These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Water snails  

NSDL National Science Digital Library

Water snails have a shell for protection. They have two tentacles, a foot, and a head and a tail region. Water snails have eyes at the base of their sensory stalks. The stalks are used to smell and feel around the snail's environment.

Scott Bauer (USDA; ARS)

2005-08-03

2

Crawling beneath the free surface: Water snail locomotion  

E-print Network

Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be non-zero for moderate values of Capillary number but vanishes in the limits of high and low Capillary numbers. Physically, this force arises because the snail's foot deforms the free surface, thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to the topography of the foot.

Sungyon Lee; John W. M. Bush; A. E. Hosoi; Eric Lauga

2008-06-23

3

Immunotoxicity of surface waters contaminated by municipal effluents to the snail Lymnaea stagnalis.  

PubMed

The immunotoxic effects of surface waters contaminated by a municipal effluent dispersion plume were examined in the snail Lymnaea stagnalis. Snails were exposed to surface waters where changes in hemocyte counts, viability, levels of reactive oxygen species (ROS), reduced thiols and phagocytic activity were tracked following exposure periods of 3h and 3 and 7d. Changes in mRNA expression of some genes in the hemocytes were also assessed after 7d of exposure, as follows: genes coding for catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSR), selenium-dependent glutathione peroxidase (SeGPX), two isoforms of the nitric oxide synthetase (NOS1 and NOS2), molluscan defensive molecule (MDM), toll-like receptor 4 (TLR4), allograft inflammatory factor-1 (AIF), and heat-shock protein 70 (HSP70). At the sites closest to the discharge point, exposure led to impaired hemocyte viability and intracellular thiol levels and also an increase of hemocyte count, ROS levels and phagocytosis. Phagocytosis and ROS levels in hemocytes were correlated with heterotrophic bacterial counts in snails. We found four genes with increased mRNA expression as a response to exposure of municipal wastewaters: TLR4 (6-fold), HSP70 (2-fold), SeGPx (4-fold) and CAT (2-fold). Immunocompetence responses were analyzed by canonical analysis to seek out relationships with mRNA expression of the genes involved in stress, pattern recognition, cellular and humoral responses. The data revealed that genes involved in oxidative stress were strongly involved with immunocompetence and that the resulting immune responses were influenced both by the bacterial and pollutant loadings of the effluent. PMID:23021492

Gust, M; Fortier, M; Garric, J; Fournier, M; Gagné, F

2013-01-15

4

Snail destabilizes cell surface Crumbs3a.  

PubMed

During epithelial to mesenchymal transition (EMT), cells modulate expression of proteins resulting in loss of apical-basal polarity. Effectors of this EMT switch target the polarity protein Crumbs3a, a small transmembrane protein that is essential for generation of the apical membrane and tight junctions of mammalian epithelial cells. We previously showed that the Crumbs3 gene is a direct target of transcriptional regulation by Snail, a potent inducer of EMT. However, Snail has also been shown to have multiple non-transcriptional roles, including regulation of cell adhesion, proliferation and survival. Using SNAP-tag labeling, we determined that cell surface Crumbs3a has a half-life of approximately 3?h and that this cell surface half-life is significantly reduced when EMT is induced by Snail. We further observe that Snail induces differential glycosylation of Crumbs3a, including sialylation, suggesting a mechanism by which Crumbs3a may be destabilized. These results indicate that Crumbs3a is a post-translational target of Snail, in addition to being a transcriptional target. We conclude that Snail's ability to post-translationally modify and destabilize Crumbs3a augments the depolarizing process of EMT. PMID:22554228

Harder, Jennifer L; Whiteman, Eileen L; Pieczynski, Jay N; Liu, Chia-Jen; Margolis, Ben

2012-08-01

5

The microstructures of biomineralized surfaces: a spectroscopic study on the exoskeletons of fresh water (Apple) snail, Pila globosa  

NASA Astrophysics Data System (ADS)

In view of the importance in understanding biomineralization processes in different molluskan species, the common fresh water apple snail Pila globosa in Indian origin was taken to explore its mineralized exoskeleton structures. The detailed structural studies of the exoskeletons of P. globosa have been undertaken. The isolated layers present in these shells were studied by electron paramagnetic resonance (EPR), optical absorption, and infrared spectral techniques. The EPR spectra of the organic protein layer periostracum show the characteristic signals corresponding to Fe 3+ ions at g=4.1 and 2.0. The EPR spectra of the ostracum (middle) layer at room temperature gives a complicated spectrum consisting of a number of Mn 2+ signals of at least three sets due to the aragonite nature of the material. The results indicate the presence of the multivalent manganese ions, which undergo the redox mechanisms. The thermal variation of the EPR spectra show marked effect on these samples both in g-values and the basic spectral pattern.

Prasuna, C. P. Lakshmi; Narasimhulu, K. V.; Gopal, N. O.; Rao, J. Lakshmana; Rao, T. V. R. K.

2004-08-01

6

Movements of florida apple snails in relation to water levels and drying events  

USGS Publications Warehouse

Florida apple snails (Pomacea Paludosa) apparently have only a limited tolerance to wetland drying events (although little direct evidence exists), but their populations routinely face dry downs under natural and managed water regimes. In this paper, we address speculation that apple snails respond to decreasing water levels and potential drying events by moving toward refugia that remain inundated. We monitored the movements of apple snails in central Florida, USA during drying events at the Blue Cypress Marsh (BC) and at Lake Kissimmee (LK). We monitored the weekly movements of 47 BC snails and 31 LK snails using radio-telemetry. Snails tended to stop moving when water depths were 10 cm. Snails moved along the greatest positive depth gradient (i.e., towards deeper water) when they encountered water depths between 10 and 20 cm. Snails tended to move toward shallower water in water depths ???50 cm, suggesting that snails were avoiding deep water areas such as canals and sloughs. Of the 11 BC snails originally located in the area that eventually went dry, three (27%) were found in deep water refugia by the end of the study. Only one of the 31 LK snails escaped the drying event by moving to deeper water. Our results indicate that some snails may opportunistically escape drying events through movement. The tendency to move toward deeper water was statistically significant and indicates that this behavioral trait might enhance survival when the spatial extent of a dry down is limited. However, as water level falls below 10 cm, snails stop moving and become stranded. As the spatial extent of a dry down increases, we predict that the number of snails stranded would increase proportionally. Stranded Pomacea paludosa must contend with dry marsh conditions, possibly by aestivation. Little more than anecdotal information has been published on P. paludosa aestivation, but it is a common adaptation among other apple snails (Caenogastropoda: Ampullaridae). ?? 2002, The Society of Wetland Scientists.

Darby, P.C.; Bennetts, R.E.; Miller, S.J.; Percival, H.F.

2002-01-01

7

Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces.  

PubMed

Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

Shirtcliffe, Neil J; McHale, Glen; Newton, Michael I

2012-01-01

8

Copper toxicity to the fresh water snail, Lymnaea luteola  

SciTech Connect

Haemocyanins are found in arthropoda and mollusca and show a copper content characteristic for each phylum. Heavy metal accumulation by mollusks is widely reported. Approximately one third of the enzymes either required addition of a metal ion as a cofactor in order to exhibit maximum activity or contained a slightly bound metal ion which appeared to be involved in the catalytic process. Copper is the only metal which has been detected in significant amounts in amino oxidase. The present study is designed to evaluate the influence of such copper, which is of such common occurrence in biological material, on some of the lipolytic enzymes of fresh water pulmonate snail, Lymnaea luteola when added to ambient medium. The present study also highlights the possible detoxification mechanism prevailing in this fresh water mollusk.

Reddy, N.M.; Rao, P.V.

1987-07-01

9

The effect of isolation on reproduction and growth of Pseudosuccinea columella (Pulmonata: Lymnaeidae): a snail-conditioned water experiment.  

PubMed

A snail-conditioned water experiment was conducted in Pseudosuccinea columella to test the possible role of a chemical interaction between snails on the diminished growth and fecundity rates found for snails raised in pairs compared to those raised in complete isolation. The results permit to discard the hypothesis of an inhibition of growth and reproduction between snails due to factors released into the water. PMID:12386712

Gutiérrez, Alfredo; Yong, Mary; Wong, Lin; Sánchez, Jorge

2002-09-01

10

Supercharged Snails for Stream Ecology & Water-Quality Studies  

ERIC Educational Resources Information Center

Gill-breathing freshwater snails (Family "Pleuroceridae") are ecologically important, abundant in many streams in the United States, and easy to collect and maintain under classroom conditions. These snails can be used in classroom tests to demonstrate effects of pollutants on aquatic organisms. In more advanced classes, students can cage the…

Stewart, Arthur J.; Ryon, Michael G.

2003-01-01

11

Surface Water  

NSDL National Science Digital Library

This is the USGS Water Science for School's page and the topic is surface water. Explained are surface water use, importance, rivers and streams. Also answers the questions of what is runoff, how is the flow of a stream measured, how does stream height relate to flow and much, much more.

12

Floating of mud snails Hydrobia ulvae in tidal waters of the Wadden Sea, and its implications in distribution patterns  

Microsoft Academic Search

Juvenile mud snailsHydrobia ulvae disperse by floating at the water surface in summer. The routes of dispersal are determined by the hydrography of the specific\\u000a area and can be successfully predicted by a hydrographic model. Along these routes, juveniles may aggregate in temporary “satellite”\\u000a sites. Turnover of organisms was high at these sites. On average, an individual only stayed for

W. Armonies; D. Hartke

1995-01-01

13

Wet Adhesion and Adhesive Locomotion of Snails on AntiAdhesive Non-Wetting Surfaces  

Microsoft Academic Search

Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However,

Neil J. Shirtcliffe; Glen McHale; Michael I. Newton

2012-01-01

14

Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate  

SciTech Connect

Day-to-day and within-day (diel) variations in {delta}D and {delta}{sup 18}O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in {sup 18}O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in {sup 18}O by ca. 1-2% relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate {sup 18}O should provide a reliable indication of rainfall {sup 18}O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

Goodfriend, G.A.; Magaritz, M.; Gat, J.R. (Weizmann Institute of Science, Rehovot (Israel))

1989-12-01

15

Use of ice water and salt treatments to eliminate an exotic snail, red-rim melania Melanoides tuberculatus, from small immersible fisheries equipment  

Technology Transfer Automated Retrieval System (TEKTRAN)

Ice water and salt treatments were evaluated for disinfection of fisheries equipment contaminated with a non-indigenous tropical snail, the red-rim melania Melanoides tuberculatus. The snail can displace native snails and can transmit trematodes directly to fishes and indirectly to other animals, i...

16

Effect of water plants and non-target snails on the infectivity of Bulinus truncatus with Schistosoma haematobium.  

PubMed

The application of the water plant (Ceratophyllum demersum, Eichhornia crassipes and Lemna gibba) and/or non-target snails (Planorbis planorbis, Physa acuta and Melanoides tuberculata) gave a significant degree of reduction in the infection rate of B. truncatus subjected to S. haematobium miracidia. The data also indicated a reduction in mean total number of cercarial production/snail. However, no significant difference was detected in the prepatent period and duration of cercarial shedding of the parasite when compared with the control group. So, the results revealed that the snails exhibited a competitive ability against B. truncatus. Both survival rate and egg production of B. truncatus were greatly reduced when existed in mixed cultures with non-target snails and the magnitude of this reduction increased by increasing the number of the non-target snails. PMID:16333895

Bakry, Fayez A; Abd-el-Monem, Sayed

2005-12-01

17

Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments  

USGS Publications Warehouse

The faucet snail Bithynia tentaculata, a nonindigenous aquatic snail from Eurasia, was introduced into Lake Michigan in 1871 and has spread to the mid-Atlantic states, the Great Lakes region, Montana, and most recently, the Mississippi River. The faucet snail serves as intermediate host for several trematodes that have caused large-scale mortality among water birds, primarily in the Great Lakes region and Montana. It is important to limit the spread of the faucet snail; small fisheries equipment can serve as a method of snail distribution. Treatments with chemical disinfection, pH extremes, and heated water baths were tested to determine their effectiveness as a disinfectant for small fisheries equipment. Two treatments eliminated all test snails: (1) a 24-h exposure to Hydrothol 191 at a concentration of at least 20 mg/L and (2) a treatment with 50??C heated water for 1 min or longer. Faucet snails were highly resistant to ethanol, NaCl, formalin, Lysol, potassium permanganate, copper sulfate, Baquacil, Virkon, household bleach, and pH extremes (as low as 1 and as high as 13).

Mitchell, A.J.; Cole, R.A.

2008-01-01

18

A water snail catches a ride on STS-90 as part of Neurolab  

NASA Technical Reports Server (NTRS)

A water snail (Biomphalaria glabrata), like those that are part of the Neurolab payload on Space Shuttle Mission STS-90, is held up for inspection in the Operations and Checkout Building. The snails will fly in the Closed Equilibrated Biological Aquatic System (CEBAS) Minimodule, a middeck locker-sized fresh water habitat, designed to allow the controlled incubation of aquatic species in a self-stabilizing, artifical ecosystem for up to three weeks under space conditions. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, includes Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D.

1998-01-01

19

Accumulation and distributions of 137Cs in fresh water snail Pila ampullacea  

NASA Astrophysics Data System (ADS)

Pila ampullacea are found in tropical freshwaters of Indonesia. This snail exhibit several characteristics of ideal indicator organisms in order to understand the bioaccumulation of 137Cs . Biokinetic experiment was performaced in aquaria system and under influenced of concentration K+ in water. The result of experiment shown that Under difference K+ concentration in water, Pila ampullacea have capability to accumulated 137Cs with CF value range 8.95 to 12.52 ml.g-1. Both uptake and depuration rate were influenced by concentration of K+ in water.

Suseno, Heny

2014-10-01

20

Accumulation and distributions of {sup 137}Cs in fresh water snail Pila ampullacea  

SciTech Connect

Pila ampullacea are found in tropical freshwaters of Indonesia. This snail exhibit several characteristics of ideal indicator organisms in order to understand the bioaccumulation of {sup 137}Cs. Biokinetic experiment was performaced in aquaria system and under influenced of concentration K{sup +} in water. The result of experiment shown that Under difference K{sup +} concentration in water, Pila ampullacea have capability to accumulated {sup 137}Cs with CF value range 8.95 to 12.52 ml.g{sup ?1}. Both uptake and depuration rate were influenced by concentration of K{sup +} in water.

Suseno, Heny, E-mail: henis@batan.go.id [Marine Radioecology Group, Center for Radiation Safety Technology and Metrology - National Nuclear Energy Agency, Jl. Lebak Bulus Raya No. 49, Kotak Pos 7043 JKSKL Jakarta Selatan 12070 (Indonesia)

2014-10-24

21

INTRODUCTION Predator avoidance in aquatic snails is facilitated by surfacing and  

E-print Network

shell-crushing sunfish or crayfish (Alexander and Covich, 1991; Brown, 1991). Additionally, and central to the intensity of the predatory attack (Arshavsky et al., 1994). Pulmonate snails, such as the common pond snail more vulnerable to benthic predators such as crayfish during that time. A, presumably, sub

Grosell, Martin

22

Dry down impacts on apple snail (Pomacea paludosa) demography: Implications for wetland water management  

USGS Publications Warehouse

Florida apple snails (Pomacea paludosa Say) are prey for several wetland-dependent predators, most notably for the endangered Florida snail kite (Rostrhamus sociabilis Vieillot). Management concerns for kites have been raised regarding the impacts of wetland dry downs on snails, but little data exists to validate these concerns. We simulated drying events in experimental tanks, where we observed that snail survival patterns, regardless of hydrology, were driven by a post-reproductive die off. In contrast to earlier reports of little to no dry down tolerance, we found that 70% of pre-reproductive adult-sized snails survived a 12-week dry down. Smaller size classes of snails exhibited significantly lower survival rates (< 50% after eight weeks dry). Field surveys showed that 77% of egg production occurs in April-June. Our hydrologic analyses of six peninsular Florida wetlands showed that most dry downs overlapped a portion of the peak snail breeding season, and 70% of dry downs were ??? 12 weeks in duration. Dry down timing can affect recruitment by truncating annual egg production and stranding juveniles. Dry down survival rates and seasonal patterns of egg cluster production helped define a range of hydrologic conditions that support robust apple snail populations, and illustrate why multiple characteristics of dry down events should be considered in developing target hydrologic regimes for wetland fauna. ?? 2008, The Society of Wetland Scientists.

Darby, P.C.; Bennetts, R.E.; Percival, H.F.

2008-01-01

23

Martian Surface Water Reservoir  

NASA Astrophysics Data System (ADS)

We present a comprehensive study of the water-related 3µm absorption using OMEGA data. We quantify the surface water reservoir using laboratory studies and reveal the distribution of the amorphous hydrated component measured by Curiosity.

Audouard, J.; Poulet, F.; Vincendon, M.; Milliken, R. E.; Jouglet, D.; Bibring, J.-P.; Gondet, B.; Langevin, Y.

2014-07-01

24

MINE DEVELOPMENT SURFACE WATER  

E-print Network

Mine Engineering Plan Surface Water Components Site Drainage Mine Site Dewatering (If covered Dewatering Open Pit Lake Drain site / Water Disposal Mine Site Runoff Dikes Seepage Underground Mine Rivers

Boisvert, Jeff

25

Use of Ice-Water and Salt Treatments to Eliminate an Exotic Snail, the Red-Rim Melania, from Small Immersible Fisheries Equipment  

Microsoft Academic Search

Ice-water and salt treatments were evaluated for disinfection of small immersible fisheries equipment contaminated with a nonindigenous tropical snail, the red-rim melania Melanoides tuberculatus. This introduced species can displace native snails and transmit trematodes directly to fish and indirectly to other animals, including humans. The red-rim melania has a well-developed operculum that protects it from desiccation and allows it to

Andrew J. Mitchell; Thomas M. Brandt

2009-01-01

26

Survival and behavior of Chinese mystery snails (Bellamya chinensis) in response to simulated water body drawdowns and extended air exposure  

USGS Publications Warehouse

Nonnative invasive mollusks degrade aquatic ecosystems and induce economic losses worldwide. Extended air exposure through water body drawdown is one management action used for control. In North America, the Chinese mystery snail (Bellamya chinensis) is an invasive aquatic snail with an expanding range, but eradication methods for this species are not well documented. We assessed the ability of B. chinensis to survive different durations of air exposure, and observed behavioral responses prior to, during, and following desiccation events. Individual B. chinensis specimens survived air exposure in a laboratory setting for > 9 weeks, and survivorship was greater among adults than juveniles. Several B. chinensis specimens responded to desiccation by sealing their opercula and/or burrowing in mud substrate. Our results indicate that drawdowns alone may not be an effective means of eliminating B. chinensis. This study lays the groundwork for future management research that may determine the effectiveness of drawdowns when combined with factors such as extreme temperatures, predation, or molluscicides.

Unstad, Kody M.; Uden, Daniel R.; Allen, Craig R.; Chaine, Noelle M.; Haak, Danielle M.; Kill, Robert A.; Pope, Kevin L.; Stephen, Bruce J.; Wong, Alec

2013-01-01

27

Survival of the faucet snail Bithynia tentaculata after chemical disinfection, pH extremes, and heated water bath treatments  

Technology Transfer Automated Retrieval System (TEKTRAN)

Bithynia tentaculata, the faucet snail, is a non indigenous aquatic snail from Eurasia that was introduced into Lake Michigan in 1871. The snail’s distribution in the United States has expanded to the mid-Atlantic states and the drainage basin of the Great Lakes and most recently to the Mississippi...

28

Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?  

PubMed

Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important. PMID:24641838

Oliver, Ana López-Serrano; Croteau, Marie-Noële; Stoiber, Tasha L; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R; Luoma, Samuel N

2014-06-01

29

Causes of Late Pleistocene water level change in Lake Victoria, Equatorial East Africa, derived from clumped isotopes of land snails and fresh water mollusks. (Invited)  

NASA Astrophysics Data System (ADS)

Carbonate clumped isotope thermometry is based on the dependence of 13C-18O bond abundance in the carbonate lattice (measured as ?47) on the carbonate formation temperature. Most marine and freshwater biogenic carbonates are found to be in agreement with the clumped isotopes - temperature calibration. Clumped isotope thermometry is particularly useful in terrestrial environments where the interpretation of carbonate ?18O is limited due to difficulty in estimating the paleo-water isotopic composition. Clumped isotope-derived temperatures from land snails are generally higher than the ambient environmental temperatures, but show no evidence for disequilibrium. We attribute these higher body temperatures to snail eco-physiological adaptations through shell color, morphology, and behavior. We use the clumped isotope-derived temperatures in combination with shell ?18O to calculate snail body water ?18O composition. This parameter is interpreted as a paleo-hydrological indicator that reflects the isotopic composition of local precipitation modified by local evaporation. Rusinga and Mfangano Islands in Lake Victoria provide a unique opportunity to compare extant species of modern and fossil freshwater mollusks and land snails from the same location to examine lake paleo-hydrology. This location is particularly interesting as Lake Victoria itself is the main source of rain-water in the region such that the isotopic composition of land snail body water can be related back to the source waters. We combine clumped isotope and oxygen isotope measurements of both freshwater mollusks and land snails to examine the water balance of the lake, testing hypotheses about the mechanism of a significant rise in lake level in Lake Victoria ~35 - 40 ka BP. Outcrops of paleo-beach deposits ~18 m above the modern day lake level indicate high water stands at ~35-40 ka BP. Based on water balance models for Lake Victoria, an increase in lake level of this magnitude could be driven by local mean annual precipitation that is significantly greater than modern. However, this is inconsistent with regional climate reconstructions. This suggests that either lake level was controlled by non-climatic factors, or that local climate in the Lake Victoria basin was different than regional patterns of climate across eastern Africa. We use oxygen and clumped isotopes of modern and fossil shells (Corbicula sp., Melanoides sp. and Bellamya unicolor) from this 18 m beach outcrop on Mfangano Island to (1) compare with modern lake water ?18O values and (2) calculate paleo-water compositions. We combine these results with calculated snail body water ?18O composition (using oxygen and clumped isotopes) of land snails (Limicoloria cf. martensiana) from Rusinga and Mfangano Islands, to study hydrological changes of Lake Victoria. We use these data to evaluate the relative importance of climate change and tectonics as mechanisms for the Late Pleistocene expansion of Lake Victoria.

Zaarur, S.; Affek, H. P.; Tryon, C.; Peppe, D. J.; Faith, J.

2013-12-01

30

Snails home  

NASA Astrophysics Data System (ADS)

Many gardeners and horticulturalists seek non-chemical methods to control populations of snails. It has frequently been reported that snails that are marked and removed from a garden are later found in the garden again. This phenomenon is often cited as evidence for a homing instinct. We report a systematic study of the snail population in a small suburban garden, in which large numbers of snails were marked and removed over a period of about 6 months. While many returned, inferring a homing instinct from this evidence requires statistical modelling. Monte Carlo techniques demonstrate that movements of snails are better explained by drift under the influence of a homing instinct than by random diffusion. Maximum likelihood techniques infer the existence of two groups of snails in the garden: members of a larger population that show little affinity to the garden itself, and core members of a local garden population that regularly return to their home if removed. The data are strongly suggestive of a homing instinct, but also reveal that snail-throwing can work as a pest management strategy.

Dunstan, D. J.; Hodgson, D. J.

2014-06-01

31

Snail Shell  

USGS Multimedia Gallery

Plant seems to be a Heliotropum sp. Huge snail shells litter the wetland around Asuncion Bay. Near 25°15’49’’S, 57°37’47’’W. La plantita detrás del caracol parece ser un Heliotropium sp., Boraginaceae....

32

Developmental toxicity, acute toxicity and mutagenicity testing in freshwater snails Biomphalaria glabrata (Mollusca: Gastropoda) exposed to chromium and water samples.  

PubMed

A protocol combining acute toxicity, developmental toxicity and mutagenicity analysis in freshwater snail Biomphalaria glabrata for application in ecotoxicological studies is described. For acute toxicity testing, LC50 and EC50 values were determined; dominant lethal mutations induction was the endpoint for mutagenicity analysis. Reference toxicant potassium dichromate (K2Cr2O7) was used to characterize B. glabrata sensitivity for toxicity and cyclophosphamide to mutagenicity testing purposes. Compared to other relevant freshwater species, B. glabrata showed high sensitivity: the lowest EC50 value was obtained with embryos at veliger stage (5.76mg/L). To assess the model applicability for environmental studies, influent and effluent water samples from a wastewater treatment plant were evaluated. Gastropod sensitivity was assessed in comparison to the standardized bioassay with Daphnia similis exposed to the same water samples. Sampling sites identified as toxic to daphnids were also detected by snails, showing a qualitatively similar sensitivity suggesting that B. glabrata is a suitable test species for freshwater monitoring. Holding procedures and protocols implemented for toxicity and developmental bioassays showed to be in compliance with international standards for intra-laboratory precision. Thereby, we are proposing this system for application in ecotoxicological studies. PMID:25259848

Tallarico, Lenita de Freitas; Borrely, Sueli Ivone; Hamada, Natália; Grazeffe, Vanessa Siqueira; Ohlweiler, Fernanda Pires; Okazaki, Kayo; Granatelli, Amanda Tosatte; Pereira, Ivana Wuo; Pereira, Carlos Alberto de Bragança; Nakano, Eliana

2014-12-01

33

Bactericidal action of a glycoprotein from the body surface mucus of giant African snail.  

PubMed

1. Bactericidal action of a glycoprotein, Achacin, purified from the giant African snail, Achatina fulica Férussac, has been studied. 2. Achacin kills both gram-positive and gram-negative bacteria, but only in their growing states. 3. Achacin does not have any bacteriolytic activity. 4. The strain which has no cell wall is a little more sensitive than the native strain and the cell membrane-damaged strain. 5. Achacin was observed on the cytoplasmic membrane and on the cell wall of treated Escherichia coli by immunoelectron microscopy. 6. Achacin attacks the cytoplasmic membrane of the cell. PMID:1379901

Otsuka-Fuchino, H; Watanabe, Y; Hirakawa, C; Tamiya, T; Matsumoto, J J; Tsuchiya, T

1992-04-01

34

Surface Water and Groundwater  

NSDL National Science Digital Library

This site contains 25 questions on the topic of surface water and groundwater, which covers rivers and aquifers. This is part of the Principles of Earth Science course at the University of South Dakota. Users submit their answers and are provided immediate verification.

Timothy Heaton

35

SURFACE WATER EMAP PROJECT  

EPA Science Inventory

The surface water component of the EPA Environmental Monitoring and Assessment Program (EMAP) Western Pilot is a five-year effort to assess the ecological condition of rivers and streams across 12 states in the western United States. EMAP is designed to monitor indicators of poll...

36

The Effect of Simulating Different Intermediate Host Snail Species on the Link between Water Temperature and Schistosomiasis Risk  

PubMed Central

Introduction A number of studies have attempted to predict the effects of climate change on schistosomiasis risk. The importance of considering different species of intermediate host snails separately has never previously been explored. Methods An agent-based model of water temperature and Biomphalaria pfeifferi population dynamics and Schistosoma mansoni transmission was parameterised to two additional species of snail: B. glabrata and B. alexandrina. Results Simulated B. alexandrina populations had lower minimum and maximum temperatures for survival than B. pfeifferi populations (12.5–29.5°C vs. 14.0–31.5°C). B. glabrata populations survived over a smaller range of temperatures than either B. pfeifferi or B. alexandrina (17.0°C–29.5°C). Infection risk peaked at 16.5°C, 25.0°C and 19.0°C respectively when B. pfeifferi, B. glabrata and B. alexandrina were simulated. For all species, infection risk increased sharply once a minimum temperature was reached. Conclusions The results from all three species suggest that infection risk may increase dramatically with small increases in temperature in areas at or near the currents limits of schistosome transmission. The effect of small increases in temperature in areas where schistosomiasis is currently found will depend both on current temperatures and on the species of snail acting as intermediate host(s) in the area. In most areas where B. pfeifferi is the host, infection risk is likely to decrease. In cooler areas where B. glabrata is the host, infection risk may increase slightly. In cooler areas where B. alexandrina is the host, infection risk may more than double with only 2°C increase in temperature. Our results show that it is crucial to consider the species of intermediate host when attempting to predict the effects of climate change on schistosomiasis. PMID:24988377

McCreesh, Nicky; Booth, Mark

2014-01-01

37

[The water-cress pools in connection with cases of human fasciolasis in Limousin, France. Experimental studies of Trematode snails and their biological control (author's transl)].  

PubMed

Experimental studies on 16 water-cress pools with cases of human fasciolasis in Limousin were undertaken. Two species of snails, Lymnaea glabra and L. truncatula are here trematode hosts. L. glabra alone lives in 5 pools. The introduction of Zonitoides nitidus -- predatory snail -- without vegetation modification produces a progressive elimination of Lymnaea in 3 years. The author insists on the use of determine the trematode host-aptitude of L. glabra and its limits when the two species -- L. glabra and L. truncatula -- live in the same habitats. PMID:754620

Rondelaud, D

1978-01-01

38

Impact of certain plants and synthetic molluscicides on some fresh water snails and fish.  

PubMed

The LC50 (78, 85 ppm) and LC90 (88, 135 ppm) of Anagalis arvensis and Calendula micrantha respectively against Biomphalaria alexandrina were higher than those of the non-target snails, Physa acuta, Planorbis planorbis, Helisoma duryi and Melanoides tuberculata. In contrast, the LC50 of Niclosamide (0.11 ppm) and Copper sulphate (CuSO4) (0.42 ppm) against B. alexandrina were lower than those of the non-target snails. The mortalities percentage among non-target snails ranged between 0.0 & 20% when sublethal concentrations of CuSO4 against B. alexandrina mixed with those of C. micrantha and between 0.0 & 40% when mixed with A. arvensis. Mortalities ranged between 0.0 & 50% when Niclosamide was mixed with each of A. arvensis and C. micrantha. A. arvensis induced 100% mortality on Oreochromis niloticus after 48 hrs exposure and after 24 hrs for Gambusia affinis. C. micrantha was non-toxic to the fish. The survival rate of O. niloticus and G. affinis after 48 hrs exposure to 0.11 ppm of Niclosamide were 83.3% & 100% respectively. These rates were 91.7% & 93.3% respectively when each of the two fish species was exposed to 0.42 ppm of CuSO4. Mixture of sub-lethal concentrations of A. arvensis against B. alexandrina and those of Niclosamide or CuSO4 at ratios 10:40 & 25:25 induced 66.6% mortalities on O. niloticus and 83.3% at 40:10. These mixtures caused 100% mortalities on G. affinis at all ratios. A. arvensis CuSO4 mixtures at 10:40 induced 83.3% & 40% mortalities on O. niloticus and G. affinis respectively and 100% mortalities on both fish species at ratios 25:25 & 40:10. A mixture of sub-lethal concentrations of C. micrantha against B. alexandrina and of Niclosamide or CuSO4 caused mortalities of O. niloticus between 0.0 & 33.3% and between 5% & 35% of G. affinis. The residue of Cu in O. niloticus were 4.69, 19.06 & 25.37 mg/1kgm fish after 24, 48 & 72 hrs exposure to LC0 of CuSO4 against B. alexandrina respectively. PMID:16333905

Mosta-Fa, B B; el-Deeb, Fatma A; Ismail, Nahid M; el-Said, K M

2005-12-01

39

Impact of changing water levels and weather on Oncomelania hupensis hupensis populations, the snail host of Schistosoma japonicum, downstream of the Three Gorges Dam.  

PubMed

Increasing evidence indicates that dams impact riverine ecosystems and human diseases. Poyang Lake, one of the largest schistosomiasis endemic environments in China, will change due to the construction of the Yangtze River Three Gorges Dam. We assess changes in Oncomelania hupensis hupensis, the snail host for Schistosoma japonicum, in response to changing water levels and weather from 1998 to 2002. In the 5 years following the major flooding of Poyang Lake in 1998, seasonal water levels have gradually decreased, concomitant with decreases in mean and variance of fall snail densities. Nonlinear relationships suggest that the highest spring density is associated with current, 2-, and 3-month prior temperatures of 18 degrees, 9.1 degrees, and 5.8 degrees C, while the highest fall density is associated with 2- and 3-month prior water levels of 17 and 18 m, respectively. This suggests that lower, more stable water levels downstream of the dam may result in a reduction in mean fall densities and their variance. However, additional data are needed to determine whether snail populations that are typically destroyed by seasonal floods may live longer in more stable environments created by the dam. PMID:18787918

Seto, Edmund Y W; Wu, Weiping; Liu, Hong-Yun; Chen, Hong-Gen; Hubbard, Alan; Holt, Ashley; Davis, George M

2008-06-01

40

Sustaining dry surfaces under water  

E-print Network

Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

Paul R. Jones; Xiuqing Hao; Eduardo R. Cruz-Chu; Konrad Rykaczewski; Krishanu Nandy; Thomas M. Schutzius; Kripa K. Varanasi; Constantine M. Megaridis; Jens H. Walther; Petros Koumoutsakos; Horacio D. Espinosa; Neelesh A. Patankar

2014-09-29

41

Haemolymph Components of Infected & None Infected Lymnaea snails with Xiphidiocercariae  

PubMed Central

Background In this study the haemolymph components of infected and none infected Lymnaea gedrosiana with xiphidiocercaria larvae was compared. Methods Five hundred Fifty Lymnaea snails were collected from Ilam and Mazandaran provinces, Iran, during 2008–2009. The snails were transported to the lab at Tehran University of Medical Sciences and their cercarial sheddings were studied. Haemolmyphs of snails were extracted and cells were counted using haemocytometer and cell-surface carbohydrate were recognized by conjugated lectin (Lentil). Haemolymph protein concentrations were measured by Bradford protein assay method and soluble protein compositions were determined on sodium dodecyl sulphate polyacrilamide gel electrophoresis (SDS-PAGE). Results From the 550 examined Lymnaea snails for cercariae, 27 snails were infected with xiphidiocercariae. Mean of haemolymph cells (haemocyte) number were obtained 93480±2.43 (cells/ml) for none infected snails (25 snail) and 124560±2800 (cells/ml) for infected snails (25 snail). Mannose carbohydrate was recognized on haemocyte of none infected and infected snails. Mean of protein concentration of haemolymph plasma was obtained as 1354±160 µg/ml (1.4 mg/ml) for none infected snails (25 snails) and 1802±138 µg/ml (1.8 mg/ml) for infected snail (25 snails). Comparing to none infected snails, the SDS-PAGE results of haemolymph plasma of infected snails, showed an extra protein band (70 kDa). The results showed a significant difference between the amounts and the kinds of proteins in haemolymph of infected and none infected snails. Conclusion This information might be useful to understand of parasite detection, adhesion, engulfment and antigen agglutination by snail. PMID:22347279

Saboor Yaraghi, AA; Farahnak, A; Eshraghian, MR

2011-01-01

42

Octopamine boosts snail locomotion: behavioural and cellular analysis  

Microsoft Academic Search

We measured the reduction in locomotion of unrestrained pond snails, Lymnaea stagnalis, subsequent to transdermal application of two selective octopamine antagonists, epinastine and phentolamine. After 3 h in fresh standard snail water following treatment with 4 mM epinastine or 3.5 mM phentolamine, the snails’ speed was reduced to 25 and 56% of the controls (P P = 0.02, respectively). The snails’ speed decreased as the drug

Jennifer C. Ormshaw; Christopher J. H. Elliott

2006-01-01

43

CONNECTICUT SURFACE WATER QUALITY CLASSIFICATIONS  

EPA Science Inventory

This is a 1:24,000-scale datalayer of Surface Water Quality Classifications for Connecticut. It is comprised of two 0Shapefiles with line and polygon features. Both Shapefiles must be used together with the Hydrography datalayer. The polygon Shapefile includes surface water qual...

44

Surface Water Quality Standards  

E-print Network

revise the standards. For contact recreation use, Davenport said TCEQ is reviewing the range of applicable recreational cate- gories, the way in which these uses are assigned, and the numerical criteria that are appropriate to effec- tively protect... of the water quali- ty standards, the overall process is expected to contin- ue into 2009.? For some, Texas? standards for contact recreation are not appropriate for many water bodies on the impaired list. Aaron Wendt, Texas State Soil and Water...

Wythe, Kathy

2007-01-01

45

Water in Biomaterials Surface Science  

NASA Astrophysics Data System (ADS)

Presents the latest ideas and research on molecular hydration and hydration forces, and how they determine the interaction between water molecules and biomaterials surfaces. Consisting of three sections; theoretical aspects, analytical aspects and practical applications, it begins by placing the properties of water in a proper molecular perspective. The analytical aspects and practical applications offer a complete overview with new insights into the biomaterials/water interface by: - Discussing the latest approaches to the characterisation of water at interfaces and surface modification of biomaterials - Examining the problems related to the understanding and characterisation of interfacial water - Providing new perspectives of the interfacial interactions between materials and the physiological aqueous environment An invaluable resource for researchers in biomaterials surface science and the biotechnology industry.

Morra, M.

2001-10-01

46

Foraging and refuge use by a pond snail: Effects of physiological state, predators, and resources  

NASA Astrophysics Data System (ADS)

The costs and benefits of anti-predator behavioral responses should be functions of the actual risk of predation, the availability of the prey's resources, and the physiological state of the prey. For example, a food-stressed individual risks starvation when hiding from predators, while a well-fed organism can better afford to hide (and pay the cost of not foraging). Similarly, the benefits of resource acquisition are probably highest for the prey in the poorest state, while there may be diminishing returns for prey nearing satiation. Empirical studies of state-dependent behavior are only beginning, however, and few studies have investigated interactions between all three potentially important factors. Here I present the results of a laboratory experiment where I manipulated the physiological state of pond snails ( Physa gyrina), the abundance of algal resources, and predation cues ( Belostoma flumineum waterbugs consuming snails) in a full factorial design to assess their direct effects on snail behavior and indirect effects on algal biomass. On average, snails foraged more when resources were abundant, and when predators were absent. Snails also foraged more when previously exposed to physiological stress. Snails spent more time at the water's surface (a refuging behavior) in the presence of predation cues on average, but predation, resource levels, and prey state had interactive effects on refuge use. There was a consistent positive trait-mediated indirect effect of predators on algal biomass, across all resource levels and prey states.

Wojdak, Jeremy M.

2009-09-01

47

Production of apple snail for space diet  

NASA Astrophysics Data System (ADS)

For food production in space at recycling bio-elements under closed environment, appropriate organisms should be chosen to drive the closed materials recycle loop. We propose a combination of green algae, photosynthetic protozoa, and aquatic plants such as Wolffia spp., for the primary producer fixing solar energy to chemical form in biomass, and apple snail, Pomacea bridgesii, which converts this biomass to animal meat. Because of high proliferation rate of green algae or protozoa compared to higher plants, and direct conversion of them to apple snail, the efficiency of food production in this combination is high, in terms of energy usage, space for rearing, and yield of edible biomass. Furthermore, green algae and apple snail can form a closed ecological system with exchanging bio-elements between two member, i.e. excreta of snail turn to fertilizer of algae, and grown algae become feed for snail. Since apple snail stays in water or on wet substrate, control of rearing is easy to make. Mass production technology of apple snail has been well established to utilize it as human food. Nutrients of apple snail are also listed in the standard tables of food composition in Japan. Nutrients for 100 g of apple snail canned in brine are energy 340 kJ, protein 16.5 g, lipid 1.0 g, cholesterol 240 mg, carbohydrate 0.8 g, Ca 400 mg, Fe 3.9 mg, Zn 1.5 mg. It is rich in minerals, especially Ca and Fe. Vitamin contents are quite low, but K 0.005 mg, B2 0.09 mg, B12 0.0006 mg, folate 0.001 mg, and E 0.6 mg. The amino acid score of apple snail could not be found in literature. Overall, apple snail provides rich protein and animal lipid such as cholesterol. It could be a good source of minerals. However, it does not give enough vitamin D and B12 , which are supposed to be supplemented by animal origin foods. In terms of acceptance in food culture, escargot is a gourmet menu in French dishes, and six to ten snail, roughly 50 g, are served for one person. Apple snail reaches to 30 g of body weight within two or three month from its egg. Several hundreds of egg are laid by one snail. It start egg laying after three months from hatching. In order to harvest 50 g for every day's meal, 3 m2 is required for rearing space. Eating apple snail and establishing its rearing system might save the food crisis on Earth.

Yamashita, Masamichi; Motoki, Shigeru; Space Agriculture Task Force, J.; Katayama, Naomi

48

Is the interspecific variation of body size of land snails correlated with rainfall in Israel and Palestine?  

NASA Astrophysics Data System (ADS)

The hypothesis that body size of land snail species increases with aridity in Israel and Palestine because large snails lose relatively less water due to their lower surface to volume ratio has been investigated. Data on rainfall amplitudes of 84 land snail species in Israel and Palestine and on their body sizes were used to test for interspecific correlations between body size and rainfall. Four methods, means of body sizes in rainfall categories, the midpoint method, the across-species method, and a phylogenetically controlled analysis (CAIC) showed that there is no significant correlation between body size of land snail species and their rainfall amplitude in Israel and Palestine. The lack of an interspecific correlation between body size and rainfall amplitude may be the result of conflicting selective forces on body size.

Hausdorf, Bernhard

2006-11-01

49

Role of water and food in the entry of certain radionuclides into the organism of the pond snail  

Microsoft Academic Search

The aim of the present paper is to study the role of Elodea (Elodea canadensis Rich.) and the aquatic medium in accumulation of strontium-90, cesium-137, cerium-144, and ruthenium-106 by a freshwater aquatic gastropod, the pond snail Limnaea stagnalis L., under laboratory conditions. The mollusks were collected for investigation in boggy lakes in the Lithuanian SSR near Kurshkii Bay. Taking the

D. P. Marchyulenene; G. G. Polikarpov

1976-01-01

50

Apple Snails (Ampullariidae)  

NSDL National Science Digital Library

This web site provides information on apple snails (family Ampullariidae), the largest living freshwater snails on earth, often kept as aquarium pets because of their attractive appearance and size. Topics include the care of apple snails, their anatomy, species and genera, and information on snail pests, embryology, and genetics. There is also a frequently-asked-questions feature, photos, links to web sites and literature, and an online discussion forum.

Stijn A. I. Ghesquiere

51

Regulation of laboratory populations of snails (Biomphalaria and Bulinus spp.) by river prawns, Macrobrachium spp. (Decapoda, Palaemonidae): implications for control of schistosomiasis  

PubMed Central

Human schistosomiasis is a common parasitic disease endemic in many tropical and subtropical countries. One barrier to achieving long-term control of this disease has been re-infection of treated patients when they swim, bathe, or wade in surface fresh water infested with snails that harbor and release larval parasites. Because some snail species are obligate intermediate hosts of schistosome parasites, removing snails may reduce parasitic larvae in the water, reducing re-infection risk. Here, we evaluate the potential for snail control by predatory freshwater prawns, Macrobrachium rosenbergii and M. vollenhovenii, native to Asia and Africa, respectively. Both prawn species are high value, protein-rich human food commodities, suggesting their cultivation may be beneficial in resource-poor settings where few other disease control options exist. In a series of predation trials in laboratory aquaria, we found both species to be voracious predators of schistosome-susceptible snails, hatchlings, and eggs, even in the presence of alternative food, with sustained average consumption rates of 12% of their body weight per day. Prawns showed a weak preference for Bulinus truncatus over Biomphalaria glabrata snails. Consumption rates were highly predictable based on the ratio of prawn: snail body mass, suggesting satiation-limited predation. Even the smallest prawns tested (0.5–2g) caused snail recruitment failure, despite high snail fecundity. With the World Health Organization turning attention toward schistosomiasis elimination, native prawn cultivation may be a viable snail control strategy that offers a win-win for public health and economic development. PMID:24388955

Lafferty, Kevin D.; Kuris, Armand M.

2014-01-01

52

Regulation of laboratory populations of snails (Biomphalaria and Bulinus spp.) by river prawns, Macrobrachium spp. (Decapoda, Palaemonidae): implications for control of schistosomiasis.  

PubMed

Human schistosomiasis is a common parasitic disease endemic in many tropical and subtropical countries. One barrier to achieving long-term control of this disease has been re-infection of treated patients when they swim, bathe, or wade in surface fresh water infested with snails that harbor and release larval parasites. Because some snail species are obligate intermediate hosts of schistosome parasites, removing snails may reduce parasitic larvae in the water, reducing re-infection risk. Here, we evaluate the potential for snail control by predatory freshwater prawns, Macrobrachium rosenbergii and M. vollenhovenii, native to Asia and Africa, respectively. Both prawn species are high value, protein-rich human food commodities, suggesting their cultivation may be beneficial in resource-poor settings where few other disease control options exist. In a series of predation trials in laboratory aquaria, we found both species to be voracious predators of schistosome-susceptible snails, hatchlings, and eggs, even in the presence of alternative food, with sustained average consumption rates of 12% of their body weight per day. Prawns showed a weak preference for Bulinus truncatus over Biomphalaria glabrata snails. Consumption rates were highly predictable based on the ratio of prawn: snail body mass, suggesting satiation-limited predation. Even the smallest prawns tested (0.5-2g) caused snail recruitment failure, despite high snail fecundity. With the World Health Organization turning attention toward schistosomiasis elimination, native prawn cultivation may be a viable snail control strategy that offers a win-win for public health and economic development. PMID:24388955

Sokolow, Susanne H; Lafferty, Kevin D; Kuris, Armand M

2014-04-01

53

Groundwater and surface water pollution  

SciTech Connect

This book contains almost all the technical know-how that is required to clean up the water supply. It provides a survey of up-to-date technologies for remediation, as well as a step-by-step guide to pollution assessment for both ground and surface waters. In addition to focusing on causes, effects, and remedies, the book stresses reuse, recycling, and recovery of resources. The authors suggest that through total recycling wastes can become resources.

Chae, Y.S.; Hamidi, A. [eds.

2000-07-01

54

Snails and trematode infection after Indian Ocean tsunami in Phang-Nga Province, southern Thailand.  

PubMed

The tsunami and non-tsunami affected areas of Takua Pa District, Phang-Nga Province were investigated for fresh- and brackish-water snails that transmit human parasitic diseases during 2006 and 2007. Among 46 snail species found, 17 species of 8 families were freshwater snails, 28 species of another 7 families were brackish-water snails, and 1 species was a land snail. Of these species, 11 freshwater snails, 4 brackish-water snails and 1 land snail were of medical importance. The fresh-water snails were Pomacea canaliculata, Pila angelica, P. gracilis, P. polita, Filopaludina (S.) martensi, F. (F.) s. polygramma, Melanoides tuberculata, Indoplanorbis exuxtus, Radix rubiginosa, Helicorbis umbilicalis, Gyraulus convexiusculus. Four brackish-water snails were Cerithidea cingulata, C. djadjarensis, C. alata, Sermyla riqueti and Achatina fulica was the land snail. I. exutus, M. tuberculata and F. (F.) s. polygramma harbored Xiphidio, Microcercus, Furocercus, Echinostome cercariae, and cercaria without eyespots or tail with hair. Three species of brackish-water snails, Cerithidia cingulata, C. djadjariensis, and C. alata presented with 6 types of trematode cercariae and rediae. Knowledge of medically important snails and their parasitic diseases, and prevention were given to Takua Pa people by poster, pamphlets and broadcasting through community radio. PMID:20578482

Sri-Aroon, Pusadee; Chusongsang, Phiraphol; Chusongsang, Yupa; Pornpimol, Surinthwong; Butraporn, Piyarat; Lohachit, Chantima

2010-01-01

55

Cercarial Dermatitis Transmitted by Exotic Marine Snail  

PubMed Central

Cercarial dermatitis (swimmer’s itch) is caused by the penetration of human skin by cercariae of schistosome parasites that develop in and are released from snail hosts. Cercarial dermatitis is frequently acquired in freshwater habitats, and less commonly in marine or estuarine waters. To investigate reports of a dermatitis outbreak in San Francisco Bay, California, we surveyed local snails for schistosome infections during 2005–2008. We found schistosomes only in Haminoea japonica, an Asian snail first reported in San Francisco Bay in 1999. Genetic markers place this schistosome within a large clade of avian schistosomes, but do not match any species for which there are genetic data. It is the second known schistosome species to cause dermatitis in western North American coastal waters; these species are transmitted by exotic snails. Introduction of exotic hosts can support unexpected emergence of an unknown parasite with serious medical or veterinary implications. PMID:20735918

Cohen, Andrew N.; James, David; Hui, Lucia; Hom, Albert; Loker, Eric S.

2010-01-01

56

Ground and Surface Water Concepts  

NSDL National Science Digital Library

This section of the Digital Atlas of Idaho contains an extensive collection of information about hydrology. Topics include surface water/groundwater interaction, runoff, stream gauging, hydrographs, aquifer types, groundwater movement, aquifer response to pumping, and more. The information is suitable for an upper level college audience.

John Welhan

57

Sources of Water Surface water and groundwater are present throughout  

E-print Network

for agriculture, and 3,430 million gallons for cooling at thermoelectric power plants. · Surface water providesSources of Water Surface water and groundwater are present throughout Kentucky's 39,486 square miles. Surface water occurs as rivers, streams, ponds, lakes, and wetlands. Ground- water occurs

MacAdam, Keith

58

The toxicity and physiological effects of copper on the freshwater pulmonate snail, Lymnaea stagnalis  

E-print Network

Keywords: Gastropods Lymnaea stagnalis Copper Water quality criteria Ionoregulation Acid­base balance Several recent studies have demonstrated that the freshwater pulmonate snail Lymnaea stagnalisThe toxicity and physiological effects of copper on the freshwater pulmonate snail, Lymnaea

Grosell, Martin

59

Using snails as bioindicators of heavy metal exposure at a Department of Defense facility  

SciTech Connect

Mollusks are useful bioindicators of aquatic contamination. They are easy to identify and handle, are widely distributed, and are known to accumulate heavy metals. The authors evaluated the accumulation of heavy metals in snails at points both upstream and downstream from potential contaminant sources, indigenous snails (Elimia livescens) were collected from an upstream site and placed in plastic mesh cages in 6 sites in 3 watersheds on base, upstream and downstream of 3 potential contamination sources. At each site there were 3 cages containing 12 snails each. In a parallel laboratory study snails were placed in 6 jars in 3 different treatments. One treatment contained stream water taken from the same sites where the snails were collected. The other two treatments had the same stream water spiked with 2 different concentrations of metals. The higher concentration of metals reflected the level of each metal detected in surface water downstream of one of the potentially contaminated sites. The lower metal concentration jars were spiked with metals at 1/2 the concentrations used in the higher level treatment. The animals were left in the cages and the jars for 12 weeks. After being removed from the cages and jars the snails were freeze-dried, weighed whole, then dissected into shelf and organic tissue. Tissue and shell were separately analyzed for metal content. Water and sediment samples were collected in the beginning and end of the field study and also analyzed for heavy metals. The heavy metal analysis was done on an atomic absorption spectrophotometer. Fe, Mn, Pb and Ni have been analyzed. Initial results show that there are differences in the concentrations of the metals in the three watersheds. Also, there is a higher concentration of Fe and Mn in tissue compared to shell, and higher concentration of Pb in shell compared to tissue.

Frenkel, C.; Randolph, J.C.; Henshel, D.S. [Indiana Univ., Bloomington, IN (United States). School of Public and Environmental Affairs

1995-12-31

60

Salmonella pollution of surface waters.  

PubMed Central

Surface waters in 14 selected sites were examined for the presence of salmonella using modified Moore's swabs. The sites included an upland impounding reservoir, 3 rivers and 10 streams within Lancashire and Cheshire, selected because of their accessibility to farm livestock. Salmonellas were isolated from 22 out of the 57 swabs examined representing 10 sites. The probable source of pollution was shown to be sewage or farm effluent and an examination of sites over a wider area may be expected to produce similar results. The significance of these findings is discussed in relation to the epidemiology of salmonella infections and the possible disinfection of effluent discharges. PMID:731019

Smith, P. J.; Jones, F.; Watson, D. C.

1978-01-01

61

Bleeding of pulmonate snails.  

PubMed

A technique for removing blood (haemolymph) by syringe from African land snails (Achatina spp.) is described. The method avoids the need for shell perforation or incision of soft tissues and appears to have few adverse effects on the snail. PMID:7967469

Cooper, J E

1994-07-01

62

Snail Shell Science.  

ERIC Educational Resources Information Center

Presents three inquiry-based lessons to develop the science process skills of observation, identification, and classification. Activities use whelk eggs and snail shells as the focus of the students' inquiries. Provides a list of 19 facts about whelks and snails. (MDH)

Matthews, Catherine

1992-01-01

63

Uncertainties in selected surface water quality data  

Microsoft Academic Search

Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise form natural or anthropogenic causes. Empirical quality of surface water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this

M. Rode; U. Suhr

2006-01-01

64

The in vitro transformation of the miracidium to the mother sporocyst of Schistosoma margrebowiei; changes in the parasite surface and implications for interactions with snail plasma factors.  

PubMed

The in vitro transformation of the miracidium to the mother sporocyst of Schistosoma margrebowiei was initiated by placing the miracidium in mammalian physiological saline. The transformation occurs in stages: the cilia cease beating; the ciliated plates become detached from the intercellular ridges and underlying muscle layers; the intercellular ridges spread over the body surface eventually forming a new tegument; the sporocyst changes from an ovoid to a tubular shape in about 48 h at room temperature. The surfaces of the miracidium, sporocyst and cercaria of S. margrebowiei display stage-specific carbohydrates on their surfaces as indicated by lectin staining. Ricin120 stains the cilia alone of the miracidium whereas peanut agglutinin stains the larval surface except for the cilia. The intercellular ridges of the miracidium stain with concanavalin A and wheat germ agglutinin, and these lectins stain the entire surface of the mature mother sporocyst. The cercaria is the only larval stage which stains positively with asparagus pea lectin. Bulinus nasutus is incompatible with Schistosoma margrebowiei; the haemolymph of this snail contains an agglutinin which agglutinates a wide variety of mammalian erythrocytes including those of human ABO blood groups. The haemagglutinin titre of B. nasutus plasma is reduced after incubation with miracidia of S. margrebowiei indicating that the agglutinin is absorbed onto the surface of this larval stage but not that of the mother sporocyst or cercaria. The possible roles of agglutinins in host-parasite interactions together with the significance of the differences in the surface carbohydrates of the larval stages are discussed. PMID:1614739

Daniel, B E; Preston, T M; Southgate, V R

1992-02-01

65

Water surface capturing by image processing  

Technology Transfer Automated Retrieval System (TEKTRAN)

An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

66

Ground water and surface water; a single resource  

USGS Publications Warehouse

The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

1998-01-01

67

TREATMENT OF SEASONAL PESTICIDES IN SURFACE WATERS  

EPA Science Inventory

Numerous pesticides were monitored in surface waters in agricultural areas. Atrazine, alachlor, metolachlor, cyanazine, metribuzin, carbofuran, linuron, and simazine were found in the influent to three water treatment plants in storm runoff following their application. Studies at...

68

Dragonfly predators influence biomass and density of pond snails.  

PubMed

Studies in lakes show that fish and crayfish predators play an important role in determining the abundance of freshwater snails. In contrast, there are few studies of snails and their predators in shallow ponds and marshes. Ponds often lack fish and crayfish but have abundant insect populations. Here we present the results of field surveys, laboratory foraging trials, and an outdoor mesocosm experiment, testing the hypothesis that insects are important predators of pulmonate snails. In laboratory foraging trials, conducted with ten species of insects, most insect taxa consumed snails, and larval dragonflies were especially effective predators. The field surveys showed that dragonflies constitute the majority of the insect biomass in fishless ponds. More focused foraging trials evaluated the ability of the dragonflies Anax junius and Pantala hymenaea to prey upon different sizes and species of pulmonate snails (Helisoma trivolvis, Physa acuta, and Stagnicola elodes). Anax junius consumed all three species up to the maximum size tested. Pantala hymenaea consumed snails with a shell height of 3 mm and smaller, but did not kill larger snails. P. acuta were more vulnerable to predators than were H. trivolvis or S. elodes. In the mesocosm experiment, conducted with predator treatments of A. junius, P. hymenaea, and the hemipteran Belostoma flumineum, insect predators had a pronounced negative effect on snail biomass and density. A. junius and B. flumineum reduced biomass and density to a similar degree, and both reduced biomass more than did P. hymenaea. Predators did not have a strong effect on species composition. A model suggested that A. junius and P. hymenaea have the largest effects on snail biomass in the field. Given that both pulmonate snails and dragonfly nymphs are widespread and abundant in marshes and ponds, snail assemblages in these water bodies are likely regulated in large part by odonate predation. PMID:17457617

Turner, Andrew M; Chislock, Michael F

2007-08-01

69

USGS Surface Water Information: Flood Information  

NSDL National Science Digital Library

This site from the USGS Office of Surface Water provides access to many resources and data sets about current and past flooding events in the United States. There are links to maps showing current water conditions, 28 day National Weather Service forecasts, Water Science Centers in the various states, as well as national and local flooding resources. There are also links to other parts of the USGS Surface Water Information site which host a variety of data and information resources.

USGS Office of Surface Water

70

Ground Water and Surface Water- A Single Resource  

NSDL National Science Digital Library

As concerns over water resources and the environment grow, the importance of considering ground water and surface water as a single resource has become increasingly evident. The natural processes of groundwater-surface water interaction and human influences on this interaction are presented here, touching on natural ground-surface water interactions as part of the hydrologic cycle, chemical interactions, and the influences of different types of terrain upon these interactions. A discussion of human influences includes agricultural activity, urban development, modifications to drainages, and changes in the atmosphere.

Thomas Winter

1998-01-01

71

Octopamine boosts snail locomotion: behavioural and cellular analysis.  

PubMed

We measured the reduction in locomotion of unrestrained pond snails, Lymnaea stagnalis, subsequent to transdermal application of two selective octopamine antagonists, epinastine and phentolamine. After 3 h in fresh standard snail water following treatment with 4 mM epinastine or 3.5 mM phentolamine, the snails' speed was reduced to 25 and 56% of the controls (P < 0.001 and P = 0.02, respectively). The snails' speed decreased as the drug concentration increased. In the isolated CNS, 0.5 mM octopamine increased the firing rate of the pedal A cluster motoneurons, which innervate the cilia of the foot. In normal saline the increase was 26% and in a high magnesium/low calcium saline 22% (P < 0.05 and 0.01, respectively). We conclude that octopamine is likely to modulate snail locomotion, partially through effects on pedal motoneurons. PMID:17072577

Ormshaw, Jennifer C; Elliott, Christopher J H

2006-12-01

72

Water Oxidation on GaN Surface  

Microsoft Academic Search

Efficient solar water-splitting requires a good catalyst to oxidize water into O2 with the photo-holes. Efficient water oxidation catalysts are hard to find. The solid solution of wurtzite GaN\\/ZnO is a water-splitting photocatalyst which works in visible light, while pure GaN is a water-splitting photocatalyst which works in UV. Unlike other semiconductors, the surfaces of both materials exhibit high efficiencies

Xiao Shen; Jue Wang; Y. A. Small; P. B. Allen; M. V. Fernandez-Serra; M. S. Hybertsen; J. T. Muckerman

2010-01-01

73

Phosphorus transfer from soil to surface waters  

Microsoft Academic Search

The release of phosphate ions (PO4–P) from soils to surface waters and overland flow was examined in this study. Sand and undisturbed soil cores were ponded in beakers and the surface waters were subjected to a gentle swirling action by a paddle agitator. Slabs of soil were also placed in a flume, saturated and subjected to overland flow. A comparison

J Mulqueen; M Rodgers; P Scally

2004-01-01

74

Surface-Water Data for the Nation  

NSDL National Science Digital Library

This USGS site presents surface-water data. It includes detailed information from a number of sites around the nation. Real-time, recent, and streamflow data is included, as well as field measurements and a tutorial explaining how to perform a surface water retrieval and understand the results.

USGS

75

Uncertainty in surface water flood risk modelling  

Microsoft Academic Search

Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as `pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy

J. B. Butler; D. N. Martin; E. Roberts; R. Domuah

2009-01-01

76

Gray solitons on the surface of water.  

PubMed

The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrödinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons. PMID:24580162

Chabchoub, A; Kimmoun, O; Branger, H; Kharif, C; Hoffmann, N; Onorato, M; Akhmediev, N

2014-01-01

77

Pesticide mitigation strategies for surface water quality  

Technology Transfer Automated Retrieval System (TEKTRAN)

Pesticide residues are being increasingly detected in surface water in agricultural and urban areas. In some cases water bodies are being listed under the Clean Water Act 303(d) as impaired and Total Maximum Daily Loads are required to address the impairments in agricultural areas. Pesticides in sur...

78

Thermal susceptibility of Salmonella in the Moroccan food snail, Helix aspersa.  

PubMed

Thirty samples of 10-15 Helix aspersa food snails were examined for Salmonella by a surface rinsing method and by analysis of whole snails rinsed with 70% ethanol. Thirteen samples were positive by the rinsing method and 6 were positive by whole snail analysis, with this difference being significant (P less than 0.01). Although Salmonella contamination in H. aspersa appeared to be predominantly surface, the pathogen was also found within the snail meat. The ability of surface and subsurface Salmonella organisms to survive in cooked snails was determined in 90 samples. Thermocouple readings indicated that an internal temperature of at least 200 degrees F (93 degrees C) was reached within the snail meat during cooking by a typical recipe. This temperature was sufficient to kill both surface and subsurface Salmonella in 29 samples positive for the pathogen prior to heating. A variety of serotypes representing several somatic groups was isolated. PMID:1194178

Andrews, W H; Wilson, C R

1975-11-01

79

Modeling snail breeding in Bioregenerative Life Support System  

NASA Astrophysics Data System (ADS)

It is known that snail meat is a high quality food that is rich in protein. Hence, heliciculture or land snail farming spreads worldwide because it is a profitable business. The possibility to use the snails of Helix pomatia in Biological Life Support System (BLSS) was studied by Japanese Researches. In that study land snails were considered to be producers of animal protein. Also, snail breeding was an important part of waste processing, because snails were capable to eat the inedible plant biomass. As opposed to the agricultural snail farming, heliciculture in BLSS should be more carefully planned. The purpose of our work was to develop a model for snail breeding in BLSS that can predict mass flow rates in and out of snail facility. There are three linked parts in the model called “Stoichiometry”, “Population” and “Mass balance”, which are used in turn. Snail population is divided into 12 age groups from oviposition to one year. In the submodel “Stoichiometry” the individual snail growth and metabolism in each of 12 age groups are described with stoichiometry equations. Reactants are written on the left side of the equations, while products are written on the right side. Stoichiometry formulas of reactants and products consist of four chemical elements: C, H, O, N. The reactants are feed and oxygen, products are carbon dioxide, metabolic water, snail meat, shell, feces, slime and eggs. If formulas of substances in the stoichiometry equations are substituted with their molar masses, then stoichiometry equations are transformed to the equations of molar mass balance. To get the real mass balance of individual snail growth and metabolism one should multiply the value of each molar mass in the equations on the scale parameter, which is the ratio between mass of monthly consumed feed and molar mass of feed. Mass of monthly consumed feed and stoichiometry coefficients of formulas of meat, shell, feces, slime and eggs should be determined experimentally. An age structure and size of snail population are optimized on the base of individual growth and metabolic characteristics with the help of the second submodel "Population". In this simulation a daily amount of snail meat consumed by crewmembers is a guideline which specifies population productivity. Also, the daily amount of snail meat may have an optional value. Prescribed population characteristics are used in the third submodel "Mass balance" to equalize input and output mass flow rates of snail facility. In this submodel we add a water and ash to the organic masses of feed, meat, feces, shell and eggs. Moreover, masses of calcium carbonate and potable water are added to the left side of mass balance equations. Mass of calcium carbonate is distributed among shell, feces and eggs. Summarizing the twelve equations for each snail age, we get the mass balance equation for the snail facility. All simulations are performed by using Solver Add-In for Excel 2007.

Kovalev, Vladimir; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..

80

Surface Water Treatment Workshop Manual.  

ERIC Educational Resources Information Center

This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water

Ontario Ministry of the Environment, Toronto.

81

Modelling global fresh surface water temperature  

Microsoft Academic Search

Temperature directly determines a range of water physical properties including vapour pressure, surface tension,\\u000adensity and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong\\u000acontrol on fresh water biogeochemistry, influencing sediment concentration and transport, water quality parameters\\u000a(e.g. pH, nitrogen, phosphor, dissolved oxygen), chemical reaction rates, phytoplankton and zooplankton\\u000acomposition and the

L. P. H. van Beek; T. Eikelboom; M. T. H. van Vliet; M. F. P. Bierkens

2011-01-01

82

A Review of Surface Water Quality Models  

PubMed Central

Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

2013-01-01

83

IDENTIFYING VULNERABLE SURFACE WATER UTILITIES  

EPA Science Inventory

This study was conducted to provide a mechanism and framework with which utility managers could analyze the effects of upstream discharges on source waters. Specific components of the project included selection, implementation, and demonstration of a microcomputer-based commerci...

84

Evidence for water structuring forces between surfaces  

SciTech Connect

Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

Stanley, Christopher B [ORNL; Rau, Dr. Donald [National Institutes of Health

2011-01-01

85

Food composition and feeding habits of some fresh water fishes in various water systems at Abbassa, Egypt, with special reference to snails transmitting diseases.  

PubMed

Study of feeding habits of freshwater fishes collected from ponds at World Fish Center (ICLARM) showed that the African catfish, Clarias gariepinus and Forskal catfish, Bagras bayad had the highest proportion of full stomachs (31-58% & 44-45% respectively). In cichlid fishes, the rate of full stomachs was much lower, being 0.0-12.5% and showed higher incidence of empty stomachs that varied from 37.5% for Oreochromis niloticus to 78.3% for Sarotherodon galilaeus. Food items were analyzed by the percentage of point assessment (P%), abundance (N%) and frequency of occurrence (F%). Results of the three methods of analyses (Index of relative importance, I.R.I) emphasized the importance of plants (1214.7) as a major food resource in the stomach of Nile tilapia, O. niloticus followed by shell fragments (628.5), whereas, snail soft bodies were the main food category in the diet of hybrid tilapia O. niloticus x O. aureus (2539.3). Shell fragments (652) and snail soft bodies (296.9) were the 1st in relative importance as foods of O. aurea. In case of S. galillae, shell fragments (338) came 2nd in I.R.I. after plants (559). Present investigation shows that shell fragments were represented by 11.1% and 15.1% in the diet of African catfish, C. gariepinus by (N%) and (P%) methods, however, they came as the second food item in its diet by I.R.I (1237.3). According to F% method, both shell fragments and Crustacea were present in the diet of C. gariepinus considerable proportions each of 47.4%. Shell fragments were represented by low proportions in the diet of B. bayad 3.9, 2.1 and 22.2 by N%, P% and F% respectively. PMID:16083073

El Gamal, Abd El-Rahman A; Ismail, Nahed M M

2005-08-01

86

Surface Water Development in Texas.  

E-print Network

parts of the drain- age basins of several rivers and all of the drainage basins of other riv- ers. Far West Texas lies within the watershed of the Rio Grande. This important interstate and interna- tional stream has its headwaters in southern... an annual yield of ground water for all Texas river basins of 4.3 million acre-feet per year. By comparison, the Board shows annual use of ground water for irrigation alone to exceed 10.0 million acre-feet per year. Other uses increase the annual defi...

McNeely, John G.; Lacewell, Ronald D.

1977-01-01

87

HEALTH ASPECTS OF SURFACE WATER SUPPLIES  

EPA Science Inventory

Current EPA regulations are insufficient to prevent the waterborne transmission of disease, as waterborne outbreaks have occurred in systems which have not exceeded current regulation for coliforms and turbidity. Waterborne outbreaks reported in surface water systems provide data...

88

Subsurface And Surface Water Flow Interactions  

EPA Science Inventory

In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

89

Assessing Phosphorous Loss to Protect Surface Water  

E-print Network

in precipitation runoff. The Texas Phosphorus Index, a tool designed to assess the potential for phosphorus to move from agricultural fields to surface water, is a promising resource management method that better formulates and implements such regula- tion... to surface water. Other goals were to compare soil tests and extractable soil solution phosphorus levels in runoff, and to evaluate the Texas Phosphorus Index in better classifying field sites relative to phosphorus loss potential, which can be used...

Garcia, Raul

2005-01-01

90

Water desorption from nanostructured graphite surfaces.  

PubMed

Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule. PMID:24018989

Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

2013-12-21

91

Lichen endozoochory by snails.  

PubMed

Endozoochory plays a prominent role for the dispersal of seed plants. However, for most other plant taxa it is not known whether this mode of dispersal occurs at all. Among those other taxa, lichens as symbiotic associations of algae and fungi are peculiar as their successful dispersal requires movement of propagules that leaves the symbiosis functional. However, the potential for endozoochorous dispersal of lichen fragments has been completely overlooked. We fed sterile thalli of two foliose lichen species (Lobaria pulmonaria and Physcia adscendens) differing in habitat and air-quality requirements to nine snail species common in temperate Europe. We demonstrated morphologically that L. pulmonaria regenerated from 29.0% of all 379 fecal pellets, whereas P. adscendens regenerated from 40.9% of all 433 fecal pellets, showing that lichen fragments survived gut passage of all snail species. Moreover, molecular analysis of regenerated lichens confirmed the species identity for a subset of samples. Regeneration rates were higher for the generalist lichen species P. adscendens than for the specialist lichen species L. pulmonaria. Furthermore, lichen regeneration rates varied among snail species with higher rates after gut passage of heavier snail species. We suggest that gastropods generally grazing on lichen communities are important, but so far completely overlooked, as vectors for lichen dispersal. This opens new ecological perspectives and questions the traditional view of an entirely antagonistic relationship between gastropods and lichens. PMID:21533256

Boch, Steffen; Prati, Daniel; Werth, Silke; Rüetschi, Jörg; Fischer, Markus

2011-01-01

92

Lichen Endozoochory by Snails  

PubMed Central

Endozoochory plays a prominent role for the dispersal of seed plants. However, for most other plant taxa it is not known whether this mode of dispersal occurs at all. Among those other taxa, lichens as symbiotic associations of algae and fungi are peculiar as their successful dispersal requires movement of propagules that leaves the symbiosis functional. However, the potential for endozoochorous dispersal of lichen fragments has been completely overlooked. We fed sterile thalli of two foliose lichen species (Lobaria pulmonaria and Physcia adscendens) differing in habitat and air-quality requirements to nine snail species common in temperate Europe. We demonstrated morphologically that L. pulmonaria regenerated from 29.0% of all 379 fecal pellets, whereas P. adscendens regenerated from 40.9% of all 433 fecal pellets, showing that lichen fragments survived gut passage of all snail species. Moreover, molecular analysis of regenerated lichens confirmed the species identity for a subset of samples. Regeneration rates were higher for the generalist lichen species P. adscendens than for the specialist lichen species L. pulmonaria. Furthermore, lichen regeneration rates varied among snail species with higher rates after gut passage of heavier snail species. We suggest that gastropods generally grazing on lichen communities are important, but so far completely overlooked, as vectors for lichen dispersal. This opens new ecological perspectives and questions the traditional view of an entirely antagonistic relationship between gastropods and lichens. PMID:21533256

Boch, Steffen; Prati, Daniel; Werth, Silke; Rüetschi, Jörg; Fischer, Markus

2011-01-01

93

Small Snails, Enormous Elephants  

NSDL National Science Digital Library

This activity (located on page 2 of PDF) introduces learners to the real size of animals using nonstandard measurement. Learners use Unifix cubes and yarn lengths to measure a variety of animals (photos), from the very small like a snail to the very large like an elephant. As an extension, learners can use the cubes to create a bar graph depicting the animals' lengths.

2012-06-26

94

What's So Special about Water: Surface Tension  

NSDL National Science Digital Library

In this three-part activity, learners play a game and conduct two simple experiments to explore water and surface tension. Learners will have fun discovering how water "sticks" together. This lesson guide includes instructions for three mini activities, key vocabulary words, extension ideas, helpful hints, and resources. Educators can also use this "sticking together" activity to emphasize the importance of empathy and listening.

Sally Bowers

2008-01-01

95

Physicochemical properties of concentrated Martian surface waters  

E-print Network

Physicochemical properties of concentrated Martian surface waters Nicholas J. Tosca,1 Scott M. Mc mineral deposits in the Valles Marineris region, and the possible role of saline waters in forming recent geomorphologic features all underscore the need to understand the physical properties of highly concentrated

96

SURFACE WATER INTAKES, NEUSE RIVER WATERSHED, NC  

EPA Science Inventory

The North Carolina Department of Environment, Health, and Natural Resources, Division of Water Quality, in cooperation with the NC Center for Geographic Information and Analysis, developed the Surface Water Intakes digital data to enhance planning, siting and impact analysis in a...

97

Water drop friction on superhydrophobic surfaces.  

PubMed

To investigate water drop friction on superhydrophobic surfaces, the motion of water drops on three different superhydrophobic surfaces has been studied by allowing drops to slide down an incline and capturing their motion using high-speed video. Two surfaces were prepared using crystallization of an alkyl ketene dimer (AKD) wax, and the third surface was the leaf of a Lotus (Nelumbo Nucifera). The acceleration of the water droplets on these superhydrophobic surfaces was measured as a function of droplet size and inclination of the surface. For small capillary numbers, we propose that the energy dissipation is dominated by intermittent pinning-depinning transitions at microscopic pinning sites along the trailing contact line of the drop, while at capillary numbers exceeding a critical value, energy dissipation is dominated by circulatory flow in the vicinity of the contacting disc between the droplet and the surface. By combining the results of the droplet acceleration with a theoretical model based on energy dissipation, we have introduced a material-specific coefficient called the superhydrophobic sliding resistance, b(sh). Once determined, this parameter is sufficient for predicting the motion of water drops on superhydrophobic surfaces of a general macroscopic topography. This theory also infers the existence of an equilibrium sliding angle, ?(eq), at which the drop acceleration is zero. This angle is decreasing with the radius of the drop and is in quantitative agreement with the measured tilt angles required for a stationary drop to start sliding down an incline. PMID:23721176

Olin, Pontus; Lindström, Stefan B; Pettersson, Torbjörn; Wågberg, Lars

2013-07-23

98

Toxicity of snail attractant pellets containing eugenol with respect to abiotic factors against the vector snail Lymnaea acuminata  

Microsoft Academic Search

Every month during the year 2010–2011, the 24 to 96 h LC50 values of molluscicide eugenol, in snail attractant pellets (SAP), were determined against a snail Lymnaea acuminata, with concomitant determination of levels of temperature, pH, dissolved oxygen, carbon dioxide, and electrical conductivity in test water. On the basis of a 24 h toxicity assay, it was noted that LC50 values 2.55,

Pooja Agrahari; V. K. Singh; D. K. Singh

2012-01-01

99

TREMATODE INFECTIONS OF THE FRESHWATER SNAIL FAMILY THIARIDAE IN THE KHEK RIVER, THAILAND  

Microsoft Academic Search

The freshwater snail family Thiaridae was studied at five different locations: water sources for the Khek River, Thailand. Snail samples were collected by hand using counts per unit of time sampling method between December 2004 and October 2005. The physico-chemi- cal quality of the water changed with the seasons and affected the sampling areas during both the dry season and

Wivitchuta Dechruksa; Duangduen Krailas; Suluck Ukong; Wasin Inkapatanakul; Tunyarut Koonchornboon

100

This composite image reveals the typical habitat for the periwinkle snail which colonises the tidal splash zone of the upper rock wall, where the grey rock surface is blackened by biofilm  

E-print Network

This composite image reveals the typical habitat for the periwinkle snail which colonises the tidal Doncaster's team is investigating responses by rocky-shore periwinkle snails to the depletion is applying this concept to the slow moving ­ and thus easily examined ­ periwinkle snail Melaraphe neritoides

Anderson, Jim

101

Hierarchical contribution of river–ocean connectivity, water chemistry, hydraulics, and substrate to the distribution of diadromous snails in Puerto Rican streams  

Microsoft Academic Search

Diadromous faunas dominate most tropical coastal streams and rivers, but the factors controlling their distribution are not well understood. Our study documents abiotic variables controlling the distribution and abundance of the diadromous snail Neritina virginea (Gastropoda:Neritidae) in the Caribbean island of Puerto Rico. An intensive survey of N. virginea density and shell size, and channel substrate, velocity, and depth was

Juan F. Blanco; Frederick N. Scatena

2006-01-01

102

Variation of snail's abundance in two water bodies harboring strains of Pseudosuccinea columella resistant and susceptible to Fasciola hepatica miracidial infection, in Pinar del Río Province, Cuba.  

PubMed

The abundance of freshwater snails in two rural sites of Pinar del Río, Cuba, which harbor Pseudosuccinea columella susceptible and resistant to miracidia of Fasciola hepatica was followed for one year. Susceptible snails were found in the most anthropic site (IPA) whereas the resistant population inhabited the most preserved one (El Azufre). Only two snail species coexisted with P. columella at IPA site (Physa cubensis and Tarebia granifera) while five species were found at El Azufre, including an endemic from that province (Hemisinus cubanianus). Populations of both resistant and susceptible snails showed stable densities throughout the year, although the susceptible strain attained higher abundance. The highest densities were observed in April-May 2004 for the susceptible population whereas the resistant strain attained its highest abundance in January 2004. No record of Fossaria cubensis was made and the thiarid T. granifera occurred only at low densities. One of the sampled sites (IPA) meets all the conditions for the first report of P. columella naturally infected with larvae of F. hepatica. PMID:16410958

Gutiérrez, Alfredo; Hernandez, Dagmar F; Sánchez, Jorge

2005-11-01

103

Eye to Eye With Garden Snails  

NSDL National Science Digital Library

This Snail Unit encourages students to explore the external characteristics and behavior of snails. It effectively gets students past the "ugh, slime" reaction to recognizing individual differences in snails and challenges students to learn enough about the snail to be able to predict their behavior under a variety of conditions. Detailed observations are requested as are preparation and testing of hypotheses. This unit works very well with all levels of students and with heterogeneously grouped students. This Snail Unit consists of six lessons: (1) Introduction to a Snail (2) How do snails move? How fast is a snail's pace? (3) What and how do snails eat? (4) Are snails attracted to, or repelled by particular substances? (5) Can snails be enticed to travel faster or in a certain direction? (6) How are snails like other animals? How are they different?

BEGIN:VCARD VERSION:2.1 FN:Kathy Liu N:Liu; Kathy ORG:Access Excellence REV:2005-04-19 END:VCARD

1994-07-30

104

Droplet coalescence on water repellant surfaces.  

PubMed

We report our hydrodynamic and energy analyses of droplet coalescence on water repellent surfaces including hydrophobic, superhydrophobic and oil-infused superhydrophobic surfaces. The receding contact angle has significant effects on the contact line dynamics since the contact line dissipation was more significant during the receding mode than advancing. The contact line dynamics is modeled by the damped harmonic oscillation equation, which shows that the damping ratio and angular frequency of merged droplets decrease as the receding contact angle increases. The fast contact line relaxation and the resulting decrease in base area during coalescence were crucial to enhance the mobility of coalescing sessile droplets by releasing more surface energy with reducing dissipation loss. The superhydrophobic surface converts ?42% of the released surface energy to the kinetic energy via coalescence before the merged droplet jumps away from the surface, while oil-infused superhydrophobic and hydrophobic surfaces convert ?30% and ?22%, respectively, for the corresponding time. This work clarifies the mechanisms of the contact line relaxation and energy conversion during the droplet coalescence on water repellent surfaces, and helps develop water repellent condensers. PMID:25375970

Nam, Youngsuk; Seo, Donghyun; Lee, Choongyeop; Shin, Seungwon

2015-01-01

105

Heavy metal concentrations in the freshwater snail Biomphalaria alexandrina uninfected or infected with cercariae of Schistosoma mansoni and/or Echinostoma liei in Egypt: the potential use of this snail as a bioindicator of pollution.  

PubMed

In spite of using aquatic snails as bioindicators for water pollution, little attention has been paid to the effect of parasitism upon the concentration of heavy metals (Al, Cd, Cu, Fe, Mn, Pb and Zn) in these organisms. The present study therefore aimed to compare the concentrations of heavy metals in trematode-infected Biomphalaria alexandrina collected from Kafer Alsheikh and Menofia provinces, Egypt, with uninfected snails from the same sites, in order to assess the effect of parasitism on the use of these snails as bioindicators. The concentrations of heavy metals in the soft parts and shells of snails were measured by flame atomic absorption spectrometry. The results showed that the heavy metal profile in snails infected with Echinostoma liei was very different from that in snails infected with Schistosoma mansoni. The total concentration of heavy metals in E. liei-infected snails collected from Kafer Alsheikh or Menofia province was greater than in uninfected snails. In contrast, the total concentration of heavy metals in S. mansoni-infected snails was reduced compared with uninfected snails. In conclusion, the status of snails with respect to parasitic infection must be taken into consideration when these snails are used as bioindicators. PMID:23710821

Mostafa, O M S; Mossa, A-T H; El Einin, H M A

2014-12-01

106

Use of Bayluscide (Bayer 73) for Snail Control in Fish Ponds  

Microsoft Academic Search

Bayluscide applied to ponds on two commercial fish farms at five rates (from L1 to 13.5 kilogram per surface hectare) effectively controlled aquatic snails. Laboratory toxicity tests confirmed susceptibility of three endemic species of aquatic snail—Melanoides tuberculatus, Physella hendersoni, and Planorbella duryi—to Bayluscide. Observed 24-h concentrations lethal to 50% of snails (LC50) ranged from 0.062 to 0.085 mg\\/L, and 24-h

Ruth Francis-Floyd; James Gildea; Peggy Reed; Ruthellen Klinger

1997-01-01

107

Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought.  

PubMed

Increasing evidence indicates that pharmaceutical bioaccumulate in fish collected downstream from municipal wastewater effluent discharges. However, studies of pharmaceutical bioaccumulation by other aquatic organisms, including primary producers (e.g., periphyton) and grazers (e.g., snails), are lacking in wadeable streams. Here, we examined environmental occurrence and bioaccumulation of a range of pharmaceuticals and other contaminants of emerging concern in surface water, a common snail (Planorbid sp.) and periphyton from an effluent-dependent stream in central Texas, USA, during a historic drought, because such limited dilution and instream flows may represent worst-case exposure scenarios for aquatic life to pharmaceuticals. Water and tissue samples were liquid-liquid extracted and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization. Target analytes included 21 pharmaceuticals across multiple drug classes and 2 pharmacologically active metabolites. Several pharmaceuticals were detected at up to 4.7 ?g kg(-1) in periphyton and up to 42 ?g kg(-1) in Planorbid sp. We then identified limitations of several bioconcentration factor and bioaccumulation factor models, developed for other invertebrates, to assist interpretation of such field results. Observations from the present study suggest that waterborne exposure to pharmaceuticals may be more important than dietary exposure for snails. PMID:25261960

Du, Bowen; Haddad, Samuel P; Scott, W Casan; Chambliss, C Kevin; Brooks, Bryan W

2015-01-01

108

Baldomero Olivera: Cone Snail Peptides  

NSDL National Science Digital Library

Have you ever considered the venom of a snail? Most people think of snakes when they think of venom but overlook snails. There are, however, almost 10,000 species of venomous predatory snails according to this engaging lecture from Professor Baldomero Olivera. In his talk, Professor Olivera explores how these venoms have been used to understand the nervous system and develop new drugs. The lecture is divided into three different sections, and visitors shouldn't miss Part 2 ("How a Fish Hunting Snail Captures Its Prey"). Visitors are also welcome to download the entire lecture and the accompanying slides.

Olivera, Baldomero

109

Groundwater-Surface Water Management With Stochastic Surface Water Supplies: A Simulation Optimization Approach  

NASA Astrophysics Data System (ADS)

A new simulation optimization model for groundwater-surface water management identifies efficient strategies for meeting water demand and controlling a regional water quality problem, while accounting for varying availability of surface water supplies. Optimal values of model variables are computed for ranges of surface water availability. Expected groundwater levels are computed using a response function approach, which incorporates a probability for each hydraulic stress. Three objective functions are considered: (1) minimize need for supplemental water, (2) minimize imposed water use reductions, and (3) minimize changes from current pumping patterns. The model imposes constraints on expected groundwater levels, expected hydraulic gradients (surrogates for controlling contaminant transport), capacities of pipeline and recharge facilities, and water demand requirements. Capacity and demand constraints must be met every year for all possible surface water conditions. Application to the Santa Clara-Calleguas Basin in southern California indicates that a large quantity of supplemental water or significant pumpage reductions, particularly in the lower aquifer, may be required to control seawater intrusion with current facilities. Supplemental water would be delivered directly to users through pipelines and artificially recharged. Results also indicate that the current artificial-recharge program has been valuable and that construction of new artificial-recharge facilities might be beneficial. It should be noted that local agencies are currently developing several potential sources of supplemental water. Monte Carlo simulations yield estimates of the reliability of gradient constraints in controlling advective transport and the likelihood that water level constraints will be violated.

Reichard, Eric G.

1995-01-01

110

Surface water clarification using M. oleifera seeds  

Microsoft Academic Search

Turbid surface water was treated using a pilot scale water treatment plant comprising coagulation, flocculation, sedimentation and rapid gravity filtration, using Moringa oleifera seeds\\/alum as coagulants. Turbidity removal of M. oleifera, alum, and the mixture of both M. oleifera\\/alum were compared, and results obtained were 7.2, 4.2 and 3.2 NTU, respectively. The turbidity achieved using M. oleifera\\/alum mixture and alum

A. G. Liew; M. J. M. M. Noor; S. A. Muyibi; A. M. S. Fugara; T. A. Muhammed; S. E. Iyuke

2006-01-01

111

Recovery from acidification in European surface waters  

Microsoft Academic Search

Water quality data for 56 long-term monitoring sites in eight European countries are used to assess freshwater responses to reductions in acid deposition at a large spatial scale. In a consistent analysis of trends from 1980 onwards, the majority of surface waters (38 of 56) showed significant (p <=0.05) decreasing trends in pollution-derived sulphate. Only two sites showed a significant

C. D. Evans; J. M. Cullen; C. Alewell; J. Kopácek; A. Marchetto; F. Moldan; A. Prechtel; M. Rogora; J. Veselý; R. Wright

2001-01-01

112

The use of cold water to kill the exotic snail, red-rim melania Melanoides tuberculatus, a vector of the fish gill trematode Centrocestus formosanus, caught in dip nets and small seines  

Technology Transfer Automated Retrieval System (TEKTRAN)

A non-indigenous tropical snail, the red-rim melania Melanoides tuberculatus, has become established and is spreading in the United States. This parthenogenic snail can brood young internally, has the potential to displace native snail populations, and can transmit trematodes directly to fish and i...

113

Pollution of surface water in Europe  

PubMed Central

This paper discusses pollution of surface water in 18 European countries. For each an account is given of its physical character, population, industries, and present condition of water supplies; the legal, administrative, and technical means of controlling pollution are then described, and an outline is given of current research on the difficulties peculiar to each country. A general discussion of various aspects common to the European problem of water pollution follows; standards of quality are suggested; some difficulties likely to arise in the near future are indicated, and international collaboration, primarily by the exchange of information, is recommended to check or forestall these trends. PMID:13374532

Key, A.

1956-01-01

114

Natural Processes of Ground-Water and Surface-Water Interaction  

NSDL National Science Digital Library

This site explains the hydrologic cycle and interactions of ground water with surface water, streams, lakes, and wetlands. There are sections about chemical interactions of ground water and surface water; evolution of water chemistry in drainage basins; and interaction of ground water and surface water in different landscapes. Mountainous, riverine, coastal, glacial and dune, and karst terrain are examined.

Thomas Winter

1998-01-01

115

Global modeling of fresh surface water temperature  

NASA Astrophysics Data System (ADS)

Temperature determines a range of water physical properties, the solubility of oxygen and other gases and acts as a strong control on fresh water biogeochemistry, influencing chemical reaction rates, phytoplankton and zooplankton composition and the presence or absence of pathogens. Thus, in freshwater ecosystems the thermal regime affects the geographical distribution of aquatic species through their growth and metabolism, tolerance to parasites, diseases and pollution and life history. Compared to statistical approaches, physically-based models of surface water temperature have the advantage that they are robust in light of changes in flow regime, river morphology, radiation balance and upstream hydrology. Such models are therefore better suited for projecting the effects of global change on water temperature. Till now, physically-based models have only been applied to well-defined fresh water bodies of limited size (e.g., lakes or stream segments), where the numerous parameters can be measured or otherwise established, whereas attempts to model water temperature over larger scales has thus far been limited to regression type of models. Here, we present a first attempt to apply a physically-based model of global fresh surface water temperature. The model adds a surface water energy balance to river discharge modelled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by short and long-wave radiation and sensible and latent heat fluxes. Also included are ice-formation and its effect on heat storage and river hydraulics. We used the coupled surface water and energy balance model to simulate global fresh surface water temperature at daily time steps on a 0.5x0.5 degree grid for the period 1970-2000. Meteorological forcing was obtained from the CRU data set, downscaled to daily values with ECMWF ERA40 re-analysis data. We compared our simulation results with daily temperature data from rivers and lakes (USGS, limited to the USA) and compared mean monthly temperatures with those recorded in the GEMS data set. Results show that the model is able to capture well the mean monthly surface temperature for the majority of the GEMS stations both in time as well as in space, while the inter-annual variability as derived from the USGS data was captured reasonably well. Results are poorest for the arctic rivers, possibly because the timing of ice-breakup is predicted too late in the year due to the lack of including a mechanical break-up mechanism. The spatio-temporal variation of water temperature reveals large temperature differences between water and atmosphere for the higher latitudes, while considerable lateral transport of heat can be observed for rivers crossing hydroclimatic zones such as the Nile, the Mississippi and the large rivers flowing into the Arctic. Overall, our model results show great promise for future projection of global fresh surface water temperature under global change.

Bierkens, M. F.; Eikelboom, T.; van Vliet, M. T.; Van Beek, L. P.

2011-12-01

116

Observing Global Surface Water Flood Dynamics  

NASA Astrophysics Data System (ADS)

Flood waves moving along river systems are both a key determinant of globally important biogeochemical and ecological processes and, at particular times and particular places, a major environmental hazard. In developed countries, sophisticated observing networks and ancillary data, such as channel bathymetry and floodplain terrain, exist with which to understand and model floods. However, at global scales, satellite data currently provide the only means of undertaking such studies. At present, there is no satellite mission dedicated to observing surface water dynamics and, therefore, surface water scientists make use of a range of sensors developed for other purposes that are distinctly sub-optimal for the task in hand. Nevertheless, by careful combination of the data available from topographic mapping, oceanographic, cryospheric and geodetic satellites, progress in understanding some of the world's major river, floodplain and wetland systems can be made. This paper reviews the surface water data sets available to hydrologists on a global scale and the recent progress made in the field. Further, the paper looks forward to the proposed NASA/CNES Surface Water Ocean Topography satellite mission that may for the first time provide an instrument that meets the needs of the hydrology community.

Bates, Paul D.; Neal, Jefferey C.; Alsdorf, Douglas; Schumann, Guy J.-P.

2014-05-01

117

NANOFILTRATION FOULANTS FROM A TREATED SURFACE WATER  

EPA Science Inventory

The foulant from pilot nanofiltration membrane elements fed conventionally-treated surface water for 15 months was analyzed for organic, inorganic, and biological parameters. The foulant responsible for flux loss was shown to be a film layer 20 to 80 um thick with the greatest de...

118

Groundwater and Surface Water: Understanding the Interaction  

NSDL National Science Digital Library

This site provides an introduction to groundwater-surface water interactions and how groundwater can be affected by land use. The page describes threats to groundwater, common contaminants, sources of contamination, and groundwater management approaches and tools. A short glossary and a groundwater quiz are also included.

Nancy Phillips

119

Tear Water Evaporation and Eye Surface Diseases  

Microsoft Academic Search

The water evaporation rate from the tear film of eyes with anterior surface pathology (corneal and\\/or conjunctival scars, meibomitis) was tested by means of the ‘Rolando-Refojo tear evaporimeter’, which allows noninvasive and reproducible test conditions. These eyes show a statistically significant increase in tear evaporation rate compared to normal eyes. The clinical implications of this finding are discussed.

Maurizio Rolando; Miguel F. Refojo; Kenneth R. Kenyon

1985-01-01

120

A Numerical Investigation of Land Surface Water on Landfalling Hurricanes  

Microsoft Academic Search

Little is known about the effects of surface water over land on the decay of landfalling hurricanes. This study, using the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model, examines the surface temperature changes due to hurricane-land surface water interactions, and their effects on the surface heat fluxes, hurricane structure, and intensity. Different water depths and surface

Weixing Shen; Isaac Ginis; Robert E. Tuleya

2002-01-01

121

Camouflaged or tanned: plasticity in freshwater snail pigmentation.  

PubMed

By having phenotypically plastic traits, many organisms optimize their fitness in response to fluctuating threats. Freshwater snails with translucent shells, e.g. snails from the Radix genus, differ considerably in their mantle pigmentation patterns, with snails from the same water body ranging from being completely dark pigmented to having only a few dark patterns. These pigmentation differences have previously been suggested to be genetically fixed, but we propose that this polymorphism is owing to phenotypic plasticity in response to a fluctuating environment. Hence, we here aimed to assess whether common stressors, including ultraviolet radiation (UVR) and predation, induce a plastic response in mantle pigmentation patterns of Radix balthica. We show, in contrast to previous studies, that snails are plastic in their expression of mantle pigmentation in response to changes in UVR and predator threats, i.e. differences among populations are not genetically fixed. When exposed to cues from visually hunting fish, R. balthica increased the proportion of their dark pigmentation, suggesting a crypsis strategy. Snails increased their pigmentation even further in response to UVR, but this also led to a reduction in pattern complexity. Furthermore, when exposed to UVR and fish simultaneously, snails responded in the same way as in the UVR treatment, suggesting a trade-off between photoprotection and crypsis. PMID:24046875

Ahlgren, Johan; Yang, Xi; Hansson, Lars-Anders; Brönmark, Christer

2013-10-23

122

Camouflaged or tanned: plasticity in freshwater snail pigmentation  

PubMed Central

By having phenotypically plastic traits, many organisms optimize their fitness in response to fluctuating threats. Freshwater snails with translucent shells, e.g. snails from the Radix genus, differ considerably in their mantle pigmentation patterns, with snails from the same water body ranging from being completely dark pigmented to having only a few dark patterns. These pigmentation differences have previously been suggested to be genetically fixed, but we propose that this polymorphism is owing to phenotypic plasticity in response to a fluctuating environment. Hence, we here aimed to assess whether common stressors, including ultraviolet radiation (UVR) and predation, induce a plastic response in mantle pigmentation patterns of Radix balthica. We show, in contrast to previous studies, that snails are plastic in their expression of mantle pigmentation in response to changes in UVR and predator threats, i.e. differences among populations are not genetically fixed. When exposed to cues from visually hunting fish, R. balthica increased the proportion of their dark pigmentation, suggesting a crypsis strategy. Snails increased their pigmentation even further in response to UVR, but this also led to a reduction in pattern complexity. Furthermore, when exposed to UVR and fish simultaneously, snails responded in the same way as in the UVR treatment, suggesting a trade-off between photoprotection and crypsis. PMID:24046875

Ahlgren, Johan; Yang, Xi; Hansson, Lars-Anders; Brönmark, Christer

2013-01-01

123

Simulated surface tensions of common water models  

NASA Astrophysics Data System (ADS)

Initial simulated values of the surface tension for the SPC/E water model have indicated excellent agreement with experiment. More recently, differing values have been obtained which are significantly lower than previous estimates. Here, we attempt to explain the differences between the previous studies and show that a variety of simulation conditions can affect the final surface tension values. Consistent values for the surface tensions of six common fixed charge water models (TIP3P, SPC, SPC/E, TIP4P, TIP5P, and TIP6P) are then determined for four temperatures between 275 and 350K. The SPC/E and TIP6P models provide the best agreement with experiment.

Chen, Feng; Smith, Paul E.

2007-06-01

124

Simulated surface tensions of common water models.  

PubMed

Initial simulated values of the surface tension for the SPC/E water model have indicated excellent agreement with experiment. More recently, differing values have been obtained which are significantly lower than previous estimates. Here, we attempt to explain the differences between the previous studies and show that a variety of simulation conditions can affect the final surface tension values. Consistent values for the surface tensions of six common fixed charge water models (TIP3P, SPC, SPC/E, TIP4P, TIP5P, and TIP6P) are then determined for four temperatures between 275 and 350 K. The SPC/E and TIP6P models provide the best agreement with experiment. PMID:17581036

Chen, Feng; Smith, Paul E

2007-06-14

125

Measuring exposure to Schistosoma japonicum in China. III. Activity diaries, snail and human infection, transmission ecology and options for control  

Microsoft Academic Search

We used activity diaries and snail detection to relate water contact and Schistosoma japonicum infection among a cohort of 178 residents on two islands in the Dongting Lake, China. Water exposure to each of 12 mapped water zones around the islands was calculated (m2 min\\/day) for each subject. Infected Oncomelania hupensis hupensis snails in this area are focal and were

Yuesheng Li; Adrian C. Sleigh; Gail M. Williams; Allen G. P. Ross; Y. Li; Simon J. Forsyth; Marcel Tanner; Donald P. McManus

2000-01-01

126

A molecular phylogeography approach to biological invasions of the New World by parthenogenetic Thiarid snails  

Microsoft Academic Search

The parthenogenetic snail Melanoides tuberculata , present in tropical fresh waters of most of the Old World before 1950, has now invaded the Neotropical area. The phylogeography of this snail was studied to evaluate the pathways and number of such invasions. Because of parthenogenetic reproduction, individuals are structured into genetical clones. Within populations from both the original and invaded areas,

B. FACON; J.-P. POINTIER; M. GLAUBRECHT; C. POUX; P. JARNE; P. DAVID

2003-01-01

127

Uncertainty in surface water flood risk modelling  

NASA Astrophysics Data System (ADS)

Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs uniform flow formulae (Manning's Equation) to direct flow over the model domain, sourcing water from the channel or sea so as to provide a detailed representation of river and coastal flood risk. The initial development step was to include spatially-distributed rainfall as a new source term within the model domain. This required optimisation to improve computational efficiency, given the ubiquity of ‘wet' cells early on in the simulation. Collaboration with UK water companies has provided detailed drainage information, and from this a simplified representation of the drainage system has been included in the model via the inclusion of sinks and sources of water from the drainage network. This approach has clear advantages relative to a fully coupled method both in terms of reduced input data requirements and computational overhead. Further, given the difficulties associated with obtaining drainage information over large areas, tests were conducted to evaluate uncertainties associated with excluding drainage information and the impact that this has upon flood model predictions. This information can be used, for example, to inform insurance underwriting strategies and loss estimation as well as for emergency response and planning purposes. The Flowroute surface-water flood risk platform enables efficient mapping of areas sensitive to flooding from high-intensity rainfall events due to topography and drainage infrastructure. As such, the technology has widespread potential for use as a risk mapping tool by the UK Environment Agency, European Member States, water authorities, local governments and the insurance industry. Keywords: Surface water flooding, Model Uncertainty, Insurance Underwriting, Flood inundation modelling, Risk mapping.

Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.

2009-04-01

128

Source Water Assessment for the Las Vegas Valley Surface Waters  

NASA Astrophysics Data System (ADS)

The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality data (prior to treatment), the proximity of Las Vegas Wash to the intake, and the results of the vulnerability analysis of potential contaminating activities, it is determined that the drinking water intake is at a Moderate level of risk for VOC, SOC, and microbiological contaminants. The drinking water intake is at a High level of risk for IOC contaminants. Vulnerability to radiological contamination is Moderate. Source water protection in the Las Vegas Valley is strongly encouraged because of the documented influence of the Las Vegas Wash on the quality of the water at the intake.

Albuquerque, S. P.; Piechota, T. C.

2003-12-01

129

Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water  

USGS Publications Warehouse

This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological investigations of the near-surface environment.

Rosenberry, Donald O.; LaBaugh, James W.

2008-01-01

130

Supercooling ability is surprisingly invariable in eggs of the land snail Cantareus aspersus.  

PubMed

From an ontogenetic point of view, invertebrate eggs are generally the most freezing intolerant stage of a species. Development state, water content and acclimation may affect their supercooling ability. In this study, we measured fresh mass, water content and temperature of crystallisation (T(c)) of eggs of the edible land snail Cantareus aspersus, depending on its form ("aspersa"vs. "maxima"), incubation temperature (20, 12 and 7 degrees C) and physiological age (as part of the complete development). We also tested their tolerance to freezing. Despite a high number of individual observations (n=759) and significant differences of fresh mass and water content between both subspecies, no effect of origin, incubation temperature or development state has been found in this study. T(c) remained constant whatever the condition, with an overall mean of -5.40+/-0.24 degrees C (mean+/-SD). We suggest that fresh mass is important, a high water content and a constantly wet surface confer to land snail eggs a poor ability to supercool. Moreover, the presence of ice nucleating agents at the egg surface (microorganisms present in the soil, calcium carbonate crystals of the egg shell) might induce freezing. Thus, considering the present results, to delay hatching by cryopreservation of eggs does not seem possible. PMID:17189625

Ansart, Armelle; Madec, Luc; Vernon, Philippe

2007-02-01

131

Simulation of lakes and surface water heat exchangers for design of surface water heat pump systems  

NASA Astrophysics Data System (ADS)

Surface Water Heat Pump (SWHP) system utilize surface water bodies, such as ponds, lakes, rivers, and the sea, as heat sources and/or sinks. These systems may be open-loop, circulating water between the surface water body and a heat exchanger on dry land, or closed-loop, utilizing a submerged surface water heat exchanger (SWHE). Both types of SWHP systems have been widely used, but little in the way of design data, design procedures, or energy calculation procedures is available to aid engineers in the design and analysis of these systems. For either type of SWHP system, the ability to predict the evolution of lake temperature with time is an important aspect of needed design and energy analysis procedures. This thesis describes the development and validation of a lake model that is coupled with a surface water heat exchanger model to predict both the lake dynamics (temperature, stratification, ice/snow cover) and the heat transfer performance of different types of SWHE. This one-dimensional model utilizes a detailed surface heat balance model at the upper boundary, a sediment conduction heat transfer model at the lower boundary, and an eddy diffusion model to predict transport within the lake. The lake model is implemented as part of the developed software design tool, which can be used as an aid in the sizing of SWHE used in closed loop SWHP systems.

Conjeevaram Bashyam, Krishna

132

Atmospheric radiation model for water surfaces  

NASA Technical Reports Server (NTRS)

An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.

Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.

1982-01-01

133

Studies of mineral-water surfaces  

SciTech Connect

In this chapter we discuss the application of inelastic and quasielastic neutron scattering to the elucidation of the structure, energetics, and dynamics of water confined on the surfaces of mineral oxide nanoparticles. We begin by highlighting recent advancements in this active field of research before providing a brief review of the theory underpinning inelastic neutron scattering (INS) and quasielastic neutron scattering (QENS) techniques. We then discuss examples illustrating the use of neutron scattering methods for studying hydration layers that are an integral part of the nanoparticle structure. The first investigation of this kind, namely the INS analysis of hydrated ZrO2 nanoparticles, is described, as well as a later, complementary QENS study that allowed for the dynamics of diffusion of the water molecules within the hydration layer to be examined in detail. The diverse range of information available from INS experiments is illustrated by a recent study combining INS with calorimetric experiments that elucidated the thermodynamic properties of adsorbed water on anatase (TiO2) nanoparticles. To emphasize the importance of molecular dynamics (MD) simulations for deconvoluting complex QENS spectra, we describe both the MD and QENS analysis of rutile (TiO2) and cassiterite (SnO2) nanoparticle systems and show that, when combined, data obtained by these two complementary methods can provide a complete description of the motion of the water molecules on the nanoparticle surface. We close with a glimpse into the future for this thriving field of research.

Ross, Dr. Nancy [Virginia Polytechnic Institute and State University (Virginia Tech); Spencer, Elinor [Virginia Polytechnic Institute and State University (Virginia Tech); Levchenko, Dr. Andrey [University of California, Davis; Wesolowski, David J [ORNL; Cole, David R [ORNL; Mamontov, Eugene [ORNL; Vlcek, L. [Vanderbilt University

2009-01-01

134

River regulation and interactions groundwater - surface water  

NASA Astrophysics Data System (ADS)

The determination of a minimum acceptable flow in a river affected by regulation is a major task in management of hydropower development. The Norwegian Water Resources and Energy Directorate (NVE), responsible for administrating the nation's water resources, requires an objective system that takes into account the needs of the developer and the rivers environment such as water quality, river biota, landscape, erosion and groundwater. A research project has been initiated with focus on interactions between groundwater and surface water. The purpose of the project is to provide the licensing authorities with tools for quantitative assessment of the effects of regulation on groundwater resources and at the same time the effect of groundwater abstraction on river flows. A small, urbanised alluvial plain (2 km^2) by the river Glomma in Central Southern Norway is used as a case study. The local aquifer consists of heterogeneous glaciofluvial and fluvial deposit, mainly sand and gravel. Two three-dimensional numerical models (Visual Modflow 3.0 and Feflow 5.0) have been used for this study. The models were calibrated with hydro-geological data collected in the field. Aquifer and river sediment has been examined by use of Ground Penetrating Radar (GPR) and soil samples collection. Preferential flow has been examined by tracer tests. Water level, temperature and electric conductivity have been recorded in both aquifer and river. Hydro-climatic regime has been analysed by statistical tools. The first task of the project is to carry out water balance studies in order to estimate the change in rate of groundwater recharge from and to the river along a normal hydrologic year with snowmelting, flood, and baseflow. The second task is to analyse the potential effect of change in the river water regime (due to regulation and consecutive clogging) on groundwater resources and their interaction with stream water.

Colleuille, H.; Wong, W. K.; Dimakis, P.; Pedersen, T. S.

2003-04-01

135

Acidic deposition and surface water chemistry  

NASA Astrophysics Data System (ADS)

A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

Church, M. R.

136

77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...  

Federal Register 2010, 2011, 2012, 2013, 2014

...FRL-9641-3] Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental...requirement in the Long Term 2 Enhanced Surface Water Treatment Rule (LT2 rule). At this meeting,...

2012-02-29

137

Faecal pollution of surface waters in Jakarta.  

PubMed

Profuse numbers of Enterobacteriaceae were found in samples of surface waters from the Ciliwung River and adjoining canals which criss-cross metropolitan Jakarta and are used widely for domestic purposes by the poorer sections of its population. 15 of the 20 specimens gres E. coli, Klebsiella were isolated from seven and Citrobacter from four. Using enrichment culture procedures, Salmonella sp. were grown from 10 (48%) of 21 water samples examined, and 12 (63%) of aquatic sediments collected at the same sites. Altogether 14 serotypes and 37 Salmonella isolations were recorded. This high degree of faecal contamination of the environment is a major cause of the immense problem of gastro-intestinal infections in that city and probably in many similar cities in developing countries in the tropics. PMID:473327

Gracey, M; Ostergaard, P; Adnan, S W; Iveson, J B

1979-01-01

138

Surface crystallization of supercooled water in clouds  

PubMed Central

The process by which liquid cloud droplets homogeneously crystallize into ice is still not well understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at ?33°C, the reported volume-based freezing rates of ice in supercooled water vary by as many as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near ?40°C. PMID:12456877

Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.

2002-01-01

139

Chapter 5: Surface water quality sampling in streams and canals  

Technology Transfer Automated Retrieval System (TEKTRAN)

Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

140

Charge Fluctuations on Membrane Surfaces in Water  

E-print Network

We generalize the predictions for attractions between over-all neutral surfaces induced by charge fluctuations/correlations to non-uniform systems that include dielectric discontinuities, as is the case for mixed charged lipid membranes in an aqueous solution. We show that the induced interactions depend in a non-trivial way on the dielectric constants of membrane and water and show different scaling with distance depending on these properties. The generality of the calculations also allows us to predict under which dielectric conditions the interaction will change sign and become repulsive.

Rebecca Menes; Philip Pincus; Bean Stein

2000-01-11

141

REVIEW PAPER Modelling pesticides transfer to surface water  

E-print Network

REVIEW PAPER Modelling pesticides transfer to surface water at the catchment scale: a multi of mitigation measures on pesticide transfer to surface water. Here a literature review of 286 investigations and conceptual models are the most popular approaches to assess the transfer of pesticides to surface water

Paris-Sud XI, Université de

142

Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach  

Microsoft Academic Search

This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan

Coty

2009-01-01

143

Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations  

NASA Technical Reports Server (NTRS)

Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.

Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

2011-01-01

144

Surface tension driven water strider robot using circular footpads  

Microsoft Academic Search

Water strider insects have attracted many researchers' attention with their power efficient and agile water surface locomotion. This study proposes a new water strider insect inspired robot, called STRIDE II, which uses new circular footpads for high lift, stability, payload capability, and a new elliptical leg rotation mechanism for more efficient water surface propulsion. The lift, drag and propulsion forces

Onur Ozcan; Han Wang; Jonathan D. Taylor; Metin Sitti

2010-01-01

145

methodology to classify groundwater\\/surface water interaction  

Microsoft Academic Search

Introductory work on implementation of the EU Water Framework Directive has outlined criteria for classification of the physical-chemical status of groundwater and surface water bodies, recognizing that the quantitative and qualitative status of ground water may have an impact on the quantitative, qualitative and ecological status of surface waters if the two bodies interact. In Denmark the implementation of the

B. Nilsson; S. Christensen; B. Kronvang; J. H. Langhoff; M. Dahl; C. C. Hoffmann; H. E. Andersen; K. R. Rasmussen; J. C. Refsgaard

2003-01-01

146

Emission of dimers from a free surface of heated water  

NASA Astrophysics Data System (ADS)

The emission rate of water dimers from a free surface and a wetted solid surface in various cases was calculated by a simplified Monte Carlo method with the use of the binding energy of water molecules. The binding energy of water molecules obtained numerically assuming equilibrium between the free surface of water and vapor in the temperature range of 298-438 K corresponds to the coordination number for liquid water equal to 4.956 and is close to the reference value. The calculation results show that as the water temperature increases, the free surface of water and the wetted solid surface become sources of free water dimers. At a temperature of 438 K, the proportion of dimers in the total flow of water molecules on its surface reaches 1%. It is found that in the film boiling mode, the emission rate of dimers decreases with decreasing saturation vapor. Two mechanisms of the emission are described.

Bochkarev, A. A.; Polyakova, V. I.

2014-09-01

147

Animation and Rendering of Complex Water Surfaces Douglas Enright  

E-print Network

is the visually accurate treatment of the surface separating the Figure 1: Water being poured into a glass (55x120 for treatment of the surface are proposed in this paper in order to provide visually pleasing motion and photo of the water surface. We propose a new treatment of the velocity at the surface in order to obtain more

Fedkiw, Ron

148

Interference with Fasciola hepatica snail finding by various aquatic organisms.  

PubMed

Previous studies using radioactive miracidia have shown that a number of non-host snails and bivalves, interposed as 'decoys' in linear test channels, may interfere with the capacity of Fasciola hepatica miracidia to infect Lymnaea truncatula. Applying similar experimental principles, the role of several other potential interferents have been analysed in the present study. Daphnia pulex (Cladocera) and larvae of Corethra sp. (Diptera) exercised significant interfering effects by protecting 'target' snails from infection. Evidence suggested that this effect was a result of their normal predatory behaviour. Other organisms including Herpobdella testacea and Helobdella stagnalis (Hirudinea), Acellus aquaticus (Isopoda), Planaria lugubris (Turbellaria) and L. truncatula egg clusters failed to interfere with miracidial host-finding. Nor did P. lugubris and L. truncatula 'conditioned water' interfere with the capacity of the miracidia to infect their host snail. PMID:876683

Christensen, N O; Nansen, P; Frandsen, F

1977-06-01

149

Bioconcentration ratio of diazinon by freshwater fish and snail  

Microsoft Academic Search

Summary The bioconcentration ratios of diazinon from water by freshwater fishes were generally larger than that of crayfish and snails. Among fishes, the bioconcentration ratio of diazinon by topmouth gudgeon was the highest value, 152 being average. However, elimination of diazinon from fish body was linearly rapid. The influence of test concentration on the bioconcentration ratio was not so much

Jun Kanazawa

1978-01-01

150

Metolachlor and atrazine fate in surface water systems  

SciTech Connect

The detection of pesticides in surface water and ground water provokes concern involving human health risks associated with pesticide exposure. Monitoring studies of surface waters have detected concentrations of herbicides that exceed the U.S. Environmental Protection Agency proposed maximum contamination level (MCL) for drinking water. Conventional water treatment processes do not remove many herbicides. Tap water drawn from surface-water sources has been reported to contain levels of herbicides above the regulatory limits. There is current interest in the use of artificial wetlands and macrophyte-cultured ponds in waste-water-treatment systems. Aquatic plant-based water treatment systems improve waste water effluent by solid filtration and nutrient assimilation. Various aquatic plants have been shown to accumulate metals, absorb inorganic ions, and accelerate the biodegradation of complex organics. Our research evaluates the fate of metolachlor and atrazine in surface water, surface water/sediment, and surface water/aquatic plant incubation systems to study the influence of sediment and aquatic plants in the removal and biotransformation of herbicides from contaminated waters. Aquatic macrophyte systems may prove to be useful in the remediation of herbicide contaminated surface waters in water treatment facilities or in the reduction of herbicide concentrations from tile drain effluents prior to entering watersheds.

Rice, P.J.; Anderson, T.A.; Coats, J.R. [Iowa State Univ., Ames, IA (United States)

1995-12-31

151

Potable water production from pesticide contaminated surface water—A membrane based approach  

Microsoft Academic Search

The aim of the present study is to obtain safe and pure drinking water from surface water, which has been polluted with pesticide. Pesticide contaminated surface water samples were prepared by spiking commonly used pesticide, Isoproturon, in different surface water samples collected from different parts of India. Attempts were made to evaluate the efficiency of different adsorbents in removing pesticide

Baisali Sarkar; N. Venkateshwarlu; R. Nageswara Rao; Chiranjib Bhattacharjee; Vijay Kale

2007-01-01

152

The Effect of Aquatic Plant Abundance on Shell Crushing Resistance in a Freshwater Snail  

PubMed Central

Most of the shell material in snails is composed of calcium carbonate but the organic shell matrix determines the properties of calcium carbonate crystals. It has been shown that the deposition of calcium carbonate is affected by the ingestion of organic compounds. We hypothesize that organic compounds not synthesized by the snails are important for shell strength and must be obtained from the diet. We tested this idea indirectly by evaluating whether the abundance of the organic matter that snails eat is related to the strength of their shells. We measured shell crushing resistance in the snail Mexipyrgus churinceanus and the abundance of the most common aquatic macrophyte, the water lily Nymphaea ampla, in ten bodies of water in the valley of Cuatro Ciénegas, Mexico. We used stable isotopes to test the assumption that these snails feed on water lily organic matter. We also measured other factors that can affect crushing resistance, such as the density of crushing predators, snail density, water pH, and the concentration of calcium and phosphorus in the water. The isotope analysis suggested that snails assimilate water lily organic matter that is metabolized by sediment bacteria. The variable that best explained the variation in crushing resistance found among sites was the local abundance of water lilies. We propose that the local amount of water lily organic matter provides organic compounds important in shell biomineralization, thus determining crushing resistance. Hence, we propose that a third trophic level could be important in the coevolution of snail defensive traits and predatory structures. PMID:22970206

Chaves-Campos, Johel; Coghill, Lyndon M.; García de León, Francisco J.; Johnson, Steven G.

2012-01-01

153

Strain-related variation in the persistence of influenza A virus in three types of water: distilled water, filtered surface water, and intact surface water  

PubMed Central

Background The persistence of influenza A (IA) virus in aquatic habitats has been demonstrated to be a determinant for virus transmission dynamics in wild duck populations. In this study, we investigated virus strain-related variation in persistence in water for nine wild duck isolated IA viruses of three subtypes (H3N8, H4N6, and H8N4). Results We experimentally estimated the loss of infectivity over time in three different types of water: distilled, filtered surface water, and intact surface water. All viruses persisted longest in distilled water followed by filtered surface water with markedly reduced durations of persistence observed in the intact surface water. Strain-related variations were observed in distilled and filtered surface water but limited variation was observed in the intact surface water. Conclusions Our findings suggest that the role of surface water for long-term (between years) maintenance of AI viruses in the environment may be limited, and suggest that the physico-chemical characteristics of water, as well as microorganisms, may be of strong importance. Results also indicate that the extent of strain-related variation observed in distilled water may overestimate persistence abilities for IA viruses in the wild and supports the need to develop experiments that account for these effects to assess subtype, genotype, as well as spatial and temporal variation in the persistence of IA viruses in aquatic habitats. PMID:23289857

2013-01-01

154

Water Resources Data, Florida, Water Year 2002, Volume 2A. South Florida Surface Water  

USGS Publications Warehouse

Water resources data for 2002 water year in Florida consists of continuous or daily discharge for 392 streams, periodic discharge for 15 streams, continuous or daily stage for 191 streams, periodic stage for 13 stream, peak discharge for 33 streams, and peak stage for 33 streams, continuous or daily elevations for 14 lakes, periodic elevations for 49 lakes, continuous ground-water levels for 418 wells, periodic ground-water levels for 1287 wells, quality of water data for 116 surface-water sites, and 291 wells. The data for South Florida included continuous or daily discharge for 71 streams, continuous or daily stage for 49 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 238 wells, periodic ground-water levels for 260 wells, water quality for 24 surface-water sites, and 159 wells. The data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

Price, C.; Woolverton, J.; Overton, K.

2003-01-01

155

Water Resources Data, Florida, Water Year 2003 Volume 2A: South Florida Surface Water  

USGS Publications Warehouse

Water resources data for 2003 water year in Florida consists of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 stream, peak discharge for 36 streams, and peak stage for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1227 wells, quality of water data for 133 surface-water sites, and 308 wells. The data for South Florida included continuous or daily discharge for 72 streams, continuous or daily stage for 50 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 237 wells, periodic ground-water levels for 248 wells, water quality for 25 surface-water sites, and 161 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

Price, C.; Woolverton, J.; Overton, K.

2004-01-01

156

Water resources data-Florida water year 2004volume 2A: south Florida surface water  

USGS Publications Warehouse

Water resources data for 2004 water year in Florida consists of continuous or daily discharge for 405 streams, periodic discharge for 12 streams, continuous or daily stage for 159 streams, periodic stage for 19 stream, peak discharge for 30 streams, and peak stage for 30 streams, continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes, continuous ground-water levels for 408 wells, periodic ground-water levels for 1188 wells, quality of water data for 140 surface-water sites, and 240 wells. The data for South Florida included continuous or daily discharge for 86 streams, continuous or daily stage for 54 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 257 wells, periodic ground-water levels for 226 wells, water quality for 39 surface-water sites, and 149 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Florida.

Price, C.; Woolverton, J.; Overton, K.

2005-01-01

157

Water Resources Data, Florida, Water Year 2001, Volume 2A. South Florida Surface Water  

USGS Publications Warehouse

Water resources data for 2001 water year in Florida consists of continuous or daily discharge for 404 streams, periodic discharge for 15 streams, continuous or daily stage for 154 streams, periodic stage for 12 stream, peak discharge for 37 streams, and peak stage for 37 streams, continuous or daily elevations for 12 lakes, periodic elevations for 50 lakes, continuous ground-water levels for 426 wells, periodic ground-water levels for 1251 wells, quality of water data for 112 surface-water sites, and 235 wells. The data for South Florida included continuous or daily discharge for 89 streams, continuous or daily stage for 64 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 244 wells, periodic ground-water levels for 255 wells, water quality for 32 surface-water sites, and 166 wells. The data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

Price, C.; Woolverton, J.; Overton, K.

2002-01-01

158

Ecological factors in schistosome transmission, and an environmentally benign method for controlling snails in a recreational lake with a record of schistosome dermatitis.  

PubMed

The avian schistosomes, Trichobilharzia stagnicolae, T. physellae and Gigantobilharzia sp., that cause Schistosome Dermatitis (Swimmers' Itch) in humans were studied in the laboratory and at Cultus Lake, British Columbia, Canada in relation to the biology and behavior of their intermediate snail hosts, Stagnicola catascopium, Physa sp. and Gyraulus parvus, respectively, and their definite bird hosts. Wind-driven, surface currents were measured. Populations of snails, close to host-bird roosting logs had a very high prevalence of schistosome infections. An experiment that mechanically disturbed the epilithic habitat of the snails using a boat-mounted rototiller or a tractor and rake, eliminated almost all of the snails if the disturbance was done in areas of high snail concentration in shallow areas of the lake during the breeding and early development phase of the snail. It is proposed that the incorporation of snail habitat disturbance into management programs is an effective way to control Schistosome Dermatitis. PMID:10729712

Leighton, B J; Zervos, S; Webster, J M

2000-03-01

159

USING ARTIFICIAL NEURAL NETWORK MODELS TO INTEGRATE HYDROLOGIC AND ECOLOGICAL STUDIES OF THE SNAIL KITE IN THE EVERGLADES, USA  

Microsoft Academic Search

Hydrologists and ecologists have been working in the Everglades on integrating a long- term hydrologic data network and a short-term ecological database to support ecological models of the habitat of the snail kite, a threatened and endangered bird. Data mining techniques, including artificial neural network (ANN) models, were applied to simulate the hydrology of snail kite habitat in the Water

PAUL A. CONRADS; EDWIN ROEHL; RUBY DAAMEN; WILEY M. KITCHENS

160

Malacological survey and geographical distribution of vector snails for schistosomiasis within informal settlements of Kisumu City, western Kenya  

PubMed Central

Background Although schistosomiasis is generally considered a rural phenomenon, infections have been reported within urban settings. Based on observations of high prevalence of Schistosoma mansoni infection in schools within the informal settlements of Kisumu City, a follow-up malacological survey incorporating 81 sites within 6 informal settlements of the City was conducted to determine the presence of intermediate host snails and ascertain whether active transmission was occurring within these areas. Methods Surveyed sites were mapped using a geographical information system. Cercaria shedding was determined from snails and species of snails identified based on shell morphology. Vegetation cover and presence of algal mass at the sites was recorded, and the physico-chemical characteristics of the water including pH and temperature were determined using a pH meter with a glass electrode and a temperature probe. Results Out of 1,059 snails collected, 407 (38.4%) were putatively identified as Biomphalaria sudanica, 425 (40.1%) as Biomphalaria pfeifferi and 227 (21.5%) as Bulinus globosus. The spatial distribution of snails was clustered, with few sites accounting for most of the snails. The highest snail abundance was recorded in Nyamasaria (543 snails) followed by Nyalenda B (313 snails). As expected, the mean snail abundance was higher along the lakeshore (18 ± 12 snails) compared to inland sites (dams, rivers and springs) (11 ± 32 snails) (F1, 79 = 38.8, P < 0.0001). Overall, 19 (1.8%) of the snails collected shed schistosome cercariae. Interestingly, the proportion of infected Biomphalaria snails was higher in the inland (2.7%) compared to the lakeshore sites (0.3%) (P = 0.0109). B. sudanica was more abundant in sites along the lakeshore whereas B. pfeifferi and B. globosus were more abundant in the inland sites. Biomphalaria and Bulinus snails were found at 16 and 11 out of the 56 inland sites, respectively. Conclusions The high abundance of Biomphalaria and Bulinus spp. as well as observation of field-caught snails shedding cercariae confirmed that besides Lake Victoria, the local risk for schistosomiasis transmission exists within the informal settlements of Kisumu City. Prospective control interventions in these areas need to incorporate focal snail control to complement chemotherapy in reducing transmission. PMID:22152486

2011-01-01

161

Manure Phosphorus and Surface Water Protection III: Transport Factors  

NSDL National Science Digital Library

This lesson addresses transport factors that may contribute to phosphorus (P) delivery to surface waters.  Erosion, runoff, subsurface flow, drainage, and distance to surface water are the main factors.  In some places, wind erosion may also be important.  The effects of management practices on P transport are discussed, and water-related P transport processes are described in detail. 

162

NEAR SURFACE WATER CONTENT ESTIMATION USING GPR DATA: INVESTIGATIONS WITHIN  

E-print Network

NEAR SURFACE WATER CONTENT ESTIMATION USING GPR DATA: INVESTIGATIONS WITHIN CALIFORNIA VINEYARDS S radar (GPR) meth- ods to estimate near surface water content within two California vineyard study sites and reflected GPR events. We will present the spatial and temporal estimates of water content ob- tained from

Rubin, Yoram

163

Instructions for measuring the rate of evaporation from water surfaces  

USGS Publications Warehouse

The ·rate of evaporation from water surfaces varies with the temperature of the water, the velocity of the wind at the water surface, and the dryness of the air. Consequently, the rate of evaporation from rivers, lakes, canals, or reservoirs varies widely in different localities and for the same locality in different seasons.

U.S. Geological Survey

1898-01-01

164

Floating Vegetated Mats For Improving Surface Water Quality  

Technology Transfer Automated Retrieval System (TEKTRAN)

Contamination of surface and ground waters is an environmental concern. Pollution from both point and nonpoint sources can render water unsuitable for use. Surface waters of concern include streams, rivers, ponds, lakes, canals, and wastewater lagoons. Lagooned wastewater from confined animal feedi...

165

Adsorption structure of water molecules on the Be(0001) surface  

SciTech Connect

By using density functional theory calculations, we systematically investigate the adsorption of water molecules at different coverages on the Be(0001) surface. The coverage dependence of the prototype water structures and energetics for water adlayer growth are systematically studied. The structures, energetics, and electronic properties are calculated and compared with other available studies. Through our systematic investigations, we find that water molecules form clusters or chains on the Be(0001) surface at low coverages. When increasing the water coverage, water molecules tend to form a 2?×?2 hexagonal network on the Be(0001) surface.

Yang, Yu; Li, Yanfang [LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Wang, Shuangxi [College of Science, China University of Petroleum, Beijing 102249 (China); Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn [LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

2014-06-07

166

Host effect on size structure and timing of sex change in the coral-inhabiting snail Coralliophila violacea  

Microsoft Academic Search

The distribution, size and reproductive characteristics of the snail Coralliophila violacea (Lamarck), which inhabits the surface of both the branching coral Porites nigrescens and the massive corals P. lobata and P. lutea, were surveyed to examine the host effect on: (1) population structure and (2) reproductive characteristics, including the size at sex change of symbionts. On branching hosts, most snails

Ming-Hui Chen; Keryea Soong; Min-Li Tsai

2004-01-01

167

Photochemical Transformation Processes in Sunlit Surface Waters  

NASA Astrophysics Data System (ADS)

Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter < 0.1 ?m) account for the vast majority of 1O2 and triplet states photoproduction. In hydrophobic sites of particles, the formation rate of 1O2 is considerably lower than in the solution bulk [5], but the absence of water can significantly increase 1O2 half-life time (the main deactivation process of 1O2 in solution is collision with the solvent), thereby affording considerable reactivity toward hydrophobic solutes. The current knowledge in the field of natural photosensitizers in surface waters allows photoinduced transformation processes of organic pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3-°, 1O2 and 3CDOM*, as a function of sunlight irradiance, water chemical composition (also affecting absorption) and column depth. Some examples of model application to real cases will be presented [6-8]. [1] Halladja et al., Environ Sci Technol 41, 6066 (2007) [2] Canonica et al., Environ Sci Technol 39, 9182 (2005) [3] De Laurentiis et al., Chemosphere 88, 1208 (2012) [4] Latch & McNeill, Science 311, 1743 (2006) [5] Minella et al., Chemosphere, accepted [6] Vione et al., Wat Res 45, 6725 (2011) [7] Sur et al., Sci Total Environ 426, 296 (2012) [8] De Laurentiis et al., Environ Sci Technol, DOI 10.1012/es3015887

Vione, D.

2012-12-01

168

Distribution and abundance of schistosomiasis and fascioliasis host snails along the Mara River in Kenya and Tanzania.  

PubMed

We purposively selected 39 sampling sites along the Mara River and its two perennial tributaries of Amala and Nyangores and sampled snails. In addition, water physicochemical parameters (temperature, turbidity, dissolved oxygen, conductivity, alkalinity, salinity and pH) were taken to establish their influence on the snail abundance and habitat preference. Out of the 39 sites sampled, 10 (25.6%) had snails. The snail species encountered included Biomphalaria pfeifferi Krauss - the intermediate host of Schistosoma mansoni Sambon, Bulinus africanus - the intermediate host of Schistosoma haematobium, and Lymnaea natalensis Krauss - the intermediate host of both Fasciola gigantica and F. hepatica Cobbold. Ceratophallus spp., a non-vector snail was also encountered. Most (61.0%) of the snails were encountered in streamside pools. Schistosomiasis-transmitting host snails, B. pfeifferi and B. africanus, were fewer than fascioliasis-transmitting Lymnaea species. All the four different snail species were found to be attached to different aquatic weeds, with B. pfeifferi accounting for over half (61.1%) of the snails attached to the sedge, followed by B. africanus and Lymnaea spp., accounting for 22.2 and 16.7%, respectively. Ceratophallus spp. were non-existent in sedge. The results from this preliminary study show that snails intermediate hosts of schistosomiasis and fascioliasis exists in different habitats, in few areas along the Mara River, though their densities are still low to have any noticeable impacts on disease transmission in case they are infected. The mere presence of the vector snails in these focal regions calls for their immediate control and institution of proper regulations, management, and education among the locals that can help curtail the spread of the snails and also schistosomiasis and fascioliasis within the Mara River basin. PMID:25405008

Dida, Gabriel O; Gelder, Frank B; Anyona, Douglas N; Matano, Ally-Said; Abuom, Paul O; Adoka, Samson O; Ouma, Collins; Kanangire, Canisius K; Owuor, Phillip O; Ofulla, Ayub V O

2014-01-01

169

Distribution and abundance of schistosomiasis and fascioliasis host snails along the Mara River in Kenya and Tanzania  

PubMed Central

We purposively selected 39 sampling sites along the Mara River and its two perennial tributaries of Amala and Nyangores and sampled snails. In addition, water physicochemical parameters (temperature, turbidity, dissolved oxygen, conductivity, alkalinity, salinity and pH) were taken to establish their influence on the snail abundance and habitat preference. Out of the 39 sites sampled, 10 (25.6%) had snails. The snail species encountered included Biomphalaria pfeifferi Krauss – the intermediate host of Schistosoma mansoni Sambon, Bulinus africanus – the intermediate host of Schistosoma haematobium, and Lymnaea natalensis Krauss – the intermediate host of both Fasciola gigantica and F. hepatica Cobbold. Ceratophallus spp., a non-vector snail was also encountered. Most (61.0%) of the snails were encountered in streamside pools. Schistosomiasis-transmitting host snails, B. pfeifferi and B. africanus, were fewer than fascioliasis-transmitting Lymnaea species. All the four different snail species were found to be attached to different aquatic weeds, with B. pfeifferi accounting for over half (61.1%) of the snails attached to the sedge, followed by B. africanus and Lymnaea spp., accounting for 22.2 and 16.7%, respectively. Ceratophallus spp. were non-existent in sedge. The results from this preliminary study show that snails intermediate hosts of schistosomiasis and fascioliasis exists in different habitats, in few areas along the Mara River, though their densities are still low to have any noticeable impacts on disease transmission in case they are infected. The mere presence of the vector snails in these focal regions calls for their immediate control and institution of proper regulations, management, and education among the locals that can help curtail the spread of the snails and also schistosomiasis and fascioliasis within the Mara River basin. PMID:25405008

Dida, Gabriel O.; Gelder, Frank B.; Anyona, Douglas N.; Matano, Ally-Said; Abuom, Paul O.; Adoka, Samson O.; Ouma, Collins; Kanangire, Canisius K.; Owuor, Phillip O.; Ofulla, Ayub V. O.

2014-01-01

170

Effects of Washing Produce Contaminated with the Snail and Slug Hosts of Angiostrongylus cantonensis with Three Common Household Solutions  

PubMed Central

The emerging infectious disease angiostrongyliasis (rat lungworm disease) is caused by ingesting snails and slugs infected by the nematode Angiostrongylus cantonensis. The definitive hosts of A. cantonensis are rats and the obligatory intermediate hosts are slugs and snails. Many cases result from accidentally ingesting infected snails or slugs on produce (eg, lettuce). This study assessed three readily available household products as washing solutions for removing snails and slugs from produce (romaine lettuce) to lower the probability of accidentally ingesting them. The solutions were acetic acid (vinegar), sodium hypochlorite (bleach), and sodium chloride (domestic salt). Snail and slug species known to be intermediate hosts and that are common in the Hawaiian Islands were used in the experiments: the alien snail Succinea tenella, the alien semi-slug Parmarion martensi, and the alien slugs Veronicella cubensis and Deroceras laeve. None of the products was any more effective than washing and rinsing with tap water alone. Most snails and slugs were removed after treatment but some remained on the lettuce even after washing and rinsing the produce. Only washing, rinsing, and then rinsing each leaf individually resulted in complete removal of all snails and slugs. The study did not address removal of any remaining slime left by the snails and slugs, nor did it address killing of worms. PMID:23901391

Yeung, Norine W; Hayes, Kenneth A

2013-01-01

171

Effects of washing produce contaminated with the snail and slug hosts of Angiostrongylus cantonensis with three common household solutions.  

PubMed

The emerging infectious disease angiostrongyliasis (rat lungworm disease) is caused by ingesting snails and slugs infected by the nematode Angiostrongylus cantonensis. The definitive hosts of A. cantonensis are rats and the obligatory intermediate hosts are slugs and snails. Many cases result from accidentally ingesting infected snails or slugs on produce (eg, lettuce). This study assessed three readily available household products as washing solutions for removing snails and slugs from produce (romaine lettuce) to lower the probability of accidentally ingesting them. The solutions were acetic acid (vinegar), sodium hypochlorite (bleach), and sodium chloride (domestic salt). Snail and slug species known to be intermediate hosts and that are common in the Hawaiian Islands were used in the experiments: the alien snail Succinea tenella, the alien semi-slug Parmarion martensi, and the alien slugs Veronicella cubensis and Deroceras laeve. None of the products was any more effective than washing and rinsing with tap water alone. Most snails and slugs were removed after treatment but some remained on the lettuce even after washing and rinsing the produce. Only washing, rinsing, and then rinsing each leaf individually resulted in complete removal of all snails and slugs. The study did not address removal of any remaining slime left by the snails and slugs, nor did it address killing of worms. PMID:23901391

Yeung, Norine W; Hayes, Kenneth A; Cowie, Robert H

2013-06-01

172

Water resistance of molded float-glass surfaces  

Microsoft Academic Search

The results of investigations of the water resistance of float glass (both initial and tempered) made by different manufacturers\\u000a are presented. It is found that heat-absorbing and colorless float glass exhibit asymmetry of the water-resistance of the\\u000a molded surfaces: the water resistance of the bottom surface is approximately twice as good as that of the top surface. It\\u000a is shown

V. F. Solinov; N. V. Temnyakova; E. P. Zinina; E. V. Yuneva

2008-01-01

173

Impact of Surface Water Conditions on Preservative Leaching and  

E-print Network

relative abundance of these forms depends largely on solution pH) are also likely to contribute to Cu natural surface waters including waters from two rivers, three lakes, two wetlands, and one seawater

Florida, University of

174

Structure and reactivity of water at biomaterial surfaces  

Microsoft Academic Search

Molecular self association in liquids is a physical process that can dominate cohesion (interfacial tension) and miscibility. In water, self association is a powerful organizational force leading to a three-dimensional hydrogen-bonded network (water structure). Localized perturbations in the chemical potential of water as by, for example, contact with a solid surface, induces compensating changes in water structure that can be

Erwin A Vogler

1998-01-01

175

Investigating surface waterwell interaction using stable isotope ratios of water*  

E-print Network

reserved. Keywords: Bank filtration; Hydrogen isotope ratio; Oxygen isotope ratio; Drinking water; Age water quality in a drinking water well, an understanding of the amount of surface water and its travel-floodtraveltimesoflessthan1yearforthissite.Agedatingofonegroundwatersampleusing3 H­3 Hemethods estimated an age longer than 1

176

Epidemiology of cercarial stage of trematodes in freshwater snails from Chiang Mai province, Thailand  

PubMed Central

Objective To investigate the epidemiological situation of cercarial trematodes infection in freshwater snails from different water resources in Chiang Mai province, Thailand. Methods The snail specimens were collected from 13 districts of Chiang Mai province during April 2008 to February 2012. The prevalence of cercarial infection in snails was investigated using the crushing method. The drawing was done with the help of a camera lucida for the morphological study. Results A total of 2?479 snail individuals were collected and classified into 7 families, 11 genera, and 14 species, Among them, 8 snails species were found to be infected with an overall prevalence of 17.27% (428/2?479), which infected with nine groups of cercariae; gymnocephalous cercaria, strigea cercaria, megalurous cercaria, monostome cercaria, parapleurolophocercous cercaria (Haplorchis cercaria), pleurolophocercous cercaria, furcocercous cercaria (Transversotrema cercaria), xiphidiocercaria, and virgulate cercaria. The parapleurolophocercous cercaria was found to be the dominant type among the cercarial infection in the snails (64.25%). Conclusions The various species of snails found in the research location act as the intermediate hosts for the high prevalence of parasitic infection of many species of mammals. This work will provide new information on both the distribution and first intermediate host of trematodes. PMID:23620846

Chontananarth, Thapana; Wongsawad, Chalobol

2013-01-01

177

Surface properties of water clusters: a molecular dynamics study  

NASA Astrophysics Data System (ADS)

Radial local densities, local energies per molecule, orientational distribution functions, normal component of the pressure tensor and other surface properties of water are calculated, based on molecular dynamics simulations of water clusters at 300K. Three different water models are evaluated: the rigid five-site ST2 and four-site TIP4P models; and the three-site SPC/E model, which is made flexible with respect to the angle bending. The size of the clusters is varied from 64 to 1000 water molecules. It is concluded that surface properties are highly sensitive to the choice of potential model. On the basis of the dependence of the work of cluster formation on the cluster size, the influence of the water model on the surface tension of the plane surface is discussed. None of the three models considered gives a proper value for the surface tension of water at room temperature.

Zakharov Elena, Viktor V.; Brodskaya Aatto Laaksonen, N.

1998-10-01

178

Activities affecting surface water resources: A general overview  

SciTech Connect

In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

Not Available

1990-01-01

179

Eradication of Slugs and Snails  

Microsoft Academic Search

IN the note on the ``Eradication of Slugs and Snails'' in NATURE of July 16, p. 90, reference is made to many of the accepted methods of dealing with these pests. The trouble with barriers of repellent material is that spreading plants such as violas, certain asters, carnations, etc., are difficult to surround without injurious contact to the foliage, and

A. H. Hall

1932-01-01

180

APPLE SNAILS AS DISEASE VECTORS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Apple snails (Ampullariidae) are intermediate hosts of parasites causing at least three diseases in humans: cercarial dermatitis (“swimmer’s itch”) caused by trematode cercaria, intestinal problems caused by flukes in the genus Echinostoma, and eosinophilic meningitis caused by the nematode Angiostr...

181

An ontology design pattern for surface water features  

USGS Publications Warehouse

Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

2014-01-01

182

The South-to-North Water Diversion Project: effect of the water diversion pattern on transmission of Oncomelania hupensis, the intermediate host of Schistosoma japonicum in China  

PubMed Central

Background The South-to-North Water Diversion Project (SNWDP) is the largest national water conservancy project in China. However, the Eastern Route Project (ERP) of SNWDP will refer to the habitats of Oncomelania hupensis, the intermediate host of Schistosoma japonicum. The present study was aimed at investigating the effects of some factors relating to the water diversion pattern on the spread north of O. hupensis and transmission of S. japonicum. Methods Marked snails were attached to the floating debris, and then placed on the water surface, the passage of snails through water pumps was observed. Some marked living adult snails were placed under water in the 5 spots, 15, 30, 60, 90 and 120 days later, their survival and transfer under water were investigated. 2, 4, 8, 16, 32, 64 and 128 juvenile snails, with a male: female ratio of about 1, were caged, 1 year later, their reproductions were calculated. Results The snails attached on the floating debris at 100-, 50- and 20-cm-distance from the inlet pipe of the big pump (with a diameter of 80 cm), could be absorbed into the pumps, with passing rates of 2.45%, 3.93% and 43.46%, respectively, compared with 72.07% and 91.00% for the snails at 20 cm and 10 cm-distance from the inlet pipe of the small pump (with a diameter of 20 cm). A total of 36,600 marked living snails were put into 5 ponds and ditches, with the water depths of 1-1.6 m, 15-120 days later, no marked ones were found along the ponds and ditches or in the straw packages. The juvenile snails did not reproduce until their density reached up to 8 snails (ratio of male: female of 1)/0.16 m2. Conclusions During the construction of ERP of SNWDP, the risk of northward spread of schistosomiasis japonica will be decreased or eliminated as long as long-term reliable interventions for snail control are implemented. PMID:22433070

2012-01-01

183

[Evaluation of molluscicidal effect of nicotinanilide against Oncomelania snails].  

PubMed

Both nicotinanilide hydrochloride and nicotinanilide sulfate are water-soluble, their IC50 and LC90 against Oncomelania snails being around 0.3 mg/L and 0.5 mg/L, respectively, during 24 hour exposure at 25 degrees C followed by a 7-day recovery period. The laboratory tests and field trials showed that over 90% of snails were killed within 3 days exposure at 1-2 mg/L, and that 18.4%-100% snails on moist soil were killed at over 20 degrees C, exposed to spraying dosage of 1-2 g/m2 for 1-3 days. The chemical is highly effective against snails eggs at early stage (cell stage). The LC50 of nicotinanilide to Aristichthys nobilis and Pseudorasbora parva is about 200 mg/L. The acute oral LD50 in mice is about 2 g/kg. Plants tolerate the chemical at 1-2 g/m2, but some leaves wilted at greater than or equal to 5 g/m2, dicotyledon in particular. Dermatitis has been reported in individuals frequently exposing to nicotinanilide wettable powder during massive spraying. PMID:1959178

Chen, Z P; Tao, H Q; Hua, D S; Shen, B R; Chan, H L

1991-01-01

184

Molecular dynamics studies of interfacial water at the alumina surface.  

SciTech Connect

Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

Argyris, Dr. Dimitrios [University of Oklahoma; Ho, Thomas [ORNL; Cole, David [Ohio State University

2011-01-01

185

Failure of transmission of low-pathogenic avian influenza virus between Mallards and freshwater snails: an experimental evaluation.  

PubMed

In aquatic bird populations, the ability of avian influenza (AI) viruses to remain infectious in water for extended periods provides a mechanism that allows viral transmission to occur long after shedding birds have left the area. However, this also exposes other aquatic organisms, including freshwater invertebrates, to AI viruses. Previous researchers found that AI viral RNA can be sequestered in snail tissues. Using an experimental approach, we determined whether freshwater snails (Physa acuta and Physa gyrina) can infect waterfowl with AI viruses by serving as a means of transmission between infected and naïve waterfowl via ingestion. In our first experiment, we exposed 20 Physa spp. snails to an AI virus (H3N8) and inoculated embryonated specific pathogen-free (SPF) chicken eggs with the homogenized snail tissues. Sequestered AI viruses remain infectious in snail tissues; 10% of the exposed snail tissues infected SPF eggs. In a second experiment, we exposed snails to water contaminated with feces of AI virus-inoculated Mallards (Anas platyrhynchos) to evaluate whether ingestion of exposed freshwater snails was an alternate route of AI virus transmission to waterfowl. None of the immunologically naïve Mallards developed an infection, indicating that transmission via ingestion likely did not occur. Our results suggest that this particular trophic interaction may not play an important role in the transmission of AI viruses in aquatic habitats. PMID:24502718

Oesterle, Paul T; Huyvaert, Kathryn P; Orahood, Darcy; Mooers, Nicole; Sullivan, Heather; Franklin, Alan B; Root, J Jeffrey

2013-10-01

186

River regulation and interactions groundwater - surface water  

Microsoft Academic Search

The determination of a minimum acceptable flow in a river affected by regulation is a major task in management of hydropower development. The Norwegian Water Resources and Energy Directorate (NVE), responsible for administrating the nation's water resources, requires an objective system that takes into account the needs of the developer and the rivers environment such as water quality, river biota,

H. Colleuille; W. K. Wong; P. Dimakis; T. S. Pedersen

2003-01-01

187

Surface Tension: The Ways of Water.  

ERIC Educational Resources Information Center

Describes activities which help students understand several basic scientific concepts regarding water. Outlines objectives, materials needed, procedures, and questions to ask about student observations. Investigations include working with the self-sealing property of water, talcum powder, paper clips, and making water wetter. (RT)

Donalson-Sams, Marilyn

1988-01-01

188

CHARACTERIZING RAW SURFACE WATER AMENABLE TO MINIMAL WATER SUPPLY TREATMENT  

EPA Science Inventory

The monitoring strategy must be sensitive to frequent and unpredictable fluctuations in water quality caused by major storm events and seasonal destratifications of the lake/impoundment. Therefore, daily monitoring of raw source water and the finished water quality entering distr...

189

Economic Impacts of Surface Mining on Household Drinking Water Supplies  

EPA Science Inventory

This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

190

Investigation of surface water behavior during glaze ice accretion  

NASA Technical Reports Server (NTRS)

A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

Hansman, R. John, Jr.; Turnock, Stephen R.

1990-01-01

191

Connecting phosphorus loss from agricultural landscapes to surface water quality  

Microsoft Academic Search

The loss of phosphorous (P) from the landscape is commonly viewed as deleterious for surface water quality. However, the quantities lost and the impact this can have on surface waters depends on numerous mechanisms that occur whilst en route. The aim of this review is to give an outline of these mechanisms and thus how sources of P in the

R. W. McDowell; B. J. F. Biggs; A. N. Sharpley; L. Nguyen

2004-01-01

192

TILLAGE EFFECTS ON NEAR SURFACE SOIL WATER DYNAMICS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Tillage modifies the soil physical properties near the surface which in turn can influence evaporation rates and how water is redistributed within the profile during and after precipitation. The objective of this study was to evaluate the effects of sweep tillage on near surface soil water dynamics....

193

Sea-ice and surface water circulation, Alaskan continental shelf  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Over 1500 water samples from surface and from standard hydrographic depths were collected during June and July 1973 from Bering Sea and Gulf of Alaska. The measurement of temperature, salinity, and productivity indicated that various distinct water masses cover the Bering Sea Shelf. The suspended load in surface waters will be correlated with the ERTS-1 imagery as it becomes available to delineate the surface water circulation. The movement of ice floes in the Bering Strait and Bering Sea indicated that movement of ice varies considerably and may depend on wind stress as well as ocean currents.

Wright, F. F.; Sharma, G. D.; Burns, J. J. (principal investigators)

1973-01-01

194

Levity Through Tension: Fun with Water's Surface Tension  

NSDL National Science Digital Library

This experiment describes how to create a "dribble bottle" which only leaks water when the cap is unscrewed. The full water bottle has a small hole made with a push pin. The surface tension of water is strong enough to keep the small pin hole sealed. When the bottle is open, air can enter the bottle through the top, and air pressure overcomes the surface tension, pushing water out the small hole. In a related video, Mr. O and his assistants explore surface tension with a variety of similar experiments.

Children's Museum of Houston

2011-01-01

195

Environmental factors influencing isolation of enteroviruses from polluted surface waters.  

PubMed

The influence of water quality upon the concentration of virus on location was assessed in field studies conducted in the Houston ship channel, Galveston Bay, and Houston waste treatment plants. Clarification of polluted surface waters was accomplished with minimal loss of virus. Virus from clarified sewage effluents and saline waters was then adsorbed and concentrated on textile and membrane filter surfaces. Direct measurements of virus from large volumes of polluted surface waters under existing field conditions were then made using the virus concentrator equipment. PMID:4364463

Metcalf, T G; Wallis, C; Melnick, J L

1974-05-01

196

Cold-induced spreading of water drops on hydrophobic surfaces.  

PubMed

Superhydrophobic surfaces are characterized by their peculiarities, such as water-repellent, anti-icing, and freezing-delay properties. Wetting dynamics of deposited water drops on cooling hydrophobic surfaces, which directly affects the aforementioned properties, has not been studied thoroughly. Here, water drops are cooled on different hydrophobic surfaces in a controlled environment. During the cooling process, a significant increase in the drop footprint and decrease in the apparent contact angle are observed because of premature and capillary condensation, followed by thin water film formation adjacent to the solid-liquid-gas line. The water thin film propagates on the hydrophobic substrates radially away from the trijunction, followed by spreading of the drop on the film, which was experimentally validated through high-speed visualization. In addition, the roles of physical variables, such as the substrate temperature, humidity of surrounding air, types of hydrophobic surfaces, surface roughness, and drop volume, on post-spreading shape are investigated experimentally. PMID:25631237

Tavakoli, Faryar; Kavehpour, H Pirouz

2015-02-24

197

Herbicide Metabolites in Surface Water and Groundwater: Introduction and Overview  

USGS Publications Warehouse

Several future research topics for herbicide metabolites in surface and ground water are outlined in this chapter. They are herbicide usage, chemical analysis of metabolites, and fate and transport of metabolites in surface and ground water. These three ideas follow the themes in this book, which are the summary of a symposium of the American Chemical Society on herbicide metabolites in surface and ground water. First, geographic information systems allow the spatial distribution of herbicide-use data to be combined with geochemical information on fate and transport of herbicides. Next these two types of information are useful in predicting the kinds of metabolites present and their probable distribution in surface and ground water. Finally, methods development efforts may be focused on these specific target analytes. This chapter discusses these three concepts and provides an introduction to this book on the analysis, chemistry, and fate and transport of herbicide metabolites in surface and ground water.

Thurman, E.M.; Meyer, M.T.

1996-01-01

198

Model of surface water quality Valerian Antohe1  

E-print Network

of Danube water quality was conducted in two control locations 183 km and 166 km, which are the entry for Oxygen in water K, temperature T and connections between. This has produced a theoretical evolutionModel of surface water quality Valerian Antohe1 , Constantin Stanciu1 Faculty of Engineering from

Hinze, Thomas

199

Water Order Profiles on Phospholipid/Cholesterol Membrane Bilayer Surfaces  

E-print Network

Water Order Profiles on Phospholipid/Cholesterol Membrane Bilayer Surfaces DAVID ROBINSON,1 2011 in Wiley Online Library (wileyonlinelibrary.com). Abstract: Water is pivotal in the stabilization of macromolecular biological structures, although the dynamic en- semble structure of water near to molecular

O'Shea, Paul

200

Enhanced ordering of water at hydrophobic surfaces  

NASA Astrophysics Data System (ADS)

We study the properties of water molecules adjacent to a hydrophobic molecular layer with vibrational sum-frequency generation spectroscopy. We find that the water molecules at D2O/hexane, D2O/heptane, and D2O/polydimethylsiloxane interfaces show an enhanced ordering and stronger hydrogen-bond interactions than the water molecules at a D2O/air interface. With increasing temperature (up to 80 °C) the water structure becomes significantly less ordered and the hydrogen bonds become weaker.

Strazdaite, Simona; Versluis, Jan; Backus, Ellen H. G.; Bakker, Huib J.

2014-02-01

201

Water resources data Virginia water year 2005 Volume 1. Surface-water discharge and surface-water quality records  

USGS Publications Warehouse

Water-resources data for the 2005 water year for Virginia includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records for water discharge at 172 gaging stations; stage only at 2 gaging stations; elevation at 2 reservoirs and 2 tide gages; contents at 1 reservoir, and water quality at 25 gaging stations. Also included are data for 50 crest-stage partial-record stations. Locations of these sites are shown on figures 4A-B and 5A-B. Miscellaneous hydrologic data were collected at 128 measuring sites and 19 water-quality sampling sites not involved in the systematic data-collection program. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

2006-01-01

202

A molecular dynamics study on surface properties of supercooled water  

NASA Astrophysics Data System (ADS)

Molecular dynamics simulations were performed to study the surface properties of water in a temperature range from 228 to 293 K by using the extended simple point charge (SPC/E) and four-site TIP4P potentials. The calculated surface tension increases with the decrease of temperature, and moreover the slopes of the surface tension-temperature curves show a weak rise below 273 K, whereas no obvious anomalies appear near 228 K, which accords with the previous experiments. Compared with the measured values, the SPC/E potential shows a good agreement, and the TIP4P potential underestimates the surface tension. The main reason for that may be the reasonable description of the surface structure of supercooled water for the SPC/E. When simulating the orientational distributions of water molecules near the surface, the SPC/E potential produces higher ordering and larger surface potentials than the TIP4P potential.

Lü, Yongjun; Wei, Bingbo

2006-10-01

203

Biogeochemistry of DMS in Surface Waters  

NASA Technical Reports Server (NTRS)

Dimethylsulfide (DMS) is important in influencing the formation of aerosols in the troposphere over large areas of the world's oceans. Understanding the dynamics of aerosols is important to understanding the earth's radiation balance. In evaluating the factors controlling DMS in the troposphere it is vital to understand the dynamics of DMS in the surface ocean. The biogeochemical processes controlling DMS concentration in seawater are myriad; modeling and theoretical estimation are problematic. At the beginning of this project we believed that we were on the verge of simplifying the ship-track measurement of DMS, and we proposed to deploy such a system to develop a database relating high frequency DMS measurements to biological and physicochemical and optical properties of surface water that can be quantified by remote sensing techniques. We designed a system to measure DMS concomitantly with other basic chemical and biological data in a flow-through system. The project was collaborative between Woods Hole Oceanographic Institution (WHOI) and Bermuda Biological Station for Research (BBSR). The project on which we are reporting was budgeted for only one year with a one year no-cost extension. At WHOI our effort was directed towards designing traps which would be used to concentrate DMS from seawater and allow storage for subsequent analysis. At that time, GC systems were too large for easy long-term deployment on a research vessel like R/V Weatherbird, so we focused on simplifying the shipboard sampling procedure. Initial studies of sample recovery with high levels of DMS suggested that Carboxen 1000, a relatively new carbon molecular sieve, could be used as a stable storage medium. The affinity of Carboxen for DMS is several orders of magnitude higher than gold wool (another adsorbent used for DMS collection) on a weight or volume basis. Furthermore, Carboxen's affinity for DMS is also far less susceptible to humidity than gold wool. Unfortunately, further experiments with low level DMS indicated that recovery of DMS after storage was not quantitative. The material has proven to be completely acceptable for short term storage and has been incorporated into a micro-GC system. Since working on this project, we have collaborated with RVM Scientific in Santa Barbara in the design and construction of small portable micro-GC's that will make feasible at-sea measurement in moving ships, making rapid gas analysis and quantification feasible in a ship-track mode. Throughout this period at both WHOI and BBSR, we continued to analyze field data to understand that patterns of time and space variability in DMS and the processes that govern it. These insights will be crucial to determining the specifications for our automated sampling program. The data from this, the longest continuous sampling program for ocean DMS, provided insights into year to year and short-term variability.

Dacey, J. W. H.

1997-01-01

204

SURFACE AND SUBSURFACE WATER QUALITY HYDROLOGY IN SURFACE MINED WATERSHEDS. PART I: TEXT  

EPA Science Inventory

Surface mining disturbs the natural sequence of geologic strata, and, therefore, potentially modifies the quantity and quality of water on a watershed disturbed by surface mining. Such a watershed disturbed by surface mining was monitored in Colorado. In addition, surface runoff,...

205

Taxonomy: A Precursor to Understanding Ecological Interactions among Schistosomes, Snail Hosts, and Snail-Eating Fishes  

E-print Network

, and Snail-Eating Fishes JAY RICHARD STAUFFER, JR.* Pennsylvania State University, 420 Forest Resources decrease in the abundance of snail-eating fishes and an increase in the prevalence of schistosomiasis among decrease in fish molluscivores permitted an increase in the abundance of snails that are intermediate hosts

Boyer, Elizabeth W.

206

Storage and incubation of Echinostoma revolutum eggs recovered from wild Branta canadensis, and their infectivity to Lymnaea tomentosa snails.  

PubMed

Echinostoma revolutum eggs recovered from naturally infected wild Canada geese (Branta canadensis) were cold stored (4-6 degrees C) for up to 72 weeks. Successful hatching followed incubation for from 6 to 8 days at an optimum temperature of between 25 and 30 degrees C. A partial life cycle from adult worm to metacercarial encystment in Lymnaea tomentosa snails was completed in the laboratory. Snails were infected both by free miracidia and by ingestment of unhatched embryonated eggs. Infection was equally successful in environmental temperature ranges from 10 to 25 degrees C, and at challenge levels of 2, 5 or 10 embryonated eggs per snail. Exposure to 10 eggs was lethal. Ingestion by snails of embryonated eggs with successful infection at 10 degrees C suggests that embryonated eggs may be used to infect wild snails when the environmental water temperature has reached 10 degrees C. PMID:16336715

Davis, N E

2005-12-01

207

Impact of invasive apple snails on the functioning and services of natural and managed wetlands  

NASA Astrophysics Data System (ADS)

At least 14 species of apple snail (Ampullariidae) have been released to water bodies outside their native ranges; however, less than half of these species have become widespread or caused appreciable impacts. We review evidence for the impact of apple snails on natural and managed wetlands focusing on those studies that have elucidated impact mechanisms. Significant changes in wetland ecosystems have been noted in regions where the snails are established: Two species in particular (Pomacea canaliculata and Pomacea maculata) have become major pests of aquatic crops, including rice, and caused enormous increases in molluscicide use. Invasive apple snails have also altered macrophyte community structure in natural and managed wetlands through selective herbivory and certain apple snail species can potentially shift the balance of freshwater ecosystems from clear water (macrophyte dominated) to turbid (plankton dominated) states by depleting densities of native aquatic plants. Furthermore, the introductions of some apple snail species have altered benthic community structure either directly, through predation, or indirectly, through exploitation competition or as a result of management actions. To date much of the evidence for these impacts has been based on correlations, with few manipulative field or mesocosm experiments. Greater attention to impact monitoring is required, and, for Asia in particular, a landscape approach to impact management that includes both natural and managed-rice wetlands is recommended.

Horgan, Finbarr G.; Stuart, Alexander M.; Kudavidanage, Enoka P.

2014-01-01

208

Integrating nonindigenous aquatic plant control with protection of snail kite nests in Florida.  

PubMed

The endangered snail kite (Rostrhamus sociabilis) feeds primarily on the freshwater apple snail (Pomacea paludosa) in Florida. The nonindigenous, floating water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) impede kites from finding snails. Effective control of these aquatic plants in the littoral zone of central and south Florida lakes benefits kites by maintaining open foraging habitat. However, incidental herbicide spraying of nesting substrates result in nest collapse when kites breed in nonwoody, emergent plants [cattail (Typha spp.) and giant bulrush (Scirpus validus)] in the outer littoral zone during lower lake levels. Many endangered species recovery plans and their implementation have experienced problems due to inaction and/or noncooperation by various governmental agencies and their personnel. Herein, we describe the development and implementation of a buffer zone strategy to prevent secondary impacts from an aquatic plant control program to snail kites nesting on lakes in central and south Florida. A strategy was jointly developed by personnel of five state and federal agencies to control herbicide application near kite nesting areas during the normal breeding season. Although requiring various modifications during its implementation, this cooperative effort successfully integrated aquatic plant control objectives with snail kite conservation on Lake Okeechobee during 1988. The program was expanded the following year to lakes Kissimmee and Tohopekaliga. Since the implementation of the snail kite impact preclusion program, no nest loss was attributed to incidental herbicide applications on lakes Okeechobee, Kissimmee, and Tohopekaliga. PMID:11436998

Rodgers, J A; Smith, H T; Thayer, D D

2001-07-01

209

Mars water vapor, near-surface  

Microsoft Academic Search

In a previous paper we concluded that the temperature sensors aboard the Viking landers (VL-1 and VL-2) were detecting the water vapor frost point. Analysis of one Mars year of data at both lander sites substantiates this conclusion. At VL-1 it is found that the water vapor mixing ratio is constant with height through the bulk of the atmosphere, most

J. A. Ryan; R. D. Sharman; R. D. Lucich

1982-01-01

210

Water Resources Data, Virginia, Water, Year 2003 Volume 1. Surface-Water Discharge and Surface-Water Quality Records  

USGS Publications Warehouse

Water-resources data for the 2003 water year for Virginia includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records forwater discharge at 178 gaging stations; stage only at 2 gaging stations; stage and contents at 11 lakes and reservoirs; and water quality at 16 gaging stations. Also included are data for 49 crest-stage partial-record stations. Locations of these sites are shown on figures 4 and 5. Miscellaneous hydrologic data were collected at 149 measuring sites and 6 water-quality sampling sites not involved in the systematic data-collectionprogram. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

White, Roger K.; Hayes, Donald C.; Guyer, Joel R.; Powell, Eugene D.

2004-01-01

211

Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.  

ERIC Educational Resources Information Center

This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

Terrell, Charles R.; Perfetti, Patricia Bytnar

212

Effect of Glyphosate on the Development of Pseudosuccinea columella Snails  

Microsoft Academic Search

.   Glyphosate (Roundup) is one of the most commonly used broad-spectrum herbicides with little to no hazard to animals, man,\\u000a or the environment. Due to its widespread use, there is continuous contamination of the environment in both soil and water\\u000a with this herbicide. There is a paucity of long-term exposure studies with sublethal concentrations of glyphosate on aquatic\\u000a snails. This

T. M. Tate; J. O. Spurlock; F. A. Christian

1997-01-01

213

Snail modulates cell metabolism in MDCK cells  

SciTech Connect

Highlights: ? MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ? MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ? TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ? MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ? MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of key enzymes. This results in enhanced glucose dependency and leads to cell death under low-glucose conditions. On the other hand, the reduced requirements for oxygen and nutrients from the surrounding environment, might confer the resistance to cell death induced by hypoxia and malnutrition.

Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)] [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)] [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan)] [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)] [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)] [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)] [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)] [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)] [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)] [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)] [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

2013-03-22

214

Interaction between water cluster ions and mica surface  

SciTech Connect

Water cluster ion beams were irradiated on mica surfaces to investigate the interaction between molecular cluster ions and a mica surface. The contact angle of the mica surface increased with increasing dose of the water cluster ion beam, but the increase in the contact angle was smaller than that induced by an ethanol cluster ion beam. The surface roughness also increased with increasing dose of the water cluster ion beam, whereas the intensity of K 2p x-ray photoelectron spectroscopy peaks decreased with increasing dose of the water cluster ion beam. The decrease in the number of potassium atoms together with the increase in the surface roughness may be the causes of the increase in the contact angle.

Ryuto, Hiromichi, E-mail: ryuto@kuee.kyoto-u.ac.jp; Ohmura, Yuki; Nakagawa, Minoru; Takeuchi, Mitsuaki; Takaoka, Gikan H. [Photonics and Electronics Science and Engineering Center, Kyoto University, Nishikyo, Kyoto 615-8510 (Japan)

2014-03-15

215

Molecular dynamics simulations of water droplets on polymer surfaces.  

PubMed

Molecular dynamics simulations were used to study the wetting of polymer surfaces with water. Contact angles of water droplets on crystalline and two amorphous polyethylene (PE) and poly(vinyl chloride) (PVC) surfaces were extracted from atomistic simulations. Crystalline surfaces were produced by duplicating the unit cell of an experimental crystal structure, and amorphous surfaces by pressing the bulk polymer step by step at elevated temperature between two repulsive grid surfaces to a target density. Different-sized water droplets on the crystalline PE surface revealed a slightly positive line tension on the order of 10(-12)-10(-11) N, whereas droplets on crystalline PVC did not yield a definite line tension. Microscopic contact angles produced by the simple point charge (SPC) water model were mostly a few degrees smaller than those produced by the extended SPC model, which, as the model with lowest bulk energy, presents an upper boundary for contact angles. The macroscopic contact angle for the SPC model was 94 degrees on crystalline PVC and 113 degrees on crystalline PE. Amorphicity of the surface increased the water contact angle on PE but decreased it on PVC, for both water models. If the simulated contact angles on crystalline and amorphous surfaces are combined in proportion to the crystallinity of the polymer in question, simulated values in relatively good agreement with measured values are obtained. PMID:17042636

Hirvi, Janne T; Pakkanen, Tapani A

2006-10-14

216

Molecular dynamics simulations of water droplets on polymer surfaces  

NASA Astrophysics Data System (ADS)

Molecular dynamics simulations were used to study the wetting of polymer surfaces with water. Contact angles of water droplets on crystalline and two amorphous polyethylene (PE) and poly(vinyl chloride) (PVC) surfaces were extracted from atomistic simulations. Crystalline surfaces were produced by duplicating the unit cell of an experimental crystal structure, and amorphous surfaces by pressing the bulk polymer step by step at elevated temperature between two repulsive grid surfaces to a target density. Different-sized water droplets on the crystalline PE surface revealed a slightly positive line tension on the order of 10-12-10-11N, whereas droplets on crystalline PVC did not yield a definite line tension. Microscopic contact angles produced by the simple point charge (SPC) water model were mostly a few degrees smaller than those produced by the extended SPC model, which, as the model with lowest bulk energy, presents an upper boundary for contact angles. The macroscopic contact angle for the SPC model was 94° on crystalline PVC and 113° on crystalline PE. Amorphicity of the surface increased the water contact angle on PE but decreased it on PVC, for both water models. If the simulated contact angles on crystalline and amorphous surfaces are combined in proportion to the crystallinity of the polymer in question, simulated values in relatively good agreement with measured values are obtained.

Hirvi, Janne T.; Pakkanen, Tapani A.

2006-10-01

217

Impact of Raw Water Ammonia on the Surface Water Treatment Processes and Its Removal by Nitrification  

Microsoft Academic Search

Impact of raw water ammonia on the treated water quality and removal of ammonia from surface water were studied. Raw water ammonia and physicochemical quality of treated water of Saidabad Water Treatment Plant were analyzed for the period of one year (January through December 2006). The monthly averages of maximum (7.55 mg\\/l) and minimum (0.34 mg\\/l) ammonia-N level of the

M Alamgir Hossain; ANM Fakhruddin; Sirajul Islam Khan

2007-01-01

218

F-LE Snail Invasion  

NSDL National Science Digital Library

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: In 1966, a Miami boy smuggled three Giant African Land Snails into the country. His grandmother eventually released them into the garden, and in seven ...

2012-05-01

219

Assessment of information on ground-water/surface-water interactions in the northern midcontinent  

USGS Publications Warehouse

Ground-water/surface-water interactions are important to the hydrology of shallow aquifers, streams, lakes, and wetlands. Information on ground-water/surface-water interactions in the northern midcontinent was assessed. The ground-water/surface-water interactions in physiographic and climatic areas that contain many wetlands differed from the interactions in areas that consisted predominantly of alluvial aquifers along large streams. In both types of areas, however, the interactions are complex. The distribution of shallow ground-water observation wells in the northern midcontinent and the frequency of measurement were evaluated. Most shallow wells are located adjacent to major streams, especially in areas where wetlands are not a dominant surface-water feature. The frequency of measurement was inconsistent between states.

Strobel, Michael L.

1995-01-01

220

Water accounting for conjunctive groundwater/surface water management: case of the SingkarakOmbilin  

E-print Network

Water accounting for conjunctive groundwater/surface water management: case of the Singkarak University, 216 Riley-Robb Hall, Ithaca, NY 14853-5701, USA b International Water Management Institute, P 2003 Abstract Because water shortages limit development in many parts of the world, a systematic

Walter, M.Todd

221

Water structuring over the hydrophobic surface of cellulose.  

PubMed

Many important biological solutes possess not only polar and hydrogen-bonding functionalities but also weakly hydrating, or hydrophobic, surfaces. While the aggregation of these hydrophobic surfaces has been shown to play an important role in the aggregation of individual chains of cellulose, it is not known whether the water structuring imposed by these hydrophobic surfaces more closely resembles that associated with small hydrophobic solutes like methane and fats or more closely resembles that associated with extended hydrophobic surfaces like mica or waxy planes. By using molecular dynamics simulations to characterize the water molecule orientations over different regions of the 100 surface of cellulose in contact with water, it was found that the hydrophobic strips of the cellulose crystal are sufficiently narrow that they hydrate like a fatty acid chain, rather than like a more extended surface, suggesting that their aggregation would be dominated by entropy rather than enthalpy. PMID:25365241

Miyamoto, Hitomi; Schnupf, Udo; Brady, John W

2014-11-19

222

Particles in Surface Waters: Coagulation and Transport  

E-print Network

-averaged, unsteady particle transport were developed to approximate the size-dependent particle transport processes, which included advection, dispersion, and settling. Coupled exchange of discrete particles between the water column and sediment bed was modeled using...

Culkin, Gerald W.; Lawler, Desmond F.

223

OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS  

EPA Science Inventory

Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

224

Chloride in ground water and surface water in the vicinity of selected surface-water sampling sites of the beneficial use monitoring program of Oklahoma, 2003  

USGS Publications Warehouse

The Oklahoma Water Resources Board Beneficial Use Monitoring Program reported exceedances of beneficial-use standards for chloride at 11 surface-water sampling sites from January to October 2002. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study to determine the chloride concentrations in ground water in the vicinity of Beneficial Use Monitoring Program surface-water sampling sites not meeting beneficial use standards for chloride and compare chloride concentrations in ground water and surface water. The chloride-impaired Beneficial Use Monitoring Program surface-water sampling sites are located in the western and southern regions of Oklahoma. The ground-water sampling sites were placed in proximity to the 11 surface-water sampling sites designated impaired by chloride by the Oklahoma Water Resources Board. Two surface-water sampling sites were located on the Beaver River (headwaters of the North Canadian River), three sites on the Cimarron River, one site on Sandy Creek, one site on North Fork Red River, and four sites on the Red River. Six ground-water samples were collected, when possible, from two test holes located upstream from each of the 11 Beneficial Use Monitoring Program surface-water sampling sites. One test hole was placed on the left bank and right bank, when possible, of each Beneficial Use Monitoring Program surfacewater sampling site. All test holes were located on alluvial deposits adjacent to the Beneficial Use Monitoring Program surface-water sampling sites within 0.5 mile of the stream. Top, middle, and bottom ground-water samples were collected from the alluvium at each test hole, when possible. Water properties of specific conductance, pH, water temperature, and dissolved oxygen were recorded in the field before sampling for chloride. The ground-water median chloride concentrations at 8 of the 11 Beneficial Use Monitoring Program sites were less than the surface-water median chloride concentrations. The Turpin and Beaver sites had similar ground-water and surface-water median chloride concentrations. The Buffalo site was the only site that had a large difference between the ground-water and surface-water chloride concentrations. The ground-water median chloride concentration was approximately 14,500 mg/L greater than the surface-water median chloride concentration at the Buffalo site.

Mashburn, Shana L.; Sughru, Michael P.

2004-01-01

225

Evaluation of limestone neutralization of acidic Adirondack surface waters  

SciTech Connect

This research project evaluated the use of limestone in packed-bed reactors to neutralize acidified Adirondack surface waters (particularly streams). The project was composed of two phases; investigation of sediment-water interactions and evaluation of the kinetics of limestone packed-bed-reactor neutralization. Experimental results demonstrated that there is little sediment water interaction with regard to hydrogen ion in the Adirondack lakes and streams studied. The results also demonstrated that neutralization of acidified Adirondack surface water by limestone packed-bed reactors is feasible. A preliminary design procedure is presented to show this feasibility.

Bisogni, J.J. Jr.

1980-01-01

226

Third Stokes parameter emission from a periodic water surface  

NASA Technical Reports Server (NTRS)

An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.

Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.

1991-01-01

227

Evaluation of the ERA40 Surface Water Budget and Surface Temperature for the Mackenzie River Basin  

Microsoft Academic Search

We assess the systematic biases in temp erature and precipitation, and the surface water budget of ERA-40 for the Mackenzie River basin by comparing monthly averages from ERA-40 with basin averages of surface observations of temperature, precipitation, evaporation and streamflow from the Mackenzie GEWEX (Global Energy and Water Cycle Experiment) Study (MAGS). The bias and spinup of precipitation in ERA-40

Alan K. Betts; John H. Ball; Pedro Viterbo

2003-01-01

228

Water-collecting behavior of nanostructured surfaces with special wettability  

NASA Astrophysics Data System (ADS)

Dew is commonly formed even in dry regions, and we examined the suitability of surfaces with superhydrophilic patterns on a superhydrophobic background as a dew-harvesting system. Nanostructured surfaces with mixed wettability were fabricated by ZnO and TiO2 nanorods. The condensation properties were investigated by environmental scanning electron microscopy (ESEM), and the water-collecting function of the patterned surfaces in an artificial environment was confirmed. Condensation and water-collecting behavior were evaluated as a function of surface inclination angle and pattern shape. We examined the collecting efficiency among the different wettabilities at various inclination angles and observed the condensation behavior for various superhydrophilic shapes.

Choo, Soyoung; Choi, Hak-Jong; Lee, Heon

2015-01-01

229

Two-dimensional percolation at the free water surface and its relation with the surface tension anomaly of water  

NASA Astrophysics Data System (ADS)

The percolation temperature of the lateral hydrogen bonding network of the molecules at the free water surface is determined by means of molecular dynamics computer simulation and identification of the truly interfacial molecules analysis for six different water models, including three, four, and five site ones. The results reveal that the lateral percolation temperature coincides with the point where the temperature derivative of the surface tension has a minimum. Hence, the anomalous temperature dependence of the water surface tension is explained by this percolation transition. It is also found that the hydrogen bonding structure of the water surface is largely model-independent at the percolation threshold; the molecules have, on average, 1.90 ± 0.07 hydrogen bonded surface neighbors. The distribution of the molecules according to the number of their hydrogen bonded neighbors at the percolation threshold also agrees very well for all the water models considered. Hydrogen bonding at the water surface can be well described in terms of the random bond percolation model, namely, by the assumptions that (i) every surface water molecule can form up to 3 hydrogen bonds with its lateral neighbors and (ii) the formation of these hydrogen bonds occurs independently from each other.

Sega, Marcello; Horvai, George; Jedlovszky, Pál

2014-08-01

230

Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces.  

PubMed

Laser-induced fluorescence detection was used to measure photolysis rates of anthracene and naphthalene at the air-ice interface, and the kinetics were compared to those observed in water solution and at the air-water interface. Direct photolysis proceeds much more quickly at the air-ice interface than at the air-water interface, whereas indirect photolysis due to the presence of nitrate or hydrogen peroxide appears to be suppressed at the ice surface with respect to the liquid water surface. Both naphthalene and anthracene self-associate readily on the ice surface, but not on the water surface. The increase in photolysis rates observed on ice surfaces is not due to this self-association, however. The wavelength dependence of the photolysis indicates that it is due to absorption by the PAH. No dependence of the rate on temperature is seen, either at the liquid water surface or at the ice surface. Molecular oxygen appears to play a complex role in the photolytic loss mechanism, increasing or decreasing the photolysis rate depending on its concentration. PMID:17256828

Kahan, T F; Donaldson, D J

2007-02-22

231

Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways  

PubMed Central

Background Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host. Methodology/Principal Findings Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior. Conclusions Results of this study indicate that A. abstrusus and T. brevior infective L3 are shed in the mucus of H. aspersa or in water where infected gastropods had died submerged. Both elimination pathways may represent alternative route(s) of environmental contamination and source of the infection for these nematodes under field conditions and may significantly affect the epidemiology of feline lungworms. Considering that snails may act as intermediate hosts for other metastrongyloid species, the environmental contamination by mucus-released larvae is discussed in a broader context. PMID:25884402

Giannelli, Alessio; Colella, Vito; Abramo, Francesca; do Nascimento Ramos, Rafael Antonio; Falsone, Luigi; Brianti, Emanuele; Varcasia, Antonio; Dantas-Torres, Filipe; Knaus, Martin; Fox, Mark T.; Otranto, Domenico

2015-01-01

232

Identifying and Mapping Seasonal Surface Water Frost with MGS TES  

NASA Astrophysics Data System (ADS)

The Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured surface broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. However, few studies have investigated seasonal surface water frost and its role in the global water cycle. We examine zonally-averaged TES daytime albedo, temperature, and water vapor abundance data [after Smith, 2004] to map the presence of surface water frost on Mars. Surface water frost occurs in the polar and mid latitudes, in regions with surface temperatures less than 220 K and above 150 K, and can significantly increase albedo relative to the bare surface. In the northern hemisphere water frost is most apparent in late fall/early winter, before the onset of carbon dioxide frost. Dust storms occurring near northern winter solstice affect albedo data and prevent us from putting a latitudinal lower limit on the water frost in the northern hemisphere. Regardless, seasonal water frost occurs at least as low as 48°N in Utopia Planitia, beginning at Ls=~230°, as observed by Viking Lander 2 [Svitek and Murray, 1990]. Daytime surface water frost was also observed at the Phoenix Lander site (68°N) beginning at Ls=~160° [Cull et al., 2010]. The timing of albedo variations observed by TES agree relatively well with lander observations of seasonal frost. Seasonal water frost is not detected during fall in the southern hemisphere. A potential explanation for this discrepancy, compared with frost detections in the north, is the disparity in atmospheric water vapor abundance between the two hemispheres. The frost point temperatures for water vapor in the southern hemisphere are ~5-10 K lower for the corresponding season and latitude in the north [Smith, 2004]. This inhibits the stability of water frost on the surface in the southern hemisphere and also lowers the maximum thickness of a water frost layer, potentially limiting its effect on surface albedo. Our work here shows that the seasonal progression in the northern hemisphere of Mars involves extensive deposition of water frost, similar in progression to the carbon dioxide seasonal ice cap. This behavior results in variation of surface albedo and therefore affects surface and subsurface temperatures, which could impact the distribution of ground ice. Surface frost and subsequent mixing of vapor back into the atmosphere likely plays an important role in the global water cycle. Mapping of water frost's geographical extent, timing, and impact on surface albedo can provide insight into the processes controlling the present Martian climate. References: Cull, S. et al. (2010) JGR, 115, E00E19. Smith, M. D. (2004) Icarus, 167, 148-165. Svitek, T. and Murray, B. (1990) JGR, 95(B2), 1495-1510.

Bapst, J.; Bandfield, J. L.; Wood, S. E.

2013-12-01

233

Formation of Water on a Warm Amorphous Silicate Surface  

NASA Astrophysics Data System (ADS)

It is well established that reactions on interstellar dust grain surfaces are indispensable for water formation in space. Among all the intermediate products that lead to water formation, the OH radical is especially important because is a product of all the three main water formation surface routes, i.e., the hydrogenation of O, O2, and O3, and it also connects these three routes. The desorption energy of OH from dust grain surfaces, along with dust grain temperature, determines the availability OH for grain surface versus gas-phase reactions. We experimentally investigated water formation on the surface of a warm amorphous silicate via H+O3?OH+O2. The surface temperature was kept at 50 K so as to exclude the interference of O2. It is found that OH has a significant residence time at 50 K. The OH desorption energy from amorphous silicate surface is calculated to be at least 1680 K, and possibly as high as 4760 K. Water is formed efficiently via OH+H and OH+H2, and the product H2O stays on the surface upon formation. Deuterium has also been used in place of hydrogen to check isotopic effects. This work is supported by NSF, Astronomy & Astrophysics Division (Grants No. 0908108 and 1311958) and NASA (Grant No. NNX12AF38G). We thank Dr. J.Brucato of the Astrophysical Observatory of Arcetri for providing the samples used in these experiments.

Vidali, Gianfranco; He, Jiao

2014-06-01

234

A siphon gage for monitoring surface-water levels  

USGS Publications Warehouse

A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.

McCobb, T.D.; LeBlanc, D.R.; Socolow, R.S.

1999-01-01

235

Estimation of precipitable water from surface observations  

E-print Network

, and a Wheatstone bridge was designed, built and used to measure the total precipitable water at College Station, Texas. The instrument was calibrated by the application of absorption and scattering coeffic ients reported by Fowle. In the absence...) proposed the coeffic ient 2. 0 for e in Equation (4), and Lejay (1938) showed that 1.6 was a better value fo r air masses in the vicinity of Shanghai. Fowle (1913) pointed out that Hann? s formula did not give values of precipitable water which were...

Kahan, Archie Marion

1959-01-01

236

Nonpoint pollution of surface waters with phosphorus and nitrogen  

E-print Network

information, we are confident that: (1) nonpoint pollution of surface waters with P and N could be reduced by reducing surplus nutrient flows in agricultural systems and processes, reducing agricultural and urban runoff by diverse methods, and reducing N...

Carpenter, S. R.; Caraco, N. F.; Correll, D. L.; Howarth, R. W.; Sharpley, A. N.; Smith, Val H.

1998-08-01

237

NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN  

E-print Network

to downstream aquatic ecosystems, and which can also volatilize to the atmosphere, redepositing elsewhere and eventually reaching aquatic ecosystems. If current practices continue, nonpoint pollution of surface waters is virtually certain to increase...

Carpenter, Stephen R.; Caraco, Nina F. M.; Correll, David L.; Howarth, Robert W.; Sharpley, Andrew N.; Smith, Val H.

1998-01-01

238

TRACE ORGANIC CONTAMINANTS IN ANTHROPOGENICALLY ACIDIFIED SURFACE WATERS  

EPA Science Inventory

The biological effects of trace organic contaminants in anthropogenically acidified surface waters are mediated by the nature of the association of trace organics with dissolved and particulate organic matter (DOC and POC). his paper (1) briefly reviews available deposition estim...

239

Impervious Areas: Examining the Undermining Effects on Surface Water Quality  

E-print Network

of the classification. The overall accuracy was 85%, and the kappa coefficient was 0.80. Additionally, field sampling and chemical analysis techniques were used to examine the relationship between impervious surfaces and water quality in a rainfall simulation parking...

Young, De'Etra Jenra

2012-02-14

240

EMAP SURFACE WATERS MONITORING AND RESEARCH STRATEGY - FY91  

EPA Science Inventory

This document describes the Environmental Monitoring and Assessment program's (EMAP) vision of what is needed to evaluate the ecological condition of the surface waters of the United States. It describes the content and organization of the research plan....

241

The biological impact of landfill leachate on nearby surface water  

SciTech Connect

Five landfill sites were evaluated for their potential to adversely impact the biotic community of surface waters. Acute and chronic aquatic toxicity tests were used to determine the toxicity of water samples collected from landfill monitoring wells and the nearest surface water. Four of the five landfill sites exhibited acute or chronic toxicity to Ceriodaphnia dubia, Daphnia magna, or Pimephales promelas. Toxicity identification procedures performed on water samples revealed toxic responses to metals and one toxic response to organic compounds. Surface water toxicity at an industrial landfill is most likely due to zinc from a tire production facility. Iron and a surfactant were determined to be the probable causes for toxicity at two municipal solid waste landfills.

Geis, S.W. [State Lab. of Hygiene, Madison, WI (United States). Biomonitoring Lab.

1994-12-31

242

The effects of wetland habitat structure on Florida apple snail density  

USGS Publications Warehouse

Wetlands often support a variety of juxtaposed habitat patches (e.g., grass-, shrub- or tree-dominated) differentially suited to support the inhabiting fauna. The proportion of available habitat types has been affected by human activity and consequently has contributed to degrading habitat quality for some species. The Florida apple snail (Pomacea paludosa) has drawn attention as a critical prey item for wetlands wildlife and as an indicator of wetlands restoration success in peninsular Florida, USA. An apparent contradiction has evolved wherein this species appears intolerant of drying events, but these disturbances may be necessary to maintain suitable habitat structure for apple snails. We recently reported that assertions regarding intolerance to dry downs in this species were inaccurate. Here, we compared snail density in habitats with (wet prairie) and without (slough) emergent macrophytes, as well as evaluating the effects of structural attributes within the broad wet prairie habitat type. Snail densities were greater in prairies relative to sloughs (??2= 12.90, df=1, P=0.0003), often by a factor of two to three. Within wet prairie habitats, we found greater snail densities in Panicum hemitomon as compared to Eleocharis cellulosa (??2=31.45, df=1, P=0.0001). Significantly fewer snails were found in dense E. cellulosa as compared to habitats with lower stem density (??2= 10.73, df=1, P=0.011). Our results indicate that wet prairie habitat supports greater snail densities than nymphaea-dominatd slough. Our results have implications for wetlands water management in that continuous inundation has been shown to convert wet prairie to slough habitat, and we suggest this should be avoided in support of apple snails and their predators. ?? 2006, The Society of Wetland Scientists.

Karunaratne, L.B.; Darby, P.C.; Bennetts, R.E.

2006-01-01

243

Shading decreases the abundance of the herbivorous California horn snail, Cerithidea californica  

USGS Publications Warehouse

Most of the intertidal zone in estuaries of California, USA and Baja California, Mexico is covered with vascular vegetation. Shading by these vascular plants influences abiotic and biotic processes that shape benthic community assemblages. We present data on the effects of shading on the California horn snail, Cerithidea californica. This species is important because it is the most common benthic macrofaunal species in these systems and acts as an obligate intermediate host of several species of rematode parasites that infect several other species. Using observational and experimental studies, we found a negative effect of shade on the distribution and abundance of the California horn snail. We hypothesized that shading reduces the abundance of the epipelic diatoms that the snails feeds on, causing snails to leave haded areas. We observed a negative relationship between vascular plant cover, sub-canopy light levels, and snail density in Mugu Lagoon. Then we experimentally manipulated light regimes, by clipping vegetation and adding shade structures, and found higher snail densities at higher light levels. In Goleta Slough, we isolated the effect of shade from vegetation by documenting a negative relationship between the shade created by two bridges and diatom and snail densities. We also found that snails moved the greatest distances over shaded channel banks compared to unshaded channel banks. Further, we documented the effect of water depth and channel bank orientation on shading in this system. An additional effect of shading is the reduction of temperature, providing an alternative explanation for some of our results. These results broaden our knowledge of how variation in the light environment influences the ecology of estuarine ecosystems.

Lorda, Julio; Lafferty, Kevin D.

2012-01-01

244

Intermolecular Casimir-Polder forces in water and near surfaces  

NASA Astrophysics Data System (ADS)

The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.

Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E.; Parsons, Drew F.; Malthe-Sørenssen, Anders; Boström, Mathias

2014-09-01

245

Miscellaneous surface-water data, Pecos River basin, New Mexico  

USGS Publications Warehouse

Miscellaneous surface-water data from the Pecos River basin of New Mexico are assembled into one table. Measurements and estimates of the discharge of streams, springs, and diversion canals and pumps that are not readily available to the public are given. The principal sources of information are published and unpublished reports and various records of the U.S. Geological Survey and the New Mexico State Engineer Office. Many thousands of surface-water discharge values are given. (USGS)

Cranston, C. Clare; Kues, Georgianna E.; Welder, G.E.

1981-01-01

246

Effects of ground water exchange on the hydrology and ecology of surface water.  

PubMed

Ground water exchange affects the ecology of surface water by sustaining stream base flow and moderating water-level fluctuations of ground water-fed lakes. It also provides stable-temperature habitats and supplies nutrients and inorganic ions. Ground water input of nutrients can even determine the trophic status of lakes and the distribution of macrophytes. In streams the mixing of ground water and surface water in shallow channel and bankside sediments creates a unique environment called the hyporheic zone, an important component of the lotic ecosystem. Localized areas of high ground water discharge in streams provide thermal refugia for fish. Ground water also provides moisture to riparian vegetation, which in turn supplies organic matter to streams and enhances bank resistance to erosion. As hydrologists and ecologists interact to understand the impact of ground water on aquatic ecology, a new research field called "ecohydrology" is emerging. PMID:12019646

Hayashi, Masaki; Rosenberry, Donald O

2002-01-01

247

Quality of surface water in Missouri, water year 2009  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

Barr, Miya N.

2010-01-01

248

Chlorine stress mediates microbial surface attachment in drinking water systems.  

PubMed

Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems. PMID:25359474

Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

2015-03-01

249

Controlling slugs and snails in orchids  

Technology Transfer Automated Retrieval System (TEKTRAN)

Slugs and snails are pests of orchids, preferring tender plant tissues such as flowers and root tips. Unlike many insect pests which feed only on certain types of plants, most species of slugs and snails are generalists, feeding on green plants, algae, fungi, decaying plant matter, or decaying anima...

250

Inquiry, Land Snails, and Environmental Factors  

ERIC Educational Resources Information Center

Land snails are common invertebrates that fascinate children. Unfortunately, they are seldom used for activities in the science classroom. Snails are inexpensive, take up little space in the classroom, and require only low maintenance, and their learning dividends can be enormous. For example, students can use them in inquiry-based activities that…

Barrow, Lloyd H.; Krantz, Patrick D.

2005-01-01

251

Field and laboratory evaluation of the influence of copper-diquat on apple snails in southern Florida  

USGS Publications Warehouse

The recent decline of apple snail (Pomacea paludosa) populations in canals surrounding Loxahatchee National Wildlife Refuge in southern Florida coincided with the use of copper-diquat for the control of the aquatic weed hydrilla (Hydrilla ver/icillara). Field and laboratory studies were designed to assess the effects of copper-diquat on apple snails, which are the primary food of the endangered snail kite Rostrhamus sociabilis (formerly known as the Everglade kite). Acute toxicities (96-h LC50 values) of Cutrine-Plus and Komeen (chelated formulations of copper) to immature apple snails were 22 and 241-?g/L, respectively. Diquat was toxic at a concentration of 1,800 I-?g/L and did not increase the toxicity of copper when the chemicals were used in combination. Evaluation of field samples indicated that copper concentrations were higher in detritus than in water. plants and mud, and that there was a gradient of copper concentration from the canal to the interior, the highest residues being in samples from the canal. Copper associated with detritus (up to 150 ?g/g) had no effect on growth or survival of apple snails in field cage and tank studies. Also, field applications of copper.diquat to hydrilla had no effect on survival of caged adult and immature snails. Copper from field applications was rapidly taken out of solution by plants and organic material in the water and subsequently incorporated into the bottom detritus. Although the effects of repeated applications of copper-diquat and high body burdens of copper (accumulated during exposure to herbicidal treatment) on survival and reproduction of apple snails are not known, the information available indicates that treatment of hydrilla with copper-diquat was probably not responsible for the decline in the apple snail population. Application at recommended rates should pose no threat to these snails in the organically rich waters of southern Florida.

Winger, P.V.; Imlay, M.J.; McMillan, W.E.; Martin, T.W.; Takekawa, J.; Johnson, W.W.

1984-01-01

252

Assessment of an integrated membrane system for surface water treatment  

Microsoft Academic Search

With the promulgation of more stringent regulations to guarantee that the drinking water presents minimal health risks, nanofiltration (NF) and low pressure reverse osmosis membrane (RO) processes are nowadays considered for surface water treatment. However, NF and RO spiral wound membranes are sensitive to fouling and an advanced pretreatment such as conventional train, microfiltration (MF) and ultrafiltration (UF) may be

K. Glucina; A. Alvarez; J. M. Laîné

2000-01-01

253

Tritium in surface waters of the Yenisei River basin.  

PubMed

This paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining and Chemical Combine (MCC). In 2001 the maximum tritium concentration in the Yenisei River did not exceed 4 +/- 1 Bq l(-1), which is consistent with the data of 1998-99. However, it has been found that there are surface waters containing enhanced tritium as compared with the background values for the Yenisei River. For instance, in the Ploskii Stream and the Shumikha River the maximum tritium concentrations amount to 168 and 81 Bq l(-1), respectively. The source of tritium in these surface waters is the last operating reactor at the MCC, which still uses the Yenisei water as coolant. In water and sediment samples of the Bolshaya Tel River (a tributary of the Yenisei River) the tritium content turned out to be at least 10 times higher than the background values for the Yenisei River. The measurements conducted at the RPA RADON (Moscow) revealed not only tritium but also the artificial radionuclide (14)C in the Bolshaya Tel samples. The data obtained suggest that the Bolshaya Tel River receives the major part of tritium from sediments rather than from the water catchment area. This allows the conclusion that there is water exchange between the surface waters and the radioactively contaminated underground horizons of the "Severny" testing site. PMID:12600760

Bolsunovsky, A Ya; Bondareva, L G

2003-01-01

254

Surface-heating greenhouses with waste heated water. Final report  

Microsoft Academic Search

An aluminum framed glass greenhouse was constructed at the Baldwin Power Plant near St. Louis. The outside surface of this greenhouse was heated by flowing power plant cooling water over it. The water was applied at the ridge and allowed to run over the roof and sidewalls and into gutters where it was returned to the power plant's discharge canal.

P. N. Walker; H. J. Rand

1980-01-01

255

Water Drops on Surfaces Huamin Wang Peter J. Mucha  

E-print Network

to select contact angles according to the solid material property, water history, and the fluid front, the viscosity coefficient and the affinity between the liquid and the solid material. Real fluids that come affinity to describe the hydrophobicity or hydrophilicity of a surface. The affinity between water

Turk, Greg

256

SURFACE WATER QUALITY PARAMETERS FOR MONITORING OIL SHALE DEVELOPMENT  

EPA Science Inventory

This report develops and recommends prioritized listings of chemical, physical, and biological parameters which can be used to assess the environmental impact of oil shale development on surface water resources. Each of the potential water-related problems is addressed in the con...

257

CHARACTERIZING SURFACE WATERS THAT MAY NOT REQUIRE FILTRATION  

EPA Science Inventory

Field data from various utilities were studied with the object of identifying a set of characteristics of a surface water that might allow it to be successfully treated by disinfection alone, thus avoiding the need to filter. It was found possible to define water quality standard...

258

SWOT: The Surface Water & Ocean Topography Satellite Mission  

E-print Network

SWOT: The Surface Water & Ocean Topography Satellite Mission Doug Alsdorf Byrd Polar Research, lake, and river water storage as a regulator of biogeochemical cycles of Oceans ECCO-2 MIT JPL ocean current model Although altimetry data have significantly advanced the study

259

Tritium in surface waters of the Yenisei River basin  

Microsoft Academic Search

This paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining and Chemical Combine (MCC). In 2001 the maximum tritium concentration in the Yenisei River did not exceed 4 ± 1 Bq l–1, which is consistent with the data of 1998–99. However, it has been found that there are surface

A. Ya. Bolsunovsky; L. G. Bondareva

2003-01-01

260

Evidence for the Exposure of Water Ice on Titan's Surface  

E-print Network

Evidence for the Exposure of Water Ice on Titan's Surface Caitlin A. Griffith,1 * Tobias Owen,2 Thomas R. Geballe,3 John Rayner,2 Pascal Rannou4 The smoggy stratosphere of Saturn's largest moon, Titan.0, 2.9, and 5.0 micrometers. We derived a spectrum of Titan's surface within these "windows

Griffith, Caitlin A.

261

Environmental calcium modifies induced defences in snails.  

PubMed Central

Inducible defences are adaptive phenotypes that arise in response to predation threats. Such plasticity incurs costs to individuals, but there has been little interest in how such induced traits in animals may be constrained by environmental factors. Here, we demonstrate that calcium availability interacts with predation cues to modify snail shell growth and form. Small snails increased their growth and were heavier when exposed to fish chemical cues, but this response was calcium limited. There was also an interactive effect of fish cues and calcium on the shell growth of larger snails, but shell strength and aperture narrowness were affected by calcium alone. For small snails, behavioural avoidance was greatest for snails exhibiting least morphological plasticity, suggesting a trade-off. There was no trade-off of somatic growth with plasticity. We suggest that the expression of defensive traits in molluscs can be constrained by calcium availability, which has implications for molluscan ecology and evolution. PMID:15101422

Rundle, Simon D; Spicer, John I; Coleman, Ross A; Vosper, Jo; Soane, Julie

2004-01-01

262

Reducing Herbicide Entry into Surface Waters  

E-print Network

erbicides have a pr oven record for cost e#31;ective weed control throughout Texas. They ar e applied to soils or plant surfaces and some contr ol weeds for an extended period after application. However, under some cir cum- stances... be controlled effectively only when treated in the early stages of growth. If windy or wet weather prevents timely application, weeds may become uncontrollable and the competition from them can be disastrous. Time Application Correctly The potential...

Baumann, Paul A.; Bean, Brent W.

1999-10-07

263

An Ontology Design Pattern for Surface Water Features  

SciTech Connect

Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

Sinha, Gaurav [Ohio University, Athens; Mark, David [University at Buffalo, NY; Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

2014-01-01

264

Tracer injection techniques in flowing surface water  

NASA Astrophysics Data System (ADS)

Residence time distributions for flowing water and reactive matter are commonly used integrated properties of the transport process for determining technical issues of water resource management and in eco-hydrological science. Two general issues for tracer techniques are that the concentration-vs-time relation following a tracer injection (the breakthrough curve) gives unique transport information in different parts of the curve and separation of hydromechanical and reactive mechanisms often require simultaneous tracer injections. This presentation discusses evaluation methods for simultaneous tracer injections based on examples of tracer experiments in small rivers, streams and wetlands. Tritiated water is used as a practically inert substance to reflect the actual hydrodynamics, but other involved tracers are Cr(III)-51, P-32 and N-15. Hydromechanical, in-stream dispersion is reflected as a symmetrical spreading of the spatial concentration distribution. This requires that the transport distance over water depth is larger than about five times the flow Peclet number. Transversal retention of both inert and reactive solutes is reflected in terms of the tail of the breakthrough curve. Especially, reactive solutes can have a substantial magnification of the tailing behaviour depending on reaction rates or partitioning coefficients. To accurately discriminate between the effects of reactions and hydromechanical mixing its is relevant to use simultaneous injections of inert and reactive tracers with a sequential or integrated evaluation procedure. As an example, the slope of the P-32 tailing is consistently smaller than that of a simultaneous tritium injection in Ekeby wetland, Eskilstuna. The same applies to N-15 injected in the same experiment, but nitrogen is affected also by a systematic loss due to denitrification. Uptake in stream-bed sediments can be caused by a pumping effect arising when a variable pressure field is created on the stream bottom due to bed irregularities. The so-called pumping model provided good estimates of the storage in the hyporheic zone under different stream discharges and stream flow conditions along streams. Evaluations Hobøl River, Norway, and Säva Brook, Sweden, at two occasions in both stream indicate that the relative residence time in the hyporheic zone is linearly proportional to the squared Froude Number. The residence time is scaled with water depth and hydraulic conductivity of the bed. The effect of such transient storage in e.g. the hyporheic zone gives rise to a tailing, but the breakthrough curve become increasingly symmetrical with Damköhler number. Such a symmetrical breakthrough can be erroneously taken as an effect of in-stream dispersion, even though this similarity is merely due to the physical analogy of various advection velocities over the transport cross-section, differential advection.

Wörman, A.

2009-04-01

265

Effects of drainage and water table control on groundwater and surface water quality  

SciTech Connect

The objectives of the research project were to: conduct field experiments to measure and evaluate the effects of drainage, controlled drainage, and subirrigation of the following hydrologic and water quality variables: Movement and fate of fertilizer nutrients and sediment in surface runoff, shallow groundwater and subsurface drainage waters; and loss of pesticides in surface and subsurface drainage waters and their movement into shallow groundwaters; test the reliability of selected models for predicting the movement of pesticides and fertilizer nutrients to shallow groundwater and the losses of these pollutants via surface and subsurface drainage waters; and modify and further develop these existing models to improve their reliability.

Chescheir, G.M.; Skaggs, R.W.; Gilliam, J.W.; Breve, M.A.; Munster, C.

1995-12-31

266

Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes  

NASA Astrophysics Data System (ADS)

The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or calculated deliveries. IWFM utilizes a very straight-forward input file structure, allowing rapid development of complex simulations. A key feature of IWFM is a new algorithm for computation of groundwater flow across element faces. Enhancements to version 3.0 include automatic time-tracking of input and output data sets, linkage with the HEC-DSS database, and dynamic crop allocation using logit functions. Utilities linking IWFM to the PEST automated calibration suite are also available. All source code, executables and documentation are available for download from the DWR web site. IWFM is currently being used to develop hydrologic simulations of California's Central Valley (C2VSIM); the west side of California's San Joaquin Valley (WESTSIM); Butte County, CA; Solano County, CA; Merced County, CA; and the Oregon side of the Walla Walla River Basin.

Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

2006-12-01

267

Martian surface/near-surface water inventory: Sources, sinks, and changes with time  

NASA Astrophysics Data System (ADS)

Today, a 34 m global equivalent water layer (GEL) lies in the Martian polar-layered deposits and shallow ground ice. During the Amazonian, 3 m was outgassed, and 31 m was lost to space and to the surface, leaving 62 m at the end of Hesperian. During the Hesperian, volcanic outgassing added 5 m, 7 m was lost, and 40 m GEL of groundwater was added to form outflow channels, leaving 24 m carryover of surface water from the Noachian into the Hesperian. The Hesperian budget is incompatible with a northern ocean during this era. These figures are for near-surface water; substantial amounts of water may have existed as deep ground ice and groundwater. Our estimate of approximately 24 m near-surface water in the Late Noachian is insufficient to support an ocean at that time also and favors episodic melting of an icy highlands to produce the fluvial and lacustrine features.

Carr, M. H.; Head, J. W.

2015-02-01

268

Profile of the Interface between a Hydrophobic Surface and Water  

NASA Astrophysics Data System (ADS)

Aqueous interfaces are ubiquitous and play a fundamental role in biology, chemistry, and geology. The structure of water near interfaces is of the utmost importance, including chemical reactivity and macromolecular function. Theoretical work by Chandler et al. on polar-apolar interfaces predicts that a water depletion layer exists between a hydrophobic surface and bulk water for hydrophobes larger than ˜20nm2 (a ˜4A in radius apolar molecule). Until now, what the interface really looks like remains in dispute since recent experiments give conflicting results: from complete wetting (no water depletion layer) to a water depletion layer. Those experiments that have found a water depletion layer report 40-70% water in the depletion zone: 40 -70% and a width of ˜3A. However, an alternative interpretation to the profiles exists where no depletion layer is required. By studying hydrophobic SAM surfaces against several water mixtures we obtained the hydrophobic/water profile by phase sensitive neutron reflectivity. With this model independent technique we observe a 2 times wider and drier depletion water layer: 6A thick and 0-25% water. Given the level of disagreement, I will review the topic of immiscible interfaces and show how phase sensitive reflectometry is unique in obtaining nm resolution profiles without fitting bias.

Perez-Salas, Ursula; Stalgren, Johan; Majkrzak, Charles; Heinrich, Frank; Toney, Michael; Vanderah, David

2008-03-01

269

High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes  

NASA Astrophysics Data System (ADS)

Although electrohydraulic discharge is effective for wastewater treatment, its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment, water-surface discharge is the preferred choice. However, the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water. As a result, the efficiency of the water treatment might be affected and the service life of the reactor might be shortened. In order to avoid the corrosion problem, nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study. Carbon-felt and water were used as the high voltage electrode and ground electrode, respectively. A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy efficiency, and furthermore, the corrosion of metal electrodes was avoided.

Wang, Xiaoping; Zhang, Xingwang; Lei, Lecheng

2013-06-01

270

Drainage areas of selected surface-water sites in Florida  

USGS Publications Warehouse

Drainage areas for about 1,500 surface-water sites on streams and lakes in Florida are contained in this report. Sites are described in relation to a nearby city or town, and are located by county, by latitude-longitude, and by topographic map on which it is located. In addition, the surface areas of lakes are shown for the elevation given on the topographic map. These data were retrieved from the Surface Water Index developed and maintained by the Hydrologic Records Section of the Florida District office of the U.S. Geological Survey.

Foose, Donald W.

1980-01-01

271

Nucleate boiling of water from plain and structured surfaces  

SciTech Connect

Heat transfer from plain surface and from surfaces with distinct nucleation sites has been investigated under saturated pool boiling condition. Surfaces have been prepared with regular array of discrete nucleation sites formed by micro-drilling. Distilled water has been used as the boiling liquid. Out of various available correlations, Rohsenow correlation [W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME 74 (1952) 969-976] gives best agreement with the experimental data from plain surface at low degree of superheat. A mechanistic model also provides a good trend matching with the same experimental data. With the introduction of artificial nucleation sites substantial augmentation in heat transfer for distilled water compared to the plane surface has been noted. Continuous increase in nucleation site density increases the rate of heat transfer with a diminishing trend of enhancement. A correlation similar to that of Yamagata et al. [K. Yamagata, F. Hirano, K. Nishiwaka, H. Matsouka, Nucleate boiling of water on the horizontal heating surface, Mem. Fac. Eng. Kyushu 15 (1955) 98] has been developed to fit the experimental data of plane surface. Modification of the same correlation to take care of the nucleation site density has been developed and used to predict the experimental data from augmented surfaces. (author)

Das, A.K.; Das, P.K.; Saha, P. [Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

2007-08-15

272

Metabolic acceleration in the pond snail Lymnaea stagnalis?  

NASA Astrophysics Data System (ADS)

Under constant environmental conditions, most animals tend to grow following the von Bertalanffy growth curve. Deviations from this curve can point to changes in the environment that the animals experience, such as food limitation when the available food is not sufficient or suitable. However, such deviations can also point to a phenomenon called metabolic acceleration, which is receiving increasing attention in the field of Dynamic Energy Budget (DEB) modeling. Reasons for such an acceleration are usually changes in shape during ontogeny, which cause changes in the surface area to volume ratio of the organism. Those changes, in turn, lead to changes in some of the model parameters that have length in their dimension. The life-history consequences of metabolic acceleration as implemented in the DEB theory are an s-shaped growth curve (when body size is expressed as a length measure) and a prolongation of the hatching time. The great pond snail Lymnaea stagnalis was earlier found to be food limited during the juvenile phase in laboratory experiments conducted under classical ecotoxicity test protocols. The pond snail has isomorphic shell growth but yet does not exhibit the expected von Bertalanffy growth curve under food limitation. When applying the standard DEB model to data from such life-cycle experiments, we also found that the hatching time is consistently underestimated, which could be a sign of metabolic acceleration. We here present an application of the DEB model including metabolic acceleration to the great pond snail. We account for the simultaneous hermaphroditism of the snail by including a model extension that describes the relative investment into the male and female function. This model allowed us to adequately predict the life history of the snail over the entire life cycle. However, the pond snail does not change in shape substantially after birth, so the original explanation for the metabolic acceleration does not hold. Since the change in shape is not the only explanation for metabolic acceleration in animals, we discuss the possible other explanations for this pattern in L. stagnalis.

Zimmer, Elke I.; Ducrot, V.; Jager, T.; Koene, J.; Lagadic, L.; Kooijman, S. A. L. M.

2014-11-01

273

Tensile testing of ultra-thin films on water surface  

NASA Astrophysics Data System (ADS)

The surface of water provides an excellent environment for gliding movement, in both nature and modern technology, from surface living animals such as the water strider, to Langmuir-Blodgett films. The high surface tension of water keeps the contacting objects afloat, and its low viscosity enables almost frictionless sliding on the surface. Here we utilize the water surface as a nearly ideal underlying support for free-standing ultra-thin films and develop a novel tensile testing method for the precise measurement of mechanical properties of the films. In this method, namely, the pseudo free-standing tensile test, all specimen preparation and testing procedures are performed on the water surface, resulting in easy handling and almost frictionless sliding without specimen damage or substrate effects. We further utilize van der Waals adhesion for the damage-free gripping of an ultra-thin film specimen. Our approach can potentially be used to explore the mechanical properties of emerging two-dimensional materials.

Kim, Jae-Han; Nizami, Adeel; Hwangbo, Yun; Jang, Bongkyun; Lee, Hak-Joo; Woo, Chang-Su; Hyun, Seungmin; Kim, Taek-Soo

2013-10-01

274

Experimental water droplet impingement data on modern aircraft surfaces  

NASA Technical Reports Server (NTRS)

An experimental method has been developed to determine the water droplet impingement characteristics on two- and three-dimensional aircraft surfaces. The experimental water droplet impingement data are used to validate particle trajectory analysis codes that are used in aircraft icing analyses and engine inlet particle separator analyses. The aircraft surface is covered with thin strips of blotter paper in areas of interest. The surface is then exposed to an airstream that contains a dyed-water spray cloud. The water droplet impingement data are extracted from the dyed blotter paper strips by measuring the optical reflectance of each strip with an automated reflectometer. Preliminary experimental and analytical impingement efficiency data are presented for a NLF(1)-0414F airfoil, s swept MS(1)-0317 airfoil, a swept NACA 0012 wingtip and for a Boeing 737-300 engine inlet model.

Papadakis, Michael; Breer, Marlin D.; Craig, Neil C.; Bidwell, Colin S.

1991-01-01

275

Index of surface-water stations in Texas, January 1989  

USGS Publications Warehouse

As of January 1, 1989, the surface-water data-collection network in Texas included 373 continuous-streamflow, 75 continuous or daily reservoir-content, 37 gage-height, 15 crest-stage partial-record, 200 data collection platform, 7 periodic discharge through range, 27 flood-hydrograph partial-record, 27 low-flow partial-record, 43 daily chemical-quality, 17 continuous-recording water quality, 87 periodic biological, 11 lake survey, 159 period organic and (or) nutrient, 2 periodic insecticide, 28 periodic pesticide, 19 automatic sampler, 137 periodic minor element, 126 periodic chemical-quality, 75 periodic physical organic, 17 continuous-recording temperature, and 29 national stream-gaging accounting network stations. Plate 1 shows the location of surface-water streamflow or reservoir-content and chemical-quality or sediment stations in Texas. Plate 2 shows the location of partial-record surface-water stations. (USGS)

Rawson, Jack, (compiler); Carrillo, E.R.; Buckner, H.D.

1989-01-01

276

Index of surface-water stations in Texas, January 1988  

USGS Publications Warehouse

As of January 1, 1988, the surface water data collection network in Texas included 368 continuous streamflow, 72 continuous or daily reservoir-contents, 38 gage height only, 15 crest stage partial record, 4 periodic discharge through range, 32 flood-hydrograph partial-record, 9 flood-profile partial-record, 36 low-flow partial record, 45 daily chemical-quality, 19 lake surveys, 160 periodic organic and (or) nutrient, 3 periodic insecticide, 33 periodic pesticide, 20 automatic sampler, 137 periodic minor elements, 125 periodic chemical-quality, 74 periodic physical-organic, 24 continuous-recording three- or four-parameter water quality, 34 periodic sediment, 21 continuous-recording temperature, and 30 national stream-quality accounting network stations. Plate 1 shows the location of surface water streamflow or reservoir content and chemical quality or sediment stations in Texas. Plate 2 shows the location of partial-record surface-water stations. (USGS)

Carrillo, E. R., (compiler); Buckner, H.D.; Rawson, Jack

1988-01-01

277

The Proposed Surface Water and Ocean Topography (SWOT) Mission  

NASA Technical Reports Server (NTRS)

A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

2012-01-01

278

ARSENIC SORUCE IDENTIFICATION AT THE GROUND WATER-SURFACE WATER INTERACTION ZONE AT A CONTAMINATED SITE  

EPA Science Inventory

One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...

279

Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses  

E-print Network

Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses C. Sarpe Femtosecond laser pulse induced ultrafast plasma dynamics studies of water breakdown in the range up to 250 ps with femtosecond, picosecond, and nanosecond laser pulses.7,8 Schaffer et al.9 resolved the plasma dynamics

Peinke, Joachim

280

www.waterboards.ca.gov/swamp The State Water Resources Control Board's Surface Water Ambient Monitoring  

E-print Network

www.waterboards.ca.gov/swamp Overview The State Water Resources Control Board's Surface Water statewide screening survey of contaminants in sport fish from California coastal waters. The report on areas near Los Angeles and San Francisco, including San Francisco Bay. The study has provided

281

MONITORING OXIDATION-REDUCTION PROCESS DURING GROUND WATER-SURFACE WATER INTERACTIONS AT THE CHICKASAW NRA  

EPA Science Inventory

Mineralized ground waters at the Chickasaw National Recreational Area contain hydrogen sulfide, i.e., sulfur in the -2 valence state. As these mineralized ground waters discharge at the surface and mix with oxygen-rich waters a series of abiotic and biotic reactions occur that c...

282

DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT  

EPA Science Inventory

A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

283

Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China.  

PubMed

Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues. PMID:22417739

Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying

2012-05-15

284

Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant  

PubMed Central

Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

2015-01-01

285

Surface Water Storage Capacity of Street Trees in Davis, California  

NASA Astrophysics Data System (ADS)

Rainfall interception plays an important role in water resources redistribution of the hydrologic cycle. Canopy surface water detention and saturation storage capacities are important parameters that affect rainfall interception processes. Two types of surface water storage capacities that influence the interception dynamic processes are the surface water saturation storage capacity and the maximum surface storage capacity. Studies of rainfall interception in rural forest show that these values vary widely among tree species and geographic locations. Understanding the magnitude and dynamic of these storages are important for modeling urban hydrological processes. In this study, 20 urban tree species in Davis, California were measured in laboratory. The computer controlled measurement system included a rainfall simulator, a weighting measurement, and image collector components. The surface storages were calculated based on sample's weighing change of different rainfall intensity and sample's surface area which was estimated based image analysis method. Twelve rainfall intensities varied from 3.48 to 139.49 mm/hr were used in each tree species' measurement. The results shown that the surface storages varied widely among tree species and different grow seasons.

Xiao, Q.

2012-12-01

286

Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems  

SciTech Connect

Freshwater molluscs--snails and bivalves--have been used frequently as bioindicator organisms. With increasing needs for research on contaminant effects in freshwater ecosystems, this kind of biomonitoring is likely to develop further in the future. Molluscs can be used effectively for studies of both organic and inorganic contaminants; this review focuses on studies involving bioaccumulation and toxicity of metals. Two important advantages of snails and bivalves over most other freshwater organisms for biomonitoring research are their large size and limited mobility. In addition, they are abundant in many types of freshwater environments and are relatively easy to collect and identify. At metal concentrations that are within ranges common to natural waters, they are generally effective bioaccumulators of metals. Biomonitoring studies with freshwater molluscs have covered a wide diversity of species, metals, and environments. The principal generalization that can be drawn from this research is that bioaccumulation and toxicity are extremely situation dependent; hence, it is difficult to extrapolate results from any particular study to other situations where the biological species or environmental conditions are different. Even within one species, individual characteristics such as size, life stage, sex, and genotype can have significant effects on responses to contaminants. The bioavailability of the metal is highly variable and depends on pH, presence of organic ligands, water hardness, and numerous other controlling factors. Despite this variability, past studies provide some general principles that can facilitate planning of research with freshwater snails and bivalves as metal bioindicators. These principles may also be useful in understanding and managing freshwater ecosystems.

Elder, J.F.; Collins, J.J. (U.S. Geological Survey, Madison, WI (United States))

1991-01-01

287

Using IR Imaging of Water Surfaces for Estimating Piston Velocities  

NASA Astrophysics Data System (ADS)

The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

Gålfalk, M.; Bastviken, D.; Arneborg, L.

2013-12-01

288

Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance  

NASA Technical Reports Server (NTRS)

Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

2010-01-01

289

Experimental Values of the Surface Tension of Supercooled Water  

NASA Technical Reports Server (NTRS)

The results of surface-tension measurements for supercooled water are presented. A total of 702 individual measurements of surface tension of triple-distilled water were made in the temperature range, 27 to -22.2 C, with 404 of these measurements at temperatures below 0 C. The increase in magnitude of surface tension with decreasing temperature, as indicated by measurements above 0 C, continues to -22.2 C. The inflection point in the surface-tension - temperature relation in the vicinity of 0 C, as indicated by the International Critical Table values for temperatures down to -8 C, is substantiated by the measurements in the temperature range, 0 to -22.2 C. The surface tension increases at approximately a linear rate from a value of 76.96+/-0.06 dynes per centimeter at -8 C to 79.67+/-0.06 dynes per centimeter at -22.2 C.

Hacker, P. T.

1951-01-01

290

Surface water resources issues analysis: Wheeler Reservoir watershed region  

SciTech Connect

This report is one in a continuing series of periodic water resources issues analyses (WRIAs) conducted within the various local drainage basins that comprise the larger Tennessee River drainage basin. These analyses, based primarily upon existing information gathered from a variety of sources, perform several functions: document known or probable water quality issues that should be addressed by TVA or others; identify specific needs for additional information; guide routine surface water monitoring programs; and provide focus for planning and setting priorities for subsequent water quality assessments, mitigative activities, and resource management projects. 4 refs., 1 fig., 16 tabs.

Cox, J.P.

1990-02-01

291

Experimental observation of dark solitons on the surface of water.  

PubMed

We present the first ever observation of dark solitons on the surface of water. It takes the form of an amplitude drop of the carrier wave which does not change shape in propagation. The shape and width of the soliton depend on the water depth, carrier frequency, and the amplitude of the background wave. The experimental data taken in a water tank show an excellent agreement with the theory. These results may improve our understanding of the nonlinear dynamics of water waves at finite depths. PMID:25166807

Chabchoub, A; Kimmoun, O; Branger, H; Hoffmann, N; Proment, D; Onorato, M; Akhmediev, N

2013-03-22

292

[Equipment for biological experiments with snails aboard piloted orbital stations].  

PubMed

To fly biological experiments aboard piloted orbital stations, research equipment was built up of an incubation container, filter system and automatic temperature controller. Investigations included analysis of the makeup and concentrations of gases produced by animals (snails) during biocycle, and emitted after death. Filters are chemisorption active fibrous materials (AFM) with high sorption rate and water receptivity (cation exchange fiber VION-KN-1 and anion exchange fiber VION-AS-1), and water-repellent carbon adsorbent SKLTS. AFM filters were effective in air cleaning and practically excluded ingress of chemical substances from the container into cabin atmosphere over more than 100 days. PMID:21033402

Gorgiladze, G I; Korotkova, E V; Kuznetsova, E E; Mukhamedieva, L N; Begrov, V V; Pepeliaev, Iu V

2010-01-01

293

Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach  

SciTech Connect

This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

Coty, J

2009-03-16

294

Water chemisorption and reconstruction of the MgO surface  

NASA Astrophysics Data System (ADS)

The observed reactivity of MgO with water is in apparent conflict with theoretical calculations which show that molecular dissociation does not occur on a perfect (001) surface. We have performed ab initio total-energy calculations which show that a chemisorption reaction involving a reconstruction to form a (111) hydroxyl surface is strongly preferred with ?E=-90.2 kJ mol-1. We conclude that protonation stabilizes the otherwise unstable (111) surface and that this, not the bare (001), is the most stable surface of MgO under ambient conditions.

Refson, K.; Wogelius, R. A.; Fraser, D. G.; Payne, M. C.; Lee, M. H.; Milman, V.

1995-10-01

295

Properties of water surface discharge at different pulse repetition rates  

NASA Astrophysics Data System (ADS)

The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H2O2) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H2O2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

Ruma, Hosseini, S. H. R.; Yoshihara, K.; Akiyama, M.; Sakugawa, T.; Lukeš, P.; Akiyama, H.

2014-09-01

296

Properties of water surface discharge at different pulse repetition rates  

SciTech Connect

The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000?Hz, with 0.5?J per pulse energy output at 25?kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H{sub 2}O{sub 2}) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H{sub 2}O{sub 2} and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail: hosseini@kumamoto-u.ac.jp; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)

2014-09-28

297

Sun Glitter Measurements for Monitoring Global Surface Waters  

NASA Astrophysics Data System (ADS)

Surface waters are a dynamic system, important to a range of parties from resource managers to global climate scientists. Current methods of data collection are insufficient to meet the data requirements of many of the interested parties. In this project we explore the advantages and limitations of a micro-satellite constellation system designed to utilize sun glint to monitor at the global scale monthly changes in area of surface water. Sun glint, a very bright, spectrally flat reflection, provides a strong signal indicating water in natural settings. Based upon our investigations and the research of others, we looked at the extent to which wind and above-water foliage affect the amount of sun glitter measured by a satellite sensor. We explored for one specific orbit the effective ground coverage and revisit rates for study areas in Alaska and Brazil, taking into account the probability density function for the number of lakes vs lake area. The results of our research suggest the scientific information of surface waters that potentially could be obtained from data provided by a constellation of sun glitter sensing micro satellites would supplement that expected to be provided by a planned radar satellite surface water monitoring system.

Apperson, A. T.; Vanderbilt, V. C.

2010-12-01

298

The utility of surface temperature measurements for the remote sensing of surface soil water status  

NASA Technical Reports Server (NTRS)

Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

1975-01-01

299

Infiltration of pesticides in surface water into nearby drinking water supply wells  

NASA Astrophysics Data System (ADS)

Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

2010-12-01

300

Effects of Human Activities on the Interaction of Ground Water and Surface Water  

NSDL National Science Digital Library

This information describes how human activities affect ground water and ground water recharge. After a discussion of point and nonpoint sources of contaminants, there is information about the effects of irrigation development, surface-water reservoirs, and removal of flood-plain vegetation on the interaction of ground water and surface water. The site also covers the effects of nitrogen use, pesticide application to agricultural lands, and atmospheric deposition on the quality of ground and surface water. All of the above are supported by illustrations. In addition, there is information about urban and industrial pollution, modification of river valleys including the construction of levees and reservoirs, and modification of the atmosphere, which includes atmospheric deposition and global warming.

301

Shallow water surface gravity wave imaging, spectra and their use in shallow water dredging operations  

NASA Astrophysics Data System (ADS)

Imaging of shallow waters using high resolution video imagery is described. Common to mono, stereo and trinocular imaging approaches from ground and airborne platforms is the need to validate the surface water wave field measurements, particularly the amplitude and specular reflectance of water surface small gravity waves. A technique for calibration and validation of water surface gravity wave field energy spectra is described. Results demonstrate the value of video imagery where water level staff gauges with approximately with 0.5 cm wave height accuracy are easily sensed using high definition videography. Essentially, a staff gauge placed in shallow water constructed from PVC materials with custom colored line coding are imaged at 30 H or high frame rates, followed by frame by frame analyses in order to detect the water level measured at 0.5 cm height intervals. The image based time series allow the development of shallow water gravity wave energy spectra using standard FFT analysis procedures. Spectral models based upon peak frequency, for example, are then used in a two dimensional water surface wave simulation model that generates radiative transfer based hyperspectral images of the water surface wave field. The simulated and observed water surface wave patch fields are compared by extracting vertical or horizontal transects within observed and simulated imagery. The approach allows one to developed spectral energy model probability distributions at low cost. The novel noncontact video sensing and image analysis methodology used to calibrate and validate shallow water gravity wave models yield a means for ultimately calculating bottom boundary velocities under measured or simulated wave fields. These boundary layer velocities can cause migration and horizontal particle fluxes (g cm-2 s-1), resuspension, settling, and increased turbidity during dredging operations, but not necessarily due to waterway dredging operations and activities.

Bostater, Charles R.; Yang, Bingyu

2014-10-01

302

High net calcium uptake explains the hypersensitivity of the freshwater pulmonate snail, Lymnaea stagnalis, to chronic lead exposure  

Microsoft Academic Search

Previous studies have shown that freshwater pulmonate snails of the genus Lymnaea are exceedingly sensitive to chronic Pb exposure. An EC20 of <4?gl?1Pb for juvenile snail growth has recently been determined for Lymnaea stagnalis, which is at or below the current USEPA water quality criterion for Pb. We characterized ionoregulation and acid–base balance in Pb-exposed L. stagnalis (young adults ?1g)

Martin Grosell; Kevin V. Brix

2009-01-01

303

Longwall dust control potentially enhanced by surface borehole water infusion  

SciTech Connect

Injecting water under pressure to wet the coalbed in advance of mining reduces mining-generated respirable dust. Owing to economic and geological barriers, water infusion for longwall dust control in the United States is currently limited to the Pocahontas No. 3 Coalbed in Virginia. Water is pumped into the coalbed through underground boreholes drilled horizontally from the headgate toward the tailgate side of retreat longwall panels. This paper theorizes that the barriers to widespread utilization of water infusion for longwall dust control could be overcome by long-duration, low-pressure water infusion through vertical gob gas boreholes. Currently, 43% of the 72 longwall mines in the United States employ vertical gob gas boreholes. Computer coalbed reservoir simulation suggests that one vertical surface borehole could infuse the same longwall panel area as four horizontal boreholes in the current water infusion system for longwall dust control in the Pocahontas No. 3 Coalbed.

Campoli, A.A.; McCall, F.E.; Finfinger, G.L. [Bureau of Mines, Pittsburgh, PA (United States); Zuber, M.D. [S.A. Holditch and Associates, Inc., Pittsburgh, PA (United States)

1995-12-31

304

Distribution of trematodes in snails in ponds at integrated small-scale aquaculture farms.  

PubMed

In integrated small-scale aquaculture farming, animal and human excreta maybe used as fish feed and pond fertilizer, thereby enhancing transmission of fish-borne zoonotic trematodes (FZTs) from final hosts, like humans, pigs and chickens, to snails. Areas within a pond could vary in trematode egg-load due to the immediate bordering land, and this might provide implications for control of these trematodes or sampling in field studies measuring FZT prevalence in snails. We therefore estimated the effect of bordering land use on prevalence and FZT burden in snails in different areas within small-scale aquaculture ponds. Nine sampling areas within a pond were assigned in six ponds. For each sampling area, about 120 Melanoides tuberculata snails were collected. Based on land use bordering a sampling area, these were categorized in 5 risk-categories: low-risk (road, rice planted in pond, agriculture, or middle of pond), human access point to pond, livestock sty (pigs or poultry), both human access point and livestock sty, and water connection to canal. In total, 5392 snails were collected. Percentages of snails with parapleurolophocercous cercariae varied between 6% in areas categorized as low-risk and areas with livestock sty only to 15% in areas with both human access point and livestock sty; only this 15% was significantly different from the prevalence in the low-risk category. Percentages of snails with xiphidio cercariae did not differ between risk-categories and varied between 5% and 10%. Mean snail size was 15.2mm, and was significantly associated with both the probability of infection as well as parasite burden. Very small differences in parasite burden were found at different land use areas; the maximum difference was about 11 cercariae. This study demonstrated only small differences between areas surrounding a pond on risk of snails to be infected with fish-borne trematodes within different pond areas. In field studies on FZTs in M. tuberculata snails in ponds, sampling from ponds can therefore be done without considering areas within ponds. PMID:23200642

Boerlage, Annette S; Graat, Elisabeth A M; Verreth, Johan A; de Jong, Mart C M

2013-03-01

305

The specificity of surface oxygen in the activation of adsorbed water at metal surfaces  

NASA Astrophysics Data System (ADS)

The role of surface oxygen in the activation of molecularly adsorbed water by Ni(210) and polycrystalline lead surfaces has been investigated by X-ray photoelectron spectroscopy. Activation has been shown to be dependent on whether the oxygen exists in a coordinatively unsaturated chemisorbed state or whether it is present as the anion of the oxide overlayer. Particular attention has been given to obtaining quantitative estimates of the concentrations of the surface species. The most active surfaces are those which have present oxygen chemisorbed at 77 K. Both the clean metals and an oxide overlayer (orthorhombic PbO) present at a lead surface are by comparison unreactive. Chemisorbed oxygen present at the surface of the PbO overlayer at 77 K interacts with molecularly adsorbed water to give, at 160 K, "hydroxyl" species. At 150 K the molecularly adsorbed water desorbs and above 160 K dehydroxylation occurs. The Ni(210)-O (77 K) surface, where the adsorbed oxygen O ?- is the precursor state of surface oxidation, is the most reactive generating on exposure to water vapour a stable oxyhydroxide overlayer. The curve-fitted O(1s) spectrum of the overlayer at 297 K indicates the presence of three species (O 2-, O 2-… H-OH and H 2O); the water component is suggested to be intercalated within the surface oxide as in the bulk ?-nickel oxyhydroxide structure. Comparisons are made with other metals: Ag(110), Cu(111), Pt(111) and Zn(0001). The concentration and stability of hydrogen-bonded surface complexes formed at low temperature are suggested to be key-factors in determining differences in the surface chemistry observed.

Carley, A. F.; Rassias, S.; Roberts, M. W.

1983-12-01

306

The effect of surface water and wetting on gecko adhesion.  

PubMed

Despite profound interest in the mechanics and performance of the gecko adhesive system, relatively few studies have focused on performance under conditions that are ecologically relevant to the natural habitats of geckos. Because geckos are likely to encounter surfaces that are wet, we used shear force adhesion measurements to examine the effect of surface water and toe pad wetting on the whole-animal performance of a tropical-dwelling gecko (Gekko gecko). To test the effect of surface wetting, we measured the shear adhesive force of geckos on three substrate conditions: dry glass, glass misted with water droplets and glass fully submerged in water. We also investigated the effect of wetting on the adhesive toe pad by soaking the toe pads prior to testing. Finally, we tested for repeatability of the adhesive system in each wetting condition by measuring shear adhesion after each step a gecko made under treatment conditions. Wetted toe pads had significantly lower shear adhesive force in all treatments (0.86 ± 0.09 N) than the control (17.96 ± 3.42 N), as did full immersion in water (0.44 ± 0.03 N). Treatments with droplets of water distributed across the surface were more variable and did not differ from treatments where the surface was dry (4.72 ± 1.59 N misted glass; 9.76 ± 2.81 N dry glass), except after the gecko took multiple steps. These findings suggest that surface water and the wetting of a gecko's adhesive toe pads may have significant consequences for the ecology and behavior of geckos living in tropical environments. PMID:22875772

Stark, Alyssa Y; Sullivan, Timothy W; Niewiarowski, Peter H

2012-09-01

307

A route toward digital manipulation of water nanodroplets on surfaces.  

PubMed

Manipulation of an isolated water nanodroplet (WN) on certain surfaces is important to various nanofluidic applications but challenging. Here we present a digital nanofluidic system based on a graphene/water/mica sandwich structure. In this architecture, graphene provides a flexible protection layer to isolate WNs from the outside environment, and a monolayer ice-like layer formed on the mica surface acts as a lubricant layer to allow these trapped WNs to move on it freely. In combination with scanning probe microscope techniques, we are able to move, merge, and separate individual water nanodroplets in a controlled manner. The smallest manipulatable water nanodroplet has a volume down to yoctoliter (10(-24) L) scale. PMID:24645988

Cheng, Meng; Wang, Duoming; Sun, Zhaoru; Zhao, Jing; Yang, Rong; Wang, Guole; Yang, Wei; Xie, Guibai; Zhang, Jing; Chen, Peng; He, Congli; Liu, Donghua; Xu, Limei; Shi, Dongxia; Wang, Enge; Zhang, Guangyu

2014-04-22

308

Zirconium fluoride glass - Surface crystals formed by reaction with water  

NASA Technical Reports Server (NTRS)

The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

1984-01-01

309

Parametrically excited water surface ripples as ensembles of oscillons  

E-print Network

We show that ripples on the surface of deep water which are driven parametrically by monochromatic vertical vibration represent ensembles of oscillating solitons, or quasi-particles, rather than waves. Horizontal mobility of oscillons determines the broadening of spectral lines and transitions from chaos to regular patterns. It is found that microscopic additions of proteins to water dramatically affect the oscillon mobility and drive transitions from chaos to order. The shape of the oscillons in physical space determines the shape of the frequency spectra of the surface ripple.

Shats, Michael; Punzmann, Horst

2011-01-01

310

Regularity of traveling free surface water waves with vorticity  

E-print Network

We prove real analyticity of all the streamlines, including the free surface, of a gravity- or capillary-gravity-driven steady flow of water over a flat bed, with a H\\"{o}lder continuous vorticity function, provided that the propagating speed of the wave on the free surface exceeds the horizontal fluid velocity throughout the flow. Furthermore, if the vorticity possesses some Gevrey regularity of index $s$, then the stream function admits the same Gevrey regularity throughout the fluid domain; in particular if the Gevrey index $s$ equals to 1, then we obtain analyticity of the stream function. The regularity results hold for both periodic and solitary water waves.

Li, Wei-Xi

2011-01-01

311

The use of radar imagery for surface water investigations  

NASA Technical Reports Server (NTRS)

The paper is concerned with the interpretation of hydrologic features using L-band (HH) imagery collected by aircraft and Seasat systems. Areas of research needed to more precisely define the accuracy and repeatability of measurements related to the conditions of surfaces and boundaries of fresh water bodies are identified. These include: the definition of shoreline, the nature of variations in surface roughness across a water body and along streams and lake shores, and the separation of ambiguous conditions which appear similar to lakes.

Bryan, M. L.

1981-01-01

312

Aluminum in acidic surface waters: chemistry, transport, and effects.  

PubMed Central

Ecologically significant concentrations of Al have been reported in surface waters draining "acid-sensitive" watersheds that are receiving elevated inputs of acidic deposition. It has been hypothesized that mineral acids from atmospheric deposition have remobilized Al previously precipitated within the soil during soil development. This Al is then thought to be transported to adjacent surface waters. Dissolved mononuclear Al occurs as aquo Al, as well as OH-, F-, SO4(2-), and organic complexes. Although past investigations have often ignored non-hydroxide complexes of Al, it appears that organic and F complexes are the predominant forms of Al in dilute (low ionic strength) acidic surface waters. The concentration of inorganic forms of Al increases exponentially with decreases in solution pH. This response is similar to the theoretical pH dependent solubility of Al mineral phases. The concentration of organic forms of Al, however, is strongly correlated with variations in organic carbon concentration of surface waters rather than pH. Elevated concentrations of Al in dilute acidic waters are of interest because: Al is an important pH buffer; Al may influence the cycling of important elements like P, organic carbon, and trace metals; and Al is potentially toxic to aquatic organisms. An understanding of the aqueous speciation of Al is essential for an evaluation of these processes. PMID:3935428

Driscoll, C T

1985-01-01

313

Dynamic Factor Analysis of Surface-Water Quality Data  

Microsoft Academic Search

A dynamic factor model and an autoregressive model for factor scores are used for modeling surface-water quality data. The former takes into account all time-lagged covariance matrices and the latter includes the autocorrelation of factors. The combined model permits the state-space formulation of the system and the use of the Kalman filter for estimating the time series of water quality

Shimin Zou; Yun-Sheng Yu

1993-01-01

314

The sub-tropical convergence in New Zealand surface waters  

Microsoft Academic Search

The geographical configuration and hydrological character of the sub-tropical convergence, the boundary between waters of sub-tropical and sub-antarctic origin, in the vicinity of New Zealand are discussed. As a background to this discussion some data are given on the seasonal variation of surface temperature in New Zealand coastal waters. The convergence follows approximately the isotherms of 15° C in February

D. M. Garner

1959-01-01

315

Nanofiltration of surface water for the removal of endocrine disruptors  

Microsoft Academic Search

The assessment of surface water nanofiltration (NF) for the removal of endocrine disruptors (EDs) – Nonylphenol Ethoxylate (IGEPAL), 4-Nonylphenol (NP) and 4-Octylphenol (OP) – was carried out with three commercial NF membranes – NF90, NF200, NF270. The permeation experiments were conducted in laboratory flat-cell units of 13.2 × 10 m of surface area and in a DSS Lab-unit M20 with

Ana Filipa Salvaterra; Georgina Sarmento; Miguel Minhalma; Maria Norberta de Pinho

2011-01-01

316

DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES  

EPA Science Inventory

Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

317

Ground Water and Surface Water, A Single Resource: Challenges and Opportunities (title provided or enhanced by cataloger)  

NSDL National Science Digital Library

This site looks at the future management of ground water and surface water in the United States and addresses the need for greater understanding of the interaction of ground and surface water with respect to the three issues of: water supply, water quality, and characteristics of aquatic environments. Special attention is given to the preservation of wetlands and riparian zones.

318

Treatment of pesticide contaminated surface water for production of potable water by a coagulation-adsorption-nanofiltration approach  

Microsoft Academic Search

The surface water bodies have become very much susceptible to pollution by pesticides due to their increased application in agriculture. The production of potable water from pesticide contaminated lake and river water was investigated by a coagulation-adsorption-nanofiltration approach. Isoproturon (IPU) was selected as a target pesticide and spiked in distilled water and then in surface water. Coagulation was done before

Baisali Sarkar; N. Venkateswralu; R. Nageswara Rao; Chiranjib Bhattacharjee; Vijay Kale

2007-01-01

319

Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar  

NASA Astrophysics Data System (ADS)

Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through dry to wet season at the upper Irrawaddy formation which is distributed beneath the lower Alluvium. Local groundwater flow system which is not affected by river water in the wet season is distributed at the central delta. Land use changes from tropical forest to plantation at the Arakan mountains. So, it is necessary to monitor the physical and chemical characteristics change of groundwater.

Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

2012-12-01

320

Radiolysis Concerns for Water Shielding in Fission Surface Power Applications  

SciTech Connect

This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion.

Schoenfeld, Michael P. [NASA Marshall Space Flight Center, ER24, MSFC, AL 35812 (United States); Anghaie, Samim [Innovative Space Power and Propulsion Institute, 800 SW Archer Rd. Bldg.554, P.O. Box 116502, University of Florida, Gainesville, FL 32611-6502 (United States)

2008-01-21

321

Surface properties of the polarizable Baranyai-Kiss water model.  

PubMed

The water surface properties using the Baranyai-Kiss (BK) model [A. Baranyai and P. T. Kiss, J. Chem. Phys. 133, 144109 (2010)] are studied by molecular dynamics simulation, and compared to popular rigid water potentials, namely to the extended simple point charge (SPC/E) and the transferable interaction potential with 4 points (TIP4P) models. The BK potential is a polarizable model of water with three Gaussian charges. The negative charge is connected to its field-free position by a classical harmonic spring, and mechanical equilibrium is established between this spring force and the force due to the charge distribution of the system. The aim of this study is, on the one hand, to test the surface properties of the new model, and on the other hand, to identify differences between the models listed above. The obtained results reveal that the BK model reproduces very well a number of properties corresponding to liquid-vapor equilibrium, such as the coexisting liquid and vapor densities, saturated vapor pressure or surface tension. Further, this model reproduces excellently the critical point of water even in comparison with a large number of widely used polarizable and nonpolarizable models. The structural properties of the liquid surface of BK water turns out to be very similar to that of the SPC/E model, while the surface of TIP4P water is found to be somewhat less ordered. This finding is related to the fact that the critical temperature of the TIP4P model is lower than that of either SPC/E or BK. PMID:22443789

Kiss, Péter; Darvas, Mária; Baranyai, András; Jedlovszky, Pál

2012-03-21

322

Surface properties of the polarizable Baranyai-Kiss water model  

NASA Astrophysics Data System (ADS)

The water surface properties using the Baranyai-Kiss (BK) model [A. Baranyai and P. T. Kiss, J. Chem. Phys. 133, 144109 (2010)] are studied by molecular dynamics simulation, and compared to popular rigid water potentials, namely to the extended simple point charge (SPC/E) and the transferable interaction potential with 4 points (TIP4P) models. The BK potential is a polarizable model of water with three Gaussian charges. The negative charge is connected to its field-free position by a classical harmonic spring, and mechanical equilibrium is established between this spring force and the force due to the charge distribution of the system. The aim of this study is, on the one hand, to test the surface properties of the new model, and on the other hand, to identify differences between the models listed above. The obtained results reveal that the BK model reproduces very well a number of properties corresponding to liquid-vapor equilibrium, such as the coexisting liquid and vapor densities, saturated vapor pressure or surface tension. Further, this model reproduces excellently the critical point of water even in comparison with a large number of widely used polarizable and nonpolarizable models. The structural properties of the liquid surface of BK water turns out to be very similar to that of the SPC/E model, while the surface of TIP4P water is found to be somewhat less ordered. This finding is related to the fact that the critical temperature of the TIP4P model is lower than that of either SPC/E or BK.

Kiss, Péter; Darvas, Mária; Baranyai, András; Jedlovszky, Pál

2012-03-01

323

Water and Carbon Dioxide Adsorption at Olivine Surfaces  

SciTech Connect

Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

2013-11-14

324

Comparison of pesticide residues in surface water and ground water of agriculture intensive areas  

PubMed Central

The organochlorines (OClPs) and organophosphates (OPPs) pesticides in surface and ground water having intensive agriculture activity were investigated to evaluate their potential pollution and risks on human health. As per USEPA 8081 B method, liquid-liquid extraction followed by Gas-Chromatographic technique with electron capture detector and mass selective detector (GC-MS) were used for monitoring of pesticides. Among organochlorines, ?,?,?,? HCH’s, aldrin, dicofol, DDT and its derivatives, ?,? endosulphan’s and endosulphan-sulphate were analysed; dichlorovos, ethion, parathion-methyl, phorate, chlorpyrifos and profenofos were determined among organophosphates. As compared to ground water, higher concentrations of OClPs and OPPs were found in surface water. Throughout the monitoring study, ??-?HCH (0.39 ?g/L in Amravati region),??-?endosulphan (0.78 ?g/L in Yavatmal region), chlorpyrifos (0.25 ?g/L in Bhandara region) and parathion-methyl (0.09 ?g/L in Amravati region) are frequently found pesticide in ground water, whereas ?,?,?-HCH (0.39 ?g/L in Amravati region), ?,??-?endosulphan (0.42 ?g/L in Amravati region), dichlorovos (0.25 ?g/L in Yavatmal region), parathion-methyl (0.42 ?g/L in Bhandara region), phorate (0.33 ?g/L in Yavatmal region) were found in surface water. Surface water was found to be more contaminated than ground water with more number of and more concentrated pesticides. Among pesticides water samples are found to be more contaminated by organophosphate than organochlorine. Pesticides in the surface water samples from Bhandara and Yavatmal region exceeded the EU (European Union) limit of 1.0 ?g/L (sum of pesticide levels in surface water) but were within the WHO guidelines for individual pesticides. PMID:24398360

2014-01-01

325

The Apollo lunar surface water vapor event revisited  

NASA Technical Reports Server (NTRS)

On March 7, 1971, the first sunrise following the Apollo 14 mission, the Suprathermal Ion Detector Experiment (SIDE) deployed at the Apollo 14 site reported an intense flux of ions whose mass per charge was consistent with water vapor. The amount of water is examined, and the various acceleration processes, responsible for accelerating ions into the SIDE, are discussed. It is concluded that during most of the event the observed water vapor ions were accelerated by the negative lunar surface electric potential and, secondly, that this event was probably the result of mission associated water vapor, either from the LM ascent and descent stage rockets or from residual water in the descent stage tanks.

Freeman, J. W., Jr.; Hills, H. K.

1991-01-01

326

Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam  

NASA Astrophysics Data System (ADS)

Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore water of the pond sediments were much higher than the pond water and closed to that of groundwater. Also, other metal elements showed the same trend. This result suggested that Arsenic and other metal elements recharged to these ponds is probably adsorbed and removed by sediments (including organic matters). That is, pond sediment plays an important role for solute transport as a filter of Arsenic and metal elements. The results of this study strongly suggest that the natural and artificial surface water areas have important roles for water cycle and solute transport in Hanoi city. Although the number of the natural water areas is decreasing, dredging of artificial water areas increases the infiltration from the surface to aquifers. Therefore, qualitative and quantitative preservation of the surface water areas is important for conservation of groundwater environment and contribute to sustainable groundwater management in Hanoi city.

Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

2013-04-01

327

Distribution patterns of polychlorinated biphenyl congeners in water, sediment and biota from Midway Atoll (North Pacific Ocean)  

Microsoft Academic Search

To increase our understanding of critical pathways of polychlorinated biphenyl (PCB) transfer from abiotic media into marine organisms, this study quantified 20 PCB congeners in surface water, sediment and tissues of marine biota (macrophytes, snails, urchins, bivalves, sea cucumbers, fishes) taken from Midway Atoll. PCBs 138, 153, 170, 180 and 187 were the most abundant congeners in all samples analysed.

Bruce Hope; Susan Scatolini; Eric Titus; Jeff Cotter

1997-01-01

328

Schistosomes and snails: a molecular encounter  

PubMed Central

Biomphalaria glabrata snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis in the Western hemisphere. For the past two decades, tremendous advances have been made in research aimed at elucidating the molecular basis of the snail/parasite interaction. The growing concern that there is no vaccine to prevent schistosomiasis and only one effective drug in existence provides the impetus to develop new control strategies based on eliminating schistosomes at the snail-stage of the life cycle. To elucidate why a given snail is not always compatible to each and every schistosome it encounters, B. glabrata that are either resistant or susceptible to a given strain of S. mansoni have been employed to track molecular mechanisms governing the snail/schistosome relationship. With such snails, genetic markers for resistance and susceptibility were identified. Additionally, differential gene expression studies have led to the identification of genes that underlie these phenotypes. Lately, the role of schistosomes in mediating non-random relocation of gene loci has been identified for the first time, making B. glabrata a model organism where chromatin regulation by changes in nuclear architecture, known as spatial epigenetics, orchestrated by a major human parasite can now be investigated. This review will highlight the progress that has been made in using molecular approaches to describe snail/schistosome compatibility issues. Uncovering the signaling networks triggered by schistosomes that provide the impulse to turn genes on and off in the snail host, thereby controlling the outcome of infection, could also yield new insights into anti-parasite mechanism(s) that operate in the human host as well. PMID:25101114

Knight, Matty; Arican-Goktas, Halime D.; Ittiprasert, Wannaporn; Odoemelam, Edwin C.; Miller, André N.; Bridger, Joanna M.

2014-01-01

329

High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia  

Microsoft Academic Search

Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In

Andrej Steyer; Karmen Godi? Torkar; Ion Gutiérrez-Aguirre; Mateja Poljšak-Prijatelj

2011-01-01

330

THE COORDINATED USE OF GROUND WATER BASINS AND SURFACE WATER DELIVERY FACILITIES (*)  

Microsoft Academic Search

The world's ever-increasing population is continually requiring more and greater efforts by engineers and geologists in providing adequate water supplies. In the past, water supplies have been principally obtained and their use regulated by diversions of surface flows into canals, pipelines, and reservoirs. In the last 60 years, however, the advent of the deep well turbine pump has opened the

Lloyd C. FOWLER; Vernon E. VALANTINE

331

NAWQA RETROSPECTIVE DATABASE FOR NUTRIENTS IN GROUND WATER AND SURFACE WATER  

EPA Science Inventory

The National Water-Quality Assessment (NAWQA) Program is designed to describe the status and trends in the quality of the Nations ground- and surface-water resources and to provide a sound understanding of the natural and human factors that affect the quality of these resources. ...

332

Field Evaluation Of Arsenic Speciation In Sediments At The Ground Water/Surface Water Interface  

EPA Science Inventory

The speciation and mineralogy of sediments contaminated with arsenic at the ground water/surface water interface of the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speciation and mineralog...

333

Surface Water Data at Los Alamos National Laboratory: 2002 Water Year  

SciTech Connect

The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

D.A. Shaull; D. Ortiz; M.R. Alexander; R.P. Romero

2003-03-03

334

Surface water data at Los Alamos National Laboratory: 2008 water year  

SciTech Connect

The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

2009-09-01

335

Surface Water Data at Los Alamos National Laboratory 2006 Water Year  

SciTech Connect

The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

R.P. Romero, D. Ortiz, G. Kuyumjian

2007-08-01

336

Effects of Surface-Water Diversions on Habitat Availability for Native Macrofauna, Northeast Maui, Hawaii  

USGS Publications Warehouse

Effects of surface-water diversions on habitat availability for native stream fauna (fish, shrimp, and snails) are described for 21 streams in northeast Maui, Hawaii. Five streams (Waikamoi, Honomanu, Wailuanui, Kopiliula, and Hanawi Streams) were chosen as representative streams for intensive study. On each of the five streams, three representative reaches were selected: (1) immediately upstream of major surface-water diversions, (2) midway to the coast, and (3) near the coast. This study focused on five amphidromous native aquatic species (alamoo, nopili, nakea, opae, and hihiwai) that are abundant in the study area. The Physical Habitat Simulation (PHABSIM) System, which incorporates hydrology, stream morphology and microhabitat preferences to explore relations between streamflow and habitat availability, was used to simulate habitat/discharge relations for various species and life stages, and to provide quantitative habitat comparisons at different streamflows of interest. Hydrologic data, collected over a range of low-flow discharges, were used to calibrate hydraulic models of selected transects across the streams. The models were then used to predict water depth and velocity (expressed as a Froude number) over a range of discharges up to estimates of natural median streamflow. The biological importance of the stream hydraulic attributes was then assessed with the statistically derived suitability criteria for each native species and life stage that were developed as part of this study to produce a relation between discharge and habitat availability. The final output was expressed as a weighted habitat area of streambed for a representative stream reach. PHABSIM model results are presented to show the area of estimated usable bed habitat over a range of streamflows relative to natural conditions. In general, the models show a continuous decrease in habitat for all modeled species as streamflow is decreased from natural conditions. The PHABSIM modeling results from the intensively studied streams were normalized to develop relations between the relative amount of diversion from a stream and the resulting relative change in habitat in the stream. These relations can be used to estimate changes in habitat for diverted streams in the study area that were not intensively studied. The relations indicate that the addition of even a small amount of water to a dry stream has a significant effect on the amount of habitat available. Equations relating stream base-flow changes to habitat changes can be used to provide an estimate of the relative habitat change in the study area streams for which estimates of diverted and natural median base flow have been determined but for which detailed habitat models were not developed. Stream water temperatures, which could have an effect on stream ecology and taro cultivation, were measured in five streams in the study area. In general, the stream temperatures measured at any of the monitoring sites were not elevated enough, based on currently available information, to adversely effect the growth or mortality of native aquatic macrofauna or to cause wetland taro to be susceptible to fungi and associated rotting diseases.

Gingerich, Stephen B.; Wolff, Reuben H.

2005-01-01

337

Near Surface Water Content Estimation using GPR Data  

E-print Network

Near Surface Water Content Estimation using GPR Data: Investigations within California Vineyards S France April 2003 Funded by NSF Ear-0087802 and USDA 2001-35102-09866 to Y. Rubin #12;Outline · GPR) may be difficult to map using TDR or gravimetric techniques** #12;GPR METHOD The velocity of the GPR

Rubin, Yoram

338

REMOTE MONITORING OF ORGANIC CARBON IN SURFACE WATERS  

EPA Science Inventory

This study shows that the intensity of the Raman normalized fluorescence emission induced in surface waters by ultraviolet radiation can be used to provide a unique remote sensing capability for airborne monitoring the concentration of dissolved organic carbon (DOC). Trace concen...

339

Zearalenone occurrence in surface waters in central Illinois, USA  

Technology Transfer Automated Retrieval System (TEKTRAN)

Zearalenone (ZEN) is an estrogenic secondary metabolite produced by certain fungi that commonly infest important cereal crops, such as corn and wheat. The ability of ZEN to move from contaminated crops to surface waters has been demonstrated previously. This article reports the development of a meth...

340

RATES, CONSTANTS, AND KINETICS FORMULATIONS IN SURFACE WATER QUALITY MODELING  

EPA Science Inventory

Recent studies are reviewed to provide a comprehensive volume on state-of-the-art formulations used in surface water quality modeling along with accepted values for rate constants and coefficients. Topics covered include system geometric representation (spatial and temporal), phy...

341

Surface Science in the Richmond Lab: Vapor/Water Studies  

E-print Network

-surface interactions. Recent investigations of small chain dicarboxylic acids show chain length dependence increases, the carbonyl mode becomes more solvated and similar to bulk. The pH dependence shows that only at the oil/water interface has attracted a lot of attention in the past few years due to their ability

Richmond, Geraldine L.

342

Surface water waves and tsunamis By Walter Craig  

E-print Network

, the east coast of the United States, and at Halifax, Nova Scotia. To describe ocean waves we will formulate: Tsunamis, nonlinear surface water waves 1. Tsunamis and ocean waves The name `tsunami' in Japanese of ocean waves which are occasionally generated by movements of the ocean floor. Very infrequently

Craig, Walter

343

Shale gas development impacts on surface water quality in Pennsylvania  

PubMed Central

Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl?) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl? concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl? concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

2013-01-01

344

Seasonal melting of surface water ice condensing in martian gullies  

Microsoft Academic Search

In this work we consider when and how much liquid water during present climate is possible within the gullies observed on the surface of Mars. These features are usually found on poleward directed slopes. We analyse the conditions for melting of H2O ice, which seasonally condenses within the gullies. We follow full annual cycle of condensation and sublimation of atmospheric

Konrad J. Kossacki; Wojciech J. Markiewicz

2004-01-01

345

Water condensation on a super-hydrophobic spike surface  

Microsoft Academic Search

Condensation-induced water drop growth was studied on a super-hydrophobic spike surface. The dynamics are described by three main stages depending on the size of the drop with respect to the different spike pattern length scales. The initial stage is characterized by nucleation of the drops at the bottom (cavities) of the spikes. During the intermediate stage, large drops are surrounded

R. D. Narhe; D. A. Beysens

2006-01-01

346

Shale gas development impacts on surface water quality in Pennsylvania.  

PubMed

Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

2013-03-26

347

CONTROLLING STORM WATER RUNOFF WITH TRADABLE CREDITS FOR IMPERVIOUS SURFACES  

EPA Science Inventory

Storm water flow off impervious surface in a watershed can lead to stream degradation, habitat alteration, low base flows and toxic leading. We show that a properly designed tradable runoff credit (TRC) system creates economic incentives for landowners to employ best management p...

348

CHARACTERIZING SURFACE WATERS THAT MAY NOT REQUIRE FILTRATION  

EPA Science Inventory

A relatively clean raw surface water can be determined that is amenable to disinfection as the only controlling treatment process. The essential criteria and associated standards are: ecal coliform, 20 organisms/100 mL; Turbidity, 1.0 NTU; Color, 15 ACU; Chlorine Demand, 2 mg/L. ...

349

Uranium in US surface, ground, and domestic waters. Volume 2  

SciTech Connect

The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

1981-04-01

350

Carbon dioxide supersaturation in the surface waters of lakes  

Microsoft Academic Search

Data on the partial pressure of carbon dioxide (COâ) in the surface waters from a large number of lakes (1835) with a worldwide distribution show that only a small proportion of the 4665 samples analyzed (less than 10 percent) were within {+-}20 percent of equilibrium with the atmosphere and that most samples (87 percent) were supersaturated. The mean partial pressure

J. J. Cole; N. F. Caraco; G. W. Kling; T. K. Kratz

1994-01-01

351

Numerical modeling of runback water on ice protected aircraft surfaces  

Microsoft Academic Search

A numerical simulation for 'running wet' aircraft anti-icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modeled as a multilayer

Kamel M. Al-Khalil; Theo G. Keith Jr.; Kenneth J. Dewitt

1992-01-01

352

Pg: 1 February 11, 2009 Surface Water and  

E-print Network

: Larry Smith Additional science applications: Ocean bathymetry, sea-ice properties, coastal and internal: To provide a global inventory of all terrestrial water bodies whose surface area exceeds (250m)2 (lakes temporal sampling ­ Great scientific advances while avoiding technology & cost creep · SWOT

Christian, Eric

353

PHOTOREACTIONS IN SURFACE WATERS AND THEIR ROLE IN BIOGEOCHEMICAL CYCLES  

EPA Science Inventory

During the past decade significant interest has developed in the influence of photochemical reactions on biogeochemical cycles in surface waters of lakes and the sea. A major portion of recent research on these photoreactions has focused on the colored component of dissolved org...

354

Transport and Fate of Nitrate at the Ground Water-Surface Water Interface  

Microsoft Academic Search

We investigated the transport and fate of nitrate within the ground water-surface water interface of 5 agriculturally dominated streams across the United States in Maryland, Indiana, Nebraska, California, and Washington. Water samples were collected from the streambed at depths ranging from 0.3 to 3 m, in 2-5 transects along the stream, and at 3-5 points across each transect. At 2

L. J. Puckett; H. I. Essaid; C. Zamora; J. T. Wilson; H. M. Johnson; J. R. Vogel

2006-01-01

355

The role of Snail in prostate cancer  

PubMed Central

Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of death from cancer in men. Epithelial-mesenchymal transition (EMT) is a process by which cancer cells invade and migrate, and is characterized by loss of cell-cell adhesion molecules such as E-cadherin and increased expression of mesenchymal proteins such as vimentin; EMT is also associated with resistance to therapy. Snail, a master regulator of EMT, has been extensively studied and reported in cancers such as breast and colon; however, its role in prostate cancer is not as widely reported. The purpose of this review is to put together recent facts that summarize Snail signaling in human prostate cancer. Snail is overexpressed in prostate cancer and its expression and activity is controlled via phosphorylation and growth factor signaling. Snail is involved in its canonical role of inducing EMT in prostate cancer cells; however, it plays a role in non-canonical pathways that do not involve EMT such regulation of bone turnover and neuroendocrine differentiation. Thus, studies indicate that Snail signaling contributes to prostate cancer progression and metastasis and therapeutic targeting of Snail in prostate cancer holds promise in ?future. PMID:23076049

Smith, Bethany N.; Odero-Marah, Valerie A.

2012-01-01

356

Surface Water Storage Change as Evidence of Groundwater Gradients  

NASA Astrophysics Data System (ADS)

Much of the Alaskan Arctic and Subarctic receives a minimal amount of annual precipitation. Changes to regional precipitation patterns and the general transient warming expected in the next century's lake hydrology and the associated wetlands place the risk of lakes perforating the permafrost boundary on the forefront. Lake change on the Alaskan landscape due to permafrost degradation is going to be important to local ecosystems and in, for example, providing habitat for migratory waterfowl in the next decades and centuries. Permafrost presence, absence, and thickness are interconnected in the deciphering of groundwater gradients and projection of surface water presence, absence, disappearance, and appearance on the Alaskan landscape. Detailed efforts have been made to produce datasets of presence or absence of the permafrost on the Seward Peninsula and further efforts are in place to do the same for the entire state. Continuous permafrost can provide an impervious barrier to groundwater movement and most groundwater-surface water interaction occurs in areas of discontinuous permafrost. With permafrost thawing and open talik formation in discontinuous permafrost regions, surface water formerly perched above the permafrost can drain into the subpermafrost groundwater. In contrast, in areas where the local hydraulic gradient is upwards, subpermafrost groundwater may discharge at the surface as the confining layer of permafrost degrades and an open talik forms. Lake change, in the absence of changes in evaporation and surface flow, are governed by the local vertical flux of water. In this study we compile observations of surface water storage change in Alaska and conjecture that shrinking/ disappearing lakes are evidence of supra-permafrost groundwater downwelling. The resulting dataset serves as verification for our model of groundwater dynamics. The planned method for determining the ground water gradient and degree to which vertical percolation will be restricted is to analyze digital terrain information with hydrology, permafrost, soils, geology, and current climate data. To start the groundwater gradient computations we will focus on areas with known hydrologic phenomena and elaborate on a vector based gradient map referencing the steepness of the terrain and the precipitation on the surrounding higher elevations. Once the present groundwater and surface water situation is captured, based on the future subsidence of the permafrost in areas on the landscape, we propose to forecast the wetness and dryness across Alaska, capturing the uniqueness of each watershed's turn toward wetter and then drier over the next decades and centuries.

Bryan, R.; Hinzman, L. D.; Hinzman, K.

2007-12-01

357

Salinity adaptation of the invasive New Zealand mud snail (Potamopyrgus antipodarum) in the Columbia River estuary (Pacific Northwest, USA): physiological and molecular studies  

USGS Publications Warehouse

In this study, we examine salinity stress tolerances of two populations of the invasive species New Zealand mud snail Potamopyrgus antipodarum, one population from a high salinity environment in the Columbia River estuary and the other from a fresh water lake. In 1996, New Zealand mud snails were discovered in the tidal reaches of the Columbia River estuary that is routinely exposed to salinity at near full seawater concentrations. In contrast, in their native habitat and throughout its spread in the western US, New Zealand mud snails are found only in fresh water ecosystems. Our aim was to determine whether the Columbia River snails have become salt water adapted. Using a modification of the standard amphipod sediment toxicity test, salinity tolerance was tested using a range of concentrations up to undiluted seawater, and the snails were sampled for mortality at daily time points. Our results show that the Columbia River snails were more tolerant of acute salinity stress with the LC50 values averaging 38 and 22 Practical Salinity Units for the Columbia River and freshwater snails, respectively. DNA sequence analysis and morphological comparisons of individuals representing each population indicate that they were all P. antipodarum. These results suggest that this species is salt water adaptable and in addition, this investigation helps elucidate the potential of this aquatic invasive organism to adapt to adverse environmental conditions.

Hoy, Marshal; Boese, Bruce L.; Taylor, Louise; Reusser, Deborah; Rodriguez, Rusty

2012-01-01

358

Water-Mediated Proton Hopping on an Iron Oxide Surface  

SciTech Connect

The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H3O+-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO2(110), where water dissociation is a key step in proton diffusion.

Merte, L. R.; Peng, Guowen; Bechstein, Ralf; Rieboldt, Felix; Farberow, Carrie A.; Grabow, Lars C.; Kudernatsch, Wilhelmine; Wendt, Stefen; Laegsgaard, E.; Mavrikakis, Manos; Besenbacher, Fleming

2012-05-18

359

Photochemistry of Dissolved Organic Matter in Arctic Surface Waters  

NASA Astrophysics Data System (ADS)

It has been shown that persistent organic pollutants (POPs), transported to the Arctic by long-range processes, can potentially contaminate Arctic surface waters and affect both local ecosystems and human health. Once deposited, the behavior of these pollutants is poorly understood; particularly the processes that govern their lifetime and concentrations within the water column. Here, we discuss the photochemical degradation of several halogenated organic pollutants (e.g., lindane, hexachlorobenzene) as mediated by natural dissolved organic matter (DOM). These experiments were conducted both in a controlled laboratory setting using an artificial sunlight simulator, as well as in situ in Alaskan surface waters near Toolik Lake. Our findings to date show high variability in the photodegradation rates of the target POPs and can be correlated to both their structure and the type of DOM present.

Grannas, A. M.; Chin, Y.; Miller, P. L.

2003-12-01

360

Specialized insulin is used for chemical warfare by fish-hunting cone snails.  

PubMed

More than 100 species of venomous cone snails (genus Conus) are highly effective predators of fish. The vast majority of venom components identified and functionally characterized to date are neurotoxins specifically targeted to receptors, ion channels, and transporters in the nervous system of prey, predators, or competitors. Here we describe a venom component targeting energy metabolism, a radically different mechanism. Two fish-hunting cone snails, Conus geographus and Conus tulipa, have evolved specialized insulins that are expressed as major components of their venoms. These insulins are distinctive in having much greater similarity to fish insulins than to the molluscan hormone and are unique in that posttranslational modifications characteristic of conotoxins (hydroxyproline, ?-carboxyglutamate) are present. When injected into fish, the venom insulin elicits hypoglycemic shock, a condition characterized by dangerously low blood glucose. Our evidence suggests that insulin is specifically used as a weapon for prey capture by a subset of fish-hunting cone snails that use a net strategy to capture prey. Insulin appears to be a component of the nirvana cabal, a toxin combination in these venoms that is released into the water to disorient schools of small fish, making them easier to engulf with the snail's distended false mouth, which functions as a net. If an entire school of fish simultaneously experiences hypoglycemic shock, this should directly facilitate capture by the predatory snail. PMID:25605914

Safavi-Hemami, Helena; Gajewiak, Joanna; Karanth, Santhosh; Robinson, Samuel D; Ueberheide, Beatrix; Douglass, Adam D; Schlegel, Amnon; Imperial, Julita S; Watkins, Maren; Bandyopadhyay, Pradip K; Yandell, Mark; Li, Qing; Purcell, Anthony W; Norton, Raymond S; Ellgaard, Lars; Olivera, Baldomero M

2015-02-10

361

Activation of the immune defence of the freshwater snail Lymnaea stagnalis by different immune elicitors.  

PubMed

Understanding the outcomes of host-parasite interactions in nature is in high demand as parasites and pathogens are important for several ecological and evolutionary processes. Ecological immunology (ecoimmunology) has a key role in reaching this goal because immune defence is the main physiological barrier against infections. To date, ecoimmunological studies largely lean on measuring constitutive immune defences (components of defence that are always active). However, understanding the role of inducible components of immune function is important as the immune system is largely an inducible defence. Measuring such defences can be complicated as different parasites may activate different immune cascades, and expression of different immune traits may not be independent. We examined the suitability of different immune activation techniques for the freshwater snail Lymnaea stagnalis. By experimentally challenging snails with different immune elicitors [injection with snail saline (i.e. wounding), lyophilized Escherichia coli cells, lyophilized Micrococcus lysodeikticus cells, healthy snail gonad, and trematode-infected snail gonad; maintenance in microorganism-enriched water] and measuring phenoloxidase-like and antibacterial activity of their haemolymph, we found increased immune activity against some immune elicitors, but also decreased activity. Our findings suggest potentially complicated relationships among immune traits, and propose suitable techniques for ecological studies in this study system. PMID:23842628

Seppälä, Otto; Leicht, Katja

2013-08-01

362

Surface Chemistry and Water Dispersability of Carbon Black Materials  

SciTech Connect

Formulation of water-stable carbon black dispersions is a double-sided task, which requires selection of a proper dispersing agents and matching it with the properties of a specific carbon black. Among other properties that affect water dispersability of carbon blacks (particle size, surface area, and aggregate structure), surface chemistry plays a prime-order role. We have characterized physical and chemical properties of several carbon black materials, and correlated them with the stability of dispersions formed with ionic and non-ionic surfactants. In particular, chemical characterization of surface functional groups on carbon blacks based on potentiometric titration measurements (pKa spectra) provided a comprehensive picture of pH effects on dispersion stability. The results obtained were complemented by information from physical characterization methods, such as XPS and FTIR. The selection of a suitable dispersing agent able to withstand large pH variations will be discussed.

Contescu, Cristian I [ORNL; Baker, Frederick S [ORNL; Burchell, Timothy D [ORNL

2006-01-01

363

SARAH, A SURFACE WATER ASSESSMENT MODEL FOR BACK CALCULATING REDUCTIONS IN ABIOTIC HAZARDOUS WASTES  

EPA Science Inventory

The nearfield surface model SARAH calculates maximum allowable hazardous waste concentrations based on predicted exposure to humans or aquatic life from contaminated surface water. The surface water contamination pathways analyzed in SARAH include groundwater leachate from a land...

364

Cholesterol enhances surface water diffusion of phospholipid bilayers  

SciTech Connect

Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster surface water diffusivity. Another is the concurrent tightening of lipid packing that reduces passive, possibly unwanted, diffusion of ions and water across the bilayer.

Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

2014-12-14

365

Cholesterol enhances surface water diffusion of phospholipid bilayers  

NASA Astrophysics Data System (ADS)

Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed 1H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5-10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster surface water diffusivity. Another is the concurrent tightening of lipid packing that reduces passive, possibly unwanted, diffusion of ions and water across the bilayer.

Cheng, Chi-Yuan; Olijve, Luuk L. C.; Kausik, Ravinath; Han, Songi

2014-12-01

366

Cholesterol enhances surface water diffusion of phospholipid bilayers.  

PubMed

Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed (1)H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5-10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster surface water diffusivity. Another is the concurrent tightening of lipid packing that reduces passive, possibly unwanted, diffusion of ions and water across the bilayer. PMID:25494784

Cheng, Chi-Yuan; Olijve, Luuk L C; Kausik, Ravinath; Han, Songi

2014-12-14

367

Hydraulic exchange between a coral reef and surface sea water  

SciTech Connect

Hydraulic exchange between overlying sea water and the internal structure of a patch reef in Kaneohe Bay, Oahu, Hawaii, was studied with an array of wells, 1, 2, and 4 m deep. Two natural chemical tracers, radon, and salinity, were used to calculate the exchange rate between surface sea water and reef interstitial waters. Dissolved radon concentrations are substantially higher in interstitial waters than is surface water. The degree of radon enrichment is quantitatively related to the time elapsed since interstitial water had equilibrated with the atmosphere. Residence time estimates are 1-40 days, with deeper wells having slower exchange. The average residence time for 1-m-deep wells was 2.1 days. A rainstorm-induced dilution of the salinity of Kaneohe Bay provides the second tracer. Samples of surface and reef interstitial waters following this salinity perturbation are used to calculate an average residence time of 2.6 days at a depth of 1 m and 42 days at a depth of 2 m. Three types of physical forces thought to cause exchange between surface and interstitial water are considered by measurement of the forcing functions and reef permeability. Hydraulic conductivities are about 50 m/d, with lower values near the seaward side of the reef. Most exchange seems to be caused by high-frequency, wave-driven oscillatory pumping and by unidirectional hydraulic head gradients (of uncertain origin) that are stable for at least 3-4 days. Wave-driven mixing is probably more important shallower in the reef, whereas head-driven flow may dominate deeper in the reef. Tidal pumping does not seem to contribute to exchange. All methods indicate that exchange in the upper part of Checker Reef is primarily through vertical exchange. The best estimate for the residence time of water at a depth of 1 m is 2 days. Water at depths of 204 m probably has a residence time of weeks to months. 49 refs., 8 figs., 6 tabs.

Tribble, G.W.; Sansone, F.J.; Li, Yuan-Hui [Univ. of Hawaii, Honolulu, Hi (United States)] [and others] [Univ. of Hawaii, Honolulu, Hi (United States); and others

1992-10-01

368

Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)  

NASA Astrophysics Data System (ADS)

Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface as compared to open water controls. Decreases in emission rate varied linearly with percent duckweed cover, with lower fluxes occurring at higher percent cover. Mercury flux in the duckweed treatments as compared to open water treatments decreased from 17% in the lowest percent cover treatment to 67% in the highest percent cover treatment. The observed decrease in mercury emission suggests that duckweed limits emission via the formation of a physical barrier to diffusion.

Wollenberg, J. L.; Peters, S. C.

2007-12-01

369

Sea, ice and surface water circulation, Alaskan Continental Shelf  

NASA Technical Reports Server (NTRS)

The author has identified the following significant results. Two cruises were conducted in Cook Inlet to obtain ground truth. Forty-seven stations during 22-23 August and 68 stations during 25-29 September 1972 were occupied and temperature, salinity, percent light transmission, and suspended load of surface waters obtained. Similar data at various depths was also obtained at selected stations. Cook Inlet is an estuary with complex mixing of river discharges and ocean water. The Upper Cook Inlet shows a gradual and systematic decrease in salinity, however, west of Kenai the mixing of waters is complex. The sediments in suspension originating at the head of the inlet generally settle out east of Kenai and Drift River. Sediment load in suspension decreased gradually from 1700 mg/1 near Anchorage to about 50 mg/1 in the Narrows. In the Lower Cook Inlet the suspended load varied between 1-10 mg/1. Surface waters with sediments in suspension and ocean water with relatively lower sediment concentration are clearly discernible in ERTS-1 images obtained during September 18, 1972 pass over Cook Inlet. The movement and mixing of these waters can also be delineated in the images.

Wright, F. F. (principal investigator); Sharma, G. D.

1972-01-01

370

Surface water and groundwater interactions in coastal wetlands  

NASA Astrophysics Data System (ADS)

Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.

Li, Ling; Xin, Pei; Shen, Chengji

2014-05-01

371

The ecology of vector snail habitats and mosquito breeding-places  

PubMed Central

The ecology of freshwater snails—in particular those which act as intermediate hosts of bilharziasis—is reviewed in the light of the much more extensive knowledge available on the breeding-places of anopheline mosquitos. Experimental ecological methods are recommended for the field and laboratory investigation of a number of common problems involved in the study of snail habitats and mosquito breeding-places. Among the environmental factors discussed are temperature, oxygen concentration, water movement, pollution and salinity. Sampling methods for estimating populations of both snails and mosquito larvae are also described. An attempt is made to show how malacologists and entomologists alike would benefit from improved facilities for keeping abreast of general developments in the wider field of freshwater ecology. PMID:13596888

Muirhead-Thomson, R. C.

1958-01-01

372

[Neuroeffector connections of multimodal neurons in the African snail (Achatina fulica)].  

PubMed

Using a new method of animal preparation, the efferent connections of giant paired neurons on the dorsal surface of visceral and right parietal ganglia of snail, Achatina fulica, were examined. It was found that spikes in giant neurons d-VLN and d-RPLN evoke postjunctional potentials in different points of the snail body and viscerae (in the heart, in pericardium, in lung cavity and kidney walls, in mantle and body wall muscles, in tentacle retractors and in cephalic artery). The preliminary analysis of synaptic latency and facilitation suggests a direct connections between giant neurons and investigated efferents. PMID:15143504

Buga?, V V; Zhuravlev, V L; Safonova, T A

2004-02-01

373

Water Surface and Velocity Measurement-River and Flume  

NASA Astrophysics Data System (ADS)

Understanding the flow of water in natural watercourses has become increasingly important as climate change increases the incidence of extreme rainfall events which cause flooding. Vegetation in rivers and streams reduce water conveyance and natural vegetation plays a critical role in flood events which needs to be understood more fully. A funded project at Loughborough University is therefore examining the influence of vegetation upon water flow, requiring measurement of both the 3-D water surface and flow velocities. Experimental work therefore requires the measurement of water surface morphology and velocity (i.e. speed and direction) in a controlled laboratory environment using a flume but also needs to be adaptable to work in a real river. Measuring the 3D topographic characteristics and velocity field of a flowing water surface is difficult and the purpose of this paper is to describe recent experimental work to achieve this. After reviewing past work in this area, the use of close range digital photogrammetry for capturing both the 3D water surface and surface velocity is described. The selected approach uses either two or three synchronised digital SLR cameras in combination with PhotoModeler for data processing, a commercial close range photogrammetric package. One critical aspect is the selection and distribution of appropriate floating marker points, which are critical if automated and appropriate measurement methods are to be used. Two distinct targeting approaches are available: either large and distinct specific floating markers or some fine material capable of providing appropriate texture. Initial work described in this paper uses specific marker points, which also provide the potential measuring surface velocity. The paper demonstrates that a high degree of measurement and marking automation is possible in a flume environment, where lighting influences can be highly controlled. When applied to a real river it is apparent that only lower degrees of automation are practicable. The study has demonstrated that although some automation is possible for point measurement, point matching needs to be manually guided in a natural environment where lighting cannot be controlled.

Chandler, J. H.; Ferreira, E.; Wackrow, R.; Shiono, K.

2014-06-01

374

Water resources data for New Jersey, water year 1992. Volume 1. Surface-water data. Water-data report (Annual), 1 October 1991-30 September 1992  

SciTech Connect

Water resources data for the 1992 water year for New Jersey consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. The volume of the report contains discharge records for 99 gaging stations; tide summaries for 2 stations; stage and contents for 37 lakes and reservoirs; water quality for 95 surface-water sites. Also included are data for 65 crest-stage partial-record stations, 13 tidal crest-stage gages, and 94 low-flow partial-record stations.

Bauersfeld, W.R.; Moshinsky, E.W.; Gurney, C.E.

1993-05-01

375

Observation of dynamic water microadsorption on Au surface  

SciTech Connect

Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12??m{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

2014-05-15

376

????????????????????????????????????????????????????????????????????????????????????? CULTIVATION OF BABYLONIA SNAIL LARVAE USING CLOSED RECIRCULATING SEAWATER SYSTEM WITH SEMI-CONTINUOUS ALGAL PRODUCTION  

Microsoft Academic Search

With this study, veliger larvae of Babylonia snail (marine gastropod) were reared in the recirculating aquaculture system (RAS) in comparison with control tank with water exchange. The RAS consisted of five components including (1) algal photobioreactor, (2) Babylonia larviculture tank, (3) fluidizing biofilter tank, (4) sedimentation tank, and (5) algal medium preparation tank. Liquid culture of the microalga (Isochrysis galbana)

Yuwadee Aunthasoot; Chansawang Ngamphongsai; Seri Donnua; Sorawit Powtongsook; Ninnaj Chaitanawisuti; Somkiat Piyatiratitivorakul

377

Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities  

Microsoft Academic Search

SUMMARY 1. The effects of phosphorus enrichment and grazing snails on a benthic microbial community that builds stromatolic oncolites were examined in an experiment at Rio Mesquites, Cuatro Cienegas, Mexico. Chemical analyses of stream water samples indicated that overall atomic ratios of total nitrogen (N) to total phosphorus (P) were approximately 110, indicating a strong potential for P-limitation of microbial

JAMES J. E LSER; JOHN H. S CHAMPEL; FERRAN G ARCIA-PICHEL; BRIAN D. W ADE; VALERIA S OUZA; LUIS E GUIARTE; ANA E SCALANTE; J ACK; D. F ARMER

2005-01-01

378

43 CFR Appendix I to Part 11 - Methods for Estimating the Areas of Ground Water and Surface Water Exposure During the...  

Code of Federal Regulations, 2014 CFR

...2014-10-01 false Methods for Estimating the Areas of Ground Water and Surface Water Exposure During the Preassessment...2): 6.9+3.5=10.4 acres. Surface Water The area of surface water resources potentially exposed...

2014-10-01

379

43 CFR Appendix I to Part 11 - Methods for Estimating the Areas of Ground Water and Surface Water Exposure During the...  

Code of Federal Regulations, 2013 CFR

...2013-10-01 false Methods for Estimating the Areas of Ground Water and Surface Water Exposure During the Preassessment...2): 6.9+3.5=10.4 acres. Surface Water The area of surface water resources potentially exposed...

2013-10-01

380

43 CFR Appendix I to Part 11 - Methods for Estimating the Areas of Ground Water and Surface Water Exposure During the...  

Code of Federal Regulations, 2011 CFR

...2011-10-01 false Methods for Estimating the Areas of Ground Water and Surface Water Exposure During the Preassessment...2): 6.9+3.5=10.4 acres. Surface Water The area of surface water resources potentially exposed...

2011-10-01

381

43 CFR Appendix I to Part 11 - Methods for Estimating the Areas of Ground Water and Surface Water Exposure During the...  

Code of Federal Regulations, 2012 CFR

...2011-10-01 true Methods for Estimating the Areas of Ground Water and Surface Water Exposure During the Preassessment...2): 6.9+3.5=10.4 acres. Surface Water The area of surface water resources potentially exposed...

2012-10-01

382

Lethal and sublethal toxicity of the antifoulant compound Irgarol 1051 to the mud snail Ilyanassa obsoleta.  

PubMed

Irgarol 1051 is an algistatic compound used in copper-based antifoulant paints. It is a widespread and persistent pollutant of the estuarine environment. Ilyanassa obsoleta, the Eastern mud snail, is a common intertidal gastropod that inhabits mud flats and salt marshes along the east coast of North America. It is an important inhabitant of the estuarine environment; contributing to nutrient regeneration and regulating microbial processes in the sediments. The toxicity of irgarol to estuarine gastropods has not been previously examined, although they have the potential to be exposed to antifoulants through both aqueous and sediment routes. The objectives of this study were to evaluate irgarol's effects on I. obsoleta survival, reproductive status (imposex occurrence and testosterone levels), chemoreceptive function, and cellular respiration (cytochrome-c oxidase activity). Irgarol was moderately toxic to I. obsoleta; adult aqueous 96-h LC(50) = 3.73 mg/L, larval aqueous 96-h LC(50) = 3.16 mg/L, and adult sediment 10-day LC(50) = 12.21 mg/kg. Larval snails were not significantly more sensitive to irgarol than adult snails. A chronic 45-day aqueous irgarol exposure (0.005-2.5 mg/L) did not induce imposex or affect free-testosterone levels. The 45-day chronic LC(50 )of 1.88 mg/L was significantly lower than the 96-h acute value. A 96-h acute aqueous irgarol exposure (0.375-1.5 mg/L) caused a decrease in normal response to chemosensory cues such as the presence of food or predators. There was a significant increase in cytochrome-c oxidase activity at 2.5 mg/L, which might indicate irgarol's disruption of the mitochondrial membrane and subsequently ATP synthesis. Although the toxicity values determined for I. obsoleta exceeded irgarol concentrations measured in surface waters, results from this toxicity assessment will provide valuable information to environmental resource managers faced with decisions regarding the use and regulation of antifoulant paints in the coastal zone. PMID:18458994

Finnegan, Meaghean C; Pittman, Sherry; DeLorenzo, Marie E

2009-01-01

383

Surface-enhanced Raman for monitoring toxins in water  

NASA Astrophysics Data System (ADS)

Protection of the drinking water supply from a terrorist attack is of critical importance. Since the water supply is vast, contamination prevention is difficult. Therefore, rapid detection of contaminants, whether a military chemical/biological threat, a hazardous chemical spill, naturally occurring toxins, or bacterial build-up is a priority. The development of rapid environmentally portable and stable monitors that allow continuous monitoring of the water supply is ideal. EIC Laboratories has been developing Surface-Enhanced Raman Spectroscopy (SERS) to detect chemical agents, toxic industrial chemicals (TICs), viruses, cyanotoxins and bacterial agents. SERS is an ideal technique for the Joint Service Agent Water Monitor (JSAWM). SERS uses the enhanced Raman signals observed when an analyte adsorbs to a roughened metal substrate to enable trace detection. Proper development of the metal substrate will optimize the sensitivity and selectivity towards the analytes of interest.

Spencer, Kevin M.; Sylvia, James M.; Clauson, Susan L.; Bertone, Jane F.; Christesen, Steven D.

2004-02-01

384

Trace-level mercury removal from surface water  

SciTech Connect

Many sorbents have been developed for the removal of mercury and heavy metals from waters; however, most of the data published thus far do not address the removal of mercury to the target levels represented in this project. The application to which these sorbents are targeted for use is the removal of mercury from microgram-per-liter levels to low nanogram-per-liter levels. Sorbents with thiouronium, thiol, amine, sulfur, and proprietary functional groups were selected for these studies. Mercury was successfully removed from surface water via adsorption onto Ionac SR-4 and Mersorb resins to levels below the target goal of 12 ng/L in batch studies. A thiol-based resin performed the best, indicating that over 200,000 volumes of water could be treated with one volume of resin. The cost of the resin is approximately $0.24 per 1,000 gal of water.

Klasson, K.T.; Bostick, D.T.

1998-06-01

385

Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana  

PubMed Central

An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196

Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.

2011-01-01

386

A "First Principles" Potential Energy Surface for Liquid Water from VRT Spectroscopy of Water Clusters  

SciTech Connect

We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface. VRT(ASP-W)III is shown to not only be a model of high ''spectroscopic'' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared to those from ab initio Molecular Dynamics, other potentials of ''spectroscopic'' accuracy, and to experiment. The results herein represent the first time that a ''spectroscopic'' potential surface is able to correctly model condensed phase properties of water.

Goldman, N; Leforestier, C; Saykally, R J

2004-05-25

387

A 'first principles' potential energy surface for liquid water from VRT spectroscopy of water clusters.  

PubMed

We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface (the third fitting of the Anisotropic Site Potential with Woermer dispersion to vibration-rotation-tunnelling data). VRT(ASP-W)III is shown to not only be a model of high 'spectroscopic' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared with those from ab initio molecular dynamics, other potentials of 'spectroscopic' accuracy and with experiment. The results herein represent the first time to the authors' knowledge that a 'spectroscopic' potential surface is able to correctly model condensed phase properties of water. PMID:15664895

Goldman, Nir; Leforestier, Claude; Saykally, R J

2005-02-15

388

Storm water contamination and its effect on the quality of urban surface waters.  

PubMed

We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Pozna? (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water. PMID:24981877

Bara?kiewicz, Danuta; Chudzi?ska, Maria; Szpakowska, Barbara; ?wierk, Dariusz; Go?dyn, Ryszard; Dondajewska, Renata

2014-10-01

389

Water resources data Maryland, Delaware, and Washington, D.C.,water year 2005, Volume 1. Surface-water data  

USGS Publications Warehouse

Water resources data for the 2005 water year for Maryland, Delaware, and Washington, D.C. consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs. This volume (Volume 1. Surface-Water Data) contains records for water discharge at 145 gaging stations; stage and contents of 1 reservoir; stage only for 2 tidal gaging station; and water quality at 19 gaging stations. Also included are stage only for 11 tidal crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in Maryland, Delaware, and Washington, D.C.

Saffer, Richard W.; Pentz, Robert H.; Tallman, Anthony J.

2006-01-01

390

Water resources data for Maryland, Delaware, and Washington, D.C, water year 2003, volume 1. surface-water data  

USGS Publications Warehouse

Water resources data for the 2003 water year for Maryland, Delaware, and Washington, D.C. consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs. This volume (Volume 1. Surface-Water Data) contains records for water discharge at 140 gaging stations; stage and contents of 1 reservoir; and water quality at 17 gaging stations. Also included are stage and discharge for 3 crest-stage partial-record stations and stage only for 10 tidal crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in Maryland, Delaware, and Washington, D.C.

James, Robert W., Jr.; Saffer, Richard W.; Pentz, Robert H.; Tallman, Anthony J.

2003-01-01

391

Water resources data, Maryland, Delaware, and Washington, D.C., water year 2000, volume 1. surface-water data  

USGS Publications Warehouse

Water resources data for the 2000 water year for Maryland and Delaware consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs. This volume (Volume 1. Surface-Water Data) contains records for water discharge at 121 gaging stations; stage and contents of 1 reservoir; and water quality at 21 gaging stations. Also included are stage and discharge for 3 creststage partial-record stations, discharge only for 27 low-flow partial-record stations, and stage only for 5 tidal crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in Maryland and Delaware.

James, Robert W., Jr.; Saffer, Richard W.; Tallman, Anthony J.

2001-01-01

392

Water resources data for Maryland, Delaware, and Washington, D.C, water year 2002, Volume 1. surface-water data  

USGS Publications Warehouse

Water resources data for the 2002 water year for Maryland, Delaware, and Washington, D.C. consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs. This volume (Volume 1. Surface-Water Data) contains records for water discharge at 137 gaging stations; stage and contents of 1 reservoir; and water quality at 28 gaging stations. Also included are stage and discharge for 3 crest-stage partial-record stations and stage only for 8 tidal crest-stage partialrecord stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in Maryland, Delaware, and Washington, D.C.

James, Robert W., Jr.; Saffer, Richard W.; Pentz, Robert H.; Tallman, Anthony J.

2003-01-01

393

Assessment of the surface water quality in Northern Greece.  

PubMed

The application of different multivariate statistical approaches for the interpretation of a large and complex data matrix obtained during a monitoring program of surface waters in Northern Greece is presented in this study. The dataset consists of analytical results from a 3-yr survey conducted in the major river systems (Aliakmon, Axios, Gallikos, Loudias and Strymon) as well as streams, tributaries and ditches. Twenty-seven parameters have been monitored on 25 key sampling sites on monthly basis (total of 22,350 observations). The dataset was treated using cluster analysis (CA), principal component analysis and multiple regression analysis on principal components. CA showed four different groups of similarity between the sampling sites reflecting the different physicochemical characteristics and pollution levels of the studied water systems. Six latent factors were identified as responsible for the data structure explaining 90% of the total variance of the dataset and are conditionally named organic, nutrient, physicochemical, weathering, soil-leaching and toxic-anthropogenic factors. A multivariate receptor model was also applied for source apportionment estimating the contribution of identified sources to the concentration of the physicochemical parameters. This study presents the necessity and usefulness of multivariate statistical assessment of large and complex databases in order to get better information about the quality of surface water, the design of sampling and analytical protocols and the effective pollution control/management of the surface waters. PMID:12946893

Simeonov, V; Stratis, J A; Samara, C; Zachariadis, G; Voutsa, D; Anthemidis, A; Sofoniou, M; Kouimtzis, Th

2003-10-01

394

Pesticide monitoring in surface water and groundwater using passive samplers  

NASA Astrophysics Data System (ADS)

Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

Kodes, V.; Grabic, R.

2009-04-01

395

Surface-water exposure to quinoxyfen: Assessment in landscape vineyards  

NASA Astrophysics Data System (ADS)

SummaryProtection of surface- and ground-water quality is critical for economic viability, as well as for human health and the environment. Furthermore, maintenance of the biodiversity of natural aquatic ecosystems is very important. The objective of this paper is to report methodology developed for the assessment of the surface-water exposure to pesticide using as example the fungicide quinoxyfen because persistent, lipophylic and hazard for the aquatic organisms. Exposure monitoring was carried out over two years (2005 and 2006) following historical and subsequent applications in Italian vineyards and to investigate the presence of residue in non-target areas close to the crop receiving repeated applications. After development of the monitoring procedures, surface-water contamination and biota exposure were determined during and after field treatments. Very low concentrations were found in sediments, often in contradiction with model and laboratory results, leading to the conclusion that even the historical use of quinoxyfen in vineyards within the catchment was not contaminating sediment in water bodies, which was regarded as the natural sink for such a pesticide due to its strong sorptive properties. For biota, quinoxyfen residues in benthic macroinvertebrates and fish in the vast majority of the samples were below the corresponding limit of detection (LOD). Thus long-term accumulation of quinoxyfen in sediments and organisms of the aquatic ecosystems would not be expected due main to the environmental conditions of the landscape that mitigate the overall exposure.

Merli, Annalisa; Reeves, Graham; Meregalli, Giovanna; Piccinini, Armando; Negri, Ilaria; Carmignano, Pasquale; Balderacchi, Matteo; Capri, Ettore

2010-03-01

396

The Character of the Solar Wind, Surface Interactions, and Water  

NASA Technical Reports Server (NTRS)

We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

Farrell, William M.

2011-01-01

397

Determination of antibiotic residues in manure, soil, and surface waters  

USGS Publications Warehouse

In the last years more and more often detections of antimicrobially active compounds ("antibiotics") in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run-off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1...2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 ??g/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.

Christian, T.; Schneider, R.J.; Farber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E.

2003-01-01

398

The polarization patterns of skylight reflected off wave water surface.  

PubMed

In this paper we propose a model to understand the polarization patterns of skylight when reflected off the surface of waves. The semi-empirical Rayleigh model is used to analyze the polarization of scattered skylight; the Harrison and Coombes model is used to analyze light radiance distribution; and the Cox-Munk model and Mueller matrix are used to analyze reflections from wave surface. First, we calculate the polarization patterns and intensity distribution of light reflected off wave surface. Then we investigate their relationship with incident radiation, solar zenith angle, wind speed and wind direction. Our results show that the polarization patterns of reflected skylight from waves and flat water are different, while skylight reflected on both kinds of water is generally highly polarized at the Brewster angle and the polarization direction is approximately parallel to the water's surface. The backward-reflecting Brewster zone has a relatively low reflectance and a high DOP in all observing directions. This can be used to optimally diminish the reflected skylight and avoid sunglint in ocean optics measurements. PMID:24514848

Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhao, Huijie

2013-12-30

399

Sensors and OBIA synergy for operational monitoring of surface water  

NASA Astrophysics Data System (ADS)

This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation, frequent drought period and now with foreseen climate change impacts. This third case will demonstrate the efficiency of SPOT 5 programming in synergy with OBIA methodology to assess the evolution of dam surface water within a complete water cycle (i.e. 2008-09). In all those three cases image segmentation and classification algorithms developed with e-Cognition 8 software allow an easy to use implementation of simple to highly sophisticate OBIA rulsets fully operational in batch processes. Finally this contribution foresees the new opportunity of integration of Worldview 2 multispectral imagery (i.e. 8 bands) including its "coastal" band that will also find an application in continental surface water bathymetry. Worldview 2 is a recently launch satellite (e.g. October 2009) that starts to collect earth observation data since January 2010. It is therefore a promising new remote sensing tool to develop operational hydrology in combination high resolution SAR imagery and OBIA methodology. This contribution will conclude on the strong potential for operationalisation in hydrology and water resources management that recent and future sensors and image analysis methodologies are offering to water management and decision makers.

Masson, Eric; Thenard, Lucas

2010-05-01

400

Adsorption of ethanol and water on calcite: dependence on surface geometry and effect on surface behavior.  

PubMed

Molecular dynamics (MD) simulations were used to explore adsorption on calcite, from a 1:1 mixture of ethanol and water, on planar {10.4} and stepped, i.e. vicinal, surfaces. Varying the surface geometry resulted in different adsorption patterns, which would directly influence the ability of ethanol to control calcite crystal growth, dissolution, and adsorption/desorption of other ions and molecules. Ethanol forms a well-ordered adsorbed layer on planar faces and on larger terraces, such as between steps and defects, providing little chance for water, with its weaker attachment, to displace it. However, on surfaces with steps, adsorption affinity depends on the length of the terraces between the steps. Long terraces allow ethanol to form a well-ordered, hydrophobic layer, but when step density is high, ethanol adsorption is less ordered, allowing water to associate at and near the steps and even displacing pre-existing ethanol. Water adsorbed at steps forms mass transport pathways between the bulk solution and the solid surface. Our simulations confirm the growth inhibiting properties of ethanol, also explaining how certain crystal faces are more stabilized because of their surface geometry. The -O(H) functional group on ethanol forms tight bonds with calcite; the nonpolar, -CH3 ends, which point away from the surface, create a hydrophobic layer that changes surface charge, thus wettability, and partly protects calcite from precipitation and dissolution. These tricks could easily be adopted by biomineralizing organisms, allowing them to turn on and off crystal growth. They undoubtedly also play a role in the wetting properties of mineral surfaces in commercial CaCO3 manufacture, oil production, and contamination remediation. PMID:25790337

Keller, K S; Olsson, M H M; Yang, M; Stipp, S L S

2015-04-01

401

Global analysis of urban surface water supply vulnerability  

NASA Astrophysics Data System (ADS)

This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy.

Padowski, Julie C.; Gorelick, Steven M.

2014-10-01

402

Disconnected surface water and groundwater: from theory to practice.  

PubMed

When describing the hydraulic relationship between rivers and aquifers, the term disconnected is frequently misunderstood or used in an incorrect way. The problem is compounded by the fact that there is no definitive literature on the topic of disconnected surface water and groundwater. We aim at closing this gap and begin the discussion with a short introduction to the historical background of the terminology. Even though a conceptual illustration of a disconnected system was published by Meinzer (1923), it is only within the last few years that the underlying physics of the disconnection process has been described. The importance of disconnected systems, however, is not widely appreciated. Although rarely explicitly stated, many approaches for predicting the impacts of groundwater development on surface water resources assume full connection. Furthermore, management policies often suggest that surface water and groundwater should only be managed jointly if they are connected. However, although lowering the water table beneath a disconnected section of a river will not change the infiltration rate at that point, it can increase the length of stream that is disconnected. Because knowing the state of connection is of fundamental importance for sustainable water management, robust field methods that allow the identification of the state of connection are required. Currently, disconnection is identified by showing that the infiltration rate from a stream to an underlying aquifer is independent of the water table position or by identifying an unsaturated zone under the stream. More field studies are required to develop better methods for the identification of disconnection and to quantify the implications of heterogeneity and clogging processes in the streambed on disconnection. PMID:20849421

Brunner, Philip; Cook, Peter G; Simmons, Craig T

2011-01-01

403

Surface Water Quality Trends from EPA's LTM Network  

NASA Astrophysics Data System (ADS)

Surface water chemistry provides direct indicators of the potential effects of anthropogenic impacts, such as acid deposition and climate change, on the overall health of aquatic ecosystems. Long-term surface water monitoring networks provide a host of environmental data that can be used, in conjunction with other networks, to assess how water bodies respond to stressors and if they are potentially at risk (e.g., receiving pollutant deposition beyond its critical load). Two EPA-administered monitoring programs provide information on the effects of acidic deposition on headwater aquatic systems: the Long Term Monitoring (LTM) program and the Temporally Integrated Monitoring of Ecosystems (TIME) program, designed to track the effectiveness of the 1990 Clean Air Act Amendments (CAAA) in reducing the acidity of surface waters in acid sensitive ecoregions of the Northeast and Mid-Atlantic. Here we present regional variability of long term trends in surface water quality in response to substantial reductions in atmospheric deposition. Water quality trends at acid sensitive LTM sites exhibit decreasing concentrations of sulfate at 100% of monitored sites in the Adirondack Mountains and New England, 80% of Northern Appalachian Plateau sites, and yet only 15% of sites in the Ridge and Blue Ridge Provinces over the 1990-2011 period of record. Across all regions, most LTM sites exhibited constant or only slightly declining nitrate concentrations over the same time period. Acid Neutralizing Capacity (ANC) levels improved at 68% and 45% of LTM sites in the Adirondacks and Northern Appalachian Plateau, respectively, but few sites showed increases in New England or the Ridge and Blue Ridge Provinces due to lagging improvements in base cation concentration. The ANC of northeastern TIME lakes was also evaluated from 1991 to 1994 and 2008 to 2011. The percentage of lakes with ANC values below 50 ?eq/L, lakes of acute or elevated concern, dropped by about 7%, indicating improvement in all sensitivity classes. Information from long-term monitoring has shown that emission reductions have resulted in improved environmental conditions and increased ecosystem protection. However, despite some ecological recovery, lakes and streams in these regions remain at risk due to current acid deposition levels. The TIME/LTM programs, along with other monitoring networks, will continue to monitor surface water trends for effects of acid deposition and other anthropogenic impacts.

Funk, C.; Lynch, J. A.

2013-12-01

404

The impact of land use on microbial surface water pollution.  

PubMed

Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. PMID:25456147

Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

2015-03-01

405

Dynamics of microdroplets over the surface of hot water  

PubMed Central

When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1?mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10??m; ii) they levitate above the water surface by 10 ~ 100??m; iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2?m/s; and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet. PMID:25623086

Umeki, Takahiro; Ohata, Masahiko; Nakanishi, Hiizu; Ichikawa, Masatoshi

2015-01-01

406

Dynamics of microdroplets over the surface of hot water  

NASA Astrophysics Data System (ADS)

When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 ?m ii) they levitate above the water surface by 10 ~ 100 ?m iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2 m/s and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet.

Umeki, Takahiro; Ohata, Masahiko; Nakanishi, Hiizu; Ichikawa, Masatoshi

2015-01-01

407

Dynamics of microdroplets over the surface of hot water  

E-print Network

When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 $\\mu\\,{\\rm m}$; ii) they levitate above the water surface by 10$\\sim$100 $\\mu{\\rm m}$; iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1$\\sim$2 m/s; and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet.

Takahiro Umeki; Masahiko Ohata; Hiizu Nakanishi; Masatoshi Ichikawa

2015-01-03

408

The Whitham Equation as a Model for Surface Water Waves  

E-print Network

The Whitham equation was proposed as an alternate model equation for the simplified description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham equation incorporates the full linear dispersion relation of the water wave problem, it is thought to provide a more faithful description of shorter waves of small amplitude than traditional long wave models such as the KdV equation. In this work, we identify a scaling regime in which the Whitham equation can be derived from the Hamiltonian theory of surface water waves. The Whitham equation is integrated numerically, and it is shown that the equation gives a close approximation of inviscid free surface dynamics as described by the Euler equations. The performance of the Whitham equation as a model for free surface dynamics is also compared to two standard free surface models: the KdV and the BBM equation. It is found that in a wide parameter range of amplitudes and wavelengths, the Whitham equation performs on par with or better than both the KdV and BBM equations.

Daulet Moldabayev; Henrik Kalisch; Denys Dutykh

2014-10-30

409

Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems.  

PubMed

Freshwater molluscs--snails and bivalves--have been used frequently as bioindicator organisms. With increasing needs for research on contaminant effects in freshwater ecosystems, this kind of biomonitoring is likely to develop further in the future. Molluscs can be used effectively for studies of both organic and inorganic contaminants; this review focuses on studies involving bioaccumulation and toxicity of metals. Two important advantages of snails and bivalves over most other freshwater organisms for biomonitoring research are their large size and limited mobility. In addition, they are abundant in many types of freshwater environments and are relatively easy to collect and identify. At metal concentrations that are within ranges common to natural waters, they are generally effective bioaccumulators of metals. Biomonitoring studies with freshwater molluscs have covered a wide diversity of species, metals, and environments. The principal generalization that can be drawn from this research is that bioaccumulation and toxicity are extremely situation dependent; hence, it is difficult to extrapolate results from any particular study to other situations where the biological species or environmental conditions are different. Even within one species, individual characteristics such as size, life stage, sex, and genotype can have significant effects on responses to contaminants. The bioavailability of the metal is highly variable and depends on pH, presence of organic ligands, water hardness, and numerous other controlling factors. Despite this variability, past studies provide some general principles that can facilitate planning of research with freshwater snails and bivalves as metal bioindicators. These principles may also be useful in understanding and managing freshwater ecosystems. Bioaccumulation of metals in biota is a function of both uptake and depuration. Uptake in molluscs may be through either of two vectors--ingestion of food and other metal-containing substances or through direct adsorption of dissolved constituents. Under some conditions, the bioconcentration factors can be in the range of 10(3) to 10(6), relative to water. Most studies that provide comparisons among taxonomic groups indicate that bioaccumulation in molluscs is greater than that is fish. However, such comparisons should be interpreted with caution because metals tend to be nonuniformly distributed among different organs in both molluscs and fish. Bioaccumulation and acute and chronic toxicity are highly dependent on metal speciation. Mainly because of this influence of metal speciation, toxicity and bioaccumulation do not have a consistent relation to each other. Sensitivity to toxic effects of a metal is likely to be considerably greater in juvenile or larval stages than in adults. PMID:1771274

Elder, J F; Collins, J J

1991-01-01

410

INTRODUCTION Embryos of the freshwater common pond snail Lymnaea stagnalis  

E-print Network

4092 INTRODUCTION Embryos of the freshwater common pond snail Lymnaea stagnalis complete direct retention (Baldwin, 1935). Metamorphosis and shell formation have been observed for Lymnaea palustris (Morrill, 1982), L. stagnalis (Ebanks et al., 2010) and another freshwater pulmonate snail Biomphalaria

Grosell, Martin

411

Soil Moisture: The Hydrologic Interface Between Surface and Ground Waters  

NASA Technical Reports Server (NTRS)

A hypothesis is presented that many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture. The specific hydrologic processes that may be detected include groundwater recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential evapotranspiration (ET), and information about the hydrologic properties of soils. In basin and hillslope hydrology, soil moisture is the interface between surface and ground waters.

Engman, Edwin T.

1997-01-01

412

Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: responsive surfaces aid fouling release.  

PubMed

Coatings derived from surface active block copolymers (SABCs) having a combination of hydrophobic aliphatic (linear hydrocarbon or propylene oxide-derived groups) and hydrophilic poly(ethlyene glycol) (PEG) side chains have been developed. The coatings demonstrate superior performance against protein adsorption as well as resistance to biofouling, providing an alternative to coatings containing fluorinated side chains as the hydrophobe, thus reducing the potential environmental impact. The surfaces were examined using dynamic water contact angle, captive air-bubble contact angle, atomic force microscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure analysis. The PS(8K)-b-P(E/B)(25K)-b-PI(10K) triblock copolymer precursor (K3) initially dominated the dry surface. In contrast to previous studies with mixed fluorinated/PEG surfaces, these new materials displayed significant surface changes after exposure to water that allowed fouling resistant behavior. PEG groups buried several nanometers below the surface in the dry state were able to occupy the coating surface after placement in water. The resulting surface exhibits a very low contact angle and good antifouling properties that are very different from those of K3. The surfaces are strongly resistant to protein adsorption using bovine serum albumin as a standard protein challenge. Biofouling assays with sporelings of the green alga Ulva and cells of the diatom Navicula showed the level of adhesion was significantly reduced relative to that of a PDMS standard and that of the triblock copolymer precursor of the SABCs. PMID:22530840

Cho, Youngjin; Sundaram, Harihara S; Finlay, John A; Dimitriou, Michael D; Callow, Maureen E; Callow, James A; Kramer, Edward J; Ober, Christopher K

2012-06-11

413

Some aspects of snail ecology in South Africa; a preliminary report.  

PubMed

In this paper, the authors present the preliminary results of a recent ecological survey of some rivers in the Transvaal, Union of South Africa.Representative samples of the molluscan fauna of the rivers were collected and chemical analyses of the river waters were carried out. In addition, such characteristics as current speed, temperature, turbidity, biochemical oxygen demand, and amount of oxygen absorbed from potassium permanganate were determined.No evidence was obtained to show that the chemical composition of natural, unpolluted waters plays any part in determining vector snail habitats. Current speed was found to have some effect, bilharzia vector snails not being found in fast-flowing waters.Of the other factors, turbidity was shown to be of some importance, probably because it affects the growth of the algae on which certain snails seem to depend for their proper development, and severe pollution with sewage and industrial wastes also appeared to have an adverse affect on the snail population. PMID:13573112

DE MEILLON, B; FRANK, G H; ALLANSON, B R

1958-01-01

414

STRICHARTZ ESTIMATES FOR THE WATER-WAVE PROBLEM WITH SURFACE TENSION  

E-print Network

STRICHARTZ ESTIMATES FOR THE WATER-WAVE PROBLEM WITH SURFACE TENSION HANS CHRISTIANSON, VERA problem of surface water-waves 12 3. Reformulation: the water-wave problem as a dispersive equation 18 4 equation 48 References 51 1. Introduction The problem of surface water waves, in its simplest form

Christianson, Hans

415

STRICHARTZ ESTIMATES FOR THE WATER-WAVE PROBLEM WITH SURFACE TENSION  

E-print Network

STRICHARTZ ESTIMATES FOR THE WATER-WAVE PROBLEM WITH SURFACE TENSION HANS CHRISTIANSON, VERA problem of surface water-waves 12 3. Reformulation: the water-wave problem as a dispersive equation 19 4 equation 49 References 51 1. Introduction The problem of surface water waves, in the simplest form

Hur, Vera Mikyoung

416

DEVELOPMENT OF GIARDIA C.T VALUES FOR THE SURFACE WATER TREATMENT RULE  

EPA Science Inventory

As a consequence of the 1986 Amendments to the Safe Drinking Water Act (SDWA) the U.S. EPA has issued a Surface Water Treatment Rule (SWTR) for systems using surface and ground waters under the direct influence of surface water. n the Guidance Manual of the SWTR, the EPA recommen...

417

"Probing the Molecular and Chemical Properties of Acids at Water Surfaces"  

E-print Network

"Probing the Molecular and Chemical Properties of Acids at Water Surfaces" Prof. Geri Richmond behavior of nitric acid on a water surface relative to its bonding and acidic behavior in bulk water dynamics calculations. We find that nitric acid orients and bonds to a water surface in a way

Richmond, Geraldine L.

418

Contamination levels of human pharmaceutical compounds in French surface and drinking water  

E-print Network

Contamination levels of human pharmaceutical compounds in French surface and drinking water S therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface

Paris-Sud XI, Université de

419

How much surface water can gilgai microtopography capture?  

NASA Astrophysics Data System (ADS)

Gilgai microtopography is associated with landscapes of strongly shrinking-swelling soils (Vertisols) and affects spatial and temporal variability of runoff, and thus the generation of stream flow and plant-available water. However, no report is available on the amount of surface water that a landscape with gilgai depressions can retain. Our objective was to assess water capturing capacity of a typical Vertisol landscape with gilgai depressions in the Blackland Prairie Major Land Resource Area of Texas. The 45 by 40 m study site was located on a Vertisol with circular gilgai covered by improved pasture on a summit with slope of less than 3%. A digital elevation model (DEM) with 0.25 m2 cell size was created from elevation data acquired by using GPS. Water capturing capacity of gilgai depressions was estimated at 10 randomly selected local gilgai basins by analyzing spatial distribution of Topographic Wetness Index (TWI). Our findings indicate that the average circular gilgai depression can hold 0.78 m3 of water leading to an estimate of 0.024 m3 m-2 water capturing capacity in a circular gilgai landscape, assuming no infiltration. The gilgai could capture a maximum of 43.74 m3 of rain and runoff water at the 1800 m2 study site. Consequently, if the soil were saturated and not infiltrating any water, no runoff would be expected following a 24.3 mm m-2, 1 h precipitation, affecting estimates of streamflow (runoff) and plant available water (redistribution and infiltration) at the m to km scale.

Kishné, A. Sz.; Morgan, C. L. S.; Neely, H. L.

2014-05-01

420

Thermal performance of integrated collector storage solar water heater with corrugated absorber surface  

Microsoft Academic Search

An investigation is reported of the thermal performance of an integrated solar water heater with a corrugated absorber surface. The thermal performance of the rectangular collector\\/storage solar water heater depends significantly on the heat transfer rate between the absorber surface and the water, and on the amount of solar radiation incident on the absorber surface. In this investigation, the surface

Rakesh Kumar; Marc A. Rosen

2010-01-01

421

Impact of river restoration on groundwater - surface water - interactions  

NASA Astrophysics Data System (ADS)

Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature Sensing (DTS), a fibre optical method for temperature determination over long distances (Selker et al., 2006). Thermal signatures were determined in a small urban stream before and after restoration and compared to streams in natural and near-natural settings. BWG BUNDESAMT FÜR WASSER UND GEOLOGIE, 2003. Die Geschichte des Hochwasserschutzes in der Schweiz. Bericht des BWG, Serie Wasser. Biel. 208 p. EA ENVIRONMENT AGENCY (UK), 2009. The Hyporheic Handbook: A handbook on the groundwater-surface water interface and hyporheic zone for environment managers. Bristol. 280 p. ANDREA, F., GSCHÖPF, C., BLASCHKE, A.P., WEIGELHOFER, G., AND RECKENDORFER, W., 2012. Ecological niche models for the evaluation of management options in urban floodplain - conservation vs. restoration purposes. Environ. Sci. Policy, http://dx.doi.org/10.1016/j.envsci.2012.08.011. PALMER, M.A., BERNHARDT, E.S., ALLAN, J.D., LAKE, P.S., ALEXANDER, G., BROOKS, S., CARR, J., CLAYTON, S., DAHM, C.N., FOLLSTAD SHAH, J., GALAT, D.L., LOSS, S.G., GOODWIN, P., HART, D.D., HASSETT, B., JENKINSON, R., KONDOLF, G.M., LAVE, R., MEYER, J.L., O`DONNELL, T.K., PAGANO, L. AND SUDDUTH, E., 2005. Standards for ecologically successful river restoration. Journal of Applied Ecology, 42, pp. 208 - 217. DOI 10.1111/j.1365-2664.2005.01004.x. WORTLEY, L., HERO, J-M., HOWES, M., 2013. Evaluating Ecological Restoration Success: A Review of the Literature. Restoration Ecology, 21 (5), pp. 537 - 543. DOI 10.1111/rec.12028. SELKER, J.S., THEVENAZ, L., HUWALD, H., MALLET, A., LUXEMBURG, W., VAN DE GIESEN, N., STEJSKAL, M., ZEMAN, J., WESTHOFF, M., AND PARLANGE, M.B., 2006. Distributed fibre-optic temperature sensing for hydrologic systems. Water Resources Research, 42(12), W12202.

Kurth, Anne-Marie; Schirmer, Mario

2014-05-01

422

Surface water risk assessment of pesticides in Ethiopia.  

PubMed

Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small stream and for two types of small ponds. Seven selected pesticides were selected since they were estimated to bear the highest risk to humans on the basis of volume of use, application rate and acute and chronic human toxicity, assuming exposure as a result of the consumption of surface water. Potential ecotoxicological risks were not considered as a selection criterion at this stage. Estimates of exposure concentrations in surface water were established using modelling software also applied in the EU registration procedure (PRZM and TOXSWA). Input variables included physico-chemical properties, and data such as crop calendars, irrigation schedules, meteorological information and detailed application data which were specifically tailored to the Ethiopian situation. The results indicate that for all the pesticides investigated the acute human risk resulting from the consumption of surface water is low to negligible, whereas agricultural use of chlorothalonil, deltamethrin, endosulfan and malathion in some crops may result in medium to high risk to aquatic species. The predicted environmental concentration estimates are based on procedures similar to procedures used at the EU level and in the USA. Addition of aquatic macrophytes as an ecotoxicological endpoint may constitute a welcome future addition to the risk assessment procedure. Implementation of the methods used for risk characterization constitutes a good step forward in the pesticide registration procedure in Ethiopia. PMID:25481716

Teklu, Berhan M; Adriaanse, Paulien I; Ter Horst, Mechteld M S; Deneer, John W; Van den Brink, Paul J

2015-03-01

423

Trend Analysis of Surface Water Quality in Hunan Province  

Microsoft Academic Search

The trend of the surface water quality of Hunan province is analyzed by the seasonal Kendall test method, basing on the main pollutants during 2001-2005.The conclusions are as follows: The pollutions of BOD5 and NH3-N of Xiangjiang river, TP of Yuanjiang river, As and CYN of Lishui river, As,FN and TP of Dongting lake have an obvious upward trend; the

Yin Xing; Hu Guohua

2009-01-01

424

Automated Mapping of Surface Water Temperature in the Great Lakes  

Microsoft Academic Search

A procedure for producing daily cloud-free maps of surface water temperature in the Great Lakes has been developed. It is based on satellite-derived AVHRR (Advanced Very High Resolution Radiometer) imagery from NOAA's CoastWatch program. The maps have a nominal resolution of 2.6 km and provide as complete as possible coverage of the Great Lakes on a daily basis by using

David J. Schwab; George A. Leshkevich; Glenn C. Muhr

1999-01-01