytometry on lymphocytes from HCV(+) subjects (n = 30), patients who became HCV(−) after antiviral therapy (n = 10), healthy individuals (n = 10), and hepatitis B virus (HBV) infected patients (n = 9). Cytolytic function of lymphocytes was studied in a redirected lysis assay and in a standard 51chromium release cytotoxicity assay, respectively. Results In patients with chronic hepatitis C, we found a significantly reduced proportion of NKp46 and NKp30 expressing NK cells compared with healthy and HBV infected subjects. Low expression of natural cytotoxicity receptor (NCR) was also confirmed in in vitro activated NK cell populations derived from HCV patients compared with uninfected donors. In contrast, patients who cleared HCV under antiviral therapy showed normal expression of NKp44, NKp30, and NKp46. Reduced NCR expression in chronic hepatitis C was associated with a parallel decrease in NCR mediated target cell killing. Furthermore, we found a significantly increased proportion of NKG2A expressing NK cells and CD8+ T cells in HCV positive patients, resulting in a reduced cytolytic activity against cells incubated with the HLA‐E stabilising peptide HCV core35–44. Conclusion The present study indicates that defective expression of NKR represents a novel mechanism contributing to impaired function of NK cells and CD8+ T cells in chronic hepatitis C. PMID:16322112

  12. Aggregate size distribution of the soil loss

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka; Józsa, Sándor; Szalai, Zoltán; Centeri, Csaba

    2016-04-01

    In agricultural areas the soil erosion and soil loss estimation is vital information in long-term planning. During the initial period of the erosion a part of the soil particles and aggregates get transportable and nutrients and organic matter could be transported due to the effect of water or wind. This preliminary phase was studied with laboratory-scale rainfall simulator. Developed surface crust and aggregate size composition of the runoff was examined in six different slope-roughness-moisture content combination of a Cambisol and a Regosol. The ratio of micro- and macro aggregates in the runoff indicate the stability of the aggregates and determine the transport capacity of the runoff. Both soil samples were taken from field where the water erosion is a potential hazard. During the experiment the whole amount of runoff and sediment was collected through sieve series to a bucket to separate the micro- and macro aggregates. In case of both samples the micro aggregates dominate in the runoff and the runoff rates are similar. Although the runoff of the Regosol - with dominant >1000μm macro aggregate content - contained almost nothing but <50μm sized micro aggregates. Meanwhile the runoff of the Cambisol - with more balanced micro and macro aggregate content - contained dominantly 50-250μm sized micro aggregates and in some case remarkable ratio 250-1000μm sized macro aggregates. This difference occurred because the samples are resistant against drop erosion differently. In case of both sample the selectivity of the erosion and substance matrix redistribution manifested in mineral crusts in the surface where the quartz deposited in place while the lighter organic matter transported with the sediment. The detachment of the aggregates and the redistribution of the particles highly effect on the aggregate composition of the runoff which is connected with the quality of the soil loss. So while the estimation of soil loss quantity is more or less is easy, measuring