Science.gov

Sample records for surface water snail

  1. Apple Snail: a Bio Cleaner of the Water Free Surface.

    NASA Astrophysics Data System (ADS)

    Bassiri, Golnaz

    2005-11-01

    Oil spills from tankers represent a threat for shorelines and marine life. Despite continuing research, there has been little change in the fundamental technology for dealing with oil spills. An experimental investigation of the feeding strategy of Apple snails from the water free surface, called surface film feeding, is being studied motivated by the need to develop new techniques to recover oil spills. To feed on floating food (usually a thin layer of microorganisms), the apple snail forms a funnel with its foot and pulls the free surface toward the funnel. High speed imaging and particle image velocimetry were used in the present investigation to measure the free surface motion and to investigate the mechanism used by the apple snails to pull the free surface. The results suggest that the snail pulls the free surface via the wavy motion of the muscles in its funnel.

  2. The microstructures of biomineralized surfaces: a spectroscopic study on the exoskeletons of fresh water (Apple) snail, Pila globosa

    NASA Astrophysics Data System (ADS)

    Prasuna, C. P. Lakshmi; Narasimhulu, K. V.; Gopal, N. O.; Rao, J. Lakshmana; Rao, T. V. R. K.

    2004-08-01

    In view of the importance in understanding biomineralization processes in different molluskan species, the common fresh water apple snail Pila globosa in Indian origin was taken to explore its mineralized exoskeleton structures. The detailed structural studies of the exoskeletons of P. globosa have been undertaken. The isolated layers present in these shells were studied by electron paramagnetic resonance (EPR), optical absorption, and infrared spectral techniques. The EPR spectra of the organic protein layer periostracum show the characteristic signals corresponding to Fe 3+ ions at g=4.1 and 2.0. The EPR spectra of the ostracum (middle) layer at room temperature gives a complicated spectrum consisting of a number of Mn 2+ signals of at least three sets due to the aragonite nature of the material. The results indicate the presence of the multivalent manganese ions, which undergo the redox mechanisms. The thermal variation of the EPR spectra show marked effect on these samples both in g-values and the basic spectral pattern.

  3. Movements of florida apple snails in relation to water levels and drying events

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Miller, S.J.; Percival, H.F.

    2002-01-01

    Florida apple snails (Pomacea Paludosa) apparently have only a limited tolerance to wetland drying events (although little direct evidence exists), but their populations routinely face dry downs under natural and managed water regimes. In this paper, we address speculation that apple snails respond to decreasing water levels and potential drying events by moving toward refugia that remain inundated. We monitored the movements of apple snails in central Florida, USA during drying events at the Blue Cypress Marsh (BC) and at Lake Kissimmee (LK). We monitored the weekly movements of 47 BC snails and 31 LK snails using radio-telemetry. Snails tended to stop moving when water depths were 10 cm. Snails moved along the greatest positive depth gradient (i.e., towards deeper water) when they encountered water depths between 10 and 20 cm. Snails tended to move toward shallower water in water depths ???50 cm, suggesting that snails were avoiding deep water areas such as canals and sloughs. Of the 11 BC snails originally located in the area that eventually went dry, three (27%) were found in deep water refugia by the end of the study. Only one of the 31 LK snails escaped the drying event by moving to deeper water. Our results indicate that some snails may opportunistically escape drying events through movement. The tendency to move toward deeper water was statistically significant and indicates that this behavioral trait might enhance survival when the spatial extent of a dry down is limited. However, as water level falls below 10 cm, snails stop moving and become stranded. As the spatial extent of a dry down increases, we predict that the number of snails stranded would increase proportionally. Stranded Pomacea paludosa must contend with dry marsh conditions, possibly by aestivation. Little more than anecdotal information has been published on P. paludosa aestivation, but it is a common adaptation among other apple snails (Caenogastropoda: Ampullaridae). ?? 2002, The Society of Wetland Scientists.

  4. Exploring the temporal effects of seasonal water availability on the snail kite of Florida: Part III

    USGS Publications Warehouse

    Mooij, Wolf M.; Martin, Julien; Kitchens, Wiley M.; DeAngelis, Donald L.

    2007-01-01

    The Florida snail kite (Rostrhamus sociabilis) is an endangered raptor that occurs as an isolated population, currently of about 2,000 birds, in the wetlands of southern and central Florida, USA. Its exclusive prey species, the apple snail (Pomacea paludosa) is strongly influenced by seasonal changes in water abundance. Droughts during the snail kite breeding season have a direct negative effect on snail kite survival and reproduction, but droughts are also needed to maintain aquatic vegetation types favorable to snail kite foraging for snails. We used a spatially explicit matrix model to explore the effects of temporal variation in water levels on the viability of the snail kite population under different temporal drought regimes in its wetland breeding habitat. We focused on three aspects of variations in water levels that were likely to affect kites: (1) drought frequency; (2) drought duration; and (3) drought timing within the year. We modeled a 31-year historical scenario using four different scenarios in which the average water level was maintained constant, but the amplitude of water level fluctuations was modified. Our results reveal the complexity of the effects of temporal variation in water levels on snail kite population dynamics. Management implications of these results are discussed. In particular, management decisions should not be based on annual mean water levels alone, but must consider the intra-annual variability.

  5. Incidence of Parastrongylus cantonensis larvae in different fresh water snails in Dakahlia Governorate.

    PubMed

    el-Shazly, A M; el-Hamshary, Eman M; el-Shewy, Khalid M; Rifaat, Manal M A; el-Sharkawy, Iman M A

    2002-08-01

    Samples of snails were collected from different water bodies in Dakahlia governorate to assess a survey on the naturally infected snails and their infection rate with the Parastrongylus cantonensis larvae. The nematode P. cantonensis is associated in the etiology of eosinophilic meningeoencephalitis of man. Lanistes carinatus showed the highest rate of infection with 19-400 larvae per snail. Biomphalaria alexandrina, B. glabrata, Bulinus truncatus, Lymnaea cailliaudi (natalensis), L. alexandrina, and Cleopatra cyclostomoides were found naturally infected with the larvae of P. cantonensis for the first time in Egypt. The number of larvae per infected snail varied depending on the snail type. The highest rate (39.2%) of infected snails was collected from the end canals at Tanneekh and the lowest in the river Nile (12.5%). PMID:12214935

  6. Fasciola hepatica in Snails Collected from Water-Dropwort Fields using PCR

    PubMed Central

    Kim, Hwang-Yong; Choi, In-Wook; Kim, Yeon-Rok; Quan, Juan-Hua; Ismail, Hassan Ahmed Hassan Ahmed; Cha, Guang-Ho; Hong, Sung-Jong

    2014-01-01

    Fasciola hepatica is a trematode that causes zoonosis mainly in cattle and sheep and occasionally in humans. Fascioliasis has been reported in Korea; however, determining F. hepatica infection in snails has not been done recently. Thus, using PCR, we evaluated the prevalence of F. hepatica infection in snails at 4 large water-dropwort fields. Among 349 examined snails, F. hepatica-specific internal transcribed space 1 (ITS-1) and/or ITS-2 markers were detected in 12 snails and confirmed using sequence analysis. Morphologically, 213 of 349 collected snails were dextral shelled, which is the same aperture as the lymnaeid snail, the vectorial host for F. hepatica. Among the 12 F. hepatica-infected snails, 6 were known first intermediate hosts in Korea (Lymnaea viridis and L. ollula) and the remaining 6 (Lymnaea sp.) were potentially a new first intermediate host in Korea. It has been shown that the overall prevalence of the snails contaminated with F. hepatica in water-dropwort fields was 3.4%; however, the prevalence varied among the fields. This is the first study to estimate the prevalence of F. hepatica infection using the vectorial capacity of the snails in Korea. PMID:25548416

  7. Copper toxicity to the fresh water snail, Lymnaea luteola

    SciTech Connect

    Reddy, N.M.; Rao, P.V.

    1987-07-01

    Haemocyanins are found in arthropoda and mollusca and show a copper content characteristic for each phylum. Heavy metal accumulation by mollusks is widely reported. Approximately one third of the enzymes either required addition of a metal ion as a cofactor in order to exhibit maximum activity or contained a slightly bound metal ion which appeared to be involved in the catalytic process. Copper is the only metal which has been detected in significant amounts in amino oxidase. The present study is designed to evaluate the influence of such copper, which is of such common occurrence in biological material, on some of the lipolytic enzymes of fresh water pulmonate snail, Lymnaea luteola when added to ambient medium. The present study also highlights the possible detoxification mechanism prevailing in this fresh water mollusk.

  8. Supercharged Snails for Stream Ecology & Water-Quality Studies

    ERIC Educational Resources Information Center

    Stewart, Arthur J.; Ryon, Michael G.

    2003-01-01

    Gill-breathing freshwater snails (Family "Pleuroceridae") are ecologically important, abundant in many streams in the United States, and easy to collect and maintain under classroom conditions. These snails can be used in classroom tests to demonstrate effects of pollutants on aquatic organisms. In more advanced classes, students can cage the…

  9. Supercharged Snails for Stream Ecology & Water-Quality Studies

    ERIC Educational Resources Information Center

    Stewart, Arthur J.; Ryon, Michael G.

    2003-01-01

    Gill-breathing freshwater snails (Family "Pleuroceridae") are ecologically important, abundant in many streams in the United States, and easy to collect and maintain under classroom conditions. These snails can be used in classroom tests to demonstrate effects of pollutants on aquatic organisms. In more advanced classes, students can cage the

  10. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate

    SciTech Connect

    Goodfriend, G.A.; Magaritz, M.; Gat, J.R. )

    1989-12-01

    Day-to-day and within-day (diel) variations in {delta}D and {delta}{sup 18}O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in {sup 18}O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in {sup 18}O by ca. 1-2% relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate {sup 18}O should provide a reliable indication of rainfall {sup 18}O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

  11. Use of ice water and salt treatments to eliminate an exotic snail, red-rim melania Melanoides tuberculatus, from small immersible fisheries equipment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ice water and salt treatments were evaluated for disinfection of fisheries equipment contaminated with a non-indigenous tropical snail, the red-rim melania Melanoides tuberculatus. The snail can displace native snails and can transmit trematodes directly to fishes and indirectly to other animals, i...

  12. A study on biological control of six fresh water snails of medical and veterinary importance.

    PubMed

    Abd-Allah, Karim F; Negm-Eldin, Mohsen M; Saleh, Mohamed H; El-Hamshary, Azza M S; El-Gozamy, Bothina M R; Aly, Nagwa S M

    2009-04-01

    This study evaluated the molluscicidal effect of Commiphora mnolmol oil extract (Myrrh), on control of six fresh water snails (Lymnaea natalensis, Bulinus truncatus, Biomphalaria alexandrina, Physa acuta, Melania tuberculata and Cleopatra bulimoides). Also, the extract effect on the egg masses of L. natalensis, B. truncatus, B. alexandrina and Ph. acuta was evaluated. Snails and egg masses were exposed at 16-20 degrees C to various concentrations (conc.). LD50 after 24 hours expo-sure were 264/132, 283/195, 230/252, 200/224, 241/246 & 241/246 ppm for young/adult of L. natalensis, B. truncatus, B. alexandrina, Ph. acuta, M. tuberculata and C. bulimnoides respectively. LDtoo after 24 hours exposure were 400/400 for L. natalensis, B. truncatus, B. alexandrina, M. tuberculata and C. bulimoides, and 300/300 for Ph. acuta. Also, complete mortality (100%) was achieved for the egg masses of L. natalensis, B. truncatus, B. alexandrina and Ph. acuta at concentrations of 300, 200, 300 & 400 ppm respectively. Lower concentrations gave the same results after longer exposure. LD100 of C. molmol oil extract (Myrrh) had a rapid lethal effect on the six snail species and their egg masses in high conc. of 300 & 400 ppm. Commiphora molmol is a promising plant to be included with the candidate plant molluscicides. The oil extract of this plant showed a remarkable molluscicidal activity against used snail species. PMID:19530615

  13. Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments

    USGS Publications Warehouse

    Mitchell, A.J.; Cole, R.A.

    2008-01-01

    The faucet snail Bithynia tentaculata, a nonindigenous aquatic snail from Eurasia, was introduced into Lake Michigan in 1871 and has spread to the mid-Atlantic states, the Great Lakes region, Montana, and most recently, the Mississippi River. The faucet snail serves as intermediate host for several trematodes that have caused large-scale mortality among water birds, primarily in the Great Lakes region and Montana. It is important to limit the spread of the faucet snail; small fisheries equipment can serve as a method of snail distribution. Treatments with chemical disinfection, pH extremes, and heated water baths were tested to determine their effectiveness as a disinfectant for small fisheries equipment. Two treatments eliminated all test snails: (1) a 24-h exposure to Hydrothol 191 at a concentration of at least 20 mg/L and (2) a treatment with 50??C heated water for 1 min or longer. Faucet snails were highly resistant to ethanol, NaCl, formalin, Lysol, potassium permanganate, copper sulfate, Baquacil, Virkon, household bleach, and pH extremes (as low as 1 and as high as 13).

  14. [Experimental study on the environmental fate of nitrogen in snail-macrophyte ecosystem for water purification].

    PubMed

    Zhou, Lu-Hong; Gu, Xiao-Hong; Zeng, Qing-Fei; Mao, Zhi-Gang; Gao, Hua-Mei; Sun, Ming-Bo

    2012-12-01

    A snail-macrophyte simulation system was built and isotope tracer technique was adopted to study the environmental fate of nitrogen in snail-macrophyte purification system, the results showed that: Vallisneria spiralis increased its wet weight by 580% and its number by 6.6 ramets, moreover, Vallisneria spiralis absorbed 1.07% 15N by the roots and 7.74% by stems and leaves, while Bellamya only absorbed 0.06%. And 5.73% 15N was retained in the sediment. Through analyzing of the results, it indicated that: in such simulation system, sediment was the main nutrition source for the growth of Vallisneria spiralis, which absorbed only few dissolved nitrogen from water; ammonium nitrogen in water was transformed mainly in the sediment-water interface, most of which was absorbed by Vallisneria spiralis, a small amount was removed through nitrification and denitrification, and the rest was kept by sediment; Vallisneria spiralis was final vector for removing nitrogen in the system, and Bellamya could also boost the growth of Vallisneria spiralis and strengthen the processes of nitrification and denitrification, thus promoting the nitrogen removal from the system indirectly. So, during the period of culture, rational allocation of snail-macrophyte structure in different stages plays an important role in controlling water quality in ponds. PMID:23379157

  15. A water snail catches a ride on STS-90 as part of Neurolab

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A water snail (Biomphalaria glabrata), like those that are part of the Neurolab payload on Space Shuttle Mission STS-90, is held up for inspection in the Operations and Checkout Building. The snails will fly in the Closed Equilibrated Biological Aquatic System (CEBAS) Minimodule, a middeck locker-sized fresh water habitat, designed to allow the controlled incubation of aquatic species in a self-stabilizing, artifical ecosystem for up to three weeks under space conditions. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, includes Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D.

  16. Water snails as paratenic hosts of Hymenolepididae Fuhrmann, 1907 in Czechoslovakia.

    PubMed

    Rysav, B

    1986-01-01

    The distribution of cysticercoids of Hymenolepididae Fuhrmann, 1907 parasitizing water birds (Anseriformes and Ralliformes) in Czechoslovakia was studied. A total of 2970 snail specimens (429 Lymnaea stagnalis (L.), 531 L. ovata (Drap.), 1, 462 L. peregra (O. F. Mll.), 158 L. auricularia (L.), 262 Planorbis planorbis (L.) and 65 Viviparus viviparus (L.)) were examined for this purpose. Among them, 122 snails were infected with cysticercoids of 13 cestode species (Dicranotaenia coronula (Dujardin, 1845), Diorchis inflata (Rudolphi, 1810), D. nyrocae Yamaguti, 1935, D. ransomi Schultz, 1940, Diploposthe laevis (Bloch, 1782), Echinocotyle rosetteri Blanchard, 1891, Fimbriaria fasciolaris (Pallas, 1781), Microsomacanthus compressa (Linton 1892), M. paracompressa (Czaplinski, 1956), M. paramicrosoma (Gasowska, 1931), M. spiralibursata (Czaplinski, 1956), Sobolevicanthus gracilis (Zeder, 1803), and S. octacantha (Krabbe, 1869). PMID:3758867

  17. Accumulation and distributions of {sup 137}Cs in fresh water snail Pila ampullacea

    SciTech Connect

    Suseno, Heny

    2014-10-24

    Pila ampullacea are found in tropical freshwaters of Indonesia. This snail exhibit several characteristics of ideal indicator organisms in order to understand the bioaccumulation of {sup 137}Cs. Biokinetic experiment was performaced in aquaria system and under influenced of concentration K{sup +} in water. The result of experiment shown that Under difference K{sup +} concentration in water, Pila ampullacea have capability to accumulated {sup 137}Cs with CF value range 8.95 to 12.52 ml.g{sup −1}. Both uptake and depuration rate were influenced by concentration of K{sup +} in water.

  18. Accumulation and distributions of 137Cs in fresh water snail Pila ampullacea

    NASA Astrophysics Data System (ADS)

    Suseno, Heny

    2014-10-01

    Pila ampullacea are found in tropical freshwaters of Indonesia. This snail exhibit several characteristics of ideal indicator organisms in order to understand the bioaccumulation of 137Cs . Biokinetic experiment was performaced in aquaria system and under influenced of concentration K+ in water. The result of experiment shown that Under difference K+ concentration in water, Pila ampullacea have capability to accumulated 137Cs with CF value range 8.95 to 12.52 ml.g-1. Both uptake and depuration rate were influenced by concentration of K+ in water.

  19. Snail Snooping.

    ERIC Educational Resources Information Center

    Miller, Dorothy

    1993-01-01

    Presents an activity in which students in grades 5-8 learn about snail reproduction by observing and charting the activities of land snails, freshwater snails, and slugs. Instructions to implement and extend the activity are provided. (MDH)

  20. Fecal bacterial contamination in natural water reservoirs as an indicator of seasonal infection by Opisthorchis viverrini in snail intermediate hosts.

    PubMed

    Kaewkes, Wanlop; Kaewkes, Sasithorn; Tesana, Smarn; Laha, Thewarach; Sripa, Banchob

    2012-03-01

    Opisthorchis viverrini, a carcinogenic liver fluke, requires Bithynia snails as the first intermediate host, which release cercariae after ingesting fluke eggs from contaminated water. Fecal bacterial contamination and O. viverrini-infected Bithynia snails were investigated in samples collected from natural water reservoirs in Ban Phai, Chonnabot and Muang Districts (Ban Lerngpeuy) in Khon Kaen Province, northeast Thailand, where there is a high incidence of cholangiocarcinoma. Water was sampled and examined six times (February, April, June, August, October and December 2006). The most probable number (MPN) index and coliform counts were utilized to evaluate fecal contamination; the cercarial shedding method was conducted for detecting infected snails. The data revealed that all water samples had a high MPN index number, and fecal coliform levels above the WHO standard. This indicated that water in these reservoirs was contaminated with feces or manure constituents. Water sampling from Ban Lerngpeuy showed full-scale bacterial contamination (>1609 MPN index) throughout the year. This finding was correlated with the highest prevalence of O. viverrini-infected snails, which were found nearly all year round in this area. Slightly lower fecal contamination levels were detected in water samples from Chonnabot and Ban Phai, with high MPN index numbers and coliform counts from April to October. This corresponded with the higher recovery of infected snails in June and August, but with relatively lower prevalence than those found in Ban Lerngpeuy. Among the sampling sites, the people in Ban Lerngpeuy live nearer to the reservoir than do those in Ban Phai and Chonnabot. These results indicate that fecal bacterial contamination in natural water reservoirs is an important indicator of seasonal transmission of O. viverrini eggs to snail intermediate hosts. Sanitation improvement is essential and future investigations on the sources of contamination are needed. PMID:21871971

  1. An artificial perch to help Snail Kites handle an exotic Apple Snail

    USGS Publications Warehouse

    Pias, Kyle E.; Welch, Zach C.; Kitchens, Wiley M.

    2012-01-01

    In the United States, the Snail Kite (Rostrhamus sociabilis plumbeus) is a federally endangered species and restricted to the wetlands of south-central Florida where the current population numbers less than 1,500. The Snail Kite is an extreme dietary specialist, previously feeding almost exclusively on one species of snail, the Florida Apple Snail (Pomacea paludosa). Within the past decade, an exotic species of apple snail, the Island Apple Snail (Pomacea insularum), has become established on lakes in central Florida. Island Apple Snails are larger than the native Florida Apple Snails, and Snail Kites handle the exotic snails less efficiently. Juvenile Snail Kites, in particular, have lower daily energy balances while feeding on Island Apple Snails. An inexpensive, easy-to-construct platform was developed that would provide Snail Kites with a flat, stable surface on which to extract snails. The platform has the potential to reduce the difficulties Snail Kites experience when handling exotic snails, and may benefit the Snail Kite population as a whole. Initial observations indicate that Snail Kites use the platforms frequently, and snails extracted at the platforms are larger than snails extracted at other perches.

  2. The effects of water quality and age on the acute toxicity of copper to the Florida apple snail, Pomacea paludosa.

    PubMed

    Rogevich, E C; Hoang, T C; Rand, G M

    2008-05-01

    Copper (Cu)-containing compounds have been used in Florida as fungicides, herbicides, and soil amendments, resulting in elevated Cu in the aquatic ecosystem. The Florida apple snail (Pomacea paludosa), a key species in south Florida, may be adversely affected by Cu. Water-quality parameters, such as hardness, dissolved organic carbon (DOC), pH, and alkalinity, affect metal bioavailability and toxicity in aquatic organisms; however, it is uncertain to what extent these factors affect Cu toxicity in the Florida apple snail. The research presented here characterized the acute (96-hour) toxicity of Cu in water to the Florida apple snail at various life stages and under different water-quality parameters. Cu was more toxic to juvenile than adult apple snails. There was no difference between the 96-hour LC(50) at pH 5.5 and 6.5; however, the 96-hour LC(50 )values at pH 7.5 and 8.5 were greater than at lower pHs. The decrease in Cu(2+) above pH 7, as predicted by the MINTEQ model, accounted for the pH effect. Cu toxicity decreased as DOC increased from 0.2 to 30 mg/L. Unlike other aquatic organisms, hardness had no effect on Cu toxicity to the Florida apple snail, suggesting another mechanism of toxicity. Whole-body tissue analysis indicated that the lethal body burden of 120-day-old snails exposed to Cu for 4 days was 30 mg/kg Cu dry weight. Multiple regression analysis indicated that Cu toxicity was a function of organism age, DOC, and pH. PMID:18180860

  3. Three Gorges Dam: Impact of Water Level Changes on the Density of Schistosome-Transmitting Snail Oncomelania hupensis in Dongting Lake Area, China

    PubMed Central

    Wu, Jin-Yi; Zhou, Yi-Biao; Chen, Yue; Liang, Song; Li, Lin-Han; Zheng, Sheng-Bang; Zhu, Shao-ping; Ren, Guang-Hui; Song, Xiu-Xia; Jiang, Qing-Wu

    2015-01-01

    Background Schistosomiasis remains an important public health issue in China and worldwide. Oncomelania hupensis is the unique intermediate host of schistosoma japonicum, and its change influences the distribution of S. japonica. The Three Gorges Dam (TGD) has substantially changed the ecology and environment in the Dongting Lake region. This study investigated the impact of water level and elevation on the survival and habitat of the snails. Methods Data were collected for 16 bottomlands around 4 hydrological stations, which included water, density of living snails (form the Anxiang Station for Schistosomiasis Control) and elevation (from Google Earth). Based on the elevation, sixteen bottomlands were divided into 3 groups. ARIMA models were built to predict the density of living snails in different elevation areas. Results Before closure of TGD, 7 out of 9 years had a water level beyond the warning level at least once at Anxiang hydrological station, compared with only 3 out of 10 years after closure of TGD. There were two severe droughts that happened in 2006 and 2011, with much fewer number of flooding per year compared with other study years. Overall, there was a correlation between water level changing and density of living snails variation in all the elevations areas. The density of living snails in all elevations areas was decreasing after the TGD was built. The relationship between number of flooding per year and the density of living snails was more pronounced in the medium and high elevation areas; the density of living snails kept decreasing from 2003 to 2014. In low elevation area however, the density of living snails decreased after 2003 first and turned to increase after 2011. Our ARIMA prediction models indicated that the snails would not disappear in the Dongting Lake region in the next 7 years. In the low elevation area, the density of living snails would increase slightly, and then stabilize after the year 2017. In the medium elevation region, the change of the density of living snails would be more obvious and would increase till the year 2020. In the high elevation area, the density of living snails would remain stable after the year 2015. Conclusion The TGD influenced water levels and reduced the risk of flooding and the density of living snails in the study region. Based on our prediction models, the density of living snails in all elevations tends to be stabilized. Control of S. japonica would continue to be an important task in the study area in the coming decade. PMID:26114956

  4. Dry down impacts on apple snail (Pomacea paludosa) demography: Implications for wetland water management

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Percival, H.F.

    2008-01-01

    Florida apple snails (Pomacea paludosa Say) are prey for several wetland-dependent predators, most notably for the endangered Florida snail kite (Rostrhamus sociabilis Vieillot). Management concerns for kites have been raised regarding the impacts of wetland dry downs on snails, but little data exists to validate these concerns. We simulated drying events in experimental tanks, where we observed that snail survival patterns, regardless of hydrology, were driven by a post-reproductive die off. In contrast to earlier reports of little to no dry down tolerance, we found that 70% of pre-reproductive adult-sized snails survived a 12-week dry down. Smaller size classes of snails exhibited significantly lower survival rates (< 50% after eight weeks dry). Field surveys showed that 77% of egg production occurs in April-June. Our hydrologic analyses of six peninsular Florida wetlands showed that most dry downs overlapped a portion of the peak snail breeding season, and 70% of dry downs were ??? 12 weeks in duration. Dry down timing can affect recruitment by truncating annual egg production and stranding juveniles. Dry down survival rates and seasonal patterns of egg cluster production helped define a range of hydrologic conditions that support robust apple snail populations, and illustrate why multiple characteristics of dry down events should be considered in developing target hydrologic regimes for wetland fauna. ?? 2008, The Society of Wetland Scientists.

  5. Does water chemistry limit the distribution of New Zealand mud snails in Redwood National Park?

    USGS Publications Warehouse

    Vazquez, Ryan; Ward, Darren M.; Sepulveda, Adam

    2016-01-01

    New Zealand mud snails (NZMS) are exotic mollusks present in many waterways of the western United States. In 2009, NZMS were detected in Redwood Creek in Redwood National Park, CA. Although NZMS are noted for their ability to rapidly increase in abundance and colonize new areas, after more than 5 years in Redwood Creek, their distribution remains limited to a ca. 300 m reach. Recent literature suggests that low specific conductivity and environmental calcium can limit NZMS distribution. We conducted laboratory experiments, exposing NZMS collected from Redwood Creek to both natural waters and artificial treatment solutions, to determine if low conductivity and calcium concentration limit the distribution of NZMS in Redwood National Park. For natural water exposures, we held NZMS in water from their source location (conductivity 135 μS/cm, calcium 13 mg/L) or water from four other locations in the Redwood Creek watershed encompassing a range of conductivity (77–158 μS/cm) and calcium concentration (<5–13 mg/L). For exposures in treatment solutions, we manipulated both conductivity (range 20–200 μS/cm) and calcium concentration (range <5–17.5 mg/L) in a factorial design. Response variables measured included mortality and reproductive output. Adult NZMS survived for long periods (>4 months) in the lowest conductivity waters from Redwood Creek and all but the lowest-conductivity treatment solutions, regardless of calcium concentration. However, reproductive output was very low in all natural waters and all low-calcium treatment solutions. Our results suggest that water chemistry may inhibit the spread of NZMS in Redwood National Park by reducing their reproductive output.

  6. Snail Trails

    ERIC Educational Resources Information Center

    Galus, Pamela

    2002-01-01

    The slime trails of snails lead the author's students to a better understanding of science as inquiry and the processes of science. During this five-day activity, students get up close and personal with one of her favorite creatures, the land snail. Students begin by observing the organism and recording their observations. After making initial…

  7. Snail Trails

    ERIC Educational Resources Information Center

    Galus, Pamela

    2002-01-01

    The slime trails of snails lead the author's students to a better understanding of science as inquiry and the processes of science. During this five-day activity, students get up close and personal with one of her favorite creatures, the land snail. Students begin by observing the organism and recording their observations. After making initial

  8. Survival and behavior of Chinese mystery snails (Bellamya chinensis) in response to simulated water body drawdowns and extended air exposure

    USGS Publications Warehouse

    Unstad, Kody M.; Uden, Daniel R.; Allen, Craig R.; Chaine, Noelle M.; Haak, Danielle M.; Kill, Robert A.; Pope, Kevin L.; Stephen, Bruce J.; Wong, Alec

    2013-01-01

    Nonnative invasive mollusks degrade aquatic ecosystems and induce economic losses worldwide. Extended air exposure through water body drawdown is one management action used for control. In North America, the Chinese mystery snail (Bellamya chinensis) is an invasive aquatic snail with an expanding range, but eradication methods for this species are not well documented. We assessed the ability of B. chinensis to survive different durations of air exposure, and observed behavioral responses prior to, during, and following desiccation events. Individual B. chinensis specimens survived air exposure in a laboratory setting for > 9 weeks, and survivorship was greater among adults than juveniles. Several B. chinensis specimens responded to desiccation by sealing their opercula and/or burrowing in mud substrate. Our results indicate that drawdowns alone may not be an effective means of eliminating B. chinensis. This study lays the groundwork for future management research that may determine the effectiveness of drawdowns when combined with factors such as extreme temperatures, predation, or molluscicides.

  9. Effector mechanism in the response of Schistosoma mansoni miracidia to snail-conditioned water.

    PubMed

    Roberts, T M; Linck, R W; Chernin, E

    1980-02-01

    Schistosoma mansoni miracidia respond to snail-conditioned water (SCW) by sharply increasing their rate of turning when they encounter abrupt decreases in stimulant concentration (Roberts et al., '79). We examined the role of the cilia and the subepithelial muscles in the turning behavior of stimulated miracidia. Several lines of evidence indicated that miracidia do not turn by altering their ciliary beat. Ciliary beating on detergent-treated miracidia was reactivated using solutions containing ATP and Mg2+. These organisms were unable to turn spontaneously, a characteristic of live miracidia. Several divalent cations which stimulate increased turning of intact miracidia failed to support ciliary reactivation of detergent-treated organisms. Further, intact miracidia increased their rate of turning in gradients of Mg2+, but detergent-treated organisms swimming in reactivation solution did not turn in Mg2+ gradients. High speed cinematography of intact miracidia swimming in gradients of SCW or Mg2+ illustrated that turning is invariably accompanied by flexion of the body. This bending occurred only at the transverse interciliary ridges between the first and second, and second and third tiers of ciliated plates. Flexion was not observed at the interciliary ridge between the third and fourth tiers of plates, suggesting that miracidia turn by contracting specific portions of their subepithelial musculature. PMID:7373270

  10. Snails home

    NASA Astrophysics Data System (ADS)

    Dunstan, D. J.; Hodgson, D. J.

    2014-06-01

    Many gardeners and horticulturalists seek non-chemical methods to control populations of snails. It has frequently been reported that snails that are marked and removed from a garden are later found in the garden again. This phenomenon is often cited as evidence for a homing instinct. We report a systematic study of the snail population in a small suburban garden, in which large numbers of snails were marked and removed over a period of about 6 months. While many returned, inferring a homing instinct from this evidence requires statistical modelling. Monte Carlo techniques demonstrate that movements of snails are better explained by drift under the influence of a homing instinct than by random diffusion. Maximum likelihood techniques infer the existence of two groups of snails in the garden: members of a larger population that show little affinity to the garden itself, and core members of a local garden population that regularly return to their home if removed. The data are strongly suggestive of a homing instinct, but also reveal that snail-throwing can work as a pest management strategy.

  11. Studying snails and stream health

    SciTech Connect

    Krause, C.

    1992-01-01

    A type of snail (Elimia) that is abundant in most streams in east Tennessee is noticeably absent in contaminated Oak Ridge streams, indicating a significant level of pollution. Such a snail could serve as a sensitive indicator of and contributor to improved water quality in Oak Ridge streams as remediation programs take effect.

  12. Snail Shell

    USGS Multimedia Gallery

    Plant seems to be a Heliotropum sp. Huge snail shells litter the wetland around Asuncion Bay. Near 251549S, 573747W. La plantita detrs del caracol parece ser un Heliotropium sp., Boraginaceae....

  13. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    USGS Publications Warehouse

    López-Serrano Oliver, Ana; Croteau, Marie-Noële; Stoiber, Tasha L.; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R.; Luoma, Samuel N.

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important.

  14. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    PubMed

    Oliver, Ana López-Serrano; Croteau, Marie-Noële; Stoiber, Tasha L; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R; Luoma, Samuel N

    2014-06-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important. PMID:24641838

  15. Modeling apple snail population dynamics on the Everglades landscape

    USGS Publications Warehouse

    Darby, Phil; DeAngelis, Donald L.; Romanach, Stephanie; Suir, Kevin J.; Bridevaux, Joshua L.

    2015-01-01

    Comparisons of model output to empirical data indicate the need for more data to better understand, and eventually parameterize, several aspects of snail ecology in support of EverSnail. A primary value of EverSnail is its capacity to describe the relative response of snail abundance to alternative hydrologic scenarios considered for Everglades water management and restoration.

  16. Effects of natal departure and water level on survival of juvenile snail kites (Rostrhamus sociabilis) in Florida

    USGS Publications Warehouse

    Dreitz, V.J.; Kitchens, W.M.; DeAngelis, D.L.

    2004-01-01

    Survival rate from fledging to breeding, or juvenile survival, is an important source of variation in lifetime reproductive success in birds. Therefore, determining the relationship between juvenile survival and environmental factors is essential to understanding fitness consequences of reproduction in many populations. With increases in density of individuals and depletion of food resources, quality of most habitats deteriorates during the breeding season. Individuals respond by dispersing in search of food resources. Therefore, to understand the influence of environmental factors on juvenile survival, it is also necessary to know how natal dispersal influences survival of juveniles. We examined effects of various environmental factors and natal dispersal behavior on juvenile survival of endangered Snail Kites (Rostrhamus sociabilis) in central and southern Florida, using a generalized estimating equations (GEEs) approach and model selection criteria. Our results suggested yearly effects and an influence of age and monthly minimum hydrologic levels on juvenile Snail Kite survival. Yearly variation in juvenile survival has been reported by other studies, and other reproductive components of Snail Kites also exhibit such variation. Age differences in juvenile survival have also been seen in other species during the juvenile period. Our results demonstrate a positive relationship between water levels and juvenile survival. We suggest that this is not a direct linear relationship, such that higher water means higher juvenile survival. The juvenile period is concurrent with onset of the wet season in the ecosystem we studied, and rainfall increases as juveniles age. For management purposes, we believe that inferences suggesting increasing water levels during the fledging period will increase juvenile survival may have short-term benefits but lead to long-term declines in prey abundance and possibly wetland vegetation structure.

  17. Causes of Late Pleistocene water level change in Lake Victoria, Equatorial East Africa, derived from clumped isotopes of land snails and fresh water mollusks. (Invited)

    NASA Astrophysics Data System (ADS)

    Zaarur, S.; Affek, H. P.; Tryon, C.; Peppe, D. J.; Faith, J.

    2013-12-01

    Carbonate clumped isotope thermometry is based on the dependence of 13C-18O bond abundance in the carbonate lattice (measured as Δ47) on the carbonate formation temperature. Most marine and freshwater biogenic carbonates are found to be in agreement with the clumped isotopes - temperature calibration. Clumped isotope thermometry is particularly useful in terrestrial environments where the interpretation of carbonate δ18O is limited due to difficulty in estimating the paleo-water isotopic composition. Clumped isotope-derived temperatures from land snails are generally higher than the ambient environmental temperatures, but show no evidence for disequilibrium. We attribute these higher body temperatures to snail eco-physiological adaptations through shell color, morphology, and behavior. We use the clumped isotope-derived temperatures in combination with shell δ18O to calculate snail body water δ18O composition. This parameter is interpreted as a paleo-hydrological indicator that reflects the isotopic composition of local precipitation modified by local evaporation. Rusinga and Mfangano Islands in Lake Victoria provide a unique opportunity to compare extant species of modern and fossil freshwater mollusks and land snails from the same location to examine lake paleo-hydrology. This location is particularly interesting as Lake Victoria itself is the main source of rain-water in the region such that the isotopic composition of land snail body water can be related back to the source waters. We combine clumped isotope and oxygen isotope measurements of both freshwater mollusks and land snails to examine the water balance of the lake, testing hypotheses about the mechanism of a significant rise in lake level in Lake Victoria ~35 - 40 ka BP. Outcrops of paleo-beach deposits ~18 m above the modern day lake level indicate high water stands at ~35-40 ka BP. Based on water balance models for Lake Victoria, an increase in lake level of this magnitude could be driven by local mean annual precipitation that is significantly greater than modern. However, this is inconsistent with regional climate reconstructions. This suggests that either lake level was controlled by non-climatic factors, or that local climate in the Lake Victoria basin was different than regional patterns of climate across eastern Africa. We use oxygen and clumped isotopes of modern and fossil shells (Corbicula sp., Melanoides sp. and Bellamya unicolor) from this 18 m beach outcrop on Mfangano Island to (1) compare with modern lake water δ18O values and (2) calculate paleo-water compositions. We combine these results with calculated snail body water δ18O composition (using oxygen and clumped isotopes) of land snails (Limicoloria cf. martensiana) from Rusinga and Mfangano Islands, to study hydrological changes of Lake Victoria. We use these data to evaluate the relative importance of climate change and tectonics as mechanisms for the Late Pleistocene expansion of Lake Victoria.

  18. Protein synthesis-dependent reactivation of a contextual conditioned reflex in the common snail.

    PubMed

    Gainutdinova, T Kh; Tagirova, R R; Ismailova, A I; Muranova, L N; Gainutdinov, Kh L; Balaban, P M

    2006-02-01

    We report here a study of the effects of blockade of protein synthesis with anisomycin during reactivation of a contextual conditioned reflex in the common snail. The amplitudes of the defensive reactions of snails to standard tactile stimulation before training were identical in two conditions: 1) testing of responses of snails fixed by the shell to a plastic ball floating in water and 2) on the surface of the terrarium glass. After applying electric shocks to the snails' skin for 5 days, a significant difference in responses reflecting the formation of a contextual conditioned reflex was seen in only one of the contexts. Placing trained snails in the same context (reminding) two days after training with simultaneous injection of anisomycin led to significant weakening of training, while control injections of physiological saline produced no such changes. These data suggest that the mechanisms of memory consolidation after training and reminding are not identical. PMID:16380834

  19. The Effect of Simulating Different Intermediate Host Snail Species on the Link between Water Temperature and Schistosomiasis Risk

    PubMed Central

    McCreesh, Nicky; Booth, Mark

    2014-01-01

    Introduction A number of studies have attempted to predict the effects of climate change on schistosomiasis risk. The importance of considering different species of intermediate host snails separately has never previously been explored. Methods An agent-based model of water temperature and Biomphalaria pfeifferi population dynamics and Schistosoma mansoni transmission was parameterised to two additional species of snail: B. glabrata and B. alexandrina. Results Simulated B. alexandrina populations had lower minimum and maximum temperatures for survival than B. pfeifferi populations (12.529.5C vs. 14.031.5C). B. glabrata populations survived over a smaller range of temperatures than either B. pfeifferi or B. alexandrina (17.0C29.5C). Infection risk peaked at 16.5C, 25.0C and 19.0C respectively when B. pfeifferi, B. glabrata and B. alexandrina were simulated. For all species, infection risk increased sharply once a minimum temperature was reached. Conclusions The results from all three species suggest that infection risk may increase dramatically with small increases in temperature in areas at or near the currents limits of schistosome transmission. The effect of small increases in temperature in areas where schistosomiasis is currently found will depend both on current temperatures and on the species of snail acting as intermediate host(s) in the area. In most areas where B. pfeifferi is the host, infection risk is likely to decrease. In cooler areas where B. glabrata is the host, infection risk may increase slightly. In cooler areas where B. alexandrina is the host, infection risk may more than double with only 2C increase in temperature. Our results show that it is crucial to consider the species of intermediate host when attempting to predict the effects of climate change on schistosomiasis. PMID:24988377

  20. Snail Shell

    USGS Multimedia Gallery

    Plant seems to be a Heliotropum sp. Huge snail shells litter the wetland around Asuncion Bay. Near 25°15’49’’S, 57°37’47’’W. La plantita detrás del caracol parece ser un Heliotropium sp., Boraginaceae....

  1. [Studies upon behaviour of snails in anthropogenically changed water environment. 1. Locomotor activity of Lymnaea stagnalis (L.), with regard to subpopulations infected with developmental stages of digeneans].

    PubMed

    Pokora, Zbigniew

    2002-01-01

    The aim of the paper was to analyse the locomotor activity of snails, Lymnaea stagnalis, with regard to physico-chemical properties of water in an inhabited reservoir and parasitic infection. The material was collected in selected anthropogenic water environments situated in the Upper Silesian Industrial Region (sinkhole ponds, sand- and clay-excavations). The locomotor activity of each snail was analysed in laboratory conditions by designation of number of penetrated segments, marked in tanks filled with water originating from a given reservoir, during 15', with intervals of 1'. It was observed the significant relationship between locomotor activity of examined snails and the water carbonaceous hardness (r = -0,812, at range of the independent variable 173.0-863.5 mg CaCO3/dm3). Correlation coefficients with other physico-chemical parameters of water were close to zero. Locomotion of snails infected with developmental stages of digenetic trematodes was significantly lower comparing to non-infected individuals. Locomotor activity of these former ones was dependend more on degree of the digestive gland damage by the parasite than on the infection agent. PMID:16883702

  2. Effect of pond water depth on snail populations and fish-borne zoonotic trematode transmission in juvenile giant gourami (Osphronemus goramy) aquaculture nurseries.

    PubMed

    Thien, P C; Madsen, H; Nga, H T N; Dalsgaard, A; Murrell, K D

    2015-12-01

    Infection with fish-borne zoonotic trematodes (FZT) is an important public health problem in many parts of Southeast Asia. People become infected with FZT when eating raw or undercooked fish that contain the infective stage (metacercariae) of FZT. The parasites require specific freshwater snails as first intermediate host and a variety of fish species, both wild caught and cultured, as second intermediate host. Aquaculture production has grown almost exponentially in SE Asia and in order to produce fish free from FZT metacercariae, it is important to mitigate factors promoting transmission to fish. Here we report results from a cross-sectional study to look at the association between pond depth and infection with FZT in giant gourami nursery ponds. Density of intermediate host snails was positively associated with pond depth (count ratio associated with a 1m increase in pond depth was 10.4 (95% C.L.: 1.61-67.1, p<0.5)) and this may partly explain the higher prevalence and intensity of FZT infection in juvenile fish. High fry stocking density (>200 fry m(-3)) was associated with lower host snail density (count ratio=0.15) than low stocking density (<100 fry m(3)). Ponds stocked with 100-200 fry m(-3) had snail counts 0.76 (95% C.L.: 0.33-1.75, p n.s.) of those in ponds stocked with fry density of <100 fry m(-3). Since density of intermediate snail hosts was associated with FZT transmission to fish, effort should be taken to reduce snail density prior to stocking the fry, but focus should also be on habitats surrounding ponds as transmission may occur through cercariae produced outside ponds and carried into ponds with water pumped into ponds. PMID:26209455

  3. Survival of the faucet snail Bithynia tentaculata after chemical disinfection, pH extremes, and heated water bath treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bithynia tentaculata, the faucet snail, is a non indigenous aquatic snail from Eurasia that was introduced into Lake Michigan in 1871. The snail’s distribution in the United States has expanded to the mid-Atlantic states and the drainage basin of the Great Lakes and most recently to the Mississippi...

  4. Water surface is acidic

    PubMed Central

    Buch, Victoria; Milet, Anne; Vácha, Robert; Jungwirth, Pavel; Devlin, J. Paul

    2007-01-01

    Water autoionization reaction 2H2O → H3O− + OH− is a textbook process of basic importance, resulting in pH = 7 for pure water. However, pH of pure water surface is shown to be significantly lower, the reduction being caused by proton stabilization at the surface. The evidence presented here includes ab initio and classical molecular dynamics simulations of water slabs with solvated H3O+ and OH− ions, density functional studies of (H2O)48H+ clusters, and spectroscopic isotopic-exchange data for D2O substitutional impurities at the surface and in the interior of ice nanocrystals. Because H3O+ does, but OH− does not, display preference for surface sites, the H2O surface is predicted to be acidic with pH < 4.8. For similar reasons, the strength of some weak acids, such as carbonic acid, is expected to increase at the surface. Enhanced surface acidity can have a significant impact on aqueous surface chemistry, e.g., in the atmosphere. PMID:17452650

  5. Molluscicidal activity of crude water and hexane extracts of Hypericum species to snails (Radix peregra).

    PubMed

    Teixeira, Tnia; Rainha, Nuno; Rosa, Jos Silvino; Lima, Elisabete; Baptista, Jos

    2012-04-01

    In spite of intense research on both chemical constituency and biological activity of Hypericum species, potential applications of their active components for pest control have been less well investigated. In the present study, Hypericum androsaemum (tutsan), Hypericum foliosum (malfurada), and Hypericum undulatum (wavy St. John's wort) aqueous and hexane extracts were studied for their molluscicidal and ovicidal activities against Radix peregra. The molluscicidal activity of the aqueous extracts was low, except for H. androsaemum infusion (median lethal concentration [LC50](adults) ?=?317.1 ppm; LC50(juveniles) ?=?415 ppm), and less important compared with the toxicity of all three hexane extracts tested: H. androsaemum (LC50(adults) ?=?30.47 ppm; LC50(juveniles) ?=?73.25 ppm), H. undulatum (LC50(adults) ?=?30.55 ppm; LC50(juveniles) ?=?60.54 ppm), and H. foliosum (LC50(adults) ?=?48.61 ppm; LC50(juveniles) ?=?38.81 ppm). An ovicidal effect was observed only with H. androsaemum infusion (1.85% of hatching at 500 ppm) and H. foliosum hexane extract (0.0% of hatching at 100 ppm). A preliminary phytochemical investigation of the lipophylic extracts from these Hypericum sp. revealed a different chemical profile and confirmed the presence of ursolic acid only in H. undulatum as the main compound. The present study indicates that products from hexane extracts of the Hypericum sp. analyzed may be used as potential molluscicides to control snails responsible for transmitting fasciolosis. PMID:22170085

  6. Molluscicidal activity of Saraca asoca and Thuja orientalis against the fresh water snail Lymnaea acuminata.

    PubMed

    Singh, Arundhati; Singh, V K

    2009-10-14

    The molluscicidal activity of bark powder of Saraca asoca, leaf powder of Thuja orientalis against the snail Lymnaea acuminata was studied. The molluscicidal activity of all the plant products was found to be both time and concentration dependent. The 96 h LC(50) of T. orientalis leaf powder against L. acuminata was 250.5mg/l. Ethanol extracts were more toxic than other organic extracts. The ethanol extract of T. orientalis leaf (24h LC(50): 32.74 mg/l) was more effective than that of S. asoca bark (24h LC(50): 82.38 mg/l). The 24h LC(50) of column purified fraction of T. orientalis leaf and S. asoca bark powder was 29.25 and 64.89 mg/l, respectively. Saponin and thujone were identified as active molluscicide components in the bark of S. asoca and leaf of T. orientalis, respectively. The product of S. asoca and T. orientalis may be used as potent molluscicides. PMID:19501966

  7. Influence of an extreme high water event on survival, reproduction, and distribution of snail kites in Florida, USA

    USGS Publications Warehouse

    Bennetts, R.E.; Kitchens, W.M.; Dreitz, V.J.

    2002-01-01

    Hydrology frequently has been reported as the environmental variable having the greatest influence on Florida snail kite (Rostrhamus sociabilis) populations. Although drought has received the most attention, high-water conditions also have been reported to affect kites. Years of high water generally have been reported to be favorable for nesting, although prolonged high water may be detrimental to sustaining suitable habitat. During 1994 and 1995, southern Florida experienced an extreme high water event. This event enabled us to compare survival, nesting success, number of young per successful nest, and spatial distribution of nesting before, during, and after the event. We found no evidence of an effect (either negative or positive) on survival of adult kites. In contrast, juvenile kites experienced the highest survival during the event, although our data suggest greater annual variability than can be explained by the event alone. We found no evidence of an effect of the high water event on nest success or number of young per successful nest. Nest success was highest during the event in the southern portion of the range but was quite similar to other years, both before and after the event. Our data do indicate a substantial shift in the spatial distribution of nesting birds. During the event, nesting activity shifted to higher elevations (i.e., shallower water) in the major nesting areas of the Everglades region. Nesting also occurred in Big Cypress National Preserve during the event, which is typically too dry to support nesting kites. Thus, our data indicate a potential short-term benefit of increased juvenile survival and an expansion of nesting habitat. However, the deterioration of habitat quality from prolonged high water precludes any recommendation for such conditions to be maintained for extended periods. ?? 2002, The Society of Wetland Scientists.

  8. Histopathological effects of copper on selected epithelial tissues of snails

    SciTech Connect

    Wolmarans, C.T.; van Aardt, W.J.; Coetzee, J.

    1986-06-01

    The exposure of freshwater snails to copper sulfate has several harmful effects on the snails. These effects include several physiological disturbances as well as certain behavioral and histological changes. On the strength of these findings it was decided to investigate, by means of transmission electron microscopy, whether histological changes occur in the surface epithelium of the snail Bulinus tropicus after exposure to copper sulfate.

  9. SURFACE WATER EMAP PROJECT

    EPA Science Inventory

    The surface water component of the EPA Environmental Monitoring and Assessment Program (EMAP) Western Pilot is a five-year effort to assess the ecological condition of rivers and streams across 12 states in the western United States. EMAP is designed to monitor indicators of poll...

  10. Production of apple snail for space diet

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Motoki, Shigeru; Space Agriculture Task Force, J.; Katayama, Naomi

    For food production in space at recycling bio-elements under closed environment, appropriate organisms should be chosen to drive the closed materials recycle loop. We propose a combination of green algae, photosynthetic protozoa, and aquatic plants such as Wolffia spp., for the primary producer fixing solar energy to chemical form in biomass, and apple snail, Pomacea bridgesii, which converts this biomass to animal meat. Because of high proliferation rate of green algae or protozoa compared to higher plants, and direct conversion of them to apple snail, the efficiency of food production in this combination is high, in terms of energy usage, space for rearing, and yield of edible biomass. Furthermore, green algae and apple snail can form a closed ecological system with exchanging bio-elements between two member, i.e. excreta of snail turn to fertilizer of algae, and grown algae become feed for snail. Since apple snail stays in water or on wet substrate, control of rearing is easy to make. Mass production technology of apple snail has been well established to utilize it as human food. Nutrients of apple snail are also listed in the standard tables of food composition in Japan. Nutrients for 100 g of apple snail canned in brine are energy 340 kJ, protein 16.5 g, lipid 1.0 g, cholesterol 240 mg, carbohydrate 0.8 g, Ca 400 mg, Fe 3.9 mg, Zn 1.5 mg. It is rich in minerals, especially Ca and Fe. Vitamin contents are quite low, but K 0.005 mg, B2 0.09 mg, B12 0.0006 mg, folate 0.001 mg, and E 0.6 mg. The amino acid score of apple snail could not be found in literature. Overall, apple snail provides rich protein and animal lipid such as cholesterol. It could be a good source of minerals. However, it does not give enough vitamin D and B12 , which are supposed to be supplemented by animal origin foods. In terms of acceptance in food culture, escargot is a gourmet menu in French dishes, and six to ten snail, roughly 50 g, are served for one person. Apple snail reaches to 30 g of body weight within two or three month from its egg. Several hundreds of egg are laid by one snail. It start egg laying after three months from hatching. In order to harvest 50 g for every day's meal, 3 m2 is required for rearing space. Eating apple snail and establishing its rearing system might save the food crisis on Earth.

  11. Foraging and refuge use by a pond snail: Effects of physiological state, predators, and resources

    NASA Astrophysics Data System (ADS)

    Wojdak, Jeremy M.

    2009-09-01

    The costs and benefits of anti-predator behavioral responses should be functions of the actual risk of predation, the availability of the prey's resources, and the physiological state of the prey. For example, a food-stressed individual risks starvation when hiding from predators, while a well-fed organism can better afford to hide (and pay the cost of not foraging). Similarly, the benefits of resource acquisition are probably highest for the prey in the poorest state, while there may be diminishing returns for prey nearing satiation. Empirical studies of state-dependent behavior are only beginning, however, and few studies have investigated interactions between all three potentially important factors. Here I present the results of a laboratory experiment where I manipulated the physiological state of pond snails ( Physa gyrina), the abundance of algal resources, and predation cues ( Belostoma flumineum waterbugs consuming snails) in a full factorial design to assess their direct effects on snail behavior and indirect effects on algal biomass. On average, snails foraged more when resources were abundant, and when predators were absent. Snails also foraged more when previously exposed to physiological stress. Snails spent more time at the water's surface (a refuging behavior) in the presence of predation cues on average, but predation, resource levels, and prey state had interactive effects on refuge use. There was a consistent positive trait-mediated indirect effect of predators on algal biomass, across all resource levels and prey states.

  12. Development and validation of a satellites based geographic information system (GIS) model for epidemiology of Schistosoma risk assessment on snail level in Kafr El-Sheikh Governorate.

    PubMed

    Abdel-Rahman, M S; el-Bahy, M M; el-Bahy, N M; Malone, J B

    1997-08-01

    The aim of the present study was to test the accuracy of Advanced Very High Resolution Radiometer (AVHRR) satellite derived temperature difference (dT) maps as a guide for the suitability of the environment for local snail hosts and Schistosoma development-transmission at the village level. The study provided field validation data from 13 villages in Kafr El Sheikh in the Nile Delta that sites present in wet zones of low dT value have more abundant snail populations than that present in the drier zones with high dT values. Results suggest that lower dT values were associated with wetter hydrologic regimes related to the level of underground water table and that this is reflected in the abundance of snail populations and Schistosoma snail infection rates at the village level. Water quality parameters on pH salinity and dissolved oxygen were not correlated with presence of Schistosoma infected snails. Results indicate that abundance of snails and S. mansoni prevalence are related to thermal-hydrology domains associated with surface water, that habitat suitability is related to depth to water table and that regional hydrology characteristics that affect snail host habitat suitability (ie. wet, moist, dry or very dry) can be evaluated using AVHRR dT maps. PMID:9257969

  13. Regulation of laboratory populations of snails (Biomphalaria and Bulinus spp.) by river prawns, Macrobrachium spp. (Decapoda, Palaemonidae): implications for control of schistosomiasis

    PubMed Central

    Lafferty, Kevin D.; Kuris, Armand M.

    2014-01-01

    Human schistosomiasis is a common parasitic disease endemic in many tropical and subtropical countries. One barrier to achieving long-term control of this disease has been re-infection of treated patients when they swim, bathe, or wade in surface fresh water infested with snails that harbor and release larval parasites. Because some snail species are obligate intermediate hosts of schistosome parasites, removing snails may reduce parasitic larvae in the water, reducing re-infection risk. Here, we evaluate the potential for snail control by predatory freshwater prawns, Macrobrachium rosenbergii and M. vollenhovenii, native to Asia and Africa, respectively. Both prawn species are high value, protein-rich human food commodities, suggesting their cultivation may be beneficial in resource-poor settings where few other disease control options exist. In a series of predation trials in laboratory aquaria, we found both species to be voracious predators of schistosome-susceptible snails, hatchlings, and eggs, even in the presence of alternative food, with sustained average consumption rates of 12% of their body weight per day. Prawns showed a weak preference for Bulinus truncatus over Biomphalaria glabrata snails. Consumption rates were highly predictable based on the ratio of prawn: snail body mass, suggesting satiation-limited predation. Even the smallest prawns tested (0.52g) caused snail recruitment failure, despite high snail fecundity. With the World Health Organization turning attention toward schistosomiasis elimination, native prawn cultivation may be a viable snail control strategy that offers a win-win for public health and economic development. PMID:24388955

  14. Bioaccumulation of heavy metals in water, sediments, aquatic plant and histopathological effects on the golden apple snail in Beung Boraphet reservoir, Thailand.

    PubMed

    Dummee, Vipawee; Kruatrachue, Maleeya; Trinachartvanit, Wachareeporn; Tanhan, Phanwimol; Pokethitiyook, Prayad; Damrongphol, Praneet

    2012-12-01

    Changes in the seasonal concentrations of heavy metals (Cu, Mn, Fe, Zn, Pb and Cd) were determined in water, sediments, snails (Pomacea canaliculata) and aquatic plants (Ipomoea aquatica) in three selected tributaries of the Beung Boraphet reservoir, Nakhon Sawan Province, central Thailand. Only Fe, Cu, Mn and Zn were detected by FAAS in all samples collected. The water quality of Beung Boraphet was medium clean with Fe, Mn, Cu and Zn concentrations well below internationally accepted limits. According to the criteria proposed for sediments by the EPA Region V, Zn and Mn concentrations were within the non-polluted range while Fe and Cu (wet season) concentrations fell into the class of severely polluted sediment. Both P. canaliculata and I. aquatica bioconcentrated more Mn in their tissues than were found in sediments, especially in the wet season. The results of Pearson correlation study and BCF values also indicated similar findings. Only Mn showed the importance of sediment-to-snail concentration and high BCF values in both snails and plants. P. canaliculata exposed to contaminated sediment for two months, showed higher accumulation of metals (Fe, Mn, Cu and Zn) in the digestive tracts and digestive glands than in the foot muscles. Histopathological changes included alterations in the epithelial lining of the digestive tracts, digestive glands and the gills. Loss of cilia and increase in mucous cells were observed in the digestive tracts and gills, while the digestive glands exhibited an increase of dark granules and basophilic cells, and dilation of digestive cells. The results indicated that both P. canaliculata and I. aquatica could be used as biomonitors of sedimentary metal contamination for the Beung Boraphet reservoir. PMID:23079739

  15. Snails and trematode infection after Indian Ocean tsunami in Phang-Nga Province, southern Thailand.

    PubMed

    Sri-Aroon, Pusadee; Chusongsang, Phiraphol; Chusongsang, Yupa; Pornpimol, Surinthwong; Butraporn, Piyarat; Lohachit, Chantima

    2010-01-01

    The tsunami and non-tsunami affected areas of Takua Pa District, Phang-Nga Province were investigated for fresh- and brackish-water snails that transmit human parasitic diseases during 2006 and 2007. Among 46 snail species found, 17 species of 8 families were freshwater snails, 28 species of another 7 families were brackish-water snails, and 1 species was a land snail. Of these species, 11 freshwater snails, 4 brackish-water snails and 1 land snail were of medical importance. The fresh-water snails were Pomacea canaliculata, Pila angelica, P. gracilis, P. polita, Filopaludina (S.) martensi, F. (F.) s. polygramma, Melanoides tuberculata, Indoplanorbis exuxtus, Radix rubiginosa, Helicorbis umbilicalis, Gyraulus convexiusculus. Four brackish-water snails were Cerithidea cingulata, C. djadjarensis, C. alata, Sermyla riqueti and Achatina fulica was the land snail. I. exutus, M. tuberculata and F. (F.) s. polygramma harbored Xiphidio, Microcercus, Furocercus, Echinostome cercariae, and cercaria without eyespots or tail with hair. Three species of brackish-water snails, Cerithidia cingulata, C. djadjariensis, and C. alata presented with 6 types of trematode cercariae and rediae. Knowledge of medically important snails and their parasitic diseases, and prevention were given to Takua Pa people by poster, pamphlets and broadcasting through community radio. PMID:20578482

  16. Sustaining dry surfaces under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-08-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  17. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  18. Sustaining dry surfaces under water.

    PubMed

    Jones, Paul R; Hao, Xiuqing; Cruz-Chu, Eduardo R; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M; Varanasi, Kripa K; Megaridis, Constantine M; Walther, Jens H; Koumoutsakos, Petros; Espinosa, Horacio D; Patankar, Neelesh A

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  19. SURFACE WATER INTAKES

    EPA Science Inventory

    The Safe Drinking Water Information System (SDWIS) GIS layer represents the locations of public water system (PWS) facilities in NY and NJ; every PWS has one or more facilities. Data for this layer came from the Safe Drinking Water Information System/Federal version (SDWIS/FED)...

  20. Water on a Hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  1. Using snails as bioindicators of heavy metal exposure at a Department of Defense facility

    SciTech Connect

    Frenkel, C.; Randolph, J.C.; Henshel, D.S.

    1995-12-31

    Mollusks are useful bioindicators of aquatic contamination. They are easy to identify and handle, are widely distributed, and are known to accumulate heavy metals. The authors evaluated the accumulation of heavy metals in snails at points both upstream and downstream from potential contaminant sources, indigenous snails (Elimia livescens) were collected from an upstream site and placed in plastic mesh cages in 6 sites in 3 watersheds on base, upstream and downstream of 3 potential contamination sources. At each site there were 3 cages containing 12 snails each. In a parallel laboratory study snails were placed in 6 jars in 3 different treatments. One treatment contained stream water taken from the same sites where the snails were collected. The other two treatments had the same stream water spiked with 2 different concentrations of metals. The higher concentration of metals reflected the level of each metal detected in surface water downstream of one of the potentially contaminated sites. The lower metal concentration jars were spiked with metals at 1/2 the concentrations used in the higher level treatment. The animals were left in the cages and the jars for 12 weeks. After being removed from the cages and jars the snails were freeze-dried, weighed whole, then dissected into shelf and organic tissue. Tissue and shell were separately analyzed for metal content. Water and sediment samples were collected in the beginning and end of the field study and also analyzed for heavy metals. The heavy metal analysis was done on an atomic absorption spectrophotometer. Fe, Mn, Pb and Ni have been analyzed. Initial results show that there are differences in the concentrations of the metals in the three watersheds. Also, there is a higher concentration of Fe and Mn in tissue compared to shell, and higher concentration of Pb in shell compared to tissue.

  2. The Classroom Animal: Snails.

    ERIC Educational Resources Information Center

    Kramer, David S.

    1985-01-01

    Points out that snails are interesting and easily-managed classroom animals. One advantage of this animal is that it requires no special attention over weekends or holidays. Background information, anatomy, reproduction, and feeding are discussed, along with suggestions for housing aquatic and/or land snails. (DH)

  3. Snail Shell Science.

    ERIC Educational Resources Information Center

    Matthews, Catherine

    1992-01-01

    Presents three inquiry-based lessons to develop the science process skills of observation, identification, and classification. Activities use whelk eggs and snail shells as the focus of the students' inquiries. Provides a list of 19 facts about whelks and snails. (MDH)

  4. CONNECTICUT SURFACE WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Surface Water Quality Classifications for Connecticut. It is comprised of two 0Shapefiles with line and polygon features. Both Shapefiles must be used together with the Hydrography datalayer. The polygon Shapefile includes surface water qual...

  5. Surface Water Response Modeling

    EPA Science Inventory

    During response to spills, or for facility planning, the vulnerability of downstream water resources is a major concern. How long and at what concentration do spilled contaminants reach downstream receptors? Models have the potential to answer these questions, but only if they ...

  6. Snail Chirality: The Unwinding.

    PubMed

    Maderspacher, Florian

    2016-03-01

    Most snails are coiled clockwise, but in some species rare genetic variants with reverse coiling occur. Now, a molecular determinant of coiling direction has been identified, the cytoskeletal regulator formin. PMID:26954445

  7. [Protein synthesis-dependent reactivation of environmental conditioned reflex in terrestrial snails].

    PubMed

    Ga?nutdinova, T Kh; Tagirova, R R; Ismailova, A I; Muranova, L N; Ga?nutdinov, Kh L; Balaban, P M

    2004-01-01

    We investigated influence of anisomycine injection on reconsolidation of contextual memory after development of environmental conditioned reflex in terrestrial snail Helix. Testing the amplitude of behavioral reactions (tentacle withdrawal) in response to standard tactile stimulation of the skin in two contexts: a) when the snail was fixed by the shell and was moving on the surface of the ball floating in water, or b) was moving on the flat surface of glass terrarium, has shown no difference in response amplitudes. After a session of electric shocks (5 days) in one context only (ball) the associative learning was clearly observed as the significant difference of response amplitudes in two contexts. On the other day following testing was performed a session of "reminding", immediately after which the snails were injected by anisomycine (control snails were injected by saline solution). Testing has shown that injection of anisomycine led to impairment of the context conditioning. Results suggest that the mechanisms of consolidation of new memory and memory reconsolidation after retrieval are not identical. PMID:15658044

  8. Persisting Water Droplets on Water Surfaces

    PubMed Central

    Klyuzhin, Ivan S.; Ienna, Federico; Roeder, Brandon; Wexler, Adam; Pollack, Gerald H.

    2011-01-01

    Droplets of various liquids may float on the respective surfaces for extended periods of time prior to coalescence. We explored the features of delayed coalescence in highly purified water. Droplets several millimeters in diameter were released from a nozzle onto a water surface. Results showed that droplets had float times up to hundreds of milliseconds. When the droplets did coalesce, they did so in stepwise fashion, with periods of quiescence interspersed between periods of coalescence. Up to six steps were noted before the droplet finally vanished. Droplets were released in a series, which allowed the detection of unexpected abrupt float-time changes throughout the duration of the series. Factors such as electrostatic charge, droplet size, and sideways motion had considerable effect on droplet lifetime, as did reduction of pressure, which also diminished the number of steps needed for coalescence. On the basis of present observations and recent reports, a possible mechanism for noncoalescence is considered. PMID:20961076

  9. Relationship between Snail Population Density and Infection Status of Snails and Fish with Zoonotic Trematodes in Vietnamese Carp Nurseries

    PubMed Central

    Clausen, Jesper Hedegaard; Madsen, Henry; Murrell, K. Darwin; Phan Thi, Van; Nguyen Manh, Hung; Viet, Khue Nguyen; Dalsgaard, Anders

    2012-01-01

    Background Fish-borne zoonotic trematodes (FZT) are a food safety and health concern in Vietnam. Humans and other final hosts acquire these parasites from eating raw or under-cooked fish with FZT metacercariae. Fish raised in ponds are exposed to cercariae shed by snail hosts that are common in fish farm ponds. Previous risk assessment on FZT transmission in the Red River Delta of Vietnam identified carp nursery ponds as major sites of transmission. In this study, we analyzed the association between snail population density and heterophyid trematode infection in snails with the rate of FZT transmission to juvenile fish raised in carp nurseries. Methodology/Principal Findings Snail population density and prevalence of trematode (Heterophyidae) infections were determined in 48 carp nurseries producing Rohu juveniles, (Labeo rohita) in the Red River Delta area. Fish samples were examined at 3, 6 and 9 weeks after the juvenile fish were introduced into the ponds. There was a significant positive correlation between prevalence of FZT metacercariae in juvenile fish and density of infected snails. Thus, the odds of infection in juvenile fish were 4.36 and 11.32 times higher for ponds with medium and high density of snails, respectively, compared to ponds where no infected snails were found. Further, the intensity of fish FZT infections increased with the density of infected snails. Interestingly, however, some ponds with no or few infected snails were collected also had high prevalence and intensity of FZT in juvenile fish. This may be due to immigration of cercariae into the pond from external water sources. Conclusions/Significance The total number and density of potential host snails and density of host snails infected with heterophyid trematodes in the aquaculture pond is a useful predictor for infections in juvenile fish, although infection levels in juvenile fish can occur despite low density or absence infected snails. This suggests that intervention programs to control FZT infection of fish should include not only intra-pond snail control, but also include water sources of allochthonous cercariae, i.e. canals supplying water to ponds as well as snail habitats outside the pond such as rice fields and surrounding ponds. PMID:23285303

  10. An ecological study of Bithynia snails, the first intermediate host of Opisthorchis viverrini in northeast Thailand.

    PubMed

    Wang, Yi-Chen; Ho, Richard Cheng Yong; Feng, Chen-Chieh; Namsanor, Jutamas; Sithithaworn, Paiboon

    2015-01-01

    Infection with the food-borne trematodiasis, liver fluke Opisthorchis viverrini, is a major public health concern in Southeast Asia. While epidemiology and parasitic incidence in humans are well studied, ecological information on the O. viverrini intermediate hosts remains limited. This study aimed to investigate the factors affecting the distribution and abundance of the first intermediate host, Bithynia siamensis goniomphalos snails. Water quality and snails were sampled in 31 sites in Muang District, Khon Kaen Province, Thailand from June 2012 to January 2013 to characterize the B.s. goniomphalos snail habitats. Species relative abundance and Shannon's diversity and evenness indices were employed to describe snail compositions and diversities across different habitat types. Statistical analyses were conducted to examine the extent to which the water quality variables and species interactions account for the relative abundance of B.s. goniomphalos snails. The results showed that the freshwater habitats of ponds, streams and rice paddies possessed significantly different abiotic water qualities, with water temperature and pH showing distinct statistical differences (P<0.05). Different habitats had different snail diversity and species evenness, with high B.s. goniomphalos snail abundance at rice paddy habitats. The differences in snail abundance might be due to the distinct sets of abiotic water qualities associated with each habitat types. The relative abundance of B.s. goniomphalos snails was found to be negatively correlated with that of Filopaludina martensi martensi snails (r=-0.46, P<0.05), underscoring the possible influence of species interaction on B.s. goniomphalos snail population. Field work observations revealed that rice planting seasons and irrigation could regulate snail population dynamics at rice paddy habitats. This study provides new ecological insights into the factors affecting Bithynia snail distribution and abundance. It bridges the knowledge gap in O. viverrini disease ecology and highlights the potential effect of anthropogenic irrigation practices on B.s. goniomphalos snail ecology. PMID:24561073

  11. Modeling snail breeding in Bioregenerative Life Support System

    NASA Astrophysics Data System (ADS)

    Kovalev, Vladimir; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..

    It is known that snail meat is a high quality food that is rich in protein. Hence, heliciculture or land snail farming spreads worldwide because it is a profitable business. The possibility to use the snails of Helix pomatia in Biological Life Support System (BLSS) was studied by Japanese Researches. In that study land snails were considered to be producers of animal protein. Also, snail breeding was an important part of waste processing, because snails were capable to eat the inedible plant biomass. As opposed to the agricultural snail farming, heliciculture in BLSS should be more carefully planned. The purpose of our work was to develop a model for snail breeding in BLSS that can predict mass flow rates in and out of snail facility. There are three linked parts in the model called “Stoichiometry”, “Population” and “Mass balance”, which are used in turn. Snail population is divided into 12 age groups from oviposition to one year. In the submodel “Stoichiometry” the individual snail growth and metabolism in each of 12 age groups are described with stoichiometry equations. Reactants are written on the left side of the equations, while products are written on the right side. Stoichiometry formulas of reactants and products consist of four chemical elements: C, H, O, N. The reactants are feed and oxygen, products are carbon dioxide, metabolic water, snail meat, shell, feces, slime and eggs. If formulas of substances in the stoichiometry equations are substituted with their molar masses, then stoichiometry equations are transformed to the equations of molar mass balance. To get the real mass balance of individual snail growth and metabolism one should multiply the value of each molar mass in the equations on the scale parameter, which is the ratio between mass of monthly consumed feed and molar mass of feed. Mass of monthly consumed feed and stoichiometry coefficients of formulas of meat, shell, feces, slime and eggs should be determined experimentally. An age structure and size of snail population are optimized on the base of individual growth and metabolic characteristics with the help of the second submodel "Population". In this simulation a daily amount of snail meat consumed by crewmembers is a guideline which specifies population productivity. Also, the daily amount of snail meat may have an optional value. Prescribed population characteristics are used in the third submodel "Mass balance" to equalize input and output mass flow rates of snail facility. In this submodel we add a water and ash to the organic masses of feed, meat, feces, shell and eggs. Moreover, masses of calcium carbonate and potable water are added to the left side of mass balance equations. Mass of calcium carbonate is distributed among shell, feces and eggs. Summarizing the twelve equations for each snail age, we get the mass balance equation for the snail facility. All simulations are performed by using Solver Add-In for Excel 2007.

  12. Some aspects of snail ecology in South Africa

    PubMed Central

    de Meillon, B.; Frank, G. H.; Allanson, B. R.

    1958-01-01

    In this paper, the authors present the preliminary results of a recent ecological survey of some rivers in the Transvaal, Union of South Africa. Representative samples of the molluscan fauna of the rivers were collected and chemical analyses of the river waters were carried out. In addition, such characteristics as current speed, temperature, turbidity, biochemical oxygen demand, and amount of oxygen absorbed from potassium permanganate were determined. No evidence was obtained to show that the chemical composition of natural, unpolluted waters plays any part in determining vector snail habitats. Current speed was found to have some effect, bilharzia vector snails not being found in fast-flowing waters. Of the other factors, turbidity was shown to be of some importance, probably because it affects the growth of the algae on which certain snails seem to depend for their proper development, and severe pollution with sewage and industrial wastes also appeared to have an adverse affect on the snail population. PMID:13573112

  13. Present and Future Surface Water

    NASA Astrophysics Data System (ADS)

    Bryan, R.; Hinzman, L. D.

    2008-12-01

    This poster presents a technical approach that is being developed to evaluate change in size and distribution of northern lakes and wetlands spatially and temporally under a climate warming scenario. The landscape shifts expected for the future restrain estimates of carbon dioxide and methane flux to the atmosphere and shape considerations of these local and regional measurements in the global budget. A high-resolution temperature model, TopoClimate, references USGS determined topographic features and the National Weather Service weather forecast model, Global Forecast System, to represent synoptically and topographically driven processes at present. For future simulations, TopoClimate references GCM model ECHAM5/MPI-OM under balanced energy sources in an integrated world emissions scenario, A1B, and topography. ECHAM5/MPI-OM best reproduces the present key features of both Alaska and the Arctic observed synoptic climates. A numerical model for estimating the permafrost thermal composition, TTOP, is used to improve the resolution of permafrost extent in the Yukon River Basin. TTOP will reference the TopoClimate temperature map, as well as maps of soil moisture and thermal properties, surface n-factors derived from landcover type, and snow cover. The propagation of surface temperature through soil is numerically modeled by TTOP, using soil properties and microclimatic effects. TTOP has been applied to the Seward Peninsula in estimating past, present, and future permafrost distributions. A physically based, potentiometric surface algorithm will extract steepness and relative elevation from topography. Precipitation inputs are National Climate Data Center meteorological data, distributed by MicroMet and SnowModel, and from ECHAM5/MPI-OM under the A1B scenario for future. Derived hydraulic head will be used to determine local groundwater discharge and recharge areas. Additionally, we plan to reference satellite image classification of wetlands. Hydraulic gradient, analyzed in concert with permafrost distribution provides insight into surface water presence. The approach includes continual change of surface water presence evaluated through time.

  14. Inquiry, Land Snails, and Environmental Factors.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Krantz, Patrick D.

    2002-01-01

    Introduces land snails for use in inquiry-based science activities. Describes common characteristics and safety considerations while introducing students to land snails. Explains procedures for inquiry-based use of land snails in classrooms. (YDS)

  15. Food composition and feeding habits of some fresh water fishes in various water systems at Abbassa, Egypt, with special reference to snails transmitting diseases.

    PubMed

    El Gamal, Abd El-Rahman A; Ismail, Nahed M M

    2005-08-01

    Study of feeding habits of freshwater fishes collected from ponds at World Fish Center (ICLARM) showed that the African catfish, Clarias gariepinus and Forskal catfish, Bagras bayad had the highest proportion of full stomachs (31-58% & 44-45% respectively). In cichlid fishes, the rate of full stomachs was much lower, being 0.0-12.5% and showed higher incidence of empty stomachs that varied from 37.5% for Oreochromis niloticus to 78.3% for Sarotherodon galilaeus. Food items were analyzed by the percentage of point assessment (P%), abundance (N%) and frequency of occurrence (F%). Results of the three methods of analyses (Index of relative importance, I.R.I) emphasized the importance of plants (1214.7) as a major food resource in the stomach of Nile tilapia, O. niloticus followed by shell fragments (628.5), whereas, snail soft bodies were the main food category in the diet of hybrid tilapia O. niloticus x O. aureus (2539.3). Shell fragments (652) and snail soft bodies (296.9) were the 1st in relative importance as foods of O. aurea. In case of S. galillae, shell fragments (338) came 2nd in I.R.I. after plants (559). Present investigation shows that shell fragments were represented by 11.1% and 15.1% in the diet of African catfish, C. gariepinus by (N%) and (P%) methods, however, they came as the second food item in its diet by I.R.I (1237.3). According to F% method, both shell fragments and Crustacea were present in the diet of C. gariepinus considerable proportions each of 47.4%. Shell fragments were represented by low proportions in the diet of B. bayad 3.9, 2.1 and 22.2 by N%, P% and F% respectively. PMID:16083073

  16. Heavy metal concentrations in the freshwater snail Biomphalaria alexandrina uninfected or infected with cercariae of Schistosoma mansoni and/or Echinostoma liei in Egypt: the potential use of this snail as a bioindicator of pollution.

    PubMed

    Mostafa, O M S; Mossa, A-T H; El Einin, H M A

    2014-12-01

    In spite of using aquatic snails as bioindicators for water pollution, little attention has been paid to the effect of parasitism upon the concentration of heavy metals (Al, Cd, Cu, Fe, Mn, Pb and Zn) in these organisms. The present study therefore aimed to compare the concentrations of heavy metals in trematode-infected Biomphalaria alexandrina collected from Kafer Alsheikh and Menofia provinces, Egypt, with uninfected snails from the same sites, in order to assess the effect of parasitism on the use of these snails as bioindicators. The concentrations of heavy metals in the soft parts and shells of snails were measured by flame atomic absorption spectrometry. The results showed that the heavy metal profile in snails infected with Echinostoma liei was very different from that in snails infected with Schistosoma mansoni. The total concentration of heavy metals in E. liei-infected snails collected from Kafer Alsheikh or Menofia province was greater than in uninfected snails. In contrast, the total concentration of heavy metals in S. mansoni-infected snails was reduced compared with uninfected snails. In conclusion, the status of snails with respect to parasitic infection must be taken into consideration when these snails are used as bioindicators. PMID:23710821

  17. Experimental infection of the digeneans to some congeneric snail species radiated in a single water system: Relative importance of local evolution and phylogenetic constraint.

    PubMed

    Urabe, Misako

    2016-06-01

    To determine the relative importance of local adaptation caused by host-parasite coevolution and resource tracking by the parasites, the susceptibility of the freshwater snail genus Semisulcospira to the digenean parasite genus Genarchopsis was investigated experimentally. Four snail species endemic to the Lake Biwa system in Japan and two non-endemic species were investigated. All but one species was also tested for local variation in susceptibility. Parasites were obtained from Takashima (mix population of Genarchopsis gigi and Genarchopsis chubuensis) and Nagahama (G. chubuensis). In endemic Semisulcospira, closely related specie pairs (Semisulcospira habei and Semisulcospira niponica, Semisulcospira decipiens and Semisulcospira nakasekoae) showed similar susceptibilities to parasites from both localities. S. habei and S. niponica were highly susceptible to parasites from Takashima, but were resistant to parasites from Nagahama. S. decipiens and S. nakasekoae showed moderate susceptibility to parasites from both localities. None of the endemic snail species showed a clear local variation in susceptibility. These results show that the susceptibility of endemic Semisulcospira to Genarchopsis is conservative and can be regarded as an example of resource-tracking. One of the non-endemic snails, Semisulcospira libertina, showed local variation in susceptibility. This variation was not related to the sympatry of the parasites used for the experimental infection, suggesting that it was not the result of local adaptation by parasites. PMID:26773868

  18. Infection with schistosome parasites in snails leads to increased predation by prawns: implications for human schistosomiasis control.

    PubMed

    Swartz, Scott J; De Leo, Giulio A; Wood, Chelsea L; Sokolow, Susanne H

    2015-12-01

    Schistosomiasis - a parasitic disease that affects over 200 million people across the globe - is primarily transmitted between human definitive hosts and snail intermediate hosts. To reduce schistosomiasis transmission, some have advocated disrupting the schistosome life cycle through biological control of snails, achieved by boosting the abundance of snails' natural predators. But little is known about the effect of parasitic infection on predator-prey interactions, especially in the case of schistosomiasis. Here, we present the results of laboratory experiments performed on Bulinus truncatus and Biomphalaria glabrata snails to investigate: (i) rates of predation on schistosome-infected versus uninfected snails by a sympatric native river prawn, Macrobrachium vollenhovenii, and (ii) differences in snail behavior (including movement, refuge-seeking and anti-predator behavior) between infected and uninfected snails. In predation trials, prawns showed a preference for consuming snails infected with schistosome larvae. In behavioral trials, infected snails moved less quickly and less often than uninfected snails, and were less likely to avoid predation by exiting the water or hiding under substrate. Although the mechanism by which the parasite alters snail behavior remains unknown, these results provide insight into the effects of parasitic infection on predator-prey dynamics and suggest that boosting natural rates of predation on snails may be a useful strategy for reducing transmission in schistosomiasis hotspots. PMID:26677260

  19. Surface water discharges from onshore stripper wells.

    SciTech Connect

    Veil, J. A.

    1998-01-16

    Under current US Environmental Protection Agency (EPA) rules, small onshore oil producers are allowed to discharge produced water to surface waters with approval from state agencies; but small onshore gas producers, however, are prohibited from discharging produced water to surface waters. The purpose of this report is to identify those states that allow surface water discharges from small onshore oil operations and to summarize the types of permitting controls they use. It is intended that the findings of this report will serve as a rationale to encourage the EPA to revise its rules and to remove the prohibition on surface water discharges from small gas operations.

  20. Larval stages of digenetic trematodes in Melanopsis praemorsa snails from freshwater bodies in Palestine

    PubMed Central

    Bdir, Sami; Adwan, Ghaleb

    2011-01-01

    Objective To detect the species of larval trematodes (cercariae) in Melanopsis praemorsa snails from 5 different fresh water bodies in Palestine. Methods A total of 1 880 Melanopsis praemorsa snails were collected from different fresh water bodies in Palestine from October, 2008 to November, 2010. Cercariae in Melanopsis praemorsa snails were obtained by lighting and crushing methods. The behavior of cercariae was observed using a dissecting microscope. Results Three different species of larval trematodes were identified from Melanopsis praemorsa snails collected only from Al-Bathan fresh water body, while snails from other water bodies were not infected. These species were microcercous cercaria, xiphidiocercaria and brevifurcate lophocercous cercaria. These cercariae called Cercaria melanopsi palestinia I, Cercaria melanopsi palestinia II and Cercaria melanopsi palestinia III have not been described before from this snail in Palestine. The infection rate of Melanopsis praemorsa collected from Al-Bathan fresh water body was 5.7%, while the overall infection rate of snails collected from all fresh water bodies was 4.3%. Details are presented on the morphology and behavior of the cercariae as well as their development within the snail. Conclusions These results have been recorded for the first time and these cercariae may be of medical and veterinary importance. PMID:23569759

  1. The use of cold water to kill the exotic snail, red-rim melania Melanoides tuberculatus, a vector of the fish gill trematode Centrocestus formosanus, caught in dip nets and small seines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A non-indigenous tropical snail, the red-rim melania Melanoides tuberculatus, has become established and is spreading in the United States. This parthenogenic snail can brood young internally, has the potential to displace native snail populations, and can transmit trematodes directly to fish and i...

  2. Copper uptake and depuration by juvenile and adult Florida apple snails (Pomacea paludosa).

    PubMed

    Hoang, Tham C; Rogevich, Emily C; Rand, Gary M; Frakes, Robert A

    2008-10-01

    The present study characterized copper (Cu) uptake and depuration by juvenile and adult Florida apple snails (Pomacea paludosa) from water, soil, and diet. During a 28-day uptake period, juvenile apple snails were exposed to aqueous Cu and adult apple snails were exposed to Cu-contaminated soil, water, and food. In the follow-up 14-day depuration period, both juvenile and adult apple snails were held in laboratory freshwater with background Cu concentrations<4 microg/l. For juvenile apple snails, whole body Cu concentrations increased with time and reached a plateau after 14 days. The data followed Michaelis-Menten kinetics rather than a one compartment first order kinetics model. The mean Cu bioconcentration factor (BCF) for juvenile apple snails was 1493 and the depuration half-life was 10.5-13.8 days. For adult snails, dietary uptake of Cu resulted in higher bioaccumulation factors (BAFs) compared to uptake from soil. Most of the accumulated Cu was located in soft tissue (about 60% in the viscera and 40% in the foot). The shell contained <1% of the total accumulated copper. Soft tissue is usually consumed by predators of the apple snail. Therefore, the results of the present study show that Cu transfer through the food chain to the apple snail may lead to potential risk to its predators. PMID:18642077

  3. Water surface capturing by image processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  4. How Stress Alters Memory in Smart Snails

    PubMed Central

    Dalesman, Sarah; Lukowiak, Ken

    2012-01-01

    Cognitive ability varies within species, but whether this variation alters the manner in which memory formation is affected by environmental stress is unclear. The great pond snail, Lymnaea stagnalis, is commonly used as model species in studies of learning and memory. The majority of those studies used a single laboratory strain (i.e. the Dutch strain) originating from a wild population in the Netherlands. However, our recent work has identified natural populations that demonstrate significantly enhanced long-term memory (LTM) formation relative to the Dutch strain following operant conditioning of aerial respiratory behaviour. Here we assess how two populations with enhanced memory formation (i.e. smart snails), one from Canada (Trans Canada 1: TC1) and one from the U.K. (Chilton Moor: CM) respond to ecologically relevant stressors. In control conditions the Dutch strain forms memory lasting 13 h following a single 0.5 h training session in our standard calcium pond water (80 mg/l [Ca2+]), whereas the TC1 and CM populations formed LTM lasting 5+ days following this training regime. Exposure to low environmental calcium pond water (20 mg/l [Ca2+]), which blocks LTM in the Dutch strain, reduced LTM retention to 24 h in the TC1 and CM populations. Crowding (20 snails in 100 ml) immediately prior to training blocks LTM in the Dutch strain, and also did so in TC1 and CM populations. Therefore, snails with enhanced cognitive ability respond to these ecologically relevant stressors in a similar manner to the Dutch strain, but are more robust at forming LTM in a low calcium environment. Despite the two populations (CM and TC1) originating from different continents, LTM formation was indistinguishable in both control and stressed conditions. This indicates that the underlying mechanisms controlling cognitive differences among populations may be highly conserved in L. stagnalis. PMID:22384220

  5. Sediment copper bioavailability to freshwater snails in south Florida: risk implications for the Everglade snail kite (Rostrhamus sociabilis plumbeus).

    PubMed

    Frakes, Robert A; Bargar, Timothy A; Bauer, Emily A

    2008-10-01

    Many properties being acquired as part of the Comprehensive Everglades Restoration Plan (CERP) are heavily contaminated with copper. Estimated copper bioaccumulation in the Florida apple snail (Pomacea paludosa) has led to the prediction of risk to the Everglade snail kite (Rostrhamus sociabilis plumbeus) at some CERP projects. Field study results presented in this paper examine the relationship between copper levels in sediments, snails, and other biota. Copper concentrations in all biota (snails, aquatic vascular plants, and periphyton) were strongly correlated with those in sediments. No correlation with water copper concentrations was evident. Mean copper concentrations in snails ranged from 23.9 mg/kg at the reference site to 732 mg/kg at a high copper site. Calculated biota-sediment accumulation factors (BSAFs) ranged from 36.7 to 7.0 over the range of copper levels in sediments. BSAFs were highest at low copper levels in sediments and declined sharply as copper levels in sediment increased. Risk for the snail kite is discussed in light of the results of this study. PMID:18679796

  6. Ground water and surface water; a single resource

    USGS Publications Warehouse

    Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

    1998-01-01

    The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

  7. TREATMENT OF SEASONAL PESTICIDES IN SURFACE WATERS

    EPA Science Inventory

    Numerous pesticides were monitored in surface waters in agricultural areas. Atrazine, alachlor, metolachlor, cyanazine, metribuzin, carbofuran, linuron, and simazine were found in the influent to three water treatment plants in storm runoff following their application. Studies at...

  8. Interaction between water and defective silica surfaces

    SciTech Connect

    Chen Yunwen; Cheng Haiping

    2011-03-21

    We use the density functional theory method to study dry (1 x 1) {alpha}-quartz (0001) surfaces that have Frenkel-like defects such as oxygen vacancy and oxygen displacement. These defects have distinctively different effects on the water-silica interface depending on whether the adsorbent is a single water molecule, a cluster, or a thin film. The adsorption energies, bonding energies, and charge transfer or redistributions are analyzed, from which we find that the existence of a defect enhances the water molecule and cluster surface interaction by a large amount, but has little or even negative effect on water thin film-silica surface interaction. The origin of the weakening in film-surface systems is the collective hydrogen bonding that compromises the water-surface interaction in the process of optimizing the total energy. For clusters on surfaces, the lowest total energy states lower both the bonding energy and the adsorption energy.

  9. Use of a saponin based molluscicide to control Pomacea canaliculata snails in Southern Brazil.

    PubMed

    San Martns, R; Gelmi, Claudio; de Oliveira, Jaime Vargas; Galo, Jos Luis; Pranto, Honorio

    2009-10-01

    Pomacea canaliculata snails pose a severe problem to direct seeded rice cultivated in Southern Brazil. Control of this snail is nowadays performed with toxic chemicals such as copper sulfate and fungicides such as fentin. A novel natural molluscicide based on alkali modified quinoa (Chenopodium quinoa) saponins was tested under laboratory conditions. Snails were collected in rice fields close to Porto Alegre (State of Rio Grande do Sul) and in Brusque (State of Santa Catarina, 400 km north of Porto Alegre). In Santa Catarina the product was very effective, while in Porto Alegre it had no effect. This unexpected behavior was probably due to the respiratory habits of the snails under different contents of dissolved oxygen in the water. Near Porto Alegre the water used in rice fields is heavily polluted, with dissolved oxygen levels of 1-2 ppm, and the snails rely primarily on their siphon and lungs to breathe. Since saponin control is probably due to an interaction between saponins with the sterols present in the cell walls in the gills, no control was observed. By contrast, in Santa Catarina the dissolved oxygen level of the water is 5-6 ppm, and the snails remain mostly underwater, breathing with their gills. In this case the snails died within 24 h at a dose of 20 and 30 ppm of product. To test this observation, snails grown in polluted waters were forced to remain underwater in saponin solutions and water (control) preventing the use of their siphon to breathe. The snails exposed to saponin solutions died, while the control snails survived, indicating that they were still able to use their gills to breathe. These results indicate that the use of the saponin product is limited to rice fields not irrigated with heavily polluted waters. PMID:19911565

  10. Radar imaging of water surface flow fields

    NASA Astrophysics Data System (ADS)

    Nicolas, K. R.; Lindenmuth, W. T.; Weller, C. S.; Anthony, D. G.

    We describe the capabilities of coherent high resolution radar to observe remotely the effects of an upwelling subsurface flow on the water surface. This observation is possible because the radar radiation backscatters very strongly from surface features with dimensions similar to its wavelength, in this case X-band at 0.03 m. This technique provides imaging capability with relatively high spatial resolution ( 0.3 m) and fast time sampling ( 0.006 s) over a large surface area. The processed data reveal both the line-of-sight velocity spectrum of moving water surface features, and their water surface radar backscatter cross-section. We believe that the surface features are generated by subsurface vortices oriented normal to the surface. The vortices are advected with the bulk flow of the jet. Our radar observations of the down-stream flow from a submerged waterjet that is directed parallel to the surface are consistent with those previously measured by laser velocimetry.

  11. Streaks Of Colored Water Indicate Surface Airflows

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1994-01-01

    Response faster and contamination less than in oil-flow technique. Flowing colored water provides accurate and clean way to reveal flows of air on surfaces of models in wind tunnels. Colored water flows from small orifices in model, forming streak lines under influence of air streaming over surface of model.

  12. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water

  13. Muscle versus Snail: Muscle wins.

    PubMed

    Simoes, Sergio; Tepass, Ulrich

    2016-01-18

    Epithelial-mesenchymal transitions (EMTs) are often governed by the transcription factor Snail and entail the loss of apical junctions from epithelial cells. In this issue, Weng and Wieschaus (2016. J Cell Biol. http://dx.doi.org/10.1083/jcb.201508056) report that actomyosin contractility can strengthen junctions to override Snail-dependent junctional disassembly and postpone EMT during Drosophila melanogaster gastrulation. PMID:26754649

  14. Two dimensional mixtures at water surface

    NASA Astrophysics Data System (ADS)

    Choudhuri, Madhumita; Datta, Alokmay

    2013-02-01

    Thiol capped gold nanoparticles (Au NPs) form a simple two dimensional (2D) liquid on water surface but this thin film is unstable under compression. Amphiphilic stearic acid (StA) molecules on water surface, on the other hand, form a complex and more stable 2D liquid. We have initiated a study on a mixture of StA and Au NPs in a monolayer through Surface Pressure (π) - Specific Molecular Area (A) isotherms and Brewster Angle Microscopy (BAM). A mixture of Stearic Acid and Au nanoparticles (10% by weight) produces a monolayer on water surface that acts as a 2D liquid with phases that are completely reversible with negligible hysteresis.

  15. Gray solitons on the surface of water.

    PubMed

    Chabchoub, A; Kimmoun, O; Branger, H; Kharif, C; Hoffmann, N; Onorato, M; Akhmediev, N

    2014-01-01

    The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrdinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons. PMID:24580162

  16. Gray solitons on the surface of water

    NASA Astrophysics Data System (ADS)

    Chabchoub, A.; Kimmoun, O.; Branger, H.; Kharif, C.; Hoffmann, N.; Onorato, M.; Akhmediev, N.

    2014-01-01

    The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrödinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons.

  17. Pesticide mitigation strategies for surface water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pesticide residues are being increasingly detected in surface water in agricultural and urban areas. In some cases water bodies are being listed under the Clean Water Act 303(d) as impaired and Total Maximum Daily Loads are required to address the impairments in agricultural areas. Pesticides in sur...

  18. IDENTIFYING VULNERABLE SURFACE WATER UTILITIES

    EPA Science Inventory

    This study was conducted to provide a mechanism and framework with which utility managers could analyze the effects of upstream discharges on source waters. Specific components of the project included selection, implementation, and demonstration of a microcomputer-based commerci...

  19. A review of surface water quality models.

    PubMed

    Wang, Qinggai; Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

  20. A Review of Surface Water Quality Models

    PubMed Central

    Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

  1. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  2. Gas Transfer at Water Surfaces

    NASA Astrophysics Data System (ADS)

    Matthess, Georg

    1984-04-01

    The burning of fossil carbon compounds causes an annual rise of about 0.2% of the total atmospheric CO2, which is about 50% the annual output of manmade CO2. One of the major reasons for this beneficial phenomenon is probably the CO2 uptake by the ocean water. A thorough knowledge of this process is needed for a prediction of the long-term impact of the use of fossil fuels on the environment. The example indicates that mass transfer across the gas-water interface is an important aspect in the geophysical, geochemical, and biochemcial cycle of natural and manmade substances. It regulates the transition between the dissolved state in the water and the gaseous state in the atmosphere. The knowledge of the air-water exchange is probably the most advanced of all the transport processes between environmental compartments. Nevertheless, there is still a need for a better understanding of this interfacial mass transfer, which is a critical factor of great scientific and practical relevance in assessments of the various pathways of wastes in the environment and for their engineering management.

  3. Water vapor retrieval over many surface types

    SciTech Connect

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  4. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  5. Ecological control of the snail host of Schistosoma japonicum in the Philippines

    PubMed Central

    Hairston, Nelson G.; Santos, Benjamin C.

    1961-01-01

    Ecological measures for the control of Oncomelania quadrasi have been in effect over a large part of the municipality of Palo, Leyte, Philippines, since the end of 1956. These measures involve draining, ponding or filling snail habitats. The results show that complete eradication of the snails is possible where complete control of water is achieved; less radical measures always leave a greater or smaller fraction of the snail population. In the area where control was planned, reductions of 50%, 80% and 85.7% were observed by mid-year 1957, 1958 and 1959 respectively. The figures include four large snail populations not subjected to control measures, but within the planned area; if these are omitted, 95% of the snails had been eliminated by July 1959. The measures used are expensive, but result in benefits in land reclamation and improved land use sufficient to offset the high cost. PMID:20604106

  6. The feeding habits of the snail kite in Florida, USA

    USGS Publications Warehouse

    Sykes, P.W., Jr.

    1987-01-01

    The feeding habits of the Snail Kite (Rostrhamus sociabilis) were observed intermittently from 1967-1980 in Florida, USA. Approximately 97% of all observed foraging bouts were over marshes having sparse emergent vegetation. The visually-hunting kite was unable to forage over floating mats of exotic water hyacinth (Eichhornia crassipes). Male kites had shorter hunting bouts than females. For still-hunting, the birds' perches ranged from 0.15-4.6 m high and captures occurred an average of 5.8 m from perches. Females were significantly more successful (70%) for course-hunting than males (48%), but I found no difference for still-hunting. Birds tended to forage throughout the day, except for occasional inactive periods by some individuals during midday. On cooler days, foraging commenced slightly later in the morning than on warmer days. Kites probably capture freshwater apple snails (Pomacea paludosa) as deep as 16 cm. Capture rates for adults generally ranged from 1.7-3.4 snails per hour. Kites usually foraged over a common hunting area, and defense of foraging sites was rare. Handling of snails, from the kite's arrival at the feeding perch unit consumption, averaged 2.7 min, with no significant difference between sexes. However, adult females were more efficient at the extraction portion of this process than were adult males. Snails were usually extracted before being brought to the nest, except in the latter part of the nestling period when some snails were extracted at or near the nest and some were brought intact. Adults feed small chicks bill to bill, and both parents generally shared equally in care of the young, except at two nests where the females did 67% or more of the feeding. Mean length of snails taken by kites was 42.8 mm (range 25.2-71.3 n=697) and mean diameter was 45.8 mm (range 27.4-82.4, n=697). The most common size classes tkaen were 30-60 mm in length and diameter. Nutritional and gross energy values were determined for apple snails. Female snails with albumen glands removed (versus males or mixed samples of both sexes of complete tissue or with viscera removed) had the highest caloric value (.hivin.x=4.04 kcal/g, n=10). Kites cast pellets, a behavior documented here for the first time.

  7. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  8. Proterometra macrostoma (Trematoda: Azygiidae): location of the redia and emergence path from the snail, Elimia semicarinata (Gastropoda: Pleuroceridae).

    PubMed

    Rosen, Ronald; Berg, Ericka; Dolan, Julianna; King, Bailey; Martin, Michon; Mehmeti, Franceska

    2013-08-01

    The objectives of this study were to describe (1) the osmotic environment and precise location of the Proterometra macrostoma redia in its snail intermediate host, (2) where retraction of the distome body into the cercarial tail occurs, and (3) the subsequent emergence path of the cercaria out of the snail. Snails, Elimia semicarinata , were collected from North Elkhorn Creek in Scott County, Kentucky and screened daily for patent infections. Live rediae were extracted from infected snails in either artificial pond water (APW) or artificial snail water (ASW) and monitored for changes in morphology and movement every hour over 5 hr at 22 C. Infected and control snails were simultaneously fixed and decalcified in Cal-Ex II, prepared for routine paraffin sectioning, and serial sections subsequently analyzed for rediae and cercariae location. Significantly (?(2) = 42.45; 1 df; P = 0.0001) more rediae showed movement in ASW than in APW after 5 hr, suggesting a host compartment separate from the mantle cavity. Histological sections clearly showed rediae developing in close association with the snail digestive tract, within the peri-intestinal sinus of the snail, and isolated from the mantle cavity by a mantle membrane. Retraction of the distome body into the cercarial tail follows the emergence of the cercaria from the redia. Cercariae then enter the mantle cavity and emerge into fresh water through a siphon-like structure formed by the mantle collar of the snail. PMID:23343411

  9. Water desorption from nanostructured graphite surfaces.

    PubMed

    Clemens, Anna; Hellberg, Lars; Grnbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 0.06 and 0.41 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule. PMID:24018989

  10. Mars water vapor, near-surface

    NASA Technical Reports Server (NTRS)

    Ryan, J. A.; Sharman, R. D.; Lucich, R. D.

    1982-01-01

    In a previous paper we concluded that the temperature sensors aboard the Viking landers (VL-1 and VL-2) were detecting the water vapor frost point. Analysis of one Mars year of data at both lander sites substantiates this conclusion. At VL-1 it is found that the water vapor mixing ratio is constant with height through the bulk of the atmosphere, most of the time. Exceptions are during the onset phases of the two major dust storms when temporary enhancement of near-surface vapor occurs (the same phenomenon is observed at VL-2), and some depletion of near-surface vapor during the decay phase of the first storm, possibly the second storm as well. The former suggests near-surface, northward transport of water vapor with the storms. The latter suggests adsorption of vapor on dust particles followed by surface deposition. At VL-2, severe near-surface depletion of water vapor occurs during northern autumn and winter. The residual vapor is in equilibrium with the surface condensate observed at the site during this period, indicating that the source region for the condensate must be aloft with downward transport by dust fall-out. Since the near-surface water vapor mixing ratio and concentration at VL-1 generally parallels the column abundance over VL-1 obtained by the orbiters, this suggests that VL-1 can be used to give a measure of column abundance for as long as the temperature sensors remain operational.

  11. Small Molecules in the Cone Snail Arsenal.

    PubMed

    Neves, Jorge L B; Lin, Zhenjian; Imperial, Julita S; Antunes, Agostinho; Vasconcelos, Vitor; Olivera, Baldomero M; Schmidt, Eric W

    2015-10-16

    Cone snails are renowned for producing peptide-based venom, containing conopeptides and conotoxins, to capture their prey. A novel small-molecule guanine derivative with unprecedented features, genuanine, was isolated from the venom of two cone snail species. Genuanine causes paralysis in mice, indicating that small molecules and not just polypeptides may contribute to the activity of cone snail venom. PMID:26421741

  12. SURFACE WATER INTAKES, NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Department of Environment, Health, and Natural Resources, Division of Water Quality, in cooperation with the NC Center for Geographic Information and Analysis, developed the Surface Water Intakes digital data to enhance planning, siting and impact analysis in a...

  13. Habitat preference of freshwater snails in relation to environmental factors and the presence of the competitor snail Melanoides tuberculatus (Mller, 1774).

    PubMed

    Giovanelli, Alexandre; da Silva, Cesar Luiz Pinto Ayres Coelho; Leal, Gergia Borges Eccard; Baptista, Darclio Fernandes

    2005-04-01

    Our objective is to evaluate the habitat preference of freshwater snails in relation to environmental factors and the presence of the competitor snail Melanoides tuberculatus. In the first phase, snails was collected at 12 sites. This sampling sites presented a degree of organic input. In the second phase 33 sampling sites were chosen, covering a variety of lotic and lentic environments. The snail species found at Guapimirim, state of Rio de Janeiro, displayed a marked habitat preference, specially in relation to the physical characteristics of each environment. Other limiting factors for snail distribution at the studied lotic environments were the water current velocity and the amount of organic matter, mainly to Physa marmorata, M. tuberculatus, and Biomphalaria tenagophila. The absence of interactions between M. tuberculatus and another snails could be associated to the distinct spatial distribution of those species and the instability of habitats. This later factor may favor the coexistence of M. tuberculatus with B. glabrata by reduction of population density. In areas of schistosomiasis transmission some habitat modification may add to the instability of the environment, which would make room for the coexistence of M. tuberculatus and Biomphalaria spp. In this way, some of the usual measures for the control of snail hosts would prevent the extinction of populations of Biomphalaria spp. by M. tuberculatus in particular habitats. PMID:16021304

  14. Uncertainties in selected surface water quality data

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.

    2006-09-01

    Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise form natural or anthropogenic causes. Empirical quality of surface water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected surface water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2006). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability's within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerable to the overall uncertainty of surface water quality data. Temporal autocorrelation of surface water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For suspended sediments none of the methods investigated produced very reliable load estimates when weekly concentrations data were used. Uncertainties associated with loads estimates based on infrequent samples will decrease with increasing size of rivers.

  15. Stable water layers on solid surfaces.

    PubMed

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems. PMID:26856872

  16. The effect of aquatic plant abundance on shell crushing resistance in a freshwater snail.

    PubMed

    Chaves-Campos, Johel; Coghill, Lyndon M; García de León, Francisco J; Johnson, Steven G

    2012-01-01

    Most of the shell material in snails is composed of calcium carbonate but the organic shell matrix determines the properties of calcium carbonate crystals. It has been shown that the deposition of calcium carbonate is affected by the ingestion of organic compounds. We hypothesize that organic compounds not synthesized by the snails are important for shell strength and must be obtained from the diet. We tested this idea indirectly by evaluating whether the abundance of the organic matter that snails eat is related to the strength of their shells. We measured shell crushing resistance in the snail Mexipyrgus churinceanus and the abundance of the most common aquatic macrophyte, the water lily Nymphaea ampla, in ten bodies of water in the valley of Cuatro Ciénegas, Mexico. We used stable isotopes to test the assumption that these snails feed on water lily organic matter. We also measured other factors that can affect crushing resistance, such as the density of crushing predators, snail density, water pH, and the concentration of calcium and phosphorus in the water. The isotope analysis suggested that snails assimilate water lily organic matter that is metabolized by sediment bacteria. The variable that best explained the variation in crushing resistance found among sites was the local abundance of water lilies. We propose that the local amount of water lily organic matter provides organic compounds important in shell biomineralization, thus determining crushing resistance. Hence, we propose that a third trophic level could be important in the coevolution of snail defensive traits and predatory structures. PMID:22970206

  17. The Effect of Aquatic Plant Abundance on Shell Crushing Resistance in a Freshwater Snail

    PubMed Central

    Chaves-Campos, Johel; Coghill, Lyndon M.; García de León, Francisco J.; Johnson, Steven G.

    2012-01-01

    Most of the shell material in snails is composed of calcium carbonate but the organic shell matrix determines the properties of calcium carbonate crystals. It has been shown that the deposition of calcium carbonate is affected by the ingestion of organic compounds. We hypothesize that organic compounds not synthesized by the snails are important for shell strength and must be obtained from the diet. We tested this idea indirectly by evaluating whether the abundance of the organic matter that snails eat is related to the strength of their shells. We measured shell crushing resistance in the snail Mexipyrgus churinceanus and the abundance of the most common aquatic macrophyte, the water lily Nymphaea ampla, in ten bodies of water in the valley of Cuatro Ciénegas, Mexico. We used stable isotopes to test the assumption that these snails feed on water lily organic matter. We also measured other factors that can affect crushing resistance, such as the density of crushing predators, snail density, water pH, and the concentration of calcium and phosphorus in the water. The isotope analysis suggested that snails assimilate water lily organic matter that is metabolized by sediment bacteria. The variable that best explained the variation in crushing resistance found among sites was the local abundance of water lilies. We propose that the local amount of water lily organic matter provides organic compounds important in shell biomineralization, thus determining crushing resistance. Hence, we propose that a third trophic level could be important in the coevolution of snail defensive traits and predatory structures. PMID:22970206

  18. Droplet coalescence on water repellant surfaces.

    PubMed

    Nam, Youngsuk; Seo, Donghyun; Lee, Choongyeop; Shin, Seungwon

    2015-01-01

    We report our hydrodynamic and energy analyses of droplet coalescence on water repellent surfaces including hydrophobic, superhydrophobic and oil-infused superhydrophobic surfaces. The receding contact angle has significant effects on the contact line dynamics since the contact line dissipation was more significant during the receding mode than advancing. The contact line dynamics is modeled by the damped harmonic oscillation equation, which shows that the damping ratio and angular frequency of merged droplets decrease as the receding contact angle increases. The fast contact line relaxation and the resulting decrease in base area during coalescence were crucial to enhance the mobility of coalescing sessile droplets by releasing more surface energy with reducing dissipation loss. The superhydrophobic surface converts ?42% of the released surface energy to the kinetic energy via coalescence before the merged droplet jumps away from the surface, while oil-infused superhydrophobic and hydrophobic surfaces convert ?30% and ?22%, respectively, for the corresponding time. This work clarifies the mechanisms of the contact line relaxation and energy conversion during the droplet coalescence on water repellent surfaces, and helps develop water repellent condensers. PMID:25375970

  19. Quality of surface waters in Wilton, Connecticut

    USGS Publications Warehouse

    Kulp, K.P.

    1982-01-01

    Water, bed material, and biological samples were collected and analyzed at 10 surface-water gaging sites on six streams in the town of Wilton, Connecticut over a 2-year period. The data indicate fair to excellent water quality. Fecal coliform bacteria, pH, alkalinity, iron, and manganese are the parameters that most often exceed recommended limits established by either the U. S. Environmental Protection Agency or the Connecticut Department of Environmental Protection. Data from sites on the Norwalk and East Branch Silvermine Rivers indicate little if any undesirable changes in water quality take place as they flow through the study area. (USGS)

  20. Polarimetric thermal emission from periodic water surfaces

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Wilson, W. J.; Li, F. K.; Johnson, J. T.; Kong, J. A.

    1993-01-01

    Experimental results and theoretical calculations are presented to study the polarimetric emission from water surfaces with directional features. For our ground-based Ku-band radiometer measurements, a water pool was constructed on the roof of a building in the Jet Propulsion Laboratory, and a fiberglass surface with periodic corrugations in one direction was impressed on the top of the water surface to create a stationary water surface underneath it. It is observed that the measured Stokes parameters of corrugated fiberglass-covered water surfaces are functions of azimuth angles and agree very well with the theoretical calculations. The theory, after being verified by the experimental data, was then used to calculate the Stokes parameters of periodic surfaces without fiberglass surface layer and with rms height of the order of wind-generated water ripples. The magnitudes of the azimuthal variation of the calculated emissivities at horizontal and vertical polarizations corresponding to the first two Stokes parameters are found to be comparable to the values measured by airborne radiometers and SSM/I. In addition, the third Stokes parameter not shown in the literature is seen to have approximately twice the magnitude of the azimuth variation of either T(sub h) or T(sub v), which may make it more sensitive to the row direction, while less susceptive to noises because the atmospheric and system noises tend to be unpolarized and are expected to be cancelled out when the third Stokes parameter is derived as the difference of two or three power measurements, as indicated by another experiment carried out at a swimming pool with complicated surroundings. The results indicate that passive polarimetry is a potential technology in the remote sensing of ocean wind vector which is a crucial component in the understanding of global climate change. Issues related to the application of microwave passive polarimetry to ocean wind are also discussed.

  1. Water surface locomotion in tropical canopy ants.

    PubMed

    Yanoviak, S P; Frederick, D N

    2014-06-15

    Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s(-1), with some swimming at absolute speeds >10 cm s(-1). Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondyla spp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants. PMID:24920838

  2. Taken to the limit--Is desiccation stress causing precocious encystment of trematode parasites in snails?

    PubMed

    O'Dwyer, Katie; Poulin, Robert

    2015-12-01

    When hosts experience environmental stress, the quantity and quality of resources they provide for parasites may be diminished, and host longevity may be decreased. Under stress, parasites may adopt alternative strategies to avoid fitness reductions. Trematode parasites typically have complex life cycles, involving asexual reproduction in a gastropod first intermediate host. A rare phenomenon, briefly mentioned in the literature, and termed 'precocious encystment' involves the next stage in the parasites' life cycle (metacercarial cyst) forming within the preceding stage (redia), while still inside the snail. In the trematode Parorchis sp. NZ using rocky shore snails exposed to long periods outside water, we hypothesised that this might be an adaptive strategy against desiccation, preventing parasite emergence from the snail. To test this, we first investigated the effect of prolonged desiccation on the survival of two species of high intertidal snails. Secondly, we measured the reproductive output (cercarial production) of the parasite under wet and dry conditions. Finally, we quantified the influence of desiccation stress on the occurrence of precocious encystment. Snail mortality was higher under dry conditions, indicating stress, and it was somewhat exacerbated for infected snails. Parasite reproductive output differed between wet and dry conditions, with parasites of snails kept in dry conditions producing more cercariae when placed in water. Little variation was observed in the occurrence of precocious encystment, although some subtle patterns emerged. Given the stresses associated with living in high intertidal environments, we discuss precocious encystment as a possible stress response in this trematode parasite. PMID:26344863

  3. Surface water records of New Mexico, water year 1961

    USGS Publications Warehouse

    U.S. Geological Survey

    1962-01-01

    The surface-water records for the 1961 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of New Mexico are given in this report. For convenience there are also included for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey, under the direction of W. L. Heckler, district engineer, Surface Water Branch. This report marks the beginning of a new method of presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water supply papers entitled "Surface Water Supply of the United States." Since 1951 there has been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in New Mexico were contained in Parts 7, 8, and 9 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports On a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey watersupply paper at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  4. Distribution and abundance of schistosomiasis and fascioliasis host snails along the Mara River in Kenya and Tanzania

    PubMed Central

    Dida, Gabriel O.; Gelder, Frank B.; Anyona, Douglas N.; Matano, Ally-Said; Abuom, Paul O.; Adoka, Samson O.; Ouma, Collins; Kanangire, Canisius K.; Owuor, Phillip O.; Ofulla, Ayub V. O.

    2014-01-01

    We purposively selected 39 sampling sites along the Mara River and its two perennial tributaries of Amala and Nyangores and sampled snails. In addition, water physicochemical parameters (temperature, turbidity, dissolved oxygen, conductivity, alkalinity, salinity and pH) were taken to establish their influence on the snail abundance and habitat preference. Out of the 39 sites sampled, 10 (25.6%) had snails. The snail species encountered included Biomphalaria pfeifferi Krauss – the intermediate host of Schistosoma mansoni Sambon, Bulinus africanus – the intermediate host of Schistosoma haematobium, and Lymnaea natalensis Krauss – the intermediate host of both Fasciola gigantica and F. hepatica Cobbold. Ceratophallus spp., a non-vector snail was also encountered. Most (61.0%) of the snails were encountered in streamside pools. Schistosomiasis-transmitting host snails, B. pfeifferi and B. africanus, were fewer than fascioliasis-transmitting Lymnaea species. All the four different snail species were found to be attached to different aquatic weeds, with B. pfeifferi accounting for over half (61.1%) of the snails attached to the sedge, followed by B. africanus and Lymnaea spp., accounting for 22.2 and 16.7%, respectively. Ceratophallus spp. were non-existent in sedge. The results from this preliminary study show that snails intermediate hosts of schistosomiasis and fascioliasis exists in different habitats, in few areas along the Mara River, though their densities are still low to have any noticeable impacts on disease transmission in case they are infected. The mere presence of the vector snails in these focal regions calls for their immediate control and institution of proper regulations, management, and education among the locals that can help curtail the spread of the snails and also schistosomiasis and fascioliasis within the Mara River basin. PMID:25405008

  5. Distribution and abundance of schistosomiasis and fascioliasis host snails along the Mara River in Kenya and Tanzania.

    PubMed

    Dida, Gabriel O; Gelder, Frank B; Anyona, Douglas N; Matano, Ally-Said; Abuom, Paul O; Adoka, Samson O; Ouma, Collins; Kanangire, Canisius K; Owuor, Phillip O; Ofulla, Ayub V O

    2014-01-01

    We purposively selected 39 sampling sites along the Mara River and its two perennial tributaries of Amala and Nyangores and sampled snails. In addition, water physicochemical parameters (temperature, turbidity, dissolved oxygen, conductivity, alkalinity, salinity and pH) were taken to establish their influence on the snail abundance and habitat preference. Out of the 39 sites sampled, 10 (25.6%) had snails. The snail species encountered included Biomphalaria pfeifferi Krauss - the intermediate host of Schistosoma mansoni Sambon, Bulinus africanus - the intermediate host of Schistosoma haematobium, and Lymnaea natalensis Krauss - the intermediate host of both Fasciola gigantica and F. hepatica Cobbold. Ceratophallus spp., a non-vector snail was also encountered. Most (61.0%) of the snails were encountered in streamside pools. Schistosomiasis-transmitting host snails, B. pfeifferi and B. africanus, were fewer than fascioliasis-transmitting Lymnaea species. All the four different snail species were found to be attached to different aquatic weeds, with B. pfeifferi accounting for over half (61.1%) of the snails attached to the sedge, followed by B. africanus and Lymnaea spp., accounting for 22.2 and 16.7%, respectively. Ceratophallus spp. were non-existent in sedge. The results from this preliminary study show that snails intermediate hosts of schistosomiasis and fascioliasis exists in different habitats, in few areas along the Mara River, though their densities are still low to have any noticeable impacts on disease transmission in case they are infected. The mere presence of the vector snails in these focal regions calls for their immediate control and institution of proper regulations, management, and education among the locals that can help curtail the spread of the snails and also schistosomiasis and fascioliasis within the Mara River basin. PMID:25405008

  6. Effects of washing produce contaminated with the snail and slug hosts of Angiostrongylus cantonensis with three common household solutions.

    PubMed

    Yeung, Norine W; Hayes, Kenneth A; Cowie, Robert H

    2013-06-01

    The emerging infectious disease angiostrongyliasis (rat lungworm disease) is caused by ingesting snails and slugs infected by the nematode Angiostrongylus cantonensis. The definitive hosts of A. cantonensis are rats and the obligatory intermediate hosts are slugs and snails. Many cases result from accidentally ingesting infected snails or slugs on produce (eg, lettuce). This study assessed three readily available household products as washing solutions for removing snails and slugs from produce (romaine lettuce) to lower the probability of accidentally ingesting them. The solutions were acetic acid (vinegar), sodium hypochlorite (bleach), and sodium chloride (domestic salt). Snail and slug species known to be intermediate hosts and that are common in the Hawaiian Islands were used in the experiments: the alien snail Succinea tenella, the alien semi-slug Parmarion martensi, and the alien slugs Veronicella cubensis and Deroceras laeve. None of the products was any more effective than washing and rinsing with tap water alone. Most snails and slugs were removed after treatment but some remained on the lettuce even after washing and rinsing the produce. Only washing, rinsing, and then rinsing each leaf individually resulted in complete removal of all snails and slugs. The study did not address removal of any remaining slime left by the snails and slugs, nor did it address killing of worms. PMID:23901391

  7. Evaporation from partially covered water surfaces

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Narkis, K.; Or, D.

    2010-10-01

    Evaporative losses from large water bodies may exceed 20% of water used in irrigated agriculture, with losses from reservoirs estimated at 50% of storage capacity. Prominent among proposed methods to curtail these evaporative losses are various forms of partial covers placed over water surfaces. Studies show that evaporation through perforated covers and from partially covered water surfaces exhibit nonlinear behavior, where rates of water loss are not proportional to uncovered surface fraction and are significantly affected by opening size and relative spacing. We studied evaporation from small water bodies under various perforated covers, extending the so-called diameter law to opening sizes in the range of 10-5 to 10-1 m. Contradicting claims concerning effects of openings and their arrangement on performance of evaporation barriers are analyzed on per opening and on per area mass losses. Our results help reconcile some classical findings invoking detailed pore-scale diffusion and simple temperature-based energetic behaviors. For fixed relative spacing, area-averaged evaporative flux density remains nearly constant across several orders of magnitude variations in opening size. For the scale of the experimental setup, we predict relative evaporation reduction efficiency for various configurations of perforated evaporation barriers.

  8. Evaporation from partially covered water surfaces

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Or, D.

    2009-12-01

    Evaporative losses from large water bodies may exceed 20% of water used in irrigated agriculture, with losses from reservoirs estimated at 50% of storage capacity. Among the proposed methods to curtail these losses are various forms of partial covers placed on water surfaces. Studies show that evaporation through perforated membranes and from partially covered water surfaces exhibit nonlinear behavior, where rates of water losses may be disproportional relative to the fraction of the uncovered surface, and are significantly affected by openings size and relative spacing. We studied evaporation from small water bodies under various perforated covers, extending the so-called diameter law to opening sizes in the range of 10-5 to 10-1 m. Contradicting claims regarding effects of openings and their arrangement on performance of evaporation barriers are analyzed on per-opening and per-area mass losses. Our results may help reconcile some classical findings invoking detailed pore scale diffusion and simple temperature-based energetic behaviors. For fixed relative spacing, flux density remains nearly constant across several orders of magnitude in opening size. We predict relative evaporation reduction efficiency for various configurations of perforated evaporation barriers.

  9. Pollution of surface water in Europe

    PubMed Central

    Key, A.

    1956-01-01

    This paper discusses pollution of surface water in 18 European countries. For each an account is given of its physical character, population, industries, and present condition of water supplies; the legal, administrative, and technical means of controlling pollution are then described, and an outline is given of current research on the difficulties peculiar to each country. A general discussion of various aspects common to the European problem of water pollution follows; standards of quality are suggested; some difficulties likely to arise in the near future are indicated, and international collaboration, primarily by the exchange of information, is recommended to check or forestall these trends. PMID:13374532

  10. Analysis of snail genes in the crustacean Parhyale hawaiensis: insight into snail gene family evolution.

    PubMed

    Hannibal, Roberta L; Price, Alivia L; Parchem, Ronald J; Patel, Nipam H

    2012-05-01

    The transcriptional repressor snail was first discovered in Drosophila melanogaster, where it initially plays a role in gastrulation and mesoderm formation, and later plays a role in neurogenesis. Among arthropods, this role of snail appears to be conserved in the insects Tribolium and Anopheles gambiae, but not in the chelicerates Cupiennius salei and Achaearanea tepidariorum, the myriapod Glomeris marginata, or the Branchiopod crustacean Daphnia magna. These data imply that within arthropoda, snail acquired its role in gastrulation and mesoderm formation in the insect lineage. However, crustaceans are a diverse group with several major taxa, making analysis of more crustaceans necessary to potentially understand the ancestral role of snail in Pancrustacea (crustaceans + insects) and thus in the ancestor of insects as well. To address these questions, we examined the snail family in the Malacostracan crustacean Parhyale hawaiensis. We found three snail homologs, Ph-snail1, Ph-snail2 and Ph-snail3, and one scratch homolog, Ph-scratch. Parhyale snail genes are expressed after gastrulation, during germband formation and elongation. Ph-snail1, Ph-snail2, and Ph-snail3 are expressed in distinct patterns in the neuroectoderm. Ph-snail1 is the only Parhyale snail gene expressed in the mesoderm, where its expression cycles in the mesodermal stem cells, called mesoteloblasts. The mesoteloblasts go through a series of cycles, where each cycle is composed of a migration phase and a division phase. Ph-snail1 is expressed during the migration phase, but not during the division phase. We found that as each mesoteloblast division produces one segment's worth of mesoderm, Ph-snail1 expression is linked to both the cell cycle and the segmental production of mesoderm. PMID:22466422

  11. Evaporation over fresh and saline water surfaces

    NASA Astrophysics Data System (ADS)

    Abdelrady, Ahmed; Timmermans, Joris; Vekerdy, Zoltan

    2013-04-01

    Evaporation over large water bodies has a crucial role in the global hydrological cycle. Evaporation occurs whenever there is a vapor pressure deficit between a water surface and the atmosphere, and the available energy is sufficient. Salinity affects the density and latent heat of vaporization of the water body, which reflects on the evaporation rate. Different models have been developed to estimate the evaporation process over water surfaces using earth observation data. Most of these models are concerned with the atmospheric parameters. However these models do not take into account the influence of salinity on the evaporation rate; they do not consider the difference in the energy needed for vaporization. For this purpose an energy balance model is required. Several energy balance models that calculate daily evapotranspiration exist, such as the surface energy balance system (SEBS). They estimate the heat fluxes by integration of satellite data and hydro-meteorological field data. SEBS has the advantage that it can be applied over a large scale because it incorporates the physical state of the surface and the aerodynamic resistances in the daily evapotranspiration estimation. Nevertheless this model has not used over water surfaces. The goal of this research is to adapt SEBS to estimate the daily evaporation over fresh and saline water bodies. In particular, 1) water heat flux and roughness of momentum and heat transfer estimation need to be updated, 2) upscaling to daily evaporation needs to be investigated and finally 3) integration of the salinity factor to estimate the evaporation over saline water needs to be performed. Eddy covariance measurements over the Ijsselmeer Lake (The Netherlands) were used to estimate the roughness of momentum and heat transfer at respectively 0.0002 and 0.0001 m. Application of these values over Tana Lake (freshwater), in Ethiopia showed latent heat to be in a good agreement with the measurements, with RMSE of 35.5 Wm-2and rRMSE of 4.7 %. Afterwards the validity of salinity adapted model was tested over different study areas using ECMWF data. It was found that for the original SEBS model and salinity-adapted model over Great Salt Lake, the RMSE were 0.62 and 0.24 mm respectively and the rRMSE 19% and 24%. The evaporation reduction of the Great Salt Lake and the oceans are 27% and 1 %, respectively. In conclusion, SEBS model is adapted to calculate the daily evaporation over fresh water and salt water by integration the salinity factor in the model.

  12. Hydrodynamic Modeling Approaches for Surface Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Jaber, F. H.; Shukla, S.

    2004-12-01

    Hydrologic modeling of surface water reservoirs is an effective tool in evaluating different water management options for addressing regional water issues in Florida. However, modeling reservoir water dynamics could be challenging because of the difference in scale between canals and the entire reservoir. Water pumped into the reservoirs is first discharged into canals inside the reservoirs, which distributes the water. The canal eventually overflows and water floods all the reservoir. Two modeling approaches to simulate this process were tested on two reservoirs using the integrated MIKE-SHE and MIKE 11 model. The first approach simulates the 1- D flow in the canal in a link-node model and once water floods, it is modeled as 2-D flow. The second approach simulates the entire impoundment as a canal. In both reservoirs, Modeling Approach 1 resulted in overestimation of peaks and poor results. Modeling Approach 2 showed considerable improvements in the results and a satisfactory match between observed and simulated water levels. The difference is attributed to the difficulty in representing the canal flooding process in hydrodynamic models.

  13. NANOFILTRATION FOULANTS FROM A TREATED SURFACE WATER

    EPA Science Inventory

    The foulant from pilot nanofiltration membrane elements fed conventionally-treated surface water for 15 months was analyzed for organic, inorganic, and biological parameters. The foulant responsible for flux loss was shown to be a film layer 20 to 80 um thick with the greatest de...

  14. Observing Global Surface Water Flood Dynamics

    NASA Astrophysics Data System (ADS)

    Bates, Paul D.; Neal, Jefferey C.; Alsdorf, Douglas; Schumann, Guy J.-P.

    2014-05-01

    Flood waves moving along river systems are both a key determinant of globally important biogeochemical and ecological processes and, at particular times and particular places, a major environmental hazard. In developed countries, sophisticated observing networks and ancillary data, such as channel bathymetry and floodplain terrain, exist with which to understand and model floods. However, at global scales, satellite data currently provide the only means of undertaking such studies. At present, there is no satellite mission dedicated to observing surface water dynamics and, therefore, surface water scientists make use of a range of sensors developed for other purposes that are distinctly sub-optimal for the task in hand. Nevertheless, by careful combination of the data available from topographic mapping, oceanographic, cryospheric and geodetic satellites, progress in understanding some of the world's major river, floodplain and wetland systems can be made. This paper reviews the surface water data sets available to hydrologists on a global scale and the recent progress made in the field. Further, the paper looks forward to the proposed NASA/CNES Surface Water Ocean Topography satellite mission that may for the first time provide an instrument that meets the needs of the hydrology community.

  15. Global modeling of fresh surface water temperature

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Eikelboom, T.; van Vliet, M. T.; Van Beek, L. P.

    2011-12-01

    Temperature determines a range of water physical properties, the solubility of oxygen and other gases and acts as a strong control on fresh water biogeochemistry, influencing chemical reaction rates, phytoplankton and zooplankton composition and the presence or absence of pathogens. Thus, in freshwater ecosystems the thermal regime affects the geographical distribution of aquatic species through their growth and metabolism, tolerance to parasites, diseases and pollution and life history. Compared to statistical approaches, physically-based models of surface water temperature have the advantage that they are robust in light of changes in flow regime, river morphology, radiation balance and upstream hydrology. Such models are therefore better suited for projecting the effects of global change on water temperature. Till now, physically-based models have only been applied to well-defined fresh water bodies of limited size (e.g., lakes or stream segments), where the numerous parameters can be measured or otherwise established, whereas attempts to model water temperature over larger scales has thus far been limited to regression type of models. Here, we present a first attempt to apply a physically-based model of global fresh surface water temperature. The model adds a surface water energy balance to river discharge modelled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by short and long-wave radiation and sensible and latent heat fluxes. Also included are ice-formation and its effect on heat storage and river hydraulics. We used the coupled surface water and energy balance model to simulate global fresh surface water temperature at daily time steps on a 0.5x0.5 degree grid for the period 1970-2000. Meteorological forcing was obtained from the CRU data set, downscaled to daily values with ECMWF ERA40 re-analysis data. We compared our simulation results with daily temperature data from rivers and lakes (USGS, limited to the USA) and compared mean monthly temperatures with those recorded in the GEMS data set. Results show that the model is able to capture well the mean monthly surface temperature for the majority of the GEMS stations both in time as well as in space, while the inter-annual variability as derived from the USGS data was captured reasonably well. Results are poorest for the arctic rivers, possibly because the timing of ice-breakup is predicted too late in the year due to the lack of including a mechanical break-up mechanism. The spatio-temporal variation of water temperature reveals large temperature differences between water and atmosphere for the higher latitudes, while considerable lateral transport of heat can be observed for rivers crossing hydroclimatic zones such as the Nile, the Mississippi and the large rivers flowing into the Arctic. Overall, our model results show great promise for future projection of global fresh surface water temperature under global change.

  16. Acute combined exposure to heavy metals (Zn, Cd) blocks memory formation in a freshwater snail.

    PubMed

    Byzitter, Jovita; Lukowiak, Ken; Karnik, Vikram; Dalesman, Sarah

    2012-04-01

    The effect of heavy metals on species survival is well documented; however, sublethal effects on behaviour and physiology are receiving growing attention. Measurements of changes in activity and respiration are more sensitive to pollutants, and therefore a better early indicator of potentially harmful ecological impacts. We assessed the effect of acute exposure (48 h) to two heavy metals at concentrations below those allowable in municipal drinking water (Zn: 1,100 ?g/l; Cd: 3 ?g/l) on locomotion and respiration using the freshwater snail, Lymnaea stagnalis. In addition we used a novel assessment method, testing the ability of the snail to form memory in the presence of heavy metals in both intact snails, and also snails that had the osphradial nerve severed which connects a chemosensory organ, the osphradium, to the central nervous system. Aerial respiration and locomotion remained unchanged by acute exposure to heavy metals. There was also no effect on memory formation of these metals when administered alone. However, when snails were exposed to these metals in combination memory formation was blocked. Severing the osphradial nerve prevented the memory blocking effect of Zn and Cd, indicating that the snails are sensing these metals in their environment via the osphradium and responding to them as a stressor. Therefore, assessing the ability of this species to form memory is a more sensitive measure of heavy metal pollution than measures of activity, and indicates that the snails' ability to demonstrate behavioural plasticity may be compromised by the presence of these pollutants. PMID:22218978

  17. Epidemiology of cercarial stage of trematodes in freshwater snails from Chiang Mai province, Thailand

    PubMed Central

    Chontananarth, Thapana; Wongsawad, Chalobol

    2013-01-01

    Objective To investigate the epidemiological situation of cercarial trematodes infection in freshwater snails from different water resources in Chiang Mai province, Thailand. Methods The snail specimens were collected from 13 districts of Chiang Mai province during April 2008 to February 2012. The prevalence of cercarial infection in snails was investigated using the crushing method. The drawing was done with the help of a camera lucida for the morphological study. Results A total of 2?479 snail individuals were collected and classified into 7 families, 11 genera, and 14 species, Among them, 8 snails species were found to be infected with an overall prevalence of 17.27% (428/2?479), which infected with nine groups of cercariae; gymnocephalous cercaria, strigea cercaria, megalurous cercaria, monostome cercaria, parapleurolophocercous cercaria (Haplorchis cercaria), pleurolophocercous cercaria, furcocercous cercaria (Transversotrema cercaria), xiphidiocercaria, and virgulate cercaria. The parapleurolophocercous cercaria was found to be the dominant type among the cercarial infection in the snails (64.25%). Conclusions The various species of snails found in the research location act as the intermediate hosts for the high prevalence of parasitic infection of many species of mammals. This work will provide new information on both the distribution and first intermediate host of trematodes. PMID:23620846

  18. Electrolysis of water on (oxidized) metal surfaces

    NASA Astrophysics Data System (ADS)

    Rossmeisl, J.; Logadottir, A.; Nrskov, J. K.

    2005-12-01

    Density functional theory calculations are used as the basis for an analysis of the electrochemical process, where by water is split to form molecular oxygen and hydrogen. We develop a method for obtaining the thermochemistry of the electrochemical water splitting process as a function of the bias directly from the electronic structure calculations. We consider electrodes of Pt(1 1 1) and Au(1 1 1) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear relations are assumed to be obeyed exactly, this leads to a universal relationship between the catalytic rate and the oxygen binding energy. Finally, we conclude that for systems obeying these relations, there is a limit to how good a water splitting catalyst an oxidized metal surface can become.

  19. Landsat - A satellite surface water divining rod

    NASA Technical Reports Server (NTRS)

    Hancock, K. J.; Schlosser, E. H.

    1976-01-01

    A DAM (Detection and Mapping) package is developed to provide accurate up-to-date economical and properly formatted maps of surface water using Landsat earth resources satellite digital data in order to detect and locate unrecorded water impoundments. The operational procedure is discussed in terms of data acquisition, establishment of the control network, specification of map characteristics, and generation of maps. Preliminary evaluations essentially indicate that the DAM package can be readily used by personnel unfamiliar with computer processing of remote sensing data, that no false detections are encountered, and that detection accuracy of surface water impoundments greater than 4 hectares is between 95-98%. However, terrain shadows present a problem in mountainous areas at low sun angles. A total cost of less than 15 cents per sq mile to compile the inventory is noted.

  20. The Application of Electric Shock as a Novel Pest Control Method for Apple Snail, Pomacea canaliculata (Gastropoda: Ampullariidae)

    NASA Astrophysics Data System (ADS)

    Yagyu, Yoshihito; Tsuji, Satoshi; Satoh, Saburoh; Yamabe, Chobei

    The apple snail, Pomacea canaliculata, brought to Japan from Taiwan for human consumption in the 1980s, has come to be considered as deleterious for rice cultivation. The snail is unable to injure young rice plants while receiving electric shock because the snail retracts its entire body into its shell and shuts its aperture with its operculum. Electric shock should be applied intermittently to reduce the amount of energy that is wasted when the snail is in its shell made of one of the insulator. The minimum electric shock required for controlling snails and the time required for movement after application of electric shock to determine the frequency of each electric shock were investigated using two methods; vertical and horizontal application of the electrical stimulation. The results showed that there is a strong correlation between the strength of electric shock and the reaction of the snails, and electric shock made snails inactive when it was applied 0.35 A/m2 in the horizontal direction and 0.45 A/m2 in the vertical direction with water of 11 mS/m. A positive correlation was also found between electric shock and the reaction of the snails and shell height. In comparison with larger snails, the smaller snails had higher threshold levels against electric current density because their shorter feet tended to have lower voltage dorp. Moreover, the frequency of electric shock should be chosen the minimum duration for the inactive condition, and it was approximately 10 seconds. Consequently the direction of electric current should be in the horizontal direction above 0.35 A/m2 and the frequency of electric shock should be less than 10 seconds for practical use. However, electric shock would have to be maintained at greater than 0.35 A/m2 because snails might become habituated to electric shock and water in paddy field would have high electric conductivity.

  1. Surface Water and Ocean Topography (SWOT) mission

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Lindstrom, Eric J.; Vaze, Parag V.; Fu, Lee-Lueng

    2012-09-01

    The Surface Water Ocean Topography (SWOT) mission was recommended in 2007 by the National Research Council's Decadal Survey, "Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond", for implementation by NASA. The SWOT mission is a partnership between two communities, the physical oceanography and the hydrology, to share high vertical accuracy and high spatial resolution topography data produced by the science payload, principally a Ka-band radar Interferometer (KaRIn). The SWOT payload also includes a precision orbit determination system consisting of GPS and DORIS receivers, a Laser Retro-reflector Assembly (LRA), a Jason-class nadir radar altimeter, and a JASON-class radiometer for tropospheric path delay corrections. The SWOT mission will provide large-scale data sets of ocean sea-surface height resolving scales of 15km and larger, allowing the characterization of ocean mesoscale and submesoscale circulation. The SWOT mission will also provide measurements of water storage changes in terrestrial surface water bodies and estimates of discharge in large (wider than 100m) rivers globally. The SWOT measurements will provide a key complement to other NASA spaceborne global measurements of the water cycle measurements by directly measuring the surface water (lakes, reservoirs, rivers, and wetlands) component of the water cycle. The SWOT mission is an international partnership between NASA and the Centre National d'Etudes Spatiales (CNES). The Canadian Space Agency (CSA) is also expected to contribute to the mission. SWOT is currently nearing entry to Formulation (Phase A). Its launch is targeted for October 2020.

  2. [Factors that can affect the breeding and maintenance of infected snails and the production of Schistosoma mansoni cercariae].

    PubMed

    De Souza, C P; Arajo, N; Jannotti, L K; Gazzinelli, G

    1987-01-01

    Mass production of Schistosoma mansoni cercariae was affected by biological and chemical agents. Rotifers and ostracods, snail predators, were identified in our colony. Rotifers were easily eradicated by washing the aquaria and lettuce with diluted solution of acetic acid. On the other hand, ostracods were difficult to eradicate and led to a high level mortality of infected snails (50-60%). Snails maintained in an incubator at constant temperature and total darkness produced maximum shedding when submitted to brightness and high temperature (about 30 degrees C). The number of cercariae shed was practically the same between pH 5-7. Contaminants such as Cu and Pb added to glass distilled water decreased the cercariae production. In conclusion, laboratory maintenance of large number of infected snails for mass production of cercariae is much simpler and more efficient than the conventional technique with running tap water although a high rate of mortality is observed in the snail colony. PMID:3507569

  3. Protonation and Deprotonation on Water's Surface

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Stewart, L.; Hoffmann, M. R.

    2010-12-01

    How the acidity of bulk water (pHbulk) regulates the degree of protonation of Brnsted acids and bases on water surfaces facing hydrophobic media is a key unresolved issue in chemistry and biology. We addressed experimentally the important case of the air/water interface and report the strikingly dissimilar pHbulk-dependences of the protonation/deprotonation of aqueous versus gaseous n-hexanoic acid (HxOH) determined on the surface of aqueous microjets by online electrospray mass spectrometry. We confirm that HxOH(aq) is deprotonated at pHbulk > pKa(HxOH) = 4.8, but find that the deprotonation of HxOH(g) into interfacial HxO-(s) displays two equivalence points at pHbulk ~ 2.5 and ~ 10.0. The weak base HxOH(aq) (pKa(HxOH2+) < - 4) is barely protonated at pHbulk > 1, whereas HxOH(g) is significantly protonated to HxOH2+(s) on pHbulk < 4 water, as expected from the proton affinities PA(HxOH) > PA(H2O) of gas-phase species. The exceptionally large kinetic isotope effect for the protonation of HxOH(g) on D2O/H2O: KIE = HxOH2+/HxODH+ ~ 100, is ascribed to a desolvated transition state. Since ion creation at the interface via proton transfer between H2O itself and neutral species is thermodynamically disallowed i.e., HxOH(g) is actually deprotonated by interfacial OH-(s), whereas Me3N(g) is hardly protonated by H3O+(s) on pHbulk ~ 4 - 8 water (Enami et al., J. Phys. Chem. Lett. 2010, 1, 1599) we conclude that [OH-(s)] > [H3O+(s)] above pHbulk ~ 4, at variance with inferences drawn from spectroscopic signatures or model calculations of waters surface.

  4. Surface water records of New Mexico, water year 1963

    USGS Publications Warehouse

    U.S. Geological Survey

    1964-01-01

    This report is the third in a series presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States". Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in New Mexico were contained in Parts 7, 8, and 9 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5- year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  5. Mutagens in surface waters: a review.

    PubMed

    Ohe, Takeshi; Watanabe, Tetsushi; Wakabayashi, Keiji

    2004-11-01

    A review of the literature on the mutagenicity/genotoxicity of surface waters is presented in this article. Subheadings of this article include a description of sample concentration methods, mutagenic/genotoxic bioassay data, and suspected or identified mutagens in surface waters published in the literature since 1990. Much of the published surface water mutagenicity/genotoxicity studies employed the Salmonella/mutagenicity test with strains TA98 and/or TA100 with and/or without metabolic activation. Among all data analyzed, the percentage of positive samples toward TA98 was approximately 15%, both in the absence and the presence of S9 mix. Those positive toward TA100 were 7%, both with and without S9 mix. The percentage classified as highly mutagenic (2500-5000 revertants per liter) or extremely mutagenic (more than 5000 revertants per liter) was approximately 3-5% both towards TA98 and TA100, regardless of the absence or the presence of S9 mix. This analysis demonstrates that some rivers in the world, especially in Europe, Asia and South America, are contaminated with potent direct-acting and indirect-acting frameshift-type and base substitution-type mutagens. These rivers are reported to be contaminated by either partially treated or untreated discharges from chemical industries, petrochemical industries, oil refineries, oil spills, rolling steel mills, untreated domestic sludges and pesticides runoff. Aquatic organisms such as teleosts and bivalves have also been used as sentinels to monitor contamination of surface water with genotoxic chemicals. DNA modifications were analyzed for this purpose. Many studies indicate that the 32P-postlabeling assay, the single cell gel electrophoresis (comet) assay and the micronucleus test are sensitive enough to monitor genotoxic responses of indigenous aquatic organisms to environmental pollution. In order to efficiently assess the presence of mutagens in the water, in addition to the chemical analysis, mutagenicity/genotoxicity assays should be included as additional parameters in water quality monitoring programs. This is because according to this review they proved to be sensitive and reliable tools in the detection of mutagenic activity in aquatic environment. Many attempts to identify the chemicals responsible for the mutagenicity/genotoxicity of surface waters have been reported. Among these reports, researchers identified heavy metals, PAHs, heterocyclic amines, pesticides and so on. By combining the blue cotton hanging method as an adsorbent and the O-acetyltransferase-overproducing strain as a sensitive strain for aminoarenes, Japanese researchers identified two new type of potent frameshift-type mutagens, formed unintentionally, in several surface waters. One group has a 2-phenylbenzotriazole (PBTA) structure, and seven analogues, PBTA-type mutagens, were identified in surface waters collected at sites below textile dyeing factories and municipal wastewater treatment plants treating domestic wastes and effluents. The other one has a polychlorinated biphenyl (PCB) skelton with nitro and amino substitution group and it was revealed to be 4-amino-3,3'-dichloro-5,4'-dinitrobiphenyl derived from chemical plants treating polymers and dye intermediates. However, the identification of major putative mutagenic/genotoxic compounds in most surface waters with high mutagenic/genotoxic activity in the world have not been performed. Further efforts on chemical isolation and identification by bioassay-directed chemical analysis should be performed. PMID:15572284

  6. Uncertainty in surface water flood risk modelling

    NASA Astrophysics Data System (ADS)

    Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.

    2009-04-01

    Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs uniform flow formulae (Manning's Equation) to direct flow over the model domain, sourcing water from the channel or sea so as to provide a detailed representation of river and coastal flood risk. The initial development step was to include spatially-distributed rainfall as a new source term within the model domain. This required optimisation to improve computational efficiency, given the ubiquity of wet' cells early on in the simulation. Collaboration with UK water companies has provided detailed drainage information, and from this a simplified representation of the drainage system has been included in the model via the inclusion of sinks and sources of water from the drainage network. This approach has clear advantages relative to a fully coupled method both in terms of reduced input data requirements and computational overhead. Further, given the difficulties associated with obtaining drainage information over large areas, tests were conducted to evaluate uncertainties associated with excluding drainage information and the impact that this has upon flood model predictions. This information can be used, for example, to inform insurance underwriting strategies and loss estimation as well as for emergency response and planning purposes. The Flowroute surface-water flood risk platform enables efficient mapping of areas sensitive to flooding from high-intensity rainfall events due to topography and drainage infrastructure. As such, the technology has widespread potential for use as a risk mapping tool by the UK Environment Agency, European Member States, water authorities, local governments and the insurance industry. Keywords: Surface water flooding, Model Uncertainty, Insurance Underwriting, Flood inundation modelling, Risk mapping.

  7. Excitation of surface electromagnetic waves on water.

    PubMed

    Singh, A K; Goben, C A; Davarpanah, M; Boone, J L

    1978-11-01

    Excitation of surface electromagnetic waves (SEW) on water was studied using optical coupling techniques at microwave frequencies. Excitation of SEW was also achieved using direct horn antenna coupling. The transmitted SEW power was increased by adding acid and salt to water. The horn antenna gave the maximum excitation efficiency 70%. It was increased to 75% by collimating the electromagnetic beam in the vertical direction. Excitation efficiency for the prism (0 degrees pitch angle) and grating couplers were 15.2% and 10.5% respectively. By changing the prism coupler pitch angle to +36 degrees , its excitation efficiency was increased to 82%. PMID:20204001

  8. Laser induced surface stress on water droplets.

    PubMed

    Wang, Neng; Lin, Zhifang; Ng, Jack

    2014-10-01

    Laser induced stress on spherical water droplets is studied. At mechanical equilibrium, the body stress vanishes therefore we consider only the surface stress. The surface stress on sub-wavelength droplets is slightly weaker along the light propagation direction. For larger droplets, due to their light focusing effect, the forward stress is significantly enhanced. For a particle roughly 3 micron in radius, when it is excited at whispering gallery mode with Q ? 10? by a 1 Watt Gaussian beam, the stress can be enhanced by two orders of magnitude, and can be comparable with the Laplace pressure. PMID:25321955

  9. Snail modulates cell metabolism in MDCK cells

    SciTech Connect

    Haraguchi, Misako; Indo, Hiroko P.; Iwasaki, Yasumasa; Iwashita, Yoichiro; Fukushige, Tomoko; Majima, Hideyuki J.; Izumo, Kimiko; Horiuchi, Masahisa; Kanekura, Takuro; Furukawa, Tatsuhiko; Ozawa, Masayuki

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of key enzymes. This results in enhanced glucose dependency and leads to cell death under low-glucose conditions. On the other hand, the reduced requirements for oxygen and nutrients from the surrounding environment, might confer the resistance to cell death induced by hypoxia and malnutrition.

  10. Celss nutrition system utilizing snails

    NASA Astrophysics Data System (ADS)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  11. Source Water Assessment for the Las Vegas Valley Surface Waters

    NASA Astrophysics Data System (ADS)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality data (prior to treatment), the proximity of Las Vegas Wash to the intake, and the results of the vulnerability analysis of potential contaminating activities, it is determined that the drinking water intake is at a Moderate level of risk for VOC, SOC, and microbiological contaminants. The drinking water intake is at a High level of risk for IOC contaminants. Vulnerability to radiological contamination is Moderate. Source water protection in the Las Vegas Valley is strongly encouraged because of the documented influence of the Las Vegas Wash on the quality of the water at the intake.

  12. Water quality analysis of surface water: a Web approach.

    PubMed

    Prasad, Poonam; Chaurasia, Meenal; Sohony, R A; Gupta, Indrani; Kumar, R

    2013-07-01

    The chemical, physical and biological characteristics of water with respect to its suitability describe its quality. Concentration of pesticides or fertilisers degrades the water quality and affects marine life. A comprehensive environmental data information system helps to perform and complete common tasks in less time with less effort for data verification, data calculations, graph generation, and proper monitoring, which helps in the further mitigation step. In this paper, focus is given to a web-based system developed to express the quality of water in the imprecise environment of monitoring data. Water samples were analyzed for eight different surface water parameters, in which four parameters such as pH, dissolved oxygen, biochemical oxygen demand, and fecal coliform were used for the water quality index calculation following MPCB Water Quality Standards of class A-II for best designated use. The analysis showed that river points in a particular year were in very bad category with certainty level of 0-38% which is unsuitable for drinking purposes; samples in bad category had certainty level that ranged from 38 to 50%; samples in medium to good category had certainty levels from 50 to 100%, and the remaining samples were in good to excellent category, suitable for drinking purposes, with certainty levels from 63 to 100%. PMID:23238782

  13. Atmospheric radiation model for water surfaces

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.

    1982-01-01

    An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.

  14. Surface of Miranda - Identification of water ice

    NASA Astrophysics Data System (ADS)

    Brown, R. H.; Clark, R. N.

    1984-05-01

    Near-infrared spectrophotometry at 5-percent resolution shows Miranda to have a water-ice surface. Estimates of Miranda's albedo made from the depth of its 2.0-micron absorption band suggest that its visual geometric albedo is likely to be between 10 and 70 percent which when combined with the satellite's visual magnitude, yields a diameter of 500 + or 225 km. There is some evidence that suggests the visual geometric albedo of Miranda may be greater than or equal to 0.3, which implies that its diameter may lie near the lower end of the estimated range. With these results all the Uranian satellites are now known to have water-ice surfaces.

  15. How Water Advances on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  16. How Water Advances on Superhydrophobic Surfaces.

    PubMed

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis. PMID:26991185

  17. River regulation and interactions groundwater - surface water

    NASA Astrophysics Data System (ADS)

    Colleuille, H.; Wong, W. K.; Dimakis, P.; Pedersen, T. S.

    2003-04-01

    The determination of a minimum acceptable flow in a river affected by regulation is a major task in management of hydropower development. The Norwegian Water Resources and Energy Directorate (NVE), responsible for administrating the nation's water resources, requires an objective system that takes into account the needs of the developer and the rivers environment such as water quality, river biota, landscape, erosion and groundwater. A research project has been initiated with focus on interactions between groundwater and surface water. The purpose of the project is to provide the licensing authorities with tools for quantitative assessment of the effects of regulation on groundwater resources and at the same time the effect of groundwater abstraction on river flows. A small, urbanised alluvial plain (2 km^2) by the river Glomma in Central Southern Norway is used as a case study. The local aquifer consists of heterogeneous glaciofluvial and fluvial deposit, mainly sand and gravel. Two three-dimensional numerical models (Visual Modflow 3.0 and Feflow 5.0) have been used for this study. The models were calibrated with hydro-geological data collected in the field. Aquifer and river sediment has been examined by use of Ground Penetrating Radar (GPR) and soil samples collection. Preferential flow has been examined by tracer tests. Water level, temperature and electric conductivity have been recorded in both aquifer and river. Hydro-climatic regime has been analysed by statistical tools. The first task of the project is to carry out water balance studies in order to estimate the change in rate of groundwater recharge from and to the river along a normal hydrologic year with snowmelting, flood, and baseflow. The second task is to analyse the potential effect of change in the river water regime (due to regulation and consecutive clogging) on groundwater resources and their interaction with stream water.

  18. Impact of invasive apple snails on the functioning and services of natural and managed wetlands

    NASA Astrophysics Data System (ADS)

    Horgan, Finbarr G.; Stuart, Alexander M.; Kudavidanage, Enoka P.

    2014-01-01

    At least 14 species of apple snail (Ampullariidae) have been released to water bodies outside their native ranges; however, less than half of these species have become widespread or caused appreciable impacts. We review evidence for the impact of apple snails on natural and managed wetlands focusing on those studies that have elucidated impact mechanisms. Significant changes in wetland ecosystems have been noted in regions where the snails are established: Two species in particular (Pomacea canaliculata and Pomacea maculata) have become major pests of aquatic crops, including rice, and caused enormous increases in molluscicide use. Invasive apple snails have also altered macrophyte community structure in natural and managed wetlands through selective herbivory and certain apple snail species can potentially shift the balance of freshwater ecosystems from clear water (macrophyte dominated) to turbid (plankton dominated) states by depleting densities of native aquatic plants. Furthermore, the introductions of some apple snail species have altered benthic community structure either directly, through predation, or indirectly, through exploitation competition or as a result of management actions. To date much of the evidence for these impacts has been based on correlations, with few manipulative field or mesocosm experiments. Greater attention to impact monitoring is required, and, for Asia in particular, a landscape approach to impact management that includes both natural and managed-rice wetlands is recommended.

  19. Survival and Growth of Freshwater Pulmonate and Nonpulmonate Snails in 28-Day Exposures to Copper, Ammonia, and Pentachlorophenol.

    PubMed

    Besser, John M; Dorman, Rebecca A; Hardesty, Douglas L; Ingersoll, Christopher G

    2016-02-01

    We performed toxicity tests with two species of pulmonate snails (Lymnaea stagnalis and Physa gyrina) and four taxa of nonpulmonate snails in the family Hydrobiidae (Pyrgulopsis robusta, Taylorconcha serpenticola, Fluminicola sp., and Fontigens aldrichi). Snails were maintained in static-renewal or recirculating culture systems with adults removed periodically to isolate cohorts of offspring for toxicity testing. This method successfully produced offspring for both species of pulmonate snails and for two hydrobiid species, P. robusta and Fluminicola sp. Toxicity tests were performed for 28 days with copper, ammonia, and pentachlorophenol in hard reconstituted water with endpoints of survival and growth. Tests were started with 1-week-old L. stagnalis, 2-week-old P. gyrina, 5- to 13-week-old P. robusta and Fluminicola sp., and older juveniles and adults of several hydrobiid species. For all three chemicals, chronic toxicity values for pulmonate snails were consistently greater than those for hydrobiid snails, and hydrobiids were among the most sensitive taxa in species sensitivity distributions for all three chemicals. These results suggest that the toxicant sensitivity of nonpulmonate snails in the family Hydrobiidae would not be adequately represented by results of toxicity testing with pulmonate snails. PMID:26747374

  20. Survival and growth of freshwater pulmonate and nonpulmonate snails in 28-day exposures to copper, ammonia, and pentachlorophenol

    USGS Publications Warehouse

    Besser, John M.; Dorman, Rebecca A.; Hardesty, Douglas K.; Ingersoll, Christopher G.

    2016-01-01

    We performed toxicity tests with two species of pulmonate snails (Lymnaea stagnalis and Physa gyrina) and four taxa of nonpulmonate snails in the family Hydrobiidae (Pyrgulopsis robusta,Taylorconcha serpenticola, Fluminicola sp., and Fontigens aldrichi). Snails were maintained in static-renewal or recirculating culture systems with adults removed periodically to isolate cohorts of offspring for toxicity testing. This method successfully produced offspring for both species of pulmonate snails and for two hydrobiid species, P. robusta and Fluminicola sp. Toxicity tests were performed for 28 days with copper, ammonia, and pentachlorophenol in hard reconstituted water with endpoints of survival and growth. Tests were started with 1-week-old L. stagnalis, 2-week-old P. gyrina, 5- to 13-week-old P. robusta and Fluminicola sp., and older juveniles and adults of several hydrobiid species. For all three chemicals, chronic toxicity values for pulmonate snails were consistently greater than those for hydrobiid snails, and hydrobiids were among the most sensitive taxa in species sensitivity distributions for all three chemicals. These results suggest that the toxicant sensitivity of nonpulmonate snails in the family Hydrobiidae would not be adequately represented by results of toxicity testing with pulmonate snails.

  1. Controlling slugs and snails in orchids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slugs and snails are pests of orchids, preferring tender plant tissues such as flowers and root tips. Unlike many insect pests which feed only on certain types of plants, most species of slugs and snails are generalists, feeding on green plants, algae, fungi, decaying plant matter, or decaying anima...

  2. Inquiry, Land Snails, and Environmental Factors

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Krantz, Patrick D.

    2005-01-01

    Land snails are common invertebrates that fascinate children. Unfortunately, they are seldom used for activities in the science classroom. Snails are inexpensive, take up little space in the classroom, and require only low maintenance, and their learning dividends can be enormous. For example, students can use them in inquiry-based activities that…

  3. Phospholipid surface bilayers at the air-water interface. II. Water permeability of dimyristoylphosphatidylcholine surface bilayers.

    PubMed Central

    Ginsberg, L; Gershfeld, N L

    1985-01-01

    Dispersions of dimyristoylphosphatidylcholine (DMPC) in water have been reported to form a structure at 29 degrees C at the equilibrium air/water surface with a molecular density equal to that of a typical bilayer. In this study, the water permeability of this structure has been evaluated by measuring the rate of water evaporation from DMPC dispersions in water in the temperature range where the surface film density exceeds that of a monolayer. Evaporation rates for the lipid dispersions did not deviate from those for lipid-free systems throughout the entire temperature range examined (20-35 degrees C) except at 29 degrees C, where a barrier to evaporation was detected. This strengthens the view that the structure that forms at this temperature has the properties of a typical bilayer. PMID:3978199

  4. Environmental calcium modifies induced defences in snails.

    PubMed

    Rundle, Simon D; Spicer, John I; Coleman, Ross A; Vosper, Jo; Soane, Julie

    2004-02-01

    Inducible defences are adaptive phenotypes that arise in response to predation threats. Such plasticity incurs costs to individuals, but there has been little interest in how such induced traits in animals may be constrained by environmental factors. Here, we demonstrate that calcium availability interacts with predation cues to modify snail shell growth and form. Small snails increased their growth and were heavier when exposed to fish chemical cues, but this response was calcium limited. There was also an interactive effect of fish cues and calcium on the shell growth of larger snails, but shell strength and aperture narrowness were affected by calcium alone. For small snails, behavioural avoidance was greatest for snails exhibiting least morphological plasticity, suggesting a trade-off. There was no trade-off of somatic growth with plasticity. We suggest that the expression of defensive traits in molluscs can be constrained by calcium availability, which has implications for molluscan ecology and evolution. PMID:15101422

  5. Surface Crystallization of Supercooled Water in Clouds

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Gore, Warren J. (Technical Monitor)

    2002-01-01

    The process by which liquid cloud droplets homogeneously crystallize into ice is still not well-understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing, initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at -33 C, the reported volume-based freezing rates of ice in supercooled water vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near -40 C.

  6. Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways

    PubMed Central

    Giannelli, Alessio; Colella, Vito; Abramo, Francesca; do Nascimento Ramos, Rafael Antonio; Falsone, Luigi; Brianti, Emanuele; Varcasia, Antonio; Dantas-Torres, Filipe; Knaus, Martin; Fox, Mark T.; Otranto, Domenico

    2015-01-01

    Background Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host. Methodology/Principal Findings Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior. Conclusions Results of this study indicate that A. abstrusus and T. brevior infective L3 are shed in the mucus of H. aspersa or in water where infected gastropods had died submerged. Both elimination pathways may represent alternative route(s) of environmental contamination and source of the infection for these nematodes under field conditions and may significantly affect the epidemiology of feline lungworms. Considering that snails may act as intermediate hosts for other metastrongyloid species, the environmental contamination by mucus-released larvae is discussed in a broader context. PMID:25884402

  7. Shading decreases the abundance of the herbivorous California horn snail, Cerithidea californica

    USGS Publications Warehouse

    Lorda, Julio; Lafferty, Kevin D.

    2012-01-01

    Most of the intertidal zone in estuaries of California, USA and Baja California, Mexico is covered with vascular vegetation. Shading by these vascular plants influences abiotic and biotic processes that shape benthic community assemblages. We present data on the effects of shading on the California horn snail, Cerithidea californica. This species is important because it is the most common benthic macrofaunal species in these systems and acts as an obligate intermediate host of several species of rematode parasites that infect several other species. Using observational and experimental studies, we found a negative effect of shade on the distribution and abundance of the California horn snail. We hypothesized that shading reduces the abundance of the epipelic diatoms that the snails feeds on, causing snails to leave haded areas. We observed a negative relationship between vascular plant cover, sub-canopy light levels, and snail density in Mugu Lagoon. Then we experimentally manipulated light regimes, by clipping vegetation and adding shade structures, and found higher snail densities at higher light levels. In Goleta Slough, we isolated the effect of shade from vegetation by documenting a negative relationship between the shade created by two bridges and diatom and snail densities. We also found that snails moved the greatest distances over shaded channel banks compared to unshaded channel banks. Further, we documented the effect of water depth and channel bank orientation on shading in this system. An additional effect of shading is the reduction of temperature, providing an alternative explanation for some of our results. These results broaden our knowledge of how variation in the light environment influences the ecology of estuarine ecosystems.

  8. Differences in snail ecology lead to infection pattern variation of Echinostoma spp. larval stages.

    PubMed

    Zimmermann, Michael R; Luth, Kyle E; Esch, Gerald W

    2014-09-01

    The infection patterns of parasites are often tied to host behavior. Although most studies have investigated definitive hosts and their parasites, intermediate host behavior may play a role in shaping the distribution and accumulation of parasites, particularly the larval stages. In an attempt to answer this question, more than 4,500 pulmonate snails were collected from 11 states in the mid-Atlantic and Midwestern United States in the summer of 2012. These snails were necropsied and echinostome metecercariae were commonly observed infecting the snails as 2(nd) intermediate hosts (20.0%). The snails included species of 3 genera with distinct differences in the infection patterns of Echinostoma spp. metacercariae among them. Physa spp. (comprising of P. acuta and P. gyrina) snails exhibited a significantly higher prevalence of infection (23.5%) than both Lymnaea columella (11.6%) and Helisoma spp. (comprising of H. anceps and H. trivolvis) (14.2%; P < 0.05), with no difference in prevalence observed between the latter 2 genera (P > 0.05). The intensity of metacercariae within the snail hosts was significantly different between the 3 genera (P < 0.05), with L. columella having the highest intensity (24.3 5.6), followed by Physa spp. (15.2 1.5) and Helisoma spp. (5.0 0.9). Differences in prevalence and intensity were also observed when the different snail families co-habited the same body of water. The disparities in infection patterns are likely due to distinct differences in the behavioral and feeding ecology of the snail hosts. PMID:25119366

  9. The effects of wetland habitat structure on Florida apple snail density

    USGS Publications Warehouse

    Karunaratne, L.B.; Darby, P.C.; Bennetts, R.E.

    2006-01-01

    Wetlands often support a variety of juxtaposed habitat patches (e.g., grass-, shrub- or tree-dominated) differentially suited to support the inhabiting fauna. The proportion of available habitat types has been affected by human activity and consequently has contributed to degrading habitat quality for some species. The Florida apple snail (Pomacea paludosa) has drawn attention as a critical prey item for wetlands wildlife and as an indicator of wetlands restoration success in peninsular Florida, USA. An apparent contradiction has evolved wherein this species appears intolerant of drying events, but these disturbances may be necessary to maintain suitable habitat structure for apple snails. We recently reported that assertions regarding intolerance to dry downs in this species were inaccurate. Here, we compared snail density in habitats with (wet prairie) and without (slough) emergent macrophytes, as well as evaluating the effects of structural attributes within the broad wet prairie habitat type. Snail densities were greater in prairies relative to sloughs (??2= 12.90, df=1, P=0.0003), often by a factor of two to three. Within wet prairie habitats, we found greater snail densities in Panicum hemitomon as compared to Eleocharis cellulosa (??2=31.45, df=1, P=0.0001). Significantly fewer snails were found in dense E. cellulosa as compared to habitats with lower stem density (??2= 10.73, df=1, P=0.011). Our results indicate that wet prairie habitat supports greater snail densities than nymphaea-dominatd slough. Our results have implications for wetlands water management in that continuous inundation has been shown to convert wet prairie to slough habitat, and we suggest this should be avoided in support of apple snails and their predators. ?? 2006, The Society of Wetland Scientists.

  10. Studies of the snail vectors of bilharziasis mansoni in north-eastern Brazil

    PubMed Central

    Barbosa, Frederico S.; Olivier, Louis

    1958-01-01

    The authors describe the bilharziasis endemic areas in north-eastern Brazil, giving the rainfall and general characteristics of the climate. The life-cycles of the two snail vectors—Australorbis glabratus and Tropicorbis centimetralis—in Pernambuco are described. Considerable attention is given to the effects on the snails of the annual drought, which causes many of the habitats to dry up and seriously affects the snail life-cycles and survival patterns. The snails are able to populate habitats that are dry for 5-7 months every year. They survive during the dry season in the protection of debris, vegetation, etc. A. glabratus is more susceptible to infection with Schistosoma mansoni than is T. centimetralis, but the latter is an effective vector, nevertheless, probably because it often occurs in very large numbers. A. glabratus with mature infections die or lose their infections when removed from the water for 20-30 days. Immature parasites are not killed under the same conditions. Infection with S. mansoni injures the snails and may kill them. It also reduces the reproductive capacity of the vectors, but it does not permanently castrate them. The epidemiological significance of these findings and their meaning in terms of snail control are discussed. PMID:13573116

  11. Specialized insulin is used for chemical warfare by fish-hunting cone snails

    PubMed Central

    Safavi-Hemami, Helena; Gajewiak, Joanna; Karanth, Santhosh; Robinson, Samuel D.; Ueberheide, Beatrix; Douglass, Adam D.; Schlegel, Amnon; Imperial, Julita S.; Watkins, Maren; Bandyopadhyay, Pradip K.; Yandell, Mark; Li, Qing; Purcell, Anthony W.; Norton, Raymond S.; Ellgaard, Lars; Olivera, Baldomero M.

    2015-01-01

    More than 100 species of venomous cone snails (genus Conus) are highly effective predators of fish. The vast majority of venom components identified and functionally characterized to date are neurotoxins specifically targeted to receptors, ion channels, and transporters in the nervous system of prey, predators, or competitors. Here we describe a venom component targeting energy metabolism, a radically different mechanism. Two fish-hunting cone snails, Conus geographus and Conus tulipa, have evolved specialized insulins that are expressed as major components of their venoms. These insulins are distinctive in having much greater similarity to fish insulins than to the molluscan hormone and are unique in that posttranslational modifications characteristic of conotoxins (hydroxyproline, ?-carboxyglutamate) are present. When injected into fish, the venom insulin elicits hypoglycemic shock, a condition characterized by dangerously low blood glucose. Our evidence suggests that insulin is specifically used as a weapon for prey capture by a subset of fish-hunting cone snails that use a net strategy to capture prey. Insulin appears to be a component of the nirvana cabal, a toxin combination in these venoms that is released into the water to disorient schools of small fish, making them easier to engulf with the snails distended false mouth, which functions as a net. If an entire school of fish simultaneously experiences hypoglycemic shock, this should directly facilitate capture by the predatory snail. PMID:25605914

  12. Water resources data for New Mexico, water year 1969; Part 1. Surface water records

    USGS Publications Warehouse

    U.S. Geological Survey

    1970-01-01

    Beginning with the 1961 water year, surface-water records have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. The discharge and reservoir storage records for 1961-65 also will be published in a Geological Survey water-supply paper series entitled "Surface Water Supply of the United States 1961-65."

  13. Water resources data for New Mexico, water year 1973; Part 1. Surface water records

    USGS Publications Warehouse

    U.S. Geological Survey

    1974-01-01

    Surface-water records for the 1973 calendar year for New Mexico, including records of streamflow or reservoir storage at gaging stations, partial-record stations, and miscellaneous sites, are given in this report and their locations shown in figures 1, 2. Records for a 'few pertinent gaging stations in bordering States also are included. The records were collected and computed by the Water Resources Division of the US. Geological Survey under the direction of W. E. Hale, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico. Through September 30, 1960, the records of discharge and stage of streams and canals and contents and stage of lakes or reservoirs were published in an annual series of U.S. Geological Survey water supply papers entitled "Surface Water Supply of the United States" Beginning with the 1961 water year, surface-water records have been released by the Geological Survey in annual reports on a State boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. The discharge and reservoir storage records for 1961-65 also are published in a Geological Survey water supply paper series entitled "Surface Water Supply of the United States 1961-65." There will be a similar series of water-supply papers for the water years 1966-70.

  14. Relaxations and Interfacial Water Ordering at the Corundum (110) Surface

    SciTech Connect

    Catalano, Jeffrey G.

    2010-09-17

    In situ high resolution specular X-ray reflectivity measurements were used to examine relaxations and interfacial water ordering occurring at the corundum (110)-water interface. Sample preparation affected the resulting surface structure. Annealing in air at 1373 K produced a reconstructed surface formed through an apparently ordered aluminum vacancy. The effect of the reconstruction on in-plane periodicity was not determined. The remaining aluminum sites on the surface maintain full coordination by oxygen and the surface was coated with a layer of physically adsorbed water. Ordering of water further from the surface was not observed. Acid etching of this surface and preparing a surface through annealing at 723 K both produced an unreconstructed surface with identical relaxations and water ordering. Relaxations were confined primarily to the top {approx}4 {angstrom} of the surface and were dominated by an increased distribution width of the fully occupied surface aluminum site and outward relaxation of the oxygen surface functional groups. A layer of adsorbed water fully coated the surface and occurred in two distinct sites. Water above this showed signs of layering and indicated that water ordering extended 7-10 {angstrom} from the surface. Relaxations and the arrangement of interfacial water were nearly identical on both the unreconstructed corundum and isostructural hematite (110) surfaces. Comparison to corundum and hematite (012) suggests that the arrangement of interfacial water is primarily controlled by mineral surface structure.

  15. Evaluation of environmental methods to control snails in an irrigation system in Central Morocco.

    PubMed

    Laamrani, H; Khallaayoune, K; Boelee, E; Laghroubi, M M; Madsen, H; Gryseels, B

    2000-08-01

    The Moroccan Ministry of Public Health has launched a programme to eliminate schistosomiasis. One of the components in this process is the control of Bulinus truncatus, the intermediate host snail of Schistosoma haematobium. We evaluated three environmentally safe measures to control B. truncatus in siphon boxes, the main breeding sites for these snails in the Tessaout Amont irrigation system. The first method involved covering the siphon boxes to exclude light and reduce algal growth, the second consisted of increasing the frequency of emptying and cleaning the siphon boxes, and the third method increased water velocity to hinder the establishment of the intermediate hosts. The results showed that covering had a pronounced effect on snail and egg mass density, was accepted by the local community and prevented water contact. Cleaning the siphons three times during the irrigation season led to a reduction in snail density although it was not statistically significant and recolonization was rapid. Increasing water velocity by reducing the dimensions of siphon boxes delayed recolonization, but such a control measure can be applied only in specific situations where it does not pose hydraulic problems. The three interventions were selectively effective against B. truncatus, whereas other snails such as Physa acuta and Lymnaea peregra were hardly affected. Covering, the most promising control measure, could be useful in the Moroccan schistosomiasis eradication programme. However, further investigations are needed to assess its impact on water quality. PMID:10995096

  16. Metabolic acceleration in the pond snail Lymnaea stagnalis?

    NASA Astrophysics Data System (ADS)

    Zimmer, Elke I.; Ducrot, V.; Jager, T.; Koene, J.; Lagadic, L.; Kooijman, S. A. L. M.

    2014-11-01

    Under constant environmental conditions, most animals tend to grow following the von Bertalanffy growth curve. Deviations from this curve can point to changes in the environment that the animals experience, such as food limitation when the available food is not sufficient or suitable. However, such deviations can also point to a phenomenon called metabolic acceleration, which is receiving increasing attention in the field of Dynamic Energy Budget (DEB) modeling. Reasons for such an acceleration are usually changes in shape during ontogeny, which cause changes in the surface area to volume ratio of the organism. Those changes, in turn, lead to changes in some of the model parameters that have length in their dimension. The life-history consequences of metabolic acceleration as implemented in the DEB theory are an s-shaped growth curve (when body size is expressed as a length measure) and a prolongation of the hatching time. The great pond snail Lymnaea stagnalis was earlier found to be food limited during the juvenile phase in laboratory experiments conducted under classical ecotoxicity test protocols. The pond snail has isomorphic shell growth but yet does not exhibit the expected von Bertalanffy growth curve under food limitation. When applying the standard DEB model to data from such life-cycle experiments, we also found that the hatching time is consistently underestimated, which could be a sign of metabolic acceleration. We here present an application of the DEB model including metabolic acceleration to the great pond snail. We account for the simultaneous hermaphroditism of the snail by including a model extension that describes the relative investment into the male and female function. This model allowed us to adequately predict the life history of the snail over the entire life cycle. However, the pond snail does not change in shape substantially after birth, so the original explanation for the metabolic acceleration does not hold. Since the change in shape is not the only explanation for metabolic acceleration in animals, we discuss the possible other explanations for this pattern in L. stagnalis.

  17. Organic acids in naturally colored surface waters

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  18. Chapter 5: Surface water quality sampling in streams and canals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  19. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    NASA Technical Reports Server (NTRS)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.

  20. Field and laboratory evaluation of the influence of copper-diquat on apple snails in southern Florida

    USGS Publications Warehouse

    Winger, P.V.; Imlay, M.J.; McMillan, W.E.; Martin, T.W.; Takekawa, J.; Johnson, W.W.

    1984-01-01

    The recent decline of apple snail (Pomacea paludosa) populations in canals surrounding Loxahatchee National Wildlife Refuge in southern Florida coincided with the use of copper-diquat for the control of the aquatic weed hydrilla (Hydrilla ver/icillara). Field and laboratory studies were designed to assess the effects of copper-diquat on apple snails, which are the primary food of the endangered snail kite Rostrhamus sociabilis (formerly known as the Everglade kite). Acute toxicities (96-h LC50 values) of Cutrine-Plus and Komeen (chelated formulations of copper) to immature apple snails were 22 and 241-?g/L, respectively. Diquat was toxic at a concentration of 1,800 I-?g/L and did not increase the toxicity of copper when the chemicals were used in combination. Evaluation of field samples indicated that copper concentrations were higher in detritus than in water. plants and mud, and that there was a gradient of copper concentration from the canal to the interior, the highest residues being in samples from the canal. Copper associated with detritus (up to 150 ?g/g) had no effect on growth or survival of apple snails in field cage and tank studies. Also, field applications of copper.diquat to hydrilla had no effect on survival of caged adult and immature snails. Copper from field applications was rapidly taken out of solution by plants and organic material in the water and subsequently incorporated into the bottom detritus. Although the effects of repeated applications of copper-diquat and high body burdens of copper (accumulated during exposure to herbicidal treatment) on survival and reproduction of apple snails are not known, the information available indicates that treatment of hydrilla with copper-diquat was probably not responsible for the decline in the apple snail population. Application at recommended rates should pose no threat to these snails in the organically rich waters of southern Florida.

  1. Mathematical simulation of an aquatic snail population*

    PubMed Central

    Jobin, W. R.; Michelson, E. H.

    1967-01-01

    Techniques for controlling the intermediate snail hosts of schistosomiasis have had to be evaluated by field trials, since the complexity of snail population dynamics has so far made it impossible to predict the effects of these techniques and thereby avoid costly field testing. However, in laboratory studies with Biomphalaria glabrata it was found that the fecundity of these snails was directly proportional to F/NV, where F is the total amount of food in the habitat, N the number of snails, and V the volume of the habitat. The use of this fecundity variable together with data published on snail longevity and fecundity made it possible to construct a mathematical model of a snail population which may eventually be useful for evaluating snail control methods. For preliminary verification of the model, its predictions were compared with a published history of a population of Bulinus globosus in a small pond. The general agreement of the predicted and observed population data indicated that the basic structure of the model was sound. PMID:5301741

  2. Water resources data for New Mexico, water year 1974; Part 1, Surface water records

    USGS Publications Warehouse

    U.S. Geological Survey

    1975-01-01

    Surface-water records for the 1974 calendar year for New Mexico, including records of streamflow or reservoir storage at gaging stations, partial-record stations, and miscellaneous sites, are given in this report and their locations shown in figures 1, 2. Records for a few pertinent gaging stations in bordering States also are included. The records were collected and computed by the Water Resources Division of the U.S, Geological Survey under the direction of W. E. Hale, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico. Records of discharge and stage of streams, and contents and stage of lakes and reservoirs are published in a series of U.S. Geological Survey water-supply papers entitled, "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series, and since then, are in a 5-year series. More information is given under heading, "Publications" on page 8. Beginning with the 1961 water year, surface-water records have been released by the Geological Survey in annual reports on a State boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. Beginning with the 1971 calendar year, surface water records have been released on a calendar year basis.

  3. Surface-water availability, Tuscaloosa County, Alabama

    USGS Publications Warehouse

    Knight, Alfred L.; Davis, Marvin E.

    1975-01-01

    The average annual runoff, about 1,270 mgd (million gallons per day), originating in Tuscaloosa County is equivalent to 20 inches or 0.95 mgd per square mile. The Black Warrior and Sipsey Rivers, the largest streams in the county, have average flows of 5,230 mgd and 580 mgd, respectively, where they leave the county, and median annual 7-day low flows in excess of 150 mgd and 35 mgd, respectively. North River, Big Sandy Creek, and Hurricane Creek have average flows in excess of 100 mgd and median annual 7-day low flows in excess of 2 mgd. Surface water generally contains less than 100 mg/l (milligrams per liter) dissolved solids, less than 10 mg/l chloride, and is soft to moderately hard. Streams having the higher hardness and the higher dissolved-solids content are in eastern Tuscaloosa County.

  4. Moving Water Droplets on Aluminum and Copper Surfaces Using Surface Tension Gradients

    NASA Astrophysics Data System (ADS)

    Alheshibri, Muidh; Rogers, Nathaniel; Sommers, Andrew; Eid, Khalid

    2013-03-01

    The behavior of water droplets on metal surfaces is very important for many applications, especially in heat exchangers in air conditioning and refrigeration. We use photolithography and/or shadow masks to create alternating hydrophobic/hydrophilic Cu micro-channels on an aluminum surface and to move water droplets on the surface. The contact angle that is formed between water droplets and the surface is clearly asymmetrical due to the different surface properties at the contact line between the droplets and the patterned surface. An HDFT self-assembled mono-layer allows for a large change in the water droplet contact angle on the copper, but seems to have no effect on the aluminum surface. We will show our results on the effect of the surface patterning and surface roughness on water droplet behavior. We also demonstrate that the engineered surface gradients cause water droplets to travel more than 1'' on a horizontal or upward tilted surface.

  5. Metolachlor and atrazine fate in surface water systems

    SciTech Connect

    Rice, P.J.; Anderson, T.A.; Coats, J.R.

    1995-12-31

    The detection of pesticides in surface water and ground water provokes concern involving human health risks associated with pesticide exposure. Monitoring studies of surface waters have detected concentrations of herbicides that exceed the U.S. Environmental Protection Agency proposed maximum contamination level (MCL) for drinking water. Conventional water treatment processes do not remove many herbicides. Tap water drawn from surface-water sources has been reported to contain levels of herbicides above the regulatory limits. There is current interest in the use of artificial wetlands and macrophyte-cultured ponds in waste-water-treatment systems. Aquatic plant-based water treatment systems improve waste water effluent by solid filtration and nutrient assimilation. Various aquatic plants have been shown to accumulate metals, absorb inorganic ions, and accelerate the biodegradation of complex organics. Our research evaluates the fate of metolachlor and atrazine in surface water, surface water/sediment, and surface water/aquatic plant incubation systems to study the influence of sediment and aquatic plants in the removal and biotransformation of herbicides from contaminated waters. Aquatic macrophyte systems may prove to be useful in the remediation of herbicide contaminated surface waters in water treatment facilities or in the reduction of herbicide concentrations from tile drain effluents prior to entering watersheds.

  6. [Equipment for biological experiments with snails aboard piloted orbital stations].

    PubMed

    Gorgiladze, G I; Korotkova, E V; Kuznetsova, E E; Mukhamedieva, L N; Begrov, V V; Pepeliaev, Iu V

    2010-01-01

    To fly biological experiments aboard piloted orbital stations, research equipment was built up of an incubation container, filter system and automatic temperature controller. Investigations included analysis of the makeup and concentrations of gases produced by animals (snails) during biocycle, and emitted after death. Filters are chemisorption active fibrous materials (AFM) with high sorption rate and water receptivity (cation exchange fiber VION-KN-1 and anion exchange fiber VION-AS-1), and water-repellent carbon adsorbent SKLTS. AFM filters were effective in air cleaning and practically excluded ingress of chemical substances from the container into cabin atmosphere over more than 100 days. PMID:21033402

  7. Water resources data, Maryland and Delaware, water year 2001, volume 1. surface-water data

    USGS Publications Warehouse

    James, Robert W.; Saffer, Richard W.; Pentz, Robert H.; Tallman, Anthony J.

    2002-01-01

    Water resources data for the 2001 water year for Maryland and Delaware consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs. This volume (Volume 1. Surface-Water Data) contains records for water discharge at 128 gaging stations; stage and contents of 1 reservoir; and water quality at 20 gaging stations. Also included are stage and discharge for 3 creststage partial-record stations and stage only for 10 tidal crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in Maryland and Delaware.

  8. Water resources data, Maryland and Delaware, water year 1998, volume 1. surface-water data

    USGS Publications Warehouse

    James, Robert W., Jr.; Saffer, Richard W.; Tallman, Anthony

    1999-01-01

    Water resources data for the 1998 water year for Maryland and Delaware consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs. This volume (Volume 1. Surface-Water Data) contains records for water discharge at 105 gaging stations; stage and contents of 1 reservoir; and water quality at 16 gaging stations. Also included are stage and discharge for 3 creststage partial-record stations, discharge only for 9 low-flow partial-record stations, and stage only for 5 tidal crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in Maryland and Delaware.

  9. Water resources data, Maryland and Delaware, water year 1999, Volume 1. surface-water data

    USGS Publications Warehouse

    James, Robert W.; Saffer, Richard W.; Tallman, Anthony J.

    2000-01-01

    Water resources data for the 1999 water year for Maryland and Delaware consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs. This volume (Volume 1. Surface-Water Data) contains records for water discharge at 111 gaging stations; stage and contents of 1 reservoir; and water quality at 17 gaging stations. Also included are stage and discharge for 3 creststage partial-record stations, discharge only for 27 low-flow partial-record stations, and stage only for 5 tidal crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in Maryland and Delaware.

  10. Schistosomes and snails: a molecular encounter

    PubMed Central

    Knight, Matty; Arican-Goktas, Halime D.; Ittiprasert, Wannaporn; Odoemelam, Edwin C.; Miller, Andr N.; Bridger, Joanna M.

    2014-01-01

    Biomphalaria glabrata snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis in the Western hemisphere. For the past two decades, tremendous advances have been made in research aimed at elucidating the molecular basis of the snail/parasite interaction. The growing concern that there is no vaccine to prevent schistosomiasis and only one effective drug in existence provides the impetus to develop new control strategies based on eliminating schistosomes at the snail-stage of the life cycle. To elucidate why a given snail is not always compatible to each and every schistosome it encounters, B. glabrata that are either resistant or susceptible to a given strain of S. mansoni have been employed to track molecular mechanisms governing the snail/schistosome relationship. With such snails, genetic markers for resistance and susceptibility were identified. Additionally, differential gene expression studies have led to the identification of genes that underlie these phenotypes. Lately, the role of schistosomes in mediating non-random relocation of gene loci has been identified for the first time, making B. glabrata a model organism where chromatin regulation by changes in nuclear architecture, known as spatial epigenetics, orchestrated by a major human parasite can now be investigated. This review will highlight the progress that has been made in using molecular approaches to describe snail/schistosome compatibility issues. Uncovering the signaling networks triggered by schistosomes that provide the impulse to turn genes on and off in the snail host, thereby controlling the outcome of infection, could also yield new insights into anti-parasite mechanism(s) that operate in the human host as well. PMID:25101114

  11. Adsorbed water on iron surface by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Fernandes, F. W.; Campos, T. M. B.; Cividanes, L. S.; Simonetti, E. A. N.; Thim, G. P.

    2016-01-01

    The adsorption of H2O molecules on metal surfaces is important to understand the early process of water corrosion. This process can be described by computational simulation using molecular dynamics and Monte Carlo. However, this simulation demands an efficient description of the surface interactions between the water molecule and the metallic surface. In this study, an effective force field to describe the iron-water surface interactions was developed and it was used in a molecular dynamics simulation. The results showed a very good agreement between the simulated vibrational-DOS spectrum and the experimental vibrational spectrum of the iron-water interface. The water density profile revealed the presence of a water double layer in the metal interface. Furthermore, the horizontal mapping combined with the angular distribution of the molecular plane allowed the analysis of the water structure above the surface, which in turn agrees with the model of the double layer on metal surfaces.

  12. The environmental effects of trace elements concentration in sea snails using atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    El-Amri, F. A.

    2003-05-01

    Water pollution bas increased in heavy industrialised areas. Most industrial water wastes end up in the sea. Monitoring the elemental composition in marine organisms, such as snails, provides the essential elements in living organisms and through the food chain to man. 50 samples of each of two kinds of snails have been collected from the west coast of Libya. Samples were digeste with nitric acid and the concentration of Copper, Iron, Magnesium and Zinc were determined by atomic absorption spectrometry. The results shows that Mg has the highest value while the Copper has the lowest in both kind of snaiis. A pattern of the trace elements concentration was investigated regarding the size and kind of snails.

  13. Water resources data for Florida water year 2004volume 1A. northeast Florida surface water

    USGS Publications Warehouse

    Herrett, Thomas A.; Hess, Glen W.; House, Jon G.; Ruppert, Gregory P.; Courts, Mary-Lorraine

    2005-01-01

    Water resources data for the 2004 water year in Florida consist of continuous or daily discharge for 405 streams, periodic discharge for 12 streams, continuous or daily stage for 159 streams, periodic stage for 19 streams, peak stage and discharge for 30 streams; continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 408 wells, periodic ground-water levels for 1,157 wells; quality-of-water data for 140 surface-water sites and 239 wells. The data for northeast Florida include continuous or daily discharge for 140 streams, periodic discharge for 4 streams, continuous or daily stage for 58 streams, periodic stage for 3 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 10 lakes, periodic elevations for 20 lakes; continuous ground water levels for 50 wells, periodic ground-water levels for 522 wells; quality-of-water data for 40 surface-water sites and 66 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  14. Water vapor interactions with FeOOH particle surfaces

    NASA Astrophysics Data System (ADS)

    Song, Xiaowei; Boily, Jean-Franois

    2013-02-01

    Interactions between iron (oxyhydr)oxide particle surfaces and water are of fundamental importance to natural and technological processes. In this Letter, we probe the interactions between submicron-sized lepidocrocite (?-FeOOH) surfaces and gaseous water using Fourier transform infrared spectroscopy. Formation of hydrogen bonds between different lepidocrocite surface OH functional groups and water was specifically monitored in the O-H stretching region. Molecular dynamics simulations of the dominant crystallographic terminations of these particles provided insights into interfacial water structures and hydrogen bonding networks. Theoretical power spectra were moreover used to validate interpretations of experimental spectra. This Letter constrains our understanding of incipient water adsorption reactions leading to thermodynamically stable and reversible thin water films at FeOOH particle surfaces. It also suggests that these water layers are structurally analogous precursors to those occurring at a FeOOH surfaces contacted with liquid water.

  15. Surface cooling by an impinging water drop

    SciTech Connect

    Pasandideh-Fard, M.; Aziz, S.D.; Chandra, S.; Mostaghimi, J.

    1999-07-01

    Widespread use of spray cooling in industrial applications such as cooling of turbine blades, fire suppression by sprinkler systems, and quenching of metal castings has motivated many experimental and analytical studies of droplets and sprays impinging on a hot surface. The authors studied, using both experiments and a numerical model, the impact of water droplets on a hot stainless steel surface. Initial substrate temperatures were varied from 50 C to 120 C (low enough to prevent boiling in the drop) and impact velocities from 0.5 m/s to 4 m/s. Fluid mechanics and heat transfer during droplet impact were modeled using a Volume-of-Fluid (VOF) code. Numerical calculations of droplet shape and substrate temperature during impact agreed well with experimental results. Both simulations and experiments show that increasing impact velocity enhances heat flux from the substrate by only a small amount. The principal effect of raising droplet velocity is that it makes the droplet spread more during impact, increasing the wetted area across which heat transfer takes place. The authors also developed a simple model of heat transfer into the droplet by one-dimensional conduction across a thin boundary layer which gives estimates of droplet cooling effectiveness that agree well with results from the numerical model. The analytical model predicts that for fixed Reynolds number (RE) cooling effectiveness increases with Weber number (WE). However, for large Weber numbers, when WE {much{underscore}gt} {radical}RE, cooling effectiveness is independent of droplet velocity or size and depends only on the Prandtl number.

  16. The role of Snail in prostate cancer

    PubMed Central

    Smith, Bethany N.; Odero-Marah, Valerie A.

    2012-01-01

    Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of death from cancer in men. Epithelial-mesenchymal transition (EMT) is a process by which cancer cells invade and migrate, and is characterized by loss of cell-cell adhesion molecules such as E-cadherin and increased expression of mesenchymal proteins such as vimentin; EMT is also associated with resistance to therapy. Snail, a master regulator of EMT, has been extensively studied and reported in cancers such as breast and colon; however, its role in prostate cancer is not as widely reported. The purpose of this review is to put together recent facts that summarize Snail signaling in human prostate cancer. Snail is overexpressed in prostate cancer and its expression and activity is controlled via phosphorylation and growth factor signaling. Snail is involved in its canonical role of inducing EMT in prostate cancer cells; however, it plays a role in non-canonical pathways that do not involve EMT such regulation of bone turnover and neuroendocrine differentiation. Thus, studies indicate that Snail signaling contributes to prostate cancer progression and metastasis and therapeutic targeting of Snail in prostate cancer holds promise in ?future. PMID:23076049

  17. Floating Vegetated Mats For Improving Surface Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of surface and ground waters is an environmental concern. Pollution from both point and nonpoint sources can render water unsuitable for use. Surface waters of concern include streams, rivers, ponds, lakes, canals, and wastewater lagoons. Lagooned wastewater from confined animal feedi...

  18. Instructions for measuring the rate of evaporation from water surfaces

    USGS Publications Warehouse

    U.S. Geological Survey

    1898-01-01

    The rate of evaporation from water surfaces varies with the temperature of the water, the velocity of the wind at the water surface, and the dryness of the air. Consequently, the rate of evaporation from rivers, lakes, canals, or reservoirs varies widely in different localities and for the same locality in different seasons.

  19. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  20. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  1. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  2. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  3. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  4. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  5. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  6. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  7. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  8. Adsorption structure of water molecules on the Be(0001) surface

    SciTech Connect

    Yang, Yu; Li, Yanfang; Wang, Shuangxi; Zhang, Ping

    2014-06-07

    By using density functional theory calculations, we systematically investigate the adsorption of water molecules at different coverages on the Be(0001) surface. The coverage dependence of the prototype water structures and energetics for water adlayer growth are systematically studied. The structures, energetics, and electronic properties are calculated and compared with other available studies. Through our systematic investigations, we find that water molecules form clusters or chains on the Be(0001) surface at low coverages. When increasing the water coverage, water molecules tend to form a 2 × 2 hexagonal network on the Be(0001) surface.

  9. Habitat characteristics for different freshwater snail species as determined biologically through macroinvertebrate information.

    PubMed

    El-Khayat, Hanaa M M; Mahmoud, Kadria M A; Mostafa, Bayomy B; Tantawy, Ahmad A; El-Deeb, Fatma A; Ragb, Fawzy M; Ismail, Nahed M; El-Said, Kalil M; Taleb, Hoda M Abu

    2011-12-01

    Macro-invertebrates including freshwater snails collected from 643 sites over 8 successive seasons among the River Nile, branches, main canals and certain drains in eight Egyptian Governorates. Thirteen snail species and one bivalve species were identified. The most distributed were Lanistus carinatus and Physa acuta while the most abundant were Cleopatra bulimoides and Physa acuta during the whole study. The sites that harbored each snail species in all the examined water-courses were grouped seasonally and their biological assessment was determined by their minimum and maximum total point similarity percentage to that of the corresponded reference site and mean of the total points. Habitats for most snail species attained minimum total point's similarity percentage less than 21% (very poor habitat) during autumn and winter then spring while during summer very poor habitat was harbored by only few snail species. P. acuta was the only survived snails in habitat which attained 0 as a minimum total point's similarity percentage during two seasons and L. carinatus and Succinea cleopatra during one season. With respect to medically important snails very poor sites constituted 23% of Biomphalaria alexandrina sites, 14% of Lymnaea natalensis and 9.4% of Bulinus truncatus sites. The studied macroinvertebrate matrices, total number of organisms, taxa richness, the Ephemeroptera, Plecoptera, and Trichoptera (EPT) index, ratio of EPT index to chironomidae, ratio of scraper to filtering collector, contribution of dominant macroinvertebrate major group, comparison revealed descending tolerances from B. alexanrina followed by L. natalensis then B. truncates, but Hilsenhoff Biotic Index (HBI) showed the same tolerance to organic pollution. PMID:22435158

  10. Physicochemical properties of concentrated Martian surface waters

    NASA Astrophysics Data System (ADS)

    Tosca, Nicholas J.; McLennan, Scott M.; Lamb, Michael P.; Grotzinger, John P.

    2011-05-01

    Understanding the processes controlling chemical sedimentation is an important step in deciphering paleoclimatic conditions from the rock records preserved on both Earth and Mars. Clear evidence for subaqueous sedimentation at Meridiani Planum, widespread saline mineral deposits in the Valles Marineris region, and the possible role of saline waters in forming recent geomorphologic features all underscore the need to understand the physical properties of highly concentrated solutions on Mars in addition to, and as a function of, their distinct chemistry. Using thermodynamic models predicting saline mineral solubility, we generate likely brine compositions ranging from bicarbonate-dominated to sulfate-dominated and predict their saline mineralogy. For each brine composition, we then estimate a number of thermal, transport, and colligative properties using established models that have been developed for highly concentrated multicomponent electrolyte solutions. The available experimental data and theoretical models that allow estimation of these physicochemical properties encompass, for the most part, much of the anticipated variation in chemistry for likely Martian brines. These estimates allow significant progress in building a detailed analysis of physical sedimentation at the ancient Martian surface and allow more accurate predictions of thermal behavior and the diffusive transport of matter through chemically distinct solutions under comparatively nonstandard conditions.

  11. Distribution of 129I in terrestrial surface water environments

    NASA Astrophysics Data System (ADS)

    Chen, Xuegao; Gong, Meng; Yi, Peng; Aldahan, Ala; Yu, Zhongbo; Possnert, Gran; Chen, Li

    2015-10-01

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. 129I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of 129I appear around 50N and 40S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of 129I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on 129I distribution patterns both locally and globally.

  12. Behavioural responses of the snail Lymnaea acuminata to carbohydrates in snail-attractant pellets

    NASA Astrophysics Data System (ADS)

    Tiwari, Farindra; Singh, D. K.

    Snail control is one of the most important tools in the campaign to reduce the incidence of fascioliasis. In order to attain this objective, the method of bait formulation in order to contain an attractant and a molluscicide is an expedient approach to lure the target snail population to the molluscicide. This study identifies certain carbohydrates, namely sucrose, maltose, glucose, fructose and starch, for preparing such baits. These were tested on Lymnaea acuminata, an intermediate host of the digenean trematodes Fasciola hepatica and Fasciola gigantica. The behavioural responses of snails to these carbohydrates were examined. Significant variations in behavioural responses were observed in the snail even when the five carbohydrates were used in low concentrations in snail-attractant pellets. Starch emerged as the strongest attractant for Lymnaea acuminata, followed by maltose.

  13. Spreading of Cholera through Surface Water

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i) the spreading timescale, that is the time needed for the disease to spread and involve all the communities in the system; and ii) the epidemic timescale, defined by the duration of the epidemic in a single community. Our results suggest that in many cases of real-life epidemiological interest, timescales of disease dynamics may trigger outbreaks that significantly depart from the predictions of classical space-implicit compartmental models.

  14. Specialized insulin is used for chemical warfare by fish-hunting cone snails.

    PubMed

    Safavi-Hemami, Helena; Gajewiak, Joanna; Karanth, Santhosh; Robinson, Samuel D; Ueberheide, Beatrix; Douglass, Adam D; Schlegel, Amnon; Imperial, Julita S; Watkins, Maren; Bandyopadhyay, Pradip K; Yandell, Mark; Li, Qing; Purcell, Anthony W; Norton, Raymond S; Ellgaard, Lars; Olivera, Baldomero M

    2015-02-10

    More than 100 species of venomous cone snails (genus Conus) are highly effective predators of fish. The vast majority of venom components identified and functionally characterized to date are neurotoxins specifically targeted to receptors, ion channels, and transporters in the nervous system of prey, predators, or competitors. Here we describe a venom component targeting energy metabolism, a radically different mechanism. Two fish-hunting cone snails, Conus geographus and Conus tulipa, have evolved specialized insulins that are expressed as major components of their venoms. These insulins are distinctive in having much greater similarity to fish insulins than to the molluscan hormone and are unique in that posttranslational modifications characteristic of conotoxins (hydroxyproline, γ-carboxyglutamate) are present. When injected into fish, the venom insulin elicits hypoglycemic shock, a condition characterized by dangerously low blood glucose. Our evidence suggests that insulin is specifically used as a weapon for prey capture by a subset of fish-hunting cone snails that use a net strategy to capture prey. Insulin appears to be a component of the nirvana cabal, a toxin combination in these venoms that is released into the water to disorient schools of small fish, making them easier to engulf with the snail's distended false mouth, which functions as a net. If an entire school of fish simultaneously experiences hypoglycemic shock, this should directly facilitate capture by the predatory snail. PMID:25605914

  15. Structure of water adsorbed on a mica surface

    SciTech Connect

    Park, Sung-Ho; Sposito, Garrison

    2002-01-29

    Monte Carlo simulations of hydration water on the mica (001) surface under ambient conditions revealed water molecules bound closely to the ditrigonal cavities in the surface, with a lateral distribution of approximately one per cavity, and water molecules interposed between K{sup +} counter ions in a layer situated about 2.5 {angstrom} from a surface O along a direction normal to the (001) plane. The calculated water O density profile was in quantitative agreement with recent X-ray reflectivity measurements indicating strong lateral ordering of the hydration water but liquid-like disorder otherwise.

  16. Surface Tension: The Ways of Water.

    ERIC Educational Resources Information Center

    Donalson-Sams, Marilyn

    1988-01-01

    Describes activities which help students understand several basic scientific concepts regarding water. Outlines objectives, materials needed, procedures, and questions to ask about student observations. Investigations include working with the self-sealing property of water, talcum powder, paper clips, and making water wetter. (RT)

  17. Water resources data for New Mexico, water year 1965; Part 1. Surface water records

    USGS Publications Warehouse

    U.S. Geological Survey

    1966-01-01

    The surface-water records for the 1965 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of New Mexico are given in this report. For convenience there are also Included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of W. E. Hale, District Chief, Water Resources Division. This report is the fifth In a series presenting, annually, basic data on surface-water records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled Surface Water Supply of the United States. Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in New Mexico were contained in Parts 7, 8 and 9 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5~year intervals. These 5-year water-supply papers will show daily discharge and will be compi led On the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  18. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  19. Surface properties of water clusters: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zakharov Elena, Viktor V.; Brodskaya Aatto Laaksonen, N.

    1998-10-01

    Radial local densities, local energies per molecule, orientational distribution functions, normal component of the pressure tensor and other surface properties of water are calculated, based on molecular dynamics simulations of water clusters at 300K. Three different water models are evaluated: the rigid five-site ST2 and four-site TIP4P models; and the three-site SPC/E model, which is made flexible with respect to the angle bending. The size of the clusters is varied from 64 to 1000 water molecules. It is concluded that surface properties are highly sensitive to the choice of potential model. On the basis of the dependence of the work of cluster formation on the cluster size, the influence of the water model on the surface tension of the plane surface is discussed. None of the three models considered gives a proper value for the surface tension of water at room temperature.

  20. Snail control in urban sites in Brazil with slow-release hexabutyldistannoxane and pentachlorophenol*

    PubMed Central

    Toledo, J. V.; Da Silva, C. S. Monteiro; Bulhes, M. S.; Leme, L. A. Paes; Netto, J. A. Da Silva; Gilbert, B.

    1976-01-01

    Slow release formulations of hexabutyldistannoxane (TBTO) and pentachlorophenol (PCP) were tested for the control of Biomphalaria tenagophila in 52 urban sites in Rio de Janeiro. TBTO acted faster and lasted longer than PCP and at 15 g/m2 it eliminated snails from 76% of the treated sites for 1 year. Water pollution and rate of flow had no significant influence on the molluscicidal properties of either compound, but alkalinity lowered the activity of TBTO. Failure to control snail populations was due mainly to human interference and to the non-treatment of adjacent breeding sites that were temporarily dry and therefore overlooked. PMID:1088356

  1. Snail1 Expression Is Required for Sarcomagenesis12

    PubMed Central

    Alba-Castelln, Lorena; Batlle, Raquel; Franc, Clara; Fernndez-Aceero, Mara J.; Mazzolini, Rocco; Pea, Ral; Loubat, Jordina; Alameda, Francesc; Rodrguez, Rufo; Curto, Josu; Albanell, Joan; Muoz, Alberto; Bonilla, Flix; Ignacio Casal, J.; Rojo, Federico; Garca de Herreros, Antonio

    2014-01-01

    Snail1 transcriptional repressor is a major inducer of epithelial-to mesenchymal transition but is very limitedly expressed in adult animals. We have previously demonstrated that Snail1 is required for the maintenance of mesenchymal stem cells (MSCs), preventing their premature differentiation. Now, we show that Snail1 controls the tumorigenic properties of mesenchymal cells. Increased Snail1 expression provides tumorigenic capabilities to fibroblastic cells; on the contrary, Snail1 depletion decreases tumor growth. Genetic depletion of Snail1 in MSCs that are deficient in p53 tumor suppressor downregulates MSC markers and prevents the capability of these cells to originate sarcomas in immunodeficient SCID mice. Notably, an analysis of human sarcomas shows that, contrarily to epithelial tumors, these neoplasms display high Snail1 expression. This is particularly clear for undifferentiated tumors, which are associated with poor outcome. Together, our results indicate a role for Snail1 in the generation of sarcomas. PMID:24947186

  2. An ontology design pattern for surface water features

    USGS Publications Warehouse

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  3. Structure and properties of water film adsorbed on mica surfaces.

    PubMed

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-14

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet. PMID:26374054

  4. Structure and properties of water film adsorbed on mica surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-01

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  5. Salinity adaptation of the invasive New Zealand mud snail (Potamopyrgus antipodarum) in the Columbia River estuary (Pacific Northwest, USA): physiological and molecular studies

    USGS Publications Warehouse

    Hoy, Marshal; Boese, Bruce L.; Taylor, Louise; Reusser, Deborah; Rodriguez, Rusty

    2012-01-01

    In this study, we examine salinity stress tolerances of two populations of the invasive species New Zealand mud snail Potamopyrgus antipodarum, one population from a high salinity environment in the Columbia River estuary and the other from a fresh water lake. In 1996, New Zealand mud snails were discovered in the tidal reaches of the Columbia River estuary that is routinely exposed to salinity at near full seawater concentrations. In contrast, in their native habitat and throughout its spread in the western US, New Zealand mud snails are found only in fresh water ecosystems. Our aim was to determine whether the Columbia River snails have become salt water adapted. Using a modification of the standard amphipod sediment toxicity test, salinity tolerance was tested using a range of concentrations up to undiluted seawater, and the snails were sampled for mortality at daily time points. Our results show that the Columbia River snails were more tolerant of acute salinity stress with the LC50 values averaging 38 and 22 Practical Salinity Units for the Columbia River and freshwater snails, respectively. DNA sequence analysis and morphological comparisons of individuals representing each population indicate that they were all P. antipodarum. These results suggest that this species is salt water adaptable and in addition, this investigation helps elucidate the potential of this aquatic invasive organism to adapt to adverse environmental conditions.

  6. Water resources data for New Mexico, water year 1964; Part I. Surface water records

    USGS Publications Warehouse

    U.S. Geological Survey

    1965-01-01

    The surface-water records for the 1964 water year for gaging stations, partialrecord stations, and miscellaneous sites within the State of New Mexico are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey, under the direction of W. L. Heckler, district engineer, Surface Water Branch. This report is the fourth in a series presenting, annually, basic data on surfacewater records by States. Through September 30, 1960, the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in New Mexico were contained in Parts 7, 8, and 9 of that series. Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  7. Molecular dynamics studies of interfacial water at the alumina surface.

    SciTech Connect

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

  8. Biogeochemistry of DMS in Surface Waters

    NASA Technical Reports Server (NTRS)

    Dacey, J. W. H.

    1997-01-01

    Dimethylsulfide (DMS) is important in influencing the formation of aerosols in the troposphere over large areas of the world's oceans. Understanding the dynamics of aerosols is important to understanding the earth's radiation balance. In evaluating the factors controlling DMS in the troposphere it is vital to understand the dynamics of DMS in the surface ocean. The biogeochemical processes controlling DMS concentration in seawater are myriad; modeling and theoretical estimation are problematic. At the beginning of this project we believed that we were on the verge of simplifying the ship-track measurement of DMS, and we proposed to deploy such a system to develop a database relating high frequency DMS measurements to biological and physicochemical and optical properties of surface water that can be quantified by remote sensing techniques. We designed a system to measure DMS concomitantly with other basic chemical and biological data in a flow-through system. The project was collaborative between Woods Hole Oceanographic Institution (WHOI) and Bermuda Biological Station for Research (BBSR). The project on which we are reporting was budgeted for only one year with a one year no-cost extension. At WHOI our effort was directed towards designing traps which would be used to concentrate DMS from seawater and allow storage for subsequent analysis. At that time, GC systems were too large for easy long-term deployment on a research vessel like R/V Weatherbird, so we focused on simplifying the shipboard sampling procedure. Initial studies of sample recovery with high levels of DMS suggested that Carboxen 1000, a relatively new carbon molecular sieve, could be used as a stable storage medium. The affinity of Carboxen for DMS is several orders of magnitude higher than gold wool (another adsorbent used for DMS collection) on a weight or volume basis. Furthermore, Carboxen's affinity for DMS is also far less susceptible to humidity than gold wool. Unfortunately, further experiments with low level DMS indicated that recovery of DMS after storage was not quantitative. The material has proven to be completely acceptable for short term storage and has been incorporated into a micro-GC system. Since working on this project, we have collaborated with RVM Scientific in Santa Barbara in the design and construction of small portable micro-GC's that will make feasible at-sea measurement in moving ships, making rapid gas analysis and quantification feasible in a ship-track mode. Throughout this period at both WHOI and BBSR, we continued to analyze field data to understand that patterns of time and space variability in DMS and the processes that govern it. These insights will be crucial to determining the specifications for our automated sampling program. The data from this, the longest continuous sampling program for ocean DMS, provided insights into year to year and short-term variability.

  9. Water condensation on zinc surfaces treated by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Narhe, R. D.; Gonzlez-Vias, Wenceslao; Beysens, D. A.

    2010-06-01

    Water condensation, a complex and challenging process, is investigated on a metallic (Zn) surface, regularly used as anticorrosive surface. The Zn surface is coated with hydroxide zinc carbonate by chemical bath deposition, a very simple, low-cost and easily applicable process. As the deposition time increases, the surface roughness augments and the contact angle with water can be varied from 75 to 150, corresponding to changing the surface properties from hydrophobic to ultrahydrophobic and superhydrophobic. During the condensation process, the droplet growth laws and surface coverage are found similar to what is found on smooth surfaces, with a transition from Cassie-Baxter to Wenzel wetting states at long times. In particular, it is noticeable in view of corrosion effects that the water surface coverage remains on order of 55%.

  10. The interaction of water with solid surfaces: fundamental aspects revisited

    NASA Astrophysics Data System (ADS)

    Henderson, Michael A.

    2002-05-01

    Water is perhaps the most important and most pervasive chemical on our planet. The influence of water permeates virtually all areas of biochemical, chemical and physical importance, and is especially evident in phenomena occurring at the interfaces of solid surfaces. Since 1987, when Thiel and Madey (TM) published their review titled 'The interaction of water with solid surfaces: fundamental aspects' in Surface Science Reports, there has been considerable progress made in further understanding the fundamental interactions of water with solid surfaces. In the decade and a half, the increased capability of surface scientists to probe at the molecular-level has resulted in more detailed information of the properties of water on progressively more complicated materials and under more stringent conditions. This progress in understanding the properties of water on solid surfaces is evident both in areas for which surface science methodology has traditionally been strong (catalysis and electronic materials) and also in new areas not traditionally studied by surface scientists such as electrochemistry, photoconversion, mineralogy, adhesion, sensors, atmospheric chemistry and tribology. Researchers in all these fields grapple with very basic questions regarding the interactions of water with solid surfaces such as how is water adsorbed, what are the chemical and electrostatic forces that constitute the adsorbed layer, how is water thermally or non-thermally activated and how do coadsorbates influence these properties of water. The attention paid to these and other fundamental questions in the past decade and a half has been immense. In this review, experimental studies published since the TM review are assimilated with those covered by TM to provide a current picture of the fundamental interactions of water with solid surfaces.

  11. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    EPA Science Inventory

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  12. Models of Fate and Transport of Pollutants in Surface Waters

    ERIC Educational Resources Information Center

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.

  13. TOTAL ALKALINITY OF SURFACE WATERS OF THE US

    EPA Science Inventory

    This map provides a synoptic illustration of the national patterns of surface water alkalinity in the conterminous United States. Alkalinity is the most readily available measure of the acid-neutralizing capacity of surface waters and provides a reasonable estimate o...

  14. Models of Fate and Transport of Pollutants in Surface Waters

    ERIC Educational Resources Information Center

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  15. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Surface water requirements. 258.27 Section 258.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF units shall not: (a) Cause a discharge...

  16. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  17. Reproduction and demography of the Florida Everglade (Snail) Kite

    USGS Publications Warehouse

    Snyder, N.F.R.; Beissinger, S.R.; Chandler, R.E.

    1989-01-01

    An 18-year study of reproduction and survival of the Florida Everglade (Snail) Kite (Rostrhamus sociabilis plumbeus) has revealed the following: extremely poor nesting success (only 13.6% of nests found at the nest-building stage successful); extremely long breeding seasons (some reproductive activity in almost all months in good years); frequent multiple brooding and frequent multiple brooding and frequent renesting after failure; low egg hatchability (81%); high failure rates due to nest collapse, desertion, and predation; extremely high survival of juveniles and adults under good water conditions; and high vulnerability to drought due to near total dependency on a single species of drought-sensitive snail for food. Despite low nesting success, the species has increased rapidly under good conditions, mainly because of multiple nesting attempts within long breeding seasons and high survival rates of free-flying birds. Nesting success varied significantly between regions and nest substrates, but not as a function of seasons or solitary vs. colonial nesting. While nesting success was reduced in low water years, this effect was at least partly due to heavy use of poor nest substrates under such conditions. Clutch size and numbers of young per successful nest varied with regions, but not as a function of seasons or water levels. The effects of coloniality on clutch size and numbers of young were inconsistent. Significant effects of nest-substrate types on clutch size and numbers of young were apparently artifacts of substrate differences between regions.

  18. Dynamic behavior of interfacila water at the silica surface

    SciTech Connect

    Argyris, Dr. Dimitrios; Cole, David R; Striolo, Alberto

    2009-01-01

    Molecular dynamics simulations were employed to study the dynamics properties of water at the silica-liquid interface at ambient temperature. Three different degrees of hydroxylation of a crystalline silica surface were used. To assess the water dynamic properties we calculated the residence probability and in-plane mean square displacement as a function of distance from the surface. The data indicate that water molecules at the fully hydroxylated surface remain longer, on average, in the interfacial region than in the other cases. By assessing the dynamics of molecular dipole moment and hydrogen-hydrogen vector an anisotropic reorientation was discovered for interfacial water in contact with any of the surfaces considered. However, the features of the anisotropic reorientation observed for water molecules depend strongly on the relative orientation of interfacial water molecules and their interactions with surface hydroxyl groups. On the partially hydroxylated surface, where water molecules with hydrogen-down and hydrogen-up orientation are both found, those water molecules associated with surface hydroxyl groups remain at the adsorbed locations longer and reorient slower than the other water molecules. A number of equilibrium properties, including density profiles, hydrogen bond networks, charge densities, and dipole moment densities are also reported to explain the dynamics results.

  19. Environmental factors influencing isolation of enteroviruses from polluted surface waters.

    PubMed

    Metcalf, T G; Wallis, C; Melnick, J L

    1974-05-01

    The influence of water quality upon the concentration of virus on location was assessed in field studies conducted in the Houston ship channel, Galveston Bay, and Houston waste treatment plants. Clarification of polluted surface waters was accomplished with minimal loss of virus. Virus from clarified sewage effluents and saline waters was then adsorbed and concentrated on textile and membrane filter surfaces. Direct measurements of virus from large volumes of polluted surface waters under existing field conditions were then made using the virus concentrator equipment. PMID:4364463

  20. Environmental Factors Influencing Isolation of Enteroviruses from Polluted Surface Waters

    PubMed Central

    Metcalf, Theodore G.; Wallis, Craig; Melnick, Joseph L.

    1974-01-01

    The influence of water quality upon the concentration of virus on location was assessed in field studies conducted in the Houston ship channel, Galveston Bay, and Houston waste treatment plants. Clarification of polluted surface waters was accomplished with minimal loss of virus. Virus from clarified sewage effluents and saline waters was then adsorbed and concentrated on textile and membrane filter surfaces. Direct measurements of virus from large volumes of polluted surface waters under existing field conditions were then made using the virus concentrator equipment. PMID:4364463

  1. Modeling of water outgassing from metal surfaces (III)

    SciTech Connect

    Li, M.; Dylla, H.F.

    1995-07-01

    A model of water adsorption on metal oxide layers and water outgassing from metal surfaces has been developed. The oxide layer is assumed to have porous structure and a pore length ({ital l}) distribution of 1/{ital l}{sup 2}. Numerical evaluation shows that the quantity of water adsorbed is logarithmic with time within a certain time range as experimentally observed. The outgassing rate from surfaces with adsorbed water distributed uniformly on the inner surfaces of individual pores is shown analytically to be inversely proportional to time. This result is consistent with frequently observed pumpdown curves. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  2. Modeling of water outgassing from metal surfaces (III)

    SciTech Connect

    Minxu Li; H. F. Dylla

    1995-06-01

    A model of water adsorption on metal oxide layers and water outgassing from metal surfaces has been developed. The oxide layer is assumed to have porous structure and a pore length (l) distribution of l/l{sup 2}. Numerical evaluation shows that the quantity of water adsorbed is logarithmic with time within a certain time range as experimentally observed. The outgassing rate from surfaces with adsorbed water distributed uniformly on the inner surfaces of individual pores is shown analytically to be inversely proportional to time. This result is consistent with frequently observed pumpdown curves.

  3. Sea-ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Over 1500 water samples from surface and from standard hydrographic depths were collected during June and July 1973 from Bering Sea and Gulf of Alaska. The measurement of temperature, salinity, and productivity indicated that various distinct water masses cover the Bering Sea Shelf. The suspended load in surface waters will be correlated with the ERTS-1 imagery as it becomes available to delineate the surface water circulation. The movement of ice floes in the Bering Strait and Bering Sea indicated that movement of ice varies considerably and may depend on wind stress as well as ocean currents.

  4. Water Interaction with Pristine and Nanopatterned Graphite Surfaces

    NASA Astrophysics Data System (ADS)

    Chakarov, Dinko

    2015-03-01

    We used number of surface sensitive techniques to study and compare the interaction of water with pristine surface of highly oriented pyrolytic graphite and model nanostructured surfaces fabricated by hole-mask colloidal lithography and oxygen plasma etching. Surface morphology and concentration of defects play important role and determine the amount of water bound in two- and three-dimensional hydrogen-bonded networks and thus the structure of ice films. Similarly, the amount and concentration of intersheet openings control the rate of water intercalation into graphite structures. The new findings are of particular interest for development of graphene exfoliation methods and for better understanding of graphene functionalization.

  5. Water adsorption on the LaMnO3 surface

    NASA Astrophysics Data System (ADS)

    Billman, Chris R.; Wang, Yan; Cheng, Hai-Ping

    2016-02-01

    Studying the adsorption of water on the metallic LaMnO3 surface can provide insight into this complicated surface-adsorbate interaction. Using density functional theory, we investigated the adsorption of a water monomer, dimer, trimer, and a monolayer on the surface. The electronic structure of ground state configurations is explored using analysis of density of states, charge density, and crystal orbital overlap populations. We found that the interaction between the surface and water molecules is stronger than hydrogen bonding between molecules, which facilitates wetting of the surface. Adsorbed water molecules form very strong hydrogen bonds, with substantially shifted OH stretch modes. For the monolayer of adsorbed water, a hint of a bilayer is observed with a height separation of only 0.2 A˚. However, simulated scanning tunneling microscopy images and vibrational spectra suggest a significant difference between the two layers due to intermolecular bonding and interaction with the substrate.

  6. Herbicide Metabolites in Surface Water and Groundwater: Introduction and Overview

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.

    1996-01-01

    Several future research topics for herbicide metabolites in surface and ground water are outlined in this chapter. They are herbicide usage, chemical analysis of metabolites, and fate and transport of metabolites in surface and ground water. These three ideas follow the themes in this book, which are the summary of a symposium of the American Chemical Society on herbicide metabolites in surface and ground water. First, geographic information systems allow the spatial distribution of herbicide-use data to be combined with geochemical information on fate and transport of herbicides. Next these two types of information are useful in predicting the kinds of metabolites present and their probable distribution in surface and ground water. Finally, methods development efforts may be focused on these specific target analytes. This chapter discusses these three concepts and provides an introduction to this book on the analysis, chemistry, and fate and transport of herbicide metabolites in surface and ground water.

  7. Water adsorption on the LaMnO3 surface.

    PubMed

    Billman, Chris R; Wang, Yan; Cheng, Hai-Ping

    2016-02-14

    Studying the adsorption of water on the metallic LaMnO3 surface can provide insight into this complicated surface-adsorbate interaction. Using density functional theory, we investigated the adsorption of a water monomer, dimer, trimer, and a monolayer on the surface. The electronic structure of ground state configurations is explored using analysis of density of states, charge density, and crystal orbital overlap populations. We found that the interaction between the surface and water molecules is stronger than hydrogen bonding between molecules, which facilitates wetting of the surface. Adsorbed water molecules form very strong hydrogen bonds, with substantially shifted OH stretch modes. For the monolayer of adsorbed water, a hint of a bilayer is observed with a height separation of only 0.2 A?. However, simulated scanning tunneling microscopy images and vibrational spectra suggest a significant difference between the two layers due to intermolecular bonding and interaction with the substrate. PMID:26874497

  8. Cold-induced spreading of water drops on hydrophobic surfaces.

    PubMed

    Tavakoli, Faryar; Kavehpour, H Pirouz

    2015-02-24

    Superhydrophobic surfaces are characterized by their peculiarities, such as water-repellent, anti-icing, and freezing-delay properties. Wetting dynamics of deposited water drops on cooling hydrophobic surfaces, which directly affects the aforementioned properties, has not been studied thoroughly. Here, water drops are cooled on different hydrophobic surfaces in a controlled environment. During the cooling process, a significant increase in the drop footprint and decrease in the apparent contact angle are observed because of premature and capillary condensation, followed by thin water film formation adjacent to the solid-liquid-gas line. The water thin film propagates on the hydrophobic substrates radially away from the trijunction, followed by spreading of the drop on the film, which was experimentally validated through high-speed visualization. In addition, the roles of physical variables, such as the substrate temperature, humidity of surrounding air, types of hydrophobic surfaces, surface roughness, and drop volume, on post-spreading shape are investigated experimentally. PMID:25631237

  9. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  10. Epigenetic Regulation of EMT: The Snail Story

    PubMed Central

    Lin, Yiwei; Dong, Chenfang; Zhou, Binhua P.

    2014-01-01

    While the epithelial-mesenchymal transition (EMT) plays a fundamental role during development, its deregulation can adversely promote tumor metastasis. The phenotypic and cellular plasticity of EMT indicates that it is subject to epigenetic regulation. In this review, we try to embrace recent findings on the mechanisms of the transcription factor Snail-mediated E-cadherin silencing, which is a hallmark of EMT. Our studies as well as those of others have clearly demonstrated that Snail can recruit multiple chromatin enzymes including LSD1, HDAC1/2, PRC2, G9a and Suv39H1 to the E-cadherin promoter. These enzymes function in a highly orchestrated fashion to generate heterochromatin and promote DNA methyltransferase (DNMT)-mediated DNA methylation at the promoter region. Disruption of the connection between Snail and these chromatin-modifying enzymes may represent an efficient strategy for the treatment of EMT-related diseases. PMID:23888971

  11. Embodied energy comparison of surface water and groundwater supply options.

    PubMed

    Mo, Weiwei; Zhang, Qiong; Mihelcic, James R; Hokanson, David R

    2011-11-01

    The embodied energy associated with water provision comprises an important part of water management, and is important when considering sustainability. In this study, an input-output based hybrid analysis integrated with structural path analysis was used to develop an embodied energy model. The model was applied to a groundwater supply system (Kalamazoo, Michigan) and a surface water supply system (Tampa, Florida). The two systems evaluated have comparable total energy embodiments based on unit water production. However, the onsite energy use of the groundwater supply system is approximately 27% greater than the surface water supply system. This was primarily due to more extensive pumping requirements. On the other hand, the groundwater system uses approximately 31% less indirect energy than the surface water system, mainly because of fewer chemicals used for treatment. The results from this and other studies were also compiled to provide a relative comparison of embodied energy for major water supply options. PMID:21889184

  12. Surface-Water Quality-Assurance Plan for the USGS Wisconsin Water Science Center

    USGS Publications Warehouse

    Garn, H.S.

    2007-01-01

    This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin Water Science Center of the U.S. Geological Survey, Water Resources Discipline, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of Water Science Center personnel in following these policies and procedures including those related to safety and training are presented.

  13. Water surface tension modulates the swarming mechanics of Bacillus subtilis

    PubMed Central

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation. PMID:26557106

  14. Water resources data for New Mexico, water year 1968; Part 1. Surface water records

    USGS Publications Warehouse

    U.S. Geological Survey

    1969-01-01

    The surface-water records for the 1968 water year for gaging stations, partial record stations, and miscellaneous sites within the State of New Mexico are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U. S. Geological Survey, under the direction of W. E. Hale, District Chief, Water Resources Division. This report is the eighth in a series presenting, annually, basic data on surfacewater records by States. Through September 30, 1960, "the records of discharge and stage of streams and contents and stage of lakes or reservoirs were published in an annual series of U. S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States.!! Since 1951 there have been 20 volumes in the series; each volume covered an area whose boundaries coincided with those of certain natural drainage areas. The records in New Mexico were contained in Parts 7, 8, and 9 of that series. Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basic-data reports is limited and primarily for local needs. The records will be published in Geological Survey water-supply papers at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  15. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    EPA Science Inventory

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  16. Crocodylus niloticus (Crocodilia) is highly sensitive to water surface waves.

    PubMed

    Grap, Nadja J; Monzel, Anna S; Kohl, Tobias; Bleckmann, Horst

    2015-10-01

    Crocodiles show oriented responses to water surface wave stimuli but up to now behavioral thresholds are missing. This study determines the behavioral thresholds of crocodilians to water surface waves. Nile crocodiles (Crocodylus niloticus) were conditioned to respond to single-frequency water surface wave stimuli (duration 1150 ms, frequency 15, 30, 40, 60 and 80 Hz), produced by blowing air onto the water surface. Our study shows that C. niloticus is highly sensitive to capillary water surface waves. Threshold values decreased with increasing frequency and ranged between 10.3 μm (15 Hz) and 0.5 μm (80 Hz) peak-to-peak wave amplitude. For the frequencies 15 Hz and 30 Hz the sensitivity of one spectacled caiman (Caiman crocodilus) to water surface waves was also tested. Threshold values were 12.8 μm (15 Hz) down to 1.76 μm (30 Hz), i.e. close to the threshold values of C. niloticus. The surface wave sensitivity of crocodiles is similar to the surface wave sensitivity of semi-aquatic insects and fishing spiders but does not match the sensitivity of surface-feeding fishes which is higher by one to two orders of magnitude. PMID:26153334

  17. Multivariate analyses of water chemistry: surface and ground water interactions.

    PubMed

    Woocay, Arturo; Walton, John

    2008-01-01

    Multivariate statistical methods (MSMs) applied to ground water chemistry provide valuable insight into the main hydrochemical species, hydrochemical processes, and water flowpaths important to ground water evolution. The MSMs of principal component factor analysis (FA) and k-means cluster analysis (CA) were sequentially applied to major ion chemistry from 211 different ground water-sampling locations in the Amargosa Desert. The FA reduces the number of variables describing the system and finds relationships between major ions. The CA of the reduced system produced objective hydrochemical facies, which are independent of, but in good agreement with, lithological data. The derived factors and hydrochemical facies are innovatively presented on biplots, revealing composition of hydrochemical processes and facies, and overlaid on a digital elevation model, displaying flowpaths and interactions with geologic and topographic features in the region. In particular, a distinct ground water chemical signature is observed beneath and surrounding the extended flowpath of Fortymile Wash, presenting some contradiction to contemporary water levels along with potential interaction with a fault line. The signature surrounding the ephemeral Fortymile Wash is believed to represent the relic of water that infiltrated during past pluvial periods when the amount of runoff in the wash was significantly larger than during the current drier period. This hypothesis and aforementioned analyses are supported by the examination of available chloride, oxygen-18, hydrogen-2, and carbon-14 data from the region. PMID:18194324

  18. Interaction of surface and subsurface waters in the system

    NASA Astrophysics Data System (ADS)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Bychinski, Valerii; Sandimirov, Sergey

    2010-05-01

    Purpose of the study - to assess the influence of the Khibiny massif on the formation of the chemical composition of surface and subsurface waters, generated within its boundaries using physical-chemical modeling ("Selector" software package). Objects of monitoring - rivers with sources in the upper reaches of the Khibiny massif (surface waters), and boreholes, located in these rivers' valleys (subsurface waters) have been chosen as objects of monitoring. Processes of formation of surface and subsurface waters, generated within the boundaries of the Khibiny massif, have been considered within the framework of a unified system "water-rock-atmosphere-carbon". The initial data of the model: chemical compositions of the Khibiny massif rocks and chemical analyses of atmospheric and surface waters. Besides, there have been considered Clarke concentrations S, Cl, F, C, their influence on the formation of chemical composition of water solutions; geochemical mobility of chemical elements. The previously developed model has been improved with the purpose of assessment of the influence of organic substance, either liquid or solid, on the formation of the chemical composition of water. The record of the base model of the multisystem includes 24 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-H-O-e), 872 dependent components, including, in a water solution - 295, in a gas phase - 76, liquid hydrocarbons - 111, solid phases, organic and mineral substances - 390. The record of solid phases of multisystem is made with consideration of the mineral composition of the Khibiny massif. Using the created model, the physical-chemical modeling of surface and subsurface water generation has been carried out: 1. The system "water-rock-atmosphere" has been studied, depending on the interaction degree (ksi) of rock with water. A model like this allowed investigating the interactions of surface waters (rivers and lakes) with rocks that form the Khibiny massif. 2. The evolution of subsurface waters has been studied using reservoir dynamics. It was assumed that the generated surface waters react with rock, when getting down at a certain depth, which allows tracing the process of formation and change of waters in the underground space. A computer model of surface waters was compared with the results of clean water monitoring (2001), while the computer calculation of subsurface waters was compared to the data of monitoring of Vudjavrjok, Kunijok and Oleny Ruchey rivers deposits.

  19. Survival of Phytophthora infestans in Surface Water.

    PubMed

    Porter, Lyndon D; Johnson, Dennis A

    2004-04-01

    ABSTRACT Coverless petri dishes with water suspensions of sporangia and zoospores of Phytophthora infestans were embedded in sandy soil in eastern Washington in July and October 2001 and July 2002 to quantify longevity of spores in water under natural conditions. Effects of solar radiation intensity, presence of soil in petri dishes (15 g per dish), and a 2-h chill period on survival of isolates of clonal lineages US-8 and US-11 were investigated. Spores in water suspensions survived 0 to 16 days under nonshaded conditions and 2 to 20 days under shaded conditions. Mean spore survival significantly increased from 1.7 to 5.8 days when soil was added to the water. Maximum survival time of spores in water without soil exposed to direct sunlight was 2 to 3 days in July and 6 to 8 days in October. Mean duration of survival did not differ significantly between chilled and nonchilled sporangia, but significantly fewer chilled spores survived for extended periods than that of nonchilled spores. Spores of US-11 and US-8 isolates did not differ in mean duration of survival, but significantly greater numbers of sporangia of US-8 survived than did sporangia of US-11 in one of three trials. PMID:18944114

  20. Differential Spatial Repositioning of Activated Genes in Biomphalaria glabrata Snails Infected with Schistosoma mansoni

    PubMed Central

    Arican-Goktas, Halime D.; Ittiprasert, Wannaporn; Bridger, Joanna M.; Knight, Matty

    2014-01-01

    Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in other host-pathogen relationships. PMID:25211244

  1. Differential spatial repositioning of activated genes in Biomphalaria glabrata snails infected with Schistosoma mansoni.

    PubMed

    Arican-Goktas, Halime D; Ittiprasert, Wannaporn; Bridger, Joanna M; Knight, Matty

    2014-09-01

    Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in other host-pathogen relationships. PMID:25211244

  2. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    SciTech Connect

    Elder, J.F.; Collins, J.J. )

    1991-01-01

    Freshwater molluscs--snails and bivalves--have been used frequently as bioindicator organisms. With increasing needs for research on contaminant effects in freshwater ecosystems, this kind of biomonitoring is likely to develop further in the future. Molluscs can be used effectively for studies of both organic and inorganic contaminants; this review focuses on studies involving bioaccumulation and toxicity of metals. Two important advantages of snails and bivalves over most other freshwater organisms for biomonitoring research are their large size and limited mobility. In addition, they are abundant in many types of freshwater environments and are relatively easy to collect and identify. At metal concentrations that are within ranges common to natural waters, they are generally effective bioaccumulators of metals. Biomonitoring studies with freshwater molluscs have covered a wide diversity of species, metals, and environments. The principal generalization that can be drawn from this research is that bioaccumulation and toxicity are extremely situation dependent; hence, it is difficult to extrapolate results from any particular study to other situations where the biological species or environmental conditions are different. Even within one species, individual characteristics such as size, life stage, sex, and genotype can have significant effects on responses to contaminants. The bioavailability of the metal is highly variable and depends on pH, presence of organic ligands, water hardness, and numerous other controlling factors. Despite this variability, past studies provide some general principles that can facilitate planning of research with freshwater snails and bivalves as metal bioindicators. These principles may also be useful in understanding and managing freshwater ecosystems.

  3. Carbon evasion from surface waters in Alaska

    NASA Astrophysics Data System (ADS)

    Butman, D. E.; Stackpoole, S. M.; Clow, D. W.; Striegl, R. G.; Verdin, K. L.

    2014-12-01

    Gaseous evasion of carbon dioxide and methane from freshwater surfaces has been shown to be upwards of 50% of the total freshwater carbon flux. In many cases, surface efflux is the dominant removal pathway for carbon, however large-scale estimates remain poorly constrained. As part of the ongoing efforts to quantify the carbon sequestration potential of natural ecosystems in the US by the USGS LandCarbon Program, we present the results of a synthesis of available CO2 in streams and rivers, and CO2 and CH4 measurements in lakes across Alaska. For stream carbon, we performed modifications to a synthetic streamline dataset derived from the Elevation Derivatives for National Applications (EDNA) to reflect more recent and accurate climate. Stream and river surface areas only account for 0.54% of the total area of Alaska while preliminary data suggests lakes account for nearly 3.4%. Preliminary analysis suggests 24 Tg-C yr-1 is evaded from fluvial surfaces, with the highest fluxes located in the southeastern region of the state driven by longer periods above freezing, high annual precipitation, and steep topography. We are currently quantifying the uncertainties in these estimates as well as analyzing a new dataset on CO2 and CH4 concentrations in Alaskan lakes. We will present the first estimate for the total freshwater surface carbon flux for Alaska.

  4. Compton Scattering from Bulk and Surface of Water

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Kuzmenko, Ivan; Vaknin, David

    2014-03-01

    Elastic and Compton scattering at grazing angle X-ray incidence from water show distinct behaviors below and above the critical angle for total reflections suggesting surface restructuring of the water surface. Using X-ray synchrotron radiation in reflectivity mode, we collect the Thomson and Compton scattering signals with energy dispersive detector at various angles near the normal to surface as a function of the angle of incidence. Analysis of the ratio between the Thomson and Compton intensity above the critical angle (which mainly probes bulk water) is a constant as expected from incoherent scattering from single water molecule, whereas the signal from the surface shows strong angular dependence on the incident angle. Although we do not fully understand the phenomena, we attribute the observation to more organized water at the interface. Ames Laboratory, DOE under contract No. DE-AC02-07CH11358 and Advanced Photon Source, DOE under contract No. DE-AC02-06CH11357.

  5. Interaction between water cluster ions and mica surface

    SciTech Connect

    Ryuto, Hiromichi Ohmura, Yuki; Nakagawa, Minoru; Takeuchi, Mitsuaki; Takaoka, Gikan H.

    2014-03-15

    Water cluster ion beams were irradiated on mica surfaces to investigate the interaction between molecular cluster ions and a mica surface. The contact angle of the mica surface increased with increasing dose of the water cluster ion beam, but the increase in the contact angle was smaller than that induced by an ethanol cluster ion beam. The surface roughness also increased with increasing dose of the water cluster ion beam, whereas the intensity of K 2p x-ray photoelectron spectroscopy peaks decreased with increasing dose of the water cluster ion beam. The decrease in the number of potassium atoms together with the increase in the surface roughness may be the causes of the increase in the contact angle.

  6. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  7. Measurements of Water Surface Snow Lines in Classical Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Blevins, Sandra M.; Pontoppidan, Klaus M.; Banzatti, Andrea; Zhang, Ke; Najita, Joan R.; Carr, John S.; Salyk, Colette; Blake, Geoffrey A.

    2016-02-01

    We present deep Herschel-PACS spectroscopy of far-infrared water lines from a sample of four protoplanetary disks around solar-mass stars, selected to have strong water emission at mid-infrared wavelengths. By combining the new Herschel spectra with archival Spitzer-IRS spectroscopy, we retrieve a parameterized radial surface water vapor distribution from 0.1 to 100 au using two-dimensional dust and line radiative transfer modeling. The surface water distribution is modeled with a step model composed of a constant inner and outer relative water abundance and a critical radius at which the surface water abundance is allowed to change. We find that the four disks have critical radii of ∼3–11 au, at which the surface water abundance decreases by at least 5 orders of magnitude. The measured values for the critical radius are consistently smaller than the location of the surface snow line, as predicted by the observed spectral energy distribution. This suggests that the sharp drop-off of the surface water abundance is not solely due to the local gas-solid balance, but may also be driven by the deactivation of gas-phase chemical pathways to water below 300 K. Assuming a canonical gas-to-dust ratio of 100, as well as coupled gas and dust temperatures Tgas = Tdust, the best-fit inner water abundances become implausibly high (0.01–1.0 {{{{H}}}2}-1). Conversely, a model in which the gas and dust temperatures are decoupled leads to canonical inner-disk water abundances of ∼ {10}-4 {{{H}}}2-1, while retaining gas-to-dust ratios of 100. That is, the evidence for gas–dust decoupling in disk surfaces is stronger than for enhanced gas-to-dust ratios.

  8. LANDSCAPE INDICATORS OF SURFACE WATER CONDITIONS

    EPA Science Inventory

    This task comprises three inter-related projects: 1) impervious surface mapping and evaluation of its impact ; 2) detection of BMPs and estimation of their ability to reduce nutrient input into streams, and; 3) detection of isolated wetlands. Each substask addresses critical is...

  9. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  10. Deep Groundwater Contributions to Surface Water in a Mountainous Watershed

    NASA Astrophysics Data System (ADS)

    Tolley, D. G.; Harding, J. J.; Wilson, J. L.; Frisbee, M. D.

    2012-12-01

    With growing concerns about declining snowpack, warmer temperatures, and land use changes, it is becoming increasingly important to determine the sources that contribute to surface water. In western states, such as New Mexico, most of the surface water is derived from mountainous watersheds. However, the interaction between the groundwater and the surface water within these mountain systems is poorly understood. Geochemical data collected from a mesoscale (~200 km2) watershed in northern New Mexico indicate there may be significant groundwater contributions to the surface water that have largely been ignored in previous studies. Stable isotopic analysis of ?18O and ?2H and Piper diagrams for surface water, groundwater, and spring water are not geochemically distinct. Surface water solute concentrations for most constituents increase as a function of the drainage area while the stable isotopic signature remains constant, suggesting that the water is sourced from similar areas but has undergone differing degrees of geochemical evolution along different flow paths. Plots of SiO2 vs Ca2+, Na+, Mg2+, and K+ show evidence of spatial evolution of groundwater with solute concentrations from the headwaters to the watershed outlet. We hypothesize that the increasing solute concentrations in the surface water are controlled by inputs from deep, more geochemically evolved groundwater. This is similar to what Frisbee et al. (2011) saw in the Saguache Watershed, though our watershed is significantly smaller and has a different geological setting. Due to the chemical kinetics involved, this more geochemically evolved groundwater would require longer residence time along a given flow path to achieve the observed chemical compositions. Significant contributions of old groundwater to surface water could result in the surface water system having increased buffering capacity against climate change. This deep groundwater component in watersheds has largely been unexplored. Our research provides support for our hypothesis and indicates that deep groundwater contributions to surface water may occur at even smaller scales than previously published. Silica concentration in surface water samples plotted as a function of upstream contributing area. Silica concentrations tend to increase with increasing upstream contributing area.

  11. Thin Water Films at Multifaceted Hematite Particle Surfaces.

    PubMed

    Boily, Jean-François; Yeşilbaş, Merve; Md Musleh Uddin, Munshi; Baiqing, Lu; Trushkina, Yulia; Salazar-Alvarez, Germàn

    2015-12-01

    Mineral surfaces exposed to moist air stabilize nanometer- to micrometer-thick water films. This study resolves the nature of thin water film formation at multifaceted hematite (α-Fe2O3) nanoparticle surfaces with crystallographic faces resolved by selected area electron diffraction. Dynamic vapor adsorption (DVA) in the 0-19 Torr range at 298 K showed that these particles stabilize water films consisting of up to 4-5 monolayers. Modeling of these data predicts water loadings in terms of an "adsorption regime" (up to 16 H2O/nm(2)) involving direct water binding to hematite surface sites, and of a "condensation regime" (up to 34 H2O/nm(2)) involving water binding to hematite-bound water nanoclusters. Vibration spectroscopy identified the predominant hematite surface hydroxo groups (-OH, μ-OH, μ3-OH) through which first layer water molecules formed hydrogen bonds, as well as surface iron sites directly coordinating water molecules (i.e., as geminal η-(OH2)2 sites). Chemometric analyses of the vibration spectra also revealed a strong correspondence in the response of hematite surface hydroxo groups to DVA-derived water loadings. These findings point to a near-saturation of the hydrogen-bonding environment of surface hydroxo groups at a partial water vapor pressure of ∼8 Torr (∼40% relative humidity). Classical molecular dynamics (MD) resolved the interfacial water structures and hydrogen bonding populations at five representative crystallographic faces expressed in these nanoparticles. Simulations of single oriented slabs underscored the individual roles of all (hydro)oxo groups in donating and accepting hydrogen bonds with first layer water in the "adsorption regime". These analyses pointed to the preponderance of hydrogen bond-donating -OH groups in the stabilization of thin water films. Contributions of μ-OH and μ3-OH groups are secondary, yet remain essential in the stabilization of thin water films. MD simulations also helped resolve crystallographic controls on water-water interactions occurring in the "condensation regime". Water-water hydrogen bond populations are greatest on the (001) face, and decrease in importance in the order (001) > (012) ≈ (110) > (014) ≫ (100). Simulations of a single (∼5 nm × ∼ 6 nm × ∼ 6 nm) nanometric hematite particle terminated by the (001), (110), (012), and (100) faces also highlighted the key roles that sites at particle edges play in interconnecting thin water films grown along contiguous crystallographic faces. Hydroxo-water hydrogen bond populations showed that edges were the preferential loci of binding. These simulations also suggested that equilibration times for water binding at edges were slower than on crystallographic faces. In this regard, edges, and by extension roughened surfaces, are expected to play commanding roles in the stabilization of thin water films. Thus, in focusing on the properties of nanometric-thick water layers at hematite surfaces, this study revealed the nature of interactions between water and multifaced particle surfaces. Our results pave the way for furthering our understanding of mineral-thin water film interfacial structure and reactivity on a broader range of materials. PMID:26559158

  12. Third Stokes parameter emission from a periodic water surface

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.

    1991-01-01

    An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.

  13. Interactions between ground water and surface water in the Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; DeHan, R.S.; Hirten, J.J.; Catches, J.S.

    1997-01-01

    Ground water and surface water constitute a single dynamic system in roost parts of the Suwannee River basin due to the presence of karat features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.

  14. Coherent structures in liquid water close to hydrophilic surfaces

    NASA Astrophysics Data System (ADS)

    Del Giudice, Emilio; Tedeschi, Alberto; Vitiello, Giuseppe; Voeikov, Vladimir

    2013-06-01

    Quantum Electrodynamics (QED) predicts the occurrence of a number of coherent dynamical phenomena in liquid water. In the present paper we focus our attention on the joint coherent oscillation of the almost free electrons produced by the coherent oscillation of the electron clouds of water molecules, which has been described in previous publications, and of the negative electric charges lying on the solid surfaces wet by water. This joint coherent oscillation gives rise to a number of phenomenological consequences which are found to exist in the physical reality and coincide with the layers of Exclusion Zone (EZ) water experimentally observed close to hydrophilic surfaces.

  15. Structure and dynamics of water at the mackinawite (001) surface

    NASA Astrophysics Data System (ADS)

    Terranova, Umberto; de Leeuw, Nora H.

    2016-03-01

    We present a molecular dynamics investigation of the properties of water at the interface with the mackinawite (001) surface. We find water in the first layer to be characterised by structural properties which are reminiscent of hydrophobic substrates, with the bulk behaviour being recovered beyond the second layer. In addition, we show that the mineral surface reduces the mobility of interfacial water compared to the bulk. Finally, we discuss the important differences introduced by simulating water under conditions of high temperature and pressure, a scenario relevant to geochemistry.

  16. Assessment of information on ground-water/surface-water interactions in the northern midcontinent

    USGS Publications Warehouse

    Strobel, Michael L.

    1995-01-01

    Ground-water/surface-water interactions are important to the hydrology of shallow aquifers, streams, lakes, and wetlands. Information on ground-water/surface-water interactions in the northern midcontinent was assessed. The ground-water/surface-water interactions in physiographic and climatic areas that contain many wetlands differed from the interactions in areas that consisted predominantly of alluvial aquifers along large streams. In both types of areas, however, the interactions are complex. The distribution of shallow ground-water observation wells in the northern midcontinent and the frequency of measurement were evaluated. Most shallow wells are located adjacent to major streams, especially in areas where wetlands are not a dominant surface-water feature. The frequency of measurement was inconsistent between states.

  17. Surface water records of New Mexico, water year 1962

    USGS Publications Warehouse

    U.S. Geological Survey

    1963-01-01

    year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  18. Quality of surface water in Missouri, water year 2009

    USGS Publications Warehouse

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  19. Water-collecting behavior of nanostructured surfaces with special wettability

    NASA Astrophysics Data System (ADS)

    Choo, Soyoung; Choi, Hak-Jong; Lee, Heon

    2015-01-01

    Dew is commonly formed even in dry regions, and we examined the suitability of surfaces with superhydrophilic patterns on a superhydrophobic background as a dew-harvesting system. Nanostructured surfaces with mixed wettability were fabricated by ZnO and TiO2 nanorods. The condensation properties were investigated by environmental scanning electron microscopy (ESEM), and the water-collecting function of the patterned surfaces in an artificial environment was confirmed. Condensation and water-collecting behavior were evaluated as a function of surface inclination angle and pattern shape. We examined the collecting efficiency among the different wettabilities at various inclination angles and observed the condensation behavior for various superhydrophilic shapes.

  20. Anomalously Rapid Hydration Water Diffusion Dynamics Near DNA Surfaces.

    PubMed

    Franck, John M; Ding, Yuan; Stone, Katherine; Qin, Peter Z; Han, Songi

    2015-09-23

    The emerging Overhauser effect dynamic nuclear polarization (ODNP) technique measures the translational mobility of water within the vicinity (5-15 ) of preselected sites. The work presented here expands the capabilities of the ODNP technique and illuminates an important, previously unseen, property of the translational diffusion dynamics of water at the surface of DNA duplexes. We attach nitroxide radicals (i.e., spin labels) to multiple phosphate backbone positions of DNA duplexes, allowing ODNP to measure the hydration dynamics at select positions along the DNA surface. With a novel approach to ODNP analysis, we isolate the contributions of water molecules at these sites that undergo free translational diffusion from water molecules that either loosely bind to or exchange protons with the DNA. The results reveal that a significant population of water in a localized volume adjacent to the DNA surface exhibits fast, bulk-like characteristics and moves unusually rapidly compared to water found in similar probe volumes near protein and membrane surfaces. Control studies show that the observation of these characteristics are upheld even when the DNA duplex is tethered to streptavidin or the mobility of the nitroxides is altered. This implies that, as compared to protein or lipid surfaces, it is an intrinsic feature of the DNA duplex surface that it interacts only weakly with a significant fraction of the surface hydration water network. The displacement of this translationally mobile water is energetically less costly than that of more strongly bound water by up to several kBT and thus can lower the activation barrier for interactions involving the DNA surface. PMID:26256693

  1. Turbulent flow over an interactive alternating land-water surface

    NASA Astrophysics Data System (ADS)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  2. The susceptibility of Marisa cornuarietis, a predator of schistosome bearing snails, to N-tritylmorpholine.

    PubMed

    Meier-Brook, C; Tjhen, K Y

    1977-03-01

    Introduction of the ampullariid snail, Marisa cornuarietis (L.), into water treated with molluscicides, in order to secure the success of chemical control of schistosome host snails, is promising. Adult Marisa can be introduced only two days after treating water of pH less than or equal to 7-9 with N-tritylmorpholine (= FresconR Shell) at a concentration of 0-03 ppm. There is considerable variation in the susceptibility of different strains: the LT50 in a concentration of 0-03 ppm Frescon at 25 degrees C was about 27-3 hours for a Puerto Rican and 44-6 hours for a Floridan strain, both 52 weeks old. At sexual maturity, i.e. approximately 18 weeks at 25 degrees C, the LT50 for the Floridan strain was approximately 31-8 hours; experiments with a hybrid stock of the two strains had an LT50 of 30-0 hours. Younger snails were significantly more susceptible to the molluscicide, and eggs were approximately four times more resistant than adults; this agrees with findings by previous authors for other snail species. In the case of the accidental uncontrolled spread of Marisa to cultivated areas it is suggested that a concentration of 0-03 Frescon is applied for at least four days. PMID:849022

  3. The toxic activities of Arisaema erubescens and Nerium indicum mixed with Streptomycete against snails.

    PubMed

    Zhang, Yi; Ke, Wenshan; Yang, Jinglian; Ma, Anning; Yu, Zhensen

    2009-03-01

    The comparative molluscicidal activities of Arisaema erubescens tuber extracts and Nerium indicum leaf extracts mixed with Streptomycete violacerruber dilution (SD) against the snail Oncomlania hupensis and the responses of the isozymes, esterase (EST) and superoxide dismutase (SOD) to the A. erubescens extracts and the mixtures were investigated. The molluscicidal activity of A. erubescens water extracts mixed with S. violacerruber dilution was 4-5 times higher than a single A. erubescens or S. violacerruber dilution after 24-h exposure, and is also higher than that of N. indicum leaf water extracts mixed with S. violacerruber dilution. At the end of exposure to the N-butanol extracts of A. erubescens tubers (NEAT), the EST activity in snail liver decreased and some enzyme bands (EST 1 and EST 3 in exposure to NEAT) disappeared but the activities of SOD 1 increased. The effect was more obvious in mixture treatment than in single NEAT or SD treatment. The results indicated that molluscicidal activities of plant and microorganism could be more effective than single plant. The decline of the detoxic ability in snail liver cells could be the reason of the snail dying. PMID:21783953

  4. Mate desertion in the snail kite

    USGS Publications Warehouse

    Beissinger, S.R.; Snyder, N.F.R.

    1988-01-01

    Mate desertion during the breeding cycle was documented at 28 of 36 (78%) snail kite, Rostrhamus sociabilis nests in Florida between 1979 and 1983. Offspring mortality occurred at only one deserted nest, however. Parents that were deserted by their mates continued to care for their young until independence (3?5 additional weeks) and provided snails at a rate similar to that of both parents combined before desertion. Males and females deserted with nearly equal frequency, except in 1982 when more females deserted. No desertion occurred during drought years, whereas desertion occurred at nearly every nest during favourable conditions. The occurrence of mate desertion was generally related to indirect measures of snail abundance: foraging range, snail delivery rates to the young and growth rates. Small broods were deserted more frequently by females than by males and tended to be deserted earlier than large ones. After desertion, deserters had the opportunity to re-mate and nest again since breeding seasons were commonly lengthy, but whether they did so was impossible to determine conclusively in most cases. The deserted bird sometimes incurred increased energetic costs and lost breeding opportunities during periods of monoparental care.

  5. Water diffusion on TiO2 anatase surface

    NASA Astrophysics Data System (ADS)

    Agosta, L.; Gala, F.; Zollo, G.

    2015-06-01

    Compatibility between biological molecules and inorganic materials, such as crystalline metal oxides, is strongly dependent on the selectivity properties and the adhesion processes at the interface between the two systems. Among the many different aspects that affect the adsorption processes of peptides or proteins onto inorganic surfaces, such as the charge state of the amino acids, the peptide 3D structure, the surface roughness, the presence of vacancies or defects on and below the surface, a key role is certainly played by the water solvent whose molecules mediate the interaction. Then the surface hydration pattern may strongly affect the adsorption behavior of biological molecules. For the particular case of (101) anatase TiO2 surface that has a fundamental importance in the interaction of biocompatible nano-devices with biological environment, it was shown, both theoretically and experimentally, that various hydration patterns are close in energy and that the water molecules are mobile at as low temperature values as 190 K. Then it is important to understand the dynamical behavior of first hydration layer of the (101) anatase surface. As a first approach to this problem, density functional calculations are used to investigate water diffusion on the (101) anatase TiO2 surface by sampling the potential energy surface of water molecules of the first hydration layer thus calculating the water molecule migration energy along some relevant diffusion paths on the (101) surface. The measured activation energy of water migration seems in contrast with the observed surface mobility of the water molecules that, as a consequence could be explained invoking a strong role of the entropic term in the context of the transition state theory.

  6. Identifying and Mapping Seasonal Surface Water Frost with MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Bandfield, J. L.; Wood, S. E.

    2013-12-01

    The Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured surface broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. However, few studies have investigated seasonal surface water frost and its role in the global water cycle. We examine zonally-averaged TES daytime albedo, temperature, and water vapor abundance data [after Smith, 2004] to map the presence of surface water frost on Mars. Surface water frost occurs in the polar and mid latitudes, in regions with surface temperatures less than 220 K and above 150 K, and can significantly increase albedo relative to the bare surface. In the northern hemisphere water frost is most apparent in late fall/early winter, before the onset of carbon dioxide frost. Dust storms occurring near northern winter solstice affect albedo data and prevent us from putting a latitudinal lower limit on the water frost in the northern hemisphere. Regardless, seasonal water frost occurs at least as low as 48N in Utopia Planitia, beginning at Ls=~230, as observed by Viking Lander 2 [Svitek and Murray, 1990]. Daytime surface water frost was also observed at the Phoenix Lander site (68N) beginning at Ls=~160 [Cull et al., 2010]. The timing of albedo variations observed by TES agree relatively well with lander observations of seasonal frost. Seasonal water frost is not detected during fall in the southern hemisphere. A potential explanation for this discrepancy, compared with frost detections in the north, is the disparity in atmospheric water vapor abundance between the two hemispheres. The frost point temperatures for water vapor in the southern hemisphere are ~5-10 K lower for the corresponding season and latitude in the north [Smith, 2004]. This inhibits the stability of water frost on the surface in the southern hemisphere and also lowers the maximum thickness of a water frost layer, potentially limiting its effect on surface albedo. Our work here shows that the seasonal progression in the northern hemisphere of Mars involves extensive deposition of water frost, similar in progression to the carbon dioxide seasonal ice cap. This behavior results in variation of surface albedo and therefore affects surface and subsurface temperatures, which could impact the distribution of ground ice. Surface frost and subsequent mixing of vapor back into the atmosphere likely plays an important role in the global water cycle. Mapping of water frost's geographical extent, timing, and impact on surface albedo can provide insight into the processes controlling the present Martian climate. References: Cull, S. et al. (2010) JGR, 115, E00E19. Smith, M. D. (2004) Icarus, 167, 148-165. Svitek, T. and Murray, B. (1990) JGR, 95(B2), 1495-1510.

  7. Chloride in ground water and surface water in the vicinity of selected surface-water sampling sites of the beneficial use monitoring program of Oklahoma, 2003

    USGS Publications Warehouse

    Mashburn, Shana L.; Sughru, Michael P.

    2004-01-01

    The Oklahoma Water Resources Board Beneficial Use Monitoring Program reported exceedances of beneficial-use standards for chloride at 11 surface-water sampling sites from January to October 2002. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study to determine the chloride concentrations in ground water in the vicinity of Beneficial Use Monitoring Program surface-water sampling sites not meeting beneficial use standards for chloride and compare chloride concentrations in ground water and surface water. The chloride-impaired Beneficial Use Monitoring Program surface-water sampling sites are located in the western and southern regions of Oklahoma. The ground-water sampling sites were placed in proximity to the 11 surface-water sampling sites designated impaired by chloride by the Oklahoma Water Resources Board. Two surface-water sampling sites were located on the Beaver River (headwaters of the North Canadian River), three sites on the Cimarron River, one site on Sandy Creek, one site on North Fork Red River, and four sites on the Red River. Six ground-water samples were collected, when possible, from two test holes located upstream from each of the 11 Beneficial Use Monitoring Program surface-water sampling sites. One test hole was placed on the left bank and right bank, when possible, of each Beneficial Use Monitoring Program surfacewater sampling site. All test holes were located on alluvial deposits adjacent to the Beneficial Use Monitoring Program surface-water sampling sites within 0.5 mile of the stream. Top, middle, and bottom ground-water samples were collected from the alluvium at each test hole, when possible. Water properties of specific conductance, pH, water temperature, and dissolved oxygen were recorded in the field before sampling for chloride. The ground-water median chloride concentrations at 8 of the 11 Beneficial Use Monitoring Program sites were less than the surface-water median chloride concentrations. The Turpin and Beaver sites had similar ground-water and surface-water median chloride concentrations. The Buffalo site was the only site that had a large difference between the ground-water and surface-water chloride concentrations. The ground-water median chloride concentration was approximately 14,500 mg/L greater than the surface-water median chloride concentration at the Buffalo site.

  8. Field calibration of surface: a model of agricultural chemicals in surface waters.

    PubMed

    Gustafson, D I

    1990-10-01

    Agricultural chemicals sporadically occur at detectable levels in the surface waters of intensively farmed watersheds. HSPF, a previously released model of agricultural chemicals in surface water, had been used to predict concentrations which were much higher (10 X) than those actually observed during monitoring studies. A new model, SURFACE, is described here which is much simpler than HSPF and gives better predictions of surface water concentrations. SURFACE uses PRZM, an EPA model, to calculate edge-of-field runoff losses and simple hydraulic routing algorithms to determine concentrations at the bottom of large river basins. In water systems sampled during 1985 and 1986, SURFACE predictions of annualized mean concentrations for alachlor, atrazine, cyanazine and metolachlor were within 0.09 ppb half of the time. PMID:2177071

  9. Role of water in polymer surface modification using organosilanes

    NASA Astrophysics Data System (ADS)

    Thallapalle, Pradeep Kumar; Zhang Newby, Bi-Min

    2002-03-01

    In general, polymers exhibit excellent bulk properties but may not possess specific surface properties for successful applications in biomaterials and nanotechnology. Surface modification of polymers with the self-assembled monolayers (SAMs) of organosilanes - Silanization - is an attractive approach to alter surface properties without altering the polymers desired bulk properties. However, a pretreatment such as exposure to UV/O or plasma is normally required to generate active surface groups prior to silanization. These pretreatments cause undesirable surface changes such as severe surface roughening and excessive surface damage. Recent studies in silanization suggest that the presence of water or OH groups on the surface is essential to form SAMs. In this study we investigated the importance of surface water layer and OH groups in the formation of SAMs for a variety of polymers. The pre and post-modified polymers were examined using fourier transform infrared spectrometry, scanning probe microscopy and contact angle measurements. The results show that organosilanes can be grafted to a polymer surface as long as a water layer can be physisorbed to the surface or the polymer itself contains OH groups. However the monolayers formed are less organized compared to those formed on silicon wafers due to the amorphous nature of the polymers.

  10. A siphon gage for monitoring surface-water levels

    USGS Publications Warehouse

    McCobb, T.D.; LeBlanc, D.R.; Socolow, R.S.

    1999-01-01

    A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.

  11. Autocatalytic dissociation of water at stepped transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Pekoez, Rengin; Woerner, Swenja; Ghiringhelli, Luca M.; Donadio, Davide

    2014-03-01

    By means of density functional theory calculations, we investigate the adsorption and dissociation of water clusters on flat and stepped surfaces of several transition metals: Rh, Ir, Pd, Pt, and Ru. We find that water binds preferentially to the edge of the steps than to terrace sites, so that isolated clusters or one-dimensional water wires can be isolated by differential desorption. The enhanced reactivity of metal atoms at the step edge and the cooperative effect of hydrogen bonding enhance the chances of partial dissociation of water clusters on stepped surfaces. For example, water dissociation on Pt and Ir surface turns from endothermic at terraces to exothermic at steps. The interpretation of water dissociation is achieved by analyzing changes in the electronic structure of both water and metals, especially focusing on the interaction between the lone-pair electrons of water and the d-band of the metals. The shift in the energetics of water dissociation at steps is expected to play a prominent role in catalysis and fuel cells reactions, as the density of steps at surfaces could be an additional parameter to design more efficient anode materials or catalytic substrates.

  12. TRACE ORGANIC CONTAMINANTS IN ANTHROPOGENICALLY ACIDIFIED SURFACE WATERS

    EPA Science Inventory

    The biological effects of trace organic contaminants in anthropogenically acidified surface waters are mediated by the nature of the association of trace organics with dissolved and particulate organic matter (DOC and POC). his paper (1) briefly reviews available deposition estim...

  13. The biological impact of landfill leachate on nearby surface water

    SciTech Connect

    Geis, S.W.

    1994-12-31

    Five landfill sites were evaluated for their potential to adversely impact the biotic community of surface waters. Acute and chronic aquatic toxicity tests were used to determine the toxicity of water samples collected from landfill monitoring wells and the nearest surface water. Four of the five landfill sites exhibited acute or chronic toxicity to Ceriodaphnia dubia, Daphnia magna, or Pimephales promelas. Toxicity identification procedures performed on water samples revealed toxic responses to metals and one toxic response to organic compounds. Surface water toxicity at an industrial landfill is most likely due to zinc from a tire production facility. Iron and a surfactant were determined to be the probable causes for toxicity at two municipal solid waste landfills.

  14. Factors influencing counts in an annual survey of Snail Kites in Florida

    USGS Publications Warehouse

    Bennetts, R.E.; Link, W.A.; Sauer, J.R.; Sykes, P.W., Jr.

    1999-01-01

    Snail Kites (Rostrhamus sociabilis) in Florida were monitored between 1969 and 1994 using a quasi-systematic annual survey. We analyzed data from the annual Snail Kite survey using a generalized linear model where counts were regarded as over-dispersed Poisson random variables. This approach allowed us to investigate covariates that might have obscured temporal patterns of population change or induced spurious patterns in count data by influencing detection rates. We selected a model that distinguished effects related to these covariates from other temporal effects, allowing us to identify patterns of population change in count data. Snail Kite counts were influenced by observer differences, site effects, effort, and water levels. Because there was no temporal overlap of the primary observers who collected count data, patterns of change could be estimated within time intervals covered by an observer, but not for the intervals among observers. Modeled population change was quite different from the change in counts, suggesting that analyses based on unadjusted counts do not accurately model Snail Kite population change. Results from this analysis were consistent with previous reports of an association between water levels and counts, although further work is needed to determine whether water levels affect actual population size as well as detection rates of Snail Kites. Although the effects of variation in detection rates can sometimes be mitigated by including controls for factors related to detection rates, it is often difficult to distinguish factors wholly related to detection rates from factors related to population size. For factors related to both, count survey data cannot be adequately analyzed without explicit estimation of detection rates, using procedures such as capture-recapture.

  15. Miscellaneous surface-water data, Pecos River basin, New Mexico

    USGS Publications Warehouse

    Cranston, C. Clare; Kues, Georgianna E.; Welder, G.E.

    1981-01-01

    Miscellaneous surface-water data from the Pecos River basin of New Mexico are assembled into one table. Measurements and estimates of the discharge of streams, springs, and diversion canals and pumps that are not readily available to the public are given. The principal sources of information are published and unpublished reports and various records of the U.S. Geological Survey and the New Mexico State Engineer Office. Many thousands of surface-water discharge values are given. (USGS)

  16. International Tables of the Surface Tension of Water

    NASA Astrophysics Data System (ADS)

    Vargaftik, N. B.; Volkov, B. N.; Voljak, L. D.

    1983-07-01

    This paper presents a table for the surface tension of water from 0.01 to 374 C and an interpolating equation which represents the values in the table to well within their estimated uncertainties. The table of values and the interpolating equation are those recommended by the International Association for the Properties of Steam (IAPS) in its recent official release. The experimental measurements of the surface tension of water and their uncertainties are discussed, as is the development of the IAPS tables.

  17. Differential role of Snail1 and Snail2 zinc fingers in E-cadherin repression and epithelial to mesenchymal transition.

    PubMed

    Villarejo, Ana; Corts-Cabrera, Alvaro; Molina-Ortz, Patricia; Portillo, Francisco; Cano, Amparo

    2014-01-10

    Snail1 (Snail) and Snail2 (Slug) are transcription factors that share a similar DNA binding structure of four and five C2H2 zinc finger motifs (ZF), respectively. Both factors bind specifically to a subset of E-box motifs (E2-box: CAGGTG/CACCTG) in target promoters like the E-cadherin promoter and are key mediators of epithelial-to-mesenchymal transition (EMT). However, there are differences in the biological actions, in binding affinities to E-cadherin promoter, and in the target genes of Snail1 and Snail2, although the molecular bases are presently unknown. In particular, the role of each Snail1 and Snail2 ZF in the binding to E-boxes and in EMT induction has not been previously explored. We have approached this question by modeling Snail1 and Snail2 protein-DNA interactions and through mutational and functional assays of different ZFs. Results show that Snail1 efficient repression and binding to human and mouse E-cadherin promoter as well as EMT-inducing ability require intact ZF1 and ZF2, while for Snail2, either ZF3 or ZF4 is essential for those functions. Furthermore, the differential distribution of E2-boxes in mouse and human E-cadherin promoters also contributes to the differential Snail factor activity. These data indicate a non-equivalent role of Snail1 and Snail2 ZFs in gene repression, contributing to the elucidation of the molecular differences between these important EMT regulators. PMID:24297167

  18. Reassigning the most stable surface of hydroxyapatite to the water resistant hydroxyl terminated (010) surface

    NASA Astrophysics Data System (ADS)

    Zeglinski, Jacek; Nolan, Michael; Thompson, Damien; Tofail, Syed A. M.

    2014-05-01

    Understanding the surface stability and crystal growth morphology of hydroxyapatite is important to comprehend bone growth and repair processes and to engineer protein adsorption, cellular adhesion and biomineralization on calcium phosphate based bone grafts and implant coatings. It has generally been assumed from electronic structure calculations that the most stable hydroxyapatite surface is the (001) surface, terminated just above hydroxyl ions perpendicular to the {001} crystal plane. However, this is inconsistent with the known preferential growth direction of hydroxyapatite crystals and previous experimental work which indicates that, contrary to currently accepted theoretical predictions, it is actually the (010) surface that is preferentially exposed. The surface structure of the (010) face is still debated and needs reconciliation. In this work, we use a large set of density functional theory calculations to model the interaction of water with hydroxyapatite surfaces and probe the surface stability and resistance to hydrolytic remodeling of a range of surface faces including the (001) surface and the phosphate-exposed, calcium-exposed, and hydroxyl-exposed terminations of the (010) surface. For the (001) surface and the phosphate-exposed (010) surface, dissociative water adsorption is favorable. In contrast, the hydroxyl-terminated (010) surface will not split water and only molecular adsorption of water is possible. Our calculations show, overall, that the hydroxyl-terminated (010) surface is the most stable and thus should be the predominant form of the hydroxyapatite surface exposed in experiments. This finding reconciles discrepancies between the currently proposed surface terminations of hydroxyapatite and the experimentally observed crystal growth direction and surface stability, which may aid efforts to accelerate biomineralization and better control bone-repair processes on hydroxyapatite surfaces.

  19. Water formation by surface O3 hydrogenation.

    PubMed

    Romanzin, C; Ioppolo, S; Cuppen, H M; van Dishoeck, E F; Linnartz, H

    2011-02-28

    Three solid state formation routes have been proposed in the past to explain the observed abundance of water in space: the hydrogenation reaction channels of atomic oxygen (O + H), molecular oxygen (O(2) + H), and ozone (O(3) + H). New data are presented here for the third scheme with a focus on the reactions O(3) + H, OH + H and OH + H(2), which were difficult to quantify in previous studies. A comprehensive set of H/D-atom addition experiments is presented for astronomically relevant temperatures. Starting from the hydrogenation/deuteration of solid O(3) ice, we find experimental evidence for H(2)O/D(2)O (and H(2)O(2)/D(2)O(2)) ice formation using reflection absorption infrared spectroscopy. The temperature and H/D-atom flux dependence are studied and this provides information on the mobility of ozone within the ice and possible isotope effects in the reaction scheme. The experiments show that the O(3) + H channel takes place through stages that interact with the O and O(2) hydrogenation reaction schemes. It is also found that the reaction OH + H(2) (OH + H), as an intermediate step, plays a prominent (less efficient) role. The main conclusion is that solid O(3) hydrogenation offers a potential reaction channel for the formation of water in space. Moreover, the nondetection of solid ozone in dense molecular clouds is consistent with the astrophysical picture in which O(3) + H is an efficient process under interstellar conditions. PMID:21361548

  20. Formation and transport of deethylatrazine and deisopropylatrazine in surface water

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.

    1994-01-01

    Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  1. Chlorine stress mediates microbial surface attachment in drinking water systems.

    PubMed

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems. PMID:25359474

  2. Landfill disposal of unused medicines reduces surface water releases.

    PubMed

    Tischler, Lial; Buzby, Mary; Finan, Douglas S; Cunningham, Virginia L

    2013-01-01

    The pharmaceutical industry is conducting research to evaluate the pathways and fate of active pharmaceutical ingredients from the consumer to surface waters. One potential pathway identified by the researchers is the disposal of unused pharmaceutical products that are discarded by consumers in household trash and disposed of in municipal solid waste landfills. This study was designed to evaluate relative amounts of surface water exposures through the landfill disposal pathway compared to patient use and flushing of unused medicine pathways. The estimated releases to surface water of 24 example active pharmaceutical ingredients (APIs) in landfill leachate were calculated for 3 assumed disposal scenarios: 5%, 10%, and 15% of the total annual quantity of API sold is discarded and unused. The estimated releases from landfills to surface waters, after treatment of the leachate, were compared to the total amount of each example API that would be released to surface waters from publicly owned treatment works, generated by patient use and excretion. This study indicates that the disposal of unused medications in municipal solid waste landfills effectively eliminates the unused medicine contribution of APIs to surface waters; greater than 99.9% of APIs disposed of in a landfill are permanently retained. PMID:22556107

  3. Modeling Studies of Geothermal Systems with a Free Water Surface

    SciTech Connect

    Bodvarsson, Gudmundur S.; Pruess, K.

    1983-12-15

    Numerical simulators developed for geothermal reservoir engineering applications generally only consider systems which are saturated with liquid water and/or steam. However, most geothermal fields are in hydraulic communicatino with shallow ground water aquifers having free surface (water level), so that production or injection operations will cause movement of the surface, and of the air in the pore spaces above the water level. In some geothermal fields the water level is located hundreds of meters below the surface (e.g. Olkaria, Kenya; Bjornsson, 1978), so that an extensive so that an extensive unsaturated zone is present. In other the caprock may be very leaky or nonexistent [e.g., Klamath Falls, oregon (Sammel, 1976)]; Cerro Prieto, Mexico; (Grant et al., 1984) in which case ther eis good hydraulic communication between the geothermal reservoir and the shallow unconfined aquifers. Thus, there is a need to explore the effect of shallow free-surface aquifers on reservoir behavior during production or injection operations. In a free-surface aquifer the water table moves depending upon the rate of recharge or discharge. This results in a high overall storativity; typically two orders of magnitude higher than that of compressed liquid systems, but one or two orders of magnitude lower than that for liquid-steam reservoirs. As a consequence, various data analysis methods developed for compressed liquid aquifers (such as conventional well test analysis methods) are not applicable to aquifer with a free surface.

  4. Allying with armored snails: the complete genome of gammaproteobacterial endosymbiont

    PubMed Central

    Nakagawa, Satoshi; Shimamura, Shigeru; Takaki, Yoshihiro; Suzuki, Yohey; Murakami, Shun-ichi; Watanabe, Tamaki; Fujiyoshi, So; Mino, Sayaka; Sawabe, Tomoo; Maeda, Takahiro; Makita, Hiroko; Nemoto, Suguru; Nishimura, Shin-Ichiro; Watanabe, Hiromi; Watsuji, Tomo-o; Takai, Ken

    2014-01-01

    Deep-sea vents harbor dense populations of various animals that have their specific symbiotic bacteria. Scaly-foot gastropods, which are snails with mineralized scales covering the sides of its foot, have a gammaproteobacterial endosymbiont in their enlarged esophageal glands and diverse epibionts on the surface of their scales. In this study, we report the complete genome sequencing of gammaproteobacterial endosymbiont. The endosymbiont genome displays features consistent with ongoing genome reduction such as large proportions of pseudogenes and insertion elements. The genome encodes functions commonly found in deep-sea vent chemoautotrophs such as sulfur oxidation and carbon fixation. Stable carbon isotope (13C)-labeling experiments confirmed the endosymbiont chemoautotrophy. The genome also includes an intact hydrogenase gene cluster that potentially has been horizontally transferred from phylogenetically distant bacteria. Notable findings include the presence and transcription of genes for flagellar assembly, through which proteins are potentially exported from bacterium to the host. Symbionts of snail individuals exhibited extreme genetic homogeneity, showing only two synonymous changes in 19 different genes (13?810 positions in total) determined for 32 individual gastropods collected from a single colony at one time. The extremely low genetic individuality in endosymbionts probably reflects that the stringent symbiont selection by host prevents the random genetic drift in the small population of horizontally transmitted symbiont. This study is the first complete genome analysis of gastropod endosymbiont and offers an opportunity to study genome evolution in a recently evolved endosymbiont. PMID:23924784

  5. Dark solitons on the surface of water

    NASA Astrophysics Data System (ADS)

    Chabchoub, Amin

    2014-05-01

    The nonlinear Schrödinger equation (NLS) models the evolution dynamics in time and space of weakly nonlinear water wave trains in finite or infinite depth. In the defocusing regime (finite depth), the NLS admits a family of soliton solutions, which describe the strong depression of wave envelopes. These solitons are referred to dark solitons and have been already observed in optics and in Bose-Einstein condensates. We present experimental results on gray and black solitons, propagating in a wave flume. Furthermore, we analyze the data and discuss the discrepancies observed with respect to theoretical predictions. The results prove that in the case of weak-nonlinearity of the waves, the NLS describes well the dynamics of nonlinear wave packets in finite depth.

  6. CHARACTERIZING SURFACE WATERS THAT MAY NOT REQUIRE FILTRATION

    EPA Science Inventory

    Field data from various utilities were studied with the object of identifying a set of characteristics of a surface water that might allow it to be successfully treated by disinfection alone, thus avoiding the need to filter. It was found possible to define water quality standard...

  7. SURFACE WATER QUALITY PARAMETERS FOR MONITORING OIL SHALE DEVELOPMENT

    EPA Science Inventory

    This report develops and recommends prioritized listings of chemical, physical, and biological parameters which can be used to assess the environmental impact of oil shale development on surface water resources. Each of the potential water-related problems is addressed in the con...

  8. Effects of ground water exchange on the hydrology and ecology of surface water.

    PubMed

    Hayashi, Masaki; Rosenberry, Donald O

    2002-01-01

    Ground water exchange affects the ecology of surface water by sustaining stream base flow and moderating water-level fluctuations of ground water-fed lakes. It also provides stable-temperature habitats and supplies nutrients and inorganic ions. Ground water input of nutrients can even determine the trophic status of lakes and the distribution of macrophytes. In streams the mixing of ground water and surface water in shallow channel and bankside sediments creates a unique environment called the hyporheic zone, an important component of the lotic ecosystem. Localized areas of high ground water discharge in streams provide thermal refugia for fish. Ground water also provides moisture to riparian vegetation, which in turn supplies organic matter to streams and enhances bank resistance to erosion. As hydrologists and ecologists interact to understand the impact of ground water on aquatic ecology, a new research field called "ecohydrology" is emerging. PMID:12019646

  9. Langmuir circulation inhibits near-surface water turbulence

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed or foam, can be drawn into long rows along the surface. Driving this organization is Langmuir circulation, a phenomenon in which the wind and waves cause surface waters to rotate helically, moving like a wire wrapped around a pole in the windward direction. These spiral currents oscillate between clockwise and counterclockwise rotations, such that in some places the surface waters are pushed together and in others they are pulled apart. Researchers have previously found that at sites of convergence the bubbles produced by breaking waves are pushed to depths of 15 meters or more, with important implications for air-sea gas mixing and other processes.

  10. An Ontology Design Pattern for Surface Water Features

    SciTech Connect

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E; Feng, Chen-Chieh; Usery, Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  11. Martian surface/near-surface water inventory: Sources, sinks, and changes with time

    NASA Astrophysics Data System (ADS)

    Carr, M. H.; Head, J. W.

    2015-02-01

    Today, a 34 m global equivalent water layer (GEL) lies in the Martian polar-layered deposits and shallow ground ice. During the Amazonian, 3 m was outgassed, and 31 m was lost to space and to the surface, leaving 62 m at the end of Hesperian. During the Hesperian, volcanic outgassing added 5 m, 7 m was lost, and 40 m GEL of groundwater was added to form outflow channels, leaving 24 m carryover of surface water from the Noachian into the Hesperian. The Hesperian budget is incompatible with a northern ocean during this era. These figures are for near-surface water; substantial amounts of water may have existed as deep ground ice and groundwater. Our estimate of approximately 24 m near-surface water in the Late Noachian is insufficient to support an ocean at that time also and favors episodic melting of an icy highlands to produce the fluvial and lacustrine features.

  12. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface.

    PubMed

    Metin, Cigdem O; Baran, Jimmie R; Nguyen, Quoc P

    2012-11-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from -79.8 to 15.3mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and water/decane interface. PMID:23193372

  13. Occurrence of Giardia and Cryptosporidium spp. in surface water supplies.

    PubMed Central

    LeChevallier, M W; Norton, W D; Lee, R G

    1991-01-01

    Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for source waters of 66 surface water treatment plants in 14 states and 1 Canadian province. The results showed that cysts and oocysts were widely dispersed in the aquatic environment. Giardia spp. were detected in 81% of the raw water samples. Cryptosporidium spp. were found in 87% of the raw water locations. Overall, Giardia or Cryptosporidium spp. were detected in 97% of the raw water samples. Higher cyst and oocyst densities were associated with source waters receiving industrial or sewage effluents. Significant correlations were found between Giardia and Cryptosporidium densities and raw water quality parameters such as turbidity and total and fecal coliform levels. Statistical modeling suggests that cyst and oocyst densities could be predicted on the basis of watershed and water quality characteristics. The occurrence of high levels of Giardia cysts in raw water samples may require water utilities to apply treatment beyond that outlined in the Surface Water Treatment Rule of the U.S. Environmental Protection Agency. PMID:1822675

  14. Digenean trematode infections of native freshwater snails and invasive Potamopyrgus antipodarum in the Grand Teton National Park/John D. Rockefeller Memorial Parkway Area.

    PubMed

    Adema, C M; Lun, C-M; Hanelt, B; Seville, R S

    2009-02-01

    Outside its native range, the invasive New Zealand mud snail (NZMS), Potamopyrgus antipodarum, is rarely reported to harbor parasites. To test this observation, 7 sites along the Snake River and Polecat Creek in the Grand Teton National Park/John D Rockefeller Memorial Parkway area (Wyoming) were surveyed for native aquatic snails, NZMS, and associated digenean trematodes, in July 2005. At 6 sites, native snails harbored patent digenean infections; within 2 hr, < or =10% of lymnaeid snails shed furcocercariae or xiphidiocercariae, and < or =42% of physid snails released furcocercariae or echinostome cercariae. Partial 18S rDNA sequences were recovered from several furcocercariae. Potamopyrgus antipodarum was present at, and collected from, 5 sites. Polymerase chain reaction assays targeting digenean rDNA sequences in DNA extracted from pools of 150 NZMS snails did not detect parasites. The examination of 960 NZMS by overnight shedding yielded 1 occurrence of (surface-encysted) metacercariae of an unclassified notocotylid (based on 18S and 28S rDNA sequences). The dissection of 150 ethanol-fixed NZMS (30/site) revealed 2 types of digenean metacercariae encysted in tissues of 5 snails from Polecat Creek. Thus, invasive NZMS may serve as first and second intermediate host for digenean parasites. PMID:18576875

  15. Characterization of nanobubbles on hydrophobic surfaces in water.

    PubMed

    Yang, Shangjiong; Dammer, Stephan M; Bremond, Nicolas; Zandvliet, Harold J W; Kooij, E Stefan; Lohse, Detlef

    2007-06-19

    The aim of this paper is to quantitatively characterize the appearance, stability, density, and shape of surface nanobubbles on hydrophobic surfaces under varying conditions such as temperature and temperature variation, gas type and concentration, surfactants, and surface treatment. The method we adopt is atomic force microscopy (AFM) operated in the tapping mode. In particular, we show (i) that nanobubbles can slide along grooves under the influence of the AFM tip, (ii) that nanobubbles can spontaneously form by substrate heating, allowing for a comparison of the surface topology with and without the nanobubble, (iii) that a water temperature increase leads to a drastic increase in the nanobubble density, (iv) that pressurizing the water with CO2 also leads to a larger nanobubble density, but typically to smaller nanobubbles, (v) that alcohol-cleaning of the surface is crucial for the formation of surface nanobubbles, (vi) that adding 2-butanol as surfactant leads to considerably smaller surface nanobubbles, and (vii) that flushing water over alcohol-covered surfaces strongly enhances the formation of surface nanobubbles. PMID:17503857

  16. Nucleate boiling of water from plain and structured surfaces

    SciTech Connect

    Das, A.K.; Das, P.K.; Saha, P.

    2007-08-15

    Heat transfer from plain surface and from surfaces with distinct nucleation sites has been investigated under saturated pool boiling condition. Surfaces have been prepared with regular array of discrete nucleation sites formed by micro-drilling. Distilled water has been used as the boiling liquid. Out of various available correlations, Rohsenow correlation [W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME 74 (1952) 969-976] gives best agreement with the experimental data from plain surface at low degree of superheat. A mechanistic model also provides a good trend matching with the same experimental data. With the introduction of artificial nucleation sites substantial augmentation in heat transfer for distilled water compared to the plane surface has been noted. Continuous increase in nucleation site density increases the rate of heat transfer with a diminishing trend of enhancement. A correlation similar to that of Yamagata et al. [K. Yamagata, F. Hirano, K. Nishiwaka, H. Matsouka, Nucleate boiling of water on the horizontal heating surface, Mem. Fac. Eng. Kyushu 15 (1955) 98] has been developed to fit the experimental data of plane surface. Modification of the same correlation to take care of the nucleation site density has been developed and used to predict the experimental data from augmented surfaces. (author)

  17. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    NASA Astrophysics Data System (ADS)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  18. Tensile testing of ultra-thin films on water surface.

    PubMed

    Kim, Jae-Han; Nizami, Adeel; Hwangbo, Yun; Jang, Bongkyun; Lee, Hak-Joo; Woo, Chang-Su; Hyun, Seungmin; Kim, Taek-Soo

    2013-01-01

    The surface of water provides an excellent environment for gliding movement, in both nature and modern technology, from surface living animals such as the water strider, to Langmuir-Blodgett films. The high surface tension of water keeps the contacting objects afloat, and its low viscosity enables almost frictionless sliding on the surface. Here we utilize the water surface as a nearly ideal underlying support for free-standing ultra-thin films and develop a novel tensile testing method for the precise measurement of mechanical properties of the films. In this method, namely, the pseudo free-standing tensile test, all specimen preparation and testing procedures are performed on the water surface, resulting in easy handling and almost frictionless sliding without specimen damage or substrate effects. We further utilize van der Waals adhesion for the damage-free gripping of an ultra-thin film specimen. Our approach can potentially be used to explore the mechanical properties of emerging two-dimensional materials. PMID:24084684

  19. Tensile testing of ultra-thin films on water surface

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Han; Nizami, Adeel; Hwangbo, Yun; Jang, Bongkyun; Lee, Hak-Joo; Woo, Chang-Su; Hyun, Seungmin; Kim, Taek-Soo

    2013-10-01

    The surface of water provides an excellent environment for gliding movement, in both nature and modern technology, from surface living animals such as the water strider, to Langmuir-Blodgett films. The high surface tension of water keeps the contacting objects afloat, and its low viscosity enables almost frictionless sliding on the surface. Here we utilize the water surface as a nearly ideal underlying support for free-standing ultra-thin films and develop a novel tensile testing method for the precise measurement of mechanical properties of the films. In this method, namely, the pseudo free-standing tensile test, all specimen preparation and testing procedures are performed on the water surface, resulting in easy handling and almost frictionless sliding without specimen damage or substrate effects. We further utilize van der Waals adhesion for the damage-free gripping of an ultra-thin film specimen. Our approach can potentially be used to explore the mechanical properties of emerging two-dimensional materials.

  20. Cue reliability, risk sensitivity and inducible morphological defense in a marine snail.

    PubMed

    Bourdeau, Paul E

    2010-04-01

    Reliable cues that communicate current or future environmental conditions are a requirement for the evolution of adaptive phenotypic plasticity, yet we often do not know which cues are responsible for the induction of particular plastic phenotypes. I examined the single and combined effects of cues from damaged prey and predator cues on the induction of plastic shell defenses and somatic growth in the marine snail Nucella lamellosa. Snails were exposed to chemical risk cues from a factorial combination of damaged prey presented in isolation or consumed by predatory crabs (Cancer productus). Water-borne cues from damaged conspecific and heterospecific snails did not affect plastic shell defenses (shell mass, shell thickness and apertural teeth) or somatic growth in N. lamellosa. Cues released by feeding crabs, independent of prey cue, had significant effects on shell mass and somatic growth, but only crabs consuming conspecific snails induced the full suite of plastic shell defenses in N. lamellosa and induced the greatest response in all shell traits and somatic growth. Thus the relationship between risk cue and inducible morphological defense is dependent on which cues and which morphological traits are examined. Results indicate that cues from damaged conspecifics alone do not trigger a response, but, in combination with predator cues, act to signal predation risk and trigger inducible defenses in this species. This ability to "label" predators as dangerous may decrease predator avoidance costs and highlights the importance of the feeding habits of predators on the expression of inducible defenses. PMID:19882173

  1. Circumnutation on the water surface: female flowers of Vallisneria

    PubMed Central

    Kosuge, Keiko; Iida, Satoko; Katou, Kiyoshi; Mimura, Tetsuro

    2013-01-01

    Circumnutation, the helical movement of growing organ tips, is ubiquitous in land plants. The mechanisms underlying circumnutation have been debated since Darwin's time. Experiments in space and mutant analyses have revealed that internal oscillatory (tropism-independent) movement and gravitropic response are involved in circumnutation. Female flower buds of tape grass (Vallisneria asiatica var. biwaensis) circumnutate on the water surface. Our observations and experiments with an artificial model indicated that gravitropism is barely involved in circumnutation. Instead, we show that helical intercalary growth at the base of peduncle plays the primary role in all movements in Vallisneria. This growth pattern produces torsional bud rotation, and gravity and buoyancy forces have a physical effect on the direction of peduncle elongation, resulting in bud circumnutation on the water surface. In contrast to other water-pollinated hydrophilous plants, circumnutation in Vallisneria enables female flowers to actively collect male flowers from a larger surface area of water. PMID:23355948

  2. Index of surface-water stations in Texas, January 1989

    USGS Publications Warehouse

    Rawson, Jack, (compiler); Carrillo, E.R.; Buckner, H.D.

    1989-01-01

    As of January 1, 1989, the surface-water data-collection network in Texas included 373 continuous-streamflow, 75 continuous or daily reservoir-content, 37 gage-height, 15 crest-stage partial-record, 200 data collection platform, 7 periodic discharge through range, 27 flood-hydrograph partial-record, 27 low-flow partial-record, 43 daily chemical-quality, 17 continuous-recording water quality, 87 periodic biological, 11 lake survey, 159 period organic and (or) nutrient, 2 periodic insecticide, 28 periodic pesticide, 19 automatic sampler, 137 periodic minor element, 126 periodic chemical-quality, 75 periodic physical organic, 17 continuous-recording temperature, and 29 national stream-gaging accounting network stations. Plate 1 shows the location of surface-water streamflow or reservoir-content and chemical-quality or sediment stations in Texas. Plate 2 shows the location of partial-record surface-water stations. (USGS)

  3. Index of surface-water stations in Texas, January 1988

    USGS Publications Warehouse

    Carrillo, E. R., (compiler); Buckner, H.D.; Rawson, Jack

    1988-01-01

    As of January 1, 1988, the surface water data collection network in Texas included 368 continuous streamflow, 72 continuous or daily reservoir-contents, 38 gage height only, 15 crest stage partial record, 4 periodic discharge through range, 32 flood-hydrograph partial-record, 9 flood-profile partial-record, 36 low-flow partial record, 45 daily chemical-quality, 19 lake surveys, 160 periodic organic and (or) nutrient, 3 periodic insecticide, 33 periodic pesticide, 20 automatic sampler, 137 periodic minor elements, 125 periodic chemical-quality, 74 periodic physical-organic, 24 continuous-recording three- or four-parameter water quality, 34 periodic sediment, 21 continuous-recording temperature, and 30 national stream-quality accounting network stations. Plate 1 shows the location of surface water streamflow or reservoir content and chemical quality or sediment stations in Texas. Plate 2 shows the location of partial-record surface-water stations. (USGS)

  4. Thermal surface signatures of ship propeller wakes in stratified waters

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Nath, C.; Fernando, H. J. S.

    2012-11-01

    When a ship moves in temperature stratified water, e.g., in the ocean diurnal thermocline, the propeller(s) as well as the turbulent boundary layer of the hull mix the surface water with underlying colder fluid. As a result, when observed from above, a temperature "wake signature" of 1-2 C may be detected at the water surface. To quantify this phenomenon, theoretical modeling and physical experiments were conducted. The dominant processes responsible for thermal wake generation were identified and parameterized. Most important similarity parameters were derived and estimates for wake signature contrast were made. To verify model predictions, scaled experiments were conducted, with the water surface temperature measured using a sensitive infrared camera. Comparison of laboratory measurements with model estimates has shown satisfactory agreement, both qualitative and quantitatively. Estimates for ocean ship-wake scenarios are also given, which are supported by available field observations.

  5. Circumnutation on the water surface: female flowers of Vallisneria.

    PubMed

    Kosuge, Keiko; Iida, Satoko; Katou, Kiyoshi; Mimura, Tetsuro

    2013-01-01

    Circumnutation, the helical movement of growing organ tips, is ubiquitous in land plants. The mechanisms underlying circumnutation have been debated since Darwin's time. Experiments in space and mutant analyses have revealed that internal oscillatory (tropism-independent) movement and gravitropic response are involved in circumnutation. Female flower buds of tape grass (Vallisneria asiatica var. biwaensis) circumnutate on the water surface. Our observations and experiments with an artificial model indicated that gravitropism is barely involved in circumnutation. Instead, we show that helical intercalary growth at the base of peduncle plays the primary role in all movements in Vallisneria. This growth pattern produces torsional bud rotation, and gravity and buoyancy forces have a physical effect on the direction of peduncle elongation, resulting in bud circumnutation on the water surface. In contrast to other water-pollinated hydrophilous plants, circumnutation in Vallisneria enables female flowers to actively collect male flowers from a larger surface area of water. PMID:23355948

  6. Experimental water droplet impingement data on modern aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Papadakis, Michael; Breer, Marlin D.; Craig, Neil C.; Bidwell, Colin S.

    1991-01-01

    An experimental method has been developed to determine the water droplet impingement characteristics on two- and three-dimensional aircraft surfaces. The experimental water droplet impingement data are used to validate particle trajectory analysis codes that are used in aircraft icing analyses and engine inlet particle separator analyses. The aircraft surface is covered with thin strips of blotter paper in areas of interest. The surface is then exposed to an airstream that contains a dyed-water spray cloud. The water droplet impingement data are extracted from the dyed blotter paper strips by measuring the optical reflectance of each strip with an automated reflectometer. Preliminary experimental and analytical impingement efficiency data are presented for a NLF(1)-0414F airfoil, s swept MS(1)-0317 airfoil, a swept NACA 0012 wingtip and for a Boeing 737-300 engine inlet model.

  7. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  8. Thermal preferences of wintering snails Planorbarius corneus (L.) exposed to lipopolysaccharide and zymosan.

    PubMed

    ?bikowska, E; Wrotek, S; Cichy, A; Kozak, W

    2013-01-01

    Fever is regarded as a physiological response to infection both in endothermic and ectothermic animals. In ectotherms, fevers are achieved only behaviorally, and has been described in many vertebrates' and few invertebrates' groups. In snails only symptoms of reverse fever as a response to trematode invasion were found. Present work reports on the effects of two different pyrogens - lipopolysaccharide extracted from Escherichia coli (LPS), and zymosan - from Saccharomyces cerevisiae on the thermal behavior of wintering (studied during a winter season) specimens of the Planorbarius corneus (L.). Using the thermal gradient protocol we demonstrate that the individuals of this snail species responded with behavioral fevers to dosages of pyrogens. LPS injection to the surface of the snail's foot at a dose of 10 ?g/g resulted in a significant increase in preferred temperature at 5h after injection. Similarly zymosan at a dose of 0.5 and 1.0 ?g/g - caused fever at 8h and 9h respectively. Average temperature chosen by feverish animals after latency period reached 28.70.41 C (LPS), 28.10.43 C (zymosan 1.0 ?g/g) or 25.50.33 C (zymosan 0.5 ?g/g). We conclude, therefore, that snails are capable of reacting with fever to selected pathogen associated factors, and P. corneus can be used as a model to study a behavioral fever phenomenon in invertebrate animals. PMID:22985901

  9. [Current status of surface water acidification in Northeast China].

    PubMed

    Xu, Guang-yi; Kang, Rong-hua; Luo, Yao; Duan, Lei

    2013-05-01

    In order to evaluate the status of surface water acidification in Northeast China, chemical composition of 33 small streams was investigated in August, 2011. It was found that only a few waters located in Changbai Mountain had pH of lower than 6.0, and all waters had acid neutralizing capacity (ANC) of higher than 0.2 meq x L(-1). This indicated that surface water acidification was not a regional environmental issue in Northeast China. HCO3- was the major anion, with SO4(2-) concentration mostly below 150 microeq x L(-1) and even much lower NO3- concentration. Low concentration of SO4(2-) and NO3- means no serious acid deposition in this area. However, the distribution of acidic forest soils, with low base cation weathering rate, could only provide limited buffering capacity for surface water to acidification in Northeast China, and the potential risk of water acidification still existed. Currently, acid deposition in Northeast Asia could hardly cause severe acidification of surface water. The neighboring countries should therefore not amplify the environmental impact by transboundary air pollutants from China. PMID:23914517

  10. Scratching the surface of the water dication

    NASA Astrophysics Data System (ADS)

    Van Huis, Timothy J.; Wesolowski, Steven S.; Yamaguchi, Yukio; Schaefer, Henry F.

    1999-06-01

    The X 3?g-, 1?g, and b 1?g+ states of the water dication, H2O2+, have been investigated using several high-level ab initio methods and a range of basis sets. With Dunning's augmented correlation consistent polarized valence quadruple-? (aug-cc-pVQZ) basis set at the complete active space self-consistent field second-order configuration interaction (CAS-SOCI) level, it is confirmed that the ground and first two excited states of H2O2+ are all of D?h symmetry, in violation of Walsh's rules for 6 valence electron AH2 systems. The singlet-triplet splitting (X 3?g- 1?g) is predicted to be 53.6 kcal/mol (2.32 eV, 18 700 cm-1), while the X 3?g-b 1?g+ separation is predicted to be 91.1 kcal/mol (3.95 eV, 31 900 cm-1). The vertical double ionization potentials (IPs) from X 1A1 H2O to the X 3B1, 1 1A1, b 1B1, and 2 1A1 states of H2O2+ are predicted within the cc-pVQZ basis to be 40.1, 41.2, 42.6, and 46.1 eV, respectively, in good agreement with recent double-charge-transfer spectroscopic results. The corresponding adiabatic double IPs are 37.0, 39.3, and 41.0 eV to the X 3?g-, 1?g, and b 1?g+ states of H2O2+, respectively. The activation barrier to fragmentation of H2O2+ (X 3?g- H2O2+?3?- OH++H+) at the cc-pVQZ CAS-SOCI level is predicted to be 2.1 kcal/mol (0.10 eV, 738 cm-1), and the reaction is exothermic by 126.4 kcal/mol (5.48 eV, 44 210 cm-1), providing a challenge for direct experimental detection of this elusive molecule.

  11. Hydraulic Inversion of River Depth and Discharge from Observations of Surface Currents and Water Surface Elevation

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.; Calantoni, J.

    2014-12-01

    We developed a finite difference model for deterministic prediction of river depth and discharge from measurements of surface currents, water surface elevation slope and shoreline coordinates. The model is based on the inversion of the Reynolds-averaged depth-averaged steady shallow water equations in streamline curvilinear coordinates and assumes a quadratic bottom drag law with a known spatially-uniform friction coefficient. Iterative techniques are used to invert the discretized algebraic system relating the water depth to local gradients of the depth-averaged velocity and the water surface elevation. Inversion tests with in situ measurements of water surface elevations and surface currents from a 2010 field experiment on the Kootenai River (ID) showed encouraging agreement between the measured and predicted bathymetry. In situ measurements of velocity depth profiles obtained with an acoustic Doppler current profiler are used to relate the measured surface currents to the depth-averaged velocity used in the 2D hydraulic model. The shorelines were extracted from video imagery and the surface currents were estimated from remotely sensed infrared imagery or measured in situ from drifters. The value of the friction coefficient was obtained from previous calibration simulations with a forward hydraulic model that minimized the difference between the predicted and measured velocity and water level on a set of points along the river channel.

  12. ARSENIC SORUCE IDENTIFICATION AT THE GROUND WATER-SURFACE WATER INTERACTION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...

  13. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  14. MONITORING OXIDATION-REDUCTION PROCESS DURING GROUND WATER-SURFACE WATER INTERACTIONS AT THE CHICKASAW NRA

    EPA Science Inventory

    Mineralized ground waters at the Chickasaw National Recreational Area contain hydrogen sulfide, i.e., sulfur in the -2 valence state. As these mineralized ground waters discharge at the surface and mix with oxygen-rich waters a series of abiotic and biotic reactions occur that c...

  15. Surface water data at Los Alamos National Laboratory: 1996 water year. Progress report

    SciTech Connect

    Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.; McLean, C.T.

    1996-11-01

    The principle investigators collected and computed surface water discharge data from 17 stream-gaging stations that cover most of Los Alamos National Laboratory. The data show less runoff than do data for the 1995 water year. Water chemistry data from larger storm events occurring at some stations are also published here.

  16. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... AGENCY 40 CFR Parts 141 and 142 Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of public..., concerning information that may inform the regulatory review of the uncovered finished water...

  17. Uptake of Pah's Onto Organic-coated Water Surfaces

    NASA Astrophysics Data System (ADS)

    Mmereki, B. T.; Donaldson, D. J.

    Previous laboratory and field studies have established the likelihood that aqueous par- ticles in the atmosphere can have a surface film composed of partially oxidized organic compounds, such as organic acids and alcohols. Such surface films could solvate hy- drophobic compounds at the droplet-atmosphere interface, altering the atmospheric lifetimes of the hydrophobic compounds, as well as potentially changing their oxida- tive pathways and photochemistry. We have developed a glancing-angle laser-induced fluorescence technique which provides good surface sensitivity towards PAHs at the water-air interface. Using this method, fluorescence spectra, adsorption isotherms and uptake from the gas phase to the surface have been measured for 3- and 4-ring PAHs on water surfaces coated with sub-monolayer films of hexanoic acid. Our initial results will be presented here.

  18. Experimental Values of the Surface Tension of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Hacker, P. T.

    1951-01-01

    The results of surface-tension measurements for supercooled water are presented. A total of 702 individual measurements of surface tension of triple-distilled water were made in the temperature range, 27 to -22.2 C, with 404 of these measurements at temperatures below 0 C. The increase in magnitude of surface tension with decreasing temperature, as indicated by measurements above 0 C, continues to -22.2 C. The inflection point in the surface-tension - temperature relation in the vicinity of 0 C, as indicated by the International Critical Table values for temperatures down to -8 C, is substantiated by the measurements in the temperature range, 0 to -22.2 C. The surface tension increases at approximately a linear rate from a value of 76.96+/-0.06 dynes per centimeter at -8 C to 79.67+/-0.06 dynes per centimeter at -22.2 C.

  19. Solitary Water Waves of Large Amplitude Generated by Surface Pressure

    NASA Astrophysics Data System (ADS)

    Wheeler, Miles H.

    2015-11-01

    We consider exact nonlinear solitary water waves on a shear flow with an arbitrary distribution of vorticity. Ignoring surface tension, we impose a non-constant pressure on the free surface. Starting from a uniform shear flow with a flat free surface and a supercritical wave speed, we vary the surface pressure and use a continuation argument to construct a global connected set of symmetric solitary waves. This set includes waves of depression whose profiles increase monotonically from a central trough where the surface pressure is at its lowest, as well as waves of elevation whose profiles decrease monotonically from a central crest where the surface pressure is at its highest. There may also be two waves in this connected set with identical surface pressure, only one of which is a wave of depression.

  20. Sewage sludge application in a plantation: effects on trace metal transfer in soil-plant-snail continuum.

    PubMed

    Bourioug, Mohamed; Gimbert, Frdric; Alaoui-Sehmer, Laurence; Benbrahim, Mohammed; Aleya, Lotfi; Alaoui-Soss, Badr

    2015-01-01

    We studied the potential bioaccumulation of Cu, Zn, Pb and Cd by the snail Cantareus aspersus and evaluated the risk of leaching after application of sewage sludge to forest plantation ecosystems. Sewage sludge was applied to the soil surface at two loading rates (0, and 6 tons ha(-1) in dry matter) without incorporation into the soil so as to identify the sources of trace metal contamination in soil and plants and to evaluate effects on snail growth. The results indicated a snail mortality rate of less than 1% during the experiment, while their dry weight decreased significantly (<0.001) in all treatment modalities. Thus, snails showed no acute toxicity symptoms after soil amendment with sewage sludge over the exposure period considered. Additions of sewage sludge led to higher levels of trace metals in forest litter compared to control subplots, but similar trace metal concentrations were observed in sampling plants. Bioaccumulation study demonstrated that Zn had not accumulated in snails compared to Cu which accumulated only after 28 days of exposure to amended subplots. However, Pb and Cd contents in snails increased significantly after 14 and 28 days of exposure in both the control and amended subplots. At the last sampling date, in comparison to controls the Cd increase was higher in snails exposed to amended subplots. Thus, sludge spread therefore appears to be responsible for the observed bioaccumulation for Cu and Cd after 28days of exposure. Concerning Pb accumulation, the results from litter-soil-plant compartments suggest that soil is this metal's best transfer source. PMID:25262293

  1. Climate and pH Predict the Potential Range of the Invasive Apple Snail (Pomacea insularum) in the Southeastern United States

    PubMed Central

    Byers, James E.; McDowell, William G.; Dodd, Shelley R.; Haynie, Rebecca S.; Pintor, Lauren M.; Wilde, Susan B.

    2013-01-01

    Predicting the potential range of invasive species is essential for risk assessment, monitoring, and management, and it can also inform us about a species overall potential invasiveness. However, modeling the distribution of invasive species that have not reached their equilibrium distribution can be problematic for many predictive approaches. We apply the modeling approach of maximum entropy (MaxEnt) that is effective with incomplete, presence-only datasets to predict the distribution of the invasive island apple snail, Pomacea insularum. This freshwater snail is native to South America and has been spreading in the USA over the last decade from its initial introductions in Texas and Florida. It has now been documented throughout eight southeastern states. The snails extensive consumption of aquatic vegetation and ability to accumulate and transmit algal toxins through the food web heighten concerns about its spread. Our model shows that under current climate conditions the snail should remain mostly confined to the coastal plain of the southeastern USA where it is limited by minimum temperature in the coldest month and precipitation in the warmest quarter. Furthermore, low pH waters (pH <5.5) are detrimental to the snails survival and persistence. Of particular note are low-pH blackwater swamps, especially Okefenokee Swamp in southern Georgia (with a pH below 4 in many areas), which are predicted to preclude the snails establishment even though many of these areas are well matched climatically. Our results elucidate the factors that affect the regional distribution of P. insularum, while simultaneously presenting a spatial basis for the prediction of its future spread. Furthermore, the model for this species exemplifies that combining climatic and habitat variables is a powerful way to model distributions of invasive species. PMID:23451090

  2. Experimental observation of dark solitons on the surface of water.

    PubMed

    Chabchoub, A; Kimmoun, O; Branger, H; Hoffmann, N; Proment, D; Onorato, M; Akhmediev, N

    2013-03-22

    We present the first ever observation of dark solitons on the surface of water. It takes the form of an amplitude drop of the carrier wave which does not change shape in propagation. The shape and width of the soliton depend on the water depth, carrier frequency, and the amplitude of the background wave. The experimental data taken in a water tank show an excellent agreement with the theory. These results may improve our understanding of the nonlinear dynamics of water waves at finite depths. PMID:25166807

  3. Surface water resources issues analysis: Wheeler Reservoir watershed region

    SciTech Connect

    Cox, J.P.

    1990-02-01

    This report is one in a continuing series of periodic water resources issues analyses (WRIAs) conducted within the various local drainage basins that comprise the larger Tennessee River drainage basin. These analyses, based primarily upon existing information gathered from a variety of sources, perform several functions: document known or probable water quality issues that should be addressed by TVA or others; identify specific needs for additional information; guide routine surface water monitoring programs; and provide focus for planning and setting priorities for subsequent water quality assessments, mitigative activities, and resource management projects. 4 refs., 1 fig., 16 tabs.

  4. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    PubMed Central

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  5. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    PubMed

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  6. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    SciTech Connect

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

  7. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect

    Ruma,; Yoshihara, K.; Hosseini, S. H. R. Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  8. Model for outgassing of water from metal surfaces

    SciTech Connect

    Minxu Li; Fred Dylla

    1993-06-01

    Numerous measurements of outgassing from metal surfaces show that the outgassing obeys a power law of the form Q=Q{sub 10}t{sup -alpha}, where alpha is typically near unity. For unbaked systems, outgassing is dominated by water. This work demonstrates that alpha is a function of the water vapor exposure during venting of the system, and the physical properties of the passivation oxide layer on the surface. An analytic expression for the outgassing rate is derived based on the assumption that the rate of water diffusing through the passivation oxide layer to the surface governs the rate of its release into the vacuum. The source distribution function for the desorbing water is assumed to be a combination of a Gaussian distribution centered at the interior surface driven by atmospheric exposure, and a uniform concentration throughout the bulk. We have measured the outgassing rate from a clean stainless-steel (type 304) chamber as a function of water exposure to the chamber surface from <1 to 600 monolayers. The measured outgassing rate data show that alpha tends to 0.5 for low H{sub 2}O exposures and tends to 1.5 for high H{sub 2}O exposures as predicted by the model.

  9. Mucus secretion by the freshwater snail Lymnaea stagnalis limits aluminum concentrations of the aqueous environment

    SciTech Connect

    Jugdaohsingh, R.; Thompson, R.P.H.; Powell, J.J.; Campbell, M.M.; Mccrohan, C.R.; White, K.N.

    1998-09-01

    Extracellular mucopolysaccharide (EPS) is a significant component in many waters. Its role in the cycling and mobilization of metals is unclear. In vitro studies were conducted to examine the influence of EPS, secreted by the freshwater pond snail, Lymnaea stagnalis, on soluble water Al concentrations at near-neutral pH. Snails maintained in aerated water of known ion content and added aluminum reduced Al in solution as compared to controls. Although snails accumulated Al into soft tissue, this only accounted for a small percentage of the total reduction. The remaining Al was recovered following acidification of the water. This observation was attributed to pedal EPS secreted by L. stagnalis which is chiefly insoluble and substrate bound. The Al that remained in solution was more labile, possibly due to the influence of soluble EPS. Further experiments with isolated EPS, confirmed that this poorly soluble film binds and reduces Al in solution. The influence of EPS on the solution chemistry and bioavailability of Al and possibly other metals may be important in natural waters.

  10. Initial stages of water solvation of stepped platinum surfaces.

    PubMed

    Kolb, Manuel J; Wermink, Jasper; Calle-Vallejo, Federico; Juurlink, Ludo B F; Koper, Marc T M

    2016-01-27

    Platinum is an active catalyst for a large number of (electro)chemical reactions in aqueous solution. The observed catalytic activities result from an interplay between the intrinsic adsorption properties of platinum surfaces and their interaction with the aqueous environment. Although water networks have been extensively studied on close-packed surfaces, little is known about high-coverage solvation environments around defects. Here, we report DFT calculations on medium- to high-coverage water adsorption structures near the (100) step edge on Pt(533). We find that isolated ring structures adjacent to step edges form hexagons or pentagons. For higher coverages, 6 possible adsorption structures with varying ring sizes along the step edge and almost identical adsorption energies are observed. From our results we conclude that the favorable interaction of the H-down oriented water molecules, adjacent to the step edge, with the step dipole plays an important role in the formation of these structures. Furthermore, our results explain why water networks on stepped surfaces originate at the step edges, and extend towards the adjacent terraces, in agreement with previous experiments. These results show how step edges act as anchoring points for water adsorption and suggest that solvation of defects might dominate water structures on real platinum surfaces. PMID:26327406

  11. Study on Nucleation of Water on Solid Surface

    NASA Astrophysics Data System (ADS)

    Okawa, Seiji; Saito, Akio; Matsui, Tatsuyuki

    Heterogeneous nucleation of water was investigated using Molecular Dynamics method. Solid with fcc(111) surface was placed at the bottom of a cell consisting of 864 water molecules. ST2 model with NPT ensemble was used. The pressure and temperature were set at 0.1MPa and 275K, respectively. The interaction between water and the solid was based on the equations proposed by Spohr. Exception was made on the lattice constant which was slightly modified to fit with that for ice structure. The shape of the solid surface was considered. It was found that the only one layer of water molecules was adsorbed in a case of a flat surface, whereas ice nucleation occurred by removing some of the atoms from the surface. Spohr's interaction was also modified so that the dipole moment of water became anti-ferroelectric. It was found that the modification increased the ice growth, further. The effect of lattice constant of solid on nucleation was also investigated. It was found that the variation on lattice constant with a few percent from that of ice was acceptable for nucleation, especially on shrinking side. On expanding side, however, it gave some gaps for water molecules to fit in other than that for ice structure, and it prevented the growth of ice.

  12. SARAH2: A NEAR FIELD EXPOSURE ASSESSMENT MODEL FOR SURFACE WATER

    EPA Science Inventory

    The near field surface water model (SARAH2) calculates maximum allowable hazardous waste concentrations, based on predicted exposure to humans or aquatic life from contaminated surface water. The surface water contamination pathways analyzed in SARAH2 include groundwater leachate...

  13. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  14. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  15. Surface water pesticide modelling for decision support in drinking water production

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Dams, Jef; Bronders, Jan; Peleman, Gisèle; Verdickt, Liesbeth

    2015-04-01

    The occurrence of pesticides and other contaminants in river systems may compromise the use of surface water for drinking water production. To reduce the cost of removal of pesticides from the raw water, drinking water companies can: search for other raw water sources, invest in water storage capacity to overcome periods with high pesticide concentrations (often related to the application period), or impose measures to reduce the emission of pesticides to surface water (i.e. sustainable application strategies or use restrictions). To select the most appropriate water management options, the costs and effects of the aforementioned actions need to be evaluated. This evaluation requires knowledge on the concentrations and loads of pesticides at the point of drinking water abstraction, as well as insight in the contribution and the temporal variability of different sources or subbasins. In such a case, a modelling approach can assist in generating measurement-based datasets and to compare different scenarios for water management. We illustrate how a modelling approach can provide decision support for water management related to drinking water abstraction from surface water in a catchment that suffers from elevated pesticide concentrations. The study area is a water production center (WPC) located in northwestern Belgium. The WPC abstracts raw water from the river IJzer or from a natural pond and its connected streams. The available quantities as well as the quality of the water vary throughout the year. The WPC uses a reservoir of 3 million m³ to capture and store raw water to overcome periods with limited water availability and/or poor water quality. However, the pressure on water increases and in the future this buffering capacity might be no longer sufficient to fulfill the drinking water production demand. A surface water quality model for the area is set up using InfoWorks RS. The model is applied to obtain insight in the concentrations and loads at the different points of drinking water abstraction (river IJzer and Blankaart pond), the contribution of the subbasins, and the seasonal dynamics. The model is also applied for scenario analysis related to water management and varying climatological conditions. Especially in summer, the availability of raw water of good quality for the WPC is limited. The discharge of the river IJzer is low and a minimum level is required for navigation, and the pond is part of a nature reserve where a minimum water level is imposed for conservation of aquatic habitats, and application of pesticides on the surrounding agricultural lands results in high pesticide concentrations (e.g. bentazon > 1µg/L).

  16. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    NASA Astrophysics Data System (ADS)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  17. Fecundity of the Chinese mystery snail in a Nebraska reservoir

    USGS Publications Warehouse

    Stephen, Bruce J.; Allen, Craig R.; Chaine, Noelle M.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.; Wong, Alec

    2013-01-01

    The Chinese mystery snail (Bellamya chinensis) is a non-indigenous, invasive species in freshwater ecosystems of North America. We provide fecundity estimates for a population of these snails in a Nebraska reservoir. We dissected 70 snails, of which 29 were females. Nearly all female snails contained developing young, with an average of 25 young per female. Annual fecundity was estimated at between 27.2 and 33.3 young per female per year. Based on an estimated adult population and the calculated fecundity, the annual production for this reservoir was between 2.2 and 3.7 million young.

  18. Spatial development of the wind-driven water surface flow

    NASA Astrophysics Data System (ADS)

    Chemin, Rmi; Caulliez, Guillemette

    2015-04-01

    The water velocity field induced by wind and waves beneath an air-water interface is investigated experimentally versus fetch in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. The surface drift current was also derived from visualizations of small floating drifters recorded by a video camera looking vertically from above the water surface. Surface wave height and slopes were determined simultaneously by means of capacitance gauges and a single-point laser slope system located in the immediate vicinity of the profiler. Observations were made at steady low to moderate wind speeds and various fetches ranging between 1 and 15 meters. This study first corroborates that the thin subsurface water boundary layer forced by wind at the leading edge of the water sheet is laminar. The surface drift current velocity indeed increases gradually with fetch, following a 1/3 power law characteristic of an accelerated flat-plate laminar boundary layer. The laminar-turbulent transition manifests itself by a sudden decrease in the water surface flow velocity and a rapid deepening of the boundary layer due to the development of large-scale longitudinal vortices. Further downstream, when characteristic capillary-gravity wind waves develop at the surface, the water flow velocity increases again rapidly within a sublayer of typically 4 mm depth. This phenomenon is explained by the occurrence of an intense momentum flux from waves to the mean flow due to the dissipation of parasitic capillaries generated ahead of the dominant wave crests. This phenomenon also sustains significant small-scale turbulent motions within the whole boundary layer. However, when gravity-capillary waves of length longer than 10 cm then grow at the water surface, the mean flow velocity field decreases drastically over the whole boundary layer thickness. At the same time, long-lived three-dimensional coherent structures which present strong similarities with the so-called Langmuir circulations start to grow. The main features of the wind-induced water surface flow observed at these different stages of development will be compared with previous observations and the results of numerical simulations as described by Tsai et al. (2005, 2009).

  19. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  20. Effects of Surface-Water Diversions on Habitat Availability for Native Macrofauna, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.; Wolff, Reuben H.

    2005-01-01

    Effects of surface-water diversions on habitat availability for native stream fauna (fish, shrimp, and snails) are described for 21 streams in northeast Maui, Hawaii. Five streams (Waikamoi, Honomanu, Wailuanui, Kopiliula, and Hanawi Streams) were chosen as representative streams for intensive study. On each of the five streams, three representative reaches were selected: (1) immediately upstream of major surface-water diversions, (2) midway to the coast, and (3) near the coast. This study focused on five amphidromous native aquatic species (alamoo, nopili, nakea, opae, and hihiwai) that are abundant in the study area. The Physical Habitat Simulation (PHABSIM) System, which incorporates hydrology, stream morphology and microhabitat preferences to explore relations between streamflow and habitat availability, was used to simulate habitat/discharge relations for various species and life stages, and to provide quantitative habitat comparisons at different streamflows of interest. Hydrologic data, collected over a range of low-flow discharges, were used to calibrate hydraulic models of selected transects across the streams. The models were then used to predict water depth and velocity (expressed as a Froude number) over a range of discharges up to estimates of natural median streamflow. The biological importance of the stream hydraulic attributes was then assessed with the statistically derived suitability criteria for each native species and life stage that were developed as part of this study to produce a relation between discharge and habitat availability. The final output was expressed as a weighted habitat area of streambed for a representative stream reach. PHABSIM model results are presented to show the area of estimated usable bed habitat over a range of streamflows relative to natural conditions. In general, the models show a continuous decrease in habitat for all modeled species as streamflow is decreased from natural conditions. The PHABSIM modeling results from the intensively studied streams were normalized to develop relations between the relative amount of diversion from a stream and the resulting relative change in habitat in the stream. These relations can be used to estimate changes in habitat for diverted streams in the study area that were not intensively studied. The relations indicate that the addition of even a small amount of water to a dry stream has a significant effect on the amount of habitat available. Equations relating stream base-flow changes to habitat changes can be used to provide an estimate of the relative habitat change in the study area streams for which estimates of diverted and natural median base flow have been determined but for which detailed habitat models were not developed. Stream water temperatures, which could have an effect on stream ecology and taro cultivation, were measured in five streams in the study area. In general, the stream temperatures measured at any of the monitoring sites were not elevated enough, based on currently available information, to adversely effect the growth or mortality of native aquatic macrofauna or to cause wetland taro to be susceptible to fungi and associated rotting diseases.

  1. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    USGS Publications Warehouse

    Harvey, J.W.; Newlin, J.T.; Krupa, S.L.

    2006-01-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d-1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to calculated recharge and discharge) is much less sensitive to vertical mixing compared with residence time alone. We conclude that a small but potentially significant component of flow through the Everglades is recharged to the aquifer and stored there for years to decades before discharged back to surface water. Long-term storage of water and solutes in the ground-water system beneath the wetlands has implications for restoration of Everglades water quality.

  2. Fluctuating Helical Asymmetry and Morphology of Snails (Gastropoda) in Divergent Microhabitats at ‘Evolution Canyons I and II,’ Israel

    PubMed Central

    Raz, Shmuel; Schwartz, Nathan P.; Mienis, Hendrik K.; Nevo, Eviatar; Graham, John H.

    2012-01-01

    Background Developmental instability of shelled gastropods is measured as deviations from a perfect equiangular (logarithmic) spiral. We studied six species of gastropods at ‘Evolution Canyons I and II’ in Carmel and the Galilee Mountains, Israel, respectively. The xeric, south-facing, ‘African’ slopes and the mesic, north-facing, ‘European’ slopes have dramatically different microclimates and plant communities. Moreover, ‘Evolution Canyon II’ receives more rainfall than ‘Evolution Canyon I.’ Methodology/Principal Findings We examined fluctuating asymmetry, rate of whorl expansion, shell height, and number of rotations of the body suture in six species of terrestrial snails from the two ‘Evolution Canyons.’ The xeric ‘African’ slope should be more stressful to land snails than the ‘European’ slope, and ‘Evolution Canyon I’ should be more stressful than ‘Evolution Canyon II.’ Only Eopolita protensa jebusitica showed marginally significant differences in fluctuating helical asymmetry between the two slopes. Contrary to expectations, asymmetry was marginally greater on the ‘European’ slope. Shells of Levantina spiriplana caesareana at ‘Evolution Canyon I,’ were smaller and more asymmetric than those at ‘Evolution Canyon II.’ Moreover, shell height and number of rotations of the suture were greater on the north-facing slopes of both canyons. Conclusions/Significance Our data is consistent with a trade-off between drought resistance and thermoregulation in snails; Levantina was significantly smaller on the ‘African’ slope, for increasing surface area and thermoregulation, while Eopolita was larger on the ‘African’ slope, for reducing water evaporation. In addition, ‘Evolution Canyon I’ was more stressful than Evolution Canyon II’ for Levantina. PMID:22848631

  3. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  4. A new calibration curve for carbonate clumped isotope thermometer of land snail shells (aragonite)

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Yamada, K.; Yoshida, N.

    2013-12-01

    Clumped isotope data (Δ47) of carbonate is considered as a useful tool to reflect both the temperature and oxygen isotopic composition of water where the carbonate grew [1]. Zarrur et al. reported the relationship between snail shell calcification temperatures and the mean annual/ activity season ambient temperatures based on a calibration curve established by Ghosh et al. [2]. However, the clumped isotope temperature is always higher than the environment temperature. For better understanding this phenomenon, we present a new empirical calibration curve based on land snail shells (aragonite) cultured in the controlled temperature environment. In 2012, we cultured the land snails ';Euhadra' which were collected from Yokohama, Japan. They were cultured from eggs to adults around 6-8 months under the temperature of 20°, 25° and 30°, respectively. Each temperature group contains 15-20 snails. All of them were fed by cabbages during their life span. To study the effect of ingested carbonate, some of them were fed by Ca3(PO4)2 powder while others were fed by CaCO3 powder. Clumped isotope data for all samples were analyzed by a Thermo Finnigan MAT 253 Mass Spectrometer and calibrated by an ';absolute reference frame' [3]. We found an empirical linear relationship between Δ47 and controlled ambient temperature, which is slightly deviated from the published theoretical and experimental calibration curves based on both inorganic and biogenic materials. We will discuss the potential controlling factors caused this kind of deviation combine with the land snail growth environment. [1] Ghosh et al., 2006, Geochimica et Cosmochimica Acta. 70, 1439-1456 [2] Zaarur et al. 2011. Geochimica et Cosmochimica Acta, 75, 6859-6869 [3] Dennis et al., 2011. Geochimica et Cosmochimica Acta 75, 7117-7131

  5. Radar image sequence analysis of inhomogeneous water surfaces

    NASA Astrophysics Data System (ADS)

    Seemann, Joerg; Senet, Christian M.; Dankert, Heiko; Hatten, Helge; Ziemer, Friedwart

    1999-10-01

    The radar backscatter from the ocean surface, called sea clutter, is modulated by the surface wave field. A method was developed to estimate the near-surface current, the water depth and calibrated surface wave spectra from nautical radar image sequences. The algorithm is based on the three- dimensional Fast Fourier Transformation (FFT) of the spatio- temporal sea clutter pattern in the wavenumber-frequency domain. The dispersion relation is used to define a filter to separate the spectral signal of the imaged waves from the background noise component caused by speckle noise. The signal-to-noise ratio (SNR) contains information about the significant wave height. The method has been proved to be reliable for the analysis of homogeneous water surfaces in offshore installations. Radar images are inhomogeneous because of the dependency of the image transfer function (ITF) on the azimuth angle between the wave propagation and the antenna viewing direction. The inhomogeneity of radar imaging is analyzed using image sequences of a homogeneous deep-water surface sampled by a ship-borne radar. Changing water depths in shallow-water regions induce horizontal gradients of the tidal current. Wave refraction occurs due to the spatial variability of the current and water depth. These areas cannot be investigated with the standard method. A new method, based on local wavenumber estimation with the multiple-signal classification (MUSIC) algorithm, is outlined. The MUSIC algorithm provides superior wavenumber resolution on local spatial scales. First results, retrieved from a radar image sequence taken from an installation at a coastal site, are presented.

  6. Zearalenone occurrence in surface waters in central Illinois, USA.

    PubMed

    Maragos, Chris M

    2012-01-01

    Zearalenone (ZEN) is an estrogenic secondary metabolite produced by certain fungi that commonly infest important cereal crops. The ability of ZEN to move from contaminated crops to surface waters has been demonstrated previously. This article reports the development and application of a method for the measurement of ZEN in surface waters from the central part of Illinois, USA. The method uses a cleanup procedure based on tandem reverse-phase disks and immunoaffinity columns, separation by liquid chromatography and detection by a combination of absorbance and fluorescence. ZEN was frequently found in samples of waters from lakes, streams and a field ditch. Although the frequency of detection was high (32% above the limit of detection, 0.4 ng L⁻¹), the levels found were low, with the highest sample having 5.7 ng L⁻¹. Therefore, although fungi can contribute to the exposure to environmental estrogens, the contribution from zearalenone in water is likely small. PMID:24779696

  7. Surface-heating greenhouses with waste heated water

    NASA Astrophysics Data System (ADS)

    Walker, P. N.

    1980-12-01

    An aluminum framed glass greenhouse was constructed. The outside surface of this greenhouse was heated by flowing power plant cooling water over it. The water was applied at the ridge and allowed to run over the roof and sidewalls and into gutters where it was returned to the power plant's discharge canal. One season's heating performance data and resulting conclusions are presented. These results show that surface heating reduced conventional heat requirements by one third on the test greenhouse. However, when these results are projected to a commercial greenhouse the heating energy costs can be reduced by 67 percent. These cost savings would be 28 percent if 5 C cooler water were used and 90 percent if 5 C warmer water were used.

  8. Shallow water surface gravity wave imaging, spectra and their use in shallow water dredging operations

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Yang, Bingyu

    2014-10-01

    Imaging of shallow waters using high resolution video imagery is described. Common to mono, stereo and trinocular imaging approaches from ground and airborne platforms is the need to validate the surface water wave field measurements, particularly the amplitude and specular reflectance of water surface small gravity waves. A technique for calibration and validation of water surface gravity wave field energy spectra is described. Results demonstrate the value of video imagery where water level staff gauges with approximately with 0.5 cm wave height accuracy are easily sensed using high definition videography. Essentially, a staff gauge placed in shallow water constructed from PVC materials with custom colored line coding are imaged at 30 H or high frame rates, followed by frame by frame analyses in order to detect the water level measured at 0.5 cm height intervals. The image based time series allow the development of shallow water gravity wave energy spectra using standard FFT analysis procedures. Spectral models based upon peak frequency, for example, are then used in a two dimensional water surface wave simulation model that generates radiative transfer based hyperspectral images of the water surface wave field. The simulated and observed water surface wave patch fields are compared by extracting vertical or horizontal transects within observed and simulated imagery. The approach allows one to developed spectral energy model probability distributions at low cost. The novel noncontact video sensing and image analysis methodology used to calibrate and validate shallow water gravity wave models yield a means for ultimately calculating bottom boundary velocities under measured or simulated wave fields. These boundary layer velocities can cause migration and horizontal particle fluxes (g cm-2 s-1), resuspension, settling, and increased turbidity during dredging operations, but not necessarily due to waterway dredging operations and activities.

  9. Relating aggregated surface water flux with Aquarius salinity measurement

    NASA Astrophysics Data System (ADS)

    Xie, X.; Liu, W.

    2012-12-01

    One of the original objectives of Aquarius is to use surface salinity measurement as a rain gauge to characterize the hydrologic balance. Rain affects Aquarius salinity measurements by changing the roughness and the brightness temperature, and the accumulated rain forms a fresh-water lens that dilutes the surface salinity. We have examined high frequency rainfall provided by the Tropical Rainfall Measuring Mission (TRMM) and Climate Prediction Center Morphing Technique (CMORPH), co-incident with about one year of Aquarius salinity measurements. The relation of rainfall accumulated over various periods and the Aquarius salinity measurement has been examined over various regions of the tropical oceans. Using surface ocean currents provided by the Ocean Surface Currents Analyses - Realtime (OSCAR) and fresh water flux from TRMM, combined with Aquarius salinity, oceanic salinity budget was examined and the role of precipitation and ocean dynamics were evaluated over various regions.

  10. Nanostructuring of metal surfaces by corrosion for efficient water splitting

    NASA Astrophysics Data System (ADS)

    Lee, Jooyoung; Lim, Guh-Hwan; Lim, Byungkwon

    2016-01-01

    We show that simply by corroding Ni foam in an aqueous solution, it is possible to produce nanostructured surfaces. When Ni foam was corroded in water or an aqueous solution containing NaCl, a dense array of Ni(OH)2 nanosheets was produced on the surface of the foam. When corroded in the presence of RuCl3, the nanostructured surface composed of Ni(OH)2 nanosheets decorated with ultrasmall RuO2 nanoparticles was obtained. At an applied voltage of 1.7 V, the combination of these two nanostructured surfaces yielded a water-splitting current density more than three times that obtained on the commercial Pt wire electrodes.

  11. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  12. Microcystins in potable surface waters: toxic effects and removal strategies.

    PubMed

    Roegner, Amber F; Brena, Beatriz; Gonzlez-Sapienza, Gualberto; Puschner, Birgit

    2014-05-01

    In freshwater, harmful cyanobacterial blooms threaten to increase with global climate change and eutrophication of surface waters. In addition to the burden and necessity of removal of algal material during water treatment processes, bloom-forming cyanobacteria can produce a class of remarkably stable toxins, microcystins, difficult to remove from drinking water sources. A number of animal intoxications over the past 20 years have served as sentinels for widespread risk presented by microcystins. Cyanobacterial blooms have the potential to threaten severely both public health and the regional economy of affected communities, particularly those with limited infrastructure or resources. Our main objectives were to assess whether existing water treatment infrastructure provides sufficient protection against microcystin exposure, identify available options feasible to implement in resource-limited communities in bloom scenarios and to identify strategies for improved solutions. Finally, interventions at the watershed level aimed at bloom prevention and risk reduction for entry into potable water sources were outlined. We evaluated primary studies, reviews and reports for treatment options for microcystins in surface waters, potable water sources and treatment plants. Because of the difficulty of removal of microcystins, prevention is ideal; once in the public water supply, the coarse removal of cyanobacterial cells combined with secondary carbon filtration of dissolved toxins currently provides the greatest potential for protection of public health. Options for point of use filtration must be optimized to provide affordable and adequate protection for affected communities. PMID:24038121

  13. Gas transfer through wetland surface water due to waving vegetation

    NASA Astrophysics Data System (ADS)

    Foster, M. R.; Variano, E. A.

    2013-12-01

    We investigate the effect of honami motions in a wetland system, where ';honami' refers to the wind-driven movement of vegetation. We hypothesize that this movement stirs the water column and thus contributes to the transfer of dissolved gases across the air-water interface. To understand the magnitude of this effect, a wetland honami was simulated in the laboratory using an array of plastic tubes to represent vegetation. Starting from deoxygenated water, we measured dissolved oxygen at mid-depth in the water column using a YSI ProODO as the water equilibrated with the atmosphere. From this DO time series, we calculated the gas transfer velocity, k, using the thin film gas transport model. We compare the results to other drivers of gas transfer in wetland surface water, including thermal convection and wind shear at the air-water interface. The results can help predict the role that surface-water stirring plays in connecting wetland soils with the atmosphere. This, in turn, can help predict biogeochemical processes and wetlands' impacts on greenhouse gases.

  14. Molecular dynamics studies of water deposition on hematite surfaces

    NASA Astrophysics Data System (ADS)

    Kvamme, Bjrn; Kuznetsova, Tatiana; Haynes, Martin

    2012-12-01

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.

  15. Internal distribution of Cd in lettuce and resulting effects on Cd trophic transfer to the snail: Achatina fulica.

    PubMed

    Li, Cheng-Cheng; Dang, Fei; Cang, Long; Zhou, Dong-Mei; Peijnenburg, Willie J G M

    2015-09-01

    The mechanisms underlying Cd trophic transfer along the soil-lettuce-snail food chain were investigated. The fate of Cd within cells, revealed by assessment of Cd chemical forms and of subcellular partitioning, differed between the two examined lettuce species that we examined (L. longifolia and L. crispa). The species-specific internal Cd fate not only influenced Cd burdens in lettuce, with higher Cd levels in L. crispa, but also affected Cd transfer efficiency to the consumer snail (Achatina fulica). Especially, the incorporation of Cd chemical forms (Cd in the inorganic, water-soluble and pectates and protein-integrated forms) in lettuce could best explain Cd trophic transfer, when compared to dietary Cd levels alone and/or subcellular Cd partitioning. Trophically available metal on the subcellular partitioning base failed to shed light on Cd transfer in this study. After 28-d of exposure, most Cd was trapped in the viscera of Achatina fulica, and cadmium bio-magnification was noted in the snails, as the transfer factor of lettuce-to-snail soft tissue was larger than one. This study provides a first step to apply a chemical speciation approach to dictate the trophic bioavailability of Cd through the soil-plant-snail system, which might be an important pre-requisite for mechanistic understanding of metal trophic transfer. PMID:25930053

  16. GROUND-WATER DRAINAGE TO SURFACE MINES REFINED.

    USGS Publications Warehouse

    Weiss, Linda S.

    1985-01-01

    Changes in seepage flux and hydraulic head (ground-water level) resulting from ground-water drainage into the first and subsequent cuts of a surface coal mine can be estimated by a technique that considers drainage from the unsaturated zone and drainage effects of the advancing mine. A 'single-layer' technique is used, in which each layer of a stratified aquifer system is considered separately. Use of the technique requires knowledge of some aquifer characteristics at the proposed mining site and an estimate of the rate of approach of the advancing surface mine.

  17. Intermolecular Casimir-Polder forces in water and near surfaces.

    PubMed

    Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E; Parsons, Drew F; Malthe-Srenssen, Anders; Bostrm, Mathias

    2014-09-01

    The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO(2) and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface. PMID:25314410

  18. The use of radar imagery for surface water investigations

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.

    1981-01-01

    The paper is concerned with the interpretation of hydrologic features using L-band (HH) imagery collected by aircraft and Seasat systems. Areas of research needed to more precisely define the accuracy and repeatability of measurements related to the conditions of surfaces and boundaries of fresh water bodies are identified. These include: the definition of shoreline, the nature of variations in surface roughness across a water body and along streams and lake shores, and the separation of ambiguous conditions which appear similar to lakes.

  19. Aluminum in acidic surface waters: chemistry, transport, and effects.

    PubMed Central

    Driscoll, C T

    1985-01-01

    Ecologically significant concentrations of Al have been reported in surface waters draining "acid-sensitive" watersheds that are receiving elevated inputs of acidic deposition. It has been hypothesized that mineral acids from atmospheric deposition have remobilized Al previously precipitated within the soil during soil development. This Al is then thought to be transported to adjacent surface waters. Dissolved mononuclear Al occurs as aquo Al, as well as OH-, F-, SO4(2-), and organic complexes. Although past investigations have often ignored non-hydroxide complexes of Al, it appears that organic and F complexes are the predominant forms of Al in dilute (low ionic strength) acidic surface waters. The concentration of inorganic forms of Al increases exponentially with decreases in solution pH. This response is similar to the theoretical pH dependent solubility of Al mineral phases. The concentration of organic forms of Al, however, is strongly correlated with variations in organic carbon concentration of surface waters rather than pH. Elevated concentrations of Al in dilute acidic waters are of interest because: Al is an important pH buffer; Al may influence the cycling of important elements like P, organic carbon, and trace metals; and Al is potentially toxic to aquatic organisms. An understanding of the aqueous speciation of Al is essential for an evaluation of these processes. PMID:3935428

  20. [Simultaneous Analysis of 18 Glucocorticoids in Surface Water].

    PubMed

    Guo, Wen-jing; Chang, Hong; Sun, De-zhi; Wu, Feng-chang; Yang, Hao

    2015-07-01

    A method of ultra-performance liquid chomatography tandam mass spectrometry(UPLC-MS/MS) combined with solid-phase extraction (SPE) has been developed for simultaneous analysis of 18 glucocorticoids in surface water. The analytes were first enriched and purified through a HLB cartridge, and eluted with acetonitrile/ethyl acetate (1:1, V/V), then detected by UPLC-MS/MS. The detection used gradient elution process with methanol and 0. 1% formic acid/water (V/V) as the mobile phase to achieve baseline separations of these 18 analytes. The linear range was 1. 0-1 000 g.L-1. The method detection limits (MDLs) were 0. 10-1. 0 ng.L-1 except for cortisone acetate and cortisol acetate(10 ng.L-1) with overall mean recoveries of 65% - 108% in surface water. Application of this method for 5 surface waters from Beijing area showed that 8 glucocorticoids were detected with the concentration range of 0. 20-476 ng.L-1. Triamcinolone, triamcinolone acetonide, cortisol acetate and clobetasol propionate were detected for the first time in surface water samples, suggesting that this method is efficient for real sample analysis. PMID:26489346

  1. Pesticides in surface waters: distribution, trends, and governing factors

    USGS Publications Warehouse

    Larson, Steven J.; Capel, Paul D.; Majewski, Michael

    1997-01-01

    Pesticde use in agriculture and non-agriculture settings has increased dramatically over the last several decades. Concern about adverse effects on the environment and human health has spurred an enormous amount of research into their environmental behavior and fate. Pesticides in Surface Waters presents a comprehensive summary of this research. This book evaluates published studies that focus on measuring pesticide concentration. The studies chosen include peer reviewed scientific literature, government reports, laboratory studies, and those using microcosms and artificial streams and ponds. The authors used this information to develop their overview of pesticide contamination of surface waters. The exhaustive compilation of data along with the fundamental science make this book essential for those involved in pesticide use, environmental protection, water quality, and human or ecological risk assessment. Pesticides in Surface Waters covers the results of actual studies, sources of pesticides to surface water, fate and transport, and environmental significance. Hundreds of data-packed tables, maps, charts, and drawings illustrate the key points, making research and application easy and cost effective.

  2. Energy Landscape of Water and Ethanol on Silica Surfaces

    DOE PAGESBeta

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reachingmore » its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less

  3. Energy Landscape of Water and Ethanol on Silica Surfaces

    SciTech Connect

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.

  4. The convoluted evolution of snail chirality

    NASA Astrophysics Data System (ADS)

    Schilthuizen, M.; Davison, A.

    2005-11-01

    The direction that a snail (Mollusca: Gastropoda) coils, whether dextral (right-handed) or sinistral (left-handed), originates in early development but is most easily observed in the shell form of the adult. Here, we review recent progress in understanding snail chirality from genetic, developmental and ecological perspectives. In the few species that have been characterized, chirality is determined by a single genetic locus with delayed inheritance, which means that the genotype is expressed in the mother's offspring. Although research lags behind the studies of asymmetry in the mouse and nematode, attempts to isolate the loci involved in snail chirality have begun, with the final aim of understanding how the axis of left-right asymmetry is established. In nature, most snail taxa (>90%) are dextral, but sinistrality is known from mutant individuals, populations within dextral species, entirely sinistral species, genera and even families. Ordinarily, it is expected that strong frequency-dependent selection should act against the establishment of new chiral types because the chiral minority have difficulty finding a suitable mating partner (their genitalia are on the ‘wrong’ side). Mixed populations should therefore not persist. Intriguingly, however, a very few land snail species, notably the subgenus Amphidromus sensu stricto, not only appear to mate randomly between different chiral types, but also have a stable, within-population chiral dimorphism, which suggests the involvement of a balancing factor. At the other end of the spectrum, in many species, different chiral types are unable to mate and so could be reproductively isolated from one another. However, while empirical data, models and simulations have indicated that chiral reversal must sometimes occur, it is rarely likely to lead to so-called ‘single-gene’ speciation. Nevertheless, chiral reversal could still be a contributing factor to speciation (or to divergence after speciation) when reproductive character displacement is involved. Understanding the establishment of chirality, the preponderance of dextral species and the rare instances of stable dimorphism is an important target for future research. Since the genetics of chirality have been studied in only a few pulmonate species, we also urge that more taxa, especially those from the sea, should be investigated.

  5. Estimation of water surface elevations for the Everglades, Florida

    NASA Astrophysics Data System (ADS)

    Palaseanu, Monica; Pearlstine, Leonard

    2008-07-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring gages and modeling methods that provides scientists and managers with current (2000-present) online water surface and water depth information for the freshwater domain of the Greater Everglades. This integrated system presents data on a 400-m square grid to assist in (1) large-scale field operations; (2) integration of hydrologic and ecologic responses; (3) supporting biological and ecological assessment of the implementation of the Comprehensive Everglades Restoration Plan (CERP); and (4) assessing trophic-level responses to hydrodynamic changes in the Everglades. This paper investigates the radial basis function multiquadric method of interpolation to obtain a continuous freshwater surface across the entire Everglades using radio-transmitted data from a network of water-level gages managed by the US Geological Survey (USGS), the South Florida Water Management District (SFWMD), and the Everglades National Park (ENP). Since the hydrological connection is interrupted by canals and levees across the study area, boundary conditions were simulated by linearly interpolating along those features and integrating the results together with the data from marsh stations to obtain a continuous water surface through multiquadric interpolation. The absolute cross-validation errors greater than 5 cm correlate well with the local outliers and the minimum distance between the closest stations within 2000-m radius, but seem to be independent of vegetation or season.

  6. BIOMECHANICS. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects.

    PubMed

    Koh, Je-Sung; Yang, Eunjin; Jung, Gwang-Pil; Jung, Sun-Pill; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Wood, Robert J; Kim, Ho-Young; Cho, Kyu-Jin

    2015-07-31

    Jumping on water is a unique locomotion mode found in semi-aquatic arthropods, such as water striders. To reproduce this feat in a surface tension-dominant jumping robot, we elucidated the hydrodynamics involved and applied them to develop a bio-inspired impulsive mechanism that maximizes momentum transfer to water. We found that water striders rotate the curved tips of their legs inward at a relatively low descending velocity with a force just below that required to break the water surface (144 millinewtons/meter). We built a 68-milligram at-scale jumping robotic insect and verified that it jumps on water with maximum momentum transfer. The results suggest an understanding of the hydrodynamic phenomena used by semi-aquatic arthropods during water jumping and prescribe a method for reproducing these capabilities in artificial systems. PMID:26228144

  7. Improving SNMR data sensitivity to infiltrating water in the presence of large bodies of surface water

    NASA Astrophysics Data System (ADS)

    Falzone, S.; Keating, K.; Grunewald, E. D.; Walsh, D. O.

    2014-12-01

    Surface nuclear magnetic resonance (SNMR) is a geophysical method used to image water content with depth. Recently SNMR has been used to monitor infiltration events in the vadose zone; however, this application can be complicated by the presence of large signals associated with the ponded surface water. In this study, we develop algorithms to reduce this surface water signal for improved sensitivity to the infiltrated groundwater. Using synthetic models, we examine the accuracy of these algorithms. We then assess our approach using a field dataset collected from a five-week SNMR survey conducted during an infiltration event at the South Aura Valley Storage and Recovery Project (SAVSARP) site in Tucson, AZ. Three different algorithms were developed to remove the surface water from the SNMR data: (1) late time mono-exponential subtraction, in which signal from late in the measurement is used to model surface water signal; (2) model subtraction, in which the Earth's magnetic field subsurface conductive structure, and water layer thickness are used to model the surface water signal; and (3) late time inversion correction, in which model parameters in the relaxation time distributions corresponding to slower relaxation times are zeroed. We used two readily available SNMR inversion codes to verify the three approaches: the GMR Inversion software and the MRS Matlab toolkit. Synthetic models were recovered using both inversion codes by applying the late time mono-exponential subtraction and the model subtraction algorithms, while the late time inversion correction algorithm produced poorly resolved relaxation time distribution models. The corrected dataset from the start of the SAVSARP survey contained features in the relaxation time distribution and water content versus depth models that were consistent with observed features present in other datasets from the survey. We conclude that either the late time mono-exponential subtraction or the model subtraction algorithm are sufficient for removing the surface water signal and improving data sensitivity to infiltrated water.

  8. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    NASA Astrophysics Data System (ADS)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through dry to wet season at the upper Irrawaddy formation which is distributed beneath the lower Alluvium. Local groundwater flow system which is not affected by river water in the wet season is distributed at the central delta. Land use changes from tropical forest to plantation at the Arakan mountains. So, it is necessary to monitor the physical and chemical characteristics change of groundwater.

  9. Surface-Water and Ground-Water Resources of Kendall County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Hogan, Jennifer L.; Arnold, Terri L.

    2005-01-01

    Water-supply needs in Kendall County, in northern Illinois, are met exclusively from ground water derived from glacial drift aquifers and bedrock aquifers open to Silurian, Ordovician, and Cambrian System units. As a result of population growth in Kendall County and the surrounding area, water use has increased from about 1.2 million gallons per day in 1957 to more than 5 million gallons per day in 2000. The purpose of this report is to characterize the surface-water and ground-water resources of Kendall County. The report presents a compilation of available information on geology, surface-water and ground-water hydrology, water quality, and water use. The Fox River is the primary surface-water body in Kendall County and is used for both wastewater disposal and as a drinking-water supply upstream of the county. Water from the Fox River requires pretreatment for use as drinking water, but the river is a potentially viable additional source of water for the county. Glacial drift aquifers capable of yielding sufficient water for municipal supply are expected to be present in northern Kendall County, along the Fox River, and in the Newark Valley and its tributaries. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, with the exception of the southeastern portion. Volatile organic compounds and select trace metals and pesticides have been detected at low concentrations in glacial drift aquifers near waste-disposal sites. Agricultural-related constituents have been detected infrequently in glacial drift aquifers near agricultural areas. However, on the basis of the available data, widespread, consistent problems with water quality are not apparent in these aquifers. These aquifers are a viable source for additional water supply, but would require further characterization prior to full development. The shallow bedrock aquifer is composed of the sandstone units of the Ancell Group, the Prairie du Chien Group, the Galena-Platteville dolomite, the Maquoketa Group, and the Silurian dolomite where these units are at the bedrock surface. The availability of water from the shallow bedrock aquifer depends primarily on the geologic unit utilized. The Silurian dolomite, Galena-Platteville dolomite, and Ancell Group can yield sufficient water for residential and municipal supply in at least some parts of the county. The Cambrian-Ordovician aquifer system is composed of the most widespread, productive aquifers in northern Illinois and is used for water supply by a number of municipalities and industrial facilities. Water levels in the aquifer system have declined by as much as 600 feet in Kendall County and the aquifer frequently contains concentrations of radium above established health guidelines.

  10. Enhanced Water Splitting Efficiency Through Selective Surface State Removal.

    PubMed

    Zandi, Omid; Hamann, Thomas W

    2014-05-01

    Hematite (?-Fe2O3) thin film electrodes prepared by atomic layer deposition (ALD) were employed to photocatalytically oxidize water under 1 sun illumination. It was shown that annealing at 800 C substantially improves the water oxidation efficiency of the ultrathin film hematite electrodes. The effect of high temperature treatment is shown to remove one of two surface states identified, which reduces recombination and Fermi level pinning. Further modification with Co-Pi water oxidation catalyst resulted in unprecedented photocurrent onset potential of ?0.6 V versus reversible hydrogen electrode (RHE; slightly positive of the flat band potential). PMID:26270090

  11. Radiolysis Concerns for Water Shielding in Fission Surface Power Applications

    SciTech Connect

    Schoenfeld, Michael P.; Anghaie, Samim

    2008-01-21

    This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion.

  12. Distribution of metals and accumulation of lead by different tissues in the freshwater snail Lymnaea stagnalis (L.)

    SciTech Connect

    Pyatt, F.B.; Pyatt, A.J.; Pentreath, V.W.

    1997-07-01

    The concentrations of several metals in different body tissues of the freshwater snail, Lymnaea stagnalis (L.), collected from an uncontaminated environment, were measured by electron probe X-ray microanalysis. Significant concentrations of the potentially toxic elements manganese, titanium, and copper were detected in all tissues, although they were not detectable in the water sampled at collection; bioaccumulation is thus evidenced. Highest concentrations of manganese and copper were present in the shell, while highest concentrations of titanium were present in the head and foot. Experimental snails were continuously exposed to lead chloride (lead at 5 ppm) for an experimental period of 3 weeks. Both elements were accumulated to different extents by the snail tissues but with high concentrations again in the head of the animals, and chloride also in the visceral hump. No significant alterations in the distribution of the other elements measured were observed in the lead chloride-exposed animals.

  13. The antidepressants venlafaxine ("Effexor") and fluoxetine ("Prozac") produce different effects on locomotion in two species of marine snail, the oyster drill (Urosalpinx cinerea) and the starsnail (Lithopoma americanum).

    PubMed

    Fong, Peter P; Bury, Taylor B; Dworkin-Brodsky, Abigail D; Jasion, Christina M; Kell, Rose C

    2015-02-01

    Human antidepressants have been previously shown to induce foot detachment from the substrate in aquatic snails. Prior to foot detachment, antidepressants also affect snail crawling speed. We tested two commonly prescribed antidepressants, venlafaxine ("Effexor") and fluoxetine ("Prozac") on crawling speed and time to reach the air-water interface in two species of marine snail, the oyster drill Urosalpinx cinerea and the American starsnail Lithopoma americanum. Exposure to venlafaxine increased crawling speed in both species, while fluoxetine slowed them down. Our lowest LOEC (lowest observed effect concentration) was 31.3?g/L venlafaxine in Urosalpinx. Similarly, snails (L.americanum) exposed to venlafaxine tended to move faster and more often to the air-water interface, but exposure to fluoxetine slowed them down. Our lowest LOEC was 345?g/L fluoxetine in Lithopoma. These results indicate that venlafaxine boosts locomotion, while fluoxetine reduces it, and both behaviors are preludes to foot detachment. The different effects of these two antidepressants on snail locomotion suggest differing physiological mechanisms of action in marine snails as well as possible ecological consequences. PMID:25481651

  14. Distribution of tritium in precipitation and surface water in California

    NASA Astrophysics Data System (ADS)

    Harms, Patrick A.; Visser, Ate; Moran, Jean E.; Esser, Brad K.

    2016-03-01

    The tritium concentration in the surface hydrosphere throughout California was characterized to examine the reasons for spatial variability and to enhance the applicability of tritium in hydrological investigations. Eighteen precipitation samples were analyzed and 148 samples were collected from surface waters across California in the Summer and Fall of 2013, with repeat samples from some locations collected in Winter and Spring of 2014 to examine seasonal variation. The concentration of tritium in present day precipitation varied from 4.0 pCi/L near the California coast to 17.8 pCi/L in the Sierra Nevada Mountains. Concentrations in precipitation increase in spring due to the 'Spring Leak' phenomenon. The average coastal concentration (6.3 ± 1.2 pCi/L) in precipitation matches estimated pre-nuclear levels. Surface water samples show a trend of increasing tritium with inland distance. Superimposed on that trend, elevated tritium concentrations are found in the San Francisco Bay area compared to other coastal areas, resulting from municipal water imported from inland mountain sources and local anthropogenic sources. Tritium concentrations in most surface waters decreased between Summer/Fall 2013 and Winter/Spring 2014 likely due to an increased groundwater signal as a result of drought conditions in 2014. A relationship between tritium and electrical conductivity in surface water was found to be indicative of water provenance and anthropogenic influences such as agricultural runoff. Despite low initial concentrations in precipitation, tritium continues to be a valuable tracer in a post nuclear bomb pulse world.

  15. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    SciTech Connect

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  16. Bioinspired aquatic microrobot capable of walking on water surface like a water strider.

    PubMed

    Zhang, Xinbin; Zhao, Jie; Zhu, Qing; Chen, Ning; Zhang, Mingwen; Pan, Qinmin

    2011-07-01

    Walking on the water surface is a dream of humans, but it is exactly the way of life for some aquatic insects. In this study, a bionic aquatic microrobot capable of walking on the water surface like a water strider was reported. The novel water strider-like robot consisted of ten superhydrophobic supporting legs, two miniature dc motors, and two actuating legs. The microrobot could not only stand effortlessly but also walk and turn freely on the water surface, exhibiting an interesting motion characteristic. A numerical model describing the interface between the partially submerged leg and the air-water surface was established to fully understand the mechanism for the large supporting force of the leg. It was revealed that the radius and water contact angle of the legs significantly affect the supporting force. Because of its high speed, agility, low cost, and easy fabrication, this microrobot might have a potential application in water quality surveillance, water pollution monitoring, and so on. PMID:21650460

  17. DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES

    EPA Science Inventory

    Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

  18. Identification of optimum scopes of environmental factors for snails using spatial analysis techniques in Dongting Lake Region, China

    PubMed Central

    2014-01-01

    Background Owing to the harmfulness and seriousness of Schistosomiasis japonica in China, the control and prevention of S. japonica transmission are imperative. As the unique intermediate host of this disease, Oncomelania hupensis plays an important role in the transmission. It has been reported that the snail population in Qiangliang Lake district, Dongting Lake Region has been naturally declining and is slowly becoming extinct. Considering the changes of environmental factors that may cause this phenomenon, we try to explore the relationship between circumstance elements and snails, and then search for the possible optimum scopes of environmental factors for snails. Methods Moisture content of soil, pH, temperature of soil and elevation were collected by corresponding apparatus in the study sites. The LISA statistic and GWR model were used to analyze the association between factors and mean snail density, and the values in high-high clustered areas and low-low clustered areas were extracted to find out the possible optimum ranges of these elements for snails. Results A total of 8,589 snail specimens were collected from 397 sampling sites in the study field. Besides the mean snail density, three environmental factors including water content, pH and temperature had high spatial autocorrelation. The spatial clustering suggested that the possible optimum scopes of moisture content, pH, temperature of the soil and elevation were 58.70 to 68.93%, 6.80 to 7.80, 22.73 to 24.23C and 23.50 to 25.97m, respectively. Moreover, the GWR model showed that the possible optimum ranges of these four factors were 36.58 to 61.08%, 6.541 to 6.89, 24.30 to 25.70C and 23.50 to 29.44m, respectively. Conclusion The results indicated the association between snails and environmental factors was not linear but U-shaped. Considering the results of two analysis methods, the possible optimum scopes of moisture content, pH, temperature of the soil and elevation were 58.70% to 68.93%, 6.6 to 7.0, 22.73C to 24.23C, and 23.5m to 26.0m, respectively. The findings in this research will help in making an effective strategy to control snails and provide a method to analyze other factors. PMID:24886456

  19. Major carbon-14 deficiency in modern snail shells from southern Nevada springs

    SciTech Connect

    Riggs, A.C.

    1984-04-06

    Carbon-14 contents as low as 3.3 +/- 0.2% modern (apparent age, 27,000 years) measured from the shells of snails Melanoides tuberculatus living in artesian springs in southern Nevada are attributed to fixation of dissolved HCO/sub 3//sup -/ with which the shells are in carbon isotope equilibrium. Recognition of the existence of such extreme deficiencies is necessary so that erroneous ages are not attributed to fresh water biogenic carbonates. 2 figures, 1 table.

  20. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  1. Behavior of Ru surfaces after ozonated water treatment

    NASA Astrophysics Data System (ADS)

    Seo, Dongwan; Park, Chanhyoung; Jung, Juneui; Yoon, Mihyun; Lee, Dongwook; Kim, Chang Yeol; Lim, Sangwoo

    2011-10-01

    In order for the development of cleaning technology of extreme ultra violet lithography photomask, the behavior of Ru surfaces after treatment with ozonated deionized water (DIO 3) solution was studied using Ru and ruthenium oxide particles and 2 nm-thick Ru capping layers. No significant changes in crystalline structures or chemical states of the Ru surfaces, nor any similarities with the structures or states of ruthenium oxide, were observed after DIO 3 treatment. Oxidation of ruthenium to form RuO 2 or RuO 3 was not observed. Adsorption of H 2O molecules on the Ru layer increased the surface roughness, but the desorption of H 2O molecules recovered it. Local chemisorption of H 2O molecules on the Ru surface may be the reason why rougher Ru surfaces were observed after DIO 3 cleaning.

  2. Uranium in US surface, ground, and domestic waters

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  3. CHARACTERIZING SURFACE WATERS THAT MAY NOT REQUIRE FILTRATION

    EPA Science Inventory

    A relatively clean raw surface water can be determined that is amenable to disinfection as the only controlling treatment process. The essential criteria and associated standards are: ecal coliform, 20 organisms/100 mL; Turbidity, 1.0 NTU; Color, 15 ACU; Chlorine Demand, 2 mg/L. ...

  4. CONTROLLING STORM WATER RUNOFF WITH TRADABLE CREDITS FOR IMPERVIOUS SURFACES

    EPA Science Inventory

    Storm water flow off impervious surface in a watershed can lead to stream degradation, habitat alteration, low base flows and toxic leading. We show that a properly designed tradable runoff credit (TRC) system creates economic incentives for landowners to employ best management p...

  5. Simulating the fate and transport of nanomaterials in surface waters

    EPA Science Inventory

    The unique properties of nanomaterials have resulted in their increased production. However, it is unclear how nanomaterials will move and react once released to the environment One approach for addressing possible exposure of nanomaterials in surface waters is by using numerical...

  6. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  7. RATES, CONSTANTS, AND KINETICS FORMULATIONS IN SURFACE WATER QUALITY MODELING

    EPA Science Inventory

    Recent studies are reviewed to provide a comprehensive volume on state-of-the-art formulations used in surface water quality modeling along with accepted values for rate constants and coefficients. Topics covered include system geometric representation (spatial and temporal), phy...

  8. REMOTE MONITORING OF ORGANIC CARBON IN SURFACE WATERS

    EPA Science Inventory

    This study shows that the intensity of the Raman normalized fluorescence emission induced in surface waters by ultraviolet radiation can be used to provide a unique remote sensing capability for airborne monitoring the concentration of dissolved organic carbon (DOC). Trace concen...

  9. PHOTOREACTIONS IN SURFACE WATERS AND THEIR ROLE IN BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    During the past decade significant interest has developed in the influence of photochemical reactions on biogeochemical cycles in surface waters of lakes and the sea. A major portion of recent research on these photoreactions has focused on the colored component of dissolved org...

  10. Long-term trends in precipitation and surface water chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter shows long-term data and trends in precipitation and surface water chemistry for each site. It contains a brief introduction to the topic, and methods of measurements, selection of variables, and their data source. It consists primarily of a large number of figures showing long-term da...

  11. Zearalenone occurrence in surface waters in central Illinois, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zearalenone (ZEN) is an estrogenic secondary metabolite produced by certain fungi that commonly infest important cereal crops, such as corn and wheat. The ability of ZEN to move from contaminated crops to surface waters has been demonstrated previously. This article reports the development of a meth...

  12. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  13. Shale gas development impacts on surface water quality in Pennsylvania.

    PubMed

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  14. PARTITION COEFFICIENTS FOR METALS IN SURFACE WATER, SOIL, AND WASTE

    EPA Science Inventory

    This report presents metal partition coefficients for the surface water pathway and for the source model used in the Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment (3MRA) technology under development by the U.S. Environmental Protection Agency. Partition ...

  15. AIRBONE LASER FLUOROSENSING OF SURFACE WATER CHLOROPHYLL 'A'

    EPA Science Inventory

    A prototype airborne laser fluorosensor for monitoring surface water chlorophyll 'a' has been tested over Lake Mead, Nevada. Trends in the remotely sensed data are in close correspondence with ground truth data. It is suggested that system performance can be improved by concurren...

  16. Wetlands and surface water discharge compliance workshop: Proceedings

    SciTech Connect

    1995-09-01

    Electric utility operation and maintenance activities have the potential to impact wetlands and surface water quality. These proceedings of the Wetlands and Surface Water Discharge Compliance Workshop provide a ready source of information on issues ranging from constructed wetland treatment systems to biodiversity policy and wetland management. The workshop also emphasized surface water topics such as permit relief options and permit compliance monitoring. The workshop was organized in two parts. The first part consisted of presentations by researchers on the present state of knowledge and research activities in the wetlands and surface water compliance areas. The second part of the workshop focused on identifying information and research needs of the electric utility representatives attending the workshop. This was an interactive session involving all the participants and was chaired by EPRI. In preparation for the discussion, background material was developed and presented to aid in the discussion. A list of 8 recommendations from this session are summarized. The proceedings contain 14 presentations made at the workshop.

  17. Uranium in US surface, ground, and domestic waters

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters, comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  18. The hydrochemical framework of surface water basins in southern Ghana

    NASA Astrophysics Data System (ADS)

    Yidana, Sandow Mark

    2009-04-01

    Surface water resources play a crucial role in the domestic water delivery system in Ghana. In addition, sustainable food production is based on the quality and quantity of water resources available for irrigation purposes to supplement rain-fed agricultural activities in the country. The objective of this research was to determine the main controls on the hydrochemistry of surface water resources in the southern part of Ghana and assess the quality of water from these basins for irrigation activities in the area. R-mode factor and cluster analyses were applied to 625 data points from 6 river basins in southern Ghana after the data had been log transformed and standardized for homogeneity. This study finds that surface water chemistry in the south is controlled by the chemistry of silicate mineral weathering, chemistry of rainfall, fertilizers from agricultural activities in the area, as well as the weathering of carbonate minerals. A Gibb’s diagram plotted with total dissolved solids (TDS) on the vertical axis against (Na+ + K+)/(Ca2+ + K+ + Na+) on the horizontal axis indicates that rock weathering plays a significant role in the hydrochemistry. Activity diagrams for the CaO-Na2O-Al2O-SiO2-H2O and CaO-MgO-Al2O3-SiO2-H2O systems suggest that kaolinite is the most stable clay mineral phase in the system. In addition, an assessment of the irrigation quality of water from these basins suggests that the basins are largely low sodium—low to medium salinity basins, delivering water of acceptable quality for irrigation purposes.

  19. Water Resources Data for New Mexico; Part 1, Surface Water Records

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Surface-water records for the 1970 water year for New Mexico, including records of streamflow or reservoir storage at gaging stations, partial-record stations, and miscellaneous sites, are given in this report and their locations shown in figures 1, 2. Records for a few pertinent gaging stations in bordering States also are included. The records were collected arid computed by the Water Resources Division of the U.S. Geological Survey under the direction of W. E. Hale, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico. Through September 30, 1960, the records of discharge and stage of streams and canals and contents and stage of lakes or reservoirs were published in an annual series of U.S. Geological Survey water-supply papers entitled II Surface Water Supply of the United States." Beginning with the 1961 water year, surface-water records have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. The discharge and reservoir storage records for 1961-65 also are published in a Geological Survey water-supply paper series entitled "Surface Water Supply of the United States 1961-65." There will be a similar series of water-supply papers for the water years 1966-70.

  20. Appearance of aldehydes in the surface layer of lake waters.

    PubMed

    Dąbrowska, Agata; Nawrocki, Jacek; Szeląg-Wasielewska, Elżbieta

    2014-07-01

    The paper presents results concerning the changes in the content of aldehydes in samples of lake water collected near the lake surface. The study of lake waters was undertaken to explain which physicochemical parameters of the environment have the greatest influence on the level of aldehydes, which of the aldehydes are most often met in surface water and in what concentrations. We observed that formaldehyde, acetaldehyde, propanal, glyoxal, methylglyoxal and acetone were commonly present in surface water samples, while semi-volatile and poorly soluble aldehydes such as nonanal and decanal were observed seasonally. The contents of total aldehydes varied in a wide range, from 55 to 670 μg/l, and the concentration of total organic carbon varied significantly from 3 to 18 mg /l, but there was no evident correlation between them in all of samples. The total content of aldehydes did not depend on the meteorological parameters such as air temperature, UV radiation and ozone concentration; however, it was noted that the level of carbonyl concentration is related to the period of intense precipitation: in the period of very low precipitations, the highest contents of total aldehydes were determined in all of the water samples, and in the periods of intense precipitations, the content of total aldehydes was drastically smaller. PMID:24671617

  1. Phosphorus: a rate limiting nutrient in surface waters.

    PubMed

    Correll, D L

    1999-05-01

    Phosphorus is an essential element for all life forms. It is a mineral nutrient. Orthophosphate is the only form of P that autotrophs can assimilate. Extracellular enzymes hydrolyze organic forms of P to phosphate. Eutrophication is the over-enrichment of surface waters with mineral nutrients. The results are excessive production of autotrophs, especially algae and cyanobacteria. This high productivity leads to high bacterial populations and high respiration rates, leading to hypoxia or anoxia in poorly mixed bottom waters and at night in surface waters during calm, warm conditions. Low dissolved oxygen causes the loss of aquatic animals and the release of many materials normally bound to bottom sediments, including various forms of P. This release of P reinforces the eutrophication. Excessive concentrations of P is the most common cause of eutrophication in freshwater lakes, reservoirs, streams, and in the headwaters of estuarine systems. In the ocean, N is believed to usually be the key mineral nutrient controlling primary production. Estuaries and continental shelf waters are a transition zone, in which excessive P and N create problems. It is best to measure and regulate total P inputs to whole aquatic ecosystems, but for an easy assay it is best to measure total P concentrations, including particulate P, in surface waters or N:P atomic ratios in phytoplankton. PMID:10228963

  2. Surface water-groundwater connectivity in deltaic distributary channel networks

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey H.; Edmonds, Douglas A.; Knights, Deon

    2015-12-01

    Delta distributary channel networks increase river water contact with sediments and provide the final opportunity to process nutrients and other solutes before river water discharges to the ocean. In order to understand surface water-groundwater interactions at the scale of the distributary channel network, we created three numerical deltas that ranged in composition from silt to sand using Delft3D, a morphodynamic flow and sediment transport model. We then linked models of mean annual river discharge to steady groundwater flow in MODFLOW. Under mean annual discharge, exchange rates through the numerical deltas are enhanced relative to a single-threaded river. We calculate that exchange rates across a <10 km2 network are equivalent to exchange through ~10-100 km of single-threaded river channel. Exchange rates are greatest in the coarse-grained delta due to its permeability and morphology. Groundwater residence times range from hours to centuries and have fractal tails. Deltas are vanishing due to relative sea level rise. River diversion projects aimed at creating new deltaic land should also aim to restore surface water-groundwater connectivity, which is critical for biogeochemical processing in wetlands. We recommend designing diversions to capture more sand and thus maximize surface water-groundwater connectivity.

  3. Surface tension of water in the presence of perfluorocarbon vapors.

    PubMed

    Chernyshev, Vasiliy S; Skliar, Mikhail

    2014-03-28

    Fluorocarbons are highly hydrophobic, biocompatible compounds with a variety of medical applications. Despite significant interest, the study of interfacial properties of fluorocarbons in aqueous systems has received limited attention. In this study, we investigate the influence of perfluoropentane and perfluorohexane vapors on the surface tension of water at room temperature. The results show a substantial decrease in the surface tension of water in the presence of perfluorocarbon vapors. In the investigated range of partial pressures up to the saturation value, a linear correlation between the surface tension and the partial pressure was found. This suggests that an adsorbed perfluorocarbon layer is formed on the surface of water. For comparison, the effect of the perfluorocarbon vapor on the surface tension of methanol was also investigated and a similar dependence was observed. Our results indicate that the stability and dynamic transitions of fluorocarbon colloids, which may be dispersed under physiological conditions as microdroplets, bubbles, or their combination, are likely affected by the composition of liquid and gas phases. PMID:24652374

  4. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    NASA Astrophysics Data System (ADS)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore water of the pond sediments were much higher than the pond water and closed to that of groundwater. Also, other metal elements showed the same trend. This result suggested that Arsenic and other metal elements recharged to these ponds is probably adsorbed and removed by sediments (including organic matters). That is, pond sediment plays an important role for solute transport as a filter of Arsenic and metal elements. The results of this study strongly suggest that the natural and artificial surface water areas have important roles for water cycle and solute transport in Hanoi city. Although the number of the natural water areas is decreasing, dredging of artificial water areas increases the infiltration from the surface to aquifers. Therefore, qualitative and quantitative preservation of the surface water areas is important for conservation of groundwater environment and contribute to sustainable groundwater management in Hanoi city.

  5. Partitioning the land surface water simulated by a land?air surface scheme

    NASA Astrophysics Data System (ADS)

    Mihailovi?, Dragutin T.; Rajkovi?, Borivoj; Lali?, Branislava; Jovi?, Duan; Deki?, Ljiljana

    1998-11-01

    This paper deals with the simulation of the water balance components in surface schemes for modeling of the land-air exchange processes, used for atmospheric, hydrological and ecological numerical models, where the incorrect parameterization of surface water fluxes and prescription of the soil parameters can result in wrong partitioning of the surface energy into latent and sensible heat fluxes. In that sense, the module of the soil hydrology in the land-air parameterization scheme (LAPS) was considered. In order to establish the performance of this scheme in partitioning the land-surface water into water balance components, during long term integration, several tests were performed. The corresponding forcing data and observations were inserted from the HAPEX-MOBILHY data set. Tests for establishing the sensitivity of partitioning of the land-surface water into corresponding components on: (i) calculating the ground temperature and the deep soil temperature used in the soil heat flux term of the `force-restore' equation; (ii) number of soil layers used in the scheme; and (iii) some wet reference parameters were also conducted. The analysis presented was supported by some simple statistics.

  6. Rate Law Analysis of Water Oxidation on a Hematite Surface

    PubMed Central

    2015-01-01

    Water oxidation is a key chemical reaction, central to both biological photosynthesis and artificial solar fuel synthesis strategies. Despite recent progress on the structure of the natural catalytic site, and on inorganic catalyst function, determining the mechanistic details of this multiredox reaction remains a significant challenge. We report herein a rate law analysis of the order of water oxidation as a function of surface hole density on a hematite photoanode employing photoinduced absorption spectroscopy. Our study reveals a transition from a slow, first order reaction at low accumulated hole density to a faster, third order mechanism once the surface hole density is sufficient to enable the oxidation of nearest neighbor metal atoms. This study thus provides direct evidence for the multihole catalysis of water oxidation by hematite, and demonstrates the hole accumulation level required to achieve this, leading to key insights both for reaction mechanism and strategies to enhance function. PMID:25936408

  7. Water-mediated proton hopping on an iron oxide surface.

    PubMed

    Merte, Lindsay R; Peng, Guowen; Bechstein, Ralf; Rieboldt, Felix; Farberow, Carrie A; Grabow, Lars C; Kudernatsch, Wilhelmine; Wendt, Stefan; Lægsgaard, Erik; Mavrikakis, Manos; Besenbacher, Flemming

    2012-05-18

    The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H(3)O(+)-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO(2)(110), where water dissociation is a key step in proton diffusion. PMID:22605771

  8. Water-Mediated Proton Hopping on an Iron Oxide Surface

    SciTech Connect

    Merte, L. R.; Peng, Guowen; Bechstein, Ralf; Rieboldt, Felix; Farberow, Carrie A.; Grabow, Lars C.; Kudernatsch, Wilhelmine; Wendt, Stefen; Laegsgaard, E.; Mavrikakis, Manos; Besenbacher, Fleming

    2012-05-18

    The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H3O+-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO2(110), where water dissociation is a key step in proton diffusion.

  9. NAWQA RETROSPECTIVE DATABASE FOR NUTRIENTS IN GROUND WATER AND SURFACE WATER

    EPA Science Inventory

    The National Water-Quality Assessment (NAWQA) Program is designed to describe the status and trends in the quality of the Nations ground- and surface-water resources and to provide a sound understanding of the natural and human factors that affect the quality of these resources. ...

  10. Surface Water Data at Los Alamos National Laboratory 2000 Water Year

    SciTech Connect

    D.A.Shaull; M.R.Alexander; R.P.Reynolds; R.P.Romero; E.T.Riebsomer; C.T.McLean

    2001-06-02

    The principal investigators collected and computed surface water discharge data from 23 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs, two that flow into Canon del Valle and one that flows into Water Canyon.

  11. Surface Water Data at Los Alamos National Laboratory: 1999 Water Year

    SciTech Connect

    D. A. Shaull; M. R. Alexander; R. P. Reynolds; C. T. McLean; R. P. Romero

    2000-04-01

    The principal investigators collected and computed surface water discharge data from 22 stream-gaging stations that cover most of Los Alamos National Laboratory with one at Bandelier National Monument. Also included are discharge data from three springs that flow into Canon de Valle and nine partial-record storm water stations.

  12. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    SciTech Connect

    D.A. Shaull; D. Ortiz; M.R. Alexander; R.P. Romero

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  13. Survey of the Mutagenicity of Surface Water, Sediments, and Drinking Water from the Penobscot Indian Nation.

    EPA Science Inventory

    Survey of the Mutagenicity of Surface Water, Sediments, andDrinking Water from the Penobscot Indian NationSarah H. Warren, Larry D. Claxton,1, Thomas J. Hughes,*, Adam Swank,Janet Diliberto, Valerie Marshall, Daniel H. Kusnierz, Robert Hillger, David M. DeMariniNational Health a...

  14. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    SciTech Connect

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  15. Field Evaluation Of Arsenic Speciation In Sediments At The Ground Water/Surface Water Interface

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic at the ground water/surface water interface of the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speciation and mineralog...

  16. Cholesterol enhances surface water diffusion of phospholipid bilayers

    SciTech Connect

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi; Olijve, Luuk L. C.

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster surface water diffusivity. Another is the concurrent tightening of lipid packing that reduces passive, possibly unwanted, diffusion of ions and water across the bilayer.

  17. The role of DDX3 in regulating Snail.

    PubMed

    Sun, Mianen; Song, Ling; Zhou, Tong; Gillespie, G Yancey; Jope, Richard S

    2011-03-01

    DDX3, a DEAD box protein family member, appears to promote the progression of some cancers, which may partly result from its impedance of death receptor-mediated apoptosis. We found that another mechanism by which DDX3 may aid cancer progression is by promoting increased levels of the transcription factor Snail. Snail represses expression of cellular adhesion proteins, leading to increased cell migration and metastasis of many types of cancer. Knockdown of DDX3 levels by shRNA reduced basal levels of Snail in HeLa and MCF-7 cells, and this was associated with reduced cell proliferation and migration. Snail protein and mRNA levels were increased by treatment with the HDAC inhibitors sodium butyrate or trichostatin A, and these increases were attenuated in cells with DDX3 knocked down. Treatment of cells with camptothecin was discovered to increase Snail protein levels, and this increase was diminished in cells with DDX3 knocked down. Analysis of 31 patient glioblastoma multiforme (GBM) samples revealed a significant correlation between the levels of DDX3 and Snail. Thus, DDX3 is required for basal Snail expression and increases in Snail induced by HDAC inhibitors or camptothecin, indicating that this action of DDX3 may contribute to its promotion of the progression of some cancers. PMID:21237216

  18. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, luva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jrgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22C and HPC 37C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. PMID:25086698

  19. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    NASA Astrophysics Data System (ADS)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface as compared to open water controls. Decreases in emission rate varied linearly with percent duckweed cover, with lower fluxes occurring at higher percent cover. Mercury flux in the duckweed treatments as compared to open water treatments decreased from 17% in the lowest percent cover treatment to 67% in the highest percent cover treatment. The observed decrease in mercury emission suggests that duckweed limits emission via the formation of a physical barrier to diffusion.

  20. Hydraulic exchange between a coral reef and surface sea water

    SciTech Connect

    Tribble, G.W.; Sansone, F.J.; Li, Yuan-Hui

    1992-10-01

    Hydraulic exchange between overlying sea water and the internal structure of a patch reef in Kaneohe Bay, Oahu, Hawaii, was studied with an array of wells, 1, 2, and 4 m deep. Two natural chemical tracers, radon, and salinity, were used to calculate the exchange rate between surface sea water and reef interstitial waters. Dissolved radon concentrations are substantially higher in interstitial waters than is surface water. The degree of radon enrichment is quantitatively related to the time elapsed since interstitial water had equilibrated with the atmosphere. Residence time estimates are 1-40 days, with deeper wells having slower exchange. The average residence time for 1-m-deep wells was 2.1 days. A rainstorm-induced dilution of the salinity of Kaneohe Bay provides the second tracer. Samples of surface and reef interstitial waters following this salinity perturbation are used to calculate an average residence time of 2.6 days at a depth of 1 m and 42 days at a depth of 2 m. Three types of physical forces thought to cause exchange between surface and interstitial water are considered by measurement of the forcing functions and reef permeability. Hydraulic conductivities are about 50 m/d, with lower values near the seaward side of the reef. Most exchange seems to be caused by high-frequency, wave-driven oscillatory pumping and by unidirectional hydraulic head gradients (of uncertain origin) that are stable for at least 3-4 days. Wave-driven mixing is probably more important shallower in the reef, whereas head-driven flow may dominate deeper in the reef. Tidal pumping does not seem to contribute to exchange. All methods indicate that exchange in the upper part of Checker Reef is primarily through vertical exchange. The best estimate for the residence time of water at a depth of 1 m is 2 days. Water at depths of 204 m probably has a residence time of weeks to months. 49 refs., 8 figs., 6 tabs.

  1. Sea, ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.

    1972-01-01

    The author has identified the following significant results. Two cruises were conducted in Cook Inlet to obtain ground truth. Forty-seven stations during 22-23 August and 68 stations during 25-29 September 1972 were occupied and temperature, salinity, percent light transmission, and suspended load of surface waters obtained. Similar data at various depths was also obtained at selected stations. Cook Inlet is an estuary with complex mixing of river discharges and ocean water. The Upper Cook Inlet shows a gradual and systematic decrease in salinity, however, west of Kenai the mixing of waters is complex. The sediments in suspension originating at the head of the inlet generally settle out east of Kenai and Drift River. Sediment load in suspension decreased gradually from 1700 mg/1 near Anchorage to about 50 mg/1 in the Narrows. In the Lower Cook Inlet the suspended load varied between 1-10 mg/1. Surface waters with sediments in suspension and ocean water with relatively lower sediment concentration are clearly discernible in ERTS-1 images obtained during September 18, 1972 pass over Cook Inlet. The movement and mixing of these waters can also be delineated in the images.

  2. A wetland hydrology and water quality model incorporating surface water/groundwater interactions

    NASA Astrophysics Data System (ADS)

    Kazezy?Lmaz-Alhan, Cevza Melek; Medina, Miguel A.; Richardson, Curtis J.

    2007-04-01

    In the last two decades the beneficial aspects of constructed treatment wetlands have been studied extensively. However, the importance of restored wetlands as a best management practice to improve the water quality of storm water runoff has only recently been appreciated. Furthermore, investigating surface water/groundwater interactions within wetlands is now acknowledged to be essential in order to better understand the effect of wetland hydrology on water quality. In this study, the development of a general comprehensive wetland model Wetland Solute Transport Dynamics (WETSAND) that has both surface flow and solute transport components is presented. The model incorporates surface water/groundwater interactions and accounts for upstream contributions from urbanized areas. The effect of restored wetlands on storm water runoff is also investigated by routing the overland flow through the wetland area, collecting the runoff within the stream, and transporting it to the receiving water using diffusion wave routing techniques. The computed velocity profiles are subsequently used to obtain water quality concentration distributions in wetland areas. The water quality component solves the advection-dispersion equation for several nitrogen and phosphorus constituents, and it also incorporates the surface water/groundwater interactions by including the incoming/outgoing mass due to the groundwater recharge/discharge. In addition, output from the Storm Water Management Model (SWMM5) is incorporated into this conceptual wetland model to simulate the runoff quantity and quality flowing into a wetland area from upstream urban sources. Additionally, the model can simulate a water control structure using storage routing principles and known stage-discharge spillway relationships.

  3. Surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xin, Pei; Shen, Chengji

    2014-05-01

    Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.

  4. North American Paleozoic land snails with a summary of other Paleozoic nonmarine snails

    USGS Publications Warehouse

    Solem, Alan; Yochelson, Ellis Leon

    1979-01-01

    Land snails from the Paleozoic of North America are known from the coal fields of eastern Canada, from the Dunkard basin west of the Allegheny Mountains, and from the western margin of the Illinois basin. The earliest finds were made about 125 years ago; essentially no new information has been recorded for a century. Large collections of Anthracopupa from the Dunkard basin sparked inquiry into the land snails from the other two areas. Studies using the SEM (scanning electron microscope) have provided considerable insight into microdetails of shell structure, which allow systematic assignment of these gastropods. All may be assigned to extant families, except one, for which insufficient material allows only superfamily assignment. The prosobranch Dawsonella is confirmed as being a terrestrial neritacean gastropod. To date, it is known only from the upper Middle Pennsylvanian of Illinois and Indiana. All the other Paleozoic land snails are stylommatophoran pulmonates; their current classification as nonmarine cyclophoraceans is not correct. Restudy of material from the Joggins section of Nova Scotia indicates that representatives of two ordinal groups of pulmonates appeared simultaneously in upper Lower Pennsylvanian strata; the oldest land prosobranch is found in only very slightly younger rocks. Zonites (Conulus) priscus is reassigned to the new genus Protodiscus in the extant family Discidae. Dendropupa is placed within the family Enidae, Anthraaopupa is placed in the family Tornatellinidae, and 'Pupa' bigsbii is assigned to the superfamily Pupillacea. All four of these family-level taxa are diverse and belong to two orders within the superorder Stylommatophora, heretofore considered a derived rather than an ancestral stock. Anthracopupa ohioensis Whitfield is a highly variable species, and two other species Naticopsis (?) diminuta and A.(?) dunkardona, both named by Stauffer and Schroyer, are placed in synonymy with it. To obtain taxonomic data to support the family placement of Anthracopupa, growth forms of modern pupillid and tornatellinid snails have been distinguished. The apertural barriers in Anthracopupa are identical in placement and growth pattern with those of living Tornatellinidae and independently confirm the family placement derived from study of the general form. One new species, A. sturgeoni, has been named. Anthracopupa is found most commonly in thin limestones interpreted as having been deposited in pools into which the small shells floated. Dendropupa is most commonly found in erect tree stumps that were covered by rapid sedimentation. Both environments are similar to those in which the shells of allied living species may be found today, and the fossils support environmental interpretations made entirely from lithology. A survey of the few European occurrences of Paleozoic land snails indicates that both Anthracopupa and Dendropupa occur in Lower Permian strata; Anthracopupa is known from beds as old as Westphalian B. These genera cannot be used for determining the Carboniferous-Permian boundary. Both the long local stratigraphic range of A. brittanica and D. vetusta reported in the literature and the moderately long range and great variability of A. ohioensis suggest that the land snails have little stratigraphic utility. On the other hand, the occurrence of these land snails in the late Paleozoic of the Northern Hemisphere provides further fossil evidence suggestive of a closed Atlantic Ocean at that time. A comparison of the Paleozoic and the present distributions of land -snail families on both sides of the Atlantic provides some interesting data on geographic shifts of organisms. Finally, the assignment of the earliest land snails to extant taxa at the family level indicates that the subclass Pulmonata has been very conservative in its evolution after initial radiation. A few notes on Paleozoic freshwater snails complete this survey.

  5. Water Surface and Velocity Measurement-River and Flume

    NASA Astrophysics Data System (ADS)

    Chandler, J. H.; Ferreira, E.; Wackrow, R.; Shiono, K.

    2014-06-01

    Understanding the flow of water in natural watercourses has become increasingly important as climate change increases the incidence of extreme rainfall events which cause flooding. Vegetation in rivers and streams reduce water conveyance and natural vegetation plays a critical role in flood events which needs to be understood more fully. A funded project at Loughborough University is therefore examining the influence of vegetation upon water flow, requiring measurement of both the 3-D water surface and flow velocities. Experimental work therefore requires the measurement of water surface morphology and velocity (i.e. speed and direction) in a controlled laboratory environment using a flume but also needs to be adaptable to work in a real river. Measuring the 3D topographic characteristics and velocity field of a flowing water surface is difficult and the purpose of this paper is to describe recent experimental work to achieve this. After reviewing past work in this area, the use of close range digital photogrammetry for capturing both the 3D water surface and surface velocity is described. The selected approach uses either two or three synchronised digital SLR cameras in combination with PhotoModeler for data processing, a commercial close range photogrammetric package. One critical aspect is the selection and distribution of appropriate floating marker points, which are critical if automated and appropriate measurement methods are to be used. Two distinct targeting approaches are available: either large and distinct specific floating markers or some fine material capable of providing appropriate texture. Initial work described in this paper uses specific marker points, which also provide the potential measuring surface velocity. The paper demonstrates that a high degree of measurement and marking automation is possible in a flume environment, where lighting influences can be highly controlled. When applied to a real river it is apparent that only lower degrees of automation are practicable. The study has demonstrated that although some automation is possible for point measurement, point matching needs to be manually guided in a natural environment where lighting cannot be controlled.

  6. Observation of dynamic water microadsorption on Au surface

    SciTech Connect

    Huang, Xiaokang Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  7. Understanding Surface water Ground water Interactions in Arkansas-Red River Basin using Coupled Modeling

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Mohanty, B. P.

    2006-12-01

    Subsurface water exists primarily as groundwater and also in small quantity as soil water in the unsaturated zone. This soil water plays a vital role in the hydrologic cycle by supporting plant growth, regulating the amount of water lost to evapo-transpiration and affecting the surface water groundwater interaction to a certain extent. As such, the interaction between surface water and groundwater is complex and little understood. This study aims at investigating the surface water groundwater interaction in the Arkansas-Red river basin, using a coupled modeling platform. For this purpose, an ecohydrological model (SWAP) has been coupled with the groundwater model (MODFLOW). Inputs to this coupled model are collected from NEXRAD precipitation data at a resolution of ~4 km, meteorological forcings from Oklahoma mesonet and NCDC sites, STATSGO soil property data, LAI (Leaf Area Index) data from MODIS at a resolution of ~1 km, and DEM (Digital Elevation Model). For numerical modeling, a spatial resolution of ~1 km and a temporal resolution of one day is used. The modeled base flow and total groundwater storage change would be tested using ground water table observation data. The modeled ground water storage is further improved using GRACE (Gravity Recovery and Climate Experiment) satellite data at a resolution of ~400 km, with the help of appropriate data assimilation technique.

  8. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0-99. Heat transfer coefficients were determined from thermal measurements in the test apparatus. All experiments were conducted inside an ISO Class 5 clean room enclosure. It was observed that when a liquid water droplet impinged upon the ZnO nanostructured at surface temperatures less than 140 degrees C, the nominally spherical droplet spread into a thin film over the surface. The film thickness depended on many parameters but in general it measured approximately 100-400 micrometers. As a result, it was found that the droplet evaporated by film evaporation without initiating nucleate boiling. At wall superheat levels of 10-20 degrees C, it was found in some cases that the heat transfer coefficients were nearly 4 times greater than for those of nucleate boiling at the same superheat level. For these conditions, no bubble nucleation was observed visually, and, nevertheless, extremely high heat transfer coefficients resulting from rapid evaporation of the thin liquid film formed by the spreading droplet were observed. At high wall superheat levels, the vaporization process exhibited Leidenfrost droplet vaporization. The extreme wetting of the nanostructured surfaces resulted in high Leidenfrost transition temperatures in the range of 310-376 degrees C, among the highest in the literature, exceeding those exhibited by bare metal surfaces by 100 degrees C or more. The Leidenfrost transition was detected from a recording of the acoustic signal generated from each experiment during the deposition and subsequent evaporation process. It was defined as the first point for which there is no disturbance to the acoustical signal in the form of a sizzling sound beyond the initial violent popping generated during the droplet deposition. The results document a trend of increasing Leidenfrost temperature with decreasing contact angle, which is consistent with earlier studies. The results of this study are compared with earlier work in this area and the implications for applications are discussed.

  9. Investigating surface water-well interaction using stable isotope ratios of water

    USGS Publications Warehouse

    Hunt, R.J.; Coplen, T.B.; Haas, N.L.; Saad, D.A.; Borchardt, M. A.

    2005-01-01

    Because surface water can be a source of undesirable water quality in a drinking water well, an understanding of the amount of surface water and its travel time to the well is needed to assess a well's vulnerability. Stable isotope ratios of oxygen in river water at the City of La Crosse, Wisconsin, show peak-to-peak seasonal variation greater than 4??? in 2001 and 2002. This seasonal signal was identified in 7 of 13 city municipal wells, indicating that these 7 wells have appreciable surface water contributions and are potentially vulnerable to contaminants in the surface water. When looking at wells with more than 6 sampling events, a larger variation in ??18O compositions correlated with a larger fraction of surface water, suggesting that samples collected for oxygen isotopic composition over time may be useful for identifying the vulnerability to surface water influence even if a local meteoric water line is not available. A time series of ??18O from one of the municipal wells and from a piezometer located between the river and the municipal well showed that the travel time of flood water to the municipal well was approximately 2 months; non-flood arrival times were on the order of 9 months. Four independent methods were also used to assess time of travel. Three methods (groundwater temperature arrival times at the intermediate piezometer, virus-culture results, and particle tracking using a numerical groundwater-flow model) yielded flood and non-flood travel times of less than 1 year for this site. Age dating of one groundwater sample using 3H-3He methods estimated an age longer than 1 year, but was likely confounded by deviations from piston flow as noted by others. Chlorofluorocarbons and SF6 analyses were not useful at this site due to degradation and contamination, respectively. This work illustrates the utility of stable hydrogen and oxygen isotope ratios of water to determine the contribution and travel time of surface water in groundwater, and demonstrates the importance of using multiple methods to improve estimates for time of travel of 1 year or less. ?? 2004 Elsevier B.V. All rights reserved.

  10. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices has also been investigated.

  11. Trace-level mercury removal from surface water

    SciTech Connect

    Klasson, K.T.; Bostick, D.T.

    1998-06-01

    Many sorbents have been developed for the removal of mercury and heavy metals from waters; however, most of the data published thus far do not address the removal of mercury to the target levels represented in this project. The application to which these sorbents are targeted for use is the removal of mercury from microgram-per-liter levels to low nanogram-per-liter levels. Sorbents with thiouronium, thiol, amine, sulfur, and proprietary functional groups were selected for these studies. Mercury was successfully removed from surface water via adsorption onto Ionac SR-4 and Mersorb resins to levels below the target goal of 12 ng/L in batch studies. A thiol-based resin performed the best, indicating that over 200,000 volumes of water could be treated with one volume of resin. The cost of the resin is approximately $0.24 per 1,000 gal of water.

  12. Searching for liquid water in Europa by using surface observatories.

    PubMed

    Khurana, Krishan K; Kivelson, Margaret G; Russell, Christopher T

    2002-01-01

    Liquid water, as far as we know, is an indispensable ingredient of life. Therefore, locating reservoirs of liquid water in extraterrestrial bodies is a necessary prerequisite to searching for life. Recent geological and geophysical observations from the Galileo spacecraft, though not unambiguous, hint at the possibility of a subsurface ocean in the Jovian moon Europa. After summarizing present evidence for liquid water in Europa, we show that electromagnetic and seismic observations made from as few as two surface observatories comprising a magnetometer and a seismometer offer the best hope of unambiguous characterization of the three-dimensional structure of the ocean and the deeper interior of this icy moon. The observatories would also help us infer the composition of the icy crust and the ocean water. PMID:12449858

  13. Surface-enhanced Raman for monitoring toxins in water

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Clauson, Susan L.; Bertone, Jane F.; Christesen, Steven D.

    2004-02-01

    Protection of the drinking water supply from a terrorist attack is of critical importance. Since the water supply is vast, contamination prevention is difficult. Therefore, rapid detection of contaminants, whether a military chemical/biological threat, a hazardous chemical spill, naturally occurring toxins, or bacterial build-up is a priority. The development of rapid environmentally portable and stable monitors that allow continuous monitoring of the water supply is ideal. EIC Laboratories has been developing Surface-Enhanced Raman Spectroscopy (SERS) to detect chemical agents, toxic industrial chemicals (TICs), viruses, cyanotoxins and bacterial agents. SERS is an ideal technique for the Joint Service Agent Water Monitor (JSAWM). SERS uses the enhanced Raman signals observed when an analyte adsorbs to a roughened metal substrate to enable trace detection. Proper development of the metal substrate will optimize the sensitivity and selectivity towards the analytes of interest.

  14. Evaluation of the Surface-Water Quantity, Surface-Water Quality, and Rainfall Data-Collection Programs in Hawaii, 1994

    USGS Publications Warehouse

    Fontaine, Richard A.

    1996-01-01

    This report documents the results of an evaluation of the surface-water quantity, surface-water quality, and rainfall data-collection programs in Hawaii. Fourteen specific issues and related goals were identified for the surface-water quantity program and a geographic information systems (GIS) data base was developed summarizing information for all surface-water stream gages that have been operated in Hawaii by the U.S. Geological Survey. Changes in status, which for some gages includes discontinuing operation, need to be considered at 42 sites where data are currently collected. The current surface-water quantity data base was determined to be adequate to address only two of the 14 specific issues and related goals. Alternatives were identified to address the areas where future issues and goals could not be adequately addressed. Options include new and expanded data collection, use of regional regression analyses, hydrologic and hydraulic modeling, and analysis and publication of existing data. A total of 47 streams were identified where additional stream-gaging stations are needed. Evaluation of the surface-water quality program was limited to a description of the U.S. Geological Survey's historical and existing programs and available analyses of data. Limitations of the program are described which primarily included lack of data regarding suspended sediment, land-use effects, quality of stream discharge to oceans, background water quality and nonpoint sources of contamination. Evaluation of the rainfall data program indicated that identified future goals could be discussed as either regional, systems related, current needs, forecasting, water quality, or trend analysis related. To address these goals, data from about 2,000 rain gages, 528 of which are active, are available. Data were found to only partially meet identified goals. Alternatives discussed to address the limitations include the need for more recording gages, primarily in areas of high rainfall. Another area of concern was the potential that many plantations will close and the effect these closings would have on continued operation of the important long-term gages they operate. Evaluation of data-collection programs in Hawaii needs to be an ongoing process. Equally important, data being collected need to be summarized and made available through data bases and published reports.

  15. The Character of the Solar Wind, Surface Interactions, and Water

    NASA Technical Reports Server (NTRS)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  16. Pesticide monitoring in surface water and groundwater using passive samplers

    NASA Astrophysics Data System (ADS)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  17. Reduction of water surface tension significantly impacts gecko adhesion underwater.

    PubMed

    Stark, Alyssa Y; McClung, Brandon; Niewiarowski, Peter H; Dhinojwala, Ali

    2014-12-01

    The gecko adhesive system is dependent on weak van der Waals interactions that are multiplied across thousands of fine hair-like structures (setae) on geckos' toe pads. Due to the requirements of van der Waals forces, we expect that any interruption between the setae and substrate, such as a water layer, will compromise adhesion. Our recent results suggest, however, that the air layer (plastron) surrounding the superhydrophobic toe pads aid in expelling water at the contact interface and create strong shear adhesion in water when in contact with hydrophobic surfaces. To test the function of the air plastron, we reduced the surface tension of water using two surfactants, a charged anionic surfactant and a neutral nonionic surfactant. We tested geckos on three substrates: hydrophilic glass and two hydrophobic surfaces, glass with a octadecyl trichlorosilane self-assembled monolayer (OTS-SAM) and polytetrafluoroethylene (PTFE). We found that the anionic surfactant inhibited the formation of the air plastron layer and significantly reduced shear adhesion to all three substrates. Interestingly, the air plastron was more stable in the nonionic surfactant treatments than the anionic surfactant treatments and we found that geckos adhered better in the nonionic surfactant than in the anionic surfactant on OTS-SAM and PTFE but not on glass. Our results have implications for the evolution of a superhydrophobic toe pad and highlight some of the challenges faced in designing synthetic adhesives that mimic geckos' toes. PMID:24944119

  18. Mitigation of acid deposition: Liming of surface waters. Final report

    SciTech Connect

    Bartoshesky, J.; Price, R.; DeMuro, J.

    1989-05-01

    In recent years acid deposition has become a serious concern internationally. Scientific literature has documented the acidification of numerous lakes and streams in North America and Scandinavia resulting in the depletion or total loss of fisheries and other aquatic biota. Liming represents the only common corrective practice aimed specifically at remediating an affected acid receptor. This report reviews a range of liming technologies and liming materials, as well as the effect of surface-water liming on water quality and aquatic biota. As background to the liming discussion, the hydrologic cycle and the factors that make surface waters sensitive to acid deposition are also discussed. Finally, a brief review of some of the liming projects that have been conducted, or are currently in operation is presented, giving special emphasis to mitigation efforts in Maryland. Liming has been effectively used to counteract surface-water acidification in parts of Scandinavia, Canada, and the U.S. To date, liming has generally been shown to improve physical and chemical conditions and enhance the biological recovery of aquatic ecosystems affected by acidification.

  19. Water at DNA surfaces: Ultrafast dynamics in minor groove recognition

    PubMed Central

    Pal, Samir Kumar; Zhao, Liang; Zewail, Ahmed H.

    2003-01-01

    Water molecules at the surface of DNA are critical to its equilibrium structure, DNAprotein function, and DNAligand recognition. Here we report direct probing of the dynamics of hydration, with femtosecond resolution, at the surface of a DNA dodecamer duplex whose native structure remains unperturbed on recognition in minor groove binding with the bisbenzimide drug (Hoechst 33258). By following the temporal evolution of fluorescence, we observed two well separated hydration times, 1.4 and 19 ps, whereas in bulk water the same drug is hydrated with time constants of 0.2 and 1.2 ps. For comparison, we also studied calf thymus DNA for which the hydration exhibits similar time scales to that of dodecamer DNA. However, the time-resolved polarization anisotropy is very different for the two types of DNA and clearly elucidates the rigidity in drug binding and difference in DNA rotational motions. These results demonstrate that hydration at the surface of the groove is a dynamical process with two general types of trajectories; the slowest of them (?20 ps) are those describing dynamically ordered water. Because of their ultrafast time scale, the ordered water molecules are the most weakly bound and are accordingly involved in the entropic (hydration/dehydration) process of recognition. PMID:12815094

  20. The polarization patterns of skylight reflected off wave water surface.

    PubMed

    Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhao, Huijie

    2013-12-30

    In this paper we propose a model to understand the polarization patterns of skylight when reflected off the surface of waves. The semi-empirical Rayleigh model is used to analyze the polarization of scattered skylight; the Harrison and Coombes model is used to analyze light radiance distribution; and the Cox-Munk model and Mueller matrix are used to analyze reflections from wave surface. First, we calculate the polarization patterns and intensity distribution of light reflected off wave surface. Then we investigate their relationship with incident radiation, solar zenith angle, wind speed and wind direction. Our results show that the polarization patterns of reflected skylight from waves and flat water are different, while skylight reflected on both kinds of water is generally highly polarized at the Brewster angle and the polarization direction is approximately parallel to the water's surface. The backward-reflecting Brewster zone has a relatively low reflectance and a high DOP in all observing directions. This can be used to optimally diminish the reflected skylight and avoid sunglint in ocean optics measurements. PMID:24514848

  1. Determination of antibiotic residues in manure, soil, and surface waters

    USGS Publications Warehouse

    Christian, T.; Schneider, R.J.; Farber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E.

    2003-01-01

    In the last years more and more often detections of antimicrobially active compounds ("antibiotics") in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run-off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1...2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 ??g/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.

  2. Home-built Surface Plasmon Resonance Apparatus for Studying Interactions Between Water and a Hydrophobic Surface

    NASA Astrophysics Data System (ADS)

    McNany, Dylan; Brown, Erin; Petersen, Shannon; Poynor, Adele

    2014-03-01

    Water acts in many anomalous ways, especially when near a hydrophobic surface. Surface plasmon resonance (SPR), a quantum optical method is used to study these unusual effects. Through the use of SPR, studies of the depletion layer (a very thin low-density layer, only a few nanometers thick) can be conducted. Employing a home-built SPR device, along with a monolayer coated gold slide, studies are conducted using a variety of differing dielectrics (water, air, methanol). Modifications of the SPR apparatus allow us to find the assumed thickness of the depleted region.

  3. Sensors and OBIA synergy for operational monitoring of surface water

    NASA Astrophysics Data System (ADS)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation, frequent drought period and now with foreseen climate change impacts. This third case will demonstrate the efficiency of SPOT 5 programming in synergy with OBIA methodology to assess the evolution of dam surface water within a complete water cycle (i.e. 2008-09). In all those three cases image segmentation and classification algorithms developed with e-Cognition 8 software allow an easy to use implementation of simple to highly sophisticate OBIA rulsets fully operational in batch processes. Finally this contribution foresees the new opportunity of integration of Worldview 2 multispectral imagery (i.e. 8 bands) including its "coastal" band that will also find an application in continental surface water bathymetry. Worldview 2 is a recently launch satellite (e.g. October 2009) that starts to collect earth observation data since January 2010. It is therefore a promising new remote sensing tool to develop operational hydrology in combination high resolution SAR imagery and OBIA methodology. This contribution will conclude on the strong potential for operationalisation in hydrology and water resources management that recent and future sensors and image analysis methodologies are offering to water management and decision makers.

  4. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these conditions.

  5. Statistical Analysis of Surface Water Quality Data of Eastern Massachusetts

    NASA Astrophysics Data System (ADS)

    Andronache, C.; Hon, R.; Tedder, N.; Xian, Q.; Schaudt, B.

    2008-05-01

    We present a characterization of current state of surface water, changes in time and dependence on land use, precipitation regime, and possible other natural and human influences based on data from the USGS National Water Quality Assessment (NAWQA) Program for New England streams. Time series analysis is used to detect changes and relationship with discharge and precipitation regime. Statistical techniques are employed to analyze relationships among multiple chemical variable monitored. Analysis of ion concentrations reveals information about possible natural sources and processes, and anthropogenic influences. A notable example is the increase in salt concentration in ground and surface waters, with impact on drinking water quality. Salt concentration increase in water can be linked to road salt usage during winters with heavy snowfall and other factors. Road salt enters water supplies by percolation through soil into groundwater or runoff and drainage into reservoirs. After entering fast-flowing streams, rivers and lakes, salt runoff concentrations are rapidly diluted. Road salt infiltration is more common for groundwater-based supplies, such as wells, springs, and reservoirs that are recharged mainly by groundwater. We use principal component analysis and other statistical procedures to obtain a description of the dominant independent variables that influence the observed chemical compositional range. In most cases, over 85 percent of the total variation can be explained by 3 to 4 components. The overwhelming variation is attributed to a large compositional range of Na and Cl seen even if all data are combined into a single dataset. Na versus Cl correlation coefficients are commonly greater than 0.9. Second components are typically associated with dilutions by overland flows (non winter months) and/or increased concentrations due to evaporation (summer season) or overland flows (winter season) if a snow storm is followed by the application of deicers on road surfaces. The last two components reflect the relative dominance of the composition of the local bedrock on groundwater chemistry or the effect of nutrient cycling.

  6. Surface Water Quality Trends from EPA's LTM Network

    NASA Astrophysics Data System (ADS)

    Funk, C.; Lynch, J. A.

    2013-12-01

    Surface water chemistry provides direct indicators of the potential effects of anthropogenic impacts, such as acid deposition and climate change, on the overall health of aquatic ecosystems. Long-term surface water monitoring networks provide a host of environmental data that can be used, in conjunction with other networks, to assess how water bodies respond to stressors and if they are potentially at risk (e.g., receiving pollutant deposition beyond its critical load). Two EPA-administered monitoring programs provide information on the effects of acidic deposition on headwater aquatic systems: the Long Term Monitoring (LTM) program and the Temporally Integrated Monitoring of Ecosystems (TIME) program, designed to track the effectiveness of the 1990 Clean Air Act Amendments (CAAA) in reducing the acidity of surface waters in acid sensitive ecoregions of the Northeast and Mid-Atlantic. Here we present regional variability of long term trends in surface water quality in response to substantial reductions in atmospheric deposition. Water quality trends at acid sensitive LTM sites exhibit decreasing concentrations of sulfate at 100% of monitored sites in the Adirondack Mountains and New England, 80% of Northern Appalachian Plateau sites, and yet only 15% of sites in the Ridge and Blue Ridge Provinces over the 1990-2011 period of record. Across all regions, most LTM sites exhibited constant or only slightly declining nitrate concentrations over the same time period. Acid Neutralizing Capacity (ANC) levels improved at 68% and 45% of LTM sites in the Adirondacks and Northern Appalachian Plateau, respectively, but few sites showed increases in New England or the Ridge and Blue Ridge Provinces due to lagging improvements in base cation concentration. The ANC of northeastern TIME lakes was also evaluated from 1991 to 1994 and 2008 to 2011. The percentage of lakes with ANC values below 50 ?eq/L, lakes of acute or elevated concern, dropped by about 7%, indicating improvement in all sensitivity classes. Information from long-term monitoring has shown that emission reductions have resulted in improved environmental conditions and increased ecosystem protection. However, despite some ecological recovery, lakes and streams in these regions remain at risk due to current acid deposition levels. The TIME/LTM programs, along with other monitoring networks, will continue to monitor surface water trends for effects of acid deposition and other anthropogenic impacts.

  7. Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters

    SciTech Connect

    ,

    1981-04-01

    The study objective of "The Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters" is to synthesize and test radionuclide transport models capable of realistically assessing radionuclide transport in various types of surface water bodies by including the sediment-radionuclide interactions. These interactions include radionuclide adsorption by sediment; desorption from sediment into water; and transport, deposition, and resuspension of sorbed radionuclides controlled by the sediment movements. During FY-1979, the modification of sediment and contaminant (radionuclide) transport model, FETRA, was completed to make it applicable to coastal waters. The model is an unsteady, two-dimensional (longitudinal and lateral) model that consists of three submodels (for sediment, dissolved-contaminant, and particulate-contaminant transport), coupled to include the sediment-contaminant interactions. In estuaries, flow phenomena and consequent sediment and radionuclide migration are often three-dimensional in nature mainly because of nonuniform channel cross-sections, salinity intrusion, and lateral-flow circulation. Thus, an unsteady, three-dimensional radionuclide transport model for estuaries is also being synthesized by combining and modifying a PNL unsteady hydrothermal model and FETRA. These two radionuclide transport models for coastal waters and estuaries will be applied to actual sites to examine the validity of the codes.

  8. Assessment of groundwater under direct influence of surface water.

    PubMed

    Nnadi, Fidelia N; Fulkerson, Mark

    2002-08-01

    Waterborne pathogens are known to reside in surface water systems throughout the U.S. Cryptosporidium outbreaks over recent years are the result of drinking water supplied from such sources. Contamination of aquifers has also led to several reported cases from drinking water wells. With high resistance to typical groundwater treatment procedures, aquifer infiltration by Cryptosporidium poses a serious threat. As groundwater wells are the main source of drinking water supply in the State of Florida, understanding factors that affect the presence of Cryptosporidium would prevent future outbreaks. This study examines karst geology, land use, and hydrogeology in the State of Florida as they influence the risk of groundwater contamination. Microscopic Particulate Analysis (MPA) sampling was performed on 719 wells distributed across Florida. The results of the sampling described each well as having high, moderate, or low risk to surface water influence. The results of this study indicated that the hydrogeology of an area tends to influence the MPA Risk Index (RI) of a well. Certain geologic formations were present for the majority of the high risk wells. Residential land use contained nearly half of the wells sampled. The results also suggested that areas more prone to sinkhole development are likely to contain wells with a positive RI. PMID:15328687

  9. Measuring the true height of water films on surfaces

    NASA Astrophysics Data System (ADS)

    Santos, Sergio; Verdaguer, Albert; Souier, Tewfic; Thomson, Neil H.; Chiesa, Matteo

    2011-11-01

    Measuring the level of hydrophilicity of heterogeneous surfaces and the true height of water layers that form on them in hydrated conditions has a myriad of applications in a wide range of scientific and technological fields. Here, we describe a true non-contact mode of operation of atomic force microscopy in ambient conditions and a method to establish the source of apparent height. A dependency of the measured water height on operational parameters is identified with water perturbations due to uncontrolled modes of imaging where intermittent contact with the water layer, or even the surface, might occur. In this paper we show how to (1) determine when the water is being perturbed and (2) distinguish between four different interaction regimes. Each of the four types of interaction produces measurements ranging from fractions of the true height in one extreme to values which are as large as four times the real height in the other. We show the dependence of apparent height on the interaction regime both theoretically and empirically. The agreement between theory and experiment on a BaF2(111) sample displaying wet and un-wet regions validates our results.

  10. The impact of land use on microbial surface water pollution.

    PubMed

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. PMID:25456147

  11. Sensitivity of freshwater pulmonate snails, Lymnaea luteolo L. , to heavy metals

    SciTech Connect

    Khangarot, B.S.; Ray, P.K.

    1988-08-01

    The current alarm of the impacts of metal pollution on living organisms has received much attention with the tragedy of Minimata and later Niigata, in Japan. Although there has been a great deal of the concern about the acute and chronic toxicities of heavy metals to freshwater fishes and crustaceans but little information is available on the effects of heavy metals to freshwater snails, which are widely distributed in the aquatic environment. The present study was undertaken to determine the acute toxicities of selected heavy metals to a freshwater pond snail Lymnaea luteolo Lamarck; a locally abundant species and play an important role in the aquatic food chain(s). Static bioassays were conducted with the salts of cadmium, copper, chromium, mercury, nickel, silver and zinc in hard water.

  12. SARAH, A SURFACE WATER ASSESSMENT MODEL FOR BACK CALCULATING REDUCTIONS IN ABIOTIC HAZARDOUS WASTES

    EPA Science Inventory

    The nearfield surface model SARAH calculates maximum allowable hazardous waste concentrations based on predicted exposure to humans or aquatic life from contaminated surface water. The surface water contamination pathways analyzed in SARAH include groundwater leachate from a land...

  13. Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana

    PubMed Central

    Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196

  14. Storm water contamination and its effect on the quality of urban surface waters.

    PubMed

    Barałkiewicz, Danuta; Chudzińska, Maria; Szpakowska, Barbara; Świerk, Dariusz; Gołdyn, Ryszard; Dondajewska, Renata

    2014-10-01

    We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water. PMID:24981877

  15. Dynamics of microdroplets over the surface of hot water

    NASA Astrophysics Data System (ADS)

    Umeki, Takahiro; Ohata, Masahiko; Nakanishi, Hiizu; Ichikawa, Masatoshi

    2015-01-01

    When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 μm ii) they levitate above the water surface by 10 ~ 100 μm iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2 m/s and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet.

  16. Dynamics of microdroplets over the surface of hot water

    PubMed Central

    Umeki, Takahiro; Ohata, Masahiko; Nakanishi, Hiizu; Ichikawa, Masatoshi

    2015-01-01

    When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1?mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10??m; ii) they levitate above the water surface by 10 ~ 100??m; iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2?m/s; and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet. PMID:25623086

  17. The Whitham Equation as a model for surface water waves

    NASA Astrophysics Data System (ADS)

    Moldabayev, Daulet; Kalisch, Henrik; Dutykh, Denys

    2015-08-01

    The Whitham equation was proposed as an alternate model equation for the simplified description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham equation incorporates the full linear dispersion relation of the water wave problem, it is thought to provide a more faithful description of shorter waves of small amplitude than traditional long wave models such as the KdV equation. In this work, we identify a scaling regime in which the Whitham equation can be derived from the Hamiltonian theory of surface water waves. A Hamiltonian system of Whitham type allowing for two-way wave propagation is also derived. The Whitham equation is integrated numerically, and it is shown that the equation gives a close approximation of inviscid free surface dynamics as described by the Euler equations. The performance of the Whitham equation as a model for free surface dynamics is also compared to different free surface models: the KdV equation, the BBM equation, and the Padé (2,2) model. It is found that in a wide parameter range of amplitudes and wavelengths, the Whitham equation performs on par with or better than the three considered models.

  18. Effects of sewage sludge amendment on snail growth and trace metal transfer in the soil-plant-snail food chain.

    PubMed

    Bourioug, Mohamed; Gimbert, Frdric; Alaoui-Sehmer, Laurence; Benbrahim, Mohammed; Badot, Pierre-Marie; Alaoui-Soss, Badr; Aleya, Lotfi

    2015-11-01

    Cu, Zn, Pb, and Cd concentrations in a soil plant (Lactuca sativa) continuum were measured after sewage sludge amendment. The effects of sewage sludge on growth and trace metal bioaccumulation in snails (Cantareus aspersus) were investigated in a laboratory experiment specifically designed to identify contamination sources (e.g., soil and leaves). Application of sewage sludge increased trace metal concentrations in topsoil. However, except Zn, metal concentrations in lettuce leaves did not reflect those in soil. Lettuce leaves were the main source of Zn, Cu, and Cd in exposed snails. Bioaccumulation of Pb suggested its immediate transfer to snails via the soil. No apparent toxic effects of trace metal accumulation were observed in snails. Moreover, snail growth was significantly stimulated at high rates of sludge application. This hormesis effect may be due to the enhanced nutritional content of lettuce leaves exposed to sewage sludge. PMID:26165994

  19. The surface composition of Charon - Tentative identification of water ice

    NASA Technical Reports Server (NTRS)

    Marcialis, Robert L.; Lebofsky, Larry A.; Rieke, George H.

    1987-01-01

    The Mar. 3, 1987, Charon occultation by Pluto was observed in the infrared at 1.5, 1.7, 2.0, and 2.35 micrometers. Subtraction of fluxes measured between second and third contacts from measurements made before and after the event has yielded individual spectral signatures for each body at these wavelengths. Charon's surface appears depleted in methane relative to Pluto. Constancy of flux at 2.0 micrometers throughout the event shows that Charon is effectively black at this wavelength, which is centered on a very strong water absorption band. Thus, the measurements suggest the existence of water ice on Pluto's moon.

  20. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    USGS Publications Warehouse

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the Everglades restoration. A century of water management for flood control and water storage in the Everglades resulted in the creation of the Water Conservation Areas (WCAs). Construction of the major canals began in the 1910s and the systems of levees that enclose the basins and structures that move water between basins were largely completed by the 1950s. The abandoned wetlands that remained outside of the Water Conservation areas tended to dry out and subside by 10 feet or more, which created abrupt transitions in land-surface elevations and water levels across the levees. The increases in topographic and hydraulic gradients near the margins of the WCAs, along with rapid pumping of water between basins to achieve management objectives, have together altered the patterns of recharge and discharge in the Everglades. The most evident change is the increase in the magnitude of recharge (on the upgradient side) and discharge (on the downgradient side) of levees separating WCA-2A from other basins or areas outside. Recharge and discharge in the vast interior of WCA-2A also likely have increased, but fluxes in the interior wetlands are more subtle and more difficult to quantify compared with areas close to the levees. Surface-water and ground-water interactions differ in fundamental ways between wetlands near WCA-2A's boundaries and wetlands in the basin's interior. The levees that form the WCA's boundaries have introduced step functions in the topographic and hydraulic gradients that are important as a force to drive water flow across the wetland ground surface. The resulting recharge and discharge fluxes tend to be unidirectional (connecting points of recharge on the upgradient side of the levee with points of discharge on the downgradient side), and fluxes are also relatively steady in magnitude compared with fluxes in the interior. Recharge flow paths are also relatively deep in their extent near levees, with fluxes passing entirely through the 1-m peat layer and inte

  1. Soil Moisture: The Hydrologic Interface Between Surface and Ground Waters

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1997-01-01

    A hypothesis is presented that many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture. The specific hydrologic processes tha