Sample records for surface treated montmorillonite

  1. Preparation and characterization of nylon 66\\/montmorillonite nanocomposites with co-treated montmorillonites

    Microsoft Academic Search

    Bing Han; Gending Ji; Shishan Wu; Jian Shen

    2003-01-01

    In this paper, a new type of organophilic montmorillonites, co-treated by octadecylammonium and aminoundecanoic acid, were synthesized and applied to prepare nylon 66\\/montmorillonite nanocomposites via melt compounding in a twin extruder. WAXD and TEM characterization indicate that a disordered structure was derived and the montmorillonite platelets dispersed in nanoscale in the nylon 66 matrix. The nanocomposites with co-treated montmorillonite display

  2. Silylation of montmorillonite surfaces: dependence on solvent nature.

    PubMed

    Su, Linna; Tao, Qi; He, Hongping; Zhu, Jianxi; Yuan, Peng; Zhu, Runliang

    2013-02-01

    Silylation of clay mineral surfaces has attracted much attention due to their extensive applications in materials science and environmental engineering. Silylation of montmorillonite surfaces with 3-aminopropyltriethoxysilane was carried out in polar-protic and nonpolar solvents. The swelling property of the silylated montmorillonites was investigated by intercalating with cetyltrimethylammonium bromide. Silylated montmorillonites prepared in nonpolar solvents showed a larger amount of loaded silane and a higher extent of condensation among different silane molecules, comparing with those prepared in polar-protic solvents with high dielectric constant. Meanwhile, the silylated montmorillonites prepared in nonpolar solvents displayed poor swelling property due to the linkage between silane oligomers and clay layers, that is, the neighboring clay layers were locked by the silane oligomers. The present study demonstrated that the polarity of the solvents used had an important influence on the extent of grafting, interlayer structure, and swelling property of the silylated products. This is of high importance for synthesis and application of silylated clay minerals. PMID:23123026

  3. Thermo-XRD-analysis of montmorillonite treated with protonated Congo-red. Curve fitting

    Microsoft Academic Search

    Z. Yermiyahu; I. Lapides; S. Yariv

    2005-01-01

    The adsorption of protonated Congo red (CR) by montmorillonite was investigated by thermo-XRD-analysis. Montmorillonite was loaded at pH 1 with increasing amounts of CR up to 75 mmol per 100 g clay. Diffractograms of samples treated at 420 °C showed broad peaks and were curve-fitted to determine the different basal spacings, which composed the XRD peaks. The broad peak of

  4. Acidity of edge surface sites of montmorillonite and kaolinite

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Sprik, Michiel; Cheng, Jun; Meijer, Evert Jan; Wang, Rucheng

    2013-09-01

    Acid-base chemistry of clay minerals is central to their interfacial properties, but up to now a quantitative understanding on the surface acidity is still lacking. In this study, with first principles molecular dynamics (FPMD) based vertical energy gap technique, we calculate the acidity constants of surface groups on (0 1 0)-type edges of montmorillonite and kaolinite, which are representatives of 2:1 and 1:1-type clay minerals, respectively. It shows that tbnd Si-OH and tbnd Al-OH2OH groups of kaolinite have pKas of 6.9 and 5.7 and those of montmorillonite have pKas of 7.0 and 8.3, respectively. For each mineral, the calculated pKas are consistent with the experimental ranges derived from fittings of titration curves, indicating that tbnd Si-OH and tbnd Al-OH2OH groups are the major acidic sites responsible to pH-dependent experimental observations. The effect of Mg substitution in montmorillonite is investigated and it is found that Mg substitution increases the pKas of the neighboring tbnd Si-OH and tbnd Si-OH2 groups by 2-3 pKa units. Furthermore, our calculation shows that the pKa of edge tbnd Mg-(OH2)2 is as high as 13.2, indicating the protonated state dominates under common pH. Together with previous adsorption experiments, our derived acidity constants suggest that tbnd Si-O- and tbnd Al-(OH)2 groups are the most probable edge sites for complexing heavy metal cations.

  5. Laser surface heat treating

    SciTech Connect

    Wollenweber, J. [Laser Applications Inc., Westminster, MD (United States)

    1996-12-01

    Laser surface heat treating is a proven process that increases strength, hardness, and fatigue life, and reduces wear. The process can be accurately controlled and heat can be precisely positioned. As a result, hardness and strength may be increased in specified areas with very little part distortion. This process has been proven in automotive and aircraft applications, as well as the pulp and paper industries. Treated parts include, but are not limited to gears, shuttles, punches, valves, valve guides, and locomotive cylinders. This article describes the process and presents fundamental criteria that help determine if a component is a viable candidate for laser surface heat treating.

  6. Photochemical behaviour of phenylbenzoquinone at the surface of the clays: Kaolinite, bentonite and montmorillonite

    Microsoft Academic Search

    Mattieu Menager; Marie Siampiringue; Mohamed Sarakha

    2009-01-01

    The kinetics of direct photochemical transformation of phenylbenzoquinone (PhQ) was studied at the surface of clays, light absorbing and scattering supports. When compared to the spectrum in solution, the UV absorption of PhQ on clays shows a hyperchromic as well as a solvatochromic effects. In kaolinite, bentonite and montmorillonite, the shift was about ??=30nm and the molar absorption coefficient was

  7. Reflectance Spectroscopy of Palagonite and Iron-Rich Montmorillonite Clay Mixtures: Implications for the Surface Composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, James; Handy, Jonathan

    1992-01-01

    Mixtures of a Hawaiian palagonite and an iron-rich, montmorillonite clay (15.8 +/- 0.4 wt% Fe as Fe2O3) were evaluated as Mars surface spectral analogs from their diffuse reflectance spectra. The presence of the 2.2 microns absorption band in the reflectance spectrum of clays and its absence in the Mars spectrum have been interpreted as indicating that highly crystalline aluminous hydroxylated clays cannot be a major mineral component of the soil on Mars. The palagonite sample used in this study does not show this absorption feature in its spectrum. In mixtures of palagonite and iron-rich montmorillonite, the 2.2 microns Al-OH clay lattice band is not seen below 15 wt% montmorillonite. This suggests the possibility that iron-rich montmorillonite clay may be present in the soil of Mars at up to 15 wt% in combination with palagonite, and remain undetected in remotely sensed spectra of Mars.

  8. Surface Area of Homoionic Illite and Montmorillonite Clay Minerals as Measured by the Sorption of Nitrogen and Carbon Dioxide

    Microsoft Academic Search

    L. A. G. Aylmore; I. D. SILLS; J. P. QUIRK

    1970-01-01

    The surface areas obtained by application of the B.E.T. theory to adsorption isotherms of nitrogen and carbon dioxide gases at 77~ and 195~ respectively on homoionic samples of illite and montmorillonite clays have been examined. The isotherms were obtained using a standard volumetric adsorption system and the results are compared with those obtained by Thomas and Bohor (1968) using a

  9. Mobility of Na and Cs on montmorillonite surface under partially saturated conditions.

    PubMed

    Churakov, Sergey V

    2013-09-01

    Cs migration in soils at contaminated sites or in clay-rich backfill of waste disposal sites can take place under partially saturated conditions. To understand the molecular mechanism of Cs migration in partially saturated clays, Grand Canonical Monte Carlo simulations were applied to model adsorption of water films onto external surfaces of Cs and Na montmorillonites as function of partial water pressure. The surface complexation and diffusivity of Cs and Na at different partial water pressure was obtained by molecular dynamics simulations. The results suggest that ion mobility in adsorbed water films on external basal surfaces of clay is similar to that in the near-surface water of a saturated pore as far as the thickness of the adsorbed water film is more than two water layers. At lower partial water pressure (i.e., in thinner water films) the ion mobility dramatically decreases. In contrast, the average water mobility in thin water film is higher than in the water-saturated system due to enhanced mobility of water molecules close to vapor-film interface. The results of the simulations were applied to interpret recent laboratory measurements of tritiated water and Cs diffusivity in Callovo-Oxfordian Claystones under partially saturated conditions. PMID:23909661

  10. Assessing Cd, Co, Cu, Ni, and Pb Sorption on montmorillonite using surface complexation models

    Microsoft Academic Search

    Martin M. Akafia; Thomas J. Reich; Carla M. Koretsky

    2011-01-01

    Cadmium, Co, Cu, Ni and Pb adsorption is measured on montmorillonite as a function of pH (3–11), ionic strength (0.001–0.1M NaNO3), and sorbate concentration (0.1–10?M metal on 0.5g\\/L solid). Sorption of all metals shows strong dependence on ionic strength and sorbate concentration, as well as a break in the slope of the edge, indicative of a 2-site interaction with montmorillonite.

  11. Selective removal and inactivation of bacteria by nanoparticle composites prepared by surface modification of montmorillonite with quaternary ammonium compounds.

    PubMed

    Khalil, Rowaida K S

    2013-10-01

    The purpose of the present study was to prepare new nanocomposites with antibacterial activities by surface modification of montmorillonite using quaternary ammonium compounds that are widely applied as disinfectants and antiseptics in food-processing environments. The intercalation of four quaternary ammonium compounds namely benzalkonium chloride, cetylpyridinium chloride monohydrate, hexadecyltrimethylammonium bromide, tetraethylammonium chloride hydrate into montmorillonite layers was confirmed by X-ray diffraction. The antibacterial influences of the modified clay variants against important foodborne pathogens differed based on modifiers quantities, microbial cell densities, and length of contact. Elution experiments through 0.1 g of the studied montmorillonite variants indicated that Staphylococcus aureus, Pseudomonas aeroginosa, and Listeria monocytogenes were the most sensitive strains. 1 g of hexadecyltrimethylammonium bromide intercalated montmorillonites demonstrated maximum inactivation of L. monocytogenes populations, with 4.5 log c.f.u./ml units of reduction. In adsorption experiments, 0.1 g of tetraethylammonium chloride hydrate montmorillonite variants significantly reduced the growth of Escherichia coli O157:H7, L. monocytogenes, and S. aureus populations by 5.77, 6.33, and 7.38 log units respectively. Growth of wide variety of microorganisms was strongly inhibited to undetectable levels (montmorillonite variants. This investigation highlights that reduction in counts of microbial populations adsorbed to the new nanocomposites was substantially different from that in elution experiments, where interactions of nanocomposites with bacteria were specific and more complex than simple ability to inactivate. Treatment columns packed with modified variants maintained their inactivation capacity to the growth of Salmonella Tennessee and S. aureus populations after 48 h of incubation at room temperature with maximum reductions of 6.3 and 5.0 log units respectively. New nanocomposites presented in this research may have potential applications in industrial scale for the control of foodborne pathogens by their incorporation into high-performance filters in food processing plant environments where selectivity in removal and/or inactivation of species in fluid flow streams is desirable. Nevertheless, extensive in vitro and in vivo studies of these new nanocomposites is essential to outpace the understanding of their potential impacts and consequences on human health and the environment if they will make an appearance in commercialized food packaging and containment food materials in the future. PMID:23709187

  12. VERUCLAY – a new type of photo-adsorbent active in the visible light range: modification of montmorillonite surface with organic surfactant

    EPA Science Inventory

    Montmorillonite K10 was treated with VeruSOL-3, a biodegradable and food-grade surfactant mixture of coconut oil, castor oil and citrus extracts, to manufacture a benign catalytic adsorbent that is active in the visible light. Veruclay was characterized by SEM, XRD, TGA, UVDRS, a...

  13. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. PMID:24813351

  14. Poly(ethylene naphthalate)/clay nanocomposites based on thermally stable trialkylimidazolium-treated montmorillonite: thermal and dynamic mechanical properties.

    PubMed

    Chua, Yang Choo; Wu, Shucheng; Lu, Xuehong

    2006-12-01

    Thermally stable organically modified clays based on 1,3-didecyl-2-methylimidazolium (IM2C10) and 1-hexadecyl-2,3-dimethyl-imidazolium (IMC16) were used to prepare poly(ethylene naphthalate) (PEN)/montmorillonite (MMT) nanocomposites via a melt intercalation process. Examination by X-ray diffraction and transmission electron microscopy indicates that an intercalated nanocomposite was formed with IMC16-MMT, while unmodified MMT (Na-MMT) and IM2C10-MMT are generally incompatible with PEN. Thermogravimetric analysis reveals that the peak derivative weight loss temperature of the intercalated PEN/IMC16-MMT was more than 10 "C higher compared to neat PEN, PEN/Na-MMT, or PEN/IM2C10-MMT. Dynamic mechanical analysis also showed that a more significant improvement of the storage modulus was achieved in the better dispersed PEN/IMC16-MMT. The effect of annealing on the dynamic storage modulus of the hybrids is also investigated. PMID:17256368

  15. Np(V) and Pu(v) ion exchange and surface-mediated reduction mechanisms on montmorillonite.

    PubMed

    Zavarin, Mavrik; Powell, Brian A; Bourbin, Mathilde; Zhao, Pihong; Kersting, Annie B

    2012-03-01

    Due to their ubiquity and chemical reactivity, aluminosilicate clays play an important role in actinide retardation and colloid-facilitated transport in the environment. In this work, Pu(V) and Np(V) sorption to Na-montmorillonite was examined as a function of ionic strength, pH, and time. Np(V) sorption equilibrium was reached within 2 h. Sorption was relatively weak and showed a pH and ionic strength dependence. An approximate NpO(2)(+) ? Na(+) Vanselow ion exchange coefficient (Kv) was determined on the basis of Np(V) sorption in 0.01 and 1.0 M NaCl solutions at pH < 5 (Kv ~ 0.3). In contrast to Np(V), Pu(V) sorption equilibrium was not achieved on the time-scale of weeks. Pu(V) sorption was much stronger than Np(V), and sorption rates exhibited both a pH and ionic strength dependence. Differences in Np(V) and Pu(V) sorption behavior are indicative of surface-mediated transformation of Pu(V) to Pu(IV) which has been reported for a number of redox-active and redox-inactive minerals. A model of the pH and ionic strength dependence of Pu(V) sorption rates suggests that H(+) exchangeable cations facilitate Pu(V) reduction. While surface complexation may play a dominant role in Pu sorption and colloid-facilitated transport under alkaline conditions, results from this study suggest that Pu(V) ion exchange and surface-mediated reduction to Pu(IV) can immobilize Pu or enhance its colloid-facilitated transport in the environment at neutral to mildly acidic pHs. PMID:22296270

  16. Control of Montmorillonite Surface Coatings on Quartz Grains in Bentonite by Precursor Volcanic Glass

    Microsoft Academic Search

    R. F. Wendlandt; W. J. Harrison

    2008-01-01

    The pathogenic tendencies of respirable-sized quartz grains may be dependent on inherent characteristics of the quartz as well as external factors. Surface coatings on quartz are of particular interest as they modify both physical and chemical properties of quartz grain surfaces and sequester the grain from contact with reactive lung fluids. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the

  17. NANOFILTRATION FOULANTS FROM A TREATED SURFACE WATER

    EPA Science Inventory

    The foulant from pilot nanofiltration membrane elements fed conventionally-treated surface water for 15 months was analyzed for organic, inorganic, and biological parameters. The foulant responsible for flux loss was shown to be a film layer 20 to 80 um thick with the greatest de...

  18. Elaboration et caracterisation de nanocomposites polyethylene/montmorillonite

    NASA Astrophysics Data System (ADS)

    Stoeffler, Karen

    This research project consists in preparing polyethylene/montmorillonite nanocomposites for film packaging applications. Montmorillonite is a natural clay with an exceptional aspect ratio. In recent years, its incorporation in polymer matrices has attracted great interest. The pioneer work from Toyota on polyamide-6/montmorillonite composites has shown that it was possible to disperse the clay at a nanometric scale. Such a structure, so-called exfoliated, leads to a significant increase in mechanical, barrier and fire retardant properties, even at low volumetric fractions of clay. This allows a valorization of the polymeric material at moderate cost. Due to its high polarity, montmorilloite exfoliation in polymeric matrices is problematic. In the particular case of polyolefin matrices, the platelets dispersion remains limited: most frequently, the composites obtained exhibit conventional structures (microcomposites) or intercalated structures. To solve this problem, two techniques are commonly employed: the surface treatment of the clay, which allows the expansion of the interfoliar gallery while increasing the affinity between the clay and the polymer, and the use of a polar compatibilizing agent (grafted polyolefin). The first part of this thesis deals with the preparation and the characterization of highly thermally stable organophilic montmorillonites. Commercial organophilic montmorillonites are treated with quaternary ammonium intercalating agents. However, those intercalating agents present a poor thermal stability and are susceptible to decompose upon processing, thus affecting the clay dispersion and the final properties of the nanocomposites. In this work, it was proposed to modify the clay with alkyl pyridinium, alkyl imidazolium and alkyl phosphonium intercalating agents, which are more stable than ammonium based cations. Organophilic montmorillonites with enhanced thermal stabilites compared to commercial organoclays (+20°C to +70°C) were prepared. The effect of the chemical structure of the intercalating agent on the capacity of the organoclay to be dispersed in polyethylene matrices was analyzed. In addition, the influence of the dispersion on the thermal stability of the nanocomposites prepared is discussed. In a second part, the effect of the compatibilizing agent characteristics on the quality of the clay dispersion in polyethylene/montmorillonite nanocomposites was analyzed. The mechanical properties and the oxygen permeability of the nanocomposites were evaluated and related to the level of clay delamination and to the strength of the polymer/clay interface, which was evaluated through surface tension measurements.

  19. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.

    1995-01-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water in ferric sulfate-bearing montmorillonite. Reflectance spectra of ferric sulfate-bearing montmorillonite include a strong 3-micrometers band that is more resistant to dry atmospheric conditions than the 3-micrometers band in spectra of similarly prepared ferrihydrite-bearing montmorillonites.

  20. Development of Surface Complexation Models of Cr(VI) Adsorption on Soils, Sediments and Model Mixtures of Kaolinite, Montmorillonite, ?-Alumina, Hydrous Manganese and Ferric Oxides and Goethite

    SciTech Connect

    Koretsky, Carla [Western Michigan University] [Western Michigan University

    2013-11-29

    Hexavalent chromium is a highly toxic contaminant that has been introduced into aquifers and shallow sediments and soils via many anthropogenic activities. Hexavalent chromium contamination is a problem or potential problem in the shallow subsurface at several DOE sites, including Hanford, Idaho National Laboratory, Los Alamos National Laboratory and the Oak Ridge Reservation (DOE, 2008). To accurately quantify the fate and transport of hexavalent chromium at DOE and other contaminated sites, robust geochemical models, capable of correctly predicting changes in chromium chemical form resulting from chemical reactions occurring in subsurface environments are needed. One important chemical reaction that may greatly impact the bioavailability and mobility of hexavalent chromium in the subsurface is chemical binding to the surfaces of particulates, termed adsorption or surface complexation. Quantitative thermodynamic surface complexation models have been derived that can correctly calculate hexavalent chromium adsorption on well-characterized materials over ranges in subsurface conditions, such pH and salinity. However, models have not yet been developed for hexavalent chromium adsorption on many important constituents of natural soils and sediments, such as clay minerals. Furthermore, most of the existing thermodynamic models have been developed for relatively simple, single solid systems and have rarely been tested for the complex mixtures of solids present in real sediments and soils. In this study, the adsorption of hexavalent chromium was measured as a function of pH (3-10), salinity (0.001 to 0.1 M NaNO3), and partial pressure of carbon dioxide(0-5%) on a suite of naturally-occurring solids including goethite (FeOOH), hydrous manganese oxide (MnOOH), hydrous ferric oxide (Fe(OH)3), ?-alumina (Al2O3), kaolinite (Al2Si2O5(OH)4), and montmorillonite (Na3(Al, Mg)2Si4O10(OH)2?nH2O). The results show that all of these materials can bind substantial quantities of hexavalent chromium, especially at low pH. Unexpectedly, experiments with the clay minerals kaolinite and montmorillonite suggest that hexavalent chromium may interact with these solids over much longer periods of time than expected. Furthermore, hexavalent chromium may irreversibly bind to these solids, perhaps because of oxidation-reduction reactions occurring on the surfaces of the clay minerals. More work should be done to investigate and quantify these chemical reactions. Experiments conducted with mixtures of goethite, hydrous manganese oxide, hydrous ferric oxide, ?-alumina, montmorillonite and kaolinite demonstrate that it is possible to correctly predict hexavalent chromium binding in the presence of multiple minerals using thermodynamic models derived for the simpler systems. Further, these models suggest that of the six solid considered in this study, goethite is typically the solid to which most of the hexavalent chromium will bind. Experiments completed with organic-rich and organic-poor natural sediments demonstrate that in organic-rich substrates, organic matter is likely to control uptake of the hexavalent chromium. The models derived and tested in this study for hexavalent chromium binding to ?-alumina, hydrous manganese oxide, goethite, hydrous ferric oxide and clay minerals can be used to better predict changes in hexavalent chromium bioavailability and mobility in contaminated sediments and soils.

  1. Dispersibility of Amphibious Montmorillonite

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Heng; Hwang, Weng-Sing; Kuo, Wuei-Jueng

    2005-09-01

    The objective of this study is to develop a suitable method to convert hydrophilic montmorillonite into amphibious montmorillonite by replacing the sodium ions normally found in clay with poly(oxyethylene) (POE)-amide chlorite cations. Amphibious montmorillonite has a high d-spacing and good dispersion characteristics in many different types of solutions, including those having an intermediate hydrophilic lipophilic balance (HLB) value. Four different modifying cations are tested and X-ray diffraction analysis is performed to measure the resulting changes in the d-spacing of the MMT. Scanning electron microscopy is employed to investigate the morphology of the modified clays. A laser-doppler particle analyzer is used to measure the particle size of the clays in various solutions. Dobrat’s method is applied to calculate the dispersibility of each clay and Stoke’s law is used to evaluate the settling rate. The results indicate that the d-spacing of the POE-amide chlorite cation modified montmorillonite increases from 1.28 to 3.51 nm. The amphibious montmorillonite demonstrates good dispersion characteristics in eight commonly employed coating solutions with intermediate HLB values.

  2. Treating Surfaces To Obtain Narrowband Thermal Emission

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Ong, Tiong P.

    1993-01-01

    Surfaces emitting electromagnetic radiation predominantly in desired narrow spectral bands when heated made more durable, and fabricated less expensively, according to proposal. Narrowband thermal emitters made by polishing metal substrates to specularity, then coating specular surfaces with films of rare-earth oxides approximately less than 1 micrometer thick. Metal substrates inherently resistant to mechanical shock. Resistance to thermal shock achieved by choosing metals and rare-earth oxides having equal or nearly equal coefficients of thermal expansion.

  3. Enantioselective photooxidation of a sulfide by a chiral ruthenium(II) complex immobilized on a montmorillonite clay surface: the role of weak interactions in asymmetric induction.

    PubMed

    Fujita, Shuji; Sato, Hisako; Kakegawa, Norishige; Yamagishi, Akihiko

    2006-02-16

    The present work pursued a possibility that enantioselectivity was achieved through weak intermolecular interactions between a catalyst and a substrate. For that purpose, we studied the photooxidation of alpha-ethylbenzyl phenyl sulfide catalyzed by a polypyridyl ruthenium(II) complex as a chiral photosensitizer. No covalent bonding was formed between a catalyst and a substrate, because the complexes used ([Ru(phen)(3)](2+) or [Ru(bpy(3))(2+)]) were coordinatively saturated. Enantiomer excess (ee) was attained to be 30% when a chiral photosensitizer was immobilized on montmorillonite clay. It was even improved to 43% in the presence of an additional chiral auxiliary, dibenzoyl-D(+)-tartaric acid. Notably, no enantioselectivity was achieved when the reaction took place in homogeneous solutions. The ab initio calculations were performed on the stability of an associate composed of a catalyst (metal complex) and a product (sulfoxide) to obtain a clue to reaction mechanisms. The calculations suggest that chiral discrimination is achieved even through noncovalent interactions between a substrate and a chiral sensitizer when the attacking direction by a substrate toward a catalyst is limited sterically on a solid surface. PMID:16471852

  4. Material, Mechanical, and Tribological Characterization of Laser-Treated Surfaces

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat; Aleem, B. J. Abdul

    2014-10-01

    Laser treatment under nitrogen assisting gas environment of cobalt-nickel-chromium-tungsten-based superalloy and high-velocity oxygen-fuel thermal spray coating of nickel-chromium-based superalloy on carbon steel was carried out to improve mechanical and tribological properties. Superalloy surface was preprepared to include B4C particles at the surface prior to the laser treatment process. Material and morphological changes in the laser-treated samples were examined using scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction (XRD) analysis. Residual stresses present at the surface region of the laser-treated layer were determined from the XRD data. The microhardness of the laser-treated surface was measured by indentation tests. Fracture toughness of the coating surfaces before and after laser treatment were also measured using overload indentation tests. Macrowear and macrofriction characterization were carried out using pin-on-disk tests.

  5. Immobilization of zinc and cadmium by montmorillonite compounds: Effects of aging and subsequent acidification

    SciTech Connect

    Lothenbach, B.; Furrer, G.; Schaerli, H.; Schulin, R. [ETH Zurich (Switzerland). Inst. of Terrestrial Ecology] [ETH Zurich (Switzerland). Inst. of Terrestrial Ecology

    1999-09-01

    The addition of aluminum treated montmorillonites as binding agents that immobilize heavy metals is an innovative approach for the remediation of arable soils polluted with heavy metals. The authors investigated the influence of aging and subsequent sudden acidification on the binding of zinc and cadmium by montmorillonite, Al-montmorillonite and Al{sub 13}-montmorillonite increased, probably due to a partial incorporation in the aluminum hydroxide lattice. Sorption and desorption were hysteretic with respect to pH, i.e., desorption required lower pH values that adsorption to reach the same state of metal partitioning between solid phase and solution. In addition, these minerals enhance the pH buffer capacity of the soil. The results suggest that Al-montmorillonite and Al{sub 13}-montmorillonite are suitable minerals to be used as binding agents for the gentle immobilization of heavy metals in polluted soils.

  6. Study of Some Physicochemical Properties of Pillared Montmorillonites: AcidBase Potentiometric Titrations and Electrophoretic Measurements

    Microsoft Academic Search

    Marcelo J. Avena; RAOL CABROL; CARLOS P. DE PAULI

    1990-01-01

    The surface charges and the zeta potential ofa Na-montmorillonite (Na-mont) and two pillared montmorillonite (MP1 and MP2) samples with different aluminum contents were determined by poten- tiometric titrations and electrophoretic measurements. At pH > 9 the two pillared montmorillonite sam- ples showed zeta potentials similar to those of Na-mont, but at pH <8, the negative zeta potential shifted to lower

  7. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Styrenyl surface treated manganese ferrite with acrylic ester polymer...721.10223 Styrenyl surface treated manganese ferrite with acrylic ester polymer...generically as styrenyl surface treated manganese ferrite with acrylic ester...

  8. 40 CFR 721.10222 - Styrenyl surface treated manganese ferrite (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Styrenyl surface treated manganese ferrite (generic). 721.10222...721.10222 Styrenyl surface treated manganese ferrite (generic). (a) Chemical...generically as styrenyl surface treated manganese ferrite (PMN P-09-581) is...

  9. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Styrenyl surface treated manganese ferrite with acrylic ester polymer...721.10223 Styrenyl surface treated manganese ferrite with acrylic ester polymer...generically as styrenyl surface treated manganese ferrite with acrylic ester...

  10. 40 CFR 721.10222 - Styrenyl surface treated manganese ferrite (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Styrenyl surface treated manganese ferrite (generic). 721.10222...721.10222 Styrenyl surface treated manganese ferrite (generic). (a) Chemical...generically as styrenyl surface treated manganese ferrite (PMN P-09-581) is...

  11. 40 CFR 721.10222 - Styrenyl surface treated manganese ferrite (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Styrenyl surface treated manganese ferrite (generic). 721.10222...721.10222 Styrenyl surface treated manganese ferrite (generic). (a) Chemical...generically as styrenyl surface treated manganese ferrite (PMN P-09-581) is...

  12. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Styrenyl surface treated manganese ferrite with acrylic ester polymer...721.10223 Styrenyl surface treated manganese ferrite with acrylic ester polymer...generically as styrenyl surface treated manganese ferrite with acrylic ester...

  13. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Styrenyl surface treated manganese ferrite with acrylic ester polymer...721.10223 Styrenyl surface treated manganese ferrite with acrylic ester polymer...generically as styrenyl surface treated manganese ferrite with acrylic ester...

  14. 40 CFR 721.10222 - Styrenyl surface treated manganese ferrite (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Styrenyl surface treated manganese ferrite (generic). 721.10222...721.10222 Styrenyl surface treated manganese ferrite (generic). (a) Chemical...generically as styrenyl surface treated manganese ferrite (PMN P-09-581) is...

  15. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Magnesium hydroxide surface treated with substituted...Chemical Substances § 721.10573 Magnesium hydroxide surface treated with substituted...chemical substance identified generically as magnesium hydroxide surface treated with...

  16. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Magnesium hydroxide surface treated with substituted...Chemical Substances § 721.10573 Magnesium hydroxide surface treated with substituted...chemical substance identified generically as magnesium hydroxide surface treated with...

  17. Sol-gel hybrid films based on organosilane and montmorillonite for corrosion inhibition of AA2024.

    PubMed

    Dalmoro, V; dos Santos, J H Z; Armelin, E; Alemán, C; Azambuja, D S

    2014-07-15

    The present work reports the production of films on AA2024-T3 composed of vinyltrimethoxysilane (VTMS)/tetraethylorthosilicate (TEOS) with incorporation of montmorillonite (sodium montmorillonite and montmorillonite modified with quaternary ammonium salt, abbreviated Na and 30B, respectively), generated by the sol-gel process. According to FT-IR analyses the incorporation of montmorillonite does not affect silica network. Electrochemical characterization was performed by electrochemical impedance spectroscopy measurement in 0.05 mol L(-1) NaCl solution. Results indicate that montmorillonite incorporation improves the corrosion protection compared to the non-modified system. Scanning electron microscopy micrographs reveal that high concentrations of montmorillonite provide agglomerations on the metallic surface, which is in detriment of the anticorrosive performance. The VTMS/TEOS/30B films with the lowest concentration (22 mg L(-1)) of embedded clay provide the highest corrosion protection. PMID:24863798

  18. The acid-base titration of montmorillonite

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Sposito, G.; Bourg, A. C.

    2003-12-01

    Proton binding to clay minerals plays an important role in the chemical reactivity of soils (e.g., acidification, retention of nutrients or pollutants). If should also affect the performance of clay barriers for waste disposal. The surface acidity of clay minerals is commonly modelled empirically by assuming generic amphoteric surface sites (>SOH) on a flat surface, with fitted site densities and acidity constant. Current advances in experimental methods (notably spectroscopy) are rapidly improving our understanding of the structure and reactivity of the surface of clay minerals (arrangement of the particles, nature of the reactive surface sites, adsorption mechanisms). These developments are motivated by the difficulty of modelling the surface chemistry of mineral surfaces at the macro-scale (e.g., adsorption or titration) without a detailed (molecular-scale) picture of the mechanisms, and should be progressively incorporated into surface complexation models. In this view, we have combined recent estimates of montmorillonite surface properties (surface site density and structure, edge surface area, surface electrostatic potential) with surface site acidities obtained from the titration of alpha-Al2O3 and SiO2, and a novel method of accounting for the unknown initial net proton surface charge of the solid. The model predictions were compared to experimental titrations of SWy-1 montmorillonite and purified MX-80 bentonite in 0.1-0.5 mol/L NaClO4 and 0.005-0.5 mol/L NaNO3 background electrolytes, respectively. Most of the experimental data were appropriately described by the model after we adjusted a single parameter (silanol sites on the surface of montmorillonite were made to be slightly more acidic than those of silica). At low ionic strength and acidic pH the model underestimated the buffering capacity of the montmorillonite, perhaps due to clay swelling or to the interlayer adsorption of dissolved aluminum. The agreement between our model and the experimental data illustrates the complementarity of molecular and macro-scale descriptions of the clay reactivity.

  19. Analysis of peptides synthesized in the presence of SAz-1 montmorillonite and Cu(2+) exchanged hectorite.

    PubMed

    Porter, T L; Eastman, M P; Bain, E; Begay, S

    2001-07-01

    We have investigated the synthesis of oligopeptides containing glycine and tyrosine in the presence of the clay minerals montmorillonite (non-exchanged, SAz-1) and Cu(2+) exchanged hectorite. In both cases, homopolymers of the two amino acids are formed, as are mixed peptides. In the case of Cu(2+) hectorite, mixed oligopeptides up to trimers are detected in small amounts. For montmorillonite, heterogeneous oligopeptides up to hexamers are detected. Our experiments indicate montmorillonite is more effective in promoting oligopeptide formation than Cu(2+) hectorite. Analysis of the oligopeptide sequences formed on the montmorillonite surfaces indicates preferential synthesis of certain Gly-Tyr sequences over others. PMID:11429201

  20. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    PubMed Central

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  1. Peptide Formation Mechanism on Montmorillonite Under Thermal Conditions

    NASA Astrophysics Data System (ADS)

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.

  2. Utilization of surface-treated rubber particles from waste tires

    SciTech Connect

    Smith, F.G. [Argonne National Lab., IL (United States). Energy Systems Div.]|[Environmental Technologies Alternatives, Inc., Lima, OH (United States)

    1994-12-01

    During a 12-month program, the author successfully demonstrated commercial applications for surface-treated rubber particles in two major markets: footwear (shoe soles and components) and urethane-foam carpet underlay (padding). In these markets, he has clearly demonstrated the ease of using R-4080 and R-4030 surface-treated rubber particles in existing manufacturing plants and processes and have shown that the material meets or exceeds existing standards for performance, quality, and cost-effectiveness. To produce R-4080 and R-4030, vulcanized rubber, whole-tire material is finely ground to particles of nominal 80 and mesh size respectively. Surface treatment is achieved by reacting these rubber particles with chlorine gas. In this report, the author describes the actual test and evaluations of the participant companies, and identifies other potential end uses.

  3. Induced hydrophobic recovery of oxygen plasma-treated surfaces

    PubMed Central

    Guckenberger, David J.; Berthier, Erwin; Young, Edmond W. K.; Beebe, David J.

    2014-01-01

    Plasma treatment is a widely used method in microfabrication laboratories and the plasticware industry to functionalize surfaces for device bonding and preparation for mammalian cell culture. However, spatial control of plasma treatment is challenging because it typically requires a tedious masking step that is prone to alignment errors. Currently, there are no available methods to actively revert a surface from a treated hydrophilic state to its original hydrophobic state. Here, we describe a method that relies on physical contact treatment (PCT) to actively induce hydrophobic recovery of plasma-treated surfaces. PCT involves applying brushing and peeling processes with common wipers and tapes to reverse the wettability of hydrophilized surfaces while simultaneously preserving hydrophilicity of non-contacted surfaces. We demonstrate that PCT is a user-friendly method that allows 2D and 3D surface patterning of hydrophobic regions, and the protection of hydrophilic surfaces from unwanted PCT-induced recovery. This method will be useful in academic and industrial settings where plasma treatment is frequently used. PMID:22592853

  4. Method of treating the surface of a glass member

    NASA Technical Reports Server (NTRS)

    Rice, S. H.; Spencer, R. S. (inventors); Fleetwood, C. M., Jr.

    1977-01-01

    A method is described of treating a surface of a glass member intended to abut a transparent element for disrupting the light interference fringes formed between the surfaces. The method involves the steps of grinding the surface to form irregularities thereon; bathing the surface with an aqueous solution containing between substantially 41.3 percent and 45.7 percent by volume of sulfuric acid and between substantially 54.3 percent and 58.7 percent by volume of hydrofluoric acid for a time sufficient to polish the irregularities until the glass member is about 90 percent light transmissive; and washing the glass member with a liquid having a temperature substantially lower than the temperature of the aqueous solution for preventing further reaction between the aqueous solution and the surface.

  5. Polyvinylpyrrolidone adsorption and structural studies on homoionic Li-, Na-, K-, and Cs-montmorillonite colloidal suspensions.

    PubMed

    Séquaris, J-M; Camara Decimavilla, S; Corrales Ortega, J A

    2002-08-01

    Structural aspects of dilute homoionic Li-, Na-, K-, and Cs-montmorillonite (M-montmorillonite) particle suspension (1 g/L) under low-electrolyte-concentration (0.1 mM MCl) conditions were characterized by static (absorbance or turbidity) and dynamic (photon correlation spectroscopy) light-scattering methods as well as by the adsorption behaviors of nonionic polyvinylpyrrolidone (PVP) mol wt 5,000 g/mol (LMW PVP) and mol wt 400,000 g/mol (HMW PVP). Taking Li-montmorillonite as a reference for a single plate particle, a particle size increase and a surface accessibility decrease to polymer adsorptions were measured along the Li, Na, K, and Cs series. The results are related to the existence of montmorillonite quasicrystals or tactoids in diluted suspension, whose stability increases along the same cation series. Molecular weight effects on the PVP surface accessibility are discussed in terms of permeation properties of the different M-montmorillonite particles. Modeling the results calculates an average number of plates in montmorillonite quasi-crystals and the surface area distribution of ultramicropores <0.7 nm and pores >0.7 nm in M-montmorillonite particles. It can also be demonstrated by applying hydrodynamic and electrokinetic methods that the measured high absorbance or turbidity increase of PVP-loaded montmorillonite particles is not due to aggregation phenomena but to a PVP contribution in the light-scattering intensity. PMID:16290767

  6. Treating ocular surface disease: new agents in development

    PubMed Central

    Fahmy, Ahmad M; Hardten, David R

    2011-01-01

    This paper reviews recent advances and investigation in the treatment of ocular surface pathology. There is significant investment in this area, paralleling the growing demand for more effective alternatives to current treatments. Clinicians are becoming more aware of surface pathology, yet the ability to treat the most common forms of ocular pathology are still limited to the few medications approved by the US Food and Drug Administration. Medicines and devices currently under investigation are very promising. It is absolutely critical to understand the emerging options and think of their role in the treatment paradigm. PMID:21573093

  7. Wear behavior of different surface treated cam spindles

    Microsoft Academic Search

    H. Sert; A. Can; H. Ar?kan; B. Selcuk; H. Toprak

    2006-01-01

    In this study wear behavior of cam spindles made of five different surface treated nodular cast iron (GGG50) and induction hardened CK45 steels was investigated. In the experiments; PVD–TiN-coated, both borided and PVD–TiN-coated, only hardened, both hardened and PVD–TiN-coated and only borided spherical graphite cast iron and induction hardened CK45 were used. The wear behavior of two type of steel

  8. Effect of in-situ bonding system and surface modification of montmorillonite on the properties of butyl rubber/MMT composites

    NASA Astrophysics Data System (ADS)

    Halim, S. F.; Lawandy, S. N.; Nour, M. A.

    2012-07-01

    Isobutylene-isoprene rubber (IIR)/nanoclay composites were prepared by solution intercalation method. Cloisite Na+ nanoclays and organo-modified montmorillonite (OMT) Cloisite 10 A,.15 A and 20 A were used in this study. The effect of In-situ bonding system HRH (hexametylene tetramine: resorcinol: hydrated silica) on the dispersion of used nanoclays in the rubber matrix were examined by X-ray diffraction and atomic force microscopy (AFM). Characterization of the prepared composites was performed by studying the rheometeric and mechanical properties. The burning out behavior of the nanocomposites with and without the bonding system was also measured.

  9. Preparation and characterization of zwitterionic surfactant-modified montmorillonites.

    PubMed

    Zhu, Jianxi; Qing, Yanhong; Wang, Tong; Zhu, Runliang; Wei, Jingming; Tao, Qi; Yuan, Peng; He, Hongping

    2011-08-15

    A series of zwitterionic surfactant-modified montmorillonites (ZSMMs) were synthesized using montmorillonite and three zwitterionic surfactants with different alkyl chain lengths at different concentrations [0.2-4.0 cation exchange capacity (CEC)]. These ZSMMs were characterized by X-ray diffraction (XRD), thermo-gravimetric analysis and differential thermo-gravimetric (TG/DTG) analyses. The zwitterionic surfactant could be intercalated into the interlayer spaces of montmorillonites and causing interlayer space-swelling. From XRD measurements, the amount of the surfactants loaded and the basal spacing increased with surfactant concentration and alkyl chain length. One endothermic DTG peak occurred at ~390 °C, which was assigned to the decomposition of the zwitterionic surfactant on the organo-montmorillonites from 0.2 to 0.6 CEC. When the surfactant loading was increased, a new endothermic peak appeared at ~340 °C. From the microstructures of these ZSMMs, the mechanism of zwitterionic surfactant adsorption was proposed. At relatively low loadings of the zwitterionic surfactant, most of surfactants enter the spacing by an ion-exchange mechanism and are adsorbed onto the interlayer cation sites. When the concentration of the zwitterionic surfactant exceeds the CEC of montmorillonite, the surfactant molecules then adhere to the surface-adsorbed surfactant. Some surfactants enter the interlayers, whereas the others are attached to the clay surface. When the concentration of surfactant increases further beyond 2.0 CEC, the surfactants may occupy the inter-particle space within the house-of-cards aggregate structure. PMID:21575956

  10. Surface characterization of silica glass substrates treated by atomic hydrogen

    SciTech Connect

    Inoue, Hiroyuki [Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505 (Japan); Masuno, Atsunobu, E-mail: masuno@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505 (Japan); Ishibashi, Keiji [Canon ANELVA Corporation, Asao-ku, Kawasaki, Kanagawa 215-8550 (Japan); Tawarayama, Hiromasa [Kawazoe Frontier Technologies Corporation, Kuden 931-113, Sakae-ku, Yokohama, Kanagawa 247-0014 (Japan); Zhang, Yingjiu; Utsuno, Futoshi [Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505 (Japan); Koya, Kazuo; Fujinoki, Akira [Shin Etsu Quartz Prod. Co., Ltd., Res and Applicat Lab, Fukushima 963-0725 (Japan); Kawazoe, Hiroshi [Kawazoe Frontier Technologies Corporation, Kuden 931-113, Sakae-ku, Yokohama, Kanagawa 247-0014 (Japan)

    2013-12-15

    Silica glass substrates with very flat surfaces were exposed to atomic hydrogen at different temperatures and durations. An atomic force microscope was used to measure root-mean-square (RMS) roughness and two-dimensional power spectral density (PSD). In the treatment with atomic hydrogen up to 900 °C, there was no significant change in the surface. By the treatment at 1000 °C, the changes in the RMS roughness and the PSD curves were observed. It was suggested that these changes were caused by etching due to reactions of atomic hydrogen with surface silica. By analysis based on the k-correlation model, it was found that the spatial frequency of the asperities became higher with an increase of the treatment time. Furthermore, the data showed that atomic hydrogen can flatten silica glass surfaces by controlling heat-treatment conditions. - Highlights: • Silica glass surface was treated by atomic hydrogen at various temperatures. • Surface roughness was measured by an atomic force microscope. • Roughness data were analyzed by two-dimensional power spectral density. • Atomic hydrogen can flatten silica glass surfaces.

  11. Surface energy increase of oxygen-plasma-treated PET

    SciTech Connect

    Cioffi, M.O.H.; Voorwald, H.J.C.; Mota, R.P

    2003-03-15

    Prosthetic composite is a widely used biomaterial that satisfies the criteria for application as an organic implant without adverse reactions. Polyethylene therephthalate (PET) fiber-reinforced composites have been used because of the excellent cell adhesion, biodegradability and biocompatibility. The chemical inertness and low surface energy of PET in general are associated with inadequate bonds for polymer reinforcements. It is recognized that the high strength of composites, which results from the interaction between the constituents, is directly related to the interfacial condition or to the interphase. A radio frequency plasma reactor using oxygen was used to treat PET fibers for 5, 20, 30 and 100 s. The treatment conditions were 13.56 MHz, 50 W, 40 Pa and 3.33x10{sup -7} m{sup 3}/s. A Rame-Hart goniometer was used to measure the contact angle and surface energy variation of fibers treated for different times. The experimental results showed contact angle values from 47 deg. to 13 deg. and surface energies from 6.4x10{sup -6} to 8.3x10{sup -6} J for the range of 5 to 100 s, respectively. These results were confirmed by the average ultimate tensile strength of the PET fiber/ polymethylmethacrylate (PMMA) matrix composite tested in tensile mode and by scanning electron microscopy.

  12. The mechanism of montmorillonite catalysis in RNA synthesis

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash

    The formation of complex prebiotic molecules on the early Earth is likely to have involved a component of mineral catalysis. Amongst the variety of clay minerals that have been investigated by us for their ability to catalyze the formation of RNA oligomers is montmorillonite. These are 2:1 layer silicates that have a wide range of chemical compositions [(Na,Ca)0.33(Al,Fe,Mg)2(Si,Al)4O10(OH)2.nH2O]. They are commonly produced by the weathering of silicic volcanic ashes to form Bentonite. Once formed, montmorillonites gradually transform to Illites at a modest pressure and temperature. Of the many samples of montmorillonite that we have experimentally examined, a selected subset has been observed to be catalytic for RNA synthesis (Joshi et. al., 2009; Aldersley et al., 2011). Those that have been observed to be excellent catalysts come from a restricted range of elemental compositions. The recent identification of phyllosilicates including montmorillonite on Mars (Bishop et al., 2008) raises the possibility that such processes may have taken place there too. The extent of catalysis depended not only upon the magnitude of the negative charge on the montmorillonite lattice and the number of cations associated with it, but also on the pH at which the reaction is promoted. The isotherm and catalysis studies were extended to provide binding information and catalytic outcomes over a wide pH range. When cations in raw montmorillonite are completely replaced by sodium ions, the resulting Na+-montmorillonite does not catalyze oligomer formation because the ions saturate the interlayer between the platelets of montmorillonite, which blocks the binding of the activated monomers. Acid washed montmorillonite titrated to pH 6-8 with alkali metal ions, serves as the model catalyst for this RNA synthesis (Aldersley et. al., 2011). The optimal binding occurred in the region of maximal oligomer formation. X-ray diffraction studies revealed changes in layer separations of montmorillonite as reaction occurs. The application of the Scherer equation to the X-ray diffraction data showed differences in domain size. Modeling of the size of the activated nucleotide monomers and the charge on the montmorillonite surface provided an interpretation of how these factors influence adsorption. This research provides a basis for further understanding of the physical processes in the mechanism of this catalysis in prebiotic reactions. This research was supported by NASA Astrobiology Institute Grant NNA09DA80A. References: Aldersley, M.F., Joshi, P.C., Price, J.D., Ferris, J.P. The role of montmorillonite in its catalysis of RNA synthesis. Appl. Clay Sci. 54,1-14, 2011. Bishop, J.L., Dobrea, E.J.N., Mckeown, N.K., Parenta, M. Phyllos- ilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 321, 830-833, 2008. Joshi, P.C., Aldersley, M.F., Delano, J.W., Ferris, J.P., Mechanism of montmorillonite catalysis in the formation of RNA oligomers, J. Am. Chem. Soc., 131, 13369-13374, 2009.

  13. Adsorption of hydrogen sulfide on montmorillonites modified with iron

    Microsoft Academic Search

    Danh Nguyen-Thanh; Karin Block; Teresa J. Bandosz

    2005-01-01

    Sodium-rich montmorillonite was modified with iron in order to introduce active centers for hydrogen sulfide adsorption. In the first modification, interlayer sodium cations were exchanged with iron. In another modification, iron oxocations were introduced to the clay surface. The most elaborated modification was based on doping of iron within the interlayer space of aluminum-pillared clay. The modified clay samples were

  14. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Hagan, William J.

    1986-03-01

    The binding of AMP to Zn2+-montmorillonite was investigated in the presence of buffers and salts. Good's buffers, piperazine-N,N'-bis(2-ethanesulfonate) [PIPES] and morpholine-N-2-ethanesulfonate [MES], perturbed the exchangeable cations to a lesser extent (only 9% of Zn2+ displaced by 0.2 M buffer) than was observed with imidazole and lutidine buffers or NaCl and KCl salts (up to 80% of Zn2+ displaced). AMP adsorption isotherms measured in the presence of 0.2 M PIPES, MES or Na2SO4 exhibited normal Langmuir-type behavior. The adsorption coefficient, KL, is 3-fold greater in the presence of HEPES or PIPES than it is in the absence of buffers. Basal spacings measured by X-ray diffraction for Zn2+-montmorillonite are 13 and 15 Å in the presence of PIPES, while a value of 12.8 Å was determined in the absence of PIPES. These data are interpreted in a model in which the adsorption of AMP is mediated by a Zn2+ complex of PIPES in different orientations in the interlamellar region of the montmorillonite. The type of exchangeable cation does not affect the ability of the lattice-bound Fe3+ in the montmorillonite to oxidize diaminomaleonitrile (DAMN). Exchangeable Cu2+ oxidizes DAMN, but exchangeable Fe3+ is nearly ineffective as an oxidant. The addition if DISN to 3'-AMP bound to Zn2+-montmorillonite in the presence of 0.2 M PIPES resulted in a higher yield of 2', 3'-cAMP than is observed with a comparable concentration of Zn2+, a result which implicates surface catalystis by the montmorillonite.

  15. Isomerization of fluorophors on a treated silicon surface

    SciTech Connect

    Gole, J.L.; Dixon, D.A.

    2000-03-02

    In contrast to the green and familiar orange-red emissions associated with UV excited porous silicon (PS), the origins of the longer wavelength photoluminescence (PL) excited in the visible and near-infrared regions on a PS surface at 298 K are considered within an alternate molecular model. Ab initio molecular orbital theory is used to suggest that the longest wavelength PL observed as a result of the nitrogen laser pumping of post-etch dye and HCI treated PS samples and that accessed with near-infrared excitation sources (PLE) at 298 K arises in large part from singlet-triplet transitions in silylene-based moieties (:SiRY) attached to the PS surface or present as uncoupled defect sites at or near the surface. This long-wavelength PL is distinct from the ultraviolet light excited PL associated with PS which has previously been attributed to a silanone-based silicon oxyhydride moiety attached to the surface. Ab initio molecular theory at the MP2 level with polarized double-basis sets (MP2/DZP) has been used to calculate the singlet-triplet separation for a number of silylenes with a variety of combinations of R, Y=H, OH, SiH{sub 3}, Cl, and NH{sub 2} and to evaluate their thermodynamic stability relative to the silanones. The calculations show that the singlet silylene is always more stable than its triplet with transition wavelengths ranging from 1,100 to 420 nm, where the highest transition energies are found to correlate with the most electronegative substituents. The silylene isomers are found to be more stable than the corresponding silanones in most cases. The relative stabilities are strongly coupled to the electronegativity of the substituents and to the formation of an Si-O bond in the silylene as compared to the much weaker Si-Si bond in the silanone.

  16. Comparison of removal torques between laser-treated and SLA-treated implant surfaces in rabbit tibiae

    PubMed Central

    Kang, Nam-Seok; Li, Lin-Jie

    2014-01-01

    PURPOSE The purpose of this study was to compare removal torques and surface topography between laser treated and sandblasted, large-grit, acid-etched (SLA) treated implants. MATERIALS AND METHODS Laser-treated implants (experimental group) and SLA-treated implants (control group) 8 mm in length and 3.4 mm in diameter were inserted into both sides of the tibiae of 12 rabbits. Surface analysis was accomplished using a field emission scanning electron microscope (FE-SEM; Hitachi S-4800; Japan) under ×25, ×150 and ×1,000 magnification. Surface components were analyzed using energy dispersive spectroscopy (EDS). Rabbits were sacrificed after a 6-week healing period. The removal torque was measured using the MGT-12 digital torque meter (Mark-10 Co., Copiague, NY, USA). RESULTS In the experimental group, the surface analysis showed uniform porous structures under ×25, ×150 and ×1,000 magnification. Pore sizes in the experimental group were 20-40 mm and consisted of numerous small pores, whereas pore sizes in the control group were 0.5-2.0 mm. EDS analysis showed no significant difference between the two groups. The mean removal torque in the laser-treated and the SLA-treated implant groups were 79.4 Ncm (SD = 20.4; range 34.6-104.3 Ncm) and 52.7 Ncm (SD = 17.2; range 18.7-73.8 Ncm), respectively. The removal torque in the laser-treated surface implant group was significantly higher than that in the control group (P=.004). CONCLUSION In this study, removal torque values were significantly higher for laser-treated surface implants than for SLA-treated surface implants. PMID:25177474

  17. Method and system for treating an interior surface of a workpiece using a charged particle beam

    DOEpatents

    Swenson, David Richard (Georgetown, MA)

    2007-05-23

    A method and system of treating an interior surface on an internal cavity of a workpiece using a charged particle beam. A beam deflector surface of a beam deflector is placed within the internal cavity of the workpiece and is used to redirect the charged particle beam toward the interior surface to treat the interior surface.

  18. Montmorillonite enhanced ciprofloxacin transport in saturated porous media with sorbed ciprofloxacin showing antibiotic activity

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Gao, Bin; Yang, Liu-Yan; Ma, Lena Q.

    2015-02-01

    Antibiotic ciprofloxacin (CIP) is immobile in the subsurface but it has been frequently detected in the aquatic system. Therefore it is important to investigate the factors impacting CIP's mobilization in aquifer. Laboratory columns packed with sand were used to test colloid-facilitated CIP transport by 1) using kaolinite or montmorillonite to mobilize presorbed-CIP in a column or 2) co-transporting with CIP by pre-mixing them before transport. The Langmuir model showed that CIP sorption by montmorillonite (23 g kg- 1) was 100 times more effective than sand or kaolinite. Even with strong CIP complexation ability to Fe/Al coating on sand surface, montmorillonite promoted CIP transport, but not kaolinite. All presorbed-CIP by sand was mobilized by montmorillonite after 3 pore volumes through co-transporting of CIP with montmorillonite. The majority of CIP was fixed onto the montmorillonite interlayer but still showed inhibition of bacteria growth. Our results suggested that montmorillonite with high CIP sorption ability can act as a carrier to enhance CIP's mobility in aquifer.

  19. Mechanism of palm oil bleaching by montmorillonite clay activated at various acid concentrations

    Microsoft Academic Search

    S. C. Kheok; E. E. Lim

    1982-01-01

    The mechanism of bleaching by a nonswelling montmorillonite clay activated at various acid concentrations was studied in the\\u000a bleaching of palm oil. Montmorillonite clay was activated by 2 parts of H2SO4 at concentrations of 10-40%. Chemical composition, bleaching ability, specific surface area and phosphorus content were studied.\\u000a The study showed that an initial increase in bleaching ability by clay activated

  20. Infrared investigation of organo-montmorillonites prepared from different surfactants.

    PubMed

    Ma, Yuehong; Zhu, Jianxi; He, Hongping; Yuan, Peng; Shen, Wei; Liu, Dong

    2010-07-01

    In this paper, a series of organoclays were prepared from montmorillonites with different CEC and surfactants with different alkyl chain numbers and chain length. Then, FTIR spectroscopy using ATR, DRIFT and KBr pressed disk techniques was used to characterize the local environments of surfactant and host clays in various surfactants modified montmorillonites under wet and dry states. The present study demonstrates that the alkyl chain length and chain number have significant influences on the local environment of the intercalated surfactants. Also, this study indicates that the surface property of the resulting organoclays is affected by the loading and configuration of the intercalated surfactants. In wet state, more gauche conformers are introduced into the alkyl chains in the organoclays with low surfactant loading, evidenced by the shift of CH(2) vibration to higher frequency. Meanwhile, in the case of the organo-montmorillonites with high surfactant loading, the interaction between the surfactant and silicate surface results in a re-arrangement of SiO(4) tetrahedral sheets and a splitting of Si-O stretching vibration. The KBr pressed disk technique is suitable to probe the conformational ordering of the confined amine chains and the reflectance spectroscopy with ATR and/or DRIFT technique is more suitable to probe the water in organoclays. These findings are of high importance to the preparation of organoclays with proper surfactants and investigation of the microstructure of the resulting organoclays using suitable techniques. PMID:20363664

  1. The Remineralization of Fluoride-treated Bovine Enamel Surfaces

    Microsoft Academic Search

    Z. Amjad; P. G. Koutsoukos; G. H. Nancollas

    1982-01-01

    Various etching methods are examined with respect to their ability to induce the surface nucleation and growth of fluorapatite from solutions of low, sustained supersaturation with respect to hydroxyapatite and fluorapatite. The constant composition kinetics method enables the rates of remineralization to be precisely determined, and the possibility of the direct growth of fluorapatite on calcium fluoride crystals in calcium

  2. Controlled Release of Agrochemicals Intercalated into Montmorillonite Interlayer Space

    PubMed Central

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil. PMID:24696655

  3. Comparison of the Inhibitory Action of KCl and Guanidine Hydrochloride Solutions on Montmorillonite Swelling

    Microsoft Academic Search

    M. Iltis; G. Didier; P. Lareal

    1982-01-01

    This study compares the effectiveness of potassium chloride with guanidine chlorhydrate in the prevention of clay swelling. The results given on various swelling tests on calcic montmorillonite led to the conclusions that (1) guanidine chlorhydrate is more effective than potassium chloride, especially in low concentrations, and (2) water immersion of samples treated by both solutions shows the permanent feature of

  4. Biodegradable Bovine Gelatin\\/Na-Montmorillonite Nanocomposite Films. Structure, Barrier and Dynamic Mechanical Properties

    Microsoft Academic Search

    J. F. Martucci; R. A. Ruseckaite

    2010-01-01

    Biodegradable films based on gelatin and Na-Montmorillonite were prepared by mixing of gelatin solutions with ultrasonically pre-treated clay suspensions under controlled conditions. The DRX patterns and AFM images suggested that ultrasonication process resulted in homogeneously distributed layered silicates inside the matrix but not fully exfoliated. Transparency was retained, suggesting that filler is mostly distributed at the nanoscale. The results of

  5. Bone regeneration performance of surface-treated porous titanium.

    PubMed

    Amin Yavari, Saber; van der Stok, Johan; Chai, Yoke Chin; Wauthle, Ruben; Tahmasebi Birgani, Zeinab; Habibovic, Pamela; Mulier, Michiel; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir Abbas

    2014-08-01

    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial. PMID:24811260

  6. Sorption and desorption of radiocobalt on montmorillonite--effects of pH, ionic strength and fulvic acid.

    PubMed

    Chen, Lei; Lu, Songsheng

    2008-03-01

    Humic substances and clay minerals have been studied extensively in radioactive waste management. In our research, the sorption and desorption of radiocobalt on montmorillonite in the presence and absence of fulvic acid as a function of pH and ionic strength were investigated under ambient conditions by using batch techniques. The results indicate that the sorption of cobalt is strongly dependent on pH values and independent of ionic strength. Surface complexation rather than cation exchange is considered as the main mechanism of cobalt sorption to montmorillonite. The presence of fulvic acid enhances cobalt sorption obviously at pH values<8. The desorption behavior changes of surface-sorbed cobalt from montmorillonite were studied by decreasing pH values and the solution cobalt concentrations independently. The results indicated that the sorption of cobalt on montmorillonite is irreversible. PMID:17897834

  7. Surface energy of the plasma treated Si incorporated diamond-like carbon films

    Microsoft Academic Search

    Ritwik K. Roy; Heon-Woong Choi; Se-Jun Park; Kwang-Ryeol Lee

    2007-01-01

    Surface energy and surface chemical bonds of the plasma treated Si incorporated diamond-like carbon films (Si-DLC) were investigated. The Si-DLC films were prepared by r.f. plasma assisted chemical vapor deposition using benzene and diluted silane (SiH4\\/H2=10:90) as the precursor gases. The Si-DLC films were subjected to plasma treatment using various gases like N2, O2, H2 and CF4. The plasma treated

  8. Investigation on surface structure of potassium permanganate/nitric acid treated poly(tetrafluoroethylene)

    NASA Astrophysics Data System (ADS)

    Fu, Congli; Liu, Shuling; Gong, Tianlong; Gu, Aiqun; Yu, Zili

    2014-10-01

    In the previous articles concerning the treatment of poly(tetrafluoroethylene) (PTFE) with potassium permanganate/nitric acid mixture, the conversion of a hydrophobic to a hydrophilic surface was partially assigned to the defluorination of PTFE and then the introduction of carbonyl and hydroxyl groups into the defluorinated sites. In the present work, PTFE sheets were treated with potassium permanganate/nitric acid, and the surfaces before and after treatment were comparatively characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface sediments of the treated PTFE were also determined by atomic absorption spectroscopy (AAS). The results indicate that the conversion of the hydrophobicity to the hydrophilicity on the modified PTFE surface is mainly due to the deposition of hydrophilic manganese oxides which covered the fluorocarbon surface, and no detectable chemical reactions of PTFE occur in the treating process.

  9. Wear of surface treated dies for aluminium extrusion — a case study

    Microsoft Academic Search

    Thomas Björk; Richard Westergård; Sture Hogmark

    2001-01-01

    Dies for extrusion of aluminium alloys are exposed to severe thermal, chemical and mechanical conditions. Extrusion dies are usually made from hot work tool steels such as AISI H13. In order to reduce wear they are almost always surface treated by various forms of nitriding. Surface-coating by physical vapour deposition (PVD) or chemical vapour deposition (CVD) is currently being introduced

  10. Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber

    Microsoft Academic Search

    Jana Hrachová; Ivan Chodák; Peter Komadel

    2009-01-01

    Parent Ca-montmorillonite (Jelšový Potok, Slovakia, Ca-JP) and Na-montmorillonite Kunipia-F (Japan, Na-KU) were ion-exchanged\\u000a with octadecyltrimethylammonium (ODTMA) cations. Characteristics of the samples were studied by X-ray diffraction (XRD), Fourier\\u000a transform infrared spectroscopy (IR) and thermogravimetry (TG). Surface areas were measured by sorption of N2 and ethyleneglycol monoethyl ether. Scanning electron microscopy photographs (SEM) were used to characterize the texture\\u000a of samples.

  11. Laser-ultrasonic surface wave dispersion measurements on surface-treated metals

    E-print Network

    Nagy, Peter B.

    of surface treatment in the material, including surface roughness, compressive residual stress, and cold work is an adverse geometrical byproduct of certain surface treatment procedures such as shot peening. Finally, there is the principal dispersion caused by a number of material effects of the surface treatment, including the primary

  12. Extent of coverage of surfaces treated with hydrophobizing microemulsions: A mass spectrometry and contact angle study

    NASA Astrophysics Data System (ADS)

    Nagy, Andras; Kennedy, Joseph P.; Wang, Ping; Wesdemiotis, Chrys; Hanton, Scott D.

    2006-03-01

    Glass surfaces were treated with various hydrophobizing microemulsions (HME) containing mineral seal oil or polyisobutylene as hydrophobes emulsified by dimethyl dicoco ammonium chloride (i.e. mimicking commercial car wash practices) and characterized by mass spectrometry (MS) and contact angle measurements. The cationic emulsifier mediates the anchoring of hydrophobes to the polar glass surface. It is demonstrated that by the use of even very low (0.3-3.0 w%) HME concentrations the surfaces become hydrophobic and repel water even after numerous (˜20) rinsing cycles. According to MS evidence, however, the surfaces are not fully saturated with hydrophobes and the unprotected areas remain vulnerable to environmental damage.

  13. Synthesis and Characterization of the Hybrid Clay- Based Material Montmorillonite-Melanoidin: A Potential Soil Model

    SciTech Connect

    V Vilas; B Matthiasch; J Huth; J Kratz; S Rubert de la Rosa; P Michel; T Schäfer

    2011-12-31

    The study of the interactions among metals, minerals, and humic substances is essential in understanding the migration of inorganic pollutants in the geosphere. A considerable amount of organic matter in the environment is associated with clay minerals. To understand the role of organic matter in the environment and its association with clay minerals, a hybrid clay-based material (HCM), montmorillonite (STx-1)-melanoidin, was prepared from L-tyrosine and L-glutamic acid by the Maillard reaction. The HCM was characterized by elemental analysis, nuclear magnetic resonance, x-ray photoelectron spectroscopy (XPS), scanning transmission x-ray microscopy (STXM), and thermal analysis. The presence of organic materials on the surface was confirmed by XPS and STXM. The STXM results showed the presence of organic spots on the surface of the STx-1 and the characterization of the functional groups present in those spots. Thermal analysis confirmed the existence of organic materials in the montmorillonite interlayer, indicating the formation of a composite of melanoidin and montmorillonite. The melanoidin appeared to be located partially between the layers of montmorillonite and partially at the surface, forming a structure that resembles the way a cork sits on the top of a champagne bottle.

  14. Permethrin transfer from treated cloth to the skin surface: Potential for exposure in humans

    Microsoft Academic Search

    Hubert L. Snodgrass

    1992-01-01

    Permethrin is an agricultural insecticide of great interest to the military because of its repellency toward disease?bearing insects when impregnated into uniforms. However, migration of the substance from clothing to the skin surface is of toxicological importance. To quantitate leaching from treated clothing, studies were performed in which swatches of fabric impregnated with C?labeled permethrin were applied to the backs

  15. Induced hydrophobic recovery of oxygen plasma-treated surfaces{ David J. Guckenberger,a

    E-print Network

    Beebe, David J.

    a method that relies on physical contact treatment (PCT) to actively induce hydrophobic recovery of plasmaInduced hydrophobic recovery of oxygen plasma-treated surfaces{ David J. Guckenberger,a Erwin DOI: 10.1039/c2lc21052e Plasma treatment is a widely used method in microfabrication laboratories

  16. Adsorption of Pyridine from Aqueous Solution by Surface Treated Carbon Nanotubes

    Microsoft Academic Search

    Bo Zhao; Duan Qiu

    2007-01-01

    The surface treatment of multi?walled carbon nanotubes (MWCNTs) with acid, heat, ultrasonic, and polyvinyl alcohol has been examined. The original CNTs and four treated CNTs were first used as adsorbents to remove pyridine from water and the adsorption isotherms of pyridine on CNTs were studied. At the same time, the effect of pH, temperature, and the adsorption kinetics on the

  17. Cytotoxicity of Ni from Surface-Treated Porous Nitinol (PNT) on Osteoblast Cells

    NASA Astrophysics Data System (ADS)

    Pulletikurthi, C.; Munroe, N.; Gill, P.; Pandya, S.; Persaud, D.; Haider, W.; Iyer, K.; McGoron, A.

    2011-07-01

    The leaching of nickel from the surface of porous Nitinol (PNT) is mainly dependent on its surface characteristics, which can be controlled by appropriate surface treatments. In this investigation, PNT was subjected to two surface treatments, namely, water-boiling and dry-heating passivations. Phosphate buffer saline (PBS) solutions obtained from cyclic potentiodynamic polarization tests on PNT were employed to assess the cytotoxicity of Ni contained therein on osteoblast cells by Sulforhodamine B (SRB) assay. In addition, similar concentrations of Ni were added exogenously to cell culture media to determine cytotoxic effects on osteoblast cells. The morphologies of the untreated and the surface-treated PNTs were examined using SEM and AFM. Furthermore, growth of human osteoblast cells was observed on the PNT surfaces.

  18. Oxidation characteristics of the electron beam surface-treated Alloy 617 in high temperature helium environments

    NASA Astrophysics Data System (ADS)

    Lee, Ho Jung; Sah, Injin; Kim, Donghoon; Kim, Hyunmyung; Jang, Changheui

    2015-01-01

    The oxidation characteristics of the electron beam surface-treated Alloy 617, which has an Al-rich surface layer, were evaluated in high temperature helium environments. Isothermal oxidation tests were performed in helium (99.999% purity) and VHTR-helium (helium of prototypical VHTR chemistry containing impurities like CO, CO2, CH4, and H2) environments at 900 °C for up to 1000 h. The surface-treated Alloy 617 showed an initial transient oxidation stage followed by the steady-state oxidation in all test environments. In addition, the steady-state oxidation kinetics of the surface-treated Alloy 617 was 2-order of magnitude lower than that of the as-received Alloy 617 in both helium environments as well as in air. The improvement in oxidation resistance was primarily due to the formation of the protective Al2O3 layer on the surface. The weight gain was larger in the order of air, helium, and VHTR-helium, while the parabolic rate constants (kp) at steady-state were similar for all test environments. In both helium environments, the oxide structure consisted of the outer transition Al2O3 with a small amount of Cr2O3 and inner columnar structured Al2O3 without an internal oxide. In the VHTR-helium environment, where the impurities were added to helium, the initial transient oxidation increased but the steady state kinetics was not affected.

  19. Laser restoring the glass surface treated with acid-based paint

    NASA Astrophysics Data System (ADS)

    Strusevich, Anastasia V.; Poltaev, Yuriy A.; Sinev, Dmitrii A.

    2013-11-01

    The modern city facilities are often being attacked by graffiti artists, and increasingly vandals leave "tags" using paints, which compound based on acids, hydrofluoric or acetic commonly. These paints not only ink the surface, but also increase the surface roughness, and such impact can not be corrected by conventional cleaning. Thus, it was requested to develop technology that would not only clean the surface, but also to restore its structure by smoothing out irregularities and roughness formed after exposure in acid. In this work we investigated the effect of restoring the surface of the glass, spoiled by acid-based paint and then treated with CO2-laser. During the experiments, it was found that it is real to create the single-step laser surface restoring technology.

  20. Montmorillonite, oligonucleotides, RNA and origin of life.

    PubMed

    Ertem, Gözen

    2004-12-01

    Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer < 3-mer < 4-mer ... < 7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible isomers (Ertem and Ferris, 2000). Formation of phosphodiester bonds between mononucleotides by montmorillonite catalysis is a fascinating discovery, and a significant step forward in efforts to find out how the first RNA-like oligomers might have formed in the course of chemical evolution. However, as has been pointed out in several publications, these systems should be regarded as models rather than a literal representation of prebiotic chemistry (Orgel, 1998; Joyce and Orgel, 1999; Schwartz, 1999). PMID:15570708

  1. Montmorillonite, Oligonucleotides, RNA and Origin of Life

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen

    2004-12-01

    Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer <3-mer <4-mer ... <7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible isomers (Ertem and Ferris, 2000). Formation of phosphodiester bonds between mononucleotides by montmorillonite catalysis is a fascinating discovery, and a significant step forward in efforts to find out how the first RNA-like oligomers might have formed in the course of chemical evolution. However, as has been pointed out in several publications, these systems should be regarded as models rather than a literal representation of prebiotic chemistry (Orgel, 1998; Joyce and Orgel, 1999; Schwartz, 1999).

  2. Montmorillonite, oligonucleotides, RNA and origin of life

    NASA Technical Reports Server (NTRS)

    Ertem, Gozen

    2004-01-01

    Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer < 3-mer < 4-mer ... < 7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible isomers (Ertem and Ferris, 2000). Formation of phosphodiester bonds between mononucleotides by montmorillonite catalysis is a fascinating discovery, and a significant step forward in efforts to find out how the first RNA-like oligomers might have formed in the course of chemical evolution. However, as has been pointed out in several publications, these systems should be regarded as models rather than a literal representation of prebiotic chemistry (Orgel, 1998; Joyce and Orgel, 1999; Schwartz, 1999).

  3. Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid

    NASA Astrophysics Data System (ADS)

    Sadeghiani, N.; Barbosa, L. S.; Silva, L. P.; Azevedo, R. B.; Morais, P. C.; Lacava, Z. G. M.

    2005-03-01

    In this study, some biological tests were carried out with a magnetic fluid (MF) sample based on magnetite nanoparticles (MNPs) surface coated with polyaspartic acid (PAMF). The tests were performed from 1 to 30 days after injection of 50 ?L of PAMF in Swiss mice. The PAMF biocompatibility/toxicity was evaluated through cytometry, micronuclei assay, and morphology of several organs. All observed results were time and dose dependent. The data indicate that MNPs surface-treated with polyaspartic acid may be considered as a potential precursor of anticancer drugs.

  4. Dislodgeable copper, chromium and arsenic from CCA-treated wood surfaces.

    PubMed

    Stilwell, David; Toner, Michael; Sawhney, Brij

    2003-08-01

    Chromated copper arsenate (CCA) is commonly used to preserve wood, but its use poses risk of arsenic exposure. In order to evaluate the extent of exposure to As from physical contact with CCA-treated wood, dislodgeable As from treated wood surfaces (as well as Cu and Cr) was determined as a function of weathering time using dampened polyester wipe materials. Six sets of 2.5-m-long CCA-treated boards, three-four boards per set, were purchased from lumber yards and cut into 30- or 60-cm coupons. A total of 44 such coupons were placed outdoors and the dislodgeable CCA components from the surfaces of the wooden coupons were periodically determined over a 1- or 2-year period by a systematic wipe method followed by nitric acid extraction of the CCA components from the cloth. In all 316 samples, appreciable amounts of the three elements, Cu, Cr and As, were detected. The amounts of surface-dislodgeable As, the most potentially hazardous element and the one of major concern in this study, varied from 5 to 122 microg/100 cm(2) with an average value of 37+/-22 microg/100 cm(2). There was considerable variation in As dislodged among coupons, boards, sets and time. Test coupons that tended to release relatively higher (or lower amounts) over time initially, continued to do so over time. However, the amounts of arsenic dislodged over time did not follow a simple pattern. While the As dislodged tended to decrease with time during the first year, it approached the initial value or increased somewhat during the second year, presumably due to surface rejuvenation effects caused by erosion and weathering. When all the data were normalized to the initial values, no trend emerged, as indicated by the average normalized value of 1.0+/-0.4 for As dislodged over time. Apparently, on installations constructed with CCA-treated wood, arsenic may remain available for a number of years. PMID:12873405

  5. High temperature erosion characteristics of surface treated SUS410 stainless steel

    Microsoft Academic Search

    K. Shimizu; Y. Xinba; M. Ishida; T. Kato

    2011-01-01

    This study investigated the high temperature erosion characteristics of two types of surface-treated SUS410 steels; overlay welding and forging of the base metal. Two-layer overlay welding of 6mm and forging with a 10% reduction, were used on a base metal of SUS410, to prepare specimens. High temperature solid particle erosion tests using a test temperature of 1173K were performed using

  6. Preparation and Characterization of Novel Montmorillonite Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mansa, Rola

    Clay minerals have historically played a consequential role in human health. While the beginnings were rooted in geophagy, a primitive act of consuming earth, the health-related uses of clay minerals have evolved and diversified over time.. As excipients in pharmaceutical formulations, clay minerals can attribute novel properties onto intercalated compounds. Intercalating oxybenzone, a UV filter, within the interlamellar space of montmorillonite is desirable in order to minimize direct contact with skin. Intercalating resveratrol, a compound known for attributing beneficial effects onto human health, may be advantageous since this compound is susceptible to cis-trans isomerisation. The strategy of using alkylammonium--modified clay was undertaken and proved successful for the intercalation of oxybenzone. The field of biopolymer/layered silicate nanocomposites is heavily researched for use in a multitude of applications. Novel montmorillonite nanocomposites were prepared with neutral guar gum and cationic guar gum, using an environmentally friendly process and are fully characterized.

  7. The effects of some laser parameters on the surface and near surface region of laser treated cast iron cylinder bore

    NASA Astrophysics Data System (ADS)

    Májlinger, K.; Szabó, P. J.

    2010-07-01

    The environmental and pollution materials emission standards in Europe are going to be more and more strict. In order to keep the standards, a large European automotive manufacturer makes a laser treatment on the cast iron cylinder bores of the V-engine blocks. Samples of laser treated cast iron cylinder bore with lamellar graphite were investigated. Four samples were treated with Nd-YAG laser and Yb-fiber laser sources in three different configurations. Microhardness measurements were made to evaluate the hardness profile of the treated layer. In order to evaluate the microstructure and grain size of the laser treated layer, scanning electron microscopic (SEM) images were taken in cross section with a SEM/focused ion beam (FIB) dual beam electron microscope. The opened graphite area percent were also determined by image analysis method on the surface after laser treatment with a SEM in backscattered electron (BSE) mode, because the outburned graphite holes are the oil reservoirs for lubrication during operating conditions of the engine.

  8. Cuprous Ion Conducting Montmorillonite Polypyrrole Nanocomposites

    Microsoft Academic Search

    D. M. M. Krishantha; R. M. G. Rajapakse; D. T. B. Tennakoon; W. M. A. T. Bandara; P. N. L. Thilakarathna

    2006-01-01

    Solid state polymer-Silicate nanocomposite based on Polypyrrole-Cu+-montmorilonite were prepared and electrical properties were investigated. In this preparation, Na-montmorillonite (Na+-MMT) was purified by repeated washing with distilled water and the intergallery cations were exchanged for Cu(II). The cupric ions exchanged-MMT(Cu(II)-- MMT) was again exposed to pyrrole in aqueous acidic solution to yield polypyrrole-Cu+-MMT nanocomposite. DC polarization test and AC impedance measurement

  9. [Streptococcus mutans colonization on titanium surfaces treated with various fluoride-containing preventive solutions].

    PubMed

    Stájer, Anette; Urban, Edit; Mihalik, Erzsébet; Rakonczay, Zoltán; Nagy, Erzsébet; Fazekas, András; Turzó, Kinga; Radnai, Márta; Nagy, Katalin

    2009-06-01

    Fluoride is a reductive agent and may modify the oxide layer of titanium (Ti) in the transgingival region of dental implants. The low pH and the high fluoride concentration of prophylactic mouthwashes and gels (used in caries prevention) may play a role in this phenomenon. Our main goal was to examine whether changes on the surface structure of Ti caused by high fluoride concentration and acidic pH alter the adherence and the colonization of bacteria. Polished commercially pure Ti discs (CP grade 4, Camlog, Biotechnologies AG, Switzerland) were used in the study. Each sample was treated for 1 hour with one of the solutions: mouthwash containing 0.025% (250 ppm) fluoride, a gel containing 1.25% (12500 ppm) fluoride, and a solution of 1% NaF (3800 ppm fluoride), pH 4.5. The surface structure of the discs was analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The colonization of Streptococcus mutans was studied by scanning electron microscope (SEM) after a 5-day incubation period. The roughness of the treated sample surfaces (Ra), as revealed by AFM measurements, increased 1.3 times for the gel and the mouthwash, and approximately seven folds for the 1% NaF solution, as compared to the control surface. The high fluoride concentration and acidic pH of the gel and the 1% NaF solution resulted in a strong corrosion and a modification of the composition of the Ti surface. The XPS spectra showed the formation of a fluoride containing complex (Na2TiF6) bound strongly to the surface. A correlation was revealed between the roughness of the surface and thickness and maturity of the S. mutans bacterial colonies developed on the modified Ti surface. High fluoride concentration and acidic pH increased the roughness of the Ti surface. Bacterial biofilm colonization on this rough surface proved to be more mature. The amount of bacteria was increased due to the changes in the surface caused by fluoride treatment. The present study indicates that high fluoride concentration in an acidic pH environment may affect the development of a healthy transgingival epithelial junction on the Ti surface. This work was supported by the SIMI-NAS Project of the 5th FWP of the European Commission (Growth Program, GRD3-2001-61801), the Hungarian Ministry of Economy and the EC (GVOP-3.2.1.-2004-04-0408/3.0), the Hungarian Ministry of Health (ETT, 434/2006), and the Hungarian Scientific Research Fund (OTKA F-68440). PMID:19618781

  10. Samarium Ion Exchanged Montmorillonite for High Temperature Cumene Cracking Reaction

    NASA Astrophysics Data System (ADS)

    Binitha, N. N.; Silija, P. P.; Suraj, V.; Yaakob, Z.; Sugunan, S.

    2011-02-01

    Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using Temperature Programmed Desorption (TPD) of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Brønsted acidity is confirmed from high selectivity to benzene.

  11. Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclay.

    PubMed

    Xi, Yunfei; Zhou, Qin; Frost, Ray L; He, Hongping

    2007-07-15

    Organoclays are significant for providing a mechanism for the adsorption of organic molecules from potable water. As such their thermal stability is important. A combination of thermogravimetric analysis and infrared emission spectroscopy was used to determine this stability. Infrared emission spectroscopy (IES) was used to investigate the changes in the structure and surface characteristics of water and surfactant molecules in montmorillonite, octadecyltrimethylammonium bromide and organoclays prepared with the surfactant octadecyltrimethylammonium bromide with different surfactant loadings. These spectra collected at different temperatures give support to the results obtained from the thermal analysis and also provide additional evidence for the dehydration which is difficult to obtain by normal thermoanalytical techniques. The spectra provide information on the conformation of the surfactant molecules in the clay layers and the thermal decomposition of the organoclays. Infrared emission spectroscopy proved to be a useful tool for the study of the thermal stability of the organoclays. PMID:17418856

  12. Surface properties of low alloy steel treated by plasma nitrocarburizing prior to laser quenching process

    NASA Astrophysics Data System (ADS)

    Wang, Y. X.; Yan, M. F.; Li, B.; Guo, L. X.; Zhang, C. S.; Zhang, Y. X.; Bai, B.; Chen, L.; Long, Z.; Li, R. W.

    2015-04-01

    Laser quenching (LQ) technique is used as a part of duplex treatments to improve the thickness and hardness of the surface layers of steels. The present study is to investigate the surface properties of low alloy steel treated by plasma nitrocarburizing (PNC) prior to a laser quenching process (PNC+LQ). The microstructure and properties of PNC+LQ layer determined are compared with those obtained by PNC and LQ processes. OM, XRD, SEM and EDS analyses are utilized for microstructure observation, phases identification, morphology observation and chemical composition detection, respectively. Microhardness tester and pin-on-disc tribometer are used to investigate the mechanical properties of the modified layers. Laser quenching of plasma nitrocarburized (PNC+LQ) steel results in much improved thickness and hardness of the modified layer in comparison with the PNC or LQ treated specimens. The mechanism is that the introduction of trace of nitrogen decreases the eutectoid point, that is, the transformation hardened region is enlarged under the same temperature distribution. Moreover, the layer treated by PNC+LQ process exhibits enhanced wear resistance, due to the lubrication effect and optimized impact toughness, which is contributed to the formation of oxide film consisting of low nitrogen compound (FeN0.076) and iron oxidation (mainly of Fe3O4).

  13. Preparation and characterization of microporous SiO{sub 2}-ZrO{sub 2} pillared montmorillonite

    SciTech Connect

    Han, Yang-Su [Nanospace Co. Ltd., Business Incubator, Korea Institute of Ceramic Engineering and Technology, 233-5 Gasan-dong Guemcheon-Gu, Seoul 153-801 (Korea, Republic of)]. E-mail: yshan@inanospace.com; Yamanaka, Shoji [Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Higashi-Hiroshima 739 (Japan)

    2006-04-15

    SiO{sub 2}-ZrO{sub 2} pillared montmorillonite (SZM) was prepared by the reaction of Na-montmorillonite with colloidal silica-zirconia particles which were prepared by depositing zirconium hydroxy cations on silica particles. By pillaring with the colloidal particles, the basal spacing of montmorillonite was expanded to ca. 45 A and the calcined SZM samples showed large specific surface areas up to 320 m{sup 2}/g at 400 deg. C. In spite of large interlayer separation, adsorption results indicated the presence of micropores generated between the colloidal particles. The microporous structure was maintained at least up to 600 deg. C and exhibited specific shape selectivity for the adsorption of large organic molecules, especially between toluene and mesitylene. According to the temperature-programmed-desorption (TPD) spectra of ammonia, the calcined SZM showed weakly acidic sites.

  14. Study of Np(V) Sorption by Ionic Exchange on Na, K, Ca and Mg-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Benedicto, A.; Begg, J.; Zhao, P.; Kersting, A. B.; Zavarin, M.

    2012-12-01

    The transport behavior of actinides in soil and ground water are highly influenced by clay minerals due to their ubiquity in the environment, reactivity and colloidal properties. Neptunium(V) has been introduced in the environment as a result of nuclear weapons testing [e.g. 1, 2] and is a radionuclide of potential interest for safety assessment of high level radioactive waste disposal because its long half-life and high toxicity [3]. Surface complexation and ionic exchange have been identified as Np(V) sorption mechanisms onto montmorillonite. At pH below 5, Np(V) sorption is mainly attributed to ionic exchange. This study examines Np(V) ion exchange on Na, K, Ca and Mg forms of montmorillonite. Experiments were carried out using 237Np concentrations between 2 x 10-8 M and 5 x 10-6 M at three different ionic strengths 0.1, 0.01 and 0.001M. The pH was maintained at 4.5. Np(V) sorption to montmorillonite homoionized with monovalent cations (Na and K) demonstrated a markedly different behavior to that observed for montmorillonite homoionized with divalent cations (Ca and Mg). Np sorption to Na and K-montmorillonite was greater than Np sorption to Ca and Mg-montmorillonite. Isotherms with Na and K-montmorillonite showed a strong dependence on ionic strength: the percentage of Np adsorbed was near zero at 0.1M ionic strength, but increased to 30% at 0.001 M ionic strength. This suggests ionic exchange is the main Np adsorption mechanism under the experimental conditions investigated. Dependence on ionic strength was not observed in the Np sorption isotherms for Ca and Mg-montmorillonite indicating a low exchange capacity between Np and divalent cations. Modeling of the sorption experimental data will allow determination of the Na+?NpO2+ and K+?NpO2+ ionic exchange constants on montmorillonite. References: [1] A. R. Felmy; K. J. Cantrell; S. D. Conradson, Phys. Chem. Earth 2010, 35, 292-297 [2] D. K. Smith; D. L. Finnegan; S. M. Bowen, J. Environ. Radioact. 2003, 67, (1), 35-51 [3] N. Kozai; T. Ohnuki; S. Muraoka, J. Nucl. Sci. Technol. 1993, 30, (11), 1153-1159 This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. A. Benedicto was supported by a Spanish Ministry of Science and Innovation 'FPI' pre-doctoral contract in CIEMAT (Spain). LLNL-ABS-570160

  15. Formation and characterization of hydrophobic glass surface treated by atmospheric pressure He/CH4 plasma

    NASA Astrophysics Data System (ADS)

    Noh, Sooryun; Youn Moon, Se

    2014-01-01

    Atmospheric pressure helium plasmas, generated in the open air by 13.56 MHz rf power, were applied for the glass surface wettability modification. The plasma gas temperature, measured by the spectroscopic method, was under 400 K which is low enough to treat the samples without thermal damages. The hydrophobicity of the samples determined by the water droplet contact angle method was dependent on the methane gas content and the plasma exposure time. Adding the methane gas by a small amount of 0.25%, the contact angle was remarkably increased from 10° to 83° after the 10 s plasma treatment. From the analysis of the treated surface and the plasma, it was shown that the deposition of alkane functional groups such as C-H stretch, CH2 bend, and CH3 bend was one of the contributing factors for the hydrophobicity development. In addition, the hydrophobic properties lasted over 2 months even after the single treatment. From the results, the atmospheric pressure plasma treatment promises the fast and low-cost method for the thermally-weak surface modification.

  16. A newly prepared surface-treated oxystarch for removal of urea.

    PubMed

    Shimizu, T; Fujishige, S

    1983-07-01

    There is an urgent need to develop an efficient technique to remove urea from the blood or gastrointestinal tract of uremic patients. Activated charcoals have a low sorption capacity for urea although they effectively remove other uremic toxic substances. To provide an urea-reactive adsorbent, a chemically modified oxystarch with albumin or gelatin has been prepared. Elemental analysis and Fourier transform infrared (FT-IR) spectroscopic analysis demonstrate that the reaction of a small amount of protein (albumin or gelatin) with oxystarch has taken place possibly by chemical combination. The influence of the dialdehyde content of the oxystarch on urea sorption, its sorption isotherm, and the adsorption rates have been investigated. It was found that the swelling factor of the oxystarch is closely related to the sorption activity under physiological conditions (pH 7.2-7.4 at 37 degrees C). Adsorption studies have shown that sorption capacity is increased by surface treatment and can reach 6-8.2 g urea/kg-dried adsorbent (initial urea concentration was 70 mg/dL). The oxystarch had 49.2% of glucose unit oxidized and was surface treated with albumin. These results suggest that the newly prepared surface-treated oxystarch would be utilized as an effective chemisorbent for urea removal under physiological conditions. PMID:6885841

  17. Characterization of Aminopropyltriethoxysilane-functionalized Polycaprolactone-Montmorillonite Beads for Heavy Metal Biosorption

    Microsoft Academic Search

    E. Magdaluyo Jr.; E. Dayhon; M. delos Angeles; Rj dela Cruz; L. de Sales-Papa

    2011-01-01

    The study focuses on the fabrication of montmorillonite (MMT) based composites via functionalization with polycaprolactone (PCL) and aminopropyltriethoxysilane (APTS) for adsorption of divalent metal ions Cu2+ and Fe2+. Surface morphology of the composites revealed that the PCL-APTS-MMT beads have finer particle size compared to PCL-MMT. Infrared spectroscopy analyses confirmed the covalent interaction of the PCL to the MMT matrix and

  18. Thermal Decomposition of Organo-Ammonium Compounds Exchanged onto Montmorillonite and Hectorite

    Microsoft Academic Search

    Chung Chi Chou

    1969-01-01

    A series of organic ammonium ions were exchanged onto clay minerals montmorillonite and hectorite. Thermal effects on these surface modified organic-inorganic complexes were investigated by means of differential thermal analysis and heating-oscillating X-ray diffraction methods. It was found that the organo-clay complexes were dehydrogenated at temperatures from 180 to 350~ depending on the organic cation used. Following the dehydrogenation, hydrolysis

  19. Osteoclasts but not osteoblasts are affected by a calcified surface treated with zoledronic acid in vitro

    SciTech Connect

    Schindeler, Aaron [Department of Orthopaedic Research and Biotechnology, Children's Hospital at Westmead, Sydney (Australia) and Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney (Australia)]. E-mail: AaronS@chw.edu.au; Little, David G. [Department of Orthopaedic Research and Biotechnology, Children's Hospital at Westmead, Sydney (Australia); Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney (Australia)

    2005-12-16

    Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption. Recent interest has centered on the effects of bisphosphonates on osteoblasts. Chronic dosing of osteoblasts with solubilized bisphosphonates has been reported to enhance osteogenesis and mineralization in vitro. However, this methodology poorly reflects the in vivo situation, where free bisphosphonate becomes rapidly bound to mineralized bone surfaces. To establish a more clinically relevant cell culture model, we cultured bone cells on calcium phosphate coated quartz discs pre-treated with the potent nitrogen-containing bisphosphonate, zoledronic acid (ZA). Binding studies utilizing [{sup 14}C]-labeled ZA confirmed that the bisphosphonate bound in a concentration-dependent manner over the 1-50 {mu}M dose range. When grown on ZA-treated discs, the viability of bone-marrow derived osteoclasts was greatly reduced, while the viability and mineralization of the osteoblastic MC3T3-E1 cell line were largely unaffected. This suggests that only bone resorbing cells are affected by bound bisphosphonate. However, this system does not account for transient exposure to unbound bisphosphonate in the hours following a clinical dosing. To model this event, we transiently treated osteoblasts with ZA in the absence of a calcified surface. Osteoblasts proved highly resistant to all transitory treatment regimes, even when utilizing ZA concentrations that prevented mineralization and/or induced cell death when dosed chronically. This study represents a pharmacologically more relevant approach to modeling bisphosphonate treatment on cultured bone cells and implies that bisphosphonate therapies may not directly affect osteoblasts at bone surfaces.

  20. Thermal desorption of cold positronium from oxygen-treated Al(111) surfaces

    SciTech Connect

    Mills, A.P. Jr.; Shaw, E.D.; Leventhal, M.; Chichester, R.J.; Zuckerman, D.M. (AT T Bell Laboratories, Murray Hill, New Jersey (USA))

    1991-09-15

    We have measured the yields and energy spectra of positronium (Ps) emitted from Al(111) surfaces treated by exposure to oxygen gas at low temperatures. We find that the oxygen induces the emission of Ps with kinetic energies of a few tenths of an eV, in agreement with previous work. We also find that Ps is thermally desorbed at low temperatures and has a velocity distribution characterized by a temperature that is the same as that of the sample. The intensity of the thermal Ps component is about 12% of the positrons that reach the surface. The velocity distributions may be interpreted as indicating that the Ps has a sticking coefficient of 1 in the limit of zero velocity, unlike any other system studied to date.

  1. X-ray photoemission analysis of chemically treated GaTe semiconductor surfaces for radiation detector applications

    SciTech Connect

    Nelson, A. J.; Conway, A. M.; Sturm, B. W.; Behymer, E. M.; Reinhardt, C. E.; Nikolic, R. J.; Payne, S. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Pabst, G.; Mandal, K. C. [EIC Laboratories, Inc., 111 Downey Street, Norwood, Massachusetts 02062 (United States)

    2009-07-15

    The surface of the layered III-VI chalcogenide semiconductor GaTe was subjected to various chemical treatments commonly used in device fabrication to determine the effect of the resulting microscopic surface composition on transport properties. Various mixtures of H{sub 3}PO{sub 4}:H{sub 2}O{sub 2}:H{sub 2}O were accessed and the treated surfaces were allowed to oxidize in air at ambient temperature. High-resolution core-level photoemission measurements were used to evaluate the subsequent chemistry of the chemically treated surfaces. Metal electrodes were created on laminar (cleaved) and nonlaminar (cut and polished) GaTe surfaces followed by chemical surface treatment and the current versus voltage characteristics were measured. The measurements were correlated to understand the effect of surface chemistry on the electronic structure at these surfaces with the goal of minimizing the surface leakage currents for radiation detector devices.

  2. Surface and crystalline analysis of aluminum oxide single crystal treated by quasistationary compression plasma flow

    SciTech Connect

    Maletic, S., E-mail: sslavica@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-14, 11000 Belgrade (Serbia); Popovic, D.M.; Cubrovic, V.; Zekic, A.A.; Dojcilovic, J. [University of Belgrade, Faculty of Physics, Studentski trg 12-14, 11000 Belgrade (Serbia)] [University of Belgrade, Faculty of Physics, Studentski trg 12-14, 11000 Belgrade (Serbia)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The effects of treatment of Al{sub 2}O{sub 3} (0001) surface by CPF are analyzed. Black-Right-Pointing-Pointer Oriented low-dimensional structures are occurred for the treated Al{sub 2}O{sub 3} crystal. Black-Right-Pointing-Pointer The dimension of these ripples are 1 {mu}m and the distance between them is about 10 {mu}m. Black-Right-Pointing-Pointer The ripple-shaped structures contain a higher percentage of oxygen than the surroundings. Black-Right-Pointing-Pointer Results could promote CPF as a tool for producing organized oxygen-rich structures. -- Abstract: Material such as aluminum oxide (Al{sub 2}O{sub 3}) is important in electronics industry. On the other hand, plasma is one of the most efficient and sophisticated tools for materials processing. In this work a treatment of Al{sub 2}O{sub 3} (0001) surface by quasistationary compression plasma flow (CPF) is analyzed in detail. Offline metrology was performed using dielectric measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). Oriented low-dimensional periodic structures are occurred for the plasma treated Al{sub 2}O{sub 3} single crystal. In the paper is reported that these oriented ripple-shaped structures contain a higher percentage of oxygen than the surrounding crystal surface. This could be the framework for usage of CPF as a tool in manufacturing of surfaces containing the highly organized oxygen-rich structures.

  3. Selenite Adsorption Mechanisms on Pure and Coated Montmorillonite: An EXAFS and XANES Spectroscopic Study

    SciTech Connect

    Peak, Derek; Saha, U.K.; Huang, P.M. (Saskatchewan)

    2008-06-09

    Selenite (SeO{sub 3}{sup 2-}) is an oxyanion of environmental importance due to its toxicity to animals at higher concentrations, notably waterfowl and grazing animals. Sorption of SeO{sub 3}{sup 2-} with mineral phases typically controls the movement and bioaccessibility of SeO{sub 3}{sup 2-} in soils and sediments. Previous studies have successfully utilized synchrotron-based Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES) spectroscopy to determine SeO{sub 3}{sup 2-} bonding mechanisms on Fe and Mn oxides, but the direct evidence of SeO{sub 3}{sup 2-} surface complexation mechanisms on important mineral phases such as Al hydroxide and aluminosilicate minerals is still lacking. In this study both EXAFS and XANES spectroscopy was conducted on aqueous SeO{sub 3}{sup 2-} solutions and on a variety of Al-bearing sorption samples at pH 4.5. The sorbents chosen were a hydroxyaluminosilicate (HAS) polymer, a hydroxyaluminum (HYA) polymer, montmorillonite, and both HYA and HAS coated montmorillonite. For SeO{sub 3}{sup 2-} sorption on montmorillonite, only bidentate binuclear inner-sphere complexation was observed. For the hydroxyaluminum and hydroxyaluminosilicate polymers, a mixture of outer-sphere and bidentate binuclear inner-sphere was observed. When montmorillonite was coated with either HYA or HAS polymers then adsorption behavior was intermediate between that of the mineral and the pure polymer. Since temperate soils often contain aluminum-hydroxy and aluminosilicate coated minerals rather than discrete Al hydroxide minerals and pristine clay surfaces, the adsorption mechanisms observed on these coated surfaces are more realistic of the natural environment than sorption on pure minerals.

  4. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    NASA Astrophysics Data System (ADS)

    Jheeta, Sohan; Joshi, Prakash C.

    2014-08-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  5. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    PubMed Central

    Jheeta, Sohan; Joshi, Prakash C.

    2014-01-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl? > Br? > I?. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt. PMID:25370375

  6. Prebiotic RNA synthesis by montmorillonite catalysis.

    PubMed

    Jheeta, Sohan; Joshi, Prakash C

    2014-01-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt. PMID:25370375

  7. Effect of Surface Treated Silicon Dioxide Nanoparticles on Some Mechanical Properties of Maxillofacial Silicone Elastomer

    PubMed Central

    Zayed, Sara M.; Alshimy, Ahmad M.; Fahmy, Amal E.

    2014-01-01

    Current materials used for maxillofacial prostheses are far from ideal and there is a need for novel improved materials which mimic as close as possible the natural behavior of facial soft tissues. This study aimed to evaluate the effect of adding different concentrations of surface treated silicon dioxide nanoparticles (SiO2) on clinically important mechanical properties of a maxillofacial silicone elastomer. 147 specimens of the silicone elastomer were prepared and divided into seven groups (n = 21). One control group was prepared without nanoparticles and six study groups with different concentrations of nanoparticles, from 0.5% to 3% by weight. Specimens were tested for tear strength (ASTM D624), tensile strength (ASTM D412), percent elongation, and shore A hardness. SEM was used to assess the dispersion of nano-SiO2 within the elastomer matrix. Data were analyzed by one-way ANOVA and Scheffe test (? = 0.05). Results revealed significant improvement in all mechanical properties tested, as the concentration of the nanoparticles increased. This was supported by the results of the SEM. Hence, it can be concluded that the incorporation of surface treated SiO2 nanoparticles at concentration of 3% enhanced the overall mechanical properties of A-2186 silicone elastomer. PMID:25574170

  8. High capacity mercury adsorption on freshly ozone-treated carbon surfaces

    PubMed Central

    Manchester, Shawn; Wang, Xuelei; Kulaots, Indrek; Gao, Yuming; Hurt, Robert H.

    2008-01-01

    A set of carbon materials was treated by a choice of common oxidizers to investigate the mercury capture capacities at varying temperature conditions. It was found that ozone treatment dramatically increases the mercury capture capacity of carbon surfaces by factors up to 134, but the activity is easily destroyed by exposure to the atmosphere, to water vapor, or by mild heating. Freshly ozone-treated carbon surfaces are shown to oxidize iodide to iodine in solution and this ability fades with aging. FTIR analysis shows broad C–O stretch features from 950 to 1300 cm?1, which decay upon atmospheric exposure and are similar to the C-O-C asymmetric stretch features of ethylene secondary ozonide. The combined results suggest that the ultra-high mercury capture efficiency is due to a subset of labile C-O functional groups with residual oxidizing power that are likely epoxides or (epoxide-containing) secondary ozonides. The results open the possibility for in situ ozonolysis to create high-performance carbon-based Hg sorbents. PMID:19255621

  9. Adhesive forces and surface properties of cold gas plasma treated UHMWPE

    PubMed Central

    Preedy, Emily Callard; Brousseau, Emmanuel; Evans, Sam L.; Perni, Stefano; Prokopovich, Polina

    2014-01-01

    Cold atmospheric plasma (CAP) treatment was used on ultra-high molecular weight polyethylene (UHMWPE), a common articulating counter material employed in hip and knee replacements. UHMWPE is a biocompatible polymer with low friction coefficient, yet does not have robust wear characteristics. CAP effectively cross-links the polymer chains of the UHMWPE improving wear performance (Perni et al., Acta Biomater. 8(3) (2012) 1357). In this work, interactions between CAP treated UHMWPE and spherical borosilicate sphere (representing model material for bone) were considered employing AFM technique. Adhesive forces increased, in the presence of PBS, after treatment with helium and helium/oxygen cold gas plasmas. Furthermore, a more hydrophilic surface of UHMWPE was observed after both treatments, determined through a reduction of up to a third in the contact angles of water. On the other hand, the asperity density also decreased by half, yet the asperity height had a three-fold decrease. This work shows that CAP treatment can be a very effective technique at enhancing the adhesion between bone and UHMWPE implant material as aided by the increased adhesion forces. Moreover, the hydrophilicity of the CAP treated UHMWPE can lead to proteins and cells adhesion to the surface of the implant stimulating osseointegration process. PMID:25431523

  10. Adhesive forces and surface properties of cold gas plasma treated UHMWPE.

    PubMed

    Preedy, Emily Callard; Brousseau, Emmanuel; Evans, Sam L; Perni, Stefano; Prokopovich, Polina

    2014-10-20

    Cold atmospheric plasma (CAP) treatment was used on ultra-high molecular weight polyethylene (UHMWPE), a common articulating counter material employed in hip and knee replacements. UHMWPE is a biocompatible polymer with low friction coefficient, yet does not have robust wear characteristics. CAP effectively cross-links the polymer chains of the UHMWPE improving wear performance (Perni et al., Acta Biomater. 8(3) (2012) 1357). In this work, interactions between CAP treated UHMWPE and spherical borosilicate sphere (representing model material for bone) were considered employing AFM technique. Adhesive forces increased, in the presence of PBS, after treatment with helium and helium/oxygen cold gas plasmas. Furthermore, a more hydrophilic surface of UHMWPE was observed after both treatments, determined through a reduction of up to a third in the contact angles of water. On the other hand, the asperity density also decreased by half, yet the asperity height had a three-fold decrease. This work shows that CAP treatment can be a very effective technique at enhancing the adhesion between bone and UHMWPE implant material as aided by the increased adhesion forces. Moreover, the hydrophilicity of the CAP treated UHMWPE can lead to proteins and cells adhesion to the surface of the implant stimulating osseointegration process. PMID:25431523

  11. High capacity mercury adsorption on freshly ozone-treated carbon surfaces.

    PubMed

    Manchester, Shawn; Wang, Xuelei; Kulaots, Indrek; Gao, Yuming; Hurt, Robert H

    2008-03-01

    A set of carbon materials was treated by a choice of common oxidizers to investigate the mercury capture capacities at varying temperature conditions. It was found that ozone treatment dramatically increases the mercury capture capacity of carbon surfaces by factors up to 134, but the activity is easily destroyed by exposure to the atmosphere, to water vapor, or by mild heating. Freshly ozone-treated carbon surfaces are shown to oxidize iodide to iodine in solution and this ability fades with aging. FTIR analysis shows broad C-O stretch features from 950 to 1300 cm(-1), which decay upon atmospheric exposure and are similar to the C-O-C asymmetric stretch features of ethylene secondary ozonide. The combined results suggest that the ultra-high mercury capture efficiency is due to a subset of labile C-O functional groups with residual oxidizing power that are likely epoxides or (epoxide-containing) secondary ozonides. The results open the possibility for in situ ozonolysis to create high-performance carbon-based Hg sorbents. PMID:19255621

  12. Pedogenic formation of montmorillonite from a 2:1-2:2 intergrade clay mineral

    USGS Publications Warehouse

    Malcolm, R.L.; Nettleton, W.D.; McCracken, R.J.

    1969-01-01

    Montmorillonite was found to be the dominant clay mineral in surface horizons of certain soils of the North Carolina Coastal Plain whereas a 2:1-2:2 intergrade clay mineral was dominant in subjacent horizons. In all soils where this clay mineral sequence was found, the surface horizon was low in pH (below 4??5) and high in organic matter content. In contrast, data from studies of other soils of this region (Weed and Nelson, 1962) show that: (1) montmorillonite occurs infrequently; (2) maximum accumulation of the 2:1-2:2 intergrade normally occurs in the surface horizon and decreases with depth in the profile; (3) organic matter contents are low; and (4) pH values are only moderately acid (pH 5-6). It is theorized that the montmorillonite in the surface horizon of the soils studied originated by pedogenic weathering of the 2:1-2:2 intergrade clay mineral. The combined effects of low pH (below 4??5) and high organic matter content in surface horizons are believed to be the agents responsible for this mineral transformation. The protonation and solubilization (reverse of hydrolysis) of Al-polymers in the interlayer of expansible clay minerals will occur at or below pH 4??5 depending on the charge and steric effects of the interlayer. A low pH alone may cause this solubilization and thus mineral transformation, but in the soils studied the organic matter is believed to facilitate and accelerage the transformation. The intermediates of organic matter decomposition provide an acid environment, a source of protons, and a source of watersoluble mobile organic substances (principally fulvic acids) which have the ability to complex the solubilized aluminum and move it down the profile. This continuous removal of solubilized aluminum would provide for a favorable gradient for aluminum solubilization. The drainage class or position in a catena is believed to be less important than the chemical factors in formation of montmorillonite from 2:1-2:2 intergrade, because montmorillonite is present in all drainage classes if the surface horizon is low in pH and high in organic matter. ?? 1969.

  13. Heats of adsorption of benzene and toluene vapors on polyhydroxyaluminum montmorillonite

    NASA Astrophysics Data System (ADS)

    Muminov, S. Z.; Khandamov, D. A.; Agzamkhodzhaev, A. A.

    2014-09-01

    Changes that occur in the surface properties and porous structure of montmorillonite when sodium ions are replaced with polyhydroxyaluminum ions are studied. It is established that thermal evacuation significantly affects the adsorption and energy properties of polyhydroxyaluminum montmorillonite (PHAM). The dependences of the differential isosteric heats of adsorption and desorption on the amount of adsorbed substance are determined from data on a series of isosteres for the sorption of benzene and toluene on dehydrated PHAMs, where the curves of the heats of sorption of C6H6 and C7H8 are of an extreme character. It is concluded that the occurrence of maxima is determined by the interaction between molecules of adsorbates and active centers (and with one another) due to packing upon the filling of the volumes of slittype micropores.

  14. Effects of pH on dielectric relaxation of montmorillonite, allophane, and imogolite suspensions

    SciTech Connect

    Ishida, Tomoyuki [Kagawa Univ., Miki, Kagawa (Japan). Dept. of Agricultural Engineering] [Kagawa Univ., Miki, Kagawa (Japan). Dept. of Agricultural Engineering; Makino, Tomoyuki [National Inst. of Agro-Environmental Sciences of Japan, Tsukuba, Ibaraki (Japan). Soil Chemistry Lab.] [National Inst. of Agro-Environmental Sciences of Japan, Tsukuba, Ibaraki (Japan). Soil Chemistry Lab.

    1999-04-01

    Dielectric measurements were performed on montmorillonite, allophane, and imogolite suspensions under various pH conditions, using time domain reflectometry over the frequency range 10 kHz--20 GHz. A dielectric relaxation peak due to bound water could be observed for all the clays. Allophane has two peaks, indicating that its peaks are very similar to those of silica-alumina gels. Although imogolite has a similar chemical composition, only one peak was found. The relaxation strength of montmorillonite is greater than that of the other two clays. For all the clays, the relaxation strength depended on the pH. A change in the relaxation strength according to a change in pH is explained in terms of the different network structures of the clay particles. It is suggested that bound water influences the network structure formation. In montmorillonite, a great relaxation process detected at low frequency is caused by surface polarization of counterions. The change in measure of the structural unit with the pH, identified from Schwartz`s theory, has a tendency similar to that postulated by other experimental techniques, and surface charge densities identified are close to those estimated from CEC.

  15. Effects of pH on Dielectric Relaxation of Montmorillonite, Allophane, and Imogolite Suspensions.

    PubMed

    Ishida; Makino

    1999-04-01

    Dielectric measurements were performed on montmorillonite, allophane, and imogolite suspensions under various pH conditions, using time domain reflectometry over the frequency range 10 kHz-20 GHz. A dielectric relaxation peak due to bound water could be observed for all the clays. Allophane has two peaks, indicating that its peaks are very similar to those of silica-alumina gels. Although imogolite has a similar chemical composition, only one peak was found. The relaxation strength of montmorillonite is greater than that of the other two clays. For all the clays, the relaxation strength depended on the pH. A change in the relaxation strength according to a change in pH is explained in terms of the different network structures of the clay particles. It is suggested that bound water influences the network structure formation. In montmorillonite, a great relaxation process detected at low frequency is caused by surface polarization of counterions. The change in measure of the structural unit with the pH, identified from Schwartz's theory, has a tendency similar to that postulated by other experimental techniques, and surface charge densities identified are close to those estimated from CEC. Copyright 1999 Academic Press. PMID:10072285

  16. Sorption/Desorption Interactions of Plutonium with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.

    2012-12-01

    Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple first order process. Furthermore, a pH dependence was observed, with less desorbed at pH 4 compared to pH 8. We suggest the pH dependence is likely controlled by reoxidation of Pu(IV) to Pu(V) and aqueous speciation. We will present models used to describe desorption behavior and discuss the implications for Pu transport. References: Kersting, A.B.; Efurd, D.W.; Finnegan, D.L.; Rokop, D.J.; Smith, D.K.; Thompson J.L. (1999) Migration of plutonium in groundwater at the Nevada Test Site, Nature, 397, 56-59. Novikov A.P.; Kalmykov, S.N.; Utsunomiya, S.; Ewing, R.C.; Horreard, F.; Merkulov, A.; Clark, S.B.; Tkachev, V.V.; Myasoedov, B.F. (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia, Science, 314, 638-641. Santschi, P.H.; Roberts, K.; Guo, L. (2002) The organic nature of colloidal actinides transported in surface water environments. Environ. Sci. Technol., 36, 3711-3719. This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. LLNL-ABS-570161

  17. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology

    PubMed Central

    2014-01-01

    Background Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. Methods In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4–8), current density (10–30 mA/cm2), electrode distance (4–6 cm) and electrolysis time (5–25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. Results The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. Conclusion These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC. PMID:24410752

  18. Adsorption of hydrogen sulfide on montmorillonites modified with iron.

    PubMed

    Nguyen-Thanh, Danh; Block, Karin; Bandosz, Teresa J

    2005-04-01

    Sodium-rich montmorillonite was modified with iron in order to introduce active centers for hydrogen sulfide adsorption. In the first modification, interlayer sodium cations were exchanged with iron. In another modification, iron oxocations were introduced to the clay surface. The most elaborated modification was based on doping of iron within the interlayer space of aluminum-pillared clay. The modified clay samples were tested as hydrogen sulfide adsorbents. Iron-doped samples showed a significant improvement in the capacity for H2S removal, despite of a noticeable decrease in microporosity compared to the initial pillared clay. The smallest capacity was obtained for the clay modified with iron oxocations. Variations in adsorption capacity are likely due to differences in the chemistry of iron species, degree of their dispersion on the surface, and accessibility of small pores for H2S molecule. The results suggest that on the surface of iron-modified clay hydrogen sulfide reacts with Fe(+3) forming sulfides or it is catalytically oxidized to SO2 on iron (hydro)oxides. Subsequent oxidation may lead to sulfate formation. PMID:15763087

  19. Hydrophobic recovery of UV\\/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification

    Microsoft Academic Search

    Attila Oláh; Henrik Hillborg; G. Julius Vancso

    2005-01-01

    Silicone elastomers (Sylgard 184 and 170), based on poly(dimethylsiloxane) (PDMS), were surface treated by a combined exposure to UV and ozone. The effects of the treatments were analyzed as a function of time elapsed after stopping the treatments using different standard surface characterization techniques, such as water contact angle measurements, XPS and atomic force microscopy (AFM). However, the primary focus

  20. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures.

    PubMed

    Martinesi, M; Bruni, S; Stio, M; Treves, C; Bacci, T; Borgioli, F

    2007-01-01

    The effects of AISI 316L austenitic stainless steel, tested in untreated state or subjected to glow-discharge nitriding (at 10 or 20 hPa) and nitriding + post-oxidizing treatments, on human umbilical vein endothelial cells (HUVEC) and on peripheral blood mononuclear cells (PBMC) were evaluated. All the treated samples showed a better corrosion resistance in PBS and higher surface hardness in comparison with the untreated alloy. In HUVEC put in contact for 72 h with the sample types, proliferation and apoptosis decreased and increased, respectively, in the presence of the nitrided + post-oxidized samples, while only slight differences in cytokine (TNF-alpha, IL-6, and TGF-beta1) release were registered. Intercellular adhesion molecule-1 (ICAM-1) increased in HUVEC incubated with all the treated samples, while vascular cell adhesion molecule-1 (VCAM-1) and E-selectin increased in the presence of all the sample types. PBMC incubated for 48 h with the samples showed a decrease in proliferation and an increase in apoptosis in the presence of the untreated samples and the nitrided + post-oxidized ones. All the sample types induced a remarkable increase in TNF-alpha and IL-6 release in PBMC culture medium, while only the untreated sample and the nitrided at 10 hPa induced an increase in ICAM-1 expression. In HUVEC cocultured with PBMC, previously put in contact with the treated AISI 316L samples, increased levels of ICAM-1 were detected. In HUVEC coincubated with the culture medium of PBMC, previously put in contact with the samples under study, a noteworthy increase in ICAM-1, VCAM-1, and E-selectin levels was always registered, with the exception of VCAM-1, which was not affected by the untreated sample. In conclusion, even if the treated samples do not show a marked increase in biocompatibility in comparison with the untreated alloy, their higher corrosion resistance may suggest a better performance as the contact with physiological environment becomes longer. PMID:16983653

  1. Stratified assemblies of magnetite nanoparticles and montmorillonite prepared by the layer-by-layer assembly

    SciTech Connect

    Mamedov, A.; Ostrander, J.; Aliev, F.; Kotov, N.A.

    2000-04-18

    Hybrid thin films are prepared from 8 to 10 nm Fe{sub 3}O{sub 4} nanoparticles and exfoliated montmorillonite clay by using layer-by-layer assembly on poly(diallyldimethylammonium bromide), PDDA. Distinct stratification of the Fe{sub 3}O{sub 4}/PDDA/clay films is obtained due to the sheetlike structure of the clay particles. This feature distinguishes these assemblies from their polyelectrolyte-polyelectrolyte analogues, where the layers of individual polyelectrolytes are strongly interdigitated. Being adsorbed on PDDA strictly parallel to the substrate surface, montmorillonite produces a dense layer of overlapping alumosilicate sheets, which virtually flawlessly separates one magnetite layer from another. The difference in magnetic properties between assemblies of various architectures is attributed to the insulation effect of clay layers inserted between magnetic layers. The montmorillonite sheets disrupt the electron exchange interactions between the magnetite nanoparticles in adjacent layers, thereby limiting the magnetization reversal to two dimensions. Some optical properties of Fe{sub 3}O{sub 4}/PDDA films are investigated as well. When they are deposited on thin plastic substrate, oscillations of optical density were observed in the red part of the UV-vis spectrum. This effect, which has never been observed for conventional, thick substrates such as glass slides, stems from the interference of the light beams passed through and reflected off of the assembled film.

  2. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  3. Atomic and electronic structures of heat treated 6H SiC surface

    NASA Astrophysics Data System (ADS)

    Jikimoto, T.; Wang, J. L.; Saito, T.; Hirai, M.; Kusaka, M.; Iwami, M.; Nakata, T.

    1998-06-01

    We have studied heat-treated (950-1300°C) 6H-SiC(0001)Si and (0001¯)C face with photoemission spectroscopy using synchrotron radiation (SR-PES) and low energy electron diffraction (LEED). We observed LEED patterns of SiC 1×1, 3× 3, 3× 3+6 3×6 3 and graphite 1×1 sequentially with increasing heating temperature for (0001)Si face and SiC 1×1 for (0001¯)C face, respectively. We have measured Si(2p) spectra and valence band energy distribution curves (VB-EDCs). The trend of sublimation of Si atoms from surface is different between Si- and C-face. 3× 3 superstructure must be Si-derived. The 6 3×6 3 structure could be explained as a moiré pattern caused by monolayer-graphite sitting on SiC surface. Si 3s-derived state of SiC 1×1 is different between SiC 1×1 for Si- and C-face. It is suggested that a single crystal graphite layer grows on Si-face and a polycrystalline graphite is formed on C-face for heated specimens above 1150°C.

  4. The Performance of Ce Surface Treated Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnects

    SciTech Connect

    Alman, D.E.; Jablonski, P.D.

    2007-09-01

    This research deals with the effect of a Ce surface treatment on the behavior of Fe-Cr-Mn ferritic stainless steels which may have application in SOFC technology. This treatment consisted of applying a slurry of CeO2 and a halide activator to the surface of coupons. After the slurry dried the coupons were heated to 900C in a controlled atmosphere furnace for 12 hours. The effectiveness of the treatment on commercial (Type 409 (12Cr), Type 430 (18Cr), Crofer 22APU (22Cr), Type 446(26Cr)) and experimental (NETL F9 (12Cr) and NETL F5 (22Cr)) alloys as a function of Cr content will be presented. The oxidation behavior of the alloys was assessed by exposing coupons (untreated and treated) to moist air at 800C. Area specific resistance (ASR) was measured at 800C. In general, the rare earth treatment effectively reduced the oxidation rate, resulting in thinner oxide scales and less internal oxidation.

  5. Pillared montmorillonite catalysts for coal liquefaction

    SciTech Connect

    Sharma, R.K.; Olson, E.S. [Univ. of North Dakota, Grand Forks, ND (United States)

    1994-12-31

    Pillared clays contain large micropores and have considerable potential for catalytic hydrogenation and cleavage of coal macromolecules. Pillared montmorillonite-supported catalysts were prepared by the intercalation of polynuclear hydroxychromium cations and subsequent impregnation of nickel and molybdenum. Infrared and thermogravimetric studies of pyridine-adsorbed catalysts indicated the presence of both Lewis and Bronsted acid sites. Thus, the catalysts have both acidic properties that can aid in hydrocracking and cleavage of carbon-heteroatom bonds as well as hydrogen-activating bimetallic sites. These catalysts were applied to the hydrodesulfurization and liquefaction of coal-derived intermediates. The reactions of model organosulfur compounds and coal liquids were carried out at 300{degrees}-400{degrees}C for 3 hours in the presence of 1000 psi of molecular hydrogen. Reaction products were analyzed by GC/FT-IR/MS/AED. The catalysts have been found to be very effective in removing sulfur from model compounds as well as liquefaction products.

  6. Dissolution of alkaline earth sulfates in the presence of montmorillonite

    USGS Publications Warehouse

    Eberl, D.D.; Landa, E.R.

    1985-01-01

    In a study of the effect of montmorillonite on the dissolution of BaSO4 (barite), SrSO4 (celestite), and 226Ra from U mill tailings, it was found that: (1) More of these substances dissolve in an aqueous system that contains montmorillonite than dissolve in a similar system without clay, due to the ion exchange properties of the clay; (2) Na-montmorillonite is more effective in aiding dissolution than is Ca-montmorillonite; (3) the amount of Ra that moves from mill tailings to an exchanger increases as solution sulfate activity decreases. Leaching experiments suggest that 226Ra from H2SO4-circuit U mill tailings from Edgemont, South Dakota, is not present as pure Ra sulfate or as an impurity in anhydrite or gypsum; it is less soluble, and probably occurs as a trace constituent in barite.

  7. Disassembly of the cystovirus ?6 envelope by montmorillonite clay

    PubMed Central

    Block, Karin A; Trusiak, Adrianna; Katz, Al; Gottlieb, Paul; Alimova, Alexandra; Wei, Hui; Morales, Jorge; Rice, William J; Steiner, Jeffrey C

    2014-01-01

    Prior studies of clay–virus interactions have focused on the stability and infectivity of nonenveloped viruses, yielding contradictory results. We hypothesize that the surface charge distribution of the clay and virus envelope dictates how the components react and affect aggregation, viral stability, and infectivity. The bacteriophage Cystoviridae species ?6 used in this study is a good model for enveloped pathogens. The interaction between ?6 and montmorillonite (MMT) clay (the primary component of bentonite) is explored by transmission electron microscopy. The analyses show that MMT–?6 mixtures undergo heteroaggregation, forming structures in which virtually all the virions are either sequestered between MMT platelet layers or attached to platelet edges. The virions swell and undergo disassembly resulting in partial or total envelope loss. Edge-attached viral envelopes distort to increase contact area with the positively charged platelet edges indicating that the virion surface is negatively charged. The nucleocapsid (NCs) remaining after envelope removal also exhibit distortion, in contrast to detergent-produced NCs which exhibit no distortion. This visually discernible disassembly is a mechanism for loss of infectivity previously unreported by studies of nonenveloped viruses. The MMT-mediated sequestration and disassembly result in reduced infectivity, suggesting that clays may reduce infectivity of enveloped pathogenic viruses in soils and sediments. PMID:24357622

  8. Montmorillonite-induced Bacteriophage ?6 Disassembly

    NASA Astrophysics Data System (ADS)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage ?6 is investigated. ?6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, ?6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with ?6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the ?6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  9. Zirconia Pillared Montmorillonite for Removal of Arsenate from Water

    Microsoft Academic Search

    Xianjia Peng; Zhaokun Luan; Hongmei Zhang; Binghui Tian

    2005-01-01

    Zirconia pillared montmorillonite, a clean adsorbent with increased specific areas of 40.118 m\\/g and high basal spacing of 2.20 nm, was prepared for the removal of arsenate from water. Zirconia pillared montmorillonite is effective for the removal of arsenate. Adsorption is favored under acid conditions. Ca and Mg in the solution slightly enhance the adsorption. Over 95% removal was observed

  10. Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Lv, Guocheng; Pearce, Cody W.; Gleason, Andrea; Liao, Libing; MacWilliams, Maria P.; Li, Zhaohui

    2013-11-01

    Antibiotics are used not only to fight infections and inhibit bacterial growth, but also as growth promotants in farm livestock. Farm runoff and other farm-linked waste have led to increased antibiotic levels present in the environment, the impact of which is not completely understood. Soil, more specifically clays, that the antibiotic contacts may alter its effectiveness against bacteria. In this study a swelling clay mineral montmorillonite was preloaded with antibiotics tetracycline and ciprofloxacin at varying concentrations and bioassays were conducted to examine whether the antibiotics still inhibited bacterial growth in the presence of montmorillonite. Escherichia coli was incubated with montmorillonite or antibiotic-adsorbed montmorillonite, and then the number of viable bacteria per mL was determined. The antimicrobial activity of tetracycline was affected in the presence of montmorillonite, as the growth of non-resistant bacteria was still found even when extremely high TC doses were used. Conversely, in the presence of montmorillonite, ciprofloxacin did inhibit E. coli bacterial growth at high concentrations. These results suggest that the effectiveness of antimicrobial agents in clayey soils depends on the amount of antibiotic substance present, and on the interactions between the antibiotic and the clays in the soil, as well.

  11. Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites

    SciTech Connect

    Vautard, Frederic [ORNL; Ozcan, Soydan [ORNL; Meyer III, Harry M [ORNL

    2012-01-01

    High strength carbon fibers were surface treated by a continuous gas phase thermo-chemical surface treatment. The surface and the mechanical properties of the fibers were investigated before and after treatment and compared to the properties obtained with a conventional industrial electro-chemical surface treatment. An increase of the oxygen atomic content from 3 % to 20 % with a preferential generation of carboxylic acid functionalities and hydroxyl groups was highlighted after the thermo-chemical surface treatment, compared to an oxygen atomic content of 7 % and a wide variety of oxygen moieties with the electro-chemical surface treatment. The tensile strength of the fibers increased slightly after the thermo-chemical surface treatment and remained the same after the electro-chemical surface treatment. Short beam shear and 90 flexural tests of composites revealed that the improvement of interfacial adhesion with a vinyl ester matrix was limited, revealing that oxidation of the carbon fiber surface alone cannot tremendously improve the mechanical properties of carbon fiber-vinyl ester composites. Atomic force microscopy showed that the creation of roughness with both surface treatments at a nanometric scale. Although the surface is slightly rougher after the electro-chemical surface treatment and is expected to lead to higher adhesion due to mechanical interlocking between the fiber surface and the matrix, the effect of covalent bonding coming from the high concentration of chemical groups on the surface results in higher adhesion strength, as obtained with the thermo-chemical surface treatment.

  12. The Effect of Surface Treated Nanoparticles on Single and Multi-Phase Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    DiCarlo, D. A.; Aminzadeh, B.; Chung, D.; Zhang, X.; Wung, R.; Huh, C.; Bryant, S. L.

    2013-12-01

    Surface treated nanoparticles have been suggested to be an additive to CO2 storage scenarios. This is because 1) the nanoparticles have been shown to freely transport through permeable media, and 2) the nanoparticles can stabilize a CO2 in water foam by adhering to the surface of CO2 bubbles/droplets preventing their coalescence. In terms of storage, The formation of CO2 foam will limit the CO2 mobility which can potentially help limit the CO2 leakage. Here, we will show how nanoparticles in porous media can have many interesting properties in single and multi-phase flow. For multi-phase CO2, we have performed experiments where high pressure liquid CO2 displaces brine and vice versa with and without nanoparticles in the brine. We measure the displacement pattern and in-situ CO2 saturation using CT scanning and measure the pressure drop using pressure transducers. We find that the flow is less preferential and the pressure drop is greater than when nanoparticles are present. This suggest the formation of in-situ foam/emulsion. We also show that on a brine chase, the residual saturation of CO2 is greater in the presence of nanoparticles. In terms of nanoparticle transport, it is observed that nanoparticles accumulate at the front of a brine/octane displacement. We hypothesize that this occurs due to the nanoparticles being size excluded from portions of the pore-space. To determine if this occurs in single phase flow, we have also performed experiments single-phase flow with the nanoparticles and tracer. We find that the nanoparticles arrive roughly 5% faster than the tracer. This also has implications for the positioning of nanoparticles in the pore space and how this can change the effective viscosity of the nanoparticle suspension.

  13. Preparation of ZrO2/Al2O3-montmorillonite composite as catalyst for phenol hydroxylation.

    PubMed

    Fatimah, Is

    2014-11-01

    Zirconium dispersed in aluminum-pillared montmorillonite was prepared as a catalyst for phenol hydroxylation. The effects of varying the Zr content on the catalyst's physicochemical character and activity were studied with XRD, BET surface area analysis, surface acidity measurements and scanning electron microscopy before investigating the performance for phenol conversion. The zirconia dispersion significantly affects the specific surface area, the total surface acidity and surface acidity distribution related to the formation of porous zirconia particles on the surface. The prepared samples exhibited excellent catalytic activity during phenol hydroxylation. PMID:25685535

  14. Preparation of ZrO2/Al2O3-montmorillonite composite as catalyst for phenol hydroxylation

    PubMed Central

    Fatimah, Is

    2013-01-01

    Zirconium dispersed in aluminum-pillared montmorillonite was prepared as a catalyst for phenol hydroxylation. The effects of varying the Zr content on the catalyst’s physicochemical character and activity were studied with XRD, BET surface area analysis, surface acidity measurements and scanning electron microscopy before investigating the performance for phenol conversion. The zirconia dispersion significantly affects the specific surface area, the total surface acidity and surface acidity distribution related to the formation of porous zirconia particles on the surface. The prepared samples exhibited excellent catalytic activity during phenol hydroxylation. PMID:25685535

  15. Phosphorus removal in a surface-flow constructed wetland treating agricultural runoff.

    PubMed

    Beutel, Marc W; Morgan, Matthew R; Erlenmeyer, Jonathan J; Brouillard, Elaine S

    2014-05-01

    Agricultural runoff is a leading source of phosphorus (P) pollution to lakes and streams. The objective of this study was to evaluate P removal dynamics in a constructed treatment wetland (CTW) treating agricultural irrigation return flows. The CTW included a sedimentation basin (SB) followed by two surface-flow wetlands in parallel. Typical retention times and total P (TP) loading were 1.4 d and 50 to 110 g m yr P, respectively, for the SB and 5 to 6 d and 4 to 10 g m yr P, respectively, for wetlands. On the basis of this multiyear study, concentration removal efficiency in the SB averaged 21% for TP and 32% for reactive phosphorus (RP). Concentration removal efficiency in wetlands averaged 37 and 43% for TP and 22 and 33% for RP. Areal first-order removal rates for TP averaged 22 and 31 m yr in wetlands. Total P removal in wetlands exhibited a strong seasonal pattern, with minimum removal in the summer when high temperatures likely enhanced P release from decaying plant biomass. The performance of the CTW was stochastic, with removal unpredictably poorer in some years in part as a result of muskrat bioturbation and plant harvesting. In years before muskrat impacts, concentration removal efficiencies in wetlands were 50% for TP and 65% for RP. PMID:25602836

  16. The characteristics of treated zone processed by pulsed Nd-YAG laser surface remelting on hot work steel

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Lin, Pengyu; Cong, Dalong; Kong, Shuhua; Zhou, Hong; Ren, Luquan

    2014-12-01

    In this study, the surface of H13 steel was treated using laser surface remelting. Some important characteristics of the treated zone (biomimetic strengthening units) were investigated, e.g. size, cross-sectional morphology, microstructure and hardness as functions of average peak power density and effective peak power density. The results indicate that different combinations of average peak power density and effective peak power density could vary the appearance of cross-sectional morphology, microstructure and hardness. An appropriate range of EPPD for preparing the treated zone was acquired: 595-1448 W/mm2. In this range, the depth/width ratio of 0.31-0.47 and microhardness of 559-667 HV were obtained.

  17. Monitoring surface water chemistry near magnesium chloride dust suppressant treated roads in Colorado.

    PubMed

    Goodrich, Betsy A; Koski, Ronda D; Jacobi, William R

    2009-01-01

    Magnesium chloride (MgCl2)-based dust suppression products are commonly used throughout western United States on nonpaved roads for dust suppression and road stabilization by federal, state, and county transportation agencies. The environmental implications of annually applying these products throughout spring and summer months on adjacent stream chemistry are not known. Sixteen streams were monitored biweekly for 1 to 2 yr in two Colorado counties for a suite of water quality variables up and downstream of nonpaved roads treated with MgCl2-based dust suppression products. Eight of 16 streams had significantly higher downstream than upstream concentrations of chloride or magnesium over the entire monitoring period (psurface area draining water toward the stream and yearly amount of MgCl2 applied (R2=0.75, 0.51 and 0.49, respectively), indicating that road managers can limit the amount of product entering roadside streams by assessing drainage characteristics and application rates in best management practices. Although MgCl2-based dust suppressants did move into some roadside streams, the concentrations detected were below those reported to adversely affect fresh water aquatic organisms, but the ultimate fate of these ions in Colorado waterbodies are not known. PMID:19875793

  18. Influences of surface chemistry and swelling of salt-treated polyelectrolyte multilayers on migration of smooth muscle cells

    PubMed Central

    Han, Lulu; Mao, Zhengwei; Wu, Jindan; Zhang, Yuying; Gao, Changyou

    2012-01-01

    The cell migration plays a crucial role in a variety of physiological and pathological processes and can be regulated by the cell–substrate interactions. We found previously that the poly(sodium 4-styrenesulphonate) (PSS)/poly(diallyldimethylammonium) chloride (PDADMAC) multilayers post-treated in 1–5 M NaCl solutions result in continuous changes of their physico-chemical properties such as thickness, chemical composition, surface charge, swelling ratio and wettability. In this study, the responses of human smooth muscle cells (SMCs) on these salt-treated multilayers, particularly the governing factors of cellular migration that offer principles for designing therapeutics and implants, were disclosed. The cell migration rate was slowest on the 3 M NaCl-treated multilayers, which was comparable with that on tissue culture plates, but it was highest on 5 M NaCl-treated multilayers. To elucidate the intrinsic mechanisms, cell adhesion, proliferation, adhesion and related gene expressions were further investigated. The SMCs preferred to attach, spread and proliferate on the PSS-dominated surfaces with well-organized focal adhesion and actin fibres, especially on the 3 M NaCl-treated multilayers, while were kept round and showed low viability on the PDADMAC-dominated surfaces. The relative mRNA expression levels of adhesion-related genes such as fibronectin, laminin and focal adhesion kinase, and migration-related genes such as myosin IIA and Cdc42 were compared to explain the different cellular behaviours. These results reveal that the surface chemistry and the swelling of the salt-treated multilayers govern the cell migration behaviours. PMID:22896570

  19. Microscopic structure and properties of discrete water layer in Na-exchanged montmorillonite.

    PubMed

    Emmerich, Katja; Koeniger, Franz; Kaden, Heike; Thissen, Peter

    2015-06-15

    In this work, we focus on the atomic structure of the water interlayer of Na-exchanged montmorillonite. For two different surface charge densities, namely -0.086 and -0.172C/m(2), the adsorption process in the presence of water is described by first principles calculations. We describe the interactions and forces for every water molecule entering the interlayer during the swelling process. In particular, the dielectric permittivity of the water interlayer is calculated. Finally, we confirm our results performing ab initio thermodynamics calculations leading to a wide range of realistic experimental scenarios. PMID:25710385

  20. Effect of organo-Montmorillonite dispersion on properties of epoxy resin nanocomposites

    Microsoft Academic Search

    Ning Guo; Junguo Gao; Mingyan Zhang; Zelun Lu; Xiaohong Zhang

    2009-01-01

    Montmorillonite modified with alkyl ammonium ions was dispersed in an epoxy\\/methyl nadic anhydride systems to form epoxy\\/organo-montmorillonite (oMMT) nanocomposites. Different systems of epoxy montmorillonite nanocomposites materials were prepared by mixing at different temperature before curing. These systems were characterized by X-ray diffraction (XRD), scanning electric microscopy (SEM) and atomic force microscopy (AFM). The results of XRD illustrated that montmorillonite was

  1. Influence of sodium and organo-montmorillonites on the properties of bitumen

    Microsoft Academic Search

    Gang Liu; Shaopeng Wu; Martin van de Ven; Jianying Yu; Andre Molenaar

    2010-01-01

    This paper investigated the influence of sodium and organo-montmorillonites on the properties of bitumen. The organo-montmorillonite (OTAC+ Mt) was obtained by reacting the sodium montmorillonite (Na+ Mt) with octadecyl trimethylammonium chloride. Bitumen binder samples with a content of 4mass% of montmorillonite were prepared in a laboratory high-shear mixer. The rheological behaviour and ageing properties of the bitumens were investigated with

  2. Interaction of sodium dodecylsulfate (SDS) with homoionic montmorillonites: adsorption isotherms and metal-ion release

    Microsoft Academic Search

    M. Ilic; J. González; A. Pohlmeier; H. D. Narres; M. J. Schwuger

    1996-01-01

    The interaction of dodecylsulfate anions (DS-) with homoionic Ca-, Mg-, Ni-, Cu-, Cd-, Pb- and Fe-montmorillonites were investigated. Mg- and Cd-montmorillonite do not adsorb DS-, and an anion exchange at the edges of the clay mineral does not take place. Three different adsorption processes are identified on the other montmorillonites: i) Fe-montmorillonite is covered with amorphous iron hydroxide, and DS--anions

  3. Coupled chemical processes at clay/electrolyte interface: a batch titration study of Na-montmorillonites.

    PubMed

    Duc, Myriam; Thomas, Fabien; Gaboriaud, Fabien

    2006-08-15

    The present work addresses the protolytic charge of montmorillonite, which occurs on the broken-bond sites at the particle edges. The purpose is to overcome the general difficulty arising in potentiometric titration due to coupled side reactions, which severely impede the titrant budget (partial dissolution of the clay and of secondary phases, hydrolysis and readsorption of dissolved species, cation exchange). Batch potentiometric titrations were carried out on the montmorillonite fractions extracted from two bentonites (MX80 and SWy2) to quantify their protolytic charge. The effects of equilibration time (24 h and 7 days), pH from 4 to 10, and ionic strength (0.1 and 0.01 mol L(-1)) were extensively studied for the MX80 sample. Quantification of dissolution was achieved by analysis of the equilibrium solutions for dissolved species and by La(3+) exchange of the readsorbed species. The results clearly show that secondary phases such as iron- or silica-rich minerals contribute to the dissolved species, according to the nature of the raw bentonite. Furthermore, readsorption affects significant amounts of dissolved species. The overconsumption of proton/hydroxide due to dissolution, readsorption, and hydrolysis of dissolved species was evaluated using a self-consistent thermodynamic calculation. The ability of such calculation to correct the raw titration curves in order to extract the titrable surface charge of montmorillonite was evaluated by comparison with the continuous titration procedure. Especially in the alkaline domain, correcting the raw batch titration curves for the measured side reactions failed to reproduce the continuous titration curves. These observations demonstrate the limitations of the batch titration method and the superiority of fast, continuous methods for quantifying the dissociable surface charge of clays. PMID:16777124

  4. Making building products by extrusion and cement stabilization: limits of the process with montmorillonite clay

    Microsoft Academic Search

    M Temimi; K Ben Amor; J. P Camps

    1998-01-01

    The addition of cement to a montmorillonite clay does not result in an adequate stabilization of end products which are extruded. This can be explained as follows: firstly, Ca2+ ions of the binder are adsorbed by montmorillonite preventing the hydration of the binder and secondly, montmorillonite is very susceptible in contact with water because of its expansive property. Other mixtures

  5. Evaluation of surface roughness of a plasma treated polymeric membrane by wavelet analysis and quantification of its enhanced performance

    NASA Astrophysics Data System (ADS)

    Pal, S.; Ghatak, S. K.; De, S.; DasGupta, S.

    2008-12-01

    The change in roughness of polyethersulfone (PES) ultrafiltration membranes by plasma treatment is quantified by atomic force microscopy (AFM). A wavelet-based analysis of surface morphology images from AFM is used to evaluate the surface roughness changes of polymeric membranes. Discrete wavelet transform with 3D image analysis is used to capture patterns at all relevant frequency scales — which are not possible with other traditional techniques of image analysis. The hydrophilic nature and roughness of the membrane surfaces are related to fouling over the membrane surfaces with associated change in solvent flux. The changes in flux of the plasma treated membranes are quantified by measuring the enhancement in flux of a model solution of bovine serum albumin (BSA). The results clearly demonstrate that a PES membrane being more hydrophilic and having smoother surface by optimal treatment of cold CO 2 plasma is easier to clean and the augmented permeability can be retained in successive use.

  6. Speciation of uranyl sorbed at multiple binding sites on montmorillonite

    NASA Astrophysics Data System (ADS)

    Chisholm-Brause, Catherine; Conradson, Steven D.; Buscher, C. T.; Eller, P. Gary; Morris, David E.

    1994-09-01

    We have investigated the structures of U (VI) complexes as uranyl moieties sorbed onto a reference montmorillonite, SAz-1, using X-ray absorption fine structure spectroscopy (XAFS). The uranyl-loaded clays were prepared from aqueous solutions of uranyl nitrate in the pH range from 3.0 to 3.5. The U concentrations on the clay ranged from 1.7 to 34.6% of the reported cation exchange capacity (CEC = 1.2 meq/g) of the clay. For all samples, XAFS results indicate that there are two axial oxygen atoms at 1.78-1.80 Å, as expected for the uranyl moiety. The average numbers and distances of equatorial oxygen atoms about uranyl sorbed on the clay vary significantly as a function of surface coverage. At high coverage (34.6% CEC), the average number and distance of equatorial oxygen atoms are near those found for the fully hydrated uranyl species in aqueous solution. However, there are fewer equatorial oxygen atoms at a shorter average distance about uranyl sorbed at low coverage (1.7% CEC). At moderate coverage (7.3% CEC), the average number and distance of equatorial oxygen atoms are intermediate between those at higher and lower coverage. These changes suggest that sorbing U is reacting with at least three different sites on the clay as U concentration increases. The existence of multiple surface sites and sorption complexes which are structurally distinct from solution species need to be considered for rigorous modeling of sorption processes.

  7. Formation of RNA oligomers on montmorillonite: site of catalysis

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1998-01-01

    Certain montmorillonites catalyze the self condensation of the 5'-phosphorimidazolide of nucleosides in pH 8 aqueous electrolyte solutions at ambient temperatures leading to formation of RNA oligomers. In order to establish the nature of the sites on montmorillonite responsible for this catalytic activity, oligomerization reactions were run with montmorillonites which had been selectively modified (I) at the edges by (a) fluoride treatment, (b) silylation, (c) metaphosphate treatment of the anion exchange sites (II) in the interlayer by (a) saturation with quaternary alkylammonium ions of increasing size, (b) aluminum polyoxo cations. High pressure liquid chromatography, HPLC, analysis of condensation products for their chain lengths and yields indicated that modification at the edges did not affect the catalytic activity to a significant extent, while blocking the interlayer strongly inhibited product formation.

  8. Preparation and surface characterization of plasma-treated and biomolecular-micropatterned polymer substrates

    Microsoft Academic Search

    Bryan Alfred Langowski

    2007-01-01

    A micropatterning process creates distinct microscale domains on substrate surfaces that differ from the surfaces' original chemical\\/physical properties. Numerous micropatterning methods exist, each having relative advantages and disadvantages in terms of cost, ease, reproducibility, and versatility. Polymeric surfaces micropatterned with biomolecules have many applications, but are specifically utilized in tissue engineering as cell scaffolds that attempt to controlled tissue generation

  9. Mechanisms of CO2 Interaction with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Romanov, V.; Myshakin, E. M.; Howard, B.; Guthrie, G.

    2013-12-01

    Improved understanding of basic fluid-rock interactions can lead to more accurate models of the coupled fluid-flow and geomechanics in engineered geological systems. We studied carbon dioxide (CO2) interaction with source clay samples from The Clay Minerals Society. The manometric, infrared (IR) and X-ray diffraction (XRD) data indicated that montmorillonite can permanently trap CO2 molecules in its interlayer, after dynamic exposure to supercritical CO2. Such trapping is quite secure and appears to result in partial carbonate formation. Molecular dynamics simulations were carried out to investigate CO2 intercalation into the interlayer and its interaction with interlayer species. Previously reported results of simulations using simplified smectite models suggested that the experimentally observed red shift of the asymmetric-stretch vibrational mode for the trapped carbon dioxide can be attributed to induced polarization of the CO2 molecule by the interlayer water molecules. Modified smectite models were designed to account for the naturally occurring structural disorder that allows guest molecules to occupy localized interlamellar voids. In such models, energy dependences and structural rearrangements of the interlayer species are governed by rotational misalignment in turbostratically disordered clay. CO2 invasion in the interlayer disrupts the long-range ordering of water molecules and cations thus forcing the system to adopt energetically unfavorable configurations. New findings indicate that interaction between intercalated CO2 and H2O is limited and, with the increasing interlayer hydration, CO2 preferentially accumulates in interlamellar voids. The vibrational spectra produced by the new model, assuming that clay systems can exist in fractional hydration states, show either a combination of undisturbed and red-shifted asymmetric-stretch modes or a broad peak consistent with the multiple smeared peaks, which explain the multi-mode features that have appeared in experimental IR spectra.

  10. Possible selective adsorption of enantiomers by Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Friebele, E.; Shimoyama, A.; Ponnamperuma, C.

    1981-01-01

    Racemic amino acids including (D,L) alpha-alamine, (D,L) alpha-aminobutyric acid, (D,L) valine, and (D,L) norvaline were incubated with Na-montmorillonite at 100% CEC at three hydrogen ion concentrations, and amino acid adsorption was determined by ion exchange chromatography. Enantiomers were analyzed by gas chromatography. Differences in the quantities of D and L enantiomers in any of the fractions was no larger than a few percent. Although a large difference in the adsorption of the amino acid enantiomers was not observed, the analysis may indicate a small preferential adsorption (0.5-2%) of L-amino acids by Na-montmorillonite.

  11. Synthesis of an intercalated compound of montmorillonite and 6-polyamide

    Microsoft Academic Search

    Yoshiaki Fukushima; Shinji Inagaki

    1987-01-01

    Natural montmorillonite, fractionated from bentonite produced in Yamagata, Japan, was ion-exchanged for NH3+-(CH2)11-COOH, NH3+-(CH2)5-COOH, Al3+, Cu2+, Mg2+, Co2+, Li+, K+ and H+. The mixtures of the ion-exchanged montmorillonite and e-caprolactam were heated at 263°C in glass ampoules for various periods. The intercalated compounds before and after the heating were examined by X-ray powder diffraction, DSC and GPC. Although e-caprolactam was

  12. Surface properties and hydrophobic recovery of polymers treated by atmospheric-pressure plasma

    NASA Astrophysics Data System (ADS)

    Borcia, C.; Punga, I. L.; Borcia, G.

    2014-10-01

    This paper provides an analysis on the relation between plasma effects on polymers exposed to inert gas atmospheric-pressure plasma, polymer structure characteristics and surface recovery during post-processing ageing. Polymers offering variety of structure, functionality, degree of oxidation, polarity, crystallinity are tested, using contact angle, XPS, XRD and solvent absorption measurement, thus exploring the relationship linking the surface polarity, the chemical structure and composition contribution in the combined functionalization/crosslinking surface modification mechanisms of plasma-exposed polymers. The limiting level of modification attainable, the surface stability and the factors controlling these are examined, concluding on the plasma capacity to provide operational stability for modified polymer surfaces.

  13. Surface Morphologies of 4H-SiC(1120) and (1100) Treated by High-Temperature Gas Etching

    NASA Astrophysics Data System (ADS)

    Horita, Masahiro; Kimoto, Tsunenobu; Suda, Jun

    2008-11-01

    The impact of HCl/H2 high-temperature gas-etching on the surface morphologies of 4H-SiC(1120) and (1100) faces is investigated by atomic force microscopy (AFM). Very flat surfaces are obtained on both (1120) and (1100) faces after gas-etching when the substrate surfaces are initially treated by chemical mechanical polishing to remove polishing scratches. The root-mean square roughness values of gas-etched (1120) and (1100) substrates are 0.07 and 0.11 nm, respectively. Within AFM resolution limits no atomic steps are observed on the very flat surfaces of (1120) substrates. On the other hand, clear step-and-terrace structures are observed on (1100) substrates after gas-etching and the height of the steps (2.7 Å) corresponding to the lattice spacing between 4H-SiC(1100) planes (=?3a/2).

  14. First Low-Iron Materials on Mars and Possibility of a Major Montmorillonite Component

    NASA Astrophysics Data System (ADS)

    Clark, B. C.; Richter, L.; Gellert, R.; Farrand, W.; Ming, D. W.; Morris, R. V.; Yen, A.

    2005-12-01

    During exploration of Columbia Hills at Gusev crater, the Spirit rover of the MER mission has discovered several separate occurrences of material with a unique elemental signature. As measured by x-ray fluorescence emission using the APXS instrument, these samples stand out for their low Fe content, accompanied by corresponding increases in Al and Si but without high concentrations of mineralogically important cations such as Ca, Mg, Na, or K. No previous martian samples, from five landed missions and numerous martian meteorites, have such low iron content. Chemical trends implicate Mg sulfates and Ca phosphates are important but minor accessory minerals. Moessbauer analysis indicates some or all Ti to be present as ilmenite. The remaining component has high Al and Si abundances in proportions within the range of classical montmorillonite compositions found at various locations on Earth, including their correspondingly low concentrations of major cations. Typically the result of weathering of basaltic ash and often associated with more arid environments, the formation of montmorillonite or its alteration-product precursor implies that significant aqueous activity to facilitate geochemical separations occurred. In addition, various of these samples contain trace element anomalies that are unique for martian materials, including enrichments in Cu, Ni, Y, Ga, Cr, and possibly Pb, Co, Sr, and Zn. Adsorption by high cation exchange minerals such as montmorillonite clays or other alteration materials (allophane, silica, imogolite) often bear similar fingerprints due to their high-area charged surfaces which confer affinities for multivalent metal ions in solution. Samples of this "Independence Class" of materials have been found at three separated sites in the upper portion of Husband Hill. The samples are disparate in form, including clods (or peds), an outcrop, and a "rock". Their lighter color and rugged morphology are a common feature. The latter may indicate susceptibility to fragmentation, with possible derivation from a deeper-lying layer of source material.

  15. Uranium uptake by hectorite and montmorillonite: a solution chemistry and polarized EXAFS study.

    PubMed

    Schlegel, Michel L; Descostes, Michael

    2009-11-15

    The mechanism of U(VI) retention on montmorillonite and hectorite at high ionic strength (0.5 M NaCl) was investigated by solution chemistry and, at near-neutral pH, polarized EXAFS spectroscopy. Uranium(VI) sorption increases from pH 3 to 7 on the two clays, but with a steeper edge for hectorite. Uranium(VI) is no longer retained at pH > 9, presumably owing to the formation of soluble anionic complexes. Polarized EXAFS showed that U(VI) retains its uranyl conformation on montmorillonite (U_mont) and hectorite (U_hect), with uranyl O at 1.79(2) A for U_mont and 1.82(2) A for U_hect, and split equatorial O shells at 2.29(2) and 2.47(2) A (U_mont), or 2.35(2) and 2.53(2) A (U_hect). An additional atomic shell of approximately 0.5 Al/Si at 3.3 A is detected for U_mont, but neither the oxygen nor the cationic shell exhibit clear angular dependence. These results indicate the formation of mononuclear complexes at the edges of montmorillonite platelets, with the orientation of the uranyl axis equal to the magic angle, as constrained by the edges' structural properties. In contrast to U_mont, the U-O signal varies with the polarization angle in U_hect, and the cationic Mg/Si contribution at 3.2 A is weak. The structure of this surface complex is not completely elucidated; it may correspond either to sorption on silanol sites, or to coprecipitation. These results lay out the fundamental molecular-scale basis to understand U retention by neoformed clay layers of nuclear glasses. PMID:20028057

  16. Characterization of microstructure and surface properties of heat-treated PAN-and rayon-based activated carbon fibers

    Microsoft Academic Search

    Yu-Chun Chiang; Chien-Cheng Lee; Hung-Chih Lee

    2007-01-01

    Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs), subject to heat treatment over 600–1,100°C under N2 flow, were investigated using a number of surface analytical methods, including N2 adsorption isotherm, elemental analysis, and X-ray photoelectron spectroscopy. The adsorption capacities of benzene, carbon\\u000a tetrachloride, and water vapor on as-received and heat-treated ACFs were determined. Results show that the ACFs under study\\u000a were

  17. Giant superstructures formed on graphite surface treated with NaOH solutions studied by scanning tunneling microscopy

    Microsoft Academic Search

    K Miyake; K Akutsu; T Yamada; K Hata; R Morita; M Yamashita; H Shigekawa

    1998-01-01

    Giant superstructures with 1.71 and 9.1nm lattice constants were observed by scanning tunneling microscopy (STM) on the surface of highly oriented pyrolytic graphite (HOPG) treated with NaOH solution. These structures were analyzed by the moiré pattern hypothesis. For both the structures, the orientation angle mismatch of the giant lattices relative to the original atomic lattice of graphite was observed between

  18. Intercalation of a Nonionic Surfactant (C10E3) bilayer into a Na-Montmorillonite Clay

    E-print Network

    Regis Guegan

    2010-11-27

    A nonionic surfactant, the tri-ethylene glycol mono n-decyl ether (C10E3), characterized by its lamellar phase state, was introduced in the interlayer of a Na-montmorillonite clay at several concentrations. The synthesized organoclays were characterized by Small Angle X-Ray Scattering in conjunction with Fourier Transform Infrared spectroscopy, and adsorption isotherms. Experiments showed that a bilayer of C10E3 was intercalated into the interlayer space of the naturally exchanged Na-montmorillonite, resulting in the aggregation of the lyotropic liquid crystal state in the lamellar phase. This behavior strongly differs from previous observations of confinement of nonionic surfactants in clays where the expansion of the interlayer space was limited to two monolayers parallel to the silicate surface and cationic surfactants in clays where the intercalation of organic compounds is introduced into the clay galleries through ion exchange. The confinement of a bilayer of C10E3 nonionic surfactant in clays offers new perspectives for the realization of hybrid nanomaterials since the synthesized organoclays preserve the electrostatic characteristics of the clays, thus allowing further ion exchange, while presenting at the same time a hydrophobic surface and a maximum opening of the interlayer space for the adsorption of neutral organic molecules of important size with functional properties.

  19. Synergistic effect of cationic and anionic surfactants for the modification of Ca-montmorillonite

    SciTech Connect

    Zhang, Zepeng, E-mail: zhangzp@cugb.edu.cn [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Zhang, Jichu [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Liao, Libing, E-mail: bliao@cugb.edu.cn [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Xia, Zhiguo [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China)

    2013-05-15

    Highlights: ? The basal spacing of MMT–CTAB–SDS reaches 5.30 nm. ? MMT–CTAB–SDS shows perfect dispersion property and excellent heat resistance. ? SDS helped to improve the heat resistance and decrease the surface energy of the MMT–CTAB–SDS particles. - Abstract: The synergistic effect of cationic surfactant (CTAB) and anionic surfactant (SDS) for the modification of Ca-montmorillonite (Ca-MMT) has been developed, and the novel cation–anion modified organomontmorillonite (MMT–CTAB–SDS) was prepared. X-ray diffraction (XRD) analysis indicates that the interlayer spacing of montmorillonite was well expanded by the intercalation of CTAB and SDS and the basal spacing increased from 1.54 nm (Ca-MMT) to 5.30 nm (MMT–CTAB–SDS). Thermogravimetric analysis (TG) showed that the MMT–CTAB–SDS displayed excellent heat resistance. Scanning electron microscopy (SEM) analysis proved that the MMT–CTAB–SDS exhibited excellent dispersion property and the plates with few silicate layers can be observed. Contact angle tests indicated that the hydrophilicity of MMT–CTAB–SDS was lower than that of Ca-MMT and higher than that of MMT–CTAB. It was verified that SDS contributed to expanding the interlayer space, further improved the heat resistance of the MMT–CTAB and decreased the surface energy of the MMT–CTAB–SDS particles.

  20. Pit formation on stainless steel surfaces pre-treated with biosurfactants produced by Pseudomonas fluorescens

    Microsoft Academic Search

    Catherine Dagbert; Thierry Meylheuc; Marie-Noëlle Bellon-Fontaine

    2008-01-01

    Today, it is widely established that the surface tension of water can be reduced by some microorganisms capable of synthesizing surface-active compounds called biosurfactants (BS). BS characteristics depend on the microorganism that produces them and therefore, on the microorganism culture conditions.Some studies on chemical surfactants have shown that the adsorption of surface-active compounds plays a major role in corrosion; indeed

  1. Synthesis of silver/montmorillonite nanocomposites using ?-irradiation.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Gharayebi, Yadollah; Sedaghat, Sajjad

    2010-01-01

    Silver nanoparticles (Ag-NPs) were synthesized into the interlamellar space of montmorillonite (MMT) by using the ?-irradiation technique in the absence of any reducing agent or heat treatment. Silver nitrate and ?-irradiation were used as the silver precursor and physical reducing agent in MMT as a solid support. The MMT was suspended in the aqueous AgNO(3) solution, and after the absorption of silver ions, Ag(+) was reduced using the ?-irradiation technique. The properties of Ag/MMT nanocomposites and the diameters of Ag-NPs were studied as a function of ?-irradiation doses. The interlamellar space limited particle growth (d-spacing [d(s)] = 1.24-1.42 nm); powder X-ray diffraction and transmission electron microscopy (TEM) measurements showed the production of face-centered cubic Ag-NPs with a mean diameter of about 21.57-30.63 nm. Scanning electron microscopy images indicated that there were structure changes between the initial MMT and Ag/MMT nanocomposites under the increased doses of ?-irradiation. Furthermore, energy dispersive X-ray fluorescence spectra for the MMT and Ag/ MMT nanocomposites confirmed the presence of elemental compounds in MMT and Ag-NPs. The results from ultraviolet-visible spectroscopy and TEM demonstrated that increasing the ?-irradiation dose enhanced the concentration of Ag-NPs. In addition, the particle size of the Ag-NPs gradually increased from 1 to 20 kGy. When the ?-irradiation dose increased from 20 to 40 kGy, the particle diameters decreased suddenly as a result of the induced fragmentation of Ag-NPs. Thus, Fourier transform infrared spectroscopy suggested that the interactions between Ag-NPs with the surface of MMT were weak due to the presence of van der Waals interactions. The synthesized Ag/MMT suspension was found to be stable over a long period of time (ie, more than 3 months) without any sign of precipitation. PMID:21170354

  2. Synthesis of silver/montmorillonite nanocomposites using ?-irradiation

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Gharayebi, Yadollah; Sedaghat, Sajjad

    2010-01-01

    Silver nanoparticles (Ag-NPs) were synthesized into the interlamellar space of montmorillonite (MMT) by using the ?-irradiation technique in the absence of any reducing agent or heat treatment. Silver nitrate and ?-irradiation were used as the silver precursor and physical reducing agent in MMT as a solid support. The MMT was suspended in the aqueous AgNO3 solution, and after the absorption of silver ions, Ag+ was reduced using the ?-irradiation technique. The properties of Ag/MMT nanocomposites and the diameters of Ag-NPs were studied as a function of ?-irradiation doses. The interlamellar space limited particle growth (d-spacing [ds] = 1.24–1.42 nm); powder X-ray diffraction and transmission electron microscopy (TEM) measurements showed the production of face-centered cubic Ag-NPs with a mean diameter of about 21.57–30.63 nm. Scanning electron microscopy images indicated that there were structure changes between the initial MMT and Ag/MMT nanocomposites under the increased doses of ?-irradiation. Furthermore, energy dispersive X-ray fluorescence spectra for the MMT and Ag/ MMT nanocomposites confirmed the presence of elemental compounds in MMT and Ag-NPs. The results from ultraviolet-visible spectroscopy and TEM demonstrated that increasing the ?-irradiation dose enhanced the concentration of Ag-NPs. In addition, the particle size of the Ag-NPs gradually increased from 1 to 20 kGy. When the ?-irradiation dose increased from 20 to 40 kGy, the particle diameters decreased suddenly as a result of the induced fragmentation of Ag-NPs. Thus, Fourier transform infrared spectroscopy suggested that the interactions between Ag-NPs with the surface of MMT were weak due to the presence of van der Waals interactions. The synthesized Ag/MMT suspension was found to be stable over a long period of time (ie, more than 3 months) without any sign of precipitation. PMID:21170354

  3. Reaction Characteristics on the Green Surface of Moso Bamboo (Phyllostachys pubescens Mazel) Treated with Chromated Phosphate

    Microsoft Academic Search

    Shang-Tzen Chang; Ting-Feng Yeh; Jyh-Horng Wu; David N.-S. Hon

    2002-01-01

    Summary Phyllostachys pubescens Mazel Chromated phosphate (CP) Green color protection FTIR spectrometry ESR spectrometry ESCA spectrometry Standing moso bamboo (Phyllostachys pubescens Mazel) culm is attractive to many people for its green color, but it fades readily if it is not chemically treated. Chromated phosphate (CP) has been successfully used to protect the green color of bamboo. In order to understand

  4. Effect of adsorbed iron on thermoluminescence and electron spin resonance spectra of Ca-Fe-exchanged montmorillonite

    NASA Technical Reports Server (NTRS)

    Coyne, Lelia M.; Banin, Amos

    1986-01-01

    The ESR spectra and the natural and gamma-induced thermoluminescence (TL) glow curves of a series of variably cation-exchanged Fe-Ca-clays prepared from SWy-1 montmorillonite were examined. The ESR signal intensity associated with surface Fe increased linearly with surface Fe content up to a nominal concentration of 50 percent exchangeable Fe. At above 50 percent exchangeable Fe, no appreciable increase in the signal was noted. The TL intensity decreased linearly with increasing surface Fe up to 50 percent nominal exchangeable Fe. At above 50 percent, the signal was not appreciably further diminished. Possible effects of Fe on quenching of TL are considered.

  5. The proton promoted dissolution kinetics of K-montmorillonite

    NASA Astrophysics Data System (ADS)

    Zysset, Martin; Schindler, Paul W.

    1996-03-01

    The kinetics of proton promoted dissolution of K-montmorillonite was investigated at 298 ± 1 K by batch experiments in the range 10 -1 ? [H +] ? 10 -5 M using solutions of the constant KCl concentrations of 0.03 M, 0.10 M, and 1.0 M, respectively. In addition the concentration of adsorbed H +-ions (H +, [mol/g]) was determined in the acidic range using both titration and batch equilibration experiments. The dissolution rates RSi and RAl [mol/(g · h)] were obtained from the observed increase with time of both dissolved Si(IV) and Al(III). RSi was found to be linearly dependent on H +: RSi = k · H +. The values of the first order rate constant k [h -1] increase with increasing KCl concentration: 6.02 × 10 -4 ± 2.4 × 10 -5 h -1 (0.03 M KCl), 9.98 × 10 -4 ± 7.1 × 10 -5 h -1 (0.10 M KCl), and 2.61 × 10 -3 ± 3.9 × 10 -4 h -1 (1.0 M KCl). Adsorption of H +-ions was interpreted in terms of the surface complexation model. Proton uptake by the solid phase were formally attributed to H-K exchange and to protonation of edge surface aluminol groups. The dissolution reaction does, however, not discriminate between these two adsorption modes. At 0.10 M and 1.0 M KCl the observed ratio Q = RSi/ RAl was found to be close to the Si:Al ratio in the solid phase, suggesting congruent dissolution. In 0.03 M KCl and [H +] > 3.2 × 10 -2 M, Q exceeded the Si:Al ratio of the solid. This deviation from congruency at low KCl concentration was attributed to adsorption of dissolved Al(III) by cation exchanger sites as reported by Charlet et al. ( 1993b). Added Al(III) was found to inhibit the dissolution reaction at [H +] ? 10 -3 M. Observations by Charlet et al. (1993b) suggest that this inhibition originates from adsorption of Al(III) on crystal edge surface sites. Both the observed dissolution stoichiometry and the inhibition by added Al(III) leads to the conclusion that dissolution occurs predominantely at the crystal edge surfaces.

  6. Functional attachment of horse radish peroxidase to plasma-treated surfaces

    Microsoft Academic Search

    Marcela M. Bilek; David R. McKenzie; Neil Nosworthy; Kerrie Davies; Richard Morrow; Palli Thordarson; Bee K. Gan; Cristobal G. dos Remedios

    2004-01-01

    Controlling the interaction of surfaces with macromolecules, such as proteins and antibodies, is the key to producing biocompatible prosthetic devices, biosensors and diagnostic arrays. The development of technologies to control these interactions will result in the early detection of disease and have the potential to dramatically reduce costs associated with clinical treatment. For example, tethering functional anti-bodies to a surface

  7. Organically modified montmorillonites in UV curable urethane acrylate films

    Microsoft Academic Search

    Fawn M. Uhl; Siva Prashanth Davuluri; Shing-Chung Wong; Dean C. Webster

    2004-01-01

    UV curable films were reinforced with an organically modified montmorillonite (MMT). The organically modified MMTs were prepared by an ion exchange process, in which sodium ions were replaced by alkyl ammonium ions. Cetyltrimethylammonium bromide (CTMA) modified clays gave rise to better intercalated clay morphology. The microstructures were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Physical properties were

  8. Study on surface properties of PDMS microfluidic chips treated with albumin

    PubMed Central

    Schrott, Walter; Slouka, Zden?k; ?ervenka, Petr; Ston, Ji?í; Nebyla, Marek; P?ibyl, Michal; Šnita, Dalimil

    2009-01-01

    Electrokinetic properties and morphology of PDMS microfluidic chips intended for bioassays are studied. The chips are fabricated by a casting method followed by polymerization bonding. Microchannels are coated with 1% solution of bovine serum albumin (BSA) in Tris buffer. Albumin passively adsorbs on the PDMS surface. Electrokinetic characteristics (electro-osmotic velocity, electro-osmotic mobility, and zeta potential) of the coated PDMS channels are experimentally determined as functions of the electric field strength and the characteristic electrolyte concentration. Atomic force microscopy (AFM) analysis of the surface reveals a “peak and ridge” structure of the protein layer and an imperfect substrate coating. On the basis of the AFM observation, several topologies of the BSA-PDMS surface are proposed. A nonslip mathematical model of the electro-osmotic flow is then numerically analyzed. It is found that the electrokinetic characteristics computed for a channel with the homogeneous distribution of a fixed electric charge do not fit the experimental data. Heterogeneous distribution of the fixed electric charge and the surface roughness is thus taken into account. When a flat PDMS surface with electric charge heterogeneities is considered, the numerical results are in very good agreement with our experimental data. An optimization analysis finally allowed the determination of the surface concentration of the electric charge and the degree of the PDMS surface coating. The obtained findings can be important for correct prediction and possibly for robust control of behavior of electrically driven PDMS microfluidic chips. The proposed method of the electro-osmotic flow analysis at surfaces with a heterogeneous distribution of the surface electric charge can also be exploited in the interpretation of experimental studies dealing with protein-solid phase interactions or substrate coatings. PMID:20216963

  9. A comparative study of the acidity toward the aqueous phase and adsorptive properties of Al{sub 13}-pillared montmorillonite and Al{sub 13}-pillared saponite

    SciTech Connect

    Bergaoui, L.; Mrad, I.; Ghorbel, A. [Faculte des Sciences de Tunis (Tunisia). Lab. de Chimie des Materiaux et Catalyse] [Faculte des Sciences de Tunis (Tunisia). Lab. de Chimie des Materiaux et Catalyse; Lambert, J.F. [Univ. Pierre et Marie Curie, Paris (France). Lab. de Reactivite de Surface] [Univ. Pierre et Marie Curie, Paris (France). Lab. de Reactivite de Surface

    1999-04-15

    The selectivity of an Al{sub 13}-pillared saponite and an Al{sub 13}-pillared montmorillonite for Cd{sup 2+} and Cu{sup 2+} adsorption was studied. The quantity of metal adsorbed on both pillared clays depends on the pH of the solution and the pillars density. Adsorption equilibria are regulated by the protonation equilibria of the amphoteric sites on the pillars. Pillared clays adsorb more cadmium and copper than classic aluminum hydroxides which is simply attributable to a higher density of surface aluminum groups. Significant differences in behavior are observed between pillared montmorillonite and pillared saponite. Pillared montmorillonite appears to be more acidic, which is correlated with a more advanced degree of structural modification of the pillars on calcination. The authors propose a tentative, partial structural model of pillar transformation compatible with these differences. At the same time, both pillared clays have similar affinities for cadmium II at low pH (5--6), but pillared montmorillonite seems to be a more efficient cadmium trap at pH = 8 when its surface groups are negatively ionized. Thus, the nature of the clay layers conditions the structural modifications of the intercalated [Al{sub 13}] polycations, which in turn determine adsorptive behavior.

  10. The effects of oil on As(V) adsorption on illite, kaolinite, montmorillonite and chlorite

    NASA Astrophysics Data System (ADS)

    Wainipee, Wimolporn; Cuadros, Javier; Sephton, Mark A.; Unsworth, Catherine; Gill, Martin G.; Strekopytov, Stanislav; Weiss, Dominik J.

    2013-11-01

    The effect of oil on As(V) adsorption on clay minerals has been investigated using batch experiments at low and high pH, NaCl concentration and oil contents. Four clay minerals were chosen because of their abundance in sediments and their different crystal chemistry: illite, kaolinite, montmorillonite, and chlorite. The values for pH were 4 and 8 and salt concentrations were 0.001 and 0.7 M NaCl to appreciate the effects of changing salinity, e.g. from fresh water to seawater conditions. For the coating experiments, a well-characterised oil was used to survey the main effects of complex organic mixtures on adsorption and oil to clay mineral (w/w) ratios were 0.0325 and 0.3250. As(V) adsorption increased with increasing NaCl concentration, suggesting that the mechanisms of As(V) adsorption are related to the formation of surface complexes in which Na+ ions act as bridges between the clay surface and the As(V) anions. Cation bridging is also indicated by zeta potential measurements which show that higher NaCl concentrations along with the presence of As(V) can cause the clay particles and adsorbed ions to have a more negative overall charge. Adsorption is lower at higher pH due to the reduced number of positively charged sites on the edge of clay mineral layers. Oil coating reduces As(V) adsorption by decreasing the available surface area of clay minerals, except in the case of oil-coated montmorillonite, where surface area following dispersion in water is increased. The main variables controlling As(V) adsorption are surface area and surface charge density, as confirmed by a simplified quantitative model. These findings advance our ability to predict the effects of complex pollution events in various freshwater and marine settings.

  11. Monte Carlo study of the adsorption and aggregation of alkyltrimethylammonium chloride on the montmorillonite-water interface.

    PubMed

    Klebow, Birthe; Meleshyn, Artur

    2012-09-18

    Organically modified clays exhibit adsorption capacities for cations, anions, and nonpolar organic compounds, which make them valuable for various environmental technical applications. To improve the understanding of the adsorption processes, the molecular-scale characterization of the structures of organic aggregates assembled on the external basal surfaces of clay particles is essential. The focus of this Monte Carlo simulation study was on the effects of the surface coverage and the alkyl chain length n on the structures of alkyltrimethylammonium chloride ((C(n)TMA)Cl) aggregates assembled on the montmorillonite-water interface. We found that the amount of adsorbed C(n)TMA(+) ions is independent of the alkyl chain length and increases with the C(n)TMA(+) surface coverage. The C(n)TMA(+) ions predominantly adsorb as inner-sphere complexes; the fraction of outer-sphere adsorbed ions equals only about 10%. The conformational order of the C(n)TMA(+) alkyl chains substantially decreases with decreasing alkyl chain length. In agreement with previous experiments, the amount of C(n)TMA(+) ions that are aggregated at the mineral surface increases with increasing chain length. The maximum value of 0.66 C(n)TMA(+) adsorption complex per unit cell area of the clay surface considerably exceeds the amount of cations required to compensate the negative charge of the montmorillonite surface. Furthermore, in most of the studied systems, fractions of Na(+) surface cations remain adsorbed on montmorillonite. The resulting interfacial positive charge excess is counterbalanced by coadsorbed chloride ions forming ion pairs with both C(n)TMA(+) and Na(+). PMID:22894657

  12. Surface structure and corrosion resistance of short-time heat-treated NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Vojt?ch, D.; Vod?rová, M.; Fojt, J.; Novák, P.; Kubásek, T.

    2010-12-01

    NiTi alloys are attractive materials that are used for medicine, however, Ni-release may cause allergic reactions in an organism. The Ni-release rate is strongly affected by the surface state of the NiTi alloy that is mainly determined by its processing route. In this study, a NiTi shape memory alloy (50.9 at.% Ni) was heat-treated by several regimes simulating the shape setting procedure, the last step in the manufacture of implants. Heating temperatures were between 500 and 550 °C and durations from 5 to 10 min. Heat treatments were performed in air at normal and low pressure and in a salt bath. The purpose of the treatments was to obtain and compare different surface states of the Ni-Ti alloy. The surface state and chemistry of heat-treated samples were investigated by electron microscopy, X-ray photoelectron spectroscopy and Raman spectrometry. The amount of nickel released into a model physiological solution of pH 2 and into concentrated HCl was taken as a measure of the corrosion rate. It was found that the heat treatments produced surface TiO 2 layers measuring 15-50 nm in thickness that were depleted in nickel. The sample covered by the 15-nm thick oxide that was treated at 500 °C/5 min in a low pressure air showed the best corrosion performance in terms of Ni-release. As the oxide thickness increased, due to either temperature or oxygen activity change, Ni-release into the physiological solution accelerated. This finding is discussed in relation to the internal structure of the oxide layers.

  13. Functional attachment of horse radish peroxidase to plasma-treated surfaces

    NASA Astrophysics Data System (ADS)

    Bilek, Marcela M.; McKenzie, David R.; Nosworthy, Neil; Davies, Kerrie; Morrow, Richard; Thordarson, Palli; Gan, Bee K.; dos Remedios, Cristobal G.

    2004-02-01

    Controlling the interaction of surfaces with macromolecules, such as proteins and antibodies, is the key to producing biocompatible prosthetic devices, biosensors and diagnostic arrays. The development of technologies to control these interactions will result in the early detection of disease and have the potential to dramatically reduce costs associated with clinical treatment. For example, tethering functional anti-bodies to a surface in a patterned array allows the selection of specific proteins from a microlitre serum sample, immediately identifying diseases, well before the symptoms are manifested. Unfortunately, simple physical absorption of proteins onto most surfaces results in changes in their structure and loss of function. The use of ions from plasmas allows flexibility in surface modification by accessing a variety of ion energies and activated chemical species. In this paper we describe plasma based techniques which are being developed to modify the chemistry and morphology of surfaces in order to optimise their interaction with biomolecules. Early results of plasma processes to activate surfaces for non specific attachment of proteins by hydrophilic /hydrophobic interactions are presented, with particular attention to the time stability of such treatments, which is of special interest.

  14. Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures

    NASA Astrophysics Data System (ADS)

    Reddy, M. Siva Pratap; Lee, Jung-Hee; Jang, Ja-Soon

    2014-03-01

    The electrical characteristics and reverse leakage mechanisms of tetramethylammonium hydroxide (TMAH) surface-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes were investigated by using the current-voltage ( I-V) and capacitance-voltage ( C-V) characteristics. The MIS diode was formed on n-GaN after etching the AlGaN in the AlGaN/GaN heterostructures. The TMAH-treated MIS diode showed better Schottky characteristics with a lower ideality factor, higher barrier height and lower reverse leakage current compared to the TMAH-free MIS diode. In addition, the TMAH-free MIS diodes exhibited a transition from Poole-Frenkel emission at low voltages to Schottky emission at high voltages, whereas the TMAH-treated MIS diodes showed Schottky emission over the entire voltage range. Reasonable mechanisms for the improved device-performance characteristics in the TMAH-treated MIS diode are discussed in terms of the decreased interface state density or traps associated with an oxide material and the reduced tunneling probability.

  15. Removal of hexavalent chromium from aqueous solution using exfoliated polyaniline/montmorillonite composite.

    PubMed

    Chen, Jun; Hong, Xiaoqin; Zhao, Yongteng; Zhang, Qianfeng

    2014-01-01

    Exfoliated polyaniline/montmorillonite (PANI/MMT) composites with nanosheet structure were successfully prepared by in situ chemical oxidation polymerization with MMT platelets as the scaffold. Amphoteric polymer, (2-methacryloyloxyethyl)trimethyl ammonium chloride and methacrylate acid copolymer, was used to modify montmorillonite and a large number of carboxylic acids were introduced on the surface of the clay platelets, which can be used as a dopant of PANI and play a 'bridge' role to combine PANI with clay. Adsorption experiments were carried out to study the effects of pH, contact time, Cr(VI) concentration, adsorbent dose and temperature. The adsorption of Cr(VI) on the PANI/MMT was highly pH dependent and the adsorption kinetics followed a pseudo-second-order model. The Langmuir isothermal model described the adsorption isotherm data well and the maximum adsorption capacity increased with the increase in temperature. Thermodynamic investigation indicated that the adsorption process is spontaneous, endothermic and marked with an increase in randomness at the adsorbent - liquid interface. The maximum adsorption capacity of the PANI/MMT composites for Cr(VI) was 308.6 mg/g at 25 °C. The excellent adsorption characteristic of exfoliated PANI/MMT composites will render it a highly efficient and economically viable adsorbent for Cr(VI) removal. PMID:25116498

  16. Adsorption of cationic monomeric and gemini surfactants on montmorillonite and adsolubilization of vitamin E.

    PubMed

    Sakai, Kenichi; Nakajima, Erimi; Takamatsu, Yuichiro; Sharma, Suraj C; Torigoe, Kanjiro; Yoshimura, Tomokazu; Esumi, Kunio; Sakai, Hideki; Abe, Masahiko

    2008-01-01

    Adsorption of a cationic gemini surfactant (1,2-bis(dodecyldimethylammonio) ethane dibromide, 12-2-12) and the corresponding monomeric surfactant (dodecyltrimethylammonium bromide, DTAB) on montmorillonite has been characterized with a combination of adsorption isotherm, interlayer spacing and FT-IR spectroscopic data. Adsolubilization of vitamin E into the adsorbed surfactant layers has also been studied. The adsorption isotherm data reveal that the adsorption of the two surfactants is driven by the two factors: one is the cation exchange that occurs on the interlayer basal planes and the other is the hydrophobic interaction between hydrocarbon chains of the surfactants. Although the adsorbed amount measured in the saturation region (in mol g(-1)) is almost identical for the two surfactants, the conformation of the intercalated surfactant molecules differs significantly from each other. The adsorption of DTAB results in a lateral bilayer arrangement in the limited interlayer space, whereas 12-2-12 gives a normal bilayer arrangement in the expanded interlayer space. Adsolubilization of vitamin E takes place into the adsorbed surfactant layers, and interestingly, all the vitamin E molecules added in the montmorillonite suspensions are hybridized at lower surfactant concentrations due to the great specific surface area of the clay material. Since the maximum adsolubilization amount is usually obtained just below the critical micelle concentration, the gemini surfactant is deemed to be more efficient than the corresponding monomeric one to achieve the great adsolubilization amount. PMID:18622125

  17. Nanoscale evaluation of laser-based surface treated 12Ni maraging steel

    NASA Astrophysics Data System (ADS)

    Grum, J.; Slabe, J. M.

    2005-07-01

    Maraging steels are used in several high-tech areas. Among them are highly thermo-mechanically loaded vital parts of die casting dies for pressure die casting of aluminium and magnesium alloys. From the economic point of view, the operation life of dies is extremely important to the price of the castings. Operational life can be successfully extended by a regular maintenance of die parts. Laser surfacing is a very promising process for rebuilding of worn out surfaces of vital die parts. In this research, the state in the maraging steel 1.2799 (DIN) after the application of laser surfacing process has been analysed using scanning electron microscope. The analysis revealed diverse microstructure through-depth of the laser-surfaced specimens. On the basis of the estimated size and volume fraction of the nano-precipitates in the individual microstructure zones located through-depth of the heat-affected zone, a through-depth variation of microhardness was predicted. The results are supported by Vickers microhardness tests. It was confirmed that the mechanical properties of the 1.2799 maraging steel strongly depend on the characteristic at the nano or micro level. Some of the results obtained can be also applied to laser surface heat treatment of maraging steels.

  18. A model expansion criterion for treating surface topography in ray path calculations using the eikonal equation

    NASA Astrophysics Data System (ADS)

    Ma, Ting; Zhang, Zhongjie

    2014-04-01

    Irregular surface topography has revolutionized how seismic traveltime is calculated and the data are processed. There are two main schemes for dealing with an irregular surface in the seismic first-arrival traveltime calculation: (1) expanding the model and (2) flattening the surface irregularities. In the first scheme, a notional infill medium is added above the surface to expand the physical space into a regular space, as required by the eikonal equation solver. Here, we evaluate the chosen propagation velocity in the infill medium through ray path tracking with the eikonal equation-solved traveltime field, and observe that the ray paths will be physically unrealistic for some values of this propagation velocity. The choice of a suitable propagation velocity in the infill medium is crucial for seismic processing of irregular topography. Our model expansion criterion for dealing with surface topography in the calculation of traveltime and ray paths using the eikonal equation highlights the importance of both the propagation velocity of the infill physical medium and the topography gradient.

  19. In situ X-ray Photoemission Spectroscopy Analysis of Aromatic Polyester Surface Treated with Argon Plasma

    NASA Astrophysics Data System (ADS)

    Narushima, Kazuo; Okamoto, Nanami

    2013-10-01

    Effects of surface modification treatment by argon plasma processing of two types of aromatic polyester, poly(ethylene terephthalate) (PET) and poly(oxybenzonate-co-oxynaphthoate) (POCO), were investigated. This paper presents a description of our experiment and a discussion of the surface modification mechanism, which uses a simple and inexpensive procedure to conduct analysis without breaking vacuum after plasma processing. In situ analysis of the chemical composition of a polymer surface was attempted without exposing the sample to air after argon plasma processing. In particular, the respective actions of each active species were investigated for electrons and ions in argon plasma. Electrons and ions in argon plasma break some polymer bonds. Specifically, ester groups are broken and oxygen atoms are kicked out in PET and POCO. No oxygen functional group is formed after argon plasma processing, but such groups are formed if the sample is exposed to air.

  20. Treated Wastewater Effluent as a Source of Microbial Pollution of Surface Water Resources

    PubMed Central

    Naidoo, Shalinee; Olaniran, Ademola O.

    2013-01-01

    Since 1990, more than 1.8 billion people have gained access to potable water and improved sanitation worldwide. Whilst this represents a vital step towards improving global health and well-being, accelerated population growth coupled with rapid urbanization has further strained existing water supplies. Whilst South Africa aims at spending 0.5% of its GDP on improving sanitation, additional factors such as hydrological variability and growing agricultural needs have further increased dependence on this finite resource. Increasing pressure on existing wastewater treatment plants has led to the discharge of inadequately treated effluent, reinforcing the need to improve and adopt more stringent methods for monitoring discharged effluent and surrounding water sources. This review provides an overview of the relative efficiencies of the different steps involved in wastewater treatment as well as the commonly detected microbial indicators with their associated health implications. In addition, it highlights the need to enforce more stringent measures to ensure compliance of treated effluent quality to the existing guidelines. PMID:24366046

  1. Treated wastewater effluent as a source of microbial pollution of surface water resources.

    PubMed

    Naidoo, Shalinee; Olaniran, Ademola O

    2014-01-01

    Since 1990, more than 1.8 billion people have gained access to potable water and improved sanitation worldwide. Whilst this represents a vital step towards improving global health and well-being, accelerated population growth coupled with rapid urbanization has further strained existing water supplies. Whilst South Africa aims at spending 0.5% of its GDP on improving sanitation, additional factors such as hydrological variability and growing agricultural needs have further increased dependence on this finite resource. Increasing pressure on existing wastewater treatment plants has led to the discharge of inadequately treated effluent, reinforcing the need to improve and adopt more stringent methods for monitoring discharged effluent and surrounding water sources. This review provides an overview of the relative efficiencies of the different steps involved in wastewater treatment as well as the commonly detected microbial indicators with their associated health implications. In addition, it highlights the need to enforce more stringent measures to ensure compliance of treated effluent quality to the existing guidelines. PMID:24366046

  2. Persistence of zoonotic pathogens in surface soil treated with different rates of liquid pig manure

    Microsoft Academic Search

    Peter D Gessel; Neil C Hansen; Sagar M Goyal; Lee J Johnston; Judy Webb

    2004-01-01

    Zoonotic pathogens found in land-applied livestock manure may persist in the soil and be transported by runoff into surface waters, contributing to degradation of water quality. Manure management approaches that reduce the risk of water quality impairment need to be identified. The objective of this study was to evaluate the effect of manure application rate on the persistence of manure-borne

  3. Electronic States of Chemically Treated SiC Surfaces Shu Nie and R. M. Feenstra

    E-print Network

    Feenstra, Randall

    material for use as a semi-permeable membrane in biophysics applications [3]. In this latter situation we consider a separate means of surface passivation, namely, H-etching. We prepare a series etching in the electro-polishing regime; the chemical reaction is similar to that in the porous formati

  4. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia

    Microsoft Academic Search

    Christian L Mangun; Kelly R Benak; James Economy; Kenneth L Foster

    2001-01-01

    A series of activated carbon fibers (ACFs) were produced by treatment with ammonia to yield a basic surface. The micropore sizes of these chemically modified fibers were determined with nitrogen adsorption experiments and they were shown to increase with increasing activation time and temperature. The types of groups present were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy

  5. Fatigue and fracture behaviour of a laser surface heat treated martensitic high-nitrogen tool steel

    Microsoft Academic Search

    M Heitkemper; C Bohne; A Pyzalla; A Fischer

    2003-01-01

    High nitrogen tool steels offer a superior corrosion resistance compared to conventional nitrogen-free tool steels at similar mechanical and tribological properties. For this reason they are nowadays applied for ball bearings in the aircraft industry. A laser-surface treatment can lead to a further improvement of this combination of properties. The aim of this research project is to improve the tribological

  6. Characterization of plasma treated surfaces for food safety by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Sulovská, Kate?ina; Lehocký, Marián.

    2014-10-01

    A physico-chemical approach to modify surfaces not only for use in medicine, but also for preservation of food is nowadays widely studied to lower the risks of increased number of bacterial pathogens that are in a direct contact with people. Food safety is very important part of preserving sustainability during crises, especially after the enterohaemorrhagic Escherichia coli outbreak in Europe in 2011. One of the possibility how we can protect food against various pathogens is the modification of packing materials that are directly in contact with preserved food. This contribution deals with the characterization of modified surfaces with antibacterial properties via Terahertz spectroscopy. For the purpose of this paper, three monomers were used for grafting onto air radiofrequency plasma activated low density polyethylene surface, which created a brush-like structure. Next, the antibacterial agents, Irgasan and Chlorhexidine, were anchored to these surfaces. These antibacterial agents were selected for supposed effect on two most frequently occurring bacterial strains - Escherichia coli and Staphylococcus aureus. Materials were further tested for the presence of antibacterial agent molecules, in our case by means of terahertz spectroscopy. Each material was tested on two spectroscopes - the SPECTRA and the OSCAT terahertz instruments.

  7. Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles

    NASA Astrophysics Data System (ADS)

    Huber, F. M.; Heck, S.; Truche, L.; Bouby, M.; Brendlé, J.; Hoess, P.; Schäfer, T.

    2015-01-01

    Sorption/desorption kinetics for selected radionuclides (99Tc(VII), 232Th(IV), 233U(VI), 237Np(V), 242Pu and 243Am(III)) under Grimsel (Switzerland) ground water conditions (pH 9.7 and ionic strength of ?1 mM) in the presence of synthetic Zn or Ni containing montmorillonite nanoparticles and granodiorite fracture filling material (FFM) from Grimsel were examined in batch studies. The structurally bound Zn or Ni in the octahedral sheet of the synthetic colloids rendered them suitable as colloid markers. Only a weak interaction of the montmorillonite colloids with the fracture filling material occurs over the experimental duration of 10,000 h (?13 months). The tri- and tetravalent radionuclides are initially strongly associated with nanoparticles in contrast to 99Tc(VII), 233U(VI) and 237Np(V) which showed no sorption to the montmorillonite colloids. Radionuclide desorption of the nanoparticles followed by sorption to the fracture filling material is observed for 232Th(IV), 242Pu and 243Am(III). Based on the conceptual model that the driving force for the kinetically controlled radionuclide desorption from nanoparticles and subsequent association to the FFM is the excess in surface area offered by the FFM, the observed desorption kinetics are related to the colloid/FFM surface area ratio. The observed decrease in concentration of the redox sensitive elements 99Tc(VII), 233U(VI) and 237Np(V) may be explained by reduction to lower oxidation states in line with Eh-pH conditions prevailing in the experiments and thermodynamic considerations leading to (i) precipitation of a sparingly soluble phase, (ii) sorption to the fracture filling material, (iii) possible formation of eigencolloids and/or (iv) sorption to the montmorillonite colloids. Subsequent to the sorption/desorption kinetics study, an additional experiment was conducted investigating the potential remobilization of radionuclides/colloids attached to the FFM used in the sorption/desorption kinetic experiments by contacting this FFM with pure Grimsel groundwater for 7 days. A positive correlation of 242Pu, 232Th(IV) and 237Np was observed with the Zn and Ni concentrations in the desorption experiments indicating a remobilization of sorbed montmorillonite colloids. The results of the study in hand highlight (i) the novel use of structural labeled colloids to decrease the uncertainties in the determination of nanoparticle attachment providing more confidence in the derived radionuclide desorption rates. Moreover, the data illustrate (ii) the importance of radionuclide colloid desorption to be considered in the analysis and application of colloid facilitated transport both in laboratory or in-situ experiments and numerical model simulations and (iii) a possible remobilization of sorbed colloids and associated radionuclides by desorption from the matrix material (FFM) under non-equilibrium conditions.

  8. Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall recurrence

    NASA Astrophysics Data System (ADS)

    Arunachalam, K.; Maccarini, P. F.; Craciunescu, O. I.; Schlorff, J. L.; Stauffer, P. R.

    2010-04-01

    The aim of this study was to investigate temperature and thermal dose distributions of thermobrachytherapy surface applicators (TBSAs) developed for concurrent or sequential high dose rate (HDR) brachytherapy and microwave hyperthermia treatment of chest wall recurrence and other superficial diseases. A steady-state thermodynamics model coupled with the fluid dynamics of a water bolus and electromagnetic radiation of the hyperthermia applicator is used to characterize the temperature distributions achievable with TBSAs in an elliptical phantom model of the human torso. Power deposited by 915 MHz conformal microwave array (CMA) applicators is used to assess the specific absorption rate (SAR) distributions of rectangular (500 cm2) and L-shaped (875 cm2) TBSAs. The SAR distribution in tissue and fluid flow distribution inside the dual-input dual-output (DIDO) water bolus are coupled to solve the steady-state temperature and thermal dose distributions of the rectangular TBSA (R-TBSA) for superficial tumor targets extending 10-15 mm beneath the skin surface. Thermal simulations are carried out for a range of bolus inlet temperature (Tb = 38-43 °C), water flow rate (Qb = 2-4 L min-1) and tumor blood perfusion (?b = 2-5 kg m-3 s-1) to characterize their influence on thermal dosimetry. Steady-state SAR patterns of the R- and L-TBSA demonstrate the ability to produce conformal and localized power deposition inside the tumor target sparing surrounding normal tissues and nearby critical organs. Acceptably low variation in tissue surface cooling and surface temperature homogeneity was observed for the new DIDO bolus at a 2 L min-1 water flow rate. Temperature depth profiles and thermal dose volume histograms indicate bolus inlet temperature (Tb) to be the most influential factor on thermal dosimetry. A 42 °C water bolus was observed to be the optimal choice for superficial tumors extending 10-15 mm from the surface even under significant blood perfusion. Lower bolus temperature may be chosen to reduce the thermal enhancement ratio (TER) in the most sensitive skin where maximum radiation dose is delivered and to extend the thermal enhancement of radiation dose deeper. This computational study indicates that well-localized elevation of tumor target temperature to 40-44 °C can be accomplished by large surface-conforming TBSAs using appropriate selection of coupling bolus temperature.

  9. Thermal Characteristics of ThermoBrachytherapy Surface Applicators (TBSA) for Treating Chestwall Recurrence

    PubMed Central

    Arunachalam, K.; Maccarini, P. F.; Craciunescu, O. I.; Schlorff, J. L.; Stauffer, P. R.

    2010-01-01

    Purpose To study temperature and thermal dose distributions of ThermoBrachytherapy Surface Applicators (TBSA) developed for concurrent or sequential high dose rate (HDR) brachytherapy and microwave hyperthermia treatment of chest wall recurrence and other superficial disease. Methods A steady state thermodynamics model coupled with the fluid dynamics of water bolus and electromagnetic radiation of hyperthermia applicator is used to characterize the temperature distributions achievable with TBSA applicators in an elliptical phantom model of the human torso. Power deposited by 915 MHz conformal microwave array (CMA) applicators is used to assess the specific absorption rate (SAR) distributions of rectangular (500 cm2) and L-shaped (875 cm2) TBSA. The SAR distribution in tissue and fluid flow distribution inside the Dual-Input Dual-Output (DIDO) water bolus are coupled to solve the steady state temperature and thermal dose distributions of rectangular TBSA (R-TBSA) for superficial tumor targets extending 10–15 mm beneath the skin surface. Thermal simulations are carried out for a range of bolus inlet temperature (Tb=38–43°C), water flow rate (Qb=2–4 L/min) and tumor blood perfusion (?b=2–5 kg/m3/s) to characterize their influence on thermal dosimetry. Results Steady state SAR patterns of R- and L-TBSA demonstrate the ability to produce conformal and localized power deposition inside tumor target sparing surrounding normal tissues and nearby critical organs. Acceptably low variation in tissue surface cooling and surface temperature homogeneity was observed for the new DIDO bolus at 2 L/min water flow rate. Temperature depth profiles and thermal dose volume histograms indicate bolus inlet temperature (Tb) to be the most influential factor on thermal dosimetry. A 42 °C water bolus was observed to be the optimal choice for superficial tumors extending 10–15 mm from the surface even under significant blood perfusion. Lower bolus temperature may be chosen to reduce thermal enhancement ratio (TER) in the most sensitive skin where maximum radiation dose is delivered and to extend thermal enhancement of radiation dose deeper. Conclusion This computational study indicates that well-localized elevation of tumor target temperature to 40–44 °C can be accomplished by large surface-conforming TBSA applicators using appropriate selection of coupling bolus temperature. PMID:20224154

  10. Remediation studies of trace metals in natural and treated water using surface modified biopolymer nanofibers

    NASA Astrophysics Data System (ADS)

    Musyoka, Stephen Makali; Ngila, Jane Catherine; Mamba, Bhekie B.

    In this study, remediation results of trace metals in natural water and treated water using three functionalized nanofiber mats of cellulose and chitosan are reported. The nanofiber materials, packed in mini-columns, were employed for the remediation of five toxic trace metals (Cd, Pb, Cu, Cr and Ni) from natural water samples. Trace metals in real water samples were undetectable as the concentrations were lower than the instrument’s detection limits of 0.27 × 10-3 (Cd) and 4.2 × 10-2 (Pb) ?g mL-1, respectively. However, after percolation through the functionalised biosorbents in cartridges, detectability of the metal ions was enhanced. The starting volume of the natural water sample was 100 mL, which was passed through a column containing the nanofibers sorbent and the retained metals eluted with 5 mL of 2.0 M nitric acid. The eluate was analyzed for metals concentrations. An enrichment factor of 20 for the metals was realized as a result of the pre-concentration procedure applied to handle the determination of the metals at trace levels. The order of remediation of the studied metals using the nanofibers was as follows: chitosan/PAM-g-furan-2,5-dione < cellulose-g-furan-2,5-dione < cellulose-g-oxolane-2,5-dione. The modified biopolymer nanofibers were able to adsorb trace metals from the river water and treated water, thereby confirming their capability of water purification. These materials are proposed as useful tools and innovative approach for improving the quality of drinking for those consumers in small scale households.

  11. Kinetic Analysis of Spontaneous Whisker Growth on Pre-treated Surfaces with Weak Oxide

    NASA Astrophysics Data System (ADS)

    Su, Chien-Hao; Chen, Hao; Lee, Hsin-Yi; Liu, Cheng Yi; Ku, Ching-Shun; Wu, Albert T.

    2014-09-01

    This study sought to clarify the relationship between cracks in surface oxide layers and the growth behavior of tin whiskers. The number, length, and total volume of extrusions were precisely calculated and residual stress was measured using synchrotron radiation x-ray diffractometry. The aim was to elucidate the influence of stress on the driving force and flux involved in atomic diffusion. The distance between weak spots was shown to be the most significant factor involved in the growth of whiskers. The results could explain why increasing the density of the surface weak spots could reduce the number of long whiskers. Measuring the dimensions of whiskers yielded a precise kinetic model capable of describing the migration of atoms to the root of whiskers, resulting in their spontaneous growth.

  12. Montmorillonite Clay-Catalyzed Synthesis of RNA Oligomers

    NASA Astrophysics Data System (ADS)

    Ferris, J. P.; Miyakawa, S.; Huang, W.; Joshi, P.

    2005-12-01

    It is proposed that catalysis had a central role in the origins of life. This will be illustrated using the montmorillonite clay-catalyzed synthesis of oligomers of RNA from activated monomers, (Ferris and Ertem, 1993) a possible step in the origin of the RNA world (Ferris, 2005). Structural analysis of oligomers formed in the reaction of the activated monomer of 5'-AMP with that of 5'-CMP demonstrated that the oligomers formed were not produced by random synthesis but rather the sequences observed were directed by the montmorillonite catalyst (Miyakawa and Ferris, 2003). RNA oligomers containing up to 40 mers have been synthesized in reactions performed in water at 25 oC in the presence of montmorillonite (Huang and Ferris, 2003). Analysis of the structure elements in these oligomers from the 7 to 39 mers showed that they did not vary. Reaction of D, L-mixtures of the activated monomers of A and U resulted in the formation of greater amounts of the homochiral amounts of dimers and trimers of A than would be expected if there was no selectivity in the reaction. A limited number of the dimers and trimers of U were also formed but here the selectivity was for the formation of an excess of heterochiral products (Joshi et al., 2000). A postulate that explains why homochiral trimers of U are not formed and the significance of catalysis in prebiotic synthesis will be discussed. Ferris, J.P. (2005) Origins of life, molecular basis of. In R.A. Meyers, Ed. Encyclopedia of Molecular Cell Biology and Molecular Medicine, 10. Wiley-VCH Verlag, Weinheim, Germany. Ferris, J.P., and Ertem, G. (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J. Am. Chem. Soc., 115, 12270-12275. Huang, W., and Ferris, J.P. (2003) Synthesis of 35-40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem. Commun., 1458-1459. Joshi, P.C., Pitsch, S., and Ferris, J.P. (2000) Homochiral selection in the montmorillonite-catalyzed and uncatalyzed prebiotic synthesis of RNA. Chem. Commun., 2497-2498. Miyakawa, S., and Ferris, J.P. (2003) Sequence- and Regioselectivity in the montmorillonite-catalyzed synthesis of RNA. J. Am. Chem. Soc., 125, 8202-8208.

  13. Surface and pore structure of deoiled acid-and heat-treated spent bleaching clays

    Microsoft Academic Search

    K. F. Ng; N. K. Nair; K. Y. Liew; Ahmad M. Noor

    1997-01-01

    Samples of spent bleaching clay were deoiled by hexane, methanol, hexane-methanol, and supercritical CO2 extractions. The deoiled clays were regenerated by acid and heat treatments. Nitrogen adsorption isotherms for these samples\\u000a are type IV with hysteresis loops corresponding to type H3, indicating slit-shaped pores. Used deoiled and dried samples have\\u000a smaller surface areas and pore volumes than unused clay. The

  14. The termiticidal properties of superhydrophobic wood surfaces treated with ZnO nanorods

    Microsoft Academic Search

    Todd Shupe; Cheng Piao; Cran Lucas

    ZnO is a cost-effective and more environmentally friendly wood preservative than other metallic-based formulations. ZnO-stearate\\u000a treatment imparts superhydrophobicity to wood surfaces, thereby providing triple protection to wood products, i.e., superhydrophobicity,\\u000a inhibition to insects and microorganisms, and UV radiation protection. The objective of this study was to evaluate ZnO-stearate\\u000a hydrophobic treatments of southern pine sapwood for resistance to Formosan subterranean termites.

  15. Treating Cutaneous T-Cell Lymphoma with Highly Irregular Surfaces with Photon Irradiation Using Rice as Tissue Compensator

    PubMed Central

    Majithia, Lonika; Rong, Yi; Siddiqui, Farzan; Hattie, Todd; Gupta, Nilendu; Weldon, Michael; Chakravarti, Arnab; Wong, Henry K.; Porcu, Pierluigi; Xu-Welliver, Meng

    2015-01-01

    Purpose: Cutaneous T-cell lymphoma (CTCL) is known to have an excellent response to radiotherapy, an important treatment modality for this disease. In patients with extremity and digit involvement, the irregular surface and depth variations create difficulty in delivering a homogenous dose using electrons. We sought to evaluate photon irradiation with rice packing as tissue equivalence and determine clinical tolerance and response. Materials and methods: Three consecutive CTCL patients with extensive lower extremity involvement including the digits were treated using external beam photon therapy with rice packing for tissue compensation. The entire foot was treated to 30–40?Gy in 2–3?Gy per fraction using 6?MV photons prescribed to the mid-plane of an indexed box filled with rice in which the foot was placed. Treatment tolerance and response were monitored with clinical evaluation. Results: All patients tolerated the treatment without treatment breaks. Toxicities included grade 3 erythema and desquamation with resolution within 4?weeks. No late toxicities were observed. All patients had a partial response by 4?weeks after therapy with two patients achieving a complete response. Patients reported improved functionality after treatment. No local recurrence has been observed. Conclusion: Tissue compensation with rice packing offers a convenient, inexpensive, and reproducible method for the treatment of CTCL with highly irregular surfaces. PMID:25759793

  16. Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites

    PubMed Central

    Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-01-01

    Abstract The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n?=?3–16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. Key Words: Mars—Origin of life—Montmorillonite—Mineral catalysis—Layer charge density—X–ray diffractometry. Astrobiology 10, 743–749. PMID:20854214

  17. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hagan, William J., Jr.

    1986-01-01

    The binding of AMP to Zn(2+)-montmorillonite is investigated in the presence of salts and Good's zwitterion buffers, PIPES and MES. The initial concentrations of nucleotide and the percent adsorbtion are used to calculate the adsorption isotherms, and the Langmuir adsorption equation is used for the analysis of data. The adsorption coefficient was found to be three times greater in the presence of 0.2 M PIPES than in its absence. In addition, basal spacings measured by X-ray diffraction were increased by the buffer. These results are interpreted in terms of a model in which the adsorption of AMP is mediated by a Zn(2+) complex of PIPES in different orientations in the interlamellar region of the montmorillonite. Mixed ligand complexes of this type are reminiscent of the complexes observed between metal ions and biological molecules in living systems.

  18. Molecular modeling of polymer-clay nanocomposite precursors: Lysine in montmorillonite interlayers.

    PubMed

    Davis, Alicia M; Joanis, Gary; Tribe, Lorena

    2008-04-30

    The layered structure of clays with interlayer cations leads to unique chemical and mechanical properties, which have been capitalized on in the field of polymer/layered silicate nanocomposites. Hydrophilic silica surfaces can become organophilic with the inclusion of alkylammonium cations, which improve the wetting characteristics of the polymer matrix. In fact, the molecular level interactions of amino acids, either natural or non-natural, with clay surfaces are at the heart of fields of study as diverse as nanocomposites fabrication, drug delivery, bio-remediation of soils and catalysis of biological polymers, to name a few. The ubiquity of these systems and the potential uses to which they could be put suggests the necessity of a deeper understanding of the interplay of bonds, conformations, and configurations between the molecules and the hosts. The interactions of the amino acid lysine with sodium montmorillonite were studied using theoretical molecular modeling methods. The interlayer spacing of montmorillonite was increased by incorporating water molecules and allowing the system to evolve with molecular mechanics. Care was taken to retain the sodium cations in the interlayer. The initial amino acid conformation was obtained surrounding the molecule with numerous discrete water molecules and minimizing the system at the semi empirical level. The optimized amino acid was then placed in the interlayer space in a series of initial positions. Molecular mechanics calculations were performed and the final positions were analyzed. The results tended to indicate the preponderance of configurations which included surface-sodium-amino acid complexes with a variety of spatial arrangements. These results were compared with molecular dynamics calculations of similar systems from the literature. PMID:17987601

  19. Toxicity evaluation of surface water treated with different disinfectants in HepG2 cells.

    PubMed

    Marabini, Laura; Frigerio, Silvia; Chiesara, Enzo; Radice, Sonia

    2006-01-01

    It is well known that water disinfection through chlorination causes the formation of a mixture of disinfection by-products (DBPs), many of which are genotoxic and carcinogenic. To demonstrate the formation of such compounds, a pilot water plant supplied with water from Lake Trasimeno was set up at the waterworks of Castiglione del Lago (PG, Italy). The disinfectants, continuously added to pre-filtered lake water flowing into three different basins, were sodium hypochlorite, chlorine dioxide and peracetic acid, an alternative disinfectant used until now for disinfecting waste waters, but not yet studied for a possible use in drinking water treatment. The aim of this study was to evaluate the formation during the disinfection processes of some toxic compounds that could explain the genotoxic effects of drinking waters. Differently treated waters were concentrated by solid-phase adsorption on silica C(18) columns and toxicity was assessed in a line of human hepatoma cells (HepG2), a metabolically competent cellular line very useful for human risk evaluation. The seasonal variability of the physical-chemical water characteristics (AOX, UV 254 nm, potential formation of THM, pH and temperature) made indispensable experimentation with water samples taken during the various seasons. Autumn waters cause greater toxicity compared to those of other seasons, in particular dilution of the concentrate at 0.5l equivalent of disinfected waters with chlorine dioxide and peracetic acid causes a 55% reduction in cellular vitality while the cellular vitality is over 80% with the all other water concentrates. Moreover it is very interesting underline that non-cytotoxic quantities of the autumnal water concentrates cause, after 2h treatment, a decrease in GSH and a statistically significant increase in oxygen radicals, while after prolonged treatment (24h) cause a GSH increase, without variations in the oxygen radical content. This phenomenon could be interpreted as the cellular adaptation response to an initial oxidative stress. PMID:16360191

  20. Polypyrrole-Montmorillonite Nanocomposite: A Composite Fast Ion Conductor

    Microsoft Academic Search

    D. M. M. Krishantha; R. M. G. Rajapakse; D. T. B. Tennakoon; H. V. R. Dias

    2006-01-01

    Cu(II)-exchanged montmorillonite [Cu(II)-MMT] takes up pyrrolium ions by ion exchange. Two pyrrolium ions are inserted for each Cu(II) ion expelled from its interlayers. These pyrrolium ions undergo spontaneous polymerization because of the remaining Cu(II) ions present within the intergalleries to form Cu(I)-polypyrrole-MMT nanocomposite. The polypyrrole (PPY) dispels any water already present within the intergalleries and the material becomes hydrophobic and

  1. AC impedance analysis of polyaniline–montmorillonite nanocomposites

    Microsoft Academic Search

    D. M. M. Krishantha; R. M. G. Rajapakse; D. T. B. Tennakoon; H. V. R. Dias

    2006-01-01

    Investigation of the electrical properties of polymer–clay nanocomposites is important in the development of nanoelectronic devices. These nanocomposites may be prepared by intercalating suitable monomers within interlayer spaces of expanding layered clay materials, followed by in situ polymerization. We made use of this approach to prepare montmorillonite–polyaniline nanocomposites by ion-exchanging the intergallery cations for anilinium ions and subsequently polymerizing the

  2. Nonlinear optical polyimide\\/montmorillonite nanocomposites consisting of azobenzene dyes

    Microsoft Academic Search

    Tsung-Yi Chao; Huey-Ling Chang; Wen-Chiung Su; Jeng-Yue Wu; Ru-Jong Jeng

    2008-01-01

    A reactive organoclay was formed using trifunctional 1,1,1-tris[4-(4-amino-2-trifluoromethylphenoxy)phenyl] as a swelling agent for the silicate layers of montmorillonite. One of the functional groups of the swelling agents formed an ionic bond with the negatively charged silicates, whereas the remaining functional groups were available for further reaction with poly(amic acid) end capped with anhydride groups. Subsequently, the hydroxyl groups of the

  3. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    NASA Astrophysics Data System (ADS)

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-04-01

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.

  4. Enthalpy changes accompanying the collapse of montmorillonite layers and the penetration of electrolyte into interlayer space

    SciTech Connect

    Yan, L.; Low, P.F.; Roth, C.B. [Purdue Univ., West Lafayette, IN (United States). Dept. of Agronomy] [Purdue Univ., West Lafayette, IN (United States). Dept. of Agronomy

    1996-09-25

    The enthalpy changes, {Delta}H, in suspensions of Li-, Na-, and K-montmorillonite were determined as functions of the molal concentrations of LiCl, NaCl, and KCl, respectively, by microcalorimetry. These changes were compared with the corresponding changes in interlayer distance, {lambda}, as determined by X-ray diffraction. It was found that {Delta}H values accompanying the collapse of the montmorillonite layers from {lambda} > 14 nm to {lambda} {approx_equal} 1.0 nm were essentially negligible; however, {Delta}H values accompanying the collapse of layers of Li- and Na-montmorillonite from {lambda} {approx_equal} 1.0 nm to {lambda} {approx_equal} 0.6 nm, and the collapse of layers of K-montmorillonite from {lambda} {approx_equal} 0.6 nm, were not negligible. No additional collapse of Li- and Na-montmorillonite layers occurred after {lambda} {approx_equal} 0.6 nm, and for K-montmorillonite layers after {lambda} {approx_equal} 0.3 nm, but {Delta}H continued to change with increasing salt addition. This change was attributed to the penetration of electrolyte into the interlayer space. A notable observation was that the value of {Delta}H was positive for Li-montmorillonite, but negative for Na- and K-montmorillonite. These observations were interpreted to mean that {Delta}H changes in the montmorillonite suspension were largely attributable to reorganization of the interlayer space by the added electrolytes.

  5. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: The effect of mononucleotide structure on phosphodiester bond formation

    Microsoft Academic Search

    James P. Ferris; Kamaluddin

    1989-01-01

    Adenine deoxynucleotides bind more strongly to Na+-montmorillonite than do the corresponding ribonucleotides. Thymidine nucleotides binds less strongly to Na+-montmorillonite than do the corresponding adenine deoxynucleotides. Oligomers of 2'-dpA up to the tetramer were detected in the reaction 2'-d-5'-AMP with EDAC (a water-soluble carbodiimide) in the presence of Na+-montmorillonite. Reaction of 3'-d-5'-AMP with EDAC on Na+-montmorillonite yields 3'-d-2',5'-pApA while the reaction

  6. Vis-NIR Spectroscopy of Mineral Mixtures with Montmorillonite and Silica: Implications for Detecting Alteration Products on Mars

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.

    2009-12-01

    Introduction. A variety of secondary silicates have been identified on Mars using Vis-NIR spectroscopic data from the Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activite (OMEGA) on Mars Express and the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter, including smectite, chlorite, kaolinite, and illite clay minerals and hydrous amorphous silica [1-4]. The detection of these materials is significant because they provide important information about past aqueous environments on Mars. Vis-NIR spectra of specific secondary silicates can be distinguished by the positions and shapes of hydration features. Here, we investigate the detection of secondary silicates by vis-NIR spectroscopy of mixtures with basaltic igneous minerals and either hydrous amorphous silica or montmorillonite. Experimental Procedure. Minor amounts of <2 ?m amorphous silica or montmorillonite clay (2.5, 5, 10, and 20 wt%) were physically mixed with augite, andesine, or olivine (75-106 ?m). A portion of each mixture was compressed into a pellet. Vis-NIR spectra (0.32-2.55 ?m) of particulate and pellet mixtures were measured at RELAB at Brown University, and each spectrum was visually inspected to determine detection limits of secondary silicates based on hydration features. Preliminary Results. Absorptions at 1.4 and 1.9 ?m (OH stretch overtone and H2O bend and stretch, respectively) occur in almost all mixture spectra; however, the strength, shape, and position are dependent on the igneous mineral and secondary silicate abundance in the mixture. The morphology of absorptions at ~2.2 ?m (from metal-OH bonds) differs between amorphous silica and montmorillonite [3,4], so we use these absorptions to determine the detection limits of amorphous silica and montmorillonite. The 2.2 ?m absorption is present in all montmorillonite-mixture spectra, indicating the montmorillonite detection limit is <2.5 wt%; however, the 2.2 ?m absorption is generally present in silica-mixture spectra that contain >10 wt% silica. Conclusions. Vis-NIR spectra of our mineral mixtures show that montmorillonite has a lower detection limit than amorphous silica, based on the presence of the ~2.2 ?m absorption. This indicates that chemically weathered surfaces on Mars that contain silica must have much more alteration material to be detected than surfaces with clay. Furthermore, the shape and position of the 1.4 and 1.9 ?m features changes with igneous mineral type and silica abundance, which adds to the difficulty in using vis-NIR to detect amorphous silica on Mars. Our study is consistent with a previous study that demonstrates the inability to detect thin silica coatings on basaltic particulates by vis-NIR spectroscopy [5], and suggests acidic chemical weathering and the precipitation of amorphous silica on Mars may be more pervasive and intense than vis-NIR spectroscopic data indicate. References. [1] J.-P. Bibring et al. (2006) Science, 312, 400-404. [2] F. Poulet et al. (2005) Nature, 438, 623-627. [3] J.F. Mustard et al. (2008) Nature, 454, 305-309. [4] R.E. Milliken et al. (2008) Geology, 36, 847-850. [5] M.D. Kraft et al. (2007) 7th Int. Conf. Mars, 3396.

  7. Molecular dynamics simulation of thermomechanical properties of montmorillonite crystal. 3. montmorillonite crystals with PEO oligomer intercalates.

    PubMed

    Mazo, Mikhail A; Manevitch, Leonid I; Gusarova, Elena B; Shamaev, Mikhail Yu; Berlin, Alexander A; Balabaev, Nikolay K; Rutledge, Gregory C

    2008-03-27

    We present the results of molecular dynamics (MD) simulation of the structure and thermomechanical behavior of Wyoming-type Na+-montmorillonite (MMT) with poly(ethylene oxide) (PEO) oligomer intercalates. Periodic boundary conditions in all three directions and simulation cells containing two MMT lamellae [Si248Al8][Al112Mg16]O640[OH]128 oriented parallel to the XY-plane were used. The interlamellar space, or gallery, between neighboring MMT lamellae was populated by 24 Na+ counterions and PEO macromolecules of different lengths, ranging from 2 up to 240 repeat units. We considered three different loadings of PEO within the gallery: 80, 160, and 240 repeat units, corresponding to 13, 23, and 31 wt % PEO based on total mass of the nanocomposite, respectively. In the cases of 13 and 23 wt %, the polymer chains formed one or two well-defined amorphous layers with interlayer distances of 1.35 and 1.8 nm, respectively. We have observed also formation of a wider monolayer gallery with interlayer distances of 1.6 nm. Three-layer PEO films formed in the case of 31 wt % loading. The thermal properties were analyzed over the range 300-400 K, and the isothermal linear compressibility, transversal moduli, and shear moduli were calculated at 300 K. These properties are compared with the results of our simulation of thermal and mechanical properties of MMT crystal with galleries filled by one or two water layers as well as with those of an isolated clay nanoplate. PMID:18311960

  8. Characterization of Aminopropyltriethoxysilane-functionalized Polycaprolactone-Montmorillonite Beads for Heavy Metal Biosorption

    NASA Astrophysics Data System (ADS)

    Magdaluyo, E., Jr.; Dayhon, E.; delos Angeles, M.; dela Cruz, Rj; de Sales-Papa, L.

    2011-10-01

    The study focuses on the fabrication of montmorillonite (MMT) based composites via functionalization with polycaprolactone (PCL) and aminopropyltriethoxysilane (APTS) for adsorption of divalent metal ions Cu2+ and Fe2+. Surface morphology of the composites revealed that the PCL-APTS-MMT beads have finer particle size compared to PCL-MMT. Infrared spectroscopy analyses confirmed the covalent interaction of the PCL to the MMT matrix and the APTS-PCL-MMT composite. Thermogravimetric analysis showed a decrease in thermal stability for the composite powders. Analyses with Langmuir and Freundlich isotherm models revealed greater maximum adsorption capacity for the PCL-APTS-MMT composite compared to PCL-MMT. The divalent ions could be removed by the obtained composite material through the possible mechanisms of ion exchange and chelation.

  9. Relevance of Pore Structure and Diffusion-Accessible Porosity for Calcium-Bromide Diffusion in Na-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Davis, J. A.

    2013-12-01

    Bentonite is an important hydraulic barrier material in many geotechnical applications, such as geosynthetic clay liners at solid waste landfills, or as proposed backfill material in engineered barrier systems at nuclear waste repositories. The limited permeability of bentonite is at least partially the result of its low porosity and the swelling of Na-montmorillonite, its major mineralogical component, in water. Due to these characteristics, the transport of contaminants through bentonite layers is expected to be limited and dominated by diffusion processes. In bentonite, the majority of the connected porosity is associated with montmorillonite particles, which consist of stacks of negatively-charged smectite layers. As a result, compacted smectite has two types of porosities: (1) large pores between clay particles, where diffusion is less affected by electric-double-layer forces, and (2) very thin interlayer spaces within individual clay particles, where diffusion is strongly impacted by surface charge and ionic strength. As diffusion is expected to take place differently in these two volumes, this essentially creates two 'small-scale diffusion pathways', where each may become dominant under different system conditions. Furthermore, for surface-reactive solutes, these two porous regimes differ with regards to surface complexation reactions. Electrostatic and hydration forces only are thought to govern interlayer binding, whereas chemical bonding with surface ligands is dominant for reactions at edge sites of layered clay particles and for iron oxide nanoparticles on outer basal planes. In this presentation, we will demonstrate the relevance of clay pore structure and diffusion-accessible porosity for solute diffusion rates, and hence, contaminant mobility in bentonites. First, we will discuss the effects of chemical solution conditions on montmorillonite properties, such as clay surface charge, diffusion-accessible porosity, clay tortuosity and constrictivity, and evaluate the implications for metal diffusion coefficients. Furthermore, we will highlight the importance of solute charge for solute diffusion rates based on results from a calcium-bromide (CaBr2) through-diffusion experiment in Na-montmorillonite. In this experiment, dry, purified Na-montmorillonite (SWy-2, Clay Minerals Society) was packed into a diffusion cell, allowed to equilibrate with the background electrolyte (pH=7, I=0.1 M NaCl), and then exposed to a constant CaBr2 concentration gradient between two solution reservoirs. After reaching steady-state conditions for the diffusive fluxes of Ca and Br, cumulative mass data could be used to compute effective and apparent Ca and Br diffusion coefficients. Furthermore, the diffusion data for an uncharged, non-reactive tracer (tritiated water) allowed us to calculate the clay porosity in the system, and to determine Ca and Br sorption distribution coefficients (Kd values). Our results indicate that Ca diffusion in Na-montmorillonite is slower than for the non-reactive tracer, most likely due to Ca exchange reactions within the clay interlayers. In contrast, rates of Br diffusion are faster than for an uncharged tracer, indicating solute-specific differences in diffusion-accessible porosities and/or effective concentration gradients in pore spaces.

  10. Correlation between the extent of catalytic activity and charge density of montmorillonites.

    PubMed

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH?-(CH?)(n)-NH?](+), where n?=?3-16 and 18, and then measuring d(???), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. PMID:20854214

  11. Experimental evidence for calcium-chloride ion pairs in the interlayer of montmorillonite. A XRD profile modeling approach

    E-print Network

    Boyer, Edmond

    Experimental evidence for calcium-chloride ion pairs in the interlayer of montmorillonite. A XRD Keywords: montmorillonite, ion pairs, XRD profile modeling. 1 #12;ABSTRACT Montmorillonite was equilibrated properties, were characterized from the modeling of experimental X-ray diffraction (XRD) profiles

  12. Organo-montmorillonite as substitute of carbon black in natural rubber compounds

    Microsoft Academic Search

    M Arroyo; M. A López-Manchado; B Herrero

    2003-01-01

    The use of octadecylamine modified montmorillonite as substitute of carbon black in natural rubber (NR) compounds is studied. Rubber with 10 parts per hundred resin (phr) of pristine (clay) and octadecylamine modified montmorillonite (organoclay) were compared with 10 and 40phr carbon black as filler. The modified silicate is analysed by X-ray, FTIR and thermogravimetric analysis. Vulcametric curves show that the

  13. Metal ions exchanged montmorillonite as catalyst for alkylation of benzene with 1-dodecene

    Microsoft Academic Search

    Firouzeh Zarkesh; Faezeh Farzaneh; Mehdi Ghandi

    2006-01-01

    Summary  About 8.5% of benzene was alkylated with 1-dodecene in the presence of Na+-montmorillonite. When the reaction was carried out with montmorillonite exchanged with Mn2+, Cu2+, Ni2+, Zn2+ and Fe2+ ions as catalyst (M2+\\/mont.), 91 to 95% of 1-dodecene was remarkably converted to a mixture of linear monoalkylbenzenes.

  14. Adsorption of imidazolium and pyridinium ionic liquids onto montmorillonite : characterization and thermodynamic calculations

    E-print Network

    Paris-Sud XI, Université de

    1 Adsorption of imidazolium and pyridinium ionic liquids onto montmorillonite : characterization generation ionic liquids (RTILs : BMImCl, OMImCl, AMImCl, BPyBr and OPyBr) were intercalated into the layered: Montmorillonite; Ionic liquids; Adsorption; Thermodynamic parameters 1. Introduction Room Temperature Ionic

  15. Surface degradation of CeO2 stabilized acrylic polyurethane coated thermally treated jack pine during accelerated weathering

    NASA Astrophysics Data System (ADS)

    Saha, Sudeshna; Kocaefe, Duygu; Boluk, Yaman; Pichette, Andre

    2013-07-01

    The thermally treated wood is a new value-added product and is very important for the diversification of forestry products. It drew the attention of consumers due to its attractive dark brown color. However, it loses its color when exposed to outside environment. Therefore, development of a protective coating for this value added product is necessary. In the present study, the efficiency of CeO2 nano particles alone or in combination with lignin stabilizer and/or bark extracts in acrylic polyurethane polymer was investigated by performing an accelerated weathering test. The color measurement results after accelerated weathering demonstrated that the coating containing CeO2 nano particles was the most effective whereas visual assessment suggested the coating containing CeO2 nano particles and lignin stabilizer as the most effective coating. The surface polarity changed for all the coatings during weathering and increase in contact angle after weathering suggested cross linking and reorientation of the polymer chain during weathering. The surface chemistry altered during weathering was evaluated by ATR-FTIR analysis. It suggested formation of different carbonyl byproducts during weathering. The chain scission reactions of the urethane linkages were not found to be significant during weathering.

  16. Characterization of cell surface polypeptides of unfertilized, fertilized, and protease-treated zona-free mouse eggs

    SciTech Connect

    Boldt, J.; Gunter, L.E.; Howe, A.M. (Medical College of Georgia, Augusta (USA))

    1989-05-01

    The polypeptide composition of unfertilized, fertilized, and protease-treated zona-free mouse eggs was evaluated in this study. Zona-free eggs were radioiodinated by an Iodogen-catalyzed reaction. Light microscopic autoradiography of egg sections revealed that labeling was restricted to the cell surface. Labeled eggs were solubilized, and cell surface polypeptides were identified by one-dimensional SDS polyacrylamide gel electrophoresis and autoradiography. The unfertilized egg demonstrated 8-10 peptides that incorporated {sup 125}I, with major bands observed at approximately 145-150, 94, and 23 kilodaltons (kD). Zona-free eggs fertilized in vitro and then radiolabeled demonstrated several new bands in comparison to unfertilized eggs, with a major band appearing at approximately 36 kD. Treatment of radiolabeled unfertilized eggs with either trypsin or chymotrypsin (1 mg/ml for 5-20 min) caused enzyme-specific modifications in labeled polypeptides. Trypsin (T) treatment resulted in time-dependant modification of the three major peptides at 145-150, 94, and 23 kD. Chymotrypsin (CT) treatment, in contrast, was associated with loss or modification of the 94 kD band, with no apparent effect on either the 145-150 or 23 kD band. Taken together with previous data indicating that T or CT egg treatment interferes with sperm-egg attachment and fusion, these results suggest a possible role for the 94 kD protein in sperm-egg interaction.

  17. Technical Note The Use of a Very Large Constructed SubSurface Flow Wetland to Treat Glycol-Contaminated Stormwater from Aircraft De-Icing Operations

    Microsoft Academic Search

    JAMES HIGGINS; MICHAEL MACLEAN

    All of the pollutants found in stormwater runoff at airports, including surface and aircraft de-icing\\/anti-icing glycols, can be treated and removed to low lev- els in well-designed sub-surface flow (SSF) constructed wetland systems. There are two common forms of constructed wetlands used for pollution control: those where water flows over the surface among wetland plants (free water sur- face or

  18. Monte Carlo molecular simulation of the hydration of K-montmorillonite at 353 K and 625 bar.

    PubMed

    Chávez, M de Lourdes; de Pablo, Liberto; de Pablo, Juan J

    2004-11-23

    Monte Carlo molecular simulations of the hydration of K-saturated Wyoming-type montmorillonite at constant stress in the NPzzT ensemble and at constant chemical potential in the grand canonical muVT ensemble, under basin-like conditions of 353 K and 625 bar, show a strong tendency of the K+ ions to adhere to the siloxane surface, forming predominant inner-sphere complexes with tetrahedral oxygen atoms and adsorbed water molecules. Simulations in the grand canonical ensemble predict that none of the K-montmorillonite hydrates, the one-, two-, and three-layer hydrates, are stable in this environment of high depth, temperature, and pressure. The most nearly stable configuration corresponds to the one-layer hydrate, characterized by a d001 spacing of 12.75 A, the adsorbed water being 60 molecules/layer or 180.83 mg of H2O/g of clay, an internal energy of -22.73 kcal/mol, an interlayer density of 0.365 g/mL, and a pressure tensor, Pzz, of 1999.9 bar. The interlayer structure consists of two close layers of water molecules 0.50 A from the midplane, with broad shoulders on the sides, the protons oriented toward the midplane and the siloxane surfaces, and the K+ ions close to the clay surfaces and on the interlayer midplane. PMID:15544414

  19. Do Contaminants Originating from State-of-the-Art Treated Wastewater Impact the Ecological Quality of Surface Waters?

    PubMed Central

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive. PMID:23593263

  20. Speciation of uranium in surface-modified, hydrothermally treated, (UO{sub 2}){sup 2+}-exchanged smectite clays

    SciTech Connect

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.; Wasserman, S.R. [Argonne National Lab., IL (United States). Chemistry Div.

    1997-08-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS data from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.

  1. An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: performance of pellet versus fiber sorbents.

    PubMed

    Saha, Arindom; Abram, David N; Kuhl, Kendra P; Paradis, Jennifer; Crawford, Jenni L; Sasmaz, Erdem; Chang, Ramsay; Jaramillo, Thomas F; Wilcox, Jennifer

    2013-12-01

    This work explores surface changes and the Hg capture performance of brominated activated carbon (AC) pellets, sulfur-treated AC pellets, and sulfur-treated AC fibers upon exposure to simulated Powder River Basin-fired flue gas. Hg breakthrough curves yielded specific Hg capture amounts by means of the breakthrough shapes and times for the three samples. The brominated AC pellets showed a sharp breakthrough after 170-180 h and a capacity of 585 ?g of Hg/g, the sulfur-treated AC pellets exhibited a gradual breakthrough after 80-90 h and a capacity of 661 ?g of Hg/g, and the sulfur-treated AC fibers showed no breakthrough even after 1400 h, exhibiting a capacity of >9700 ?g of Hg/g. X-ray photoelectron spectroscopy was used to analyze sorbent surfaces before and after testing to show important changes in quantification and oxidation states of surface Br, N, and S after exposure to the simulated flue gas. For the brominated and sulfur-treated AC pellet samples, the amount of surface-bound Br and reduced sulfur groups decreased upon Hg capture testing, while the level of weaker Hg-binding surface S(VI) and N species (perhaps as NH4(+)) increased significantly. A high initial concentration of strong Hg-binding reduced sulfur groups on the surface of the sulfur-treated AC fiber is likely responsible for this sorbent's minimal accumulation of S(VI) species during exposure to the simulated flue gas and is linked to its superior Hg capture performance compared to that of the brominated and sulfur-treated AC pellet samples. PMID:24256554

  2. An Infrared Spectroscopy Study Of Pb(II) And Siderophore Sorption To Montmorillonite

    NASA Astrophysics Data System (ADS)

    Maurice, P. A.; Hunter, E. L.; Quicksall, A. N.; Haack, E.; Johnston, C. T.

    2010-12-01

    Aerobic microorganisms exude low molecular weight organic ligands known as siderophores in order to acquire nutrient Fe. Because siderophores can also bind other metals such as Pb, Zn, and Cd, they may affect metal sorption, fate, and transport. This study combined batch sorption experiments, thermodynamic modeling, X-ray diffraction (XRD), and spectroscopic analysis, to investigate Pb(II) and desferrioxamine B (DFOB) sorption to montmorillonite, alone and in combination, at pH 3-9, ~22 C, and in 0.1 M NaCl. Samples at pH 3, 5.5, and 7.5 were analyzed by XRD and Fourier-Transform Infrared Spectroscopy (FTIR) and samples at pH5.5 were analyzed by in-situ Attenuated Total Reflection Infrared Spectroscopy (ATR-FTIR). DFOB does not bind Pb substantially at pH 3, and sorption results showed that the ligand only minimally affects Pb sorption at this pH. However, combination of batch sorption experiments with XRD, FTIR, and ATR-FTIR analysis suggested that Pb(II)/DFOB (co)absorption in the interlayer is likely an important sorption mechanism at pH 5.5 and 7.5 under both air-dried and aqueous conditions. The precise structure of the sorption complex(es) could not be determined by these methods. Some adsorption of Pb(II)/DFOB to the external clay surface is also possible. In the absence of DFOB, a Pb-carbonate complex or precipitate (perhaps hydrocerrusite) was detected by FTIR. Overall, results showed that a microbial siderophore may affect Pb sorption to montmorillonite, that (co)absorption in the interlayer region can be important, and that sorption effects can vary substantially depending upon solution conditions.

  3. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN; Ertem, Gozen

    1990-01-01

    The 2(prime)-d-5(prime)-GMP and 2(prime)-d-5(prime)-AMP bind 2 times more strongly to montmorillonite 22A than do 2(prime)-d-5(prime)-CMP and 5(prime)-TMP. The dinucleotide d(pG)2 forms in 9.2 percent yield and the cyclic dinucleotide c(dpG)2 in 5.4 percent yield in the reaction of 2(prime)-d-5(prime)-GMP with EDAC in the presence of montmorillonite 22A. The yield of dimers which contain the phosphodiester bond decreases as the reaction medium is changed from 0.2 M NaCl to a mixture of 0.2 M NaCl and 0.075 M MgCl2. A low yield of d(pA)2 was observed in the condensation reaction of 5(prime)-ImdpA on montmorillonite 22A. The yield of d(pA)2 obtained when EDAC is used as the condensing agent increases with increasing iron content of the Na(+)-montmorillonite used as catalyst. Evidence is presented which shows that the acidity of the Na(+)-montmorillonite is a necessary but not sufficient factor for the montmorillonite catalysis of phosphodiester bond formation.

  4. Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites.

    PubMed

    Islam, Md Shahidul; Rahaman, Md Saifur; Yeum, Jeong Hyun

    2015-01-22

    A novel super-absorbent material was fabricated by electrospinning the natural polysaccharide pullulan (PULL) with polyvinyl alcohol (PVA) and montmorillonite (MMT) clay to form nonwoven webs, which were then heat treated. Transmission electron microscopy (TEM) micrographs, X-ray diffraction (XRD) patterns, and Fourier transform infrared (FTIR) analysis of the novel super-absorbent nanofibers suggest the coexistence of PULL, PVA, and MMT through the exfoliation of MMT layers in the super-absorbent nanofiber composite. The heat-treated PULL/PVA/MMT webs loaded with 5 wt% MMT electrospun nanofibers exhibited a water absorbency of 143.42 g g(-1) in distilled water and a water absorbency of 39.75 g g(-1) in a 0.9 wt% NaCl solution. Under extremely dry conditions, the PULL/PVA/MMT webs exhibited the ability to retain 43% distilled water and 38% saline water after being exposed to the atmosphere for one week. The heat treatment improved the crystallinity of the electrospun PULL/PVA/MMT super-absorbent webs and thus made the webs highly stable in aqueous environments. Overall, the addition of MMT resulted in improved thermal stability and mechanical properties and increased the water absorbency of the PULL/PVA/MMT composite. PMID:25439870

  5. Sorption and Fractionation of a Peat Derived Humic Acid by Kaolinite, Montmorillonite, and Goethite *1 *1 Project supported by the Federal Hatch Program, USA (No. MAS 8532); the Cheung Kong Scholar Program, Ministry of Education of China; and the CSREES, USDA National Research Initiative Competitive Grants Program, USA (No. 2005-35107-15278)

    Microsoft Academic Search

    S. GHOSH; Zhen-Yu WANG; S. KANG; P. C. BHOWMIK; B. S. XING

    2009-01-01

    Sorption of humic acid (HA) on mineral surfaces has a profound interest regarding the fate of hydrophobic organic contaminants (HOCs) and carbon sequestration in soils. The objective of our study is to determine the fractionation behavior of HA upon sorption on mineral surfaces with varying surface properties. HA was coated sequentially on kaolinite (1:1 clay), montmorillonite (2:1 clay), and goethite

  6. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  7. Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    PubMed Central

    2010-01-01

    Background Entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana, are promising bio-pesticides for application against adult malaria mosquito vectors. An understanding of the behavioural responses of mosquitoes towards these fungi is necessary to guide development of fungi beyond the 'proof of concept' stage and to design suitable intervention tools. Methods Here we tested whether oil-formulations of the two fungi could be detected and avoided by adult Anopheles gambiae s.s., Anopheles arabiensis and Culex quinquefasciatus. The bioassays used a glass chamber divided into three compartments (each 250 × 250 × 250 mm): release, middle and stimulus compartments. Netting with or without fungus was fitted in front of the stimulus compartment. Mosquitoes were released and the proportion that entered the stimulus compartment was determined and compared between treatments. Treatments were untreated netting (control 1), netting with mineral oil (control 2) and fungal conidia formulated in mineral oil evaluated at three different dosages (2 × 1010, 4 × 1010 and 8 × 1010 conidia m-2). Results Neither fungal strain was repellent as the mean proportion of mosquitoes collected in the stimulus compartment did not differ between experiments with surfaces treated with and without fungus regardless of the fungal isolate and mosquito species tested. Conclusion Our results indicate that mineral-oil formulations of M. anisopliae and B. bassiana were not repellent against the mosquito species tested. Therefore, both fungi are suitable candidates for the further development of tools that aim to control host-seeking or resting mosquitoes using entomopathogenic fungi. PMID:20799937

  8. In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus.

    PubMed

    Liang, Lijia; Huang, Dianshuai; Wang, Hailong; Li, Haibo; Xu, Shuping; Chang, Yixin; Li, Hui; Yang, Ying-Wei; Liang, Chongyang; Xu, Weiqing

    2015-02-17

    Investigating the molecular changes of cancer cell nucleus with drugs treatment is crucial for the design of new anticancer drugs, the development of novel diagnostic strategies, and the advancement of cancer therapy efficiency. In order to better understand the action effects of drugs, accurate location and in situ acquisition of the molecular information of the cell nuclei are necessary. In this work, we report a microspectroscopic technique called dark-field and fluorescence coimaging assisted surface-enhanced Raman scattering (SERS) spectroscopy, combined with nuclear targeting nanoprobes, to in situ study Soma Gastric Cancer (SGC-7901) cell nuclei treated with two model drugs, e.g., DNA binder (Hoechst33342) and anticancer drug (doxorubicin, Dox) via spectral analysis at the molecular level. Nuclear targeting nanoprobes with an assembly structure of thiol-modified polyethylene glycol polymers (PEG) and nuclear localizing signal peptides (NLS) around gold nanorods (AuNRs) were prepared to achieve the amplified SERS signals of biomolecules in the cell nuclei. With the assistance of dark field/fluorescence imaging with simultaneous location, in situ SERS spectra in one cell nucleus were measured and analyzed to disclose the effects of Hoechst33342 and Dox on main biomolecules in the cell nuclei. The experimental results show that this method possesses great potential to investigate the targets of new anticancer drugs and the real-time monitoring of the dynamic changes of cells caused by exogenous molecules. PMID:25602628

  9. Polyimide-Silica Hybrids Containing Novel Phenylethynyl Imide Silanes as Coupling Agents for Surface-Treated Titanium Alloy

    NASA Technical Reports Server (NTRS)

    Park, C.; Lowther, S. E.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; SaintClair, T. L.

    2000-01-01

    Polyimide-silica hybrids composed of an organic precursor containing a novel phenylethynyl imide silane and an inorganic precursor were evaluated as an adhesion-promoting interphase between surface-treated titanium alloy and a phenylethynyl-containing imide adhesive. The phenylethynyl groups present in the organic precursor, either as a pendent or end group, can bond chemically with a phenylethynyl-containing imide adhesive during processing, while the silane groups of the organic precursor would react chemically with the inorganic precursor. In addition, the inorganic precursor is able to react with the titanium alloy to form a stable bond with the metal oxide. Bond strength and durability were evaluated by single lap shear tests at various conditions. Lap shear specimens exhibited predominantly cohesive failure after a 3-d water boil with 92% retention of the initial room temperature strength. Morphology and chemical composition of the hybrid interphase were investigated with scanning electron microscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy, which revealed development of a silicon-gradient, hybrid structure between the metal substrate and the adhesive.

  10. Heterostructured nanohybrid of zinc oxide-montmorillonite clay.

    PubMed

    Hur, Su Gil; Kim, Tae Woo; Hwang, Seong-Ju; Hwang, Sung-Ho; Yang, Jae Hun; Choy, Jin-Ho

    2006-02-01

    We have synthesized heterostructured zinc oxide-aluminosilicate nanohybrids through a hydrothermal reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and the sol solution of zinc acetate. According to X-ray diffraction, N2 adsorption-desorption isotherm, and field emission-scanning electron microscopic analyses, it was found that the intercalation of zinc oxide nanoparticles expands the basal spacing of the host montmorillonite clay, and the crystallites of the nanohybrids are assembled to form a house-of-cards structure. From UV-vis spectroscopic investigation, it becomes certain that calcined nanohybrid contains two kinds of the zinc oxide species in the interlayer space of host lattice and in mesopores formed by the house-of-cards type stacking of the crystallites. Zn K-edge X-ray absorption near-edge structure/extended X-ray absorption fine structure analyses clearly demonstrate that guest species in the nanohybrids exist as nanocrystalline zinc oxides with wurzite-type structure. PMID:16471722

  11. Montmorillonite-phenyltrimethylammonium yields environmentally improved formulations of hydrophobic herbicides.

    PubMed

    El-Nahhal, Y; Nir, S; Serban, C; Rabinovitch, O; Rubin, B

    2000-10-01

    This study aimed to design formulations of hydrophobic herbicides, alachlor and metolachlor, by adsorbing them on the clay mineral montmorillonite preadsorbed by the small organic cation phenyltrimethylammonium (PTMA). An adsorption model that considers electrostatics and specific binding and the possibility of cation adsorption above the cation exchange capacity (CEC) could explain and yield predictions for PTMA adsorption in the presence of NaCl concentrations from 0 to 500 mM. Adsorption of alachlor and metolachlor from aqueous solution on a clay mineral preadsorbed by PTMA was determined by GC and modeled by Langmuir equation. Herbicide interactions with the organoclay were studied by Fourier transform infrared spectroscopy. Leaching of herbicides was determined by a bioassay using a column technique and Setaria viridis as a test plant. The adsorbed amounts of alachlor and metolachlor on montmorillonite preadsorbed by PTMA at a loading of 0. 5 mol/kg (Mont-PTMA0.5) were higher than at a loading up to the CEC, that is, 0.8 mol/kg, and were higher than those obtained by using several other organic cations. Herbicide formulations based on Mont-PTMA0.5 yielded the largest shifts of the infrared peaks of the herbicides. These formulations based on Mont-PTMA0.5 gave slower release and showed improved weed control in comparison with formulations based on other organoclays. These formulations maintained herbicidal activity in the topsoil and yielded the most significant reduction in herbicide leaching. PMID:11052735

  12. pH profile of the adsorption of nucleotides onto montmorillonite. II - Adsorption and desorption of 5-prime-AMP in iron-calcium montmorillonite systems

    NASA Technical Reports Server (NTRS)

    Banin, A.; Lawless, J. G.; Mazzurco, J.; Church, F. M.; Margulies, L.; Orenberg, J. B.

    1985-01-01

    The interaction of 5-prime-AMP with montmorillonite saturated with various ratios of two metals found ubiquitously on the surface of earth, that is, iron and calcium, is investigated. Adsorption and desorption of the nucleotide were studied in the pH range of 2-12 at three levels of addition: 0.080, 0.268 and 0.803 mmole 5-prime-AMP per gram of clay. Two desorption stages were employed - H2O wash and NaOH extraction (pH = 12.0). 5-prime-AMP was preferentially adsorbed on the Fe-containing clays relative to the Ca clay. The nucleotide was fully recovered by the two desorption stages, mostly by the NaOH extraction. The evidence at hand indicates that 5-prime-AMP reaction with clay is affected by electrostatic interactions involving both attraction and repulsion forces. Some specific adsorption, possibly the result of covalent bonding and complex formation with the adsorbed ion, cannot be ruled out for iron but does not appear to operate for calcium. Changes in pH cause varying degrees of attaction and repulsion of 5-prime-AMP and may have been operating on the primitive earth, leading to sequences of adsorption and release of this biomolecule.

  13. Plutonium(IV) sorption to montmorillonite in the presence of organic matter.

    PubMed

    Boggs, Mark A; Dai, Zurong; Kersting, Annie B; Zavarin, Mavrik

    2015-03-01

    The effect of altering the order of addition in a ternary system of plutonium(IV), organic matter (fulvic acid, humic acid and desferrioxamine B), and montmorillonite was investigated. A decrease in Pu(IV) sorption to montmorillonite in the presence of fulvic and humic acid relative to the binary Pu-montmorillonite system, is attributed to strong organic aqueous complex formation with aqueous Pu(IV). No dependence on the order of addition was observed. In contrast, in the system where Pu(IV) was equilibrated with desferrioxamine B (DFOB) prior to addition of montmorillonite, an increase in Pu(IV) sorption was observed relative to the binary system. When DFOB was equilibrated with montmorillonite prior to addition of Pu(IV), Pu(IV) sorption was equivalent to the binary system. X-ray diffraction and transmission electron microscopy revealed that DFOB accumulated in the interlayer of montmorillonite. The order of DFOB addition plays an important role in the observed sorption/desorption behavior of Pu. The irreversible nature of DFOB accumulation in the montmorillonite interlayer leads to an apparent dependence of Pu sorption on the order of addition in the ternary system. This work demonstrates that the order of addition will be relevant in ternary systems in which at least one component exhibits irreversible sorption behavior. PMID:25562752

  14. High-Frequency Eddy Current Conductivity Spectroscopy for Near-Surface Residual Stress Profiling in Surface-Treated Nickel-Base Superalloys

    SciTech Connect

    Abu-Nabah, Bassam A.; Nagy, Peter B. [Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio 45221-0070 (United States)

    2007-03-21

    Recent research indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of subsurface residual stress in surface-treated components. This technique is based on the so-called piezoresistive effect, i.e., the stress-dependence of electric conductivity. Previous experimental studies were conducted on excessively peened (Almen 10-16A peening intensity levels) nickel-base superalloy specimens that exhibited harmful cold work in excess of 30% plastic strain. The main reason for choosing peening intensities above recommended normal levels was that the eddy current penetration depth could not be decreased below 0.2 mm without conducting accurate measurements above 10 MHz, which is beyond the operational range of most commercially available eddy current instruments. In this paper we report the development of a new high-frequency eddy current conductivity measuring system that offers an extended inspection frequency range up to 80 MHz with a single probe coil. In addition, the new system offers better reproducibility, accuracy, and measurement speed than the previously used conventional system.

  15. Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite.

    PubMed

    Chen, Daimei; Zhu, Qian; Zhou, Fengsan; Deng, Xutao; Li, Fatang

    2012-10-15

    TiO(2) pillared clay materials were prepared by montmorillonite (Mt) and acidic solutions of hydrolyzed Ti alkoxides in the presence of high-molecular-weight polyoxypropylene (POP)-backboned di-quaternary salts (POP). The as-prepared materials were characterized by means of XRD, FTIR, TG-DTA, XRF, specific surface area and porosity determinations, TEM and SEM, respectively. The experiments showed that the resulting material was a porous delaminated structure containing pillared fragments and nano-scaled TiO(2) particles well dispersed among each other. Introducing polymer surfactant POP as an expanding agent of Mt cannot only promote the formation of the delaminated structure, but significantly improve the porosity and surface area of the composites. The resulting TiO(2) pillared Mt exhibited a good thermal stability as indicated by its surface area after calcination at 800 °C. No phase transformation from anatase to rutile was observed even under calcination at 900 °C. The grain size of anatase in as-prepared sample decreased with the increase of the POP concentration, but increased with the increment of calcination temperature. The photocatalytic performances of these new porous materials were evaluated by using methylene blue degradation. The composite solid exhibited superior photocatalyic property and the maximum removal efficiency was up to 98% within 90 min. PMID:22884731

  16. Behavior of Listeria monocytogenes on frankfurters surface treated with lauric arginate and/or a liquid smoke extract delivered using the Sprayed Lethality in Container (SLIC®) technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the viability of Listeria monocytogenes (LM) on commercially-produced frankfurters prepared without lactates that were surface treated with 0 or 4 mL of a blend of LAE (CytoGuard; 1.0% LAE final concentration) diluted in a concentrated liquid smoke extrac...

  17. Evaluation of Subsurface Flow and Free-water Surface Wetlands Treating NPR-3 Produced Water - Year No. 1

    SciTech Connect

    Myers, J. E.; Jackson, L. M.

    2001-10-13

    This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatment of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work.

  18. Nitrogen behavior in a free water surface constructed wetland used as posttreatment for anaerobically treated swine wastewater effluent.

    PubMed

    De Los Reyes, Catalina Plaza; Pozo, Guillermo; Vidal, Gladys

    2014-01-01

    The aim of this study was to evaluate the behavior of total nitrogen (TN) in its different forms in a Free Water Surface constructed wetland (FWS) used as posttreatment for anaerobically treated swine wastewater. The experiment was conducted in a glasshouse from July 2010 to November 2011. The system consists in a FWS mesocosm inoculated with Typha angustifolia L. using as pretreatment an UASB reactor (upflow anaerobic sludge blanket). The operation are based on the progressive increase of the nitrogen loading rate (NLR) (2.0-30.2 kg TN/ha·d) distributed in 12 loads, with an operational time of 20 d. The results indicate that the behavior of the TN in the FWS, mainly depends on the NLR applied, the amount of dissolved oxygen available and the seasonality. The FWS operated with an NLR between 2.0-30.2 kg TN/ha·d, presents average removal efficiency for TN of 54.8%, with a maximum removal (71.7%) between spring-summer seasons (17.3-21.7°C). The availability of dissolved oxygen hinders the nitrification/denitrification processes in the FWS representing a 0.3-5.6% of TN removed.The main route of TN removal is associated with ammonia volatilization processes (2.6-40.7%), mainly to NLR over 25.8 kg TN/ha· d and with temperatures higher than 18°C. In a smaller proportion, the incorporation of nitrogen via plant uptake was 10.8% whereas the TN accumulated in the sediments was a 5.0% of the TN applied during the entire operation (550 d). An appropriate control of the NLR applied, can reduce the ammonia volatilization processes and the phytotoxicity effects expressed as growth inhibition in 80.0% from 496.0 mg NH(+) 4-N/L (25.8 kg TN/ha·d). PMID:24171422

  19. Genotoxicity of unmodified and organo-modified montmorillonite.

    PubMed

    Sharma, Anoop Kumar; Schmidt, Bjørn; Frandsen, Henrik; Jacobsen, Nicklas Raun; Larsen, Erik Husfeldt; Binderup, Mona-Lise

    2010-07-19

    The natural clay mineral montmorillonite (Cloisite) Na+) and an organo-modified montmorillonite (Cloisite 30B) were investigated for genotoxic potential as crude suspensions and as suspensions filtrated through a 0.2-microm pore-size filter to remove particles above the nanometre range. Filtered and unfiltered water suspensions of both clays did not induce mutations in the Salmonella/microsome assay at concentrations up to 141microg/ml of the crude clay, using the tester strains TA98 and TA100. Filtered and unfiltered Cloisite) Na+ suspensions in culture medium did not induce DNA strand-breaks in Caco-2 cells after 24h of exposure, as tested in the alkaline comet assay. However, both the filtered and the unfiltered samples of Cloisite 30B induced DNA strand-breaks in a concentration-dependent manner and the two highest test concentrations produced statistically significantly different results from those seen with control samples (p<0.01 and p<0.001) and (p<0.05 and p<0.01), respectively. The unfiltered samples were tested up to concentrations of 170microg/ml and the filtered samples up to 216microg/ml before filtration. When tested in the same concentration range as used in the comet assay, none of the clays produced ROS in a cell-free test system (the DCFH-DA assay). Inductively coupled plasma mass-spectrometry (ICP-MS) was used to detect clay particles in the filtered samples using aluminium as a tracer element characteristic to clay. The results indicated that clay particles were absent in the filtered samples, which was independently confirmed by dynamic light-scattering measurements. Detection and identification of free quaternary ammonium modifier in the filtered sample was carried out by HPLC-Q-TOF/MS and revealed a total concentration of a mixture of quaternary ammonium analogues of 1.57microg/ml. These findings suggest that the genotoxicity of organo-modified montmorillonite was caused by the organo-modifier. The detected organo-modifier mixture was synthesized and comet-assay results showed that the genotoxic potency of this synthesized organo-modifier was in the same order of magnitude at equimolar concentrations of organo-modifier in filtrated Cloisite) 30B suspensions, and could therefore at least partly explain the genotoxic effect of Cloisite) 30B. PMID:20433941

  20. Ultrasensitive electrochemical immunosensor for squamous cell carcinoma antigen detection using lamellar montmorillonite-gold nanostructures as signal amplification.

    PubMed

    Jia, Hongying; Gao, Picheng; Ma, Hongmin; Li, Yueyun; Gao, Jian; Du, Bin; Wei, Qin

    2015-01-01

    Sodium montmorillonites (Na-Mont), which could be transformed from nano-montmorillonites, have large surface area, chemical stability, nontoxicity, high cation exchange property and superior adsorption ability. In this paper, Na-Mont were used as a support of polyaniline (PANI) and gold nanoparticles (AuNPs) via the interaction of aniline and HAuCl4 solution. A sandwich-type electrochemical immunosensor was developed to detect squamous cell carcinoma antigen (SCC-Ag). It used nitrogen-doped graphene sheets (N-GS) for the immobilization of primary anti-SCC antibodies (Ab1) and the combined Na-Mont-PANI-AuNPs nanocomposites as labels. Na-Mont-PANI-AuNPs have excellent catalytic ability towards the reduction of H2O2, thus enhance the sensitivity of the immunosensor. The immunosensor exhibits a wide linear range (1 pg/mL-5 ng/mL), a low detection limit (0.3 pg/mL), good reproducibility, selectivity and stability. This new type of immunosensor with Na-Mont-PANI-AuNPs as labels may provide potential application for the detection of SCC-Ag. PMID:25476381

  1. Low-temperature atomic layer deposition of Al{sub 2}O{sub 3} on blown polyethylene films with plasma-treated surfaces

    SciTech Connect

    Beom Lee, Gyeong; Sik Son, Kyung; Won Park, Suk; Hyung Shim, Joon; Choi, Byoung-Ho [School of Mechanical Engineering, Korea University, Seoul 136-707 (Korea, Republic of)

    2013-01-15

    In this study, a layer of Al{sub 2}O{sub 3} was deposited on blown polyethylene films by atomic layer deposition (ALD) at low temperatures, and the surface characteristics of these Al{sub 2}O{sub 3}-coated blown polyethylene films were analyzed. In order to examine the effects of the plasma treatment of the surfaces of the blown polyethylene films on the properties of the films, both untreated and plasma-treated film samples were prepared under various processing conditions. The surface characteristics of the samples were determined by x-ray photoelectron spectroscopy, as well as by measuring their surface contact angles. It was confirmed that the surfaces of the plasma-treated samples contained a hydroxyl group, which helped the precursor and the polyethylene substrate to bind. ALD of Al{sub 2}O{sub 3} was performed through sequential exposures to trimethylaluminum and H{sub 2}O at 60 Degree-Sign C. The surface morphologies of the Al{sub 2}O{sub 3}-coated blown polyethylene films were observed using atomic force microscopy and scanning electron microscopy/energy-dispersive x-ray spectroscopy. Further, it was confirmed that after ALD, the surface of the plasma-treated film was covered with alumina grains more uniformly than was the case for the surface of the untreated polymer film. It was also confirmed via the focused ion beam technique that the layer Al{sub 2}O{sub 3} conformed to the surface of the blown polyethylene film.

  2. Biodegradable nanocomposites from toughened polyhydroxybutyrate and titanate-modified montmorillonite clay.

    PubMed

    Parulekar, Yashodhan; Mohanty, Amar K; Imam, Syed H

    2007-10-01

    Montmorillonite clay treated with neopentyl (diallyl)oxy tri(dioctyl) pyrophosphato titanate was used as a reinforcement for toughened bacterial bioplastic, Polyhydroxybutyrate (PHB) in order to develop novel biodegradable nanocomposites. The modified clay, PHB, toughening partner and specific compatibilizer were processed by extrusion followed by injection molding. Different microscopy and goniometry techniques, rheology analysis, X-ray diffraction and thermo-mechanical testing were used to characterize the nanocomposites. Results showed that the nanocomposites with 5 wt% titanate-modified clay loading exhibited about 400% improvement in impact properties and 40% reduction in modulus in comparison with virgin PHB. The novel aspect of the titanate-based modification was that the nanocomposites still maintained nearly the same impact strength value as that of toughened PHB. The diffraction patterns suggest exfoliation of the organically modified clays and this was further supported by transmission electron microscopy and melt rheological analysis. The mechanical properties of the nanocomposites were correlated with a modified Halpin-Tsai theoretical model and the predictions matched significantly with the experimental results. Toughened and compatibilized PHB showed significantly lower biodegradation rate than virgin PHB and most significantly the addition of the titanate-modified clay in the same formulation enhanced the biodegradation several fold. PMID:18330176

  3. Development of chitosan/montmorillonite nanocomposites with encapsulated ?-tocopherol.

    PubMed

    Dias, Marali Vilela; Machado Azevedo, Viviane; Borges, Soraia Vilela; Soares, Nilda de Fátima Ferreira; de Barros Fernandes, Regiane Victória; Marques, João José; Medeiros, Eber Antonio Alves

    2014-12-15

    Nanocomposites of chitosan (CS) were developed and characterized in a full factorial design with varying levels of montmorillonite (MMTNa) and encapsulated tocopherol (toc-encap). The structural properties (XRD, FTIR), morphology (TEM), hygroscopic properties (water vapour permeability, hydrophobicity, sorption isotherms) and optical properties (haze, CIELab parameters) of the resulting materials were evaluated. Toc-encap contents up to 10% influenced the intercalation of MMTNa in the CS matrix, resulting in films with reduced water vapour permeability (3.48×10(-11)(g/msPa)), increased hydrophobicity (?GHydroph |7.93-59.54|mJm(-2)) and lower equilibrium moisture content (EMC), thus showing potential for active food packaging materials. At levels above 10%, toc-encap agglomerates occurred, which deteriorated the properties of the resulting films, as shown with the TEM. As the toc-encap content increased, the films became slightly more yellow, more irregular and less transparent, with a higher haze index. PMID:25038682

  4. Intergrown mica and montmorillonite in the Allende carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Tomeoka, K.; Buseck, P. R.

    1982-01-01

    High resolution transmission electron microscopy (HRTEM) observations were made of a mixture of mica and montmorillonite from fine-grained calcium, aluminum inclusions (CAI) in the Allende C3(V) meteorite. A petrographic thin section having a diameter of 4 mm contained CAI fragments ranging from less than 1 to 50 microns. The observed textural and chemical characteristics placed the inclusion in the fine-grained alkali-rich spinel aggregate category of Warks' (1979) classifications of CAIs and as type 3 in Kornacki's classifications of fine grains in Allende. Chemical analyses were performed on the phyllosilicate grains observed in the TEM scan by means of an X ray observed, and the proximity to the matrix boundary suggests a metamorphism which included aqueous alteration at a relatively low temperature.

  5. Characterization of synthesized polyurethane/montmorillonite nanocomposites foams

    NASA Astrophysics Data System (ADS)

    Ansari, Farahnaz; Sachse, Sophia; Michalowski, S.; Kavosh, Masoud; Pielichowski, Krzysztof; Njuguna, James

    2014-08-01

    Nanophased hybrid composites based on polyurethane/montmorillonite (PU/MMT) have been fabricated. The nanocomposite which was formed by the addition of a polyol premix with 4,4'-diphenylmethane diisocyanate to obtain nanophased polyurethane foams which were then used for fabrication of nanocomposite panels has been shown to have raised strength, stiffness and thermal insulation properties. The nanophased polyurethane foam was characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM) measurements and X-ray diffraction (XRD). TEM and SEM analysis indicated that nanophased particles are dispersed homogeneously in the polyurethane matrix on the nanometer scale indicating that PU/MMT is an intercalated nanocomposite with a 2-3 nm nanolayer thickness.

  6. Solid State Oxidative Deprotection of Trimethylsilyl Ethers with Iron (III) Nitrate and Montmorillonite Under Microwave Irradiation

    Microsoft Academic Search

    Mohammad M. Mojtahedi; Mohammad R. Saidi; Mohammad Bolourtchian; Majid M. Heravi

    1999-01-01

    Mixture of iron (III) nitrate and montmorillonite K10 oxidatively deprotect trimethylsilyl ethers to their corresponding carbonyl compounds under microwave irradiation in solventless system, in a short time and good yields.

  7. Eco-Friendly Magnetic Iron Oxide Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol

    EPA Science Inventory

    Eco-friendly pillared montmorillonites, in which the pillars consist of iron oxide are expected to have interesting and unusual magnetic properties that are applicable for environmental decontamination. Completely ?green? and effective composite was synthesized using mild reactio...

  8. Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate Solutions

    E-print Network

    Sparks, Donald L.

    Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate. The copper exchange capacity (CuEC) and Na-Cu exchange reactions on Wyoming montmo- rillonite were studied

  9. Per-O-acetylation of sugars catalysed by montmorillonite K-10

    Microsoft Academic Search

    Pallooru Muni Bhaskar; Duraikkannu Loganathan

    1998-01-01

    The inexpensive solid acid, montmorillonite K-10, is shown to be an efficient catalyst for the per-O-acetylation of several mono -, di - and trisaccharides. The pyranose forms accounted for 75–100% of the acetylated products.

  10. Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid

    NASA Astrophysics Data System (ADS)

    Li, Tian; Lin, Oulian; Lu, Zhiyuan; He, Liuimei; Wang, Xiaosheng

    2014-06-01

    The Na+ montmorillonite (MMT) was modified with sulfur containing amino acid (L-cystine, L-cysteine or L-methionine) and characterized by energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). The results showed the modification was smooth and the surface condition of MMT was changed with sulfur containing groups. Then silver was loaded on the modified MMTs via ion-exchange reaction under microwave irradiation, the spectra of X-ray photoelectron spectroscopy (XPS), EDS and FT-IR confirmed the successful loading of massive silver and the strong interaction between sulfur and silver, the silver loaded L-cystine modified MMT (Ag@AA-MMT-3) with a silver content of 10.93 wt% was the highest of all. Further more, the Ag@AA-MMT-3 was under the irradiation of a UV lamp to turn silver ions to silver nano particles (Ag NPs). The XPS, specific surface area (SSA), transmission electron microscopy (TEM), XRD patterns and UV-vis spectra proved the existence of uniform nano scaled metallic Ag NPs. By contrast, the UV irradiated Ag@AA-MMT-3 (Ag@AA-MMT-UV) showed a much better slow release property than Ag@AA-MMT-3 or Ag@MMT. The Ag@AA-MMT-UV showing a large inhibition zone and high inhibition ratio presented very good antibacterial property.

  11. Modification of a Ca-montmorillonite with ionic liquids and its application for chromate removal.

    PubMed

    Li, Zhaohui; Jiang, Wei-Teh; Chang, Po-Hsiang; Lv, Guocheng; Xu, Shangping

    2014-04-15

    Ionic liquids (ILs), due to their low vapor pressure, have been explored as green solvents for organic synthesis. In this study, the uptake of ILs on a high charge Ca-montmorillonite (MMT) and the use of the IL-modified MMT for the removal of anionic contaminants from water were systematically studied. Uptake of ILs by MMT was exclusively resulted from a cation exchange mechanism when the initial IL concentrations were less than the critical micelle concentration (CMC) and the sorbed ILs formed a monolayer conformation on the surface of MMT. When the initial IL concentrations were greater than the CMC, both cation exchange and hydrophobic interactions were responsible for the IL uptake. The IL molecules formed admicelles and the surface charge was reversed to positive balanced by counterion Cl(-) when the IL loading was higher than the cation exchange capacity of the mineral. The modified MMT could remove chromate from water instantaneously, with an adsorption capacity of 190 mmol/kg and a 99.5% removal efficiency at an initial chromate concentration of 2.6 mmol/L. These features could further expand the application of ILs and enable IL-modified MMT to be used as inexpensive sorbents for the removal of chromate and other oxyanions from water. PMID:24572273

  12. Anti-graffiti nanocomposite materials for surface protection of a very porous stone

    NASA Astrophysics Data System (ADS)

    Licchelli, Maurizio; Malagodi, Marco; Weththimuni, Maduka; Zanchi, Chiara

    2014-09-01

    The preservation of stone substrates from defacement induced by graffiti represents a very challenging task, which can be faced by applying suitable protective agents on the surface. Although different anti-graffiti materials have been developed, it is often found that their effectiveness is unsatisfactory, most of all when applied on very porous stones, e.g. Lecce stone. The aim of this work was to study the anti-graffiti behaviour of new nanocomposite materials obtained by dispersing montmorillonite nanoparticles (layered aluminosilicates with a high-aspect ratio) into a fluorinated polymer matrix (a fluorinated polyurethane based on perfluoropolyether blocks). Polymeric structure was modified by inducing a cross-linking process, in order to produce a durable anti-graffiti coating with enhanced barrier properties. Several composites were prepared using a naturally occurring and an organically modified montmorillonite clay (1, 3, and 5 % w/w concentrations). Materials were applied on Lecce stone specimens, and then their treated surfaces were soiled by a black ink permanent marker or by a black acrylic spray paint. Several repeated staining/cleaning cycles were performed in order to evaluate anti-graffiti effectiveness. Colorimetric measurements were selected to assess the anti-graffiti performance. It was found that the presence of 3 % w/w organically modified montmorillonite in the polymer coating is enough to induce a durable anti-graffiti effect when the stone surface is stained by acrylic paint. Less promising results are obtained when staining by permanent marker is considered as all the investigated treatments afford a reasonable protection from ink only for the first staining/cleaning cycle.

  13. Effect of alkyl quaternary ammonium on processing discoloration of melt-intercalated PVC-montmorillonite composites

    Microsoft Academic Search

    Chaoying Wan; Yong Zhang; Yinxi Zhang

    2004-01-01

    The effects of alkyl quaternary ammonium on the processing thermal stability of poly (vinyl chloride)\\/alkyl quaternary ammonium modified montmorillonite (PVC\\/OMMT) composites were investigated. PVC\\/sodium montmorillonite (MMT) composites were prepared for comparison. The intercalated PVC\\/OMMT composites exhibited a non-terminal rheological behavior, and showed better mechanical properties and higher thermal degradation stability than the PVC\\/MMT composites. However, under identical melt processing conditions,

  14. Influence of clay exfoliation on the physical properties of montmorillonite\\/polyethylene composites

    Microsoft Academic Search

    T. G. Gopakumar; J. A. Lee; M. Kontopoulou; J. S. Parent

    2002-01-01

    Melt compounding was used to prepare conventional composites of montmorillonite clay and polyethylene (PE) as well as nanocomposites of exfoliated montmorillonite platelets dispersed in a maleated polyethylene (PE-g-MAn) matrix. The extent of clay platelet exfoliation in the PE-g-MAn nanocomposites was confirmed by X-ray diffraction and resulted in a significant reduction of the degree of crystallinity and increased polymer crystallization rates.

  15. Interaction of aminotriazole with montmorillonite and Mg-vermiculite at pH 4

    Microsoft Academic Search

    C. MAQUEDA

    The interaction of aminotriazole (AMT) at pH 4 on Wyoming montmorillonite (mainly with Na ions) and Mg-vermiculite has been studied by X-ray diffraction and infrared spectroscopy. The AMT is adsorbed on montmorillonite in the cationic form by cation exchange. The amount of pesticide adsorbed was 71 mEq\\/100 g, which comprises ~91% of the CEC of this sample (78.2 mEq\\/100 g).

  16. The carbothermal reduction process of a montmorillonite-polyacrylonitrile intercalation compound

    Microsoft Academic Search

    Yoshiyuki Sugahara; Kazuyuki Kuroda; Chuzo Kato

    1988-01-01

    To develop a carbothermal reduction process for the conversion of oxides to nitrides, a montmorillonite-polyacrylonitrile (PAN) intercalation compound was applied as a precursor. Montmorillonite-carbon mixtures were heated as well as the intercalation compound in N2 at 1100 to 1500° C for comparison. From the intercalation compound, ß-sialon, AIN and SiC were mainly formed. Oxides were reduced without their crystallization. On

  17. Influence of organo-montmorillonites on fatigue properties of bitumen and mortar

    Microsoft Academic Search

    Gang Liu; Martin van de Ven; Shaopeng Wu; Jianying Yu; Andre Molenaar

    2011-01-01

    This study investigated the influence of organo-montmorillonites on fatigue properties of bitumen and mortar. Two organo-montmorillonites, Mt1 and Mt2 with octadecyl trimethyl ammonium and with benzyl dimethyl hexadecyl ammonium surfactants were used to modify one base bitumen with a content of 4wt.%, respectively. Mt2 was also used to prepare the mortar which consisted of bitumen, filler and sand at a

  18. Preparation and characterization of platinum nanoparticles immobilized in dihydrocinchonidine-modified montmorillonite and hectorite

    Microsoft Academic Search

    Á Mastalir; Gy Szöllösi; Z Király; Zs Rázga

    2002-01-01

    A novel synthetic method is reported for the preparation of highly dispersed platinum nanoparticles immobilized in the swelling clay minerals Na-montmorillonite and Optigel (synthetic Na-hectorite), modified by cation exchange with dihydrocinchonidine hydrochloride (DHCd·HCl). For both smectites, X-ray diffraction (XRD) data confirmed intercalation of the chiral modifier between the clay mineral layers. After ion exchange, the ability of montmorillonite to undergo

  19. Nanoporous Nanocomposite Hydrogels Composed of Polyvinyl Alcohol and Na-montmorillonite

    Microsoft Academic Search

    M. SIROUSAZAR; M. KOKABI; Z. M. HASSAN; A. R. BAHRAMIAN

    2012-01-01

    Polyvinyl alcohol nanoporous nanocomposite hydrogels containing various levels of Na-montmorillonite were prepared by a cyclic freezing-thawing technique. An exfoliated morphology of silicate layers was observed for the nanocomposite hydrogels. The uniaxial tensile test indicated that the tensile modulus and tensile strength of the nanocomposite hydrogels increased with increasing Na-montmorillonite content, while their elongation-at-break values decreased. The results showed that by

  20. Study on the surface of fluorosilicone acrylate RGP contact lens treated by low-temperature nitrogen plasma

    NASA Astrophysics Data System (ADS)

    Ren, Li; Yin, Shiheng; Zhao, Lianna; Wang, Yingjun; Chen, Hao; Qu, Jia

    2008-11-01

    In order to improve the surface hydrophilicity of fluorosilicone acrylate rigid gas permeable (RGP) contact lens, low temperature nitrogen plasma was used to modify the lens surface. Effects of plasma conditions on the surface structures and properties were investigated. Results indicated that the surface hydrophilicity of RGP contact lens was significantly improved after treatment. X-ray photoelectron spectroscopy (XPS) results showed that the nitrogen element was successfully incorporated into the surface. Furthermore, some new bonds such as N sbnd C dbnd O, F - and silicate were formed on the lens surface after nitrogen plasma treatment, which could result in the improvement of the surface hydrophilicity. Scanning electronic microscope (SEM) results indicated that nitrogen plasma with moderate power could make the surface smoother in some degree, while plasma with higher power could etch the surface.

  1. Computational Materials Science and Surface Engineering Finite element modelling of the fracture behaviour of surface treated Ti6Al4V alloy

    Microsoft Academic Search

    W. Ziaja

    Purpose: Surface treatments of the titanium alloys are frequently applied in order to modify the surface layer microstructure and to improve tribological properties or resistance to high temperature oxidation of the alloy. Various surface engineering techniques can be used to increase the surface hardness, e.g. deposition of the coatings composed of metallic carbides, nitrides or more recently DLC. The stiffness

  2. XPS study on the weakest zone in the adhesion structure between resin containing 4-META and precious metal alloys treated with different surface modification methods.

    PubMed

    Ohno, H; Endo, K; Yamane, Y; Kawashima, I

    2001-03-01

    Three precious metal alloys, Type IV gold alloy, 14 K gold alloy, and silver-based alloy, were treated with different surface modifications including a metal primer (VBATDT) application, a SiOx coating method, high-temperature oxidation, modification method with a liquid Ga-Sn alloy, and tin electroplating. Then thin PMMA films were bonded with a resin containing 4-META. Water durability at the adhesion interface was evaluated after water immersion, followed by thermal cycling used liquid nitrogen. The weakest zone at the interface was investigated using XPS only for the Ag-Pd alloy specimens that had been surface-treated with as-polishing, adhesive primer, and the SiOx coating method, since peeling of the PMMA film on the surface of specimens surface-treated by other methods was not observed. Metal elements were detected from the resin side at the adhesion interface. The chemical states of Cu in the resin before argon ion etching were characterized as metal oxides and/or states of chemical interaction with 4-META, VBATDT, or SiOx. PMID:11441491

  3. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: The effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation

    Microsoft Academic Search

    James P. Ferris; Kamaluddin; Gözen Ertem

    1990-01-01

    2'-d-5'-GMP and 2'-d-5'-AMP bind 2 times more strongly to montmorillonite 22A than do 2'-d-5'-CMP and 5'-TMP. The dinucleotide d(pG)2 forms in 9.2% yield and the cyclic dinucleotide c(dpG)2 in 5.4% yield in the reaction of 2'-d-5'-GMP with EDAC in the presence of montmorillonite 22A. The yield of d(pC)2 (2.0%) is significantly lower but comparable to that obtained from 5'-TMP. The

  4. Effects of Dextrose and Lipopolysaccharide on the Corrosion Behavior of a Ti-6Al-4V Alloy with a Smooth Surface or Treated with Double-Acid-Etching

    PubMed Central

    Faverani, Leonardo P.; Assunção, Wirley G.; de Carvalho, Paulo Sérgio P.; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T.; Barao, Valentim A.

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (??=?0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2?=?0.726, p<0.0001 for the smooth surface; R2?=?0.405, p?=?0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections. PMID:24671257

  5. Comparison of the protection effectiveness of acrylic polyurethane coatings containing bark extracts on three heat-treated North American wood species: Surface degradation

    NASA Astrophysics Data System (ADS)

    Kocaefe, Duygu; Saha, Sudeshna

    2012-04-01

    High temperature heat-treatment of wood is a very valuable technique which improves many properties (biological durability, dimensional stability, thermal insulating characteristics) of natural wood. Also, it changes the natural color of wood to a very attractive dark brown color. Unfortunately, this color is not stable if left unprotected in external environment and turns to gray or white depending on the wood species. To overcome this problem, acrylic polyurethane coatings are applied on heat-treated wood to delay surface degradations (color change, loss of gloss, and chemical modifications) during aging. The acrylic polyurethane coatings which have high resistance against aging are further modified by adding bark extracts and/or lignin stabilizer to enhance their effectiveness in preventing the wood aging behavior. The aging characteristic of this coating is compared with acrylic polyurethane combined with commercially available organic UV stabilizers. In this study, their performance on three heat-treated North American wood species (jack pine, quaking aspen and white birch) are compared under accelerated aging conditions. Both the color change data and visual assessment indicate improvement in protective characteristic of acrylic polyurethane when bark extracts and lignin stabilizer are used in place of commercially available UV stabilizer. The results showed that although acrylic polyurethane with bark extracts and lignin stabilizer was more efficient compared to acrylic polyurethane with organic UV stabilizers in protecting heat-treated jack pine, it failed to protect heat-treated aspen and birch effectively after 672 h of accelerated aging. This degradation was not due to the coating adhesion loss or coating degradation during accelerated aging; rather, it was due to the significant degradation of heat-treated aspen and birch surface beneath this coating. The XPS results revealed formation of carbonyl photoproducts after aging on the coated surfaces and chain scission of Csbnd N of urethane linkages.

  6. Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays

    USGS Publications Warehouse

    Chiou, C.T.; Rutherford, D.W.

    1997-01-01

    The effects of exchanged cation and layer charge on the sorption of water and ethylene glycol monoethyl ether (EGME) vapors on montmorillonite have been studied on SAz-1 and SWy-1 source clays, each exchanged respectively with Ca, Na, K, Cs and tetramethylammonium (TMA) cations. The corresponding lattice expansions were also determined, and the corresponding N2 adsorption data were provided for comparison. For clays exchanged with cations of low hydrating powers (such as K, Cs and TMA), water shows a notably lower uptake than does N2 at low relative pressures (P/P0). By contrast, EGME shows higher uptakes than N2 on all exchanged clays at all P/P0. The anomaly for water is attributed to its relatively low attraction for siloxane surfaces of montmorillonite because of its high cohesive energy density. In addition to solvating cations and expanding interlayers, water and EGME vapors condense into small clay pores and interlayer voids created by interlayer expansion. The initial (dry) interlayer separation varies more significantly with cation type than with layer charge; the water-saturated interlayer separation varies more with cation type than the EGME-saturated interlayer separation. Because of the differences in surface adsorption and interlayer expansion for water and EGME, no general correspondence is found between the isotherms of water and EGME on exchanged clays, nor is a simple relation observed between the overall uptake of either vapor and the cation solvating power. The excess interlayer capacities of water and of EGME that result from lattice expansion of the exchanged clays are estimated by correcting for amounts of vapor adsorption on planar clay surfaces and of vapor condensation into intrinsic clay pores. The resulting data follow more closely the relative solvating powers of the exchanged cations.

  7. Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO?/PET film for biomedical application.

    PubMed

    Pandiyaraj, K Navaneetha; Deshmukh, R R; Mahendiran, R; Su, Pi-G; Yassitepe, Emre; Shah, Ismat; Perni, Stefano; Prokopovich, Polina; Nadagouda, Mallikarjuna N

    2014-03-01

    In this paper, a thin transparent titania (TiO2) film was coated on the surface of flexible poly(ethylene terephthalate) (PET) film using the sol-gel method. The surface properties of the obtained TiO2/PET film were further improved by RF glow discharge oxygen plasma as a function of exposure time and discharge power. The changes in hydrophilicity of TiO2/PET films were analyzed by contact angle measurements and surface energy. The influence of plasma on the surface of the TiO2/PET films was analyzed by atomic force microscopy (AFM) as well as the change in chemical state and composition that were investigated by X-ray photo electron spectroscopy (XPS). The cytotoxicity of the TiO2/PET films was analyzed using human osteoblast cells and the bacterial eradication behaviors of TiO2/PET films were also evaluated against Staphylococcus bacteria. It was found that the surface roughness and incorporation of oxygen containing polar functional groups of the plasma treated TiO2/PET films increased substantially as compared to the untreated one. Moreover the increased concentration of Ti(3+) on the surface of plasma treated TiO2/PET films was due to the transformation of chemical states (Ti(4+)?Ti(3+)). These morphological and chemical changes are responsible for enhanced hydrophilicity of the TiO2/PET films. Furthermore, the plasma treated TiO2/PET film exhibited no citotoxicity against osteoblast cells and antibacterial activity against Staphylococcus bacteria which can find application in manufacturing of biomedical devices. PMID:24433917

  8. In vitro biocompatibility and antimicrobial activity of poly(?-caprolactone)/montmorillonite nanocomposites.

    PubMed

    Corrales, T; Larraza, I; Catalina, F; Portolés, T; Ramírez-Santillán, C; Matesanz, M; Abrusci, C

    2012-12-10

    A triblock copolymer based on poly(?-caprolactone) (PCL) and 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA)/2-(methyl-7-nitrobenzofurazan)amino ethyl acrylate (NBD-NAcri), was synthesized via atom transfer radical polymerization (ATRP). The corresponding chlorohydrated copolymer, named as PCL-b-DEAEMA, was prepared and anchored via cationic exchange on montmorillonite (MMT) surface. (PCL)/layered silicate nanocomposites were prepared through melt intercalation, and XRD and TEM analysis showed an exfoliated/intercalated morphology for organomodified clay. The surface characterization of the nanocomposites was undertaken by using contact angle and AFM. An increase in the contact angle was observed in the PCL/MMT(PCL-b-DEAEMA) nanocomposites with respect to PCL. The AFM analysis showed that the surface of the nanocomposites became rougher with respect to the PCL when MMTk10 or MMT(PCL-b-DEAEMA) was incorporated, and the value increased with the clay content. The antimicrobial activity of the nanocomposites against B. subtilis and P. putida was tested. It is remarkable that the biodegradation of PCL/MMT(PCL-b-DEAEMA) nanocomposites, monitored by the production of carbon dioxide and by chemiluminescence emission, was inhibited or retarded with respect to the PCL and PCL/1-MMTk10. It would indicate that nature of organomodifier in the clay play an important role in B. subtilis and P. putida adhesion processes. Biocompatibility studies demonstrate that both PCL and PCL/MMT materials allow the culture of murine L929 fibroblasts on its surface with high viability, very low apoptosis, and without plasma membrane damage, making these materials very adequate for tissue engineering. PMID:23153018

  9. Synthesis of polyacrylamide-montmorillonite clay nanocomposite using non-conventional electrochemical technique.

    PubMed

    Srivastava, Monika; Prakash, Rajiv

    2012-01-01

    Synthesis of polymer-clay nanocomposite by in-situ incorporation of polyacrylamide in organically modified montmorillonite (MMT) clay layers is being reported using non-conventional electrochemical technique "plasma electrolysis." A luminous sheath of plasma is sustained between an electrode (anode) and the surface of surrounding liquid electrolyte at sufficiently high voltage, for synthesis of polymer or nanocomposite. Using this technique, radical generation capability is explored as a new tool for radical polymerization and in-situ composite formation of polyacrylamide. Polyacrylamide-MMT clay nanocomposite is synthesized by taking acrylamide and MMT clay in K2SO4 electrolyte solution at the anodic potential of 660 V. Polyacrylamide and polyacrylamide-MMT clay nanocomposites are characterized for their structural and thermal properties. Intercalation in MMT clay layers of homogeneous nanocomposite is supported by X-ray diffraction, FTIR, DSC, TGA and SEM/TEM techniques. This novel method produces homogeneous interactive composite with high yield, and shows potential to replace chemical initiators based harsh synthetic processes used for conventional polymer-nanocomposites formation. PMID:22524007

  10. Activity of Laccase Immobilized on TiO2-Montmorillonite Complexes

    PubMed Central

    Wang, Qingqing; Peng, Lin; Li, Guohui; Zhang, Ping; Li, Dawei; Huang, Fenglin; Wei, Qufu

    2013-01-01

    The TiO2-montmorillonite (TiO2-MMT) complex was prepared by blending TiO2 sol and MMT with certain ratio, and its properties as an enzyme immobilization support were investigated. The pristine MMT and TiO2-MMT calcined at 800 °C (TiO2-MMT800) were used for comparison to better understand the immobilization mechanism. The structures of the pristine MMT, TiO2-MMT, and TiO2-MMT800 were examined by HR-TEM, XRD and BET. SEM was employed to study different morphologies before and after laccase immobilization. Activity and kinetic parameters of the immobilized laccase were also determined. It was found that the TiO2 nanoparticles were successfully introduced into the MMT layer structure, and this intercalation enlarged the “d value” of two adjacent MMT layers and increased the surface area, while the calcination process led to a complete collapse of the MMT layers. SEM results showed that the clays were well coated with adsorbed enzymes. The study of laccase activity revealed that the optimum pH and temperature were pH = 3 and 60 °C, respectively. In addition, the storage stability for the immobilized laccase was satisfactory. The kinetic properties indicated that laccase immobilized on TiO2-MMT complexes had a good affinity to the substrate. It has been proved that TiO2-MMT complex is a good candidate for enzyme immobilization. PMID:23771020

  11. Structure-property relationships in isotactic poly(propylene)/ethylene propylene rubber/montmorillonite nanocomposites.

    PubMed

    Causin, Valerio; Marega, Carla; Marigo, Antonio; Ferraro, Giuseppe; Ferrara, Angelo; Selleri, Roberta

    2008-04-01

    Nanocomposites based on isotactic polypropylene/ethylene propylene rubber (iPP/EPR) were prepared adding different amounts of montmorillonite and maleated polypropylene. The structure and morphology of the samples were characterized by small angle X-ray scattering, wide angle X-ray diffraction, electronic and optical microscopy and differential scanning calorimetry, iPP showed a polymorphic behavior. Clay disrupted the ordered crystallization of iPP and had a key role in shaping the distribution of iPP and EPR phases: larger filler contents brought about smaller, less coalesced and more homogeneous rubber domains. Clay distributed itself only in the continuous phase and not in the rubber domains. Tactoids persisted on the surface of the sample, while delamination proceeded to a greater degree in the bulk of the materials. Melt flow rate, impact strength, flexural and tensile properties, were also measured and a structure-property correlation was sought. Clay produced its most significant effect on physical-mechanical properties by controlling the size of rubber domains in the heterophasic matrix. This allowed to obtain nanocomposites with increased stiffness and impact strength, a remarkable achievement for polymer layered-silica nanocomposites that usually suffer the drawback of being stiffer than the unfilled matrix, but at the same time with a lower resistance to impact. A beneficial effect of clay on thermal stability was also observed. PMID:18572583

  12. Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.

    PubMed

    Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-07-23

    Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills. PMID:24932773

  13. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption.

    PubMed

    Gao, Guorong; Du, Gaolai; Sun, Yuanna; Fu, Jun

    2015-03-01

    Nanocomposite hydrogels with unprecedented stretchability, toughness, and self-healing have been developed by in situ polymerization of acrylamide with the presence of exfoliated montmorillonite (MMT) layers as noncovalent cross-linkers. The exfoliated MMT clay nanoplatelets with high aspect ratios, as confirmed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) results, are well dispersed in the polyacrylamide matrix. Strong polymer/MMT interaction was confirmed by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The effective cross-link densities of these hydrogels are estimated in the range of 2.2-5.7 mol m(-3). Uniaxial tensile tests showed a very high fracture elongation up to 11?800% and a fracture toughness up to 10.1 MJ m(-3). Cyclic loading-unloading tests showed remarkable hysteresis, which indicates energy dissipation upon deformation. Residual strain after cyclic loadings could be recovered under mild conditions, with the recovery extent depending on clay content. A mechanism based on reversible desorption/adsorption of polymer chains on clay platelets surface is discussed. Finally, these nanocomposite hydrogels are demonstrated to fully heal by dry-reswell treatments. PMID:25668063

  14. Pulsed electric linear dichroism of triphenylmethane dyes adsorbed on montmorillonite K10 in aqueous media

    SciTech Connect

    Yamaoka, Kiwamu; Sasai, Ryo

    2000-05-01

    Electric linear dichroism (ELD) spectra of two cationic triphenylmethane dyes, crystal violet (CV) and malachite green (MG), bound to sodium montmorillonite K10 (MK-10) were studied at 20 C in aqueous media at two mixing ratios, D/S, of 0.10 and 0.24 in the 700- to 400 nm wavelength region and in the applied electric field strength range between 0 and 3 kV/cm. The specific parallel and perpendicular dichroism ({Delta}A{sub {parallel}}/A and {Delta}A{sub {perpendicular}}/A) spectra of dye-adsorbed MK-10 suspension were measured at a fixed field strength with an apparatus equipped with a 512-channel photodiode array detector. By changing the field strength over a wide range, a series of the reduced dichroism values of the bound dyes were measured at a fixed wavelength. By fitting these dichroism values to theoretical orientation functions, the intrinsic reduced dichroism ({Delta}A/A){sub int} spectra at the limiting high fields (ELD spectrum) were determined for CV and MG bound to MK-10. No appreciable difference was observed at the two D/S values. The ELD spectra of these bound dyes are undulatory but never constant, throughout their absorption region; thus, the dye plane does not lie flatly either on the surface or between layers of MK-10 particle.

  15. Studies on the defluoridation of water using conducting polymer/montmorillonite composites.

    PubMed

    Karthikeyan, M; Kumar, K K Satheesh; Elango, K P

    2012-01-01

    Conducting polymer/inorganic hybrid composites have large surface areas, which makes the adsorbent properties of the polymer composites as good the constituents. Polyaniline/montmorilonite (PANi-MMT) and polypyrrole/montmorillonite (PPy-MMT) composites were prepared, characterized (Fourier transform infrared, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction patterns) and were employed as adsorbents for the removal of fluoride ions from aqueous solution by the batch sorption method. The spectral studies of the adsorbents before and after the adsorption are recorded to get better insight into the mechanism of the adsorption process. The results indicated that the removal of fluoride ions from water by these composites occurs via the combined effect of both the constituents, that is, through a physico-chemical mechanism. The amount of fluoride ion adsorbed by PANi-MMT and PPy-MMT at 30 degrees C is observed to be 2.3 and 5.1 mg g(-1), respectively, when compared to 0.77 and 2.66 mg g(-1), respectively, for the polymers alone. The Langmuir, Freundlich and Dubinin-Radushkevich isotherms were used to describe the adsorption equilibrium. PMID:22720396

  16. Removal of herbicides from aqueous solutions by modified forms of montmorillonite.

    PubMed

    Park, Yuri; Sun, Zhiming; Ayoko, Godwin A; Frost, Ray L

    2014-02-01

    This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5-7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment. PMID:24267339

  17. Hybrid materials: Magnetite-Polyethylenimine-Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment.

    PubMed

    Larraza, Iñigo; López-Gónzalez, Mar; Corrales, Teresa; Marcelo, Gema

    2012-11-01

    Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40 nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800 g/mol or PEI 25000 g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8 mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH. PMID:22841705

  18. Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite.

    PubMed

    Khataee, Alireza; Sheydaei, Mohsen; Hassani, Aydin; Taseidifar, Mojtaba; Karaca, Semra

    2015-01-01

    The sonocatalytic performance of the synthesized TiO2/Montmorillonite K10 (TiO2/MMT) nanocomposite was studied in removal of Basic Blue 3 (BB3) from water. The TiO2/MMT nanocomposite was prepared by hydrothermal method. Scanning electron microscope, X-ray diffraction and Fourier transform infrared were used to characterize the synthesized nanocomposite. The average size of TiO2 nanoparticles decreased from 60-80nm to 40-60nm through the immobilization of this semiconductor on the surface of MMT. The obtained results indicated that the sonocatalytic activity of TiO2/MMT nanocomposite was higher than that of pure TiO2 nanoparticles and MMT particles. Furthermore, the main influence factors on the sonocatalytic activity such as the BB3 concentration, pH of solution, TiO2/MMT dose, power of ultrasonic generator, and inorganic salts were studied. The intermediates of BB3 degradation during the sonocatalytic process in the presence of the TiO2/MMT nanocomposite have been monitored by gas chromatography-mass spectrometry. PMID:25060118

  19. Effects of Graded Levels of Montmorillonite on Performance, Hematological Parameters and Bone Mineralization in Weaned Pigs

    PubMed Central

    Duan, Q. W.; Li, J. T.; Gong, L. M.; Wu, H.; Zhang, L. Y.

    2013-01-01

    The aim of this study was to investigate the effects of graded levels of montmorillonite, a constituent of clay, on performance, hematological parameters and bone mineralization in weaned pigs. One hundred and twenty, 35-d-old crossbred pigs (Duroc×Large White×Landrace, 10.50±1.20 kg) were used in a 28-d experiment and fed either an unsupplemented corn-soybean meal basal diet or similar diets supplemented with 0.5, 1.0, 2.5 or 5.0% montmorillonite added at the expense of wheat bran. Each treatment was replicated six times with four pigs (two barrows and two gilts) per replicate. Feed intake declined (linear and quadratic effect, p< 0.01) with increasing level of montmorillonite while feed conversion was improved (linear and quadratic effect, p<0.01). Daily gain was unaffected by dietary treatment. Plasma myeloperoxidase declined linearly (p = 0.03) with increasing dietary level of montmorillonite. Plasma malondialdehyde and nitric oxide levels were quadratically affected (p<0.01) by montmorillonite with increases observed for pigs fed the 0.5 and 1.0% levels which then declined for pigs fed the 2.5 and 5.0% treatments. In bone, the content of potassium, sodium, copper, iron, manganese and magnesium were decreased (linear and quadratic effect, p<0.01) in response to an increase of dietary montmorillonite. These results suggest that dietary inclusion of montmorillonite at levels as high as 5.0% does not result in overt toxicity but could induce potential oxidative damage and reduce bone mineralization in pigs. PMID:25049749

  20. Influence of a zirconia sandblasting treated surface on peri-implant bone healing: An experimental study in sheep.

    PubMed

    Bacchelli, Beatrice; Giavaresi, Gianluca; Franchi, Marco; Martini, Désirée; De Pasquale, Viviana; Trirè, Alessandra; Fini, Milena; Giardino, Roberto; Ruggeri, Alessandro

    2009-07-01

    A sandblasting process with round zirconia (ZrO(2)) particles might be an alternative surface treatment to enhance the osseointegration of titanium dental implants. Our previous study on sheep compared smooth surface titanium implants (control) with implant surfaces sandblasted with two different granulations of ZrO(2). As the sandblasted surfaces proved superior, the present study further compared the ZrO(2) surface implant with other surface treatments currently employed: machined titanium (control), titanium oxide plasma sprayed (TPS) and alumina sandblasted (Al-SL) at different times after insertion (2, 4 and 12weeks). Twelve sheep were divided into three groups of four animals each and underwent implant insertion in tibia cortical bone under general anaesthesia. The implants with surrounding tissues were subjected to histology, histomorphometry, scanning electron microscopy and microhardness tests. The experimentation indicated that at 2weeks Zr-SL implants had the highest significant bone ingrowth (p<0.05) compared to the other implant surfaces, and a microhardness of newly formed bone inside the threads significantly higher than that of Ti. The present work shows that the ZrO(2) treatment produces better results in peri-implant newly formed bone than Ti and TPS processing, whereas its performance is similar to the Al-SL surface treatment. PMID:19233751

  1. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada

    Microsoft Academic Search

    Glen R. Boyd; Helge Reemtsma; Deborah A. Grimm; Siddhartha Mitra

    2003-01-01

    A newly developed analytical method was used to measure concentrations of nine pharmaceuticals and personal care products (PPCPs) in samples from two surface water bodies, a sewage treatment plant effluent and various stages of a drinking water treatment plant in Louisiana, USA, and from one surface water body, a drinking water treatment plant and a pilot plant in Ontario, Canada.

  2. Eddy current residual stress profiling in surface-treated engine alloys Bassam A. Abu-Nabaha1

    E-print Network

    Nagy, Peter B.

    ://www.informaworld.com *Corresponding author. Email: peter.nagy@uc.edu Nondestructive Testing and Evaluation, Vol. 24, Nos. 1­2, March measurements can be exploited for nondestructive evaluation of subsurface residual stresses in surface; surface-treatment; residual stress profiling 1. Introduction Nondestructive residual stress assessment

  3. Variation of arsenic concentration on surfaces of in-service CCA-treated wood planks in a park and its influencing field factors.

    PubMed

    Tang, Ya; Gao, Wei; Wang, Xiuli; Ding, Shiming; An, Taicheng; Xiao, Weiyang; Wong, Ming H; Zhang, Chaosheng

    2015-01-01

    Wood preservatives can protect wood from dry rot, fungi, mould and insect damage, and chromated copper arsenate (CCA) has been used as an inorganic preservative for many years. However, wood treated with CCA has been restricted from residential uses in the EU from June 30, 2004, due to its potential toxicity. Such a regulation is not in place in China yet, and CCA-treated wood is widely used in public parks. A portable XRF analyser was used to investigate arsenic (As) concentration on surfaces of in-service CCA-treated wood planks in a popular park as well as the influencing field factors of age in-service, immersion and human footfall. With a total of 1207 readings, the observed As concentrations varied from below the detection limit (<10 mg/kg) to 15,746 mg/kg with a median of 1160 mg/kg. Strong variation of As concentrations were observed in different wood planks of the same age, on the surface of the same piece of wood, inside the same piece of wood, and different surfaces of walkway planks, hand rails and poles in the field. The oldest planks exhibited high As concentrations, which was related to its original treatment with high retention of CCA preservative. The effect of immersion in the field for about 4 months was insignificant for As concentration on the surfaces. However, a significant reduction of As was observed for immersion combined with human footfall (wiping by shoes). Human traffic in general caused slightly reduced and more evenly distributed As concentrations on the wood surfaces. The strong variation, slow aging and relatively weak immersion effects found in this study demonstrate that the in-service CCA-treated wood poses potential health risks to the park users, due to easy dermal contact especially when the wood is wet after rainfall. It is suggested that further comprehensive investigations and risk assessments of CCA-treated wood in residential areas in China are needed, and precautionary measures should be considered to reduce the potential risks to residents and visitors, especially children. PMID:25512245

  4. Gene expression of human osteoblasts cells on chemically treated surfaces of Ti-6Al-4V-ELI.

    PubMed

    Oliveira, D P; Palmieri, A; Carinci, F; Bolfarini, C

    2015-06-01

    Surface modifications of titanium alloys are useful methods to enhance the biological stability of intraosseous implants and to promote a well succeeded osseointegration in the early stages of implantation. This work aims to investigate the influence of chemically modified surfaces of Ti-6Al-4V-ELI (extra-low interstitial) on the gene expression of human osteoblastic (HOb) cells. The surface treatments by acid etching or acid etching plus alkaline treatment were carried out to modify the topography, effective area, contact angle and chemical composition of the samples. The surface morphology was investigated using: scanning electron microscopy (SEM) and confocal laser-scanning microscope (CLSM). Roughness measurements and effective surface area were obtained using the CLSM. Surface composition was analysed by energy dispersive X-ray spectroscopy (EDX) and by X-Ray Diffraction (XRD). The expression levels of some bone related genes (ALPL, COL1A1, COL3A1, SPP1, RUNX2, and SPARC) were analysed using real-time Reverse Transcription Polymerase Chain Reaction (real-time RT-PCR). The results showed that all the chemical modifications studied in this work influenced the surface morphology, wettability, roughness, effective area and gene expression of human osteoblasts. Acid phosphoric combined to alkaline treatment presented a more accelerated gene expression after 7days while the only phosphoric etching or chloride etching combined to alkaline treatment presented more effective responses after 15days. PMID:25842132

  5. Significant long-term reduction in n-channel MESFET subthreshold leakage using ammonium-sulfide surface treated gates

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.; Carpenter, M. S.; Melloch, Michael R.; Cooper, James A., Jr.

    1991-01-01

    Ammonium-sulfide (NH4)2S treated gates have been employed in the fabrication of GaAs MESFETs that exhibit a remarkable reduction in subthreshold leakage current. A greater than 100-fold reduction in drain current minimum is observed due to a decrease in Schottky gate leakage. The electrical characteristics have remained stable for over a year during undesiccated storage at room temperature, despite the absence of passivation layers.

  6. The effect of dispersion technique of montmorillonite on polyisocyanurate nanocomposites

    NASA Astrophysics Data System (ADS)

    Cabulis, U.; Fridrihsone, A.; Andersons, J.; Vlcek, T.

    2014-05-01

    The biomass represents an abundant, renewable, competitive and low cost resource that can play an alternative role to petrochemical resources. The central topic of the research activity reported is the use of rape seed oil (RO) as a raw material for the production of rigid polyisocyanurate foams (PIR). The content of the renewable resource-derived polymers achieved in ready foams is up to 20%. By using biopolymers as a matrix, a prospective way is to reinforce them with nanoparticles, organically modified clays, for improvement of mechanical properties while, at the same time, replacing petrochemical raw materials. Organoclay Cloisite® 15A was tested as a filler of PIR foams. Three different techniques - ultrasonification, mixing by three-roll mills, and high-pressure homogenization were used for dispergation of nanoclays in polyols. Composite polyisocyanurate foams and solid polymer samples were produced and tested for stiffness and strength. This paper discusses the studies into the use of RO as a renewable source in rigid PIR foams filled with organomodified montmorillonite clay with loadings from 1 to 5% by weight.

  7. Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa

    2011-01-01

    Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO(3) and NaBH(4) were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentration of AgNO(3). The interlamellar space limits changed little (d-spacing = 1.24-1.47 nm); therefore, Ag NPs formed on the MMT suspension with d-average = 4.19-8.53 nm diameter. The Ag/MMT nanocomposites (NCs), formed from AgNO(3)/MMT suspension, were characterizations with different instruments, for example UV-visible, PXRD, TEM, SEM, EDXRF, FT-IR, and ICP-OES analyzer. The antibacterial activity of different sizes of Ag NPs in MMT were investigated against Gram-positive, ie, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) and Gram-negative bacteria, ie, Escherichia coli, Escherichia coli O157:H7, and Klebsiella pneumoniae, by the disk diffusion method using Mueller-Hinton agar (MHA). The smaller Ag NPs were found to have significantly higher antibacterial activity. These results showed that Ag NPs can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications. PMID:21674015

  8. Polymer-encapsulated liquid crystals comprising montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Min; Tsai, Tsung-Yen; Huang, Yuan-Pin; Cheng, Wei-Sheng; Lee, Wei

    2009-02-01

    The morphologies of polymer-dispersed liquid crystals (PDLCs) and holographic PDLC (HPDLC) composites consisting of nematic liquid crystals filled with inorganic nanoparticles of either pristine montmorillonite (MMT) clay or organically modified MMT (OMMT) clay in polymer matrices are described. Different curing processes with ultraviolet irradiation and an Ar+ laser were applied to make the PDLCs and HPDLCs, respectively. In order to gain some prior knowledge of the dispersion of the inorganic nanoparticles in the polymer-encapsulated systems, wide-angle x-ray diffraction patterns from an MMT clay suspension in liquid crystal were observed at variable temperatures. Differential scanning photocalorimetry was carried out to observe the monomer conversion. The morphology of liquid-crystal droplets of the PDLCs was investigated by optical polarizing microscopy. The holographic nature of the HPDLCs was confirmed by both scanning electron microscopy and atomic force microscopy. It was found that the diffraction efficiency is markedly enhanced by doping a small amount of pristine clay platelets in the HPDLC. This preliminary study demonstrates the potential of a new optical device, which is made of MMT clay hybridized with liquid crystal in a PDLC system.

  9. Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa

    2011-01-01

    Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO3 and NaBH4 were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentration of AgNO3. The interlamellar space limits changed little (d-spacing = 1.24–1.47 nm); therefore, Ag NPs formed on the MMT suspension with d-average = 4.19–8.53 nm diameter. The Ag/MMT nanocomposites (NCs), formed from AgNO3/MMT suspension, were characterizations with different instruments, for example UV-visible, PXRD, TEM, SEM, EDXRF, FT-IR, and ICP-OES analyzer. The antibacterial activity of different sizes of Ag NPs in MMT were investigated against Gram-positive, ie, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) and Gram-negative bacteria, ie, Escherichia coli, Escherichia coli O157:H7, and Klebsiella pneumoniae, by the disk diffusion method using Mueller-Hinton agar (MHA). The smaller Ag NPs were found to have significantly higher antibacterial activity. These results showed that Ag NPs can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications. PMID:21674015

  10. Stability of Ca-montmorillonite hydrates: a computer simulation study.

    PubMed

    Odriozola, G; Aguilar, J F

    2005-11-01

    Classic simulations are used to study interlayer structure, swelling curves, and stability of Ca-montmorillonite hydrates. For this purpose, NP(zz)T and muP(zz)T ensembles are sampled for ground level and given burial conditions. For ground level conditions, a double layer hydrate having 15.0 A of basal spacing is the predominant state for relative vapor pressures (p/p0) ranging 0.6-1.0. A triple hydrate counting on 17.9 A of interlaminar distance was also found stable for p/p0 = 1.0. For low vapor pressures, the system may produce a less hydrated but still double layer state with 13.5 A or even a single layer hydrate with 12.2 A of interlaminar distance. This depends on the established initial conditions. On the other hand, the effect of burial conditions is two sided. It was found that it enhances dehydration for all vapor pressures except for saturation, where swelling is promoted. PMID:16375558

  11. Dielectric properties of polyaniline-montmorillonite clay hybrids.

    PubMed

    Haldar, Ipsita; Biswas, Mukul; Nayak, Arabinda; Ray, Suprakas Sinha

    2013-03-01

    Polyaniline (PANI)-montmorillonite clay (MMT) hybrid (PANI-MMT) was prepared by mechanical grinding of ANI and MMT in the presence of potassium perdisulphate (KPS) followed by soaking the mass in 0.1 (M) HCI for 24 h. The formation of PANI-MMT hybrid was confirmed by Fourier transform infrared spectroscopic analyses. XRD studies revealed the intercalation of PANI into two-dimensional silicate galleries of MMT HRTEM analyses indicated particle size distribution to be in the range of 40-55 nm. The real part of the dielectric constant reached values as high as 4500 at frequency - 10(2) Hz for a MMT:PANI = 1:1 weight ratio, the value decreasing with increasing frequency up to 25 kHz, and also with increasing MMT loading in the hybrids. This dispersion was indicative of the interfacial space charge polarization (Maxwell Wagner type). Grain boundary resistance and capacitance of the hybrid along with the conductivity-relaxation time for the hybrid at several PANI:MMT weight ratios were evaluated from the complex impedance plot considering the Maxwell-Wagner Two-Layered Model AC conductivity was independent of frequency in the range 0.1-1 kHz and thereafter found to rise in the range 1-25 kHz due to trapped charges. DC conductivity values of the hybrids were lower than the PANI homopolymer. PMID:23755599

  12. Adhesion strength of glass\\/epoxy composite embedded with heat-treated carbon black on the surface

    Microsoft Academic Search

    Sang Wook Park; Dai Gil Lee

    2010-01-01

    The surface of a glass\\/epoxy composite material was embedded with oxidized carbon black by heat treatment to enhance the adhesion strength of the glass\\/epoxy composite structure. Quantitative chemical bonding analysis with X-ray photoelectron spectroscopy (XPS) was conducted to observe the chemical binding states of the surface of the carbon black particles with heat treatment. The morphological effects of the carbon

  13. Thermal fatigue resistance of H13 steel treated by selective laser surface melting and CrNi alloying

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Dai, Ming-jiang; Zhang, Zhi-hui

    2013-04-01

    In this study, the selective laser surface melting and laser surface alloying technologies were adopted to improve the thermal fatigue resistance of medium carbon hot-work die steel (H13) by a CO2 laser. Two kinds of mixed chromium (Cr) and nickel (Ni) powders were used as the laser alloying materials, and the effects of the mixing ratio on the thermal fatigue resistance were investigated thoroughly. Some important results such as cross-sectional morphology, phases, hardness and thermal fatigue behavior were analyzed and evaluated. It indicates that the laser surface alloying technique using mixed powder with ratio of 75%Cr-25%Ni can considerably enhance the thermal fatigue resistance of the H13 steel. The laser alloyed zone has excellent properties such as preventing crack initiation and oxidation corrosion compared with original H13. Thermal cracking and oxidation corrosion that occurred at substrate surface can be surrounded and intercepted by a gridded laser strengthened structure. Therefore, the naturally developed cracks could be effectively prevented. Theses results and analysis show that laser surface technique can be positively used to improve surface mechanical properties of H13 dies.

  14. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability.

    PubMed

    Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong

    2003-08-15

    Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes. PMID:16256662

  15. The effect of NaOH concentration on the steam-hydrothermally treated bioactive microarc oxidation coatings containing Ca, P, Si and Na on pure Ti surface.

    PubMed

    Zhou, Rui; Wei, Daqing; Cao, Jianyun; Feng, Wei; Cheng, Su; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2015-04-01

    The microarc oxidation (MAO) coating covered pure Ti plates are steam-hydrothermally treated in autoclaves containing NaOH solutions with different concentrations of 0, 0.001, 0.01, 0.1 and 1mol·L(-1). Due to the composition of Ti, O, Ca, P, Si and Na elements in the MAO coating, anatase and hydroxyapatite (HA) crystals are generated from the previously amorphous MAO coating after the steam-hydrothermal treatment. Meanwhile, it is noticed that the amount of HA crystals increases but showing a decline trend in aspect ratio in morphologies with the increasing of NaOH concentration. Interestingly, the steam-hydrothermally treated MAO coatings exhibit better bonding strength with Ti substrate (up to 43.8±1.1MPa) than that of the untreated one (20.1±3.1MPa). In addition, benefiting from the corrosive attack of the dissolved NaOH in water vapor on the MAO coating, Ti-OH is also formed on the steam-hydrothermally treated MAO coating surface, which can trigger apatite nucleation. Thus, the steam-hydrothermally treated MAO coatings exhibit good apatite-inducing ability. PMID:25686996

  16. Surface-enhanced Raman scattering study of the healing of radial fractures treated with or without Huo–Xue–Hua–Yu decoction therapy

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; Huang, Hao; Chen, Rong; Feng, Shangyuan; Yu, Yun; Lin, Duo; Lin, Jia

    2014-11-01

    This study aimed to assess, through surface-enhanced Raman scattering (SERS) spectroscopy, the incorporation of calcium hydroxyapatite (CHA ~960?cm?1) and other biochemical substances in the repair of complete radial fractures in rabbits treated with or without Huo–Xue–Hua–Yu decoction (HXHYD) therapy. A total of 18 rabbits with complete radial fractures were randomly divided into two groups; one group was treated with HXHYD therapy and the other without therapy acted as a control. The animals were sacrificed at 15, 30 and 45?d after surgery. Specimens were routinely prepared for SERS measurement and high quality SERS spectra from a mixture of bone tissues and silver nanoparticles were obtained. The mineral-to-matrix ratios from the control and treated groups were calculated. Results showed that both deposition content of CHA measured by SERS spectroscopy and the mineral-to-matrix ratio in the treated group were always greater than those of the control group during the experiment, demonstrating that HXHYD therapy is effective in improving fracture healing and that SERS spectroscopy might be a novel tool to assess fracture healing.

  17. Composition, morphology and surface recombination rate of HCl-isopropanol treated and vacuum annealed InAs(1 1 1)A surfaces

    NASA Astrophysics Data System (ADS)

    Kesler, V. G.; Seleznev, V. A.; Kovchavtsev, A. P.; Guzev, A. A.

    2010-05-01

    X-ray photoelectron spectroscopy and atomic force microscopy were used to examine the chemical composition and surface morphology of InAs(1 1 1)A surface chemically etched in isopropanol-hydrochloric acid solution (HCl-iPA) and subsequently annealed in vacuum in the temperature range 200-500 °C. Etching for 2-30 min resulted in the formation of "pits" and "hillocks" on the sample surface, respectively 1-2 nm deep and high, with lateral dimensions 50-100 nm. The observed local formations, whose density was up to 3 × 10 8 cm -2, entirely vanished from the surface after the samples were vacuum-annealed at temperatures above 300 °C. Using a direct method, electron beam microanalysis, we have determined that the defects of the hillock type includes oxygen and excessive As, while the "pits" proved to be identical in their chemical composition to InAs. Vacuum anneals were found to cause a decrease in As surface concentration relative to In on InAs surface, with a concomitant rise of surface recombination rate.

  18. Nano-scale structure of Geofluids in Porous Silica and Montmorillonite Clay

    NASA Astrophysics Data System (ADS)

    Rother, G.; Gruszkiewicz, M. S.; Vlcek, L.; Cole, D. R.

    2012-12-01

    Earth's crust, composed of different rocks with varying degrees of nm- micron scale porosity, is source and reservoir of geofluids, and target for geologic carbon storage (GCS). The specific fluid-rock interactions control formation of fluid deposits, subsurface fluid mobility and mixing, and enhanced recovery processes. Rock pore characterization includes surface chemical identity, pore size distribution, ratio of connected to unconnected porosity and surface roughness. The properties of fluids confined in these pores are altered from bulk due to surface-fluid interactions and confined geometry effects. Changes in density, freezing temperature, and diffusion properties of pore fluids have been observed. Using a combination of neutron scattering and excess sorption measurements the physical properties of pore fluids can be quantified. We study both model systems with well-defined pore morphologies and natural rocks with fractal pore characteristics. Synthetic Porous silica glasses possessing tunable pore sizes of 8 - 50 nm serve as proxies for quartz-rich rocks, including sandstones. Natural rocks studied are sandstone, limestone, and shale. Excess sorption isotherms to silica aerogel and mesoporous CPG10 were measured using a high-pressure sorption balance and a vibrating tube densimeter. Strong adsorption of CO2 to the silica surfaces was found at low fluid pressure, followed by formation of a maximum in the excess sorption isotherm. The excess sorption took small and finally even negative values at high pressure. An inverse temperature dependence of the sorption strength was found in the adsorption region at low and intermediate pressure, while the excess sorption showed little temperature dependence at high pressure. A shift of the excess sorption maximum to higher fluid density was observed with increasing pore width. From small-angle neutron scattering data the density and volume of the sorption phase of pore CO2 was calculated using the Adsorbed Phase Model. The sorption behaviour was modelled using Grand Canonical Monte Carlo simulation, which exactly reproduced the excess sorption isotherm data under the assumption of a weakly attractive solid-fluid interaction potential. Caprocks overlying the porous reservoir rock serve to retain buoyant plumes of CO2. Caprocks can be comprised of thick layers of clay or mudstones, thought to be impenetrable to CO2. To quantify the interactions of caprock with CO2, we measured the excess sorption of supercritical CO2 at Na-montmorillonite clay, a proxy for cap rock materials. Very limited amounts of CO2 adsorbed to this clay mineral at low fluid densities. Using neutron diffraction, the change of the clay interlayer spacing was measured as a function of the CO2 density. A jump-like increase of the interlayer spacing upon CO2 addition was found at low pressures, and remained constant with further additions of CO2. These results indicate suitability of montmorillonite clay for carbon storage caprock applications.

  19. Corrosion Behavior of Surface-Treated Implant Ti-6Al-4V by Electrochemical Polarization and Impedance Studies

    NASA Astrophysics Data System (ADS)

    Paul, Subir; Yadav, Kasturi

    2011-04-01

    Implant materials for orthopedic and heart surgical services demand a better corrosion resistance material than the presently used titanium alloys, where protective oxide layer breaks down on a prolonged stay in aqueous physiological human body, giving rise to localized corrosion of pitting, crevice, and fretting corrosion. A few surface treatments on Ti alloy, in the form of anodization, passivation, and thermal oxidation, followed by soaking in Hank solution have been found to be very effective in bringing down the corrosion rate as well as producing high corrosion resistance surface film as reflected from electrochemical polarization, cyclic polarization, and Electrochemical Impedance Spectroscopy (EIS) studies. The XRD study revealed the presence of various types of oxides along with anatase and rutile on the surface, giving rise to high corrosion resistance film. While surface treatment of passivation and thermal oxidation could reduce the corrosion rate by 1/5th, anodization in 0.3 M phosphoric acid at 16 V versus stainless steel cathode drastically brought down the corrosion rate by less than ten times. The mechanism of corrosion behavior and formation of different surface films is better understood from the determination of EIS parameters derived from the best-fit equivalent circuit.

  20. Photoinduced catalytic adsorption of model contaminants on Bi/Cu pillared montmorillonite in the visible light range

    EPA Science Inventory

    Montmorillonite K10 clay was pillared with BiCl3 and Cu(NO3)2 to extend its applicability as catalytic adsorbent to degrade aqueous solution of anionic azo-dye Methyl Orange (MO) in the presence of visible light irradiation. The preparation of Bi/Cu-montmorillonite utilized benig...

  1. Surface-Treated versus Untreated Large-Bore Catheters as Vascular Access in Hemodialysis and Apheresis Treatments.

    PubMed

    Bambauer, Rolf; Schiel, Ralf; Bambauer, Carolin; Latza, Reinhard

    2012-01-01

    Background. Catheter-related infections, thrombosis, and stenosis are among the most frequent complications associated with catheters, which are inserted in vessels. Surface treatment processes of the outer surface, such as ion-beam-assisted deposition, can be used to mitigate such complications. Methods. This retrospective study (1992-2007) evaluated silver-coated (54 patients) and noncoated (105 patients) implanted large-bore catheters used for extracorporeal detoxification. The catheters were inserted into the internal jugular or subclavian veins. After removal, the catheters were cultured for bacterial colonization using standard microbiologic assays. They also were examined using scanning electron microscope. Results. The silver coated catheters showed a tendency towards longer in situ time. The microbiologic examinations of the catheter tips were in both catheter types high positive, but not significant. Conclusion. The silver-coated catheters showed no significantly reduction in infection rate by evaluation of all collected data in this retrospective study. There was no association between both catheters in significantly reducing savings in treatment costs and in reducing patient discomfort. Other new developed catheter materials such as the microdomain-structured inner and outer surface are considered more biocompatible because they mimic the structure of natural biological surface. PMID:22577548

  2. A bioluminescence ATP assay for estimating surface hydrophobicity and membrane damage of Escherichia coli cells treated with pulsed electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulse Electric Field (PEF) treatments, a non-thermal process have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (AJ, pH 3.8) purchased from a wholesale ...

  3. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Fernandes, B. B.; Mändl, S.; Oliveira, R. M.; Ueda, M.

    2014-08-01

    The formation of hard and wear resistant surface regions for austenitic stainless steel through different nitriding and nitrogen implantation processes at intermediate temperatures is an established technology. As the inserted nitrogen remains in solid solution, an expanded austenite phase is formed, accounting for these surface improvements. However, experiments on long-term behavior and exact wear processes within the expanded austenite layer are still missing. Here, the modified layers were produced using plasma immersion ion implantation with nitrogen gas and had a thickness of up to 4 ?m, depending on the processing temperature. Thicker layers or those with higher surface nitrogen contents presented better wear resistance, according to detailed microscopic investigation on abrasion, plastic deformation, cracking and redeposition of material inside the wear tracks. At the same time, cyclic fatigue testing employing a nanoindenter equipped with a diamond ball was carried out at different absolute loads and relative unloadings. As the stress distribution between the modified layer and the substrate changes with increasing load, additional simulations were performed for obtaining these complex stress distributions. While high nitrogen concentration and/or thicker layers improve the wear resistance and hardness, these modifications simultaneously reduce the surface fatigue resistance.

  4. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity.

    PubMed

    Shameli, Kamyar; Bin Ahmad, Mansor; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Moghaddam, Mansour Ghaffari

    2011-01-01

    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles. PMID:21499424

  5. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Moghaddam, Mansour Ghaffari

    2011-01-01

    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24–1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28–9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles. PMID:21499424

  6. Sodium Montmorillonite/Amine-Containing Drugs Complexes: New Insights on Intercalated Drugs Arrangement into Layered Carrier Material

    PubMed Central

    Vieira, Bárbara A.; Dias, Luiza R. S.; de Sousa, Valéria P.; Castro, Helena C.; Rodrigues, Carlos R.; Cabral, Lucio M.

    2015-01-01

    Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT) is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug) were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation). We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin) were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems. PMID:25803292

  7. Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (PG) montmorillonite with poly(acrylic acid).

    PubMed

    Fareed, Muhammad A; Stamboulis, Artemis

    2014-01-01

    Montmorillonite nanoclays (PGV and PGN) were dispersed in poly(acrylic acid) (PAA) for utilization as reinforcing filler in glass ionomer cements (GICs). Chemical and physical interaction of PAA and nanoclay (PGV and PGN) was studied. PAA–PGV and PAA–PGN solutions were prepared in different weight percent loadings of PGV and PGN nanoclay (0.5-8.0 wt%) via exfoliation-adsorption method. Characterization was carried out by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR) spectroscopy. XRD results of PAA–PGN demonstrated that the interlayer space expanded from 12.83 to 16.03 Å indicating intercalation whereas the absence of the peak at d(001) in PAA–PGV indicated exfoliation. XPS scans of PGV and PGN nanoclays depicted the main peak of O 1s photoelectron due to Si–O–M (M = Mg, Al, Fe) whereas, Si–O–Al linkages were identified by Si 2p or Si 2s and Al 2p or Al 2s peaks. The disappearance of the Na peak confirmed that PAA molecules exchanged sodium ions present on surface of silicate layers and significantly reduced the electrostatic van-der-Waals forces between silicate plates resulting in intercalation or exfoliation. FTIR spectra of PAA–nanoclay suspensions demonstrated the presence of a new peak at 1,019 cm(-1) associated with Si–O– stretching vibrations which increased with increasing nanoclays concentration. Information concerning the dispersion of nanoclay in PAA aqueous solutions, chemical reaction and increase interlayer space in montmorillonite nanoclay is particularly useful regarding dispersion and reinforcement of nanoclay in PAA. PMID:24077996

  8. Effect of Organic Matter on the Flocculation of Colloidal Montmorillonite: A Modeling Approach

    NASA Astrophysics Data System (ADS)

    Furukawa, Y.

    2011-12-01

    The effect of organic matter (OM) on the flocculation of colloidal montmorillonite was investigated through a complementary use of laboratory experiments and computational flocculation modeling. The model, based on Smoluchowski's coagulation model and population balance equation (PEB), was established with two key flocculation parameters, sticking efficiency and breakup parameter. The laboratory flocculation experiments tracked the temporal evolution of the floc sizes for aqueous systems with colloidal bare montmorillonite as well as those with montmorillonite and OM (humic acid, chitin or xanthan gum). The key flocculation parameters were calibrated through the interactive optimization of the model results against the laboratory results. The calibrated flocculation parameter values revealed that OM has a complex influence on the flocculation behavior of montmorillonite. They also showed that the effect of OM on flocculation depends on the types of OM. For example, xanthan gum does not significantly modify the flocculation behavior of montmorillonite that is primarily determined by the electrical double layer repulsion (i.e., zeta-potential) and van der Waals attraction (i.e., DLVO interaction energies), whereas chitin modifies both the sticking efficiency and breakup parameter. This study illustrates that there is no universally predictive correlation between DLVO energies or zeta-potential and flocculation parameters, as some OM has little effect on the DLVO interaction of montmorillonite colloids whereas other types of OM exert non-DLVO interactions such as repulsive hydration, steric repulsion and polymer bridging. Further understanding of the physical-chemical properties of OM is needed in order to predict the flocculation behaviors of estuarine and coastal suspended colloids.

  9. Surface and interfacial reaction study of half cycle atomic layer deposited HfO{sub 2} on chemically treated GaSb surfaces

    SciTech Connect

    Zhernokletov, D. M. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States)] [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Dong, H.; Brennan, B.; Kim, J. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)] [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Yakimov, M.; Tokranov, V.; Oktyabrsky, S. [College of Nanoscale Science and Engineering, University at Albany - SUNY, Albany, New York 12203 (United States)] [College of Nanoscale Science and Engineering, University at Albany - SUNY, Albany, New York 12203 (United States); Wallace, R. M. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States) [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2013-04-01

    An in situ half-cycle atomic layer deposition/X-ray photoelectron spectroscopy (XPS) study was conducted in order to investigate the evolution of the HfO{sub 2} dielectric interface with GaSb(100) surfaces after sulfur passivation and HCl etching, designed to remove the native oxides. With the first pulses of tetrakis(dimethylamido)hafnium(IV) and water, a decrease in the concentration of antimony oxide states present on the HCl-etched surface is observed, while antimony sulfur states diminished below the XPS detection limit on sulfur passivated surface. An increase in the amount of gallium oxide/sulfide is seen, suggesting oxygen or sulfur transfers from antimony to gallium during antimony oxides/sulfides decomposition.

  10. Surface Electrical Stimulation for Treating Swallowing Disorders after Stroke: A Review of the Stimulation Intensity Levels and the Electrode Placements

    PubMed Central

    Poorjavad, Marziyeh; Talebian Moghadam, Saeed; Daemi, Mostafa

    2014-01-01

    Neuromuscular electrical stimulation (NMES) for treating dysphagia is a relatively new therapeutic method. There is a paucity of evidence about the use of NMES in patients with dysphagia caused by stroke. The present review aimed to introduce and discuss studies that have evaluated the efficacy of this method amongst dysphagic patients following stroke with emphasis on the intensity of stimulation (sensory or motor level) and the method of electrode placement on the neck. The majority of the reviewed studies describe some positive effects of the NMES on the neck musculature in the swallowing performance of poststroke dysphagic patients, especially when the intensity of the stimulus is adjusted at the sensory level or when the motor electrical stimulation is applied on the infrahyoid muscles during swallowing. PMID:24804147

  11. In situ surface enhanced resonance Raman scattering (SERRS) spectroscopy of biro inks--long-term stability of colloid treated samples.

    PubMed

    White, P C

    2003-01-01

    The script produced by two black biro inks in 1998 in a document that was not subjected to any special storage conditions or further treatment was re-analysed by SERRS spectroscopy. The results presented show that the analyses of the areas of the ink strokes previously treated with an aggregating agent. poly-(L-lysine), and then silver colloid still produce strong SERRS spectra. No major changes are observed in the spectra thus still providing a method for discriminating between the two inks used in the document and illustrating the long-term stability of the colloid treatment. This ability to re-analyse the ink samples without any further treatment is attributed to the use of very fine pen nibs to apply the reagents. PMID:14509375

  12. Rheological and Electrokinetic Properties of Sodium Montmorillonite Suspensions.

    PubMed

    Durán; Ramos-Tejada; Arroyo; González-Caballero

    2000-09-01

    In this article, we describe the rheology of Na montmorillonite suspensions as a function of pH, at constant ionic strength. The observed behavior is discussed quantitatively in terms of the potential energy of interaction between particles, keeping in mind the anisotropic nature of clay particles. The extended DLVO model that includes electrostatic, van der Waals, and polar acid-base contributions to the total energy is used. It is found that face-to-face interactions are virtually independent of pH, whereas edge-to-edge interactions are most attractive at the isoelectric point of edges (pH approximately 7). The most significant variations occur in face-to-edge potential energy, with strong attractions at pH<7. Steady-state viscometry showed that the yield stress decreases up to an order of magnitude between pH 3 and pH 7, with a much slower rate of decrease in the 7-11 pH interval. Concerning oscillatory measurements, it is found that both the elastic (G') and viscous (G") moduli are practically independent of frequency. It is also demonstrated that G'>G", the difference being larger at acid pH values. These results, in addition to potential energy calculations, suggest the existence of an elastic, coagulated structure up to pH 7, whereas as the pH is increased such structure is more relaxed because of electrostatic repulsions. Similar conclusions are reached when creep-recovery data are analyzed. Copyright 2000 Academic Press. PMID:10942547

  13. Spectroscopic studies on Rhodamine B intercalated K-10 montmorillonite aqueous dispersions

    NASA Astrophysics Data System (ADS)

    Joseph, Lyjo K.; Suja, H.; Sanjay, G.; Sugunan, S.; Nampoori, V. P. N.; Radhakrishnan, P.

    2015-02-01

    In this paper, the optical absorption and fluorescence studies on rhodamine B (RB) intercalated acid activated K-10 montmorillonite dispersions is presented. The aqueous dispersions were prepared from the dried dye intercalated montmorillonite. The absorption and fluorescence peaks of RB dispersions show a bathochromic shift with respect to the dye concentrations. The samples have a fluorescent emission at 421 nm which is having an intensity variation depending on the concentration of the dyes. The behaviour of samples of same concentration prepared by two different routes is also presented.

  14. Organophilic worm-like ruthenium nanoparticles catalysts by the modification of CTAB on montmorillonite supports.

    PubMed

    Zhou, Limei; Qi, Xiaolong; Jiang, Xiaohui; Zhou, Yafen; Fu, Haiyan; Chen, Hua

    2013-02-15

    A supported Ru catalyst was prepared by using cetyltrimethylammonium bromide (CTAB) intercalated montmorillonite as the supporting matrix. The as-prepared Ru catalyst was subsequently characterized by XRD, XPS, N(2) sorption, TEM, and dispersibility measurement. The results showed that the Ru nanoparticles were in the modified montmorillonite interlayers, and the morphology of Ru nanoparticle was worm-like. Moreover, this supported Ru catalyst could be well dispersed in organic solvents such as toluene. The catalyst exhibited high activity and selectivity in the hydrogenation of quinoline even without stirring. PMID:23141762

  15. Microstructure and its effect on toughness and wear resistance of laser surface melted and post heat treated high speed steel

    Microsoft Academic Search

    Leif Åhman

    1984-01-01

    High speed steel hacksaw blade blanks were laser surface melted and rapidly solidified along one edge. The laser melting resulted\\u000a in complete carbide dissolution. By subsequent machining and heat treatments saw teeth were manufactured with a refined internal\\u000a structure of the edges and corners. The structure was fully martensitic with a uniform and dense dispersion of small primary\\u000a carbides. Sawing

  16. Newly developed surface modification punches treated with alloying techniques reduce sticking during the manufacture of ibuprofen tablets.

    PubMed

    Uchimoto, Takeaki; Iwao, Yasunori; Yamamoto, Tatsuya; Sawaguchi, Kazuo; Moriuchi, Toshiaki; Noguchi, Shuji; Itai, Shigeru

    2013-01-30

    Sticking is a serious problem during the manufacturing process of tablets. In order to prevent this, we used alloying techniques to prepare metal hardening (MH) and electron beam processing infinite product (EIP) punches with rougher asperity of surfaces than a hard chrome plated (HCr) punch. This study evaluated the anti-sticking properties of the MH and EIP punches compared to the HCr punch, using quantitative scraper force measurements and visual observation, for the manufacture of ibuprofen (Ibu) tablets. The anti-sticking property mechanism of the MH and EIP punches was also confirmed. The amount of Ibu adhering to the punch surface was 66% lower for the MH and EIP punches than for the HCr punch, suggesting a superior anti-sticking property of the MH and EIP punches. The scraper force of the HCr punch was 2.60-4.28 N, while that for the MH and EIP punches was 0.54-1.64 N and 0.42-1.33 N, respectively. The result of X-ray photoelectron spectroscopy suggested that the anti-sticking property of the EIP punch was attributed by the rough asperity as well as existence of low friction substance carbon fluoride on the punch surface. In conclusion, this study provides new evidence for the mechanisms behind the superior anti-sticking property of the MH and EIP punches. PMID:23247020

  17. Synthesis of fructooligosaccharides from Aspergillus niger commercial inulinase immobilized in montmorillonite pretreated in pressurized propane and LPG.

    PubMed

    de Oliveira Kuhn, Graciele; Rosa, Clarissa Dalla; Silva, Marceli Fernandes; Treichel, Helen; de Oliveira, Débora; Oliveira, J Vladimir

    2013-02-01

    Commercial inulinase from Aspergillus niger was immobilized in montmorillonite and then treated in pressurized propane and liquefied petroleum gas (LPG). Firstly, the effects of system pressure, exposure time, and depressurization rate, using propane and LPG, on enzymatic activity were evaluated through central composite design 2³. Residual activities of 145.1 and 148.5% were observed for LPG (30 bar, 6 h, and depressurization rate of 20 bar?min?¹) and propane (270 bar, 1 h, and depressurization rate of 100 bar?min?¹), respectively. The catalysts treated at these conditions in both fluids were then used for the production of fructooligosaccharides (FOS) using sucrose and inulin as substrates in aqueous and organic systems. The main objective of this step was to evaluate the yield and productivity in FOS, using alternatives for enhancing enzyme activity by means of pressurized fluids and also using low-cost supports for enzyme immobilization, aiming at obtaining a stable biocatalyst to be used for synthesis reactions. Yields of 18% were achieved using sucrose as substrate in aqueous medium, showing the potential of this procedure, hence suggesting a further optimization step to increase the process yield. PMID:23271628

  18. Soil surface colonization by phototrophic indigenous organisms, in two contrasted soils treated by formulated maize herbicide mixtures.

    PubMed

    Joly, Pierre; Misson, Benjamin; Perrière, Fanny; Bonnemoy, Frédérique; Joly, Muriel; Donnadieu-Bernard, Florence; Aguer, Jean-Pierre; Bohatier, Jacques; Mallet, Clarisse

    2014-11-01

    Soil phototrophic microorganisms, contributors to soil health and food webs, share their particular metabolism with plants. Current agricultural practices employ mixtures of pesticides to ensure the crops yields and can potentially impair these non-target organisms. However despite this environmental reality, studies dealing the susceptibility of phototrophic microorganisms to pesticide mixtures are scarce. We designed a 3 months microcosm study to assess the ecotoxicity of realistic herbicide mixtures of formulated S-metolachlor (Dual Gold Safeneur(®)), mesotrione (Callisto(®)) and nicosulfuron (Milagro(®)) on phototrophic communities of two soils (Limagne vertisol and Versailles luvisol). The soils presented different colonizing communities, with diatoms and chlorophyceae dominating communities in Limagne soil and cyanobacteria and bryophyta communities in Versailles soil. The results highlighted the strong impairment of Dual Gold Safeneur(®) treated microcosms on the biomass and the composition of both soil phototrophic communities, with no resilience after a delay of 3 months. This study also excluded any significant mixture effect on these organisms for Callisto(®) and Milagro(®) herbicides. We strongly recommend carrying on extensive soil studies on S-metolachlor and its commercial formulations, in order to reconsider its use from an ecotoxicological point of view. PMID:25129149

  19. Effect of organic matters on CO2 hydrate phase equilibrium conditions in Na-montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Park, T.; Kyung, D.; Lee, W.

    2013-12-01

    Formation of gas hydrates provides an attractive idea for storing greenhouse gases in a long-term stable geological formation. Since the phase equilibrium conditions of gas hydrates indicate the stability of hydrates, estimation of the phase equilibrium conditions of gas hydrates in marine geological conditions is necessary. In this study, we have identified the effects of organic matters (glycine, glucose, and urea) and solid surface (montmorillonite (MMT)) on the three-phase (liquid-hydrate-vapor) equilibrium conditions of CO2 hydrate. CO2 phase equilibrium experiments were conducted using 0.5mol% organic matter solutions with and without 10g soil mineral were experimentally conducted. Addition of organic matters shifted the phase equilibrium conditions of CO2 hydrate to the higher pressure or lower pressure region because of higher competition of water molecules due to the dissolved organic matters. Presence of MMT also leaded to the higher equilibrium pressure due to the interaction of cations with water molecules. By addition of organic matters to the clay suspension, the hydrate phase equilibrium conditions were less inhibited compared to those of MMT and organic matters independently. The diminished magnitudes by addition of organic matters to the clay suspension (MMT > MMT+urea > MMT+glycine > MMT+glucose > DIW) were different to the order of inhibition degree without MMT (Glucose > glycine > urea > DIW). X-ray diffraction (XRD), scanning electron microscope (SEM), and ion chromatography (IC) analysis were conducted to support the hypothesis that the organic matters interact with cations in MMT interlayer space, and leads to the less inhibition of phase equilibrium conditions. The present study provides basic information for the formation and dissociation of CO2 hydrates in the geological formation when sequestering CO2 as a form of CO2 hydrate.

  20. Adsorption of aniline and toluidines on montmorillonite: Implications for the disposal of shale oil production wastes

    SciTech Connect

    Essington, M.E.; Bowen, J.M.; Wills, R.A.; Hart, B.K.

    1992-01-01

    Bentonite clay liners are commonly employed to mitigate the movement of contaminants from waste disposal sites. Solid and liquid waste materials that arise from the production of shale oil contain a vast array of organic compounds. Common among these compounds are the aromatic amines. in order to assess the ability of clay liner material to restrict organic compound mobility, the adsorption of aniline and o-, m-, and p-toluidine on Ca{sup 2+} - and K{sup +}-saturated Wyoming bentonite was investigated. Adsorption experiments were performed under conditions of varied pH, ionic strength, and dominate electrolyte cation and anion. organic adsorption on Ca{sup 2+} - and K{sup +}-saturated montmorillonite is pH dependent. For any given organic compound, maximum adsorption increases with decreasing ionic strength. organic compound adsorption is inhibited in the presence of sulfate and is greater in the Ca{sup 2+} systems than in the K{sup +} systems at any given ionic strength. High salt content and K{sup +} collapse the bentonite layers and limit access to and compete for adsorption sites. The K{sup +} ion is also more difficult to displace than Ca{sup 2+} from interlayer positions. Fourier transform infrared spectroscopic data show that the aniline compounds are adsorbed on bentonite through the hydrogen bonding of an amine hydrogen to a surface silica oxygen. Sulfate reduces amine adsorption by removing positively charged anilinium species from solution to form negatively charge sulfate complexes. Although adsorption of the substituted amines on bentonite is observed, aniline and toluidine adsorption is minimal in saline systems and not detected in alkaline systems. Thus, in shale oil process waste disposal sites, the mobility of the anilines through bentonite liners will not be mitigated by sorption processes, as spent oil shale leachates are both highly alkaline and saline.

  1. Adsorption of aniline and toluidines on montmorillonite: Implications for the disposal of shale oil production wastes

    SciTech Connect

    Essington, M.E.; Bowen, J.M.; Wills, R.A.; Hart, B.K.

    1992-01-01

    Bentonite clay liners are commonly employed to mitigate the movement of contaminants from waste disposal sites. Solid and liquid waste materials that arise from the production of shale oil contain a vast array of organic compounds. Common among these compounds are the aromatic amines. in order to assess the ability of clay liner material to restrict organic compound mobility, the adsorption of aniline and o-, m-, and p-toluidine on Ca[sup 2+] - and K[sup +]-saturated Wyoming bentonite was investigated. Adsorption experiments were performed under conditions of varied pH, ionic strength, and dominate electrolyte cation and anion. organic adsorption on Ca[sup 2+] - and K[sup +]-saturated montmorillonite is pH dependent. For any given organic compound, maximum adsorption increases with decreasing ionic strength. organic compound adsorption is inhibited in the presence of sulfate and is greater in the Ca[sup 2+] systems than in the K[sup +] systems at any given ionic strength. High salt content and K[sup +] collapse the bentonite layers and limit access to and compete for adsorption sites. The K[sup +] ion is also more difficult to displace than Ca[sup 2+] from interlayer positions. Fourier transform infrared spectroscopic data show that the aniline compounds are adsorbed on bentonite through the hydrogen bonding of an amine hydrogen to a surface silica oxygen. Sulfate reduces amine adsorption by removing positively charged anilinium species from solution to form negatively charge sulfate complexes. Although adsorption of the substituted amines on bentonite is observed, aniline and toluidine adsorption is minimal in saline systems and not detected in alkaline systems. Thus, in shale oil process waste disposal sites, the mobility of the anilines through bentonite liners will not be mitigated by sorption processes, as spent oil shale leachates are both highly alkaline and saline.

  2. Properties of M40J Carbon/PMR-II-50 Composites Fabricated with Desized and Surface Treated Fibers. Characterization of M40J Desized and Finished Fibers

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Gosau, Jan M.; Shin, E. Eugene; McCorkle, Linda S.; Sutter, James K.; OMalley, Michelle; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    To increase performance and durability of high temperature composites for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high temperature polyimide resins. It has been previously demonstrated that the electro-oxidative shear treatments used by fiber manufacturers are not effective on higher modulus fibers that have fewer edge and defect sites in the surface crystallites. In addition, sizings commercially supplied on most carbon fibers are not compatible with polyimides. This study was an extension of prior work characterizing the surface chemistry and energy of high modulus carbon fibers (M40J and M60J, Torray) with typical fluorinated polyimide resins, such as PMR-II-50. A continuous desizing system which utilizes environmentally friendly chemical- mechanical processes was developed for tow level fiber and the processes were optimized based on weight loss behavior, surface elemental composition (XPS) and morphology (FE-SEM) analyses, and residual tow strength of the fiber, and the similar approaches have been applied on carbon fabrics. Both desized and further treated with a reactive finish were investigated for the composite reinforcement. The effects of desizing and/or subsequent surface retreatment on carbon fiber on composite properties and performance including fiber-matrix interfacial mechanical properties, thermal properties and blistering onset behavior will be discussed in this presentation.

  3. Viability of Listeria monocytogenes on commercially-prepared hams surface treated with acidic calcium sulfate and lauric arginate and stored at 4°C.

    PubMed

    Luchansky, J B; Call, J E; Hristova, B; Rumery, L; Yoder, L; Oser, A

    2005-09-01

    We demonstrated the effectiveness of delivering an antimicrobial purge/fluid into shrink-wrap bags immediately prior to introducing the product and vacuum sealing, namely the "Sprayed Lethality In Container" (SLIC™) intervention delivery method. The pathogen was Listeria monocytogenes, the antimicrobials were acidic calcium sulfate (ACS; calcium sulfate plus lactic acid; 1:1 or 1:2 in dH(2)O) and lauric arginate (LAE; Ethyl-N-dodecanoyl-l-arginate hydrochloride; 5% or 10% in dH(2)O), and the product was commercially prepared "table brown" ham (ca. 3 pounds each). Hams were surface inoculated with a five-strain cocktail of L. monocytogenes (ca. 7.0 log(10) CFU per ham), added to shrink-wrap bags that already contained ACS or LAE, vacuum-sealed, and stored at 4°C for 24h. Pathogen levels decreased by 1.2, 1.6, 2.4, and 3.1 log(10) CFU/ham and 0.7, 1.6, 2.2, and 2.6 log(10) CFU/ham in samples treated with 2, 4, 6, and 8mL of a 1:1 and 1:2 solution of ACS, respectively. In samples treated with 2, 4, 6, and 8mL of a 5% solution of LAE, pathogen levels decreased by 3.3, 6.5, 5.6, and 6.5 log(10) CFU/ham, whereas when treated with a 10% solution of LAE pathogen levels decreased ca. 6.5 log(10) CFU/ham for all application volumes tested. The efficacy of ACS and LAE were further evaluated in shelf-life studies wherein hams were surface inoculated with either ca. 3.0 or 7.0 log(10) CFU of L. monocytogenes, added to shrink-wrap bags that contained 0, 4, 6, or 8mL of either a 1:2 solution of ACS or a 5% solution of LAE, vacuum-sealed, and stored at 4°C for 60 days. For hams inoculated with 7.0 log(10) CFU, L. monocytogenes levels decreased by ca.1.2, 1.5, and 2.0 log(10) CFU/ham and 5.1, 5.4, and 5.5 log(10) CFU/ham within 24h at 4°C in samples treated with 4, 6, and 8mL of a 1:2 solution of ACS and a 5% solution of LAE, respectively, compared to control hams that were not treated with either antimicrobial. Thereafter, pathogen levels remained relatively unchanged (±1.0 log(10) CFU/ham ) after 60 days at 4°C in hams treated with 4, 6, and 8mL of a 1:2 solution of ACS and increased by ca. 2.0-5.0 log(10) CFU/ham in samples treated with 4, 6, and 8mL of a 5% solution of LAE. For hams inoculated with 3.0 log(10) CFU, L. monocytogenes levels decreased by 1.3, 1.9, and 1.8 log(10) CFU/ham within 24h at 4°C in samples treated with 4, 6, and 8mL of a 1:2 solution of ACS, respectively, compared to control hams that were not treated. Likewise, levels of the pathogen were reduced to below the limit of detection (i.e., 1.48 log(10) CFU/ham) in the presence of 4, 6, and 8mL of a 5% solution of LAE within 24h at 4°C. After 60 days at 4°C, pathogen levels remained relatively unchanged (±0.3 log(10) CFU/ham) in hams treated with 4, 6, and 8mL of a 1:2 solution of ACS. However, levels of L. monocytogenes increased by ca. 2.0 log(10) CFU/ham in samples treated with 4 and 6mL of a 5% LAE solution within 60 days but remained below the detection limit on samples treated with 8mL of this antimicrobial. These data confirmed that application via SLIC™ of both ACS and LAE, at the concentrations and volumes used in this study, appreciably reduced levels of L. monocytogenes on the surface of hams within 24h at 4°C and showed potential for controlling outgrowth of the pathogen over 60 days of refrigerated storage. PMID:22064055

  4. SEDIMENTOLOGICAL AND TECHNICAL STUDIES ON THE MONTMORILLONITIC CLAYS OF ABU TARTUR PLATEAU, WESTERN DESERT, EGYPT

    Microsoft Academic Search

    Kadry N. SEDIEK; Ashraf M. AMER

    One of the most known sedimentary formation among Egyptian Upper Cretacous rock units is named Duwi Formation (Lower Maastrichtian), an outcrop at the Abu Tartur plateau, Kharga Oasis, Western Desert, Egypt. This formation displays three montmorillonitic clayey layers. The investigations of these sediments provide information on the texture, constituents and type of clay minerals, which helps define and describe their

  5. OXIDATION OF ALCOHOLS OVER FE3+/MONTMORILLONITE-K10 USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various primary and secondary alcohols is studied in liquid phase at atmospheric pressure over Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a pH of 4 in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method ...

  6. Calcium montmorillonite clay reduces urinary biomarkers of fumonisin B1 exposure in rats and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Fumonisin B1 (FB1) is often a co-contaminant with aflatoxin (AF) in grains and may enhance AF’s carcinogenicity by acting as a cancer promoter. An oral dose of calcium montmorillonite clay (i.e. NovaSil, NS) was able to reduce aflatoxin exposure in a Ghanaian population at risk. In vitro...

  7. Sorption Speciation of Nickel(II) onto Ca-Montmorillonite: Batch, EXAFS Techniques and Modeling

    E-print Network

    Paris-Sud XI, Université de

    .1039/c1dt10740b #12;2 1. Introduction Availability of Ni(II) for bio-uptake and transport products influences the mobility, bioavailability, and ultimately toxicity in the environment.1,2 Thus and aquatic systems, which has been well characterized in detail.8 Montmorillonite presents several types

  8. Preparation, characterization and performance of polyethersulfone\\/organically modified montmorillonite nanocomposite membranes in removal of pesticides

    Microsoft Academic Search

    Negin Ghaemi; Sayed S. Madaeni; Abdolhamid Alizadeh; Hamid Rajabi; Parisa Daraei

    2011-01-01

    Nanocomposite membranes containing polyethersulfone (PES) and organically modified montmorillonite (OMMT) were prepared by a combination of solution dispersion and wet-phase inversion methods and accordingly, the effect of OMMT addition to the properties and performance of fabricated nanofiltration membranes was investigated. The membranes were characterized by contact angle measurement, scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM),

  9. Peptide chain elongation: A possible role of montmorillonite in prebiotic synthesis of protein precursors

    NASA Astrophysics Data System (ADS)

    Bujdák, Juraj; Faybíková, Katarína; Eder, Artur; Yongyai, Yongyos; Rode, Bernd M.

    1995-10-01

    Several studies have proven the ability of montmorillonite to catalyse amino acid condensation under assumed prebiotic conditions, simulating wetting-drying cycles. In this work, the oligomerization of short peptides gly2, gly3, gly4 and ala2 on Ca-and Cu-montmorillonite in drying-wetting cycles at 80 °C was studied. The catalytic effect of montmorillonite was found to be much higher than in the case of glycine oligomerization. From gly2 after 3 weeks, 10% oligomers (up to gly6, with gly3 as main products) are formed. Gly3 and gly4 give higher oligomers even after 1 cycle. Ala2 produces both ala3 and ala4, whereas ala does not produce any oligomers under these conditions. Heteroologomerization was observed: ala-gly-gly is formed from ala and gly2. Much higher yields are obtained using Ca-montmorillonite, because copper (II) oxidizes organic molecules. The influence of the reaction mechanism on the preferential oligomerization of oligopeptides is discussed.

  10. Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradable foamlike materials based on a naturally occurring polymer (casein protein) and sodium montmorillonite clay (Na+-MMT) were produced through a simple freeze-drying process. By utilizing DL-glyceraldehyde (GC) as a chemical cross-linking agent, the structural integrity of these new aeroge...

  11. Hydrodynamic and Chemical Factors in Clogging by Montmorillonite in Porous Media

    PubMed Central

    Mays, David C.; Hunt, James R.

    2008-01-01

    Clogging by colloid deposits is important in water treatment filters, groundwater aquifers, and petroleum reservoirs. The complexity of colloid deposition and deposit morphology preclude models based on first principles, so this study extends an empirical approach to quantify clogging using a simple, one-parameter model. Experiments were conducted with destabilized suspensions of sodium- and calcium-montmorillonite to quantify the hydrodynamic and chemical factors important in clogging. Greater clogging is observed at slower fluid velocity, consistent with previous investigations. However, calcium-montmorillonite causes one order of magnitude less clogging per mass of deposited particles compared to sodium-montmorillonite or a previously published summary of clogging in model granular media. Steady state conditions, in which the permeability and the quantity of deposited material are both constant, were not observed, even though the experimental conditions were optimized for that purpose. These results indicate that hydrodynamic aspects of clogging by these natural materials are consistent with those of simplified model systems, and they demonstrate significant chemical effects on clogging for fully destabilized montmorillonite clay. PMID:17874771

  12. Characterization of homoionic Fe 2+-type montmorillonite: Potential chemical species of iron contaminant

    NASA Astrophysics Data System (ADS)

    Kozai, Naofumi; Inada, Koichi; Adachi, Yoshifusa; Kawamura, Sachi; Kashimoto, Yusuke; Kozaki, Tamotsu; Sato, Seichi; Ohnuki, Toshihiko; Sakai, Takuro; Sato, Takahiro; Oikawa, Masakazu; Esaka, Fumitaka; Mitamura, Hisayoshi

    2007-08-01

    Fe 2+-montmorillonite with Fe 2+ ions occupying cation exchange sites is an ideal transformation product in bentonite buffer material. In our previous study on preparation and characterization of Fe 2+-montmorillonite, the montmorillonite sample that adsorbed Fe 2+ ions on almost all of the cation exchange sites was prepared using a FeCl 2 solution under an inert gas condition [N. Kozai, Y. Adachi, S. Kawamura, K. Inada, T. Kozaki, S. Sato, H. Ohashi, T. Ohnuki, T. Banba, J. Nucl. Sci. Technol. 38 (2001) 1141]. In view of the unstable nature of iron(II) chemical species, this study attempted to determine the potential contaminant iron chemical species in the sample. Nondestructive elemental analysis revealed that a small amount of chloride ions remained dispersed throughout the clay particles. The chloride ion retention may be due to the adsorption of FeCl + ion pairs in the initial FeCl 2 solution and the subsequent containment of the Cl - ions that are dissociated from the FeCl + ion pairs during excess salt removal treatment. Two explanations are advanced for the second process: the slow release of the remaining Cl - ions from the collapsed interlayer of the montmorillonite, and the transformation of a minor fraction of the remaining FeCl + ion pairs to iron(III) hydroxide chloride complexes having low solubility.

  13. Effect of PAC dosage in a pilot-scale PAC-MBR treating micro-polluted surface water.

    PubMed

    Hu, Jingyi; Shang, Ran; Deng, Huiping; Heijman, Sebastiaan G J; Rietveld, Luuk C

    2014-02-01

    To address the water scarcity issue and advance the traditional drinking water treatment technique, a powdered activated carbon-amended membrane bioreactor (PAC-MBR) is proposed for micro-polluted surface water treatment. A pilot-scale study was carried out by initially dosing different amounts of PAC into the MBR. Comparative results showed that 2g/L performed the best among 0, 1, 2 and 3g/L PAC-MBR regarding organic matter and ammonia removal as well as membrane flux sustainability. 1g/L PAC-MBR exhibited a marginal improvement in pollutant removal compared to the non-PAC system. The accumulation of organic matter in the bulk mixture of 3g/L PAC-MBR led to poorer organic removal and severer membrane fouling. Molecular weight distribution of the bulk liquid in 2g/L PAC-MBR revealed the synergistic effects of PAC adsorption/biodegradation and membrane rejection on organic matter removal. Additionally, a lower amount of soluble extracellular polymer substances in the bulk can be secured in 21 days operation. PMID:24412856

  14. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    NASA Astrophysics Data System (ADS)

    Amin Yavari, S.; Wauthle, R.; Böttger, A. J.; Schrooten, J.; Weinans, H.; Zadpoor, A. A.

    2014-01-01

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO2 nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  15. Analysis of microbial community structure in a biofilm on membrane surface in the submerged membrane bioreactor treating domestic wastewater on the basis of respiratory quinone profiles.

    PubMed

    Lim, Byung-Ran; Ahn, Kyu-Hong

    2004-08-01

    The objective of this study was to investigate the microbial community structure of the biofouling film formed on hollow-fiber membrane surfaces in the submerged membrane bioreactor (SMBR) with a nitrification-denitrification process. In this experiment, aeration was conducted intermittently (60 min off, 90 min on) cyclic anoxic and oxic conditions in the SMBR. The dominant quinone types of biofilm on the membrane surface in an intermittently aerated SMBR were ubiquinone (UQs)-8, -10, followed by menaquinones (MKs)-8(H4), -8(H2) and -7, but those of suspended microorganisms were UQ-8, UQ-10 followed by MKs-8, -9(H4) and -6. The change in quinone profiles of biofilm on the membrane surface suggested that UQ-9, MK-7, MK-8(H2) and MK-8(H4) contributed to microbiological fouling in the intermittently aerated SMBR treating domestic wastewater. The microbial diversities of suspended microorganisms and biofilm, calculated based on the composition of all quinones, were 9.5 and 10.9, respectively. PMID:15754245

  16. Influence of a Cerium Surface Treatment on the Oxidation Behavior of Cr2O3-Forming Alloys (title on slides varies: Oxidation Behavior of Cerium Surface Treated Chromia Forming Alloys)

    SciTech Connect

    Alman, D.E.; Holcomb, G.R.; Adler, T.A.; Jablonski, P.D.

    2007-04-01

    Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This temperature will require the construction of boiler and turbine components from austenitic stainless steels and nickel alloys. Many of the alloys being considered for use are primarily Cr2O3 forming alloys [1-4]. It is well known that the addition of a small amount of reactive elements, such as the rare earths elements Ce, La, and Y, can significantly improve the high temperature oxidation resistance of both iron- and nickel- base alloys. A list of the benefits of the reactive element effect include: (i) slowing scale growth, (ii) enhancing scale adhesion; and (iii) stabilizing Cr2O3 formation at lower Cr levels. The incorporation of the reactive element can be made in the melt or through a surface infusion or surface coating. Surface modifications allow for the concentration of the reactive element at the surface where it can provide the most benefit. This paper will detail a Ce surface treatment developed at NETL that improves the high temperature oxidation resistance of Cr2O3 forming alloys. The treatment consists of painting, dip coating, or spraying the alloy surface with a slurry containing CeO2 and a halide activator followed by a thermal treatment in a mild (x10-3 Torr) vacuum. During treatment the CeO2 reacts with the alloy to for a thin CrCeO3-type scale on the alloy surface. Upon subsequent oxidation, scale growth occurs at a reduced rate on alloys in the surface treated condition compared to those in the untreated condition.

  17. Effect of different temperatures on performance and membrane fouling in high concentration PAC-MBR system treating micro-polluted surface water.

    PubMed

    Ma, Cong; Yu, Shuili; Shi, Wenxin; Heijman, S G J; Rietveld, L C

    2013-08-01

    A bench-scale immersed microfiltration coupled with 50 g/L PAC was developed to treat micro-polluted surface water (MPSW) under 10 and 20 °C and the effects of temperatures on the performance and the membrane fouling were also investigated. The low temperature (10 °C) delayed the time for the start-up by 9 days and the complete nitrification by 10 days. In the stable operation, two systems both had high NH?-N removal efficiency (above 90%) and better removal of organic matters (10% DOC, 5% UV??? and 4% SUVA) at 10 °C. Polysaccharides (SMP) were the main membrane fouling matters at low temperature (10 °C) and low temperature (10 °C) didn't cause serious chemical irreversible membrane fouling. PMID:23664177

  18. Patterning Method for Silver Nanoparticle Electrodes in Fully Solution-Processed Organic Thin-Film Transistors Using Selectively Treated Hydrophilic and Hydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Fukuda, Kenjiro; Takeda, Yasunori; Kobayashi, Yu; Shimizu, Masahiro; Sekine, Tomohito; Kumaki, Daisuke; Kurihara, Masato; Sakamoto, Masatomi; Tokito, Shizuo

    2013-05-01

    Fully solution-processed organic thin-film transistor (OTFT) devices have been fabricated with simple patterning process at a relatively low process temperature of 100 °C. In the patterning process, a hydrophobic amorphous fluoropolymer material, which was used as the gate dielectric layer and the underlying base layer, was treated with an oxygen plasma to selectively change its surface wetting properties from hydrophobic to hydrophilic. Silver source and drain electrodes were successfully formed in the treated areas with highly uniform line widths and without residues between the electrodes. Nonuniformities in the thickness of the silver electrodes originating from the “coffee-ring” effect were suppressed by optimizing the blend of solvents used with the silver nanoparticles, such that the printed electrodes are appropriate for bottom-gate OTFT devices. A fully solution-processed OTFT device using a polymer semiconductor material (PB16TTT) exhibited good electrical performance with no hysteresis in its transfer characteristics and with good linearity in its output characteristics. A relatively high carrier mobility of 0.14 cm2 V-1 s-1 and an on/off ratio of 1×105 were obtained with the fabricated TFT device.

  19. Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells

    PubMed Central

    2012-01-01

    Background Titanium dioxide (TiO2) nanoparticles (NPs) are widely used due to their specific properties, like UV filters in sunscreen. In that particular case TiO2 NPs are surface modified to avoid photocatalytic effects. These surface-treated nanoparticles (STNPs) spread in the environment and might release NPs as degradation residues. Indeed, degradation by the environment (exposure to UV, water and air contact …) will occur and could profoundly alter the physicochemical properties of STNPs such as chemistry, size, shape, surface structure and dispersion that are important parameters for toxicity. Although the toxicity of surface unmodified TiO2 NPs has been documented, nothing was done about degraded TiO2 STNPs which are the most likely to be encountered in environment. The superoxide production by aged STNPs suspensions was tested and compared to surface unmodified TiO2 NPs. We investigated the possible toxicity of commercialized STNPs, degraded by environmental conditions, on human intestinal epithelial cells. STNPs sizes and shape were characterized and viability tests were performed on Caco-2 cells exposed to STNPs. The exposed cells were imaged with SEM and STNPs internalization was researched by TEM. Gene expression microarray analyses were performed to look for potential changes in cellular functions. Results The production of reactive oxygen species was detected with surface unmodified TiO2 NPs but not with STNPs or their residues. Through three different toxicity assays, the STNPs tested, which have a strong tendency to aggregate in complex media, showed no toxic effect in Caco-2 cells after exposures to STNPs up to 100??g/mL over 4?h, 24?h and 72?h. The cell morphology remained intact, attested by SEM, and internalization of STNPs was not seen by TEM. Moreover gene expression analysis using pangenomic oligomicroarrays (4x 44000 genes) did not show any change versus unexposed cells after exposure to 10??g/ mL, which is much higher than potential environmental concentrations. Conclusions TiO2 STNPs, degraded or not, are not harmful to Caco-2 cells and are unlikely to penetrate the body via oral route. It is likely that the strong persistence of the aluminium hydroxide layer surrounding these nanoparticles protects the cells from a direct contact with the potentially phototoxic TiO2 core. PMID:22650444

  20. Recurrent Bowen's disease of scalp treated with high dose rate surface mold brachytherapy: a case report and review of the literature

    PubMed Central

    Laviraj, Macharla Anjaneyulu; Kashyap, Lakhan; Purkait, Suvendu; Sharma, Daya Nand; Julka, Pramod Kumar; Rath, Goura Kishor

    2014-01-01

    Our case is a 46-year-old female presenting to us with Bowen's disease of scalp since 5 years. Patient had failed topical therapy with 5% 5-florouracil, 0.1% tacrolimus and was intolerant to topical imiquimod. At presentation, she had 15 cm × 10 cm erythematous, hyperpigmented, crusted plaque with irregular border in the superior and lateral aspect of left side of scalp with extension in to forehead. Patient was treated with computed tomography based customized surface mold high dose rate brachytherapy with Iridium-192 to a dose of 35 Gy in 10 fractions (twice daily, 6 hours apart) over 5 days. Patient tolerated the treatment well and showed regression of the lesion with mild dermatitis at the end of treatment. Though dermatitis increased at 2 weeks, at 4 weeks post treatment there was near complete resolution of the lesion with adjacent alopecia. At 8 weeks after completion of the treatment, there was complete resolution of the lesion and patient was asymptomatic. Alopecia in the adjacent area has resolved and the skin pigmentation has begun. Patient is satisfied with both the disease control and the cosmetic outcome of the procedure. Our case report demonstrates successful application of surface mold high dose rate brachytherapy in the treatment of recurrent Bowen's disease of the scalp. Brachytherapy can play an important role in the management of recurrent malignant and premalignant diseases of the complex treatment sites like scalp and it's non-hesitant use should be encouraged in appropriately selected patients at the earliest.

  1. Polyvinyl Alcohol \\/Na-Montmorillonite Nanocomposite Hydrogels Prepared by Freezing-Thawing Method: Structural, Mechanical, Thermal and Swelling Properties

    Microsoft Academic Search

    M. SIROUSAZAR; M. KOKABI; Z. M. HASSAN; A. R. BAHRAMIAN

    2012-01-01

    Physically crosslinked nanocomposite hydrogels based on polyvinyl alcohol (PVA) containing Na-montmorillonite were prepared by the cyclic freezing-thawing method. The primarily exfoliated morphology of prepared nanocomposite hydrogels was confirmed by X-ray diffractometry (XRD) and transmission electron microscopy (TEM) as complementary techniques. It is shown that some interactions developed between the hydroxyl groups of PVA chains and Na-montmorillonite silicate layers in the

  2. Polyvinyl Alcohol\\/Na-Montmorillonite Nanocomposite Hydrogels Prepared by Freezing–Thawing Method: Structural, Mechanical, Thermal, and Swelling Properties

    Microsoft Academic Search

    M. Sirousazar; M. Kokabi; Z. M. Hassan; A. R. Bahramian

    2012-01-01

    Physically crosslinked nanocomposite hydrogels based on polyvinyl alcohol (PVA) containing Na-montmorillonite were prepared by the cyclic freezing–thawing method. The primarily exfoliated morphology of prepared nanocomposite hydrogels was confirmed by X-ray diffractometry (XRD) and transmission electron microscopy (TEM) as complementary techniques. It is shown that some interactions developed between the hydroxyl groups of PVA chains and Na-montmorillonite silicate layers in the

  3. Synthesis and characterization of niobium modified montmorillonite and its use in the acid-catalyzed synthesis of ?-hydroxyethers

    Microsoft Academic Search

    Jean Marcel R. Gallo; Sergio Teixeira; Ulf Schuchardt

    2006-01-01

    Montmorillonite K10 was ion-exchanged with polyhydroxyniobium obtained from niobium pentachloride by hydrolysis. This modified clay was characterized by X-ray diffraction, thermogravimetric analysis, inductively coupled plasma emission (ICP-OES) and nitrogen adsorption\\/desorption. The obtained material was used in the alcoholysis of epoxidized methyl oleate with methanol, leading to ?-hydroxyethers. The reaction with ion-exchanged montmorillonite (Nb-Mont) was four times faster at 60°C and

  4. X-ray Photoelectron Spectroscopic Study of Cobalt(II) and Nickel(II) Sorbed on Hectorite and Montmorillonite

    Microsoft Academic Search

    Nigel Davison; WILLIAM R. McWHINNIE; ALAN HOOPER

    1991-01-01

    The safe disposal of 6~ 63Ni, and 59Ni has required considerable information on the inter- actions of Co 2+ and Ni 2+ with clay minerals in the geosphere. X-ray photoelectron spectroscopy (XPS) has been used to probe the sorption sites for Co 2+ and Ni 2+ on hectorite and montmorillonite. The spectra were measured for Co-hectorite, Ni-hectorite, and Ni-montmorillonite immediately

  5. Mechanism of p-nitrophenol adsorption from aqueous solution by HDTMA +-pillared montmorillonite—Implications for water purification

    Microsoft Academic Search

    Qin Zhou; Hong Ping He; Jian Xi Zhu; Wei Shen; Ray L. Frost; Peng Yuan

    2008-01-01

    HDTMA+-pillared montmorillonites were obtained by pillaring different amounts of the surfactant hexadecyltrimethylammonium bromide (HDTMAB) into sodium montmorillonite (Na-Mt) in an aqueous solution. The optimum conditions and batch kinetics of sorption of p-nitrophenol from aqueous solutions are reported. The solution pH had a very important effect on the sorption of p-nitrophenol. The maximum p-nitrophenol absorption\\/adsorption occurs when solution pH (7.15–7.35) is

  6. An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed to montmorillonite clay

    Microsoft Academic Search

    John D. Morton; Jeremy D. Semrau; Kim F. Hayes

    2001-01-01

    X-ray absorption spectroscopy (XAS) and adsorption-desorption measurements have been performed to assess the relationship between the structure and reversibility of copper complexes on montmorillonite clay. By varying the solution pH and background electrolyte concentration, the adsorption of copper on either the edge sites or permanent charge sites of montmorillonite was controlled. This allowed the structure and reversibility of copper complexes

  7. Oligomerization reactions of ribonucleotides - The reaction of the 5'-phosphorimidazolide of nucleosides on montmorillonite and other minerals

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Gozen

    1992-01-01

    The reaction of ImpA in the presence of Na(+)-montmorillonite 22A or Na(+)-Volclay in aqueous, pH 8 solution gives a 50-60 percent yield of dimers and trimers (pA)2 and (pA)3. The ratio of 3',5'-phosphodiester bond formation is twice as great as 2',5'-bond formation. The reaction requires the presence of Mg2+ and is inhibited by 0.4 M imidazole. N-methylimidazole enhances the rate of the reaction but does not cause major changes in yield or product composition. Higher yields were obtained when Li+- or Ca2+-montmorillonites were used in place of Na+-montmorillonite. Little or no phosphodiester bond formation was observed with Mg2+- or Al3+-montmorillonite. Montmorillonites other than 22A and Volclay exhibited litle or no catalysis. In addittion, little or no catalysis was exhibited in ferrugenous smectite, nontronite, allophane, imogolite or sepiolite. Oligomers were also formed by the reaction of ImpG, 2-methylImpG, ImpC and ImpU in the presence of Na+-montmorillonite. The pyrimidine nucleotides gave significantly lower yields of oligomers.

  8. Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalystsDegradation of decabromodiphenyl ether (BDE 209)

    Microsoft Academic Search

    Taicheng An; Jiaxin Chen; Guiying Li; Xuejun Ding; Guoying Sheng; Jiamo Fu; Bixian Mai; Kevin E. O'Shea

    2008-01-01

    A novel TiO2 immobilized hydrophobic montmorillonite photocatalysts were designed and prepared for the advanced oxidation of persistent organic pollutants in water, which combined the pre-adsorption and concentrated effects for aqueous micro-organic pollutants with the photocatalytic destruction of organic pollutants. The photocatalysts were synthesized by immobilizing TiO2 onto surfactant-pillared montmorillonite via ion exchange reaction between sodium montmorillonite with cation surfactant, cetyl

  9. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  10. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review.

    PubMed

    Bhattacharyya, Krishna Gopal; Gupta, Susmita Sen

    2008-08-01

    The feasibility of using two important and common clay minerals, kaolinite and montmorillonite, as adsorbents for removal of toxic heavy metals has been reviewed. A good number of works have been reported where the modifications of these natural clays were done to carry the adsorption of metals from aqueous solutions. The modification was predominantly done by pillaring with various polyoxy cations of Zr4+, Al3+, Si4+, Ti4+, Fe3+, Cr3+or Ga3+, etc. Preparation of pillared clays with quaternary ammonium cations, namely, tetramethylammonium-, tetramethylphosphonium- and trimethyl-phenylammonium-, N'-didodecyl-N, N'-tetramethylethanediammonium, etc, are also common. Moreover, the acid treatment of clays often boosted their adsorption capacities. The adsorption of toxic metals, viz., As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni, Zn, etc., have been studied predominantly. Montmorillonite and its modified forms have much higher metal adsorption capacity compared to that of kaolinite as well as modified-kaolinite. PMID:18319190

  11. Competitive and synergistic effects between excimer VUV radiation and O radicals on the etching mechanisms of polyethylene and fluoropolymer surfaces treated by an atmospheric He-O2 post-discharge

    NASA Astrophysics Data System (ADS)

    Dufour, T.; Hubert, J.; Vandencasteele, N.; Viville, P.; Lazzaroni, R.; Reniers, F.

    2013-08-01

    Among various surface modification techniques, plasma can be used as a source for tailoring the surface properties of diverse materials. HDPE and fluoropolymer surfaces have been treated by the post-discharge of an atmospheric RF-plasma torch supplied with helium and oxygen gases. The plasma-treated surfaces were characterized by measurements of mass losses, water contact angles, x-ray photoelectron spectroscopy and atomic force microscopy. This experimental approach correlated with an optical characterization of the plasma phase allowed us to propose etching mechanisms occurring at the post-discharge/polymer interface. We discuss how competitive and synergistic effects can result from the oxidation and/or the roughening of the surface but also from the excimer VUV radiation, the He metastable species and the O radicals reaching the plasma-polymer interface.

  12. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode

    Microsoft Academic Search

    Shengshui Hu; Cuiling Xu; Gaiping Wang; Dafu Cui

    2001-01-01

    A new method for the determination of 4-nitrophenol(4-NP) by differential pulse voltammetry (DPV) based on adsorptive stripping technique was described. Cyclic voltammetry (CV) and linear scan voltammetry (LSV) were used in a comparative investigation into the electrochemical reduction of 4-NP at a Na-montmorillonite(SWy-2) and anthraquione (AQ) modified glassy carbon electrode. With this chemically modified electrode, 4-NP was first irreversibly reduced

  13. An organically modified montmorillonite\\/nylon-12 composite powder for selective laser sintering

    Microsoft Academic Search

    C. Z. Yan; Y. S. Shi; J. S. Yang; J. H. Liu

    2011-01-01

    Purpose – The purpose of this paper is to reinforce the selective laser sintering (SLS) parts of nylon-12 using organically modified montmorillonite (OMMT). Design\\/methodology\\/approach – A dissolution-precipitation process is developed to prepare an OMMT\\/nylon-12 composite powder (3 wt% OMMT). X-ray diffraction (XRD) was used to characterize nanostructure features. The dispersion of OMMT in the nylon-12 matrix was observed by scanning

  14. Mechanical, Thermal and Viscoelastic Behavior of Nylon 6\\/Clay Nanocomposites with Cotreated Montmorillonites

    Microsoft Academic Search

    Smita Mohanty; Sanjay K. Nayak

    2007-01-01

    Nylon 6 nanocomposites were prepared using melt intercalation technique. Sodium montmorillonite (Na-MMT) was modified with octadecyl ammonium salt to evaluate the effect of clay modification on the performance of the nanocomposites. A comparative account with the nanocomposites prepared, using commercial clay cloisite 30B has been presented. X-ray diffraction (XRD) studies indicated an increase in the basal spacing of organically modified

  15. ADSORPTION OF HYDROXY-A1 POLYCATIONS AND DESTABILIZATION OF ILLITE AND MONTMORILLONITE SUSPENSIONS

    Microsoft Academic Search

    H. E. DONER

    1990-01-01

    Water-infiltration characteristics of soil can be improved by preventing clay dispersion. The present study determined the adsorption properties of hydroxy-AI polycations (Al-p) and their relation to the destabilization of clay suspensions. AI-p was synthesized and fractionated into nominal molecular weights between 104 and 5 x 104. The reactions of Al-p with Na-illite and Na-montmorillonite indicated a very strong affinity of

  16. Synergistic Effect of Montmorillonite and Intumescent Flame Retardant on Flame Retardance Enhancement of ABS

    Microsoft Academic Search

    Ying Xia; Xi-gao Jian; Jian-feng Li; Xin-hong Wang; Yan-yan Xu

    2007-01-01

    The synergistic effects of organic montmorillonite (OMMT) and intumescent flame retardant (IFR) based on the ammonium polyphosphate (APP) and pentaerythritol (PER) on flame retardant enhancement of acrylonitrile-butadiene-styrene copolymer (ABS) were investigated by using the limiting oxygen index (LOI), the UL-94 (vertical flame) test, thermogravimetric analysis (TGA), x-ray diffractometry (XRD) and scanning electron microscopy (SEM). The LOI data and vertical flame

  17. Bleaching with alternative layered minerals: A comparison with acid-activated montmorillonite for bleaching soybean oil

    Microsoft Academic Search

    Dennis R. Taylor; Dennis B. Jenkins; Charles B. Ungermann

    1989-01-01

    An extensive series of layered minerals including montmorillonite was studied to determine if the fundamental physicochemical\\u000a properties responsible for pigment adsorption could be identified. Samples were subjected to a uniform preparation regimen\\u000a to eliminate such secondary effects as particle size, moisture content, level of activation and degree of washing. By doing\\u000a so, it has been possible to show that both

  18. PhysicoChemical Characterization and Catalytic Properties of Copper-Doped Alumina-Pillared Montmorillonites

    Microsoft Academic Search

    K. Bahranowski; A. KIELSKI; J. PODOBI; E. M. SERWICKA

    1998-01-01

    Abstraet--Cu-doped alumina-pillared montmorillonite samples have been prepared and characterized with X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), electron spin resonance (ESR) and in- ductive coupled plasma atomic emission spectroscopy (ICP AES) techniques. The results show that the catalysts are porous materials with copper species located in the interlayer, present either as isolated Cu 2+ ions anchored at alumina pillars or as patches

  19. The hydrometallurgical extraction of lithium from egyptian montmorillonite-type clay

    NASA Astrophysics Data System (ADS)

    Amer, A. M.

    2008-10-01

    The processing of El-Fayoum montmorillonite-type clay deposits is attained through leaching with commercial sulfuric acid using a ball-mill-type autoclave. This process yields lithium sulfate, which can be used either for the production of lithium carbonate or to produce lithium metal. The effects of temperature, grain size, and sulfuric acid concentration and leaching on lithium recovery as well as the kinetics of the leaching process have been studied.

  20. Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite

    Microsoft Academic Search

    P. Panneer Selvam; S. Preethi; P. Basakaralingam; N. Thinakaran; A. Sivasamy; S. Sivanesan

    2008-01-01

    The adsorption of rhodamine B dye was carried out using sodium montmorillonite clay. The effect of parameters such as pH, adsorbent dosage and initial dye concentration was studied. The Langmuir and Freundlich isotherm models were applied and the Langmuir model was found to best fit the equilibrium isotherm data. Langmuir adsorption capacity was found to be 42.19mg\\/g. Kinetic data followed

  1. Poly( d, l-lactide-co-glycolide)\\/montmorillonite nanoparticles for oral delivery of anticancer drugs

    Microsoft Academic Search

    Yuancai Dong; Si-Shen Feng

    2005-01-01

    This research developed a novel bioadhesive drug delivery system, poly(d,l-lactide-co-glycolide)\\/montmorillonite (PLGA\\/MMT) nanoparticles, for oral delivery of paclitaxel. Paclitaxel-loaded PLGA\\/MMT nanoparticles were prepared by the emulsion\\/solvent evaporation method. MMT was incorporated in the formulation as a matrix material component, which also plays the role of a co-emulsifier in the nanoparticle preparation process. Paclitaxel-loaded PLGA\\/MMT nanoparticles were found to be of spherical

  2. Preparation of Porous Polymethyl Methacrylate\\/Organo-Montmorillonite Composite Membranes for Phenolic Compound Adsorption

    Microsoft Academic Search

    Ray-Yi Lin; Bang-Shuo Chen; Shing-Yi Suen

    2011-01-01

    The preparation of porous poly(methyl methacrylate)\\/organo-montmorillonite composite membranes for adsorption application was carried out via entrapment methods. The sponge-like membrane structure was characterized by a scanning electron microscope, whereas the X-ray diffraction, Fourier transform infrared, and thermogravimetric analyses confirmed the incorporation of organo-clays inside the composite membranes. To investigate the applicability of the composite membranes on phenolic compound adsorption, batch-mode

  3. Adsorption and Oxidation of Benzidine and Aniline by Montmorillonite and Hectorite

    Microsoft Academic Search

    T. Furukawa; G. W. Brindley

    1973-01-01

    Abstract--Quantitative measurements,are made of the adsorption of benzidine and aniline from aque- ous hydrochloride solutions by Na-, Li-, and Ca-montmorillonite and of the displaced inorganic ca- tions. From these data, the ionic states of the adsorbed organic species are determined. Under condi- tions of controlled pH, the adsorption of benzidine increases as the pH increases, and involves mainly divalent species

  4. The effects of mixed quartz-montmorillonite gouge on the frictional sliding of Tennessee sandstone

    E-print Network

    Rauenzahn, Kim Ann

    1985-01-01

    quartz-montmorillonite gouge along each precut. Experiments are performed at room temperature, confining pressures from 25 to 70 MPa and displacement rates varying during the tests from 10 to 10 sm/sec. Quartz gouge exhibits only stick-slip behavior... quartz) for gouges deformed at 50 NPa. 96 INTRODUCTION Investigations into the frictional behavior of rocks are an important part of experimental rock mechanics research, in the study of motion along faults and earthquake mechanisms. The two types...

  5. Preparation and performance of a Nafion ®\\/montmorillonite nanocomposite membrane for direct methanol fuel cell

    Microsoft Academic Search

    D. H. Jung; S. Y. Cho; D. H. Peck; D. R. Shin; J. S. Kim

    2003-01-01

    Direct methanol fuel cells (DMFC) have major technical problems, e.g. slow methanol oxidation kinetics and high methanol crossover, to use as power sources for several applications. To overcome these problems it has been proposed to increase the fuel cell operating temperature to over 100–150°C and to reduce the methanol permeability.In this work, we made Nafion®\\/montmorillonite (MMT) nanocomposite membranes and carried

  6. The structure of montmorillonites modified with zwitterionic surfactants and their sorption ability

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxi; Qing, Yanhong; Ma, Lingya; Zhu, Runliang; He, Hongping

    2014-08-01

    In this work, a novel organo-clays, zwitterionic surfactant modified montmorillonites (ZSMMs) were synthesized by using sulphobetaine and montmorillonites. The structures of ZSMMs were characterized by X ray diffraction (XRD) methods; the surfactant loading levels were measured by Total organic carbon (TOC) analysis, and their sorptive characteristics toward p-nitrophenol and nitrobenzene were investigated. XRD and TOC measurements indicated that the amount of adsorbed surfactants and the basal spacing of the ZSMMs increase with alkyl chain length and surfactant concentration. Sorption experiments showed that the capacity of p-nitrophenol to sorb onto the ZSMMs is higher than that of nitrobenzene. Both capacities increase with surfactant loading level; However, sorption capacity decreases when the surfactant concentration is higher than 2.0 CEC. Under the same surfactant loading level, the sorption capacities of p-nitrophenol and nitrobenzene increase with alkyl chain length. Under this experimental condition, the longer alkyl chain leads to a higher sorption capacity for hydrophobic organic compounds. On the basis of the ability of p-nitrophenol and nitrobenzene to sorb onto the montmorillonites, we conclude that the contaminant sorption coefficients, normalized with organic carbon content, highly depend on surfactant loading levels.

  7. Preparation and characterization of montmorillonite modified by phosphorus-nitrogen containing quaternary ammonium salts

    NASA Astrophysics Data System (ADS)

    Huang, Guobo; Gao, Jianrong; Wang, Xu

    2012-02-01

    A novel class of phosphorous-nitrogen containing quaternary ammonium salts (PNQAS) were synthesized and used as modifiers for sodium montmorillonite (Na-MMT). Montmorillonites modified by PNQAS (PNQAS-MMT) were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), dispersibility measurement and thermogravimetric analysis (TGA). The results show that the PNQAS have been intercalated into the montmorillonite layers successfully and the basal spacing of PNQAS-MMT is 1.70-2.65 nm. The XRD results show that the basal spacing of PNQAS-MMT reaches a maximum when PNQAS/CEC molar ratio is above 1.2. The increase of chain length of PNQAS is beneficial to expand the interlayer space of the MMT. The TEM and dispersibility measurement results show that PNQAS-MMT have stronger hydrophobicity and better dispersion than Na-MMT. The TGA results reveal that the thermal stability for PNQAS-MMT is affected by the structure and composition of intercalated PNQAS cations. The Tinital of PNQAS-MMT is between 286 °C and 385 °C, which can be applied to the modification of the polymer as a halogen-free flame retardant.

  8. Preparation, characterization and properties of amino-functionalized montmorillonite and composite layer-by-layer assembly with inorganic nanosheets

    NASA Astrophysics Data System (ADS)

    Huang, Guo-bo; Ge, Chang-hua; He, Bing-jing

    2011-06-01

    An amino-functionalized montmorillonite (APTMS-MMT) was prepared by the grafting of 3-aminopropyltrimethoxysilane (APTMS) on the surface of MMT via the ultrasonic synthesis process and characterized by a variety of techniques: FT-IR, thermogravimetic analysis (TGA), particles size analysis and ?-potential measurement. The results showed the size and size distribution of APTMS-MMT particles were decreased, and the ?-potential of particles was increased obviously via the ultrasonic synthesis process. The particles of 30% APTMS-MMT US (MMT modified with 30 wt% APTMS with ultrasonic synthesis process) had a z-average diameter of about 500 nm and a polydispersity index of 0.2. The resultant 30% APTMS-MMT US was dispersed uniformly and stably in water. The poly(acrylic acid) (PAA)/APTMS-MMT multilayer films were grown through layer-by-layer (LBL) deposition of PAA and APTMS-MMT. SEM results indicated that the ultrasonic synthesis of APTMS-MMT increased dispersability of clay sheets at high loadings. The thermal stability and mechanical properties of PAA/APTMS-MMT composites were investigated by TGA and tensile test respectively. The results showed the ultrasonic synthesis of APTMS-MMT enhanced the thermal stability and mechanical properties of PAA/APTMS-MMT composites significantly. PAA/30% APTMS-MMT US composite displayed 3 times higher strength and 6 times higher Young's modulus when compared with pure PAA polymer.

  9. Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Stribeck, Norbert; Schneider, Konrad; Zeinolebadi, Ahmad; Li, Xuke; Sanporean, Catalina-Gabriela; Vuluga, Zina; Iancu, Stela; Duldner, Monica; Santoro, Gonzalo; Roth, Stephan V.

    2014-02-01

    The core-shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline stacks. In the NCs the discrete SAXS of arranged crystalline PP domains is limited to a skin zone of 300 ?m thickness. Even there only frozen-in primary lamellae are detected. The core of the NCs is dominated by diffuse scattering from crystalline domains placed at random. The SAXS of the MMT flakes exhibits a complex skin-core gradient. Both the direction of the symmetry axis and the apparent perfection of flake-orientation are varying. Thus there is no local fiber symmetry, and the structure gradient cannot be reconstructed from a scan across the full rod. To overcome the problem the rods are machined. Scans across the residual webs are performed. For the first time webs have been carved out in two principal directions. Comparison of the corresponding two sets of SAXS patterns demonstrates the complexity of the MMT orientation. Close to the surface (< 1 mm) the flakes cling to the wall. The variation of the orientation distribution widths indicates the presence of both MMT flakes and grains. The grains have not been oriented in the flowing melt. An empirical equation is presented which describes the variation from skin to core of one component of the inclination angle of flake-shaped phyllosilicate filler particles.

  10. Na-montmorillonite hydrates under ethane rich reservoirs: NPzzT and muPzzT simulations.

    PubMed

    Odriozola, G; Aguilar, J F; López-Lemus, J

    2004-09-01

    Na-montmorillonite hydrates in presence of ethane molecules are studied by means of hybrid Monte Carlo simulations in the NP(zz)T and muP(zz)T ensembles. The NP(zz)T ensemble allows us to study the interlaminar distance as a function of water and ethane content. These data show clear plateaus for lower ethane contents and mainly for water contents consistent with the formation of a single water layer. In addition, from this ensemble the structure for some of these interlaminar compositions were analyzed. For systems containing few ethane molecules and water enough to complete a single layer, it was observed that ethane mainly situates close to the interlayer midplane and adopts a nearly parallel arrangement to the clay surface. On the other hand, the muP(zz)T ensemble allows us to determine the interlaminar distance and water-ethane content for any specific reservoir. Here, some important findings are the following: the partial exchange of water by ethane molecules that enhances for decreasing the water vapor pressure; the obtention of a practically constant interlaminar space distance as a function of the water vapor pressure; the conservation of ion solvation shells; the enhancement of the water-ethane exchange for burial conditions; and finally, the incapability for a dehydrated clay mineral to swell in a dry and rich ethane atmosphere. PMID:15332974

  11. Epoxy-based nanocomposites for electrical energy storage. II: Nanocomposites with nanofillers of reactive montmorillonite covalently-bonded with barium titanate

    NASA Astrophysics Data System (ADS)

    Polizos, G.; Tomer, V.; Manias, E.; Randall, C. A.

    2010-10-01

    Barium titanate (BT) and montmorillonite (MMT) nanoparticles were covalently-bonded by organically modifying the particle surfaces and chemically reacting them in solution. These integrated two-material hybrid inorganic nanofillers were subsequently dispersed in epoxy resin and nanocomposites were obtained at several weight fractions. The inorganic component consisted of well dispersed BT spherical nanoparticles that are surrounded by attached layered MMT nanoplatelets, with the latter having the ability to react with the epoxy matrix. The thermodynamic properties of the glass transition process, the macroscopic mechanical properties of the nanocomposites, and the dynamics of the polymer segments at the inorganic interfaces, all indicate that this filler configuration enhances the polymer-ceramic interfaces. Polarization as a function of electric field and dielectric breakdown show improvements in the electrical properties of these composites, compared to the corresponding unfilled epoxy, despite the expected reduction in crosslinking density. The resulting nanocomposites have a property set which can be utilized in energy storage and power system applications.

  12. Treating Meningitis

    MedlinePLUS

    ... 2012;79;e190-e192 Neurology Steven Karceski Treating meningitis This information is current as of November 26, ... infections http://www.neurology.org//cgi/collection/meningitis Meningitis http://www.neurology.org//cgi/collection/fungal_infections ...

  13. Surfaces

    E-print Network

    DeMaio, Ernest Vincent, 1964-

    1989-01-01

    Surfaces is a collection of four individual essays which focus on the characteristics and tactile qualities of surfaces within a variety of perceived landscapes. Each essay concentrates on a unique surface theme and purpose; ...

  14. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light.

    PubMed

    Sohrabnezhad, Sh; Zanjanchi, M A; Razavi, M

    2014-09-15

    Metal-semiconductor compounds, such as Ag/AgX (X=Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that O2- and OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed. PMID:24769384

  15. Investigation of nano-size montmorillonite on electron beam irradiated flame retardant polyethylene and ethylene vinyl acetate blends

    NASA Astrophysics Data System (ADS)

    Bee, Soo-Tueen; Hassan, A.; Ratnam, C. T.; Tee, Tiam-Ting; Sin, Lee Tin

    2013-03-01

    This study aims at investigating the effects of montmorillonite (MMT) and electron beam irradiation on alumina trihydrate (ATH) added low density polyethylene and ethylene vinyl acetate (LDPE-EVA) blends. The nano-size MMT was used to improve the flammability and mechanical properties of the ATH added LDPE-EVA blends. The samples were irradiated at the dosage range 0-250 kGy using electron beam accelerator. The limiting oxygen index test (LOI) revealed that the incorporation of MMT into ATH added LDPE-EVA blends could improve the flammability up to 28.4 LOI%. The application of irradiation effect also improved the flame retardancy of the blends for ˜2 LOI% compared to un-irradiated samples. The addition of MMT loading levels from 10 to 20 phr exhibited reinforcing effect for 10.3-14.6% in tensile strength. On the other hand, the increasing of MMT loading levels has gradually decreased the surface and volume resistance of ATH added LDPE-EVA blends. The increase in irradiation dosages from 0 to 150 kGy was found to slightly decrease the surface and volume resistivity of the ATH added LDPE-EVA samples especially at high loading of MMT. The enhancement of mobility of MMT ionic in polymer matrix could lead to the reduction of the surface and volume resistivity. Consequently, this study has demonstrated that addition of MMT and electron beam irradiation to ATH added LDPE-EVA blends have resulted better flammability, mechanical and electrical properties of ATH added LDPE-EVA blends.

  16. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Zanjanchi, M. A.; Razavi, M.

    2014-09-01

    Metal-semiconductor compounds, such as Ag/AgX (X = Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that rad O2- and rad OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed.

  17. Adsorption of Adenine, Cytosine, Thymine, and Uracil on Sulfide-Modified Montmorillonite: FT-IR, Mössbauer and EPR Spectroscopy and X-Ray Diffractometry Studies

    NASA Astrophysics Data System (ADS)

    Carneiro, Cristine E. A.; Berndt, Graciele; de Souza Junior, Ivan G.; de Souza, Cláudio M. D.; Paesano, Andrea; da Costa, Antonio C. S.; di Mauro, Eduardo; de Santana, Henrique; Zaia, Cássia T. B. V.; Zaia, Dimas A. M.

    2011-10-01

    In the present work the interactions of nucleic acid bases with and adsorption on clays were studied at two pHs (2.00, 7.00) using different techniques. As shown by Mössbauer and EPR spectroscopies and X-ray diffractometry, the most important finding of this work is that nucleic acid bases penetrate into the interlayer of the clays and oxidize Fe2+ to Fe3+, thus, this interaction cannot be regarded as a simple physical adsorption. For the two pHs the order of the adsorption of nucleic acid bases on the clays was: adenine ? cytosine > thymine > uracil. The adsorption of adenine and cytosine on clays increased with decreasing of the pH. For unaltered montmorillonite this result could be explained by electrostatic forces between adenine/cytosine positively charged and clay negatively charged. However for montmorillonite modified with Na2S, probably van der Waals forces also play an important role since both adenine/cytosine and clay were positively charged. FT-IR spectra showed that the interaction between nucleic acid bases and clays was through NH+ or NH{2/+} groups. X-ray diffractograms showed that nucleic acid bases adsorbed on clays were distributed into the interlayer surface, edge sites and external surface functional groups (aluminol, silanol) EPR spectra showed that the intensity of the line g ? 2 increased probably because the oxidation of Fe2+ to Fe3+ by nucleic acid bases and intensity of the line g = 4.1 increased due to the interaction of Fe3+ with nucleic acid bases. Mössbauer spectra showed a large decreased on the Fe2+ doublet area of the clays due to the reaction of nucleic acid bases with Fe2+.

  18. Investigation of the different binding edge sites for Zn on montmorillonite using P-EXAFS - The strong/weak site concept in the 2SPNE SC/CE sorption model

    NASA Astrophysics Data System (ADS)

    Dähn, Rainer; Baeyens, Bart; Bradbury, Michael H.

    2011-09-01

    The 2 site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) sorption model has been used over the past decade or so to quantitatively describe the uptake of metals with oxidation states from II to VI on 2:1 clay minerals; montmorillonite and illite. One of the main features in this model is that there are two broad categories of amphoteric edge sorption sites; the so called strong ( tbnd S SOH) and weak ( tbnd S W1OH) sites. Because of their different sorption characteristics, it was expected that the coordination environments of the surface complexes on the two site types would be different. Zn isotherm data on two montmorillonites, Milos and STx-1, were measured and modelled using the 2SPNE SC/CE sorption model. The results were used to define the most favourable experimental conditions under which Zn sorption was either dominated by the strong ( tbnd S SOH, ˜2 mmol kg -1) or by the weak sites ( tbnd S W1OH, ˜40 mmol kg -1). Highly oriented self-supporting films were prepared for polarised extended X-ray absorption fine structure (P-EXAFS) investigations. Montmorillonites often contain Zn incorporated in the clay matrix. The Zn bound in this form was quantified and the results from the analysis of the P-EXAFS spectra were taken into account in the interpretation of the spectra measured at low Zn loadings (˜2 mmol kg -1) and medium Zn loadings (˜30 mmol kg -1). The Zn spectra on the "strong sites" exhibited a pronounced angular dependency and formed surface complexes in the continuity of the Al-octahedral sheets at the montmorillonite edges. In contrast, the Zn "weak site" spectra showed only a weak angular dependency. The spectroscopic evidence indicates the existence of two distinct groups of edge surface binding sites which is consistent with a multi-site sorption model and in particular with the strong/weak site concept intrinsic to the 2SPNE S/CE sorption model.

  19. Effects of monovalent, exchangeable cations and electrolytes on the relation between swelling pressure and interlayer distance in montmorillonite

    SciTech Connect

    Zhang, F.; Low, P.F.; Roth, C.B. [Purdue Univ., West Lafayette, IN (United States). Agronomy Dept.] [Purdue Univ., West Lafayette, IN (United States). Agronomy Dept.

    1995-07-01

    An oriented gel of homoionic montmorillonite was supported on a porous filter in a metal environmental chamber fitted with beryllium windows for the transmission of X-rays. Beneath the filter was a shallow reservoir connected to the outside atmosphere. Solution was expressed from the gel into the reservoir by admitting nitrogen gas to the environmental chamber at successively higher pressures. At each pressure the expressed solution in the reservoir was allowed to equilibrate through the filter with the gel and then the distance between the superimposed layers of montmorillonite in the gel was measured by X-ray diffraction. The swelling pressure of the montmorillonite equals the applied pressure at equilibrium. Thus, the relation between the swelling pressure and interlayer distance of the montmorillonite was determined when it was saturated with different exchangeable cations and equilibrated with electrolyte solutions of different concentration. The experimental results showed that, at relatively low concentrations of electrolyte, neither the species of exchangeable cation nor the electrolyte concentration had any effect on the relation between the swelling pressure and the interlayer distance. However, at relatively high concentrations of electrolyte, both of these factors affected this relation. Since the effect of the electrolyte concentration was not described quantitatively by electric double-layer theory, it was assumed that this theory was not applicable and that the added electrolyte reduced swelling by disrupting the hydration shells surrounding the montmorillonite particles.

  20. Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH.

    PubMed

    Wang, Yu-Jun; Jia, De-An; Sun, Rui-Juan; Zhu, Hao-Wen; Zhou, Dong-Mei

    2008-05-01

    Land application of wastes generated from concentrated animal feeding operations may result in accumulation of tetracyclines (TCs) and metals in agricultural soils. Adsorption of TCs and metals on soil minerals strongly affects their mobility. This study was conducted to evaluate the interaction between tetracycline (TC) and Cu(ll) with regard to their adsorption and cosorption on montmorillonite as affected by solution pH. When solution pH was below 6.5, the presence of TC increased Cu(ll) adsorption on montmorillonite, which could be due to increasing Cu(II) adsorption via the TC bridge, or due to the stronger affinity of TC-Cu(II) complex to the mineral than Cu2+ ion itself. Zeta potential of the montmorillonite significantly decreased after the adsorption of TC, suggesting a strong interaction between TC and montmorillonite. Addition of Cu(ll) ions increased TC adsorption on the mineral in a wide range of pH. The experimental data were well fit with the weighted sum model. The complexes of TC and Cu(II) (CuH2L(2+), CuHL+, and CuL) had higher sorption coefficients (K(d)) than that of the corresponding TC species (H3L+, H2L, and HL-). Increasing adsorption of TC and Cu(II) on montmorillonite as they coexist in the normal pH environment may thus reduce their mobility. PMID:18522102

  1. MANAGING SOURCES TO REDUCE RISK IN AND AROUND THE INDOOR ENVIRONMENT: IMPACT OF COATINGS ON DISLODGEABLE ARSENIC ON THE SURFACES OF CCA-TREATED WOOD

    EPA Science Inventory

    Due to the potential for ingestion of chromated copper arsenate (CCA) by the hand-to-mouth activities of young children who contact CCA treated wood, EPA has used wipe samples to study the potential benefits of paint-like coatings on CCA treated wood. Citizens who may be concern...

  2. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa; Zargar, Mohsen; Abdollahi, Yadollah

    2010-01-01

    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO(3) were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller-Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles. PMID:21116328

  3. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa; Zargar, Mohsen; Abdollahi, Yadollah

    2010-01-01

    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO3 were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller–Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles. PMID:21116328

  4. Treating Sludges

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Discussed are some of the ways to handle municipal and industrial wastewater treatment sludge presented at the 1978 American Chemical Society meeting. Suggestions include removing toxic materials, recovering metals, and disposing treated sewage sludge onto farm land. Arguments for and against land use are also given. (MA)

  5. Sequence- and Regio-Selectivity in the Montmorillonite-Catalyzed Synthesis of RNA

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Ferris, James P.

    2000-10-01

    The six binary montmorillonite clay-catalyzed reactions of the 5'-phosphorimidazolides of adenosine, cytidine, guanosine and uridine were performed and the eight dimers from each reaction were separated and analyzed by HPLC. A 16-51-fold higher yield of the 5'-purine-pyrimidine dimers over that of the 5'-pyrimidine-purines was observed. The total yield of the 5'-purine-pyrimidine dimers was in the 50-70% range while that of the 5'-pyrimidine-purine dimers was 1.3-7.0%. Less sequence selectivity was observed in the homodimers formed. Regioselectivity for the formation of 3', 5'-phosphodiester bonds over that found in the absence of clay was observed. The 5'-purine-pyrimidine, 5'-pyrimidine-pyrimidine and 5'-purine-purine dimers had 3', 5'-links in about half of their phosphodiester bonds. The percent phosphodiester links in the 5'-pyrimidine-pyrimidine dimers was 18%, a value close to that observed in the absence of the montmorillonite catalyst. The montmorillonite-catalyzed reaction of all four activated nucleotides was performed and the 24 products were separated and analyzed. The trends observed in the binary reactions were confirmed and the results also showed that the relative reactivity of the activated monomers was A>G>C>U in the ratio 8.2: 4.8: 1.3: 1 respectively. No 5'-pyrimidine-purines with a 5'-U and pG^3'pU, pC^3'pA and pC^3'pG were detected. These studies suggest that a limited population of RNAs would have formed in catalyzed prebiotic reactions.

  6. Oligomerization of uridine phosphorimidazolides on montmorillonite: a model for the prebiotic synthesis of RNA on minerals

    NASA Technical Reports Server (NTRS)

    Ding, P. Z.; Kawamura, K.; Ferris, J. P.

    1996-01-01

    The 5'-phosphorimidazolide of uridine reacts on Na(+)-montmorillonite 22A in aqueous solution to give oligomers as long as 7 mers. The maximum chain length increases to 9 mers and the overall oligomer yield increases when 9:1 ImpU, A5' ppA mixtures react under the same conditions. The oligomer yield and maximum chain length decreases with the structure of the added pyrophosphate in the order A5' ppA > A5' ppU > U5' ppU. Structure analysis of individual oligomer fractions was performed by selective enzymatic hydrolyses followed by HPLC analysis of the products. The regioselectivity for 3',5'-bond formation is 80-90% in the 9:1 ImpU, A5' ppA reaction, a percentage comparable to that observed in the 9:1 ImpA, A5' ppA reaction. Oligomerization of ImpU is inhibited by addition of dA5' ppdA, and MeppA. No oligomers containing A5' ppU were products of the 9:1 ImpU,A5' ppA reaction, a finding consistent with the simple addition of the ImpU to the A5' ppA and not the rearrangement of an ImpU-A5' ppA adduct. Concentrations of lysine or arginine which were close to that of the ImpU did not inhibit oligomer formation. Treatment of Na(+)-montmorillonite with 1 M arginine yielded arginine-montmorillonite, an amino acid-mineral adduct which did not catalyze ImpU oligomerization. Neither the 4-9 mers formed in the 9:1 ImpU, A5' ppA reaction nor the 4-9 mers formed by the base hydrolysis of poly(U) served as templates for the formation of oligo(A)s.

  7. Oligomerization of uridine phosphorimidazolides on montmorillonite: A model for the prebiotic synthesis of rna on minerals

    NASA Astrophysics Data System (ADS)

    Ding, Ping Z.; Kawamura, Kunio; Ferris, James P.

    1996-04-01

    The 5'-phosphorimidazolide of uridine reacts on Na+-montmorillonite 22A in aqueous solution to give oligomers as long as 7 mers. The maximum chain length increases to 9 mers and the overall oligomer yield increases when 9:1 ImpU, A5' ppA mixtures react under the same conditions. The oligomer yield and maximum chain length decreases with the structure of the added pyrophosphate in the order A5' ppA>A5' ppU>U5' ppU. Structure analysis of individual oligomer fractions was performed by selective enzymatic hydrolyses followed by HPLC analysis of the products. The regioselectivity for 3',5'-bond formation is 80 90% in the 9:1 ImpU, A5' ppA reaction, a percentage comparable to that observed in the 9:1 ImpA, A5' ppA reaction. Oligomerization of ImpU is inhibited by addition of dA5' ppdA, and MeppA. No oligomers containing A5' ppU were products of the 9:1 ImpU, A5' ppA reaction, a finding consistent with the simple addition of the ImpU to the A5' ppA and not the rearrangement of an ImpU-A5' ppA adduct. Concentrations of lysine or arginine which were close to that of the ImpU did not inhibit oligomer formation. Treatment of Na+-montmorillonite with 1 M arginine yielded arginine-montmorillonite, an amino acid-mineral adduct which did not catalyze ImpU oligomerization. Neither the 4 9 mers formed in the 9:1 ImpU, A5' ppA reaction nor the 4 9 mers formed by the base hydrolysis of poly(U) served as templates for the formation of oligo(A)s.

  8. Oligomerization of mononucleotides on montmorillonite: A potential approach to the prebiotic synthesis of RNA. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Goezen; Ding, Zi Ping; Prabahar, Joseph

    1994-01-01

    The condensation of the 5'-phosphorimidazolide of adenosine (ImpA) on montmorillonite in a pH 8 aqueous solution yields oligomers containing up to 10 monomer units. The regiospecificity of 3',5'-phosphodiester bond formation is enhanced by addition of 10% diadenosine pyrophosphate (AppA) to the reaction mixture. A series of activated derivatives of 5'-AMP was prepared to investigate the effect of the leaving group on oligomer formation. The benzimidazole and p-dimethylamino-pyridine derivatives gave the best yields of oligomers. Factors important for oligomer formation is discussed.

  9. Poly(imide)/Organically-Modified Montmorillonite Nanocomposite as a Potential Membrane for Alkaline Fuel Cells

    PubMed Central

    Battirola, Liliane C.; Gasparotto, Luiz H. S.; Rodrigues-Filho, Ubirajara P.; Tremiliosi-Filho, Germano

    2012-01-01

    In this work we evaluated the potentiality of a poly(imide) (PI)/organically-modified montmorillonite (O-MMT) nanocomposite membrane for the use in alkaline fuel cells. Both X-ray diffraction and scanning electron microscopy revealed a good dispersion of O-MMT into the PI matrix and preservation of the O-MMT layered structure. When compared to the pure PI, the addition of O-MMT improved thermal stability and markedly increased the capability of absorbing electrolyte and ionic conductivity of the composite. The results show that the PI/O-MMT nanocomposite is a promising candidate for alkaline fuel cell applications. PMID:24958290

  10. Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5'-phosphorimidazolide of adenosine on Na(+)-montmorillonite.

    PubMed

    Kawamura, K; Ferris, J P

    1994-01-01

    The rate constants for the condensation reaction of the 5'-phosphorimidazolide of adenosine (ImpA) to form dinucleotides and oligonucleotides have been measured in the presence of Na(+)-volclay (a Na(+)-montmorillonite) in pH 8 aqueous solution at 25 degrees C. The rates of the reaction of ImpA with an excess of adenosine 5'-monophosphoramidate (NH2pA), P1,P2-diadenosine 5',5'-pyrophosphate (A5'ppA), or adenosine 5'-monophosphate (5'-AMP or pA) in the presence of the montmorillonite to form NH2pA3'pA, A5'ppA3'pA, and pA3'pA, respectively, were measured. Only 3',5'-linked products were observed. The magnitude of the rate constants decrease in the order NH2pA3'pA > A5'-ppA3'pA > pA3'pA. The binding of ImpA to montmorillonite was measured, and the adsorption isotherm was determined. The binding of ImpA to montmorillonite and the formation of higher oligonucleotides is not observed in the absence of salts. Mg2+ enhances binding and oligonucleotide formation more than Ca2+ and Na+. The rate constants for the oligonucleotide formation were determined from the reaction products formed from 10 to 40 mM ImpA in the presence of Na(+)-montmorillonite using the computer program SIMFIT. The magnitudes of the rate constants for the formation of oligonucleotides increased in the order 2-mer < 3-mer < 4-mer ... 7-mer. The rate constants for dinucleotide and trinucleotide formation are more than 1000 times larger than those measured in the absence of montmorillonite. The rate constants for the formation of dinucleotide, trinucleotide, and tetranucleotide are 41,2.6, and 3.7 times larger than those for the formation of oligo(G)s with a poly(C) template. The hydrolysis of ImpA was accelerated 35 times in the presence of the montmorillonite. The catalytic ability of montmorillonite to form dinucleotides and oligonucleotides is quantitatively evaluated and possible pathways for oligo(A) formation are proposed. PMID:11539865

  11. Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5'-phosphorimidazolide of adenosine on Na(+)-montmorillonite

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1994-01-01

    The rate constants for the condensation reaction of the 5'-phosphorimidazolide of adenosine (ImpA) to form dinucleotides and oligonucleotides have been measured in the presence of Na(+)-volclay (a Na(+)-montmorillonite) in pH 8 aqueous solution at 25 degrees C. The rates of the reaction of ImpA with an excess of adenosine 5'-monophosphoramidate (NH2pA), P1,P2-diadenosine 5',5'-pyrophosphate (A5'ppA), or adenosine 5'-monophosphate (5'-AMP or pA) in the presence of the montmorillonite to form NH2pA3'pA, A5'ppA3'pA, and pA3'pA, respectively, were measured. Only 3',5'-linked products were observed. The magnitude of the rate constants decrease in the order NH2pA3'pA > A5'-ppA3'pA > pA3'pA. The binding of ImpA to montmorillonite was measured, and the adsorption isotherm was determined. The binding of ImpA to montmorillonite and the formation of higher oligonucleotides is not observed in the absence of salts. Mg2+ enhances binding and oligonucleotide formation more than Ca2+ and Na+. The rate constants for the oligonucleotide formation were determined from the reaction products formed from 10 to 40 mM ImpA in the presence of Na(+)-montmorillonite using the computer program SIMFIT. The magnitudes of the rate constants for the formation of oligonucleotides increased in the order 2-mer < 3-mer < 4-mer ... 7-mer. The rate constants for dinucleotide and trinucleotide formation are more than 1000 times larger than those measured in the absence of montmorillonite. The rate constants for the formation of dinucleotide, trinucleotide, and tetranucleotide are 41,2.6, and 3.7 times larger than those for the formation of oligo(G)s with a poly(C) template. The hydrolysis of ImpA was accelerated 35 times in the presence of the montmorillonite. The catalytic ability of montmorillonite to form dinucleotides and oligonucleotides is quantitatively evaluated and possible pathways for oligo(A) formation are proposed.

  12. Alkanolamine treating

    SciTech Connect

    Butwell, K.F.; Kubek, D.J.; Sigmund, P.W.

    1982-03-01

    In this paper the chemistry, engineering and operational aspects of the primary and secondary amines utilized in syngas purification are explored. The gas treating chemistry is followed by the analysis of reactivity of chemicals involved with H/sub 2/S and CO/sub 2/ which constitute main impurities in gas streams. Other topics discussed include - capacity versus corrosivity; heat of reaction; reboiler duty, metallurgy; chemical degradation of amines; solvent purification; hydrocarbon solubility; mercaptane removed; freezing point of amine solutions. 27 refs.

  13. In-vivo study of genotoxic and inflammatory effects of the organo-modified Montmorillonite Cloisite® 30B.

    PubMed

    Sharma, A K; Mortensen, A; Schmidt, B; Frandsen, H; Hadrup, N; Larsen, E H; Binderup, M-L

    2014-08-01

    Because of the increasing use of clays and organoclays in industrial applications it is of importance to consider the toxicity of these materials. Recently it was reported that the commercially available Montmorillonite clay, Cloisite(®) 30B, which is surface-modified by organic quaternary ammonium compounds, was genotoxic in vitro. In the present study the in-vivo genotoxic and inflammatory potential of Cloisite(®) 30B was investigated as a follow-up of the in-vitro studies. Wistar rats were exposed to Cloisite(®) 30B twice 24h apart by oral gavage, at doses ranging from 250 to 1000 mg/kg body weight [indicate duration of treatment; Ed.]. There was no induction of DNA strand-breaks in colon, liver and kidney cells and there was no increase in inflammatory cytokine markers in blood-plasma samples. In order to verify the possible absorption of Cloisite(®) 30B from the gastrointestinal tract, inductively coupled plasma mass-spectrometry (ICP-MS) analysis was performed on samples of liver, kidney and faeces, with aluminium as a tracer element characteristic to clay. The results showed that aluminium could be detected in faeces, but not in the liver or kidneys. This indicated that there was no systemic exposure to clay particles from Cloisite(®) 30B. Detection and identification of free quaternary ammonium modifier in the highest dose of Cloisite(®) 30B was carried out by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). This analysis revealed a mixture of three quaternary ammonium analogues. The detected concentration of the organomodifier corresponded to an exposure of rats to about 5mg quaternary ammonium analogues/kg body weight. PMID:25344166

  14. Polyamide-6 nanocomposites with electron-beam-treated clay

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Czvikovszky, Tibor

    2007-08-01

    The "in situ" polymerisation principle has been applied in our work to modify the efficiency of montmorillonite (MMT) as a reinforcement in polymer composites. The dry silica powder of MMT has been dispersed in (2-hydroxyethyl)-methacrylate (HEMA) monomer, and it has been treated by electron-beam (EB) and by heat. The treated silica powder has been mixed in polyamide (PA) melt by a Brabender kneader. The solid polymer samples have been tested for mechanical features as well as for dynamic-mechanical properties (DMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Surprisingly the thermally initiated "in situ" polymerisation was more efficient than 150 kGy EB dose in improving the composite properties.

  15. Sorption of aromatic ionizable organic compounds to montmorillonites modified by hexadecyltrimethyl ammonium and polydiallyldimethyl ammonium.

    PubMed

    Xu, Huaizhou; Wan, Yuqiu; Li, Hui; Zheng, Shourong; Zhu, Dongqiang

    2011-01-01

    Environmental residues of aromatic ionizable organic compounds (AIOCs) have received considerable attention due to their potential human health and ecological risks. The main objective of this study was to investigate the key factors and mechanisms controlling sorption of a series of anionic and zwitterionic AIOCs (two aromatic sulfonates, 4-methyl-2,6-dinitrophenol, tetracycline, sulfamethoxazole, and tannic acid) to montmorillonites modified with hexadecyltrimethyl ammonium (HDTMA) and polydiallyldimethyl ammonium (PDADMA). Compared with naphthalene (a nonpolar and nonionic solute), all AIOCs showed stronger sorption (the sorbent-to-solution distribution coefficient was in the order of 10-10 L kg) to the two organoclays in spite of the much lower hydrophobicity, indicating the predominance of electrostatic interaction in sorption. The proposed electrostatic mechanism of the tested AIOCs was supported by the pH dependency of sorption to the two organoclays. The two organoclays manifested weaker sorption affinity but faster sorption kinetics for bulky AIOCs than commercial activated carbon, resulting from the high accessibility of sorption sites in the open, ordered clay interlayer. The findings of this study highlight the potential of using HDTMA- and PDADMA-exchanged montmorillonites as effective sorbents for AIOCs in water and wastewater treatments. PMID:22031573

  16. Engineering New Layered Solids from Exfoliated Inorganics: a Periodically Alternating Hydrotalcite – Montmorillonite Layered Hybrid

    PubMed Central

    Chalasani, Rajesh; Gupta, Amit; Vasudevan, Sukumaran

    2013-01-01

    Two-dimensional (2D) nanosheets obtained by exfoliating inorganic layered crystals have emerged as a new class of materials with unique attributes. One of the critical challenges is to develop robust and versatile methods for creating new nanostructures from these 2D-nanosheets. Here we report the delamination of layered materials that belonging to two different classes - the cationic clay, montmorillonite, and the anionic clay, hydrotalcite - by intercalation of appropriate ionic surfactants followed by dispersion in a non-polar solvent. The solids are delaminated to single layers of atomic thickness with the ionic surfactants remaining tethered to the inorganic and consequently the nanosheets are electrically neutral. We then show that when dispersions of the two solids are mixed the exfoliated sheets self-assemble as a new layered solid with periodically alternating hydrotalcite and montmorillonite layers. The procedure outlined here is easily extended to other layered solids for creating new superstructures from 2D-nanosheets by self-assembly. PMID:24336682

  17. Magnetism and nuclear magnetic resonance of hectorite and montmorillonite layered silicates

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Hou, S.-S.; Bud'ko, S. L.; Schmidt-Rohr, K.

    2004-11-01

    The temperature and magnetic-field (H) dependencies of the bulk dc magnetization (M) and the M /H ratio of montmorillonite (MMT), hectorite (HCT), and synthetic mica-montmorillonite (SMMT) clays have been measured and compared with the signal intensity of H1 and Si29 nuclear magnetic resonance (NMR) spectra. MMT exhibits Langevin paramagnetism with an effective magnetic moment of 5.5±0.1?B per Fe ion whereas SMMT has diamagnetic properties. At 300K, M /H of HCT measured in a magnetic field of H ?1kOe is larger than that of MMT, whereas in a field of 50kOe, the inverse situation is observed. The difference arises because the magnetization of HCT is dominated by a contribution from ferromagneticlike impurities. The H1 and Si29 NMR signals of MMT are broadened beyond detectability due to the paramagnetic effect. Although HCT contains ferromagneticlike components that result in a large M /H in low field, it yields H1 and Si29 NMR spectra with signal intensities similar to those of diamagnetic SMMT. Our data highlight that the quality of the NMR spectra is not related to the low-field magnetic susceptibility but to the bulk magnetization in the high magnetic field used for NMR.

  18. Integrating Structural and Thermodynamic Mechanisms for Sorption of PCBs by Montmorillonite.

    PubMed

    Liu, Cun; Gu, Cheng; Yu, Kai; Li, Hui; Teppen, Brian J; Johnston, Cliff T; Boyd, Stephen A; Zhou, Dongmei

    2015-03-01

    Strong sorption of planar nonionic organic chemicals by clay minerals has been observed for important classes of organic contaminants including polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and dioxins, and such affinity was hypothesized to relate to the interlayer hydrophobicity of smectite clays. In batch sorption experiments of two trichlorobiphenyls on homoionic Na-, K-, Cs-montmorillonites, considerably greater sorption coefficient (Kw) was observed for coplanar 3,3',5-trichlorobiphenyl (PCB 36); log Kw for Na-, K-, and Cs-montmorillonite were 3.69, 3.72, and 4.53 for coplanar PCB 36 vs 1.21, 1.46, and 0.87 for the nonplanar 2,2',6-trichlorobiphenyl (PCB 19). MD simulations were conducted utilizing X-ray diffraction determined clay interlayer distances (d-spacing). The trajectory, density distribution, and radial distribution function of interlayer cation, water, and PCBs collectively indicated that the hydrophobic nature of the interlayer regions was determined by the hydration status of exchangeable cations and the associated d-spacing. The sorption free energies calculated for both coplanar and nonplanar PCB molecules by adaptive biasing force (ABF) method with an extended interlayer-micropore two-phase model consisting of cleaved clay hydrates and "bulk water" are consistent with the Gibbs free energies derived from the measured log Kw, manifesting enhanced sorption of coplanar PCBs was attributed to shape selectivity and hydrophobic interactions. PMID:25629399

  19. Heat treating of manufactured components

    DOEpatents

    Ripley, Edward B. (Knoxville, TN)

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  20. Assessment of Salinity Variations in TBT Adsorption onto Kaolinite and Montmorillonite at Different pH Levels

    Microsoft Academic Search

    Marion Hoch

    2004-01-01

    Adsorption onto solid phases is an important process in controlling the distribution of toxic tributyltin (TBT) compounds in aqueous systems. In the present study, the TBT adsorption onto two types of clay, kaolinite (KGa) and montmorillonite (SWy), as a function of salinity (0, 8, 16, 24, 32‰) was investigated using the conventional batch technique. Experiments were carried out under different

  1. Expansion characteristics of organo montmorillonites during the intercalation, aging, drying and rehydration processes: Effect of surfactant\\/CEC ratio

    Microsoft Academic Search

    Jianxi Zhu; Tong Wang; Runliang Zhu; Fei Ge; Peng Yuan; Hongping He

    2011-01-01

    Understanding microstructure of organo montmorillonites (OMts) under wet condition is of high importance in clarifying their adsorption characteristics towards hydrophobic organic compounds in water. In this work, we investigated the basal spacing evolution of a series of OMt with various cetyltrimethylammonium (CTMA) loading during the intercalation, aging, drying and rehydration processes. The aim of this work is to provide novel

  2. Effect of salinity and temperature on the adsorption of Hg(II) from aqueous solutions by a Ca?montmorillonite

    Microsoft Academic Search

    2009-01-01

    Use of clay minerals for removing mercury is an effective technology for the treatment of industrial wastewaters and can become an effective tool for the remediation of coastal ecosystems polluted with this metal. Calcic montmorillonite was employed for adsorbing Hg(II) ions from aqueous solutions at different conditions of salinity (0, 20 and 35 g NaCl L), temperature (15, 25 and

  3. Highly efficient esterification of carboxylic acids with alcohols by montmorillonite-enwrapped titanium as a heterogeneous acid catalyst

    Microsoft Academic Search

    Tomonori Kawabata; Tomoo Mizugaki; Kohki Ebitani; Kiyotomi Kaneda

    2003-01-01

    Montmorillonite-enwrapped titanium catalyst was found to efficiently promote the esterification of carboxylic acids with alcohols. In comparison to other catalysts reported to date, this heterogeneous catalyst offers a remarkably simple workup procedure, and is reusable without any appreciable loss in its activity and selectivity.

  4. A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I: Titration and sorption measurements

    Microsoft Academic Search

    Bart Baeyens; Michael H. Bradbury

    1997-01-01

    In this paper experimental investigations into the acid\\/base titration characteristics of Na-montmorillonite and the sorption behaviour of Ni and Zn under a wide variety of conditions are presented. From these measurements the dominant sorption mechanisms could be deduced. In the following paper (Bradbury and Baeyens, 1997) the titration and sorption data are analysed to determine the parameters in cation exchange

  5. Reactions of lysine with montmorillonite at 80 degrees C: implications for optical activity, H+ transfer and lysine-montmorillonite binding.

    PubMed

    Cuadros, Javier; Aldega, Luca; Vetterlein, Jonathan; Drickamer, Kurt; Dubbin, William

    2009-05-01

    Amino acid-smectite interaction may have catalyzed prebiotic reactions essential for the emergence of life. Lysine solutions (0.05 M) were reacted with Na-smectite in adsorption-desorption experiments. The lysine-smectite complexes were heated at 80 degrees C for 10 days to investigate (1) possible slow processes taking place at surface temperature that would be accelerated at higher temperature and (2) processes taking place in hydrothermal systems. Three sets of experiments were performed: thermal treatment in closed tubes and water added regularly; thermal treatment in closed tubes without adding water; and thermal treatment in open tubes and no added water. After lysine desorption (displacement with 0.1 M CaCl(2)), the solutions were investigated using circular dichroism (CD) and the smectite samples using FTIR and CHN elemental analysis. CD spectra were dependent on the solution pH, which was controlled by lysine protonation state. The lysine protonation state was altered by the adsorption-desorption process, with a higher Lys(+)/Lys(+/-) ratio after desorption. The CD and CHN analyses show that the thermal treatment in a moist state causes stronger smectite-lysine binding. FTIR data suggest that the stronger binding is caused by more or stronger H bonds between -NH(3)(+) lysine groups and smectite basal O atoms. PMID:19185874

  6. Stress response of fibroblasts adherent to the surface of plasma-treated poly(lactic- co-glycolic acid) nanofiber matrices

    Microsoft Academic Search

    Jae Won Lee; Ko Eun Park; Won Ho Park; Kuen Yong Lee

    2010-01-01

    Recent studies have shown that polymeric scaffolds as a synthetic extracellular matrix (ECM) are essential for regenerating tissues or organs in tissue engineering approaches. Controlling the surface functionality of polymer scaffolds is critical in regulation of cellular responses to the scaffolds during tissue formation. However, the stress response of cells to polymer scaffolds with different surface characteristics is not yet

  7. Accelerating calcium phosphate growth on NaOH-treated poly-(lactic- co-glycolic acid) by evaporation-induced surface crystallization

    Microsoft Academic Search

    K. Duan; Allen Tang; Rizhi Wang

    2008-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is a promising material for the regeneration of bone tissue, but its surface properties are not optimal for the application. Coating the surface of PLGA with a continuous layer of calcium phosphate is an effective approach to address the limitation. Current coating techniques for PLGA require immersion in supersaturated calcium phosphate solutions for days to weeks. In

  8. Nondestructive evaluation of interfacial damage properties for plasma-treated biodegradable poly( p-dioxanone) fiber\\/poly( l-lactide) composites by micromechanical test and surface wettability

    Microsoft Academic Search

    Joung-Man Park; Dae-Sik Kim; Sung-Ryong Kim

    2004-01-01

    Interfacial properties and microfailure degradation mechanisms of the oxygen–plasma treated biodegradable poly(p-dioxanone) (PPDO) fiber\\/poly(l-lactide) (PLLA) composites were investigated for the orthopedic applications as implant materials using micromechanical technique and nondestructive acoustic emission (AE). PLLA oriented in melt state was brittle and their mechanical strength was not high, whereas PPDO fiber appeared high mechanical strength and flexibility. PPDO fiber reinforced PLLA

  9. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers\\/epoxy composites using micromechanical techniques and surface wettability

    Microsoft Academic Search

    Joung-Man Park; Dae-Sik Kim; Sung-Ryong Kim

    2003-01-01

    Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers\\/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber\\/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their

  10. Biodegradable poly(propylene carbonate)/montmorillonite nanocomposites prepared by direct melt intercalation

    SciTech Connect

    Xu, J. [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Li, R.K.Y. [Department of Physics and Materials Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: RKYLi@cityu.edu.hk; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)]. E-mail: stdpmeng@zsu.edu.cn; Mai, Y-.W. [Centre for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006 (Australia)

    2006-02-02

    Intercalation-exfoliated nanocomposites derived from poly(propylene carbonate) (PPC) and organo-modified montmorillonite (OMMT) were prepared by direct melt blending in an internal mixer. The nano-scale dispersion of the OMMT layers within the PPC matrix was verified using wide angle X-ray scattering and transmission electron microscopy technologies. Static mechanical properties were determined by using a tensile tester. The PPC/OMMT nanocomposites with lower OMMT content showed an increase in thermal decomposition temperature when compared with both pure PPC and the composites prepared from un-modified MMT. Dynamic mechanical analysis indicated that nano-scale OMMT dispersed well within PPC matrix and therefore enhanced the storage modulus of the composites.

  11. Synthesis and Electrorheological Characterization of Polyaniline and NA+-MONTMORILLONITE Clay Nanocomposite

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Kim, S. G.; Choi, H. J.; Suh, M. S.; Shin, M. J.; Jhon, M. J.

    Polyaniline-Na+-montmorillonite nanocomposite particles were synthesized using an emulsion intercalation method, and electrorheological (ER) fluids were produced by dispersing the synthesized nanocomposite particles in an electrically-insulating silicone oil. The emulsion of an aniline monomer with dodecyl benzenesulfonic acid was inserted into the layers of clay, and polymerization was processed by adding the oxidant initiator solution. DBSA as a emulsifier and a dopant took a important role for polyaniline clay nanocomposite. This insertion of polyaniline was confirmed by X-ray diffraction. To observe its ER properties, we measured the shear viscosity and the shear stress by controlling shear rate. Furthermore, we conducted dynamic tests to investigate the viscoelastic properties of the ER fluid under an electric field in the linear viscoelastic region.

  12. Radiation-induced synthesis of vinyl copolymer based nanocomposites filled with reactive organic montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyum; Kwen, Hai-Doo; Choi, Seong-Ho

    2012-05-01

    Vinyl copolymer-clay nanocomposites were prepared by ?-irradiation-initiated radical polymerization using a mixture of styrene (St) and divinyl benzene (DVB) in the presence of reactive organic montmorillonite clay (OMMT) in methanol at room temperature. Reactive OMMT was synthesized by a cation exchange reaction of Na+-MMT and 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride as a reactive organic modifier in an aqueous solution. The microstructures of the nanocomposites were confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal stability was examined by thermo gravimetric analysis (TGA). As a result, the reactive OMMT was a good additive material for preparing vinyl copolymer-clay nanocomposites.

  13. Effect of leaving group on the oligomerization of 5'-AMP on montmorillonite. [Abstract only

    NASA Technical Reports Server (NTRS)

    Prabahar, K. Joseph; Ferris, James P.

    1994-01-01

    The oligomerization of imidazole derivative of 5'-AMP (ImpA) in the presence of montmorillonite clay yields oligomers containing up to 10 monomer units. In these reactions, the heterocyclic base, imidazole is the leaving group. In our present study, we synthesized a series of activated nucleotides of 5'AMP using other leaving groups such as pyrazole, 1,2,4-triazole, piperidine, morpholine, 4-aminopyridine, 4-methylaminopyridine, 4-dimethylaminopyridine, 2-aminobenzimidazole etc. to determine the effect of amine leaving group on the products of the oligomerization reaction. Earlier results from our laboratory showed that the presence AppA in the clay reaction of ImpA enhances the oligomerization reaction to yield higher oligomers. We also studied the effect of AppA in the clay mediated oligomerization reaction of the activated nucleotides. Oligomerization of 2-amino-benzimidazole derivative of 5'-AMP gave higher oligomers containing up to nine monomer units in the presence of AppA.

  14. Study on the microstructure and mechanical properties for epoxy resin/montmorillonite nanocomposites by positron

    NASA Astrophysics Data System (ADS)

    Wang, B.; Qi, N.; Gong, W.; Li, X. W.; Zhen, Y. P.

    2007-02-01

    Positron annihilation lifetimes have been measured for epoxy resin/organic montmorillonite (OMMT) nanocomposites. Effects of different dispersion states of nano-layered OMMT on the positron annihilation parameters and the mechanical properties were studied. We found that the ortho-positronium ( o-Ps) intensity decreased with increasing OMMT content, which indicated that the interaction between the host and nanofillers restrained the segmental motion, resulting in a decrease of the free volume. On the other hand, it is very interesting to observe a good correlation between the interfacial interaction and mechanical properties, suggesting that the dispersion states of OMMT and interfacial property between clay layers and matrix played an important role in determining the mechanical properties.

  15. Kinetics of toluene sorption and desorption in Ca- and Cu-montmorillonites investigated with Fourier transform infrared spectroscopy under two different levels of humidity.

    PubMed

    Shih, Yang-Hsin; Wu, Shian-Chee

    2004-09-01

    Clays in soils or groundwater aquifer materials play roles in the sorption of organic pollutants. The intrinsic sorption kinetics of toluene in dry and humid clay films was investigated by tracking the change of infrared absorbance. Under the humid condition, similar toluene-sorbed intensities were found in Ca- and Cu-montmorillonites. However, a higher intensity of sorbed toluene was found in the Cu-form than in the Ca-form under the dry condition, which indicates a stronger interaction occurring in dry Cu-montmorillonite. The general time scale of sorption of toluene on clays is around 100 s. In both forms of montmorillonite, some portion of toluene was desorbed at an extremely slow rate under the dry condition. Some newly identified peaks were persistent against desorption from montmorillonites, suggesting the existence of irreversibly sorbed species and the possibility of toluene transformation occurring in clay systems. PMID:15378979

  16. Manganese porphyrins covalently bound to silica and montmorillonite K10 as efficient catalysts for alkene and alkane oxidation by hydrogen peroxide

    Microsoft Academic Search

    M. A. Martinez-Lorente; P. Battioni; W. Kleemiss; J. F. Bartoli; D. Mansuy

    1996-01-01

    New supported MnIII-porphyrin-based catalysts were prepared by covalent binding of meso-tetrakis-(2,6-dichlorophenyl) porphyrin derivatives bearing NH2 or SO3H functions on their meso-aryl rings to either silica or montmorillonite K10. All these supported metalloporphyrins efficiently catalysed the epoxidation of alkenes with PhIO. The MnIII-porphyrin covalently bound to montmorillonite K10 gave remarkably good results for the hydroxylation of linear alkanes such as heptane

  17. A comparison of the effects of several silver-treated intravenous catheters on the survival of staphylococci in suspension and their adhesion to the catheter surface

    Microsoft Academic Search

    L. L. Woodyard; T. L. Bowersock; J. J. Turek; G. P. McCabe; J. Deford

    1996-01-01

    Indwelling catheters are essential for the management of many medical conditions, but are frequently associated with infections. Numerous methods have been employed in an attempt to reduce these complications, including the application of various coatings, such as surfactants and antimicrobial agents, to the catheter surface. Silver treatments in particular have been shown to have a cidal effect against many of

  18. An infrared study of thin-film formation on Si and Ge surfaces treated with aqueous NH4F and HF

    NASA Astrophysics Data System (ADS)

    Yota, J.; Burrows, V. A.

    1991-05-01

    The surface chemistry of Si and Ge after treatment with hydrofluoric acid buffered with ammonium fluoride (BHF) was studied using surface infrared spectroscopy. For each of these materials, the BHF not only dissolved the native oxide, but also deposited a thin inorganic film comprised of ammonium salts (NH4F and NH4F.HF). Through one or more complex reactions with the substrate, these salts slowly disappear as the thermodynamically very stable hexafluorometallate compounds [(NH4)2SiF6 and (NH4)2GeF6] form. The NH4F.HF disappearance correlates directly with the hexafluorometallate formation. Though the original fluoride and bifluoride salts are quite soluble in alcohols as well as in aqueous solutions, the hexafluorometallates are completely insoluble in alcohols, and can only be removed by thorough water rinse.

  19. Evolution of Rubbery Plateau Region above the Melting Point of Poly(ethylene-co-vinylacetate) by the Incorporation of Montmorillonite

    NASA Astrophysics Data System (ADS)

    Saito, Kohei; Huang, Liqian; Kadowaki, Yuji; Inoue, Takashi

    Poly(ethylene-co-vinylacetate) (EVA) was mixed with sodium montmorillonite (MMT) at 90/10 wt. ratio. EVA was also mixed with an organophilic montmorillonite (o-MMT) prepared by replacing Na+ in MMT with trimethylstearylammonium cation. The structure and mechanical properties of the composites were studied by scanning electron microscopy (SEM), transmission electron microscopy, wide-angle X-ray diffraction, differential scanning calorimetry, and dynamic mechanical analysis. In the EVA/MMT composite, MMT particles were poorly dispersed in the order of a few µm. The composite was opaque. By contrast, in the EVA/o-MMT composite, the exfoliated silicate layers were nicely dispersed in EVA matrix. It was a transparent material. The composite showed an interesting reinforcing effect; i.e., the rubbery plateau modulus was retained even above the melting point of EVA. The rubbery modulus seems to originate from a formation of the “house-of-cards” structure of silicate layers.

  20. Modification of a Na-montmorillonite with quaternary ammonium salts and its application for organics removal from TNT red water.

    PubMed

    Zhang, Qian; Meng, Zilin; Zhang, Yihe; Lv, Guocheng; Lv, Fengzhu; Wu, Limei

    2014-01-01

    Na-montmorillonite (Na-Mont) and organic montmorillonite modified by cetyltrimethylammonium bromide (CTAB-Mont) and tetramethylammonium bromide (TMAB-Mont) were prepared as adsorbents to remove organic contaminants from 2,4,6-trinitrotoluene (TNT) red water. The characterizations of the samples were performed with X-ray diffraction and Fourier transform infrared spectroscopy. The adsorption capacity of CTAB-Mont (15.9 mg/g) was much larger than Na-Mont (0.26 mg/g) and TMAB-Mont (1.7 mg/g). Langmuir isotherm and the pseudo-second-order kinetic models fitted the experimental results well. The main factor in the adsorption promotion was the distribution phase in the interlayer of CTAB-Mont. The arrangement of molecules analyzed by molecular simulation corresponded to the experimental data and supported the adsorption mechanism. PMID:24804652

  1. Montmorillonite K-10 mediated green synthesis of cyano pyridines: Their evaluation as potential inhibitors of PDE4.

    PubMed

    Ram Reddy, T; Rajeshwar Reddy, G; Srinivasula Reddy, L; Jammula, Subbarao; Lingappa, Y; Kapavarapu, Ravikumar; Meda, Chandana Lakshmi T; Parsa, Kishore V L; Pal, Manojit

    2012-02-01

    An efficient and green synthesis of functionalized cyano pyridines has been achieved via montmorillonite K-10 mediated multi-component reaction in a chemo- and regioselective manner. The four-component reaction of ?-keto ester, arylaldehyde, malononitrile and an alcohol provided a variety of pyridine derivatives and montmorillonite K-10 was found to be a reusable catalyst. The potential of this operationally simple methodology has been demonstrated in further structure elaboration of a compound synthesized via C-C bond forming reactions under Suzuki, Sonogashira and Heck conditions. Some of the cyano pyridines synthesized showed PDE4B inhibitory properties in vitro and good interactions with PDE4B protein in silico suggesting cyano pyridine scaffold as a potential template for the discovery of novel PDE4 inhibitors. PMID:22217868

  2. Micro-shear bond strength and surface micromorphology of a feldspathic ceramic treated with different cleaning methods after hydrofluoric acid etching

    PubMed Central

    STEINHAUSER, Henrique Caballero; TURSSI, Cecília Pedroso; FRANÇA, Fabiana Mantovani Gomes; do AMARAL, Flávia Lucisano Botelho; BASTING, Roberta Tarkany

    2014-01-01

    Objective The aim of this study was to evaluate the effect of feldspathic ceramic surface cleaning on micro-shear bond strength and ceramic surface morphology. Material and Methods Forty discs of feldspathic ceramic were prepared and etched with 10% hydrofluoric acid for 2 minutes. The discs were randomly distributed into five groups (n=8): C: no treatment, S: water spray + air drying for 1 minute, US: immersion in ultrasonic bath for 5 minutes, F: etching with 37% phosphoric acid for 1 minute, followed by 1-minute rinse, F+US: etching with 37% phosphoric acid for 1 minute, 1-minute rinse and ultrasonic bath for 5 minutes. Composite cylinders were bonded to the discs following application of silane and hydrophobic adhesive for micro-shear bond strength testing in a universal testing machine at 0.5 mm/min crosshead speed until failure. Stereomicroscopy was used to classify failure type. Surface micromorphology of each treatment type was evaluated by scanning electron microscopy at 500 and 2,500 times magnification. Results One-way ANOVA test showed no significant difference between treatments (p=0.3197) and the most common failure types were cohesive resin cohesion followed by adhesive failure. Micro-shear bond strength of the feldspathic ceramic substrate to the adhesive system was not influenced by the different surface cleaning techniques. Absence of or less residue was observed after etching with hydrofluoric acid for the groups US and F+US. Conclusions Combining ceramic cleaning techniques with hydrofluoric acid etching did not affect ceramic bond strength, whereas, when cleaning was associated with ultrasound, less residue was observed. PMID:24676577

  3. Treating Prescription Drug Addiction

    MedlinePLUS

    ... approach may be best. Some addictions, such as opioid addiction, can be treated with medications. These pharmacological ... best. In This Section Treating addiction to prescription opioids Treating addiction to CNS depressants Treating addiction to ...

  4. Assessment of acid–base strength distribution of ion-exchanged montmorillonites through NH 3 and CO 2TPD measurements

    Microsoft Academic Search

    A. Azzouz; D. Nistor; D. Miron; A. V. Ursu; T. Sajin; F. Monette; P. Niquette; R. Hausler

    2006-01-01

    Distribution of the acid–base strengths of various ion-exchanged montmorillonites was assessed through thermal programmed desorption (TPD) of NH3 and CO2. Accurate acid–base measurements can be achieved via deconvolution of perfectly symmetrical peaks, under optimal carrier gas throughput and heating rate, estimated though a factorial experiment design. No neutral clay samples without interactions with carbon dioxide or ammonia were found. All

  5. Morphology, Thermal and Mechanical Properties of Poly (Styrene-Acrylonitrile) (SAN)\\/Clay Nanocomposites from Organic-Modified Montmorillonite

    Microsoft Academic Search

    Yibing Cai; Yuan Hu; Junfeng Xiao; Lei Song; Weicheng Fan; Huaxia Deng; Xinglong Gong; Zuyao Chen

    2007-01-01

    Poly (styrene-acrylonitrile) (SAN)\\/clay nanocomposites have successfully been prepared by melt intercalation method. The hexadecyl triphenyl phosphonium bromide (P16) and cetyl pyridium chloride (CPC) are used to modify the montmorillonite (MMT). The structure and thermal stability property of the organic modified MMT are, respectively characterized by Fourier transfer infrared (FT-IR) spectra, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results indicate

  6. Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications.

    PubMed

    Hasani-Sadrabadi, Mohammad Mahdi; Dashtimoghadam, Erfan; Majedi, Fatemeh S; Kabiri, Kourosh; Mokarram, Nassir; Solati-Hashjin, Mehran; Moaddel, Homayoun

    2010-09-21

    This study is concerned with electrochemical investigation of novel high-performance proton exchange membranes based on bio-functionalized montmorillonite and Nafion. It was found that the incorporation of 2 wt% BMMT into Nafion polyelectrolyte matrix results in significantly improved methanol-air fuel cell efficiency of 30% compared to 14% for Nafion(R)117, and about 23-times higher membrane selectivity. PMID:20697619

  7. Changes in the Properties of a Montmorillonite-Water System during the Adsorption and Desorption of Water: Hysteresis1

    Microsoft Academic Search

    M. H. Fu; Z. Z. Zhang; P. F. Low

    1990-01-01

    Abstract--Samples of Na-saturated, Upton montmorillonite were prepared with different contents of water (H20 or D20) by: (1) adsorption of water from the vapor phase at a specific value of p\\/p*, the relative humidity, (2) adsorption of water from the vapor phase at p\\/p* = 1.0 followed by desorption of the water into the vapor phase at a specific p\\/p* <

  8. New nanocomposite materials based on plasticized poly( l-lactide) and organo-modified montmorillonites: thermal and morphological study

    Microsoft Academic Search

    Marie-Amélie Paul; Michaël Alexandre; Philippe Degée; Catherine Henrist; André Rulmont; Philippe Dubois

    2003-01-01

    Plasticized poly(l-lactide) (PLA) based nanocomposites were prepared by melt blending of the matrix with 20wt% of poly(ethyleneglycol) 1000 (PEG 1000) and different amounts of montmorillonite, organo-modified or not. The intercalation of the polymer chains between the aluminosilicates layers and morphological structure of the filled PLAs were analysed by wide-angle X-ray scattering (WAXS). Thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC)

  9. Effect of polyaniline–montmorillonite nanocomposite powders addition on corrosion performance of epoxy coatings on Al 5000

    Microsoft Academic Search

    M. G. Hosseini; M. Jafari; R. Najjar

    2011-01-01

    A series of polyaniline (PANI)\\/montmorillonite (MMT) nanocomposite materials has been successfully prepared by in-situ emulsion polymerization in the presence of inorganic nanolayers of clay with camphorsulfonic acid (CSA) and ammonium peroxydisulfate (APS) as surfactant and initiator, respectively. The nanocomposite materials were characterized by Fourier Transformation Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Epoxy resin was used

  10. Mechanism of p-nitrophenol adsorption from aqueous solution by HDTMA+-pillared montmorillonite--implications for water purification.

    PubMed

    Zhou, Qin; He, Hong Ping; Zhu, Jian Xi; Shen, Wei; Frost, Ray L; Yuan, Peng

    2008-06-15

    HDTMA+-pillared montmorillonites were obtained by pillaring different amounts of the surfactant hexadecyltrimethylammonium bromide (HDTMAB) into sodium montmorillonite (Na-Mt) in an aqueous solution. The optimum conditions and batch kinetics of sorption of p-nitrophenol from aqueous solutions are reported. The solution pH had a very important effect on the sorption of p-nitrophenol. The maximum p-nitrophenol absorption/adsorption occurs when solution pH (7.15-7.35) is approximately equal to the pKa (7.16) of the p-nitrophenol ion deprotonation reaction. X-ray diffraction analysis showed that surfactant cations had been pillared into the interlayer and the p-nitrophenol affected the arrangement of surfactant. With the increased concentration of surfactant cations, the arrangement of HDTMA+ within the clay interlayer changes and the sorption of p-nitrophenol increases. HDTMA+-pillared montmorillonites are more effective than Na-Mt for the adsorption of p-nitrophenol from aqueous solutions. The Langmuir, Freundlich and dual-mode sorption were tested to fit the sorption isotherms. PMID:18082948

  11. Influence of interphase interactions on electro-optical properties of heterocomposites of 5CB liquid crystal and organomodified montmorillonites doped with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bezrodna, T. V.; Nesprava, V. V.; Tomylko, S. V.; Chashechnikova, I. T.; Baran, J.

    2013-05-01

    The characteristics of interphase interactions in heterocomposites based on 5CB liquid crystal are investigated by infrared spectroscopy. Organomodified natural montmorillonite (OMMT) aluminosilicates from three geological deposits and OMMT-CNT (carbon nanotubes) hybrid particles are used as filler materials. Cetyltrimethylammonium bromide (CTAB) is employed as a surface modifier. Interphase (van-der-Waals) interactions are found to occur at the phase boundaries of these heterocomposites, with the strength of the interaction dependent on the type of MMT. Spectra of the hybrid nanoparticle powders show that CNTs have an effect on the conformation of the CTA+ modifier alkyl chains, the degree of which also depends on the form of MMT. Of the systems with OMMT, the composite with strongest interphase interactions was found to have the largest amount of electro-optical memory and the highest optical transmission. The presence of hybrid OMMT-CNT particles in these systems leads to the disappearance of the memory effect, a decrease in optical transmission, and a significant drop in the electrical breakdown voltage of the material. The effect of the CNTs is greatest in systems with the strongest affinity among the components of the composite.

  12. Gold nanoparticle functionalized artificial nacre: facile in situ growth of nanoparticles on montmorillonite nanosheets, self-assembly, and their multiple properties.

    PubMed

    Yao, Hong-Bin; Mao, Li-Bo; Yan, You-Xian; Cong, Huai-Ping; Lei, Xuan; Yu, Shu-Hong

    2012-09-25

    Artificial nacre based on clay nanosheets have been emerging as a new generation of bioinspired materials due to their super mechanical, fire-retardant, heat-shield, and gas barrier properties. Functional design in artificial nacre is highly demanded to further broaden the applications of these promising bioinspired materials. However, there is rarely a report on the functionalization of artificial nacre at present possibly due to the lack of a feasible strategy to introduce functional components in nacre-like materials without weakening other properties. In this study, we report a feasible method to fabricate artificial nacre-like functional hybrid films by using Au nanoparticle (NP) modified natural clay montmorillonite (MTM) nanosheets as efficient two-dimensional building blocks. First, Au NPs-chitosan-MTM hybrid nanosheets were prepared and homogeneously dispersed in deionized water by the facile in situ growth of Au NPs on chitosan-MTM nanosheets. Then, the obtained Au NPs-chitosan-MTM hybrid nanosheet suspension can be sprayed or vacuum filtrated to form nacre-like layered hybrid nanocoatings or free-standing hybrid films, respectively. Finally, as-fabricated artificial nacre nanocoatings or hybrid films have been demonstrated to behave with surface enhanced Raman scattering (SERS), catalytic, and photothermal conversion properties indicating the successful functionalization of artificial nacre by introducing Au NPs. PMID:22909252

  13. Synthesis of high surface area, mesoporous MgO nanosheets with excellent adsorption capability for Ni(II) via a distillation treating.

    PubMed

    Feng, Jing; Zou, Linyi; Wang, Yuting; Li, Bowen; He, Xiaofeng; Fan, Zhuangjun; Ren, Yueming; Lv, Yanzhuo; Zhang, Milin; Chen, Dan

    2015-01-15

    Hexagonal mesoporous MgO nanosheets with a side length of 250 nm and specific surface area of 181.692 m(2)/g were fabricated by a three-step process. Firstly, MgO powders were obtained by sintered Mg5(OH)2(CO3)4?4H2O, which was synthesized by a wet precipitation process using ammonium hydrogen carbonate as precipitants. Secondly, the above-MgO were distilled 2 h in a three-necked bottle with condenser device. Lastly, we annealed the distilled-MgO at 500-800 °C to form mesoporous MgO nanosheets. We found the pore size distribution and the thicknesses of nanosheets were determined by the distillation process in step 2 and annealed temperature in step 3. By optimizing the experimental parameters, the mesoporous dis-MgO annealed at 600 °C displayed uniform hexagonal structure with the largest pore volume (0.875 cm(3)/g) and highest BET surface area (181.692 m(2)/g), as well as the maximum adsorption capability of 1684.25 mg/g for Ni(II). PMID:25454450

  14. Geochemical studies of clay minerals III. The determination of free silica and free alumina in montmorillonites

    USGS Publications Warehouse

    Foster, M.D.

    1953-01-01

    Determination of free silica by the method proposed made possible the derivation of logical formulas for several specimens of montmorillonites for which the formulas could not be derived from the analyses alone. Other montmorillonites, for which logical formulas could be derived from their analyses, were found to contain small amounts of free silica or free alumina. Others were found to contain neither free silica nor free alumina. The method consists of the following steps: (1) digestion of 1 g of the specimen with 0.5 N NaOH solution in a covered platinum crucible or dish on a steam bath for 4 hrs, stirring the mixture at 30-min intervals, (2) filtration of the undissolved material, followed by washing several times with 1% NaOH solution, (3) neutralization of the filtrate with HCl, addition of 5 ml HCl in excess and determination of SiO and Al2O3 in the usual way and (4) calculation of the amount of free SiO2 or free Al2O3 if any and the amount of attack of the clay structure by the treatment from the ratio of SiO2 to Al2O3 dissolved and the ratio of SiO2 to Al2O3 obtained on analysis. Tests with 5% Na2CO3 solution, the reagent formerly used for the solution of free SiO2 in rocks and minerals, showed that solution of opal by this reagent is always fractional, never complete, no matter how small the amount present or how long the period of treatment. Re-treatment of the sample results in 90-95% solution if 10 mg or less of opal is present, but for larger amounts of opal the percentage dissolved decreases as the amount present increases. On the other hand, 75 ml of 0.5 N NaOH completely dissolves as much as 400 mg of opal in 4 hrs digestion in a covered platinum crucible or dish, on a steam bath. However, a weaker solution or a shorter period of digestion does not effect complete solution. The same amount (75 ml) of 0.5 N NaOH also dissolves 90 mg of cristobalite and 57 mg of quartz having a grain size of less than 2 microns. Use of NaOH also permits determination of the amount of alumina dissolved, and estimation of the extent to which the clay structure was attacked by the treatment. ?? 1953.

  15. The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome Formation, Colorado, U.S.A.

    USGS Publications Warehouse

    Zielinski, R.A.

    1982-01-01

    An unusual occurrence of juxtaposed glassy and clay-altered ash was sampled to estimate the degree and type of element mobility during alteration of glass to montmorillonite. The results are particularly interesting in that major mobilization of uranium is indicated. Closely spaced samples of glassy and montmorillonitic ash were collected from the same 20-50 cm thick stratigraphic horizon in the Troublesome Formation (Miocene) of northwestern Colorado. Sharp contacts exist between glassy ash and underlying pink montmorillonite and indicate that water-saturated conditions were restricted to basal ash layers. Formation of montmorillonite instead of zeolites suggests that the water was not highly saline or alkaline. Isotopic and chemical analyses of glassy and clay-altered samples indicate the following: 1. (1) Montmorillonite has U concentrations which are only 10-15% of the concentrations in coexisting glass. Similarly depleted elements include Cs, Rb, Na and K. Much smaller depletions of these elements in some glassy samples serve as sensitive indicators of incipient alteration of glass to montmorillonite. 2. (2) Abundances of relatively insoluble elements such as Th, Ta, Hf and Al are slightly higher (5-50%) in clay-altered ash and serve as indicators of the maximum levels of enrichment in residual material. Greater enrichment of elements such as Ca, Mg, Sr, Sc, P, Cr and Co indicate structural incorporation, adsorption, or ion-exchange uptake by clay or secondary hydrous oxides of Fe and Mn. 3. (3) The rare-earth-element patterns and abundances in glass are sufficiently mimicked by detritus-free montmorillonite to document the compositional equivalency of the two. 4. (4) Radioactive equilibrium exists between 238U and its decay products 234U and 230Th. This documents minimal open-system mobility of U within the last ??? 0.3 Ma. ?? 1982.

  16. Effect of clay surface silylation and dispersion method on the mechanical properties of epoxy-clay composites

    NASA Astrophysics Data System (ADS)

    Romeo, V.; Piscitelli, F.; Scamardella, A. M.; Amendola, E.; Lavorgna, M.; Mensitieri, G.; Acierno, D.

    2010-06-01

    Epoxy-clay nanocomposites were prepared dispersing both pristine and functionalized sodium montmorillonite powders (1 and 3 wt%) in epoxy resin by means of sonication and sonication/ball-milling high energy mixing processes. Silylation reaction of sodium montmorillonite (Na-MMT) was performed by using 3-aminopropyltriethoxysilane (A1100) and N-2-aminoethyl)-3-aminopropyltrimethoxysilane (A1120) as coupling agents. Morphological investigations showed that the MMT stacks are only slightly intercalated. However the surface modification of MMT clays improves the interfacial interaction with epoxy resins and the nanocomposites obtained through sonication exhibit enhanced mechanical properties compared to the nanocomposites prepared from pristine Na-MMT.

  17. Removal of cobalt(II) ion from aqueous solution by chitosan-montmorillonite.

    PubMed

    Wang, Hailin; Tang, Haoqing; Liu, Zhaotie; Zhang, Xin; Hao, Zhengping; Liu, Zhongwen

    2014-09-01

    Montmorillonite (MMT) modified with chitosan (CTS, molecular weight=5×10(4)) was applied to remove heavy metal cations by using Co(2+) as a model ion. An increase in MMT interlayer distance observed from X-ray diffraction indicates the intercalation of CTS into MMT. Together with the results of scanning electron microscopy and Fourier transform infrared spectroscopy, it was concluded that the composite material of CTS and MMT (CTS-MMT) was prepared successfully. The mass ratio of CTS to MMT had a strong influence on the adsorption performance of CTS-MMT. The highest adsorption value of 150mg/g was obtained over the composite material with CTS to MMT mass ratio of 0.25, which is much higher than those reported in other studies. The adsorption isotherms and kinetic results indicated that Co(2+) was adsorbed over CTS-MMT in a multilayer model, and the chemical sorption of Co(2+) was determined to be the rate-limiting step. PMID:25193838

  18. Mordenite and montmorillonite alteration of glass structures in a rhyolite pipe, northern Black Hills, South Dakota

    SciTech Connect

    Kirchner, J.G. (Illinois State Univ., Normal (United States))

    1991-10-01

    Green structures, 0.5 to 1.5 in. across, occur in a Tertiary rhyolite pipe in the northern Black Hills, South Dakota. The structures are of two types: angular to ellipsoidal masses and stretched or smeared structures. Thin section analysis revealed that those of the first type are massive, with no internal structure, and those of the second type are cellular and have classic flame structure characteristics. XRD indicated the composition to be a mixture of secondary mordenite (a zeolite) and montmorillonite. The first type is interpreted to be deuterically altered vitrophyre clasts and the second type to be altered vesicular structures produced by degassing of the magma in the pipe. Chemical analysis of the alteration material indicates a loss of alkalies and silica, with an increase in water, CaO, MgO and ferric iron when compared to the composition of fresh vitrophyre from the same pipe. The changes are in agreement with experimental work on the alteration of rhyolitic glass by a number of researchers. This is the first occurrence of mordenite reported for the Black Hills.

  19. pH profile of the adsorption of nucleotides onto montmorillonite. I - Selected homoionic clays

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Church, F. M.; Mazzurco, J.; Banin, A.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.

    1985-01-01

    The effect of pH and adsorbed ions on the adsorption of purine and pyrimidine nucleotides on montmorillonite clay was studied experimentally. The specific nucleotides examined were: 5 prime-AMP; 3-prime AMP; and 5 prime-CMP. The pH of the clay samples was adjusted to various levels in the 2-12 pH range using microliter volumes of concentrated acid (1N HCl) and base (1NHNaOH). It was found that preferential adsorption among nulceotides was dependent on the pH level and on the characteristics of the substituted metal cation and anion exchange mechanisms. Below pH 4, adsorption was attributed to cation and anion exchange mechanisms. Above pH 4, however, adsorption was attributed to the complexation mechanisms occurring between the metal cations in the clay exchange site and in the biomolecule. The possible role of homoionic clays in the concentration mechanisms of biomonomers in the prebiotic environment is discussed.

  20. Short-term safety and efficacy of calcium montmorillonite clay (UPSN) in children.

    PubMed

    Mitchell, Nicole J; Kumi, Justice; Aleser, Mildred; Elmore, Sarah E; Rychlik, Kristal A; Zychowski, Katherine E; Romoser, Amelia A; Phillips, Timothy D; Ankrah, Nii-Ayi

    2014-10-01

    Recently, an association between childhood growth stunting and aflatoxin (AF) exposure has been identified. In Ghana, homemade nutritional supplements often consist of AF-prone commodities. In this study, children were enrolled in a clinical intervention trial to determine the safety and efficacy of Uniform Particle Size NovaSil (UPSN), a refined calcium montmorillonite known to be safe in adults. Participants ingested 0.75 or 1.5 g UPSN or 1.5 g calcium carbonate placebo per day for 14 days. Hematological and serum biochemistry parameters in the UPSN groups were not significantly different from the placebo-controlled group. Importantly, there were no adverse events attributable to UPSN treatment. A significant reduction in urinary metabolite (AFM1) was observed in the high-dose group compared with placebo. Results indicate that UPSN is safe for children at doses up to 1.5 g/day for a period of 2 weeks and can reduce exposure to AFs, resulting in increased quality and efficacy of contaminated foods. PMID:25135766

  1. A novel material of cross-linked styrylpyridinium salt intercalated montmorillonite for drug delivery

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Wang, Qingqing; Chen, Xiaodong; Wei, Qufu

    2014-08-01

    A facile synthesis of a styrylpyridinium salt (SbQ)/montmorillonite (MMT) via cationic exchange interactions between styrylpyridinium species (specifically SbQ) and MMT platelets is reported in this work. The SbQ-MMT solutions were irradiated under ultraviolet (UV) light for a specific time to obtain the cross-linked SbQ-MMT materials. Scanning electron microscopy and atomic force microscopy analyses revealed the structures and morphologies of MMT and modified MMT. X-ray diffraction and transmission electron microscope analyses indicated that the basal spacing increased from 1.24 to 1.53 nm compared with the pristine MMT, which proved that SbQ had interacted with MMT. Thermal gravimetric analysis curves showed that the amount of SbQ in the MMT interlayers was 35.71 meq/100 g. Fourier transform infrared spectroscopy also confirmed the intercalation of SbQ species into MMT interlayers, and UV spectroscopy was used to follow up the cross-linking of SbQ-MMT. This novel material has potential applications in drug delivery, and it can also be used as an additive to improve the mechanical properties of polymers.

  2. Template properties of oligocytidylates formed in the montmorillonite catalyzed condensation of ImpC. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Goezen

    1994-01-01

    In an attempt to investigate the prebiotic formation of phosphodiester bond in RNA, we have studied the self condensation of 5'-phosphorimidazolide of adenosine (ImpA), in aqueous solutions containing 0.2 M sodium chloride and 0.075 M magnesium chloride at pH 8 using clay minerals as catalyst. In the presence of certain montmorillonites, oligomers containing up to ten monomer units in their chain were formed, while in control experiments, where no catalyst was added, the major product was 5',5'-diadenosine diphosphate, A(sup 5')ppA. In reactions carried out with ImpA: A(sup 5')ppA mixtures at 9:1 mole ratio, oligomers of the type A(sup 5')p(pA)(sub n) and (A(sup 5')p)(sub n)A(sup 5')ppA(pA)(sub n) formed at the expense of (pA)(sub n) type oligomers. Addition of A(sup 5')ppA to the reaction mixture increased the regiospecifity of 3',5'-link formation from 67% to 79%. The condensation of the 5'-phosphorimidazolide of cytidine, ImpC, was also carried out in the presence and absence of A(sup 5')ppA under the same conditions and oligomers containing up to twelve monomer units were obtained.

  3. Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2.

    PubMed

    Maisanaba, Sara; Gutiérrez-Praena, Daniel; Pichardo, Silvia; Moreno, F Javier; Jordá, María; Cameán, Ana M; Aucejo, Susana; Jos, Angeles

    2014-06-01

    The incorporation of the natural mineral clay montmorillonite into polymeric systems enhances their barrier properties as well as their thermal and mechanical resistance, making them suitable for a wide range of industrial applications, e.g., in the food industry. Considering humans could easily be exposed to these clays due to migration into food, toxicological and health effects of clay exposure should be studied. In the present work, the cytotoxic effects induced by two different clays (the unmodified clay Cloisite(®) Na(+) , and the organically modified Cloisite(®) 30B) on Caco-2 cells were studied after 24 and 48 h of exposure. The basal cytotoxicity endpoints assessed were total protein content, neutral red uptake and a tetrazolium salt reduction. Our results showed that only Cloisite(®) 30B induced toxic effects. Therefore, the effects of subcytotoxic concentrations of this clay on the generation of intracellular reactive oxygen species, glutathione content and DNA damage (comet assay) were investigated. Results indicate that oxidative stress may be implicated in the toxicity induced by Closite(®) 30B, in regards of the increases in intracellular reactive oxygen species production and glutathione content at the highest concentration assayed, while no damage was observed in DNA. The most remarkable morphological alterations observed were dilated cisternae edge in the Golgi apparatus and nucleolar segregation, suggesting impairment in the secretory functions, which could be related to inhibition in the synthesis of proteins. PMID:24122917

  4. A novel material of cross-linked styrylpyridinium salt intercalated montmorillonite for drug delivery

    PubMed Central

    2014-01-01

    A facile synthesis of a styrylpyridinium salt (SbQ)/montmorillonite (MMT) via cationic exchange interactions between styrylpyridinium species (specifically SbQ) and MMT platelets is reported in this work. The SbQ-MMT solutions were irradiated under ultraviolet (UV) light for a specific time to obtain the cross-linked SbQ-MMT materials. Scanning electron microscopy and atomic force microscopy analyses revealed the structures and morphologies of MMT and modified MMT. X-ray diffraction and transmission electron microscope analyses indicated that the basal spacing increased from 1.24 to 1.53 nm compared with the pristine MMT, which proved that SbQ had interacted with MMT. Thermal gravimetric analysis curves showed that the amount of SbQ in the MMT interlayers was 35.71 meq/100 g. Fourier transform infrared spectroscopy also confirmed the intercalation of SbQ species into MMT interlayers, and UV spectroscopy was used to follow up the cross-linking of SbQ-MMT. This novel material has potential applications in drug delivery, and it can also be used as an additive to improve the mechanical properties of polymers. PMID:25170328

  5. Correlation between the hydrophilic character and affinity towards carbon dioxide of montmorillonite-supported polyalcohols.

    PubMed

    Nousir, Saadia; Platon, Nicoleta; Ghomari, Kamel; Sergentu, Andrei-Sergiu; Shiao, Tze Chieh; Hersant, Grégory; Bergeron, Jean-Yves; Roy, René; Azzouz, Abdelkrim

    2013-07-15

    Polyalcohol incorporation was found to enhance the hydrophilic character of montmorillonite and its affinity towards carbon dioxide. CO2 adsorption occurred in both dry and humid conditions, but higher amounts were retained in the presence of moisture. This suggests two adsorption pathways: 1. direct OH-CO2 interaction and 2. more predominantly via indirect ternary OH-H2O-CO2 interactions. The retained amounts of water and CO2 increased almost proportionally with the number of OH groups incorporated, thus providing clear evidence that these groups act as adsorption sites. The improvement of the CO2 retention capacity (CRC) appears to be also due to the enhancement of the hydrophilic character of the adsorbent. The CRC value was found to strongly depend on the operating conditions. The major part of the retained CO2 was desorbed at 60-70°C from hydrated matrices, but at 20-50°C from dry adsorbents. CO2 can be easily released even at room temperature through forced convection under a gas stream, or under static conditions in dry and CO2-free media, e.g. in the presence of KOH pellets. It results that the CO2 retention also involves physical interactions. These results open new prospects for the reversible capture of other gases on low-cost hybrid adsorbents without thermal regeneration. PMID:23628201

  6. Morphological change of asymmetric oxyethylene/oxybutylene block copolymers induced by montmorillonite

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Xu, Jun-Ting; Du, Bin-Yang; Xue, Liang; Fan, Zhi-Qiang; Mai, Shao-Min; Ryan, Anthony J.

    2008-04-01

    Two oxyethylene/oxybutylene block copolymers (E40B79 and E47B62), which exhibit body-centered cubic sphere (bcc) and hexagonally packed cylindrical (hex) melt morphologies in bulk, respectively, were blended with nanoclay of montmorillonite (MMT). The effects of MMT on the morphology and crystallization of E40B79 and E47B62 were studied with small-angle x-ray scattering, wide-angle x-ray diffraction, and differential scanning calorimeter. It is found that the E block in the block copolymers can intercalate into the galleries of MMT, leading to a larger layer spacing than that of neat MMT. The preferential absorption of the E block onto MMT plates induces the formation of a new lamellar structure, irrespectively of original morphology in the bulk. There is, however, coexistence of the new lamellar structure with regions retaining the melt morphology. The order-disorder transition temperature (TODT) of the block copolymer is increased by MMT for E40B79, but it remains unchanged for E47B62. Crystallinity of the block copolymers is also greatly suppressed by the addition of MMT.

  7. Effect of dinitolmide intercalated into Montmorillonite on E. tenella infection in chickens.

    PubMed

    Qu, Daofeng; Ma, Wenxiu; Ye, Yongmeng; Han, Jianzhong

    2014-03-01

    To enhance the anti-coccidial effect of dinitolmide and reduce its residual, the dinitolmide/MMT compounds were synthesized by the method of solution intercalation via dinitolmide intercalated into Na + -montmorillonite (Na?+?-MMT). The structure of compounds was characterized by X-ray diffraction and Fourier transformed infrared. Its anti-coccidial effect was examined by Eimeria tenella infection experiment. One hundred fifty AA broiler chickens were divided into five groups. Chickens were orally inoculated with 5 × 10(4) E. tenella oocysts after dinitolmide was given. Their curative effects were observed. The results showed that intercalated dinitolmide expanded the basal spacing (d 001) of MMT from 12.6 to 15.2 Å. The IR bands of amide group in dinitolmide/MMT were detected at 1,533 cm(-1) which showed that dinitolmide was successfully intercalated into the interlayer spaces of MMT. The dinitolmide/MMT showed higher anti-coccidian oocyst activity compared with dinitolmide (p < 0.05). The dinitolmide/MMT compound can significantly increase body weight gains and reduce bloody diarrhea, lesion score, and oocyst excretion. The anti-coccidia index of dinitolmide/MMT group (165.21) is much higher than dinitolmide group (88.84). The dinitolmide/MMT hybrid systems can be more effective in control of coccidiosis in comparison to dinitolmide. PMID:24481902

  8. Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars

    USGS Publications Warehouse

    Clark, B. C., III; Arvidson, R.E.; Gellert, R.; Morris, R.V.; Ming, D.W.; Richter, L.; Ruff, S.W.; Michalski, J.R.; Farrand, W.H.; Yen, A.S.; Herkenhoff, K.E.; Li, R.; Squyres, S.W.; Schroder, C.; Klingelhofer, G.; Bell, J.F., III

    2007-01-01

    During its exploration of the Columbia Hills, the Mars Exploration Rover "Spirit" encountered several similar samples that are distinctly different from Martian meteorites and known Gusev crater soils, rocks, and sediments. Occurring in a variety of contexts and locations, these "Independence class" samples are rough-textured, iron-poor (equivalent FeO ??? 4 wt%), have high Al/Si ratios, and often contain unexpectedly high concentrations of one or more minor or trace elements (including Cr, Ni, Cu, Sr, and Y). Apart from accessory minerals, the major component common to these samples has a compositional profile of major and minor elements which is similar to the smectite montmorillonite, implicating this mineral, or its compositional equivalent. Infrared thermal emission spectra do not indicate the presence of crystalline smectite. One of these samples was found spatially associated with a ferric sulfate-enriched soil horizon, possibly indicating a genetic relationship between these disparate types of materials. Compared to the nearby Wishstone and Watchtower class rocks, major aqueous alteration involving mineral dissolution and mobilization with consequent depletions of certain elements is implied for this setting and may be undetectable by remote sensing from orbit because of the small scale of the occurrences and obscuration by mantling with soil and dust. Copyright 2007 by the American Geophysical Union.

  9. Highly-sensitive and rapid determination of sunset yellow using functionalized montmorillonite-modified electrode.

    PubMed

    Songyang, Yiyan; Yang, Xiaoqing; Xie, Shunlan; Hao, Haohua; Song, Jinchun

    2015-04-15

    Montmorillonite calcium (MMT-Ca) was functionalized with cetyltrimethylammonium bromide (CTAB) via cationic exchange effects. Compared with MMT-Ca, the resulting CTAB functionalized MMT-Ca (CTAB/MMT-Ca) greatly increased the oxidation peak current of sunset yellow, indicative of strong signal enhancement effects. The oxidation mechanism was studied, and one electron was transferred during the oxidation of sunset yellow. The influences of pH value, mass ratio of CTAB to MMT-Ca, amount of CTAB/MMT-Ca, and accumulation time were studied on the oxidation signal of sunset yellow. As a result, a highly-sensitive, rapid and simple electrochemical method was newly developed for the determination of sunset yellow. The linear ranger was from 2.5 to 200 nM, and the detection limit was as low as 0.71 nM after 1-min accumulation. This method was applied in soft drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. PMID:25466070

  10. Polyvinyl alcohol:starch:carboxymethyl cellulose containing sodium montmorillonite clay blends; mechanical properties and biodegradation behavior.

    PubMed

    Taghizadeh, Mohammad Taghi; Sabouri, Narges; Ghanbarzadeh, Babak

    2013-01-01

    The focuses of this study were to investigate the effect of sodium montmorillonite clay (MMT-Na) content on the physical properties and extent of enzymatic hydrolysis Polyvinyl Alcohol (PVA): Starch (S): Carboxymethyl Cellulose (CMC) nanocomposites using enzyme -amylase. The results of this work have revealed that films with MMT-Na content at 5 wt% exhibited a significantly reduced rate and extent of starch hydrolysis. The results suggest that this may have been attributed to interactions between PVA:S:CMC and MMT-Na that further prevented enzymatic attack on the remaining starch phases within the blend. The total solids that remained after 4320 min were 65.46 wt% (PVA:S:CMC); 67.91 wt% (PVA:S:CMC:1% MMT-Na); 78.43 wt% (PVA:S:CMC:3% MMT-Na); 80.24 wt% (PVA:S:CMC:5% MMT-Na). The rate of glucose production from each nanocomposite substrates were decresed significantly as the MMT-Na percentage increased from 0 to 5% (W/W). At the level of 5% (W/W) MMT-Na, the films showed the lowest rate of glucose production values (18.95 ?g/ml h). With the increase of the MMT concentration from 0 to 5%, the UTS increased 5 from 18.36 to 20.38 MPa, however, the strain to break (SB) decreased noticeably from 35.56 to 5.22%. PMID:24010034

  11. Nanocomposites of rice and banana flours blend with montmorillonite: partial characterization.

    PubMed

    Rodríguez-Marín, María L; Bello-Pérez, Luis A; Yee-Madeira, Hernani; Zhong, Qixin; González-Soto, Rosalía A

    2013-10-01

    Rice and banana flours are inexpensive starchy materials that can form films with more improved properties than those made with their starch because flour and starch present different hydrophobicity. Montmorillonite (MMT) can be used to further improve the properties of starch-based films, which has not received much research attention for starchy flours. The aim of this work was to evaluate the mechanical and barrier properties of nanocomposite films of banana and rice flours as matrix material with addition of MMT as a nanofiller. MMT was modified using citric acid to produce intercalated structures, as verified by the X-ray diffraction pattern. The intercalated MMT was blended with flour slurries, and films were prepared by casting. Nanocomposite films of banana and rice flours presented an increase in the tensile at break and elongation percentage, respectively, more than their respective control films without MMT. This study showed that banana and rice flours could be alternative raw materials to use in making nanocomposite films. PMID:23910294

  12. Modifying the structure and flow behaviour of aqueous montmorillonite suspensions with surfactant.

    PubMed

    Cui, Yannan; Pizzey, Claire L; van Duijneveldt, Jeroen S

    2013-04-13

    Colloidal suspensions of plate-like particles undergo a variety of phase transitions. The predicted isotropic/nematic transition is often pre-empted by a sol/gel transition, especially in suspensions of the most commonly used natural swelling clay montmorillonite (MMT). A number of factors, including charge interactions, flexibility and salt concentration, may contribute to this competition. In this study, the effect of surfactant adsorption on suspensions of MMT was studied using rheology, small-angle X-ray scattering, static light scattering and optical microscopy. The addition of a polyetheramine surfactant reduced the moduli of the system and shifted the sol/gel transition to a much higher clay concentration, compared with suspensions of bare clay particles. Yet, scattering data revealed no change in suspension structure on length scales up to around a micrometre. Primary aggregates remain at this length scale and no nematic phase is formed. There is, however, a change in structure at large length scales (of order 20??m) where light scattering indicates the presence of string-like aggregates that disappear on addition of surfactant. Microscope images of dried suspensions also revealed a string-like structure. The dried strings show strong birefringence and may consist of concentric cylinders, self-assembled from clay sheets. PMID:23459964

  13. Strategies of aerobic microbial Fe acquisition from Fe-bearing montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Kuhn, Keshia M.; DuBois, Jennifer L.; Maurice, Patricia A.

    2013-09-01

    This research investigated strategies used by the common aerobic soil bacterium Pseudomonas mendocina to acquire Fe associated with Fe(III)-bearing montmorillonite (MMT) clay. Given the known importance of Fe(III)-chelating siderophores, Fe-limited batch experiments were conducted using a wild-type (WT) strain that produces siderophores and a ?pmhA mutant with a siderophore(-) phenotype. Growth measurements were coupled with a transcriptional biosensor assay that monitors the siderophore biosynthesis gene pmhA, measurements of cells' reducing ability, and quantification of exopolymeric substance (EPS) production. WT cells actively grow when MMT is the sole Fe source, but sorption to MMT may decrease the concentration of dissolved Fe-siderophore complex accessible to cells. Cells also obtain Fe by reducing MMT-associated Fe(III), but because P. mendocina lacks a secreted/diffusible reductant, direct physical contact is required. Dual strategies for Fe acquisition—a reducing mechanism that requires contact and that is likely facilitated by biofilm production and a siderophore related mechanism that does not require contact—provide flexibility to address the environmental Fe challenge.

  14. Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical CO2

    SciTech Connect

    Lee, Mal Soon; McGrail, B. Peter; Glezakou, Vassiliki Alexandra

    2014-08-05

    We report on ab initio molecular dynamics simulations of Ca-rich montmorillonite systems, in different hydration states in the presence of supercritical CO2. Analysis of the molecular trajectories provides estimates of the relative H2O:CO2 ratio per interspatial cation. The vibrational density of states in direct comparison with dipole moment derived IR spectra for these systems provide unique signatures that can used to follow molecular transformation. In a co-sequestration scenario, these signatures could be used to identify the chemical state and fate of Sulfur compounds. Interpretation of CO2 asymmetric stretch shift is given based on a detailed analysis of scCO2 structure and intermolecular interactions of the intercalated species. Based on our simulations, smectites with higher charge interlayer cations at sub-single to single hydration states should be more efficient in capturing CO2, while maintaining caprock integrity. This research would not have been possible without the support of the office of Fossil Energy, Department of Energy. The computational resources were made available through a user proposal of the EMSL User facility, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  15. Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer

    PubMed Central

    Wilcox, Cathy B; Feddes, Grace O; Willett-Brozick, Joan E; Hsu, Lih-Ching; DeLoia, Julie A; Baysal, Bora E

    2007-01-01

    Background Ovarian cancer (OvCa) most often derives from ovarian surface epithelial (OSE) cells. Several lines of evidence strongly suggest that increased exposure to progesterone (P4) protects women against developing OvCa. However, the underlying mechanisms of this protection are incompletely understood. Methods To determine downstream gene targets of P4, we established short term in vitro cultures of non-neoplastic OSE cells from six subjects, exposed the cells to P4 (10-6 M) for five days and performed transcriptional profiling with oligonucleotide microarrays containing over 22,000 transcripts. Results We identified concordant but modest gene expression changes in cholesterol/lipid homeostasis genes in three of six samples (responders), whereas the other three samples (non-responders) showed no expressional response to P4. The most up-regulated gene was TMEM97 which encodes a transmembrane protein of unknown function (MAC30). Analyses of outlier transcripts, whose expression levels changed most significantly upon P4 exposure, uncovered coordinate up-regulation of 14 cholesterol biosynthesis enzymes, insulin-induced gene 1, low density lipoprotein receptor, ABCG1, endothelial lipase, stearoyl- CoA and fatty acid desaturases, long-chain fatty-acyl elongase, and down-regulation of steroidogenic acute regulatory protein and ABCC6. Highly correlated tissue-specific expression patterns of TMEM97 and the cholesterol biosynthesis genes were confirmed by analysis of the GNF Atlas 2 universal gene expression database. Real-time quantitative RT-PCR analyses revealed 2.4-fold suppression of the TMEM97 gene expression in short-term cultures of OvCa relative to the normal OSE cells. Conclusion These findings suggest that a co-regulated transcript network of cholesterol/lipid homeostasis genes and TMEM97 are downstream targets of P4 in normal OSE cells and that TMEM97 plays a role in cholesterol and lipid metabolism. The P4-induced alterations in cholesterol and lipid metabolism in OSE cells might play a role in conferring protection against OvCa. PMID:18070364

  16. Calcium montmorillonite clay reduces AFB1 and FB1 biomarkers in rats exposed to single and co-exposures of aflatoxin and fumonisin.

    PubMed

    Mitchell, Nicole J; Xue, Kathy S; Lin, Shuhan; Marroquin-Cardona, Alicia; Brown, Kristal A; Elmore, Sarah E; Tang, Lili; Romoser, Amelia; Gelderblom, Wentzel C A; Wang, Jia-Sheng; Phillips, Timothy D

    2014-07-01

    Aflatoxins (AFs) and fumonisins (FBs) can co-contaminate foodstuffs and have been associated with hepatocellular and esophageal carcinomas in humans at high risk for exposure. One strategy to reduce exposure (and toxicity) from contaminated foodstuffs is the dietary inclusion of a montmorillonite clay (UPSN) that binds AFs and FBs in the gastrointestinal tract. In this study, the binding capacity of UPSN was evaluated for AFB1, FB1 and a combination thereof in Fischer 344 rats. Rats were pre-treated with different dietary levels of UPSN (0.25% or 2%) for 1 week. Rats were gavaged with a single dose of either 0.125 mg AFB1 or 25 mg FB1 per kg body weight and a combination thereof in the presence and absence of an aqueous solution of UPSN. The kinetics of mycotoxin excretion were monitored by analyzing serum AFB1 -albumin, urinary AF (AFM1) and FB1 biomarkers over a period of 72 h. UPSN decreased AFM1 excretion by 88-97%, indicating highly effective binding. FB1 excretion was reduced, to a lesser extent, ranging from 45% to 85%. When in combination, both AFB1 and FB1 binding occurred, but capacity was decreased by almost half. In the absence of UPSN, the combined AFB1 and FB1 treatment decreased the urinary biomarkers by 67% and 45% respectively, but increased levels of AFB1 -albumin, presumably by modulating its cytochrome metabolism. UPSN significantly reduced bioavailability of both AFB1 and FB1 when in combination; suggesting that it can be utilized to reduce levels below their respective thresholds for affecting adverse biological effects. PMID:24193864

  17. Interaction energy and surface reconstruction between sheets of layered silicates

    NASA Astrophysics Data System (ADS)

    Heinz, Hendrik; Vaia, R. A.; Farmer, B. L.

    2006-06-01

    Interactions between two layered silicate sheets, as found in various nanoscale materials, are investigated as a function of sheet separation using molecular dynamics simulation. The model systems are periodic in the xy plane, open in the z direction, and subjected to stepwise separation of the two silicate sheets starting at equilibrium. Computed cleavage energies are 383mJ /m2 for K-mica, 133mJ/m2 for K-montmorillonite (cation exchange capacity=91), 45mJ/m2 for octadecylammonium (C18)-mica, and 40mJ/m2 for C18-montmorillonite. These values are in quantitative agreement with experimental data and aid in the molecular-level interpretation. When alkali ions are present at the interface between the silicate sheets, partitioning of the cations between the surfaces is observed at 0.25nm separation (mica) and 0.30nm separation (montmorillonite). Originally strong electrostatic attraction between the two silicate sheets is then reduced to 5% (mica) and 15% (montmorillonite). Weaker van der Waals interactions decay within 1.0nm separation. The total interaction energy between sheets of alkali clay is less than 1mJ/m2 after 1.5nm separation. When C18 surfactants are present on the surfaces, the organic layer (>0.8nm) acts as a spacer between the silicate sheets so that positively charged ammonium head groups remain essentially in the same position on the surfaces of the two sheets at any separation. As a result, electrostatic interactions are efficiently shielded and dispersive interactions account for the interfacial energy. The flexibility of the hydrocarbon chains leads to stretching, disorder, and occasional rearrangements of ammonium head groups to neighbor cavities on the silicate surface at medium separation (1.0-2.0nm). The total interaction energy amounts to less than 1mJ/m2 after 3nm separation.

  18. Studies on the solid acidity of heated and cation-exchanged montmorillonite using n-butylamine titration in non-aqueous system and diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hongmei; Liu, Dong; Yuan, Peng; Tan, Daoyong; Cai, Jingong; He, Hongping; Zhu, Jianxi; Song, Zhiguang

    2013-06-01

    The effects of heating and cation exchange on the solid acidity of montmorillonite were investigated using n-butylamine titration in non-aqueous system and diffuse reflectance Fourier transform infrared spectroscopy. The number of total, Brønsted, and Lewis acid sites showed the same modulation tendency with increasing heating temperature, reaching a maximum at 120 °C and subsequently decreasing until it reaches a minimum at 600 °C. The Lewis acid sites result from unsaturated Al3+ cations, and their number increased with the heating temperature due to the dehydration and dehydroxylation of montmorillonite. The generation and evolution of Brønsted acidity were mainly related to interlayer-polarized water molecules. Water adsorbed on the unsaturated Al3+ ions also acted as a Brønsted acid. The acid strength of the Brønsted acid sites was dependent on the polarization ability of the exchangeable cation, the amount of interlayer water, and the degree of dissociation of the interlayer water coordinated to exchangeable cations. All cation-exchanged montmorillonites exhibited different numbers of acid sites and various distributions of acid strength. Brønsted acidity was predominant in Al3+-exchanged montmorillonite, whereas the Na+- and K+-exchanged montmorillonites showed predominantly Lewis acidity. Moreover, Mg2+- and Li+-exchanged montmorillonites exhibited approximately equal numbers of Brønsted and Lewis acid sites. The Brønsted acidity of cation-exchanged montmorillonite was positively correlated with the charge-to-radius ratios of the cations, whereas the Lewis acidity was highly dependent on the electronegativity of the cations. The acid strengths of Al3+- and Mg2+-exchanged montmorillonites were remarkably higher than those of monovalent cation-exchanged montmorillonites, showing the highest acid strength ( H 0 ? -3.0). Li+- and Na+-exchanged montmorillonites exhibited an acid strength distribution of -3.0 < H 0 ? 4.8, with the acid strength ranging primarily from 1.5 to 3.3 in Li+-exchanged montmorillonite, whereas only weaker-strength acid sites (1.5 < H 0 ? 4.8) were present in K+-exchanged montmorillonite. The results of the catalysis experiments indicated that montmorillonite promoted the thermal decomposition of the model organic. The catalytic activity showed a positive correlation with the solid acidity of montmorillonite and was affected by cation exchange, which occurs naturally in geological processes.

  19. Low-pressure adsorption of Ar, Kr, and Xe on carbonaceous materials (kerogen and carbon blacks), ferrihydrite, and montmorillonite: Implications for the trapping of noble gases onto meteoritic matter

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Razafitianamaharavo, Angelina; Michot, Laurent J.; Marty, Bernard

    2005-05-01

    Noble gases trapped in meteorites are tightly bound in a carbonaceous carrier labeled "phase Q." Mechanisms having led to their retention in this phase or in its precursors are poorly understood. To test physical adsorption as a way of retaining noble gases into precursors of meteoritic materials, we have performed adsorption experiments for Ar, Kr, and Xe at low pressures (10 -4 mbar to 500 mbar) encompassing pressures proposed for the evolving solar nebula. Low-pressure adsorption isotherms were obtained for ferrihydrite and montmorillonite, both phases being present in Orgueil (CI), for terrestrial type III kerogen, the best chemical analog of phase Q studied so far, and for carbon blacks, which are present in phase Q and can be considered as possible precursors. Based on adsorption data obtained at low pressures relevant to the protosolar nebula, we propose that the amount of noble gases that can be adsorbed onto primitive materials is much higher than previously inferred from experiments carried out at higher pressures. The adsorption capacity increases from kerogen, carbon blacks, montmorillonite to ferrihydrite. Because of its low specific surface area, kerogen can hardly account for the noble gas inventory of Q. Carbon blacks in the temperature range 75 K-100 K can adsorb up to two orders of magnitude more noble gases than those found in Q. Irreversible trapping of a few percent of noble gases adsorbed on such materials could represent a viable process for incorporating noble gases in phase Q precursors. This temperature range cannot be ruled out for the zone of accretion of the meteorite precursors according to recent astrophysical models and observations, although it is near the lower end of the temperatures proposed for the evolving solar nebula.

  20. Synthesis and characterization of a PbO{sub 2}-clay nanocomposite: Removal of lead from water using montmorillonite

    SciTech Connect

    Aroui, L. [Laboratoire d'Energetique et Electrochimie du Solide (LEES), Faculte de Technologie, Universite Ferhat ABBAS, Setif 19000 (Algeria)] [Laboratoire d'Energetique et Electrochimie du Solide (LEES), Faculte de Technologie, Universite Ferhat ABBAS, Setif 19000 (Algeria); Zerroual, L., E-mail: zerroual@yahoo.fr [Laboratoire d'Energetique et Electrochimie du Solide (LEES), Faculte de Technologie, Universite Ferhat ABBAS, Setif 19000 (Algeria); Boutahala, M. [Laboratoire de Genie des Procedes Chimiques (LGPC), Faculte de Technologie, Universite Ferhat ABBAS, Setif 19000 (Algeria)] [Laboratoire de Genie des Procedes Chimiques (LGPC), Faculte de Technologie, Universite Ferhat ABBAS, Setif 19000 (Algeria)

    2012-02-15

    Graphical abstract: The replacement of Na by Pb in the interlayer space of the smectite leads to a decrease in the intensity of the the (0 0 1) reflection as the concentration of lead nitrate increases. A significant restructuring at the particle scale is observed leading probably to the exfoliation of the caly. In addition, the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities is significantly influenced. This leads to a lowering of the water content and a decrease in the ionic conductivity of the clay. Highlights: Black-Right-Pointing-Pointer In the clay, Pb replaces Na ions and a significant restructuring at the particle scale is observed. Black-Right-Pointing-Pointer Pb influenced significantly the thermal behaviour of the clay with regard to its dehydration. Black-Right-Pointing-Pointer In the interlayer space, the exchange of Na by Pb leads to a decrease in the protonic conductivity. Black-Right-Pointing-Pointer A PbO{sub 2}-clay nanocomposite material with good conductivity is synthesized. -- Abstract: The aim of this paper is to present the results obtained with Pb(II) sorption on an Algerian Clay. The experiments were carried out using a batch process. Powder X-rays diffraction patterns (PXRD) prove that in the montmorillonite Pb replaces Na ions. A significant restructuring at the particle scale is observed leading to the disappearance of the d{sub 001} reflection of the clay at high concentrations of lead. The replacement of hydrated Na with Pb ions influenced significantly the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities with a lowering of the water content. A PbO{sub 2}-clay composite material with good electrical conductivity is synthesized.

  1. Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Ertem, G.

    1993-01-01

    Oligomers of adenylic acid of up to the 11-mer in length are formed by the reaction of the phosphorimidazolide of adenosine (ImpA) in pH 8 aqueous solution at room temperature in the presence of Na(+)-montmorillonite. These oligomers are joined by phosphodiester bonds in which the 3',5'-linkage predominates over the 2',5'-linkage by a 2:1 ratio. Reaction of a 9:1 mixture of ImpA, A5'ppA results in the formation of oligomers with a 3:1 ratio of 3',5'- to 2',5'-linked phosphodiester bonds. A high proportion of these oligomers contain the A5'ppA grouping. A5'ppA reacts much more rapidly with ImpA than does 5'-ADP (ppA) or 5'-ATP (pppA). The exchangeable cation associated with the montmorillonite effects the observed catalysis with Li+, Na+, NH4+, and Ca2+ being the more effective while Mg2+ and Al3+ are almost ineffective catalysts. 2',5'-Linked oligomers, up to the tetramer in length, are formed using UO2(2+)-montmorillonite. The structure analysis of individual oligomer fractions was performed by selective enzymatic and KOH hydrolytic studies followed by HPLC analysis of the reaction products. It is concluded from the composition of the oligomers that the rate of addition ImpA to a 3'-terminus containing a 2',5'-linkage is slower than the addition to a nucleoside joined by a 3',5'-linked phosphodiester bond. The potential importance of mineral catalysis of the formation of RNA and other oligomers on primitive Earth is discussed.

  2. Antimicrobial hyperbranched poly(ester amide)/polyaniline nanofiber modified montmorillonite nanocomposites.

    PubMed

    Pramanik, Sujata; Bharali, Pranjal; Konwar, B K; Karak, Niranjan

    2014-02-01

    There has been growing interest in the use of nanomaterials featuring potent of antimicrobial activity in the biomedical domain. It still remains a challenge for the researchers to develop an efficient nanocomposite possessing antimicrobial efficacy against broad spectrum microbes including bacteria, fungi as well as algal consortium, posing serious challenges for the human survival. In addressing the above problem, we report the fabrication of bio-based hyperbranched poly(ester amide) (HBPEA)/polyaniline nanofiber modified montmorillonite (MMT) nanocomposites by an ex-situ polymerization technique at varied weight percentages (1, 2.5, 5 wt.%) of the modified MMT (nanohybrid). The Fourier transform infrared spectroscopy confirmed the structural changes upon interaction of the nanohybrid with HBPEA. A probable mechanism is proposed for the formation of nanocomposites with partially exfoliated nanoplatelet structure, which was further confirmed from the high resolution transmission electron microscopic analyses. The prepared nanocomposites exhibited potent efficacy against gram positive bacteria like Bacillus subtilis and Staphylococcus aureus as compared to the gram negative ones like Pseudomonas aeruginosa and Escherichia coli. The nanocomposites showed significant antifungal activity against Aspergillus niger, Fusarium oxysporum and Coleotricum capcii and antialgal activity against algal consortium comprising of Chlorella, Hormidium and Cladophorella species. The formation of thermosetting nanocomposites resulted in the acceptable improvement of desired physico-chemical and mechanical properties including thermostability. Thus pronounced antimicrobial activity of the nanocomposites against a spectrum of bacterial and fungal strains as well as a consortium of algal species along with other desired performance vouched them as potent antimicrobial materials in the realm of health and biomedical industry. PMID:24411352

  3. Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting.

    PubMed

    Donius, Amalie E; Liu, Andong; Berglund, Lars A; Wegst, Ulrike G K

    2014-09-01

    Directionally solidified nanofibrillated cellulose (NFC)-sodium-montmorillonite (MMT) composite aerogels with a honeycomb-like pore structure were compared with non-directionally frozen aerogels with equiaxed pore structure and identical composition and found to have superior functionalities. To explore structure-property correlations, three different aerogel compositions of 3wt% MMT, and 0.4wt%, 0.8wt%, and 1.2wt% NFC, respectively, were tested. Young?s modulus, compressive strength and toughness were found to increase with increasing NFC content for both architectures. The modulus increased from 25.8kPa to 386kPa for the isotropic and from 2.13MPa to 3.86MPa for the anisotropic aerogels, the compressive yield strength increased from 3.3kPa to 18.0kPa for the isotropic and from 32.3kPa to 52.5kPa for the anisotropic aerogels, and the toughness increased from 6.3kJ/m(3) to 24.1kJ/m(3) for the isotropic and from 22.9kJ/m(3) to 46.2kJ/m(3) for the anisotropic aerogels. The great range of properties, which can be achieved through compositional as well as architectural variations, makes these aerogels highly attractive for a large range of applications, for which either a specific composition, or a particular pore morphology, or both are required. Finally, because NFC is flammable, gasification experiments were performed, which revealed that the inclusion of MMT increased the heat endurance and shape retention functions of the aerogels dramatically up to 800°C while the mechanical properties were retained up to 300°C. PMID:24905177

  4. Synthesis, characterization and corrosion performance of polyaniline-montmorillonite clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhu, Yanrong

    In-situ polymerization was used to synthesize a novel nanocomposite material based on layered silicate clay and intrinsically conducting polymers (ICPs): polyaniline (PANi). Conducting polymers including PANi and PPy are known to effectively protect active metals against corrosion. Montmorillonite (MMT) clay was successfully incorporated into polyaniline to form PANi-clay (PACN) nanocomposites with improved properties. The relationship between the synthesis conditions and the structure, thermal behavior and oxidation states of the PANi-clay nanocomposites were determined and a further insight into the processing, structure and property correlations was gained. The effect of processing parameters such as oxidant and filler concentration on the structure and properties of the nanocomposites were studied by using Fourier transform infrared spectroscopy (FTIR) and wide angle X-ray scattering (WAXS) together with thermal analysis. It was shown that the oxidant concentration plays an important role in controlling the properties and the structure of the PACN. It was shown that the degradation temperature of PACN decreases with the increasing concentration of oxidant. In depth study was done by FTIR to determine the molecular structure and the oxidation state of PANi in the composites. The morphology of the nanocomposites was observed by using the scanning electron microscopy (SEM). Transmission electron microscopy (TEM), wide-angle X-ray scattering and small angle X-ray scattering (SAXS) study showed the presence of both intercalated and exfoliated clay in the polymer matrix. X-ray diffraction analysis provides additional structural information on both PANi and PACN nanocomposites synthesized at different processing conditions. The nanocomposites were combined with epoxy and formulated into coatings for use in the protection of AA 2024-T3. The effect of PACN nanocomposites on the curing of epoxy resin was studied by using FTIR and a significant enhancement in the degree of curing of epoxy was observed. Corrosion performance of the nanocomposite-epoxy coatings on AA 2024 alloy was determined by using scanning vibrating electrode technique (SVET).

  5. In situ study of CO? and H?O partitioning between Na-montmorillonite and variably wet supercritical carbon dioxide.

    PubMed

    Loring, John S; Ilton, Eugene S; Chen, Jeffrey; Thompson, Christopher J; Martin, Paul F; Bénézeth, Pascale; Rosso, Kevin M; Felmy, Andrew R; Schaef, Herbert T

    2014-06-01

    Shale formations play fundamental roles in large-scale geologic carbon sequestration (GCS) aimed primarily to mitigate climate change and in smaller-scale GCS targeted mainly for CO2-enhanced gas recovery operations. Reactive components of shales include expandable clays, such as montmorillonites and mixed-layer illite/smectite clays. In this study, in situ X-ray diffraction (XRD) and in situ infrared (IR) spectroscopy were used to investigate the swelling/shrinkage and H2O/CO2 sorption of Na(+)-exchanged montmorillonite, Na-SWy-2, as the clay is exposed to variably hydrated supercritical CO2 (scCO2) at 50 °C and 90 bar. Measured d001 values increased in stepwise fashion and sorbed H2O concentrations increased continuously with increasing percent H2O saturation in scCO2, closely following previously reported values measured in air at ambient pressure over a range of relative humidities. IR spectra show H2O and CO2 intercalation, and variations in peak shapes and positions suggest multiple sorbed types of H2O and CO2 with distinct chemical environments. Based on the absorbance of the asymmetric CO stretching band of the CO2 associated with the Na-SWy-2, the sorbed CO2 concentration increases dramatically at sorbed H2O concentrations from 0 to 4 mmol/g. Sorbed CO2 then sharply decreases as sorbed H2O increases from 4 to 10 mmol/g. With even higher sorbed H2O concentrations as saturation of H2O in scCO2 was approached, the concentration of sorbed CO2 decreased asymptotically. Two models, one involving space filling and the other a heterogeneous distribution of integral hydration states, are discussed as possible mechanisms for H2O and CO2 intercalations in montmorillonite. The swelling/shrinkage of montmorillonite could affect solid volume, porosity, and permeability of shales. Consequently, the results may aid predictions of shale caprock integrity in large-scale GCS as well as methane transmissivity in enhanced gas recovery operations. PMID:24810708

  6. Montmorillonite catalysis of 30-50 mer oligonucleotides: laboratory demonstration of potential steps in the origin of the RNA world.

    PubMed

    Ferris, James P

    2002-08-01

    Elongation of the primer 32pdA(pdA)8pA proceeds by the reaction of the 5'-phosphorimidazolides of adenosine and uridine in the presence of montmorillonite clay. Daily addition of the activated nucleotides for up to 14 days results in the formation of 40-50 mers using the 5'-phosphorimidazolide of adenosine (ImpA) and 25-30 mers using the 5'-phosphorimidazolide of uridine (ImpU). The limitation on the lengths of the chains formed is not due to the inhibitors formed since the same chain lengths were formed using 2-3 times the amount of montmorillonite catalyst. The shorter oligomers formed by the addition of U monomers is not due to its greater rate of decomposition since it was found that both the A and the U adducts decompose at about the same rates. Alkaline phosphatase hydrolysis studies revealed that some of the oligomers are capped at the 5'-end to form, with ImpA, Ap32pdA(pdA)8pA(pA)n. The extent of capping depends on the reaction time and the purine or pyrimidine base in the activated mononucleotide. Hydrolysis with ribonuclease T2 followed by alkaline phosphatase determined the sites of the 3', 5'- and 2', 5'-phosphodiester bonding to the primer. The potential significance of the mineral catalyzed formation of 50 mer oligonucleotides to the origin of life based on RNA (the RNA world scenario) is discussed. PMID:12458736

  7. Processing research and development of 'green' polymer nanoclay composites containing a polyhydroxybutyrate, vinyl acetates, and modified montmorillonite clay

    NASA Astrophysics Data System (ADS)

    McKirahan, James N., Jr.

    The purpose of this research was to determine the feasibility of direct melt-blending (intercalation) montmorillonite nanoclay to polyhydroxybutyrate along with vinyl acetate, at different weight percentages, to enhance plasticization using typical plastic processing equipment and typical processing methodology. The purpose was to determine and compare the specific mechanical properties of tensile strength and flexural strength developed as a result from this processing. Single screw and twin screw extrusion, Banbury mixer compounding, and compression molding were used to intercalate montmorillonite, and for sample preparation purposes, to test tensile and flexural strength of the resultant polymer clay nanocomposites (PCN). Results indicate Polyhydroxybutyrate and Ethylene vinyl acetate, and weight percentages of 70%, 65% and 60% PHB, and 15%, 20%, and 25% of EVA, respectively, influenced mechanical properties. The resultant materials remained in a mostly amorphous state. The nanoclay, at specific weight percentage of 10%, acted as an antimicrobial and preservative for the materials produced during the research. The intention of the research was to promote knowledge and understanding concerning these materials and processes so technology transfer regarding the use, mechanical properties, manufacture, and process ability of these bio-friendly materials to academia, industry, and society can occur.

  8. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on the Fe(III)-motnomrillonite surface. Our study demonstrate the importance of iron-enriched minerals for the abiotic formation of humic materials and for the transformation of aromatic (phenolic) pollutants.

  9. Montmorillonite as a Conductivity Enhancer in (PEO)9LiCF3SO3 Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Manoratne, C. H.; Rajapakse, R. M. G.; Dissanayake, M. A. K. L.; Bandara, W. M. A. T.; Tennakoon, D. T. B.

    2006-06-01

    The solid polymer electrolyte systems, based on poly(ethylene oxide) (PEO) and lithium ions have attracted much attentions as a potential electrolyte medium in secondary energy sources and electrochromic devises. They show a characteristic property of an enhanced ionic conductivity when a plastizier is added. In this research work, PEO and lithium triflate have been taken as the electrolyte medium and an attempt was paid to improve the ionic conductivity of (PEO)9LiCF3SO3 polymer electrolyte system by choosing montmorillonite (MMT) as the plastisizer. The ionic conductivity, thermal transitions, crystallinity, and bonding of the complex system of (PEO)9LiCF3SO3 + x wt.% MMT (x = 0, 3, 4, 5, 6, 10, 15, 20) were systematically characterized by ac-impedance spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD) spectroscopy and fourier transformed infrared (FTIR) spectroscopy, respectively. The ac-impedance data reveal that the ionic conductivity of (PEO)9LiCF3SO3 system is changed with the concentration of MMT, maximum conductivity of 4.14857 × 10-7 S cm-1 at room temperature was observed for the system of (PEO)9LiCF3SO3 + 5 wt.% MMT. However, the ionic conductivity of the above system was increased with the increase of temperature, and the highest conductivity of 2.63 × 10-4 S cm-1 was observed at 80°C. The DSC and XRD data clearly show that the crystalline nature of PEO is reduced when MMT is added. The glass transition temperature (-46.37°C) and melting temperature (53.72°C) of the above system is reduced compared to those of other systems. This supports to the conductivity enhancement in an amorphous environment. The FTIR spectra obtained for MMT, PEO, (PEO)9LiCF3SO3, and (PEO)9LiCF3SO3 + 5 wt.% MMT clearly indicative that the interactions take place between these constituents, as the intensities of typical stretching vibrational modes of 916 cm-1 ? (Al-O-H), 1040 cm-1 ? (Si-O) and 3300-3700 cm-1 ? (O-H) in MMT, and the vibrational modes of CH2 rocking at 948 and 840 cm-1 and C-O stretching at 1149 and 1090 cm-1 in PEO are shifted. The change of symmetric bending mode of CF3 [?s (CF3)] at 752 cm-1 in lithium triflate has altogether supported the bonding characteristics in the electrolyte system and the corresponding conductivity enhancements.

  10. Ion equilibrium between montmorillonite interlayer space and an external solution—Consequences for diffusional transport

    NASA Astrophysics Data System (ADS)

    Birgersson, Martin; Karnland, Ola

    2009-04-01

    Bentonite clay is proposed as buffer material in several concepts of High Level Radioactive Waste repositories, and a correct description of ion diffusion in this material is of vital importance for any quantification of the chemical evolution of the repository near field. This study investigates the importance of ion equilibrium between montmorillonite interlayer space and an external solution for the diffusional behavior of bentonite. Two distinct and well established mechanisms govern this type of ion equilibrium: Donnan equilibrium and ion exchange equilibrium. Donnan equilibrium influences both cations and anions in a symmetric manner, while ion exchange only is relevant in systems of more than one type of cations. Both mechanisms generate ion concentration discontinuities across the bentonite/external solution interface. A general theoretical framework for describing through-diffusion is developed. An expression for the effective diffusion coefficient, D, is derived, taking into account also the influence of filters typically present in these types of experiments D=??{?}/{2+?}D, where ? is total clay porosity, D is the diffusion coefficient in the clay, ? describes the influence of filters and ? is a general ion equilibrium coefficient. The above expression is valid for both cations and anions. The theory has been applied to one laboratory study concerning cation (Na +) and two independent laboratory studies concerning anion (Cl -) diffusion in Na-bentonite. The commonly observed different transport behavior for anions and cations in bentonite is principally explained by the concentration discontinuities: ? is large for tracer cations at low electrolyte concentrations, but approaches zero for anions in the same concentration limit. The presented theory implies that effective diffusion coefficients evaluated from tracer through-diffusion experiments do not describe diffusive mass transfer in bentonite in general. Furthermore, it shows that ion diffusion in compacted bentonite is principally explained without the commonly used concepts of anion porosity and sorption mechanisms. The striking explanatory power of this basic approach shows the necessity to consider interlayer ion equilibrium in compacted bentonite, and that these considerations must be at the core of any type of modeling (transport, pore water chemistry, mechanics etc.) of bentonite exerting swelling pressure.

  11. Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials.

    PubMed

    Bishop, J L; Pieters, C M; Burns, R G

    1993-01-01

    Spectroscopic analyses show that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite has been identified as the interlayer ferric component in Fe(3+)-doped smectites by a low quadrupole splitting and magnetic field strength of approximately 48 tesla in Mossbauer spectra measured at 4.2 K, as well as a crystal field transition at 0.92 micrometer. Ferrihydrite in these smectites explains features in the visible-near infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. Clay silicates have met resistance in the past as Mars soil analogs because terrestrial clay silicates exhibit prominent hydrous spectral features at 1.4, 1.9, and 2.2 micrometers; and these are observed weakly, if at all, in reflectance spectra of Mars. However, several mechanisms can weaken or compress these features, including desiccation under low-humidity conditions. The hydration properties of the interlayer cations also effect band strengths, such that a ferrihydrite-bearing smectite in the Martian environment would exhibit a 1.9 micrometers H2O absorption that is even weaker than the 2.2 micrometers structural OH absorption. Mixing experiments demonstrate that infrared spectral features of clays can be significantly suppressed and that the reflectance can be significantly darkened by mixing with only a few percent of a strongly absorbing opaque material. Therefore, the absolute reflectance of a soil on Mars may be disproportionately sensitive to a minor component. For this reason, the shape and position of spectral features and the chemical composition of potential analogs are of utmost importance in assessing the composition of the soil on Mars. Given the remarkable similarity between visible-infrared reflectance spectra of soils in bright regions on Mars and Fe(3+)-doped montmorillonites, coupled with recent observations of smectites in SNC meteorites and a weak 2.2 micrometers absorption in some Mars soils, ferrihydrite-bearing smectites warrant serious consideration as a Mars soil analog. PMID:11539454

  12. Influence of pH on the interlayer cationic composition and hydration state of Ca-montmorillonite: analytical chemistry, chemical modelling and XRD

    E-print Network

    Boyer, Edmond

    -montmorillonite: analytical chemistry, chemical modelling and XRD profile modelling study Revised Version n°2 ERIC FERRAGE,1.ferrage@obs.ujf-grenoble.fr; Keywords : smectite, hydration state, XRD modelling, pH, chemical modelling, interlayer protons #12 composition was monitored together with the interlayer composition and X-ray diffraction (XRD) patterns were

  13. How Is Bronchiectasis Treated?

    MedlinePLUS

    ... page from the NHLBI on Twitter. How Is Bronchiectasis Treated? Bronchiectasis often is treated with medicines, hydration, and chest ... CPT). Your doctor may recommend surgery if the bronchiectasis is isolated to a section of lung or ...

  14. How Is Pneumonia Treated?

    MedlinePLUS

    ... page from the NHLBI on Twitter. How Is Pneumonia Treated? Treatment for pneumonia depends on the type ... can go back to their normal routines. Bacterial Pneumonia Bacterial pneumonia is treated with medicines called antibiotics. ...

  15. Investigation of montmorillonite alteration and form of iron corrosion products in compacted bentonite in contact with carbon steel for ten years

    NASA Astrophysics Data System (ADS)

    Ishidera, Takamitsu; Ueno, Kenichi; Kurosawa, Seiichi; Suyama, Tadahiro

    In high-level radioactive waste disposal, the alteration of montmorillonite due to the corrosion of carbon steel possibly affects the swelling and self-healing capacity of compacted bentonite used as a buffer material. The nature of the corrosion products in compacted bentonite is also important to evaluate not only the diffusion and sorption behavior of radionuclides but also the chemical composition and redox potential of pore water. In this study, the alteration of montmorillonite in compacted bentonite due to the interaction with carbon steel was analyzed by X-ray diffraction (XRD). The possibility of montmorillonite alteration was also investigated from the cation exchange capacity (CEC) of compacted bentonite and scanning electron microscopy (SEM) observation. The corrosion products distributed in the compacted bentonite were investigated by selective dissolution analysis, which can estimate the crystallinity of Fe-bearing compounds. The valence of Fe in the corrosion products was spectrophotometrically determined. From the XRD analysis, newly formed phyllosilicates resulting from the alteration of montmorillonite could not be identified in compacted bentonite. CEC of compacted bentonite adjacent to the carbon steel, in which high concentration of Fe was extracted, was hardly decreased. No significant differences of clay particles were observed with SEM. Thus, the alteration of montmorillonite was scarcely detected in compacted bentonite in contact with carbon steel for ten years. The selective dissolution and valence analyses suggest that most of the corrosion products of carbon steel existed in Kunipia F, which consists of over 95 wt% montmorillonite, was amorphous, non-crystalline or poorly ordered Fe(OH) 2. This means that Fe(OH) 2 distributed into compacted bentonite was scarcely crystallized within ten years at 80 oC. From the XRD analysis, small amount of green rust one containing Cl - at the interlayers (GR1(Cl -)) and lepidocrocite were also identified in Kunipia F. Therefore, under this experimental condition, Fe(OH) 2 formed in Kunipia F due to the corrosion of carbon steel was oxidized to GR1(Cl -) as intermediates, and then GR1(Cl -) was possibly oxidized to lepidocrocite. On the other hand, GR1(Cl -) was hardly detected in Kunigel V1, which contains 46-49 wt% montmorillonite, from the XRD analysis.

  16. Water control well treating solution and method

    SciTech Connect

    Boles, J. L.; Mancillas, G.

    1984-10-16

    A well treating solution is shown for changing the relative permeability of a formation being treated to water. The solution is made by mixing an amphoteric polymeric material, a mutual solvent and a surface active agent in a brine carrier liquid. The well treating solution is injected into the formation at pump rates below the fracture gradient of the formation. The well is briefly shut-in, after which production can be resumed. The treating solution and method taught lower the permeability of the producing formation to water without substantially affecting the formation's permeability to oil and gas.

  17. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations-exchanged montmorillonite catalyst.

    PubMed

    Gan, Tian; Shi, Zhaoxia; Sun, Junyong; Liu, Yanming

    2014-04-01

    A simple and novel electrochemical sensor for the determination of tetracycline (TC), a kind of antibiotic that may induce residue in the food chain, was developed by the modification of iron/zinc cation-exchanged montmorillonite (Fe/Zn-MMT) catalyst on glassy carbon electrode (GCE). The morphology and the structure of the Fe/Zn-MMT nanomaterial were characterized by scanning electron microscopy and X-ray diffraction, respectively. The results of electrochemical experiments demonstrated that the sensor exhibited excellent electrocatalytic activity to the oxidation of TC in the presence of sodium dodecyl sulfate. The sensor displayed a wide linear range from 0.30 to 52.0 ?M and a low detection limit of 0.10 ?M by using the derivative differential pulse voltammetry. Moreover, the electrochemical sensor was applied to the detection of TC in feedstuff and meat samples. PMID:24607125

  18. Application of a montmorillonite clay modified with iron in photo-Fenton process. Comparison with goethite and nZVI.

    PubMed

    De León, María A; Sergio, Marta; Bussi, Juan; Ortiz de la Plata, Guadalupe B; Cassano, Alberto E; Alfano, Orlando M

    2015-01-01

    Iron pillared clay (Fe-PILC) was prepared from a montmorillonite and was characterized by scanning electron microscopy and X-ray fluorescence. Fe-PILC catalytic activity was evaluated in photo-Fenton processes applied to the degradation of 2-clorophenol. Different catalyst loads were assayed. The Fe-PILC allowed almost complete degradation of the contaminant. An increase in the contaminant degradation rate was observed, following leaching of iron during catalytic assays, which suggest the existence of a homogeneous photo-Fenton mechanism. The catalytic performance of the Fe-PILC was compared with that for goethite and zero valent iron nanoparticles. Differences were found regarding the achieved degradation levels, the efficiency in oxidant consumption, and the extension of iron leaching. PMID:24604272

  19. Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life

    PubMed Central

    Ferris, James P

    2006-01-01

    Large deposits of montmorillonite are present on the Earth today and it is believed to have been present at the time of the origin of life and has recently been detected on Mars. It is formed by aqueous weathering of volcanic ash. It catalyses the formation of oligomers of RNA that contain monomer units from 2 to 30–50. Oligomers of this length are formed because this catalyst controls the structure of the oligomers formed and does not generate all possible isomers. Evidence of sequence-, regio- and homochiral selectivity in these oligomers has been obtained. Postulates on the role of selective versus specific catalysts on the origins of life are discussed. An introduction to the origin of life is given with an emphasis on reaction conditions based on the recent data obtained from zircons 4.0–4.5?Ga. PMID:17008218

  20. Effect of phosphate activating group on oligonucleotide formation on montmorillonite: the regioselective formation of 3',5'-linked oligoadenylates

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Cole, T. D.; Ferris, J. P.

    1994-01-01

    The effects of amine structure on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidates of adenosine are investigated. 4-Aminopyridine derivatives yielded oligoadenylates as long as dodecamers with a regioselectivity for 3',5'-phosphodiester bond formation averaging 88%. Linear and cyclic oligomers are obtained and no A5'ppA-containing products are detected. Oligomers as long as the hexanucleotide are obtained using 2-aminobenzimidazole as the activating group. A predominance of pA2'pA is detected in the dimer fraction along with cyclic 3',5'-trimer; no A5'ppA-containing oligomers were detected. Little or no oligomer formation was observed when morpholine, piperidine, pyrazole, 1,2,4-triazole, and 2-pyridone are used as phosphate-activating groups. The effects of the structure of the phosphate activating group on the oligomer structure and chain lengths are discussed.

  1. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3',5'-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Ferris, J. P.

    1997-01-01

    Methyladenine and adenine N-phosphoryl derivatives of adenosine 5'-monophosphate (5'-AMP) and uridine 5'-monophosphate (5'-UMP) are synthesized, and their structures are elucidated. The oligomerization reactions of the adenine derivatives of 5'-phosphoramidates of adenosine on montmorillonite are investigated. 1-Methyladenine and 3-methyladenine derivatives on montmorillonite yielded oligoadenylates as long as undecamer, and the 2-methyladenine and adenine derivatives on montmorillonite yielded oligomers up to hexamers and pentamers, respectively. The 1-methyladenine derivative yielded linear, cyclic, and A5'ppA-derived oligonucleotides with a regioselectivity for the 3',5'-phosphodiester linkages averaging 84%. The effect of pKa and amine structure of phosphate-activating groups on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidate of adenosine are discussed. The binding and reaction of methyladenine and adenine N-phosphoryl derivatives of adenosine are described.

  2. Experimental assessment of non-treated bentonite as the buffer material of a radioactive waste repository.

    PubMed

    Choi, J; Kang, C H; Whang, J

    2001-05-01

    The bentonite-based material being evaluated in several countries as potential barriers and seals for a nuclear waste disposal system is of mostly sodium type, whereas most bentonite available in Korea is known to be of calcium type. In order to investigate whether local Korean bentonite could be useful as a buffer or sealing material in an HLW repository system, raw bentonites sampled from the south-east area of Korea were examined in terms of their physicochemical properties such as surface area, CEC, swelling rate, and distribution coefficient. The diffusion behavior of some radionuclides of interest in compacted bentonite was also investigated. Considering that HLW generates decay heat over a long time, the thermal effect on the physicochemical properties of bentonite was also included. Four local samples were identified as Ca-bentonite through XRD and chemical analysis. Of the measured values of surface area, CEC and swelling rate of the local samples, Sample-A was found to have the greatest properties as the most likely candidate barrier material. The distribution coefficients of Cs-137, Sr-85, Co-60 and Am-241 for Sample-A sample were measured by the batch method. Sorption equilibrium was reached in around 8 to 10 days, but that of Sr was found to be reached earlier. Comparing the results of this study with the reference data, domestic bentonite was found to have a relatively high sorption ability. For the effect of varying concentration on sorption, the values of Kd peaked at 10(-9)-10(-7) mol/l of radionuclide concentration. In XRD analysis, the (001) peak of Sample-A was fully collapsed above 200 degrees C. The shoulder appearing at about 150 degrees C in the DSC curve was found to be evidence that Sample-A is predominated by Ca-montmorillonite. The loss of swelling capacity and CEC of Sample-A started at about 100 degrees C. The swelling data and the (001) peak intensity of the heat-treated sample showed that they were linearly interrelated. The measured Kd values of Co-60, Cs-137 and Am-241 for the samples heat-treated at various temperature showed that the domestic bentonite still retained sorption capacity below 100 degrees C. In addition to such findings of thermal effects, it was found that the presence of calcium in bentonite may help to assure long-term stability under the expected thermo-hydro conditions. The Da values of Sr-85, Cs-137, Co-60, Am-241 and Cl-36 were measured to be 1.073 x 10(1), 6.705 x 10(-1), 1.226 x 10(-1), 1.310 x 10(-2) and 9.490 x 10(1) microns 2/sec, respectively, which could be arranged with the magnitude of their distribution coefficients, i.e. Cl > Sr > Cs > Co > Am. As the as-pressed density of bentonite increasing from 1.8 to 2.0 g/cm3, the Da-value of Cs-137 decreased by 25%. From the analyses of the diffusion mechanism of radionuclides in compacted bentonite, the surface diffusion due to the concentration gradients of radionuclide sorbed on the bentonite particles was found to be a dominating transport process of radionuclides in compacted bentonite with 1.8 g/cm3. Bases on these results, it was identified that domestic bentonite has potential as a chemical barrier material in a repository system. Some data obtained in the results could contribute to the engineering parameters to design a waste package and engineered barrier or to develop an appropriate disposal concept satisfying the safety requirements. PMID:11460325

  3. Low temperature plasma-treated nylon fabrics

    Microsoft Academic Search

    Joanne Yip; Kwong Chan; Kwan Moon Sin; Kai Shui Lau

    2002-01-01

    Nylon 6 fabrics were treated with low temperature plasma (LTP) with three non-polymerizing gases: (i) oxygen, (ii) argon and (iii) tetrafluoromethane. After plasma treatment, the properties of the fabric, including surface morphology, low-stress mechanical properties, air permeability and thermal properties, were investigated. The nylon fabrics treated with different plasma gases exhibited different morphological changes. Low-stress mechanical properties obtained by means

  4. Synthesis and characterization of polyaniline nanorods/Ce(OH){sub 3}-Pr{sub 2}O{sub 3}/montmorillonite composites through reverse micelle template

    SciTech Connect

    Mo Zunli [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)], E-mail: mozl@163.com; Zhang Ping; Zuo Dandan; Sun Yaling; Chen Hong [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2008-07-01

    Polyaniline (PANI) nanorods/Ce(OH){sub 3}-Pr{sub 2}O{sub 3}/montmorillonite (MMT) nanocomposites were synthesized via in situ polymerization of aniline monomer through reverse micelle template (RMT) in the presence of montmorillonite and Ce(OH){sub 3}, Pr{sub 2}O{sub 3}. In the experiment, sulphosalicylic acid was used as dopant, aniline was designated as oil phase and the aqueous solution comprising Ce{sup 3+} and Pr{sup 3+} as water phase. The nanocomposites were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy and thermogravimetry-differential thermal analysis (TG-DTA). The results showed that PANI nanorods were synthesized in the interlayer spaces of MMT with uniform spherical rare earth nanoparticles. The thermal stability of the nanocomposites prepared was enhanced drastically compared with pure polyaniline.

  5. Diffusion and sorption of Cs+, Na+, I- and HTO in compacted sodium montmorillonite as a function of porewater salinity: Integrated sorption and diffusion model

    NASA Astrophysics Data System (ADS)

    Tachi, Yukio; Yotsuji, Kenji

    2014-05-01

    Montmorillonite clay is an important component of barrier materials such as bentonites and argillaceous rocks for the safe geological disposal of radioactive waste. The diffusion and sorption behaviors of cationic Cs+ and Na+, anionic I- and neutral tritiated water (HTO) tracers in compacted montmorillonite were investigated as a function of porewater salinity by experimental and modeling approaches. The effective diffusivities of these tracers were measured by the through-diffusion method coupled with multiple curve analysis including depth profiles, and typical salinity-dependent cation excess and anion exclusion effects were shown. The distribution coefficients for Cs+ and Na+ obtained by through-diffusion tests were sensitive to salinity because of competitive ion exchange and were in good agreement with those obtained by batch sorption tests. However, trends in the apparent diffusivities of Cs+ and Na+ were mostly independent of salinity.

  6. Surface Tension

    NSDL National Science Digital Library

    NSF CAREER Award and RET Program, Mechanical Engineering and Material Science,

    Surface tension accounts for many of the interesting properties we associate with water. By learning about surface tension and adhesive forces, students learn why liquid jets of water break into droplets rather than staying in a continuous stream. Through hands-on activities, students learn how the combination of adhesive forces and cohesive forces cause capillary motion. They study different effects of capillary motion and use capillary motion to measure surface tension. Students explore the phenomena of wetting and hydrophobic and hydrophilic surfaces and see how water's behavior changes when a surface is treated with different coatings. A lotus leaf is a natural example of a superhydrophobic surface, with its water-repellent, self-cleaning characteristics. Students examine the lotus effect on natural leaves and human-made superhydrophobic surfaces, and explore how the lotus leaf repels dewy water through vibration. See the Unit Overview section for details on each lesson in this unit.

  7. Sulfonic acid-functionalized ordered nanoporous Na+-montmorillonite as an efficient, eco-benign, and water-tolerant nanoreactor for chemoselective oxathioacetalization of aldehydes

    NASA Astrophysics Data System (ADS)

    Shirini, Farhad; Atghia, Seyyed Vahid; Mamaghani, Manouchehr

    2013-01-01

    Sulfonic acid-functionalized ordered nanoporous sodium montmorillonite has been found to be a mild and efficient solid acid catalyst for the chemoselective protection of a variety of carbonyl compounds as oxathiolanes in good to excellent yields. The present method offers several advantages such as short reaction times, high yields, simple procedure and mild conditions. Also, the catalyst could be recycled and reused at least for five times without noticeably decreasing the catalytic activity.

  8. Neoformation of Ni phyllosilicate upon Ni uptake on montmorillonite: A kinetics study by powder and polarized extended X-ray absorption fine structure spectroscopy

    Microsoft Academic Search

    RAINER DAHN; ALAIN MANCEAU; MICHEL L. SCHLEGEL; BART BAEYENS; MICHAEL H. BRADBURY; MAGALI MORALES

    2002-01-01

    Wet chemistry kinetics and powder and polarized extended X-ray absorption fine structure (EXAFS and P-EXAFS) spectroscopy were combined to investigate the mechanism of Ni uptake on montmorillonite, at pH 8, high ionic strength (0.2 M Ca(NO3)2), initial Ni concentration of 660 M, and solid concentration of 5.3 g\\/L. Approximately 20% of Ni sorbed within the first 24 h; thereafter, the

  9. Solvation of exchangeable Cu\\/sup 2 +\\/ cations by primary alcohols in montmorillonite clay studied by electron spin resonance and electron spin echo modulation spectroscopies

    Microsoft Academic Search

    D. R. Brown; L. Kevan

    1988-01-01

    A montmorillonite clay (STx-1), with Mg\\/sup 2 +\\/ as the major exchangeable cation and Cu\\/sup 2 +\\/ exchanged into 5% of the Mg\\/sup 2 +\\/ sites, is used to study the interaction between the exchangeable cations and adsorbed primary alcohols, methanol, ethanol, and 1-propanol, in the clay interlayer region. Electron spin resonance (ESR) shows that, on saturation of the clay

  10. Binding of DNA from Bacillus subtilis on Montmorillonite-Humic Acids-Aluminum or Iron Hydroxypolymers: Effects on Transformation and Protection against DNase

    Microsoft Academic Search

    Carmine Crecchio; Pacifico Ruggiero; Maddalena Curci; Claudio Colombo; Giuseppe Palumbo; Guenther Stotzky

    Despite the relatively large number of papers dealing with the adsorption of DNA on clays and HA, essen- The equilibrium adsorption and binding of DNA from Bacillus sub- tially no information is available about the adsorption tilis on complexes of montmorillonite-humic acids Al or Fe hydroxy- polymers (Al-M-HA or Fe-M-HA) at different M\\/HA ratios, the of DNA on organomineral particles,

  11. Hematite and iron carbonate precipitation-coexistence at the iron–montmorillonite–salt solution–CO 2 interfaces under high gas pressure at 150 °C

    Microsoft Academic Search

    G. Montes-Hernandez; J. Pironon

    2009-01-01

    The hydrothermal reactivity of swelling clays has relevant implications on the geological storage of radioactive waste and greenhouse gases because the clay geo-materials have been proposed as engineered or natural barriers due to their low permeability in confined systems and their high capacity to sequester ions. In the present study, the iron–montmorillonite–salt solution–CO2 interactions were investigated under high gas pressure

  12. Study of Montmorillonite Clay for the Removal of Copper (II) by Adsorption: Full Factorial Design Approach and Cascade Forward Neural Network

    PubMed Central

    Turan, Nurdan Gamze; Ozgonenel, Okan

    2013-01-01

    An intensive study has been made of the removal efficiency of Cu(II) from industrial leachate by biosorption of montmorillonite. A 24 factorial design and cascade forward neural network (CFNN) were used to display the significant levels of the analyzed factors on the removal efficiency. The obtained model based on 24 factorial design was statistically tested using the well-known methods. The statistical analysis proves that the main effects of analyzed parameters were significant by an obtained linear model within a 95% confidence interval. The proposed CFNN model requires less experimental data and minimum calculations. Moreover, it is found to be cost-effective due to inherent advantages of its network structure. Optimization of the levels of the analyzed factors was achieved by minimizing adsorbent dosage and contact time, which were costly, and maximizing Cu(II) removal efficiency. The suggested optimum conditions are initial pH at 6, adsorbent dosage at 10?mg/L, and contact time at 10?min using raw montmorillonite with the Cu(II) removal of 80.7%. At the optimum values, removal efficiency was increased to 88.91% if the modified montmorillonite was used. PMID:24453833

  13. Removal and recovery of copper and nickel ions from aqueous solution by poly(methacrylamide-co-acrylic acid)/montmorillonite nanocomposites.

    PubMed

    Barati, Aboulfazl; Asgari, Mahdieh; Miri, Taghi; Eskandari, Zohreh

    2013-09-01

    Nanocomposite hydrogels based on poly(methacrylamide-co-acrylic acid) and nano-sized montmorillonite were prepared by aqueous dispersion and in situ radical polymerization. Optimum sorption conditions were determined as a function of montmorillonite content, contact time, pH, and temperature. The equilibrium data of Cu(2+) and Ni(2+) conformed to the Freundlich and Langmuir isotherms in terms of relatively high regression values. The maximum monolayer adsorption capacity of the nanocomposite hydrogel (with 3 wt% montmorillonite content), as obtained from the Langmuir adsorption isotherm, was found to be 49.26 and 46.94 mg g(-1) for Cu(2+) and Ni(2+), respectively, at contact time?=?60 min, pH?=?6.8, adsorbent dose?=?100 mg/ml, and temperature?=?318 K. Kinetic studies of single system indicated that the pseudo-second order is the best fit with a high correlation coefficient (R (2)?=?0.97-0.99). The result of five times sequential adsorption-desorption cycle shows a good degree of desorption and a high adsorption efficiency. PMID:23589257

  14. How Is Thrombocytopenia Treated?

    MedlinePLUS

    ... as an injection under the skin. Blood or Platelet Transfusions Blood or platelet transfusions are used to treat people who have ... Through this line, you receive healthy blood or platelets. For more information about this procedure, go to ...

  15. Tricky Treats (Animated Book)

    MedlinePLUS Videos and Cool Tools

    ... Source: National Center for Chronic Disease Prevention and Health Promotion Running Time: (10:50) Release Date: 8/ ... treats. More Information Eagle Books - Home Diabetes Public Health Resource Diabetes Public Health Resource - Consumer Downloads Read ...

  16. How Is Hypoparathyroidism Treated?

    MedlinePLUS

    ... hypoparathyroidism are encouraged to eat foods high in calcium such as dairy products, breakfast cereals, fortified orange juice, and green, leafy vegetables. 1 Hypoparathyroidism is one of the few hormone deficiency diseases that are not usually treated with the ...

  17. How Is Sarcoidosis Treated?

    MedlinePLUS

    ... page from the NHLBI on Twitter. How Is Sarcoidosis Treated? Not everyone who has sarcoidosis needs treatment. ... Content: Next >> Featured Video Living With and Managing Sarcoidosis 10/15/2014 June 14, 2013 Sarcoidosis Clinical ...

  18. How Are Thalassemias Treated?

    MedlinePLUS

    ... page from the NHLBI on Twitter. How Are Thalassemias Treated? Treatments for thalassemias depend on the type and severity of the ... are carriers or who have alpha or beta thalassemia trait have mild or no symptoms. They’ll ...

  19. How Is Vaginitis Treated?

    MedlinePLUS

    ... to learn the specific type of vaginitis. 1 Bacterial Vaginosis Bacterial vaginosis (BV) is treated with an antibiotic that gets ... Date: 05/21/2013 Related A-Z Topics Bacterial Vaginosis Contraception and Birth Control Sexually Transmitted Diseases (STDs) ...

  20. Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography-corona discharge ion mobility spectrometry for the simultaneous determination of diazinon and fenthion organophosphorus pesticides.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2014-03-01

    A novel solid phase microextraction (SPME) fiber was prepared and coupled with gas chromatography corona discharge ion mobility spectrometry (GC-CD-IMS) based on polypyrrole/montmorillonite nanocomposites for the simultaneous determination of diazinon and fenthion. The nanocomposite polymer was coated using a three-electrode electrochemical system and directly deposited on a Ni-Cr wire by applying a constant potential. The scanning electron microscopy images revealed that the new fiber exhibited a rather porous and homogenous surface. The thermal stability of the fabricated fiber was investigated by thermogravimetric analysis. The effects of different parameters influencing the extraction efficiency such as extraction temperature and time, salt addition, stirring rate, the amount of nanoclay, and desorption temperature were investigated and optimized. The method was exhaustively evaluated in terms of sensitivity, recovery, and reproducibility. The linearity ranges of 0.05-10 and 0.08-10 ?g L(-1), and the detection limits of 0.020 and 0.035 ?g L(-1) were obtained for diazinon and fenthion, respectively. The relative standard deviation values were calculated to be lower than 5% and 8% for intra-day and inter-day, respectively. Finally, the developed method was applied to determine the diazinon and fenthion (as model compounds) in cucumber, lettuce, apple, tap and river water samples. The satisfactory recoveries revealed the capability of the two-dimensional separation technique (retention time in GC and drift time in IMS) for the analysis of complex matrices extracted by SPME. PMID:24528846