Science.gov

Sample records for surface water snail

  1. Apple Snail: a Bio Cleaner of the Water Free Surface.

    NASA Astrophysics Data System (ADS)

    Bassiri, Golnaz

    2005-11-01

    Oil spills from tankers represent a threat for shorelines and marine life. Despite continuing research, there has been little change in the fundamental technology for dealing with oil spills. An experimental investigation of the feeding strategy of Apple snails from the water free surface, called surface film feeding, is being studied motivated by the need to develop new techniques to recover oil spills. To feed on floating food (usually a thin layer of microorganisms), the apple snail forms a funnel with its foot and pulls the free surface toward the funnel. High speed imaging and particle image velocimetry were used in the present investigation to measure the free surface motion and to investigate the mechanism used by the apple snails to pull the free surface. The results suggest that the snail pulls the free surface via the wavy motion of the muscles in its funnel.

  2. Immunotoxicity of surface waters contaminated by municipal effluents to the snail Lymnaea stagnalis.

    PubMed

    Gust, M; Fortier, M; Garric, J; Fournier, M; Gagné, F

    2013-01-15

    The immunotoxic effects of surface waters contaminated by a municipal effluent dispersion plume were examined in the snail Lymnaea stagnalis. Snails were exposed to surface waters where changes in hemocyte counts, viability, levels of reactive oxygen species (ROS), reduced thiols and phagocytic activity were tracked following exposure periods of 3h and 3 and 7d. Changes in mRNA expression of some genes in the hemocytes were also assessed after 7d of exposure, as follows: genes coding for catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSR), selenium-dependent glutathione peroxidase (SeGPX), two isoforms of the nitric oxide synthetase (NOS1 and NOS2), molluscan defensive molecule (MDM), toll-like receptor 4 (TLR4), allograft inflammatory factor-1 (AIF), and heat-shock protein 70 (HSP70). At the sites closest to the discharge point, exposure led to impaired hemocyte viability and intracellular thiol levels and also an increase of hemocyte count, ROS levels and phagocytosis. Phagocytosis and ROS levels in hemocytes were correlated with heterotrophic bacterial counts in snails. We found four genes with increased mRNA expression as a response to exposure of municipal wastewaters: TLR4 (6-fold), HSP70 (2-fold), SeGPx (4-fold) and CAT (2-fold). Immunocompetence responses were analyzed by canonical analysis to seek out relationships with mRNA expression of the genes involved in stress, pattern recognition, cellular and humoral responses. The data revealed that genes involved in oxidative stress were strongly involved with immunocompetence and that the resulting immune responses were influenced both by the bacterial and pollutant loadings of the effluent. PMID:23021492

  3. Pesticide Mixture Toxicity in Surface Water Extracts in Snails (Lymnaea stagnalis) by an in Vitro Acetylcholinesterase Inhibition Assay and Metabolomics.

    PubMed

    Tufi, Sara; Wassenaar, Pim N H; Osorio, Victoria; de Boer, Jacob; Leonards, Pim E G; Lamoree, Marja H

    2016-04-01

    Many chemicals in use end up in the aquatic environment. The toxicity of water samples can be tested with bioassays, but a metabolomic approach has the advantage that multiple end points can be measured simultaneously and the affected metabolic pathways can be revealed. A current challenge in metabolomics is the study of mixture effects. This study aims at investigating the toxicity of an environmental extract and its most abundant chemicals identified by target chemical analysis of >100 organic micropollutants and effect-directed analysis (EDA) using the acetylcholinesterase (AChE) bioassay and metabolomics. Surface water from an agricultural area was sampled with a large volume solid phase extraction (LVSPE) device using three cartridges containing neutral, anionic, and cationic sorbents able to trap several pollutants classes like pharmaceuticals, pesticides, PAHs, PCBs, and perfluorinated surfactants. Targeted chemical analysis and AChE bioassay were performed on the cartridge extracts. The extract of the neutral sorbent cartridge contained most of the targeted chemicals, mainly imidacloprid, thiacloprid, and pirimicarb, and was the most potent AChE inhibitor. Using an EDA approach, other AChE inhibiting candidates were identified in the neutral extract, such as carbendazim and esprocarb. Additionally, a metabolomics experiment on the central nervous system (CNS) of the freshwater snail Lymnaea stagnalis was conducted. The snails were exposed to the extract, the three most abundant chemicals individually, and a mixture of these. The extract disturbed more metabolic pathways than the three most abundant chemicals individually, indicating the contribution of other chemicals. Most pathways perturbed by the extract exposure overlapped with those related to exposure to neonicotinoids, like the polyamine metabolism involved in CNS injuries. Metabolomics for the straightforward comparison between a complex mixture and single compound toxicity is still challenging but

  4. The microstructures of biomineralized surfaces: a spectroscopic study on the exoskeletons of fresh water (Apple) snail, Pila globosa

    NASA Astrophysics Data System (ADS)

    Prasuna, C. P. Lakshmi; Narasimhulu, K. V.; Gopal, N. O.; Rao, J. Lakshmana; Rao, T. V. R. K.

    2004-08-01

    In view of the importance in understanding biomineralization processes in different molluskan species, the common fresh water apple snail Pila globosa in Indian origin was taken to explore its mineralized exoskeleton structures. The detailed structural studies of the exoskeletons of P. globosa have been undertaken. The isolated layers present in these shells were studied by electron paramagnetic resonance (EPR), optical absorption, and infrared spectral techniques. The EPR spectra of the organic protein layer periostracum show the characteristic signals corresponding to Fe 3+ ions at g=4.1 and 2.0. The EPR spectra of the ostracum (middle) layer at room temperature gives a complicated spectrum consisting of a number of Mn 2+ signals of at least three sets due to the aragonite nature of the material. The results indicate the presence of the multivalent manganese ions, which undergo the redox mechanisms. The thermal variation of the EPR spectra show marked effect on these samples both in g-values and the basic spectral pattern.

  5. Movements of florida apple snails in relation to water levels and drying events

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Miller, S.J.; Percival, H.F.

    2002-01-01

    Florida apple snails (Pomacea Paludosa) apparently have only a limited tolerance to wetland drying events (although little direct evidence exists), but their populations routinely face dry downs under natural and managed water regimes. In this paper, we address speculation that apple snails respond to decreasing water levels and potential drying events by moving toward refugia that remain inundated. We monitored the movements of apple snails in central Florida, USA during drying events at the Blue Cypress Marsh (BC) and at Lake Kissimmee (LK). We monitored the weekly movements of 47 BC snails and 31 LK snails using radio-telemetry. Snails tended to stop moving when water depths were 10 cm. Snails moved along the greatest positive depth gradient (i.e., towards deeper water) when they encountered water depths between 10 and 20 cm. Snails tended to move toward shallower water in water depths ???50 cm, suggesting that snails were avoiding deep water areas such as canals and sloughs. Of the 11 BC snails originally located in the area that eventually went dry, three (27%) were found in deep water refugia by the end of the study. Only one of the 31 LK snails escaped the drying event by moving to deeper water. Our results indicate that some snails may opportunistically escape drying events through movement. The tendency to move toward deeper water was statistically significant and indicates that this behavioral trait might enhance survival when the spatial extent of a dry down is limited. However, as water level falls below 10 cm, snails stop moving and become stranded. As the spatial extent of a dry down increases, we predict that the number of snails stranded would increase proportionally. Stranded Pomacea paludosa must contend with dry marsh conditions, possibly by aestivation. Little more than anecdotal information has been published on P. paludosa aestivation, but it is a common adaptation among other apple snails (Caenogastropoda: Ampullaridae). ?? 2002, The Society

  6. Exploring the temporal effects of seasonal water availability on the snail kite of Florida: Part III

    USGS Publications Warehouse

    Mooij, Wolf M.; Martin, Julien; Kitchens, Wiley M.; DeAngelis, Donald L.

    2007-01-01

    The Florida snail kite (Rostrhamus sociabilis) is an endangered raptor that occurs as an isolated population, currently of about 2,000 birds, in the wetlands of southern and central Florida, USA. Its exclusive prey species, the apple snail (Pomacea paludosa) is strongly influenced by seasonal changes in water abundance. Droughts during the snail kite breeding season have a direct negative effect on snail kite survival and reproduction, but droughts are also needed to maintain aquatic vegetation types favorable to snail kite foraging for snails. We used a spatially explicit matrix model to explore the effects of temporal variation in water levels on the viability of the snail kite population under different temporal drought regimes in its wetland breeding habitat. We focused on three aspects of variations in water levels that were likely to affect kites: (1) drought frequency; (2) drought duration; and (3) drought timing within the year. We modeled a 31-year historical scenario using four different scenarios in which the average water level was maintained constant, but the amplitude of water level fluctuations was modified. Our results reveal the complexity of the effects of temporal variation in water levels on snail kite population dynamics. Management implications of these results are discussed. In particular, management decisions should not be based on annual mean water levels alone, but must consider the intra-annual variability.

  7. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    PubMed Central

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  8. Fasciola hepatica in Snails Collected from Water-Dropwort Fields using PCR

    PubMed Central

    Kim, Hwang-Yong; Choi, In-Wook; Kim, Yeon-Rok; Quan, Juan-Hua; Ismail, Hassan Ahmed Hassan Ahmed; Cha, Guang-Ho; Hong, Sung-Jong

    2014-01-01

    Fasciola hepatica is a trematode that causes zoonosis mainly in cattle and sheep and occasionally in humans. Fascioliasis has been reported in Korea; however, determining F. hepatica infection in snails has not been done recently. Thus, using PCR, we evaluated the prevalence of F. hepatica infection in snails at 4 large water-dropwort fields. Among 349 examined snails, F. hepatica-specific internal transcribed space 1 (ITS-1) and/or ITS-2 markers were detected in 12 snails and confirmed using sequence analysis. Morphologically, 213 of 349 collected snails were dextral shelled, which is the same aperture as the lymnaeid snail, the vectorial host for F. hepatica. Among the 12 F. hepatica-infected snails, 6 were known first intermediate hosts in Korea (Lymnaea viridis and L. ollula) and the remaining 6 (Lymnaea sp.) were potentially a new first intermediate host in Korea. It has been shown that the overall prevalence of the snails contaminated with F. hepatica in water-dropwort fields was 3.4%; however, the prevalence varied among the fields. This is the first study to estimate the prevalence of F. hepatica infection using the vectorial capacity of the snails in Korea. PMID:25548416

  9. Copper toxicity to the fresh water snail, Lymnaea luteola

    SciTech Connect

    Reddy, N.M.; Rao, P.V.

    1987-07-01

    Haemocyanins are found in arthropoda and mollusca and show a copper content characteristic for each phylum. Heavy metal accumulation by mollusks is widely reported. Approximately one third of the enzymes either required addition of a metal ion as a cofactor in order to exhibit maximum activity or contained a slightly bound metal ion which appeared to be involved in the catalytic process. Copper is the only metal which has been detected in significant amounts in amino oxidase. The present study is designed to evaluate the influence of such copper, which is of such common occurrence in biological material, on some of the lipolytic enzymes of fresh water pulmonate snail, Lymnaea luteola when added to ambient medium. The present study also highlights the possible detoxification mechanism prevailing in this fresh water mollusk.

  10. Studies on monitoring the heavy metal contents in water, sediment and snail species in Latipada reservoir.

    PubMed

    Waykar, Bhalchandra; Petare, Ram

    2016-07-01

    The concentrations of zinc, copper, cadmium and lead in surface water, sediments and two native snail species, Bellamya bengalensis and Melanoides tuberculata from Latipada reservoir were determined. The concentrations of cadmium and lead in surface water were higher than the WHO recommended limits for drinking water standards; where as those of zinc and copper were within the permissible limits. The concentrations of zinc, copper, cadmium and lead were higher in sediments than in water. The observed bioaccumulated level of zinc, copper, cadmium and lead in Bellamya bengalensis were Zn- 197.22, Cu- 172.14, Cd- 11.59 and Pb- 112.57 μg g(-1), while in Melanoides tuberculata were Zn- 136.59, Cu- 132.04, Cd- 13.25 and Pb- 27.69 μg g(-1). The metal concentrations in both species of snails were higher than those of the water and sediment. Bioaccumulated metal concentrations, Bio-Water Accumulation Factor (BWAF) and Bio-Sediment Accumulation Factor (BSAF) values indicated that Bellamya bengalensis had high potential for zinc, copper and lead bioaccumulation than Melanoides tuberculata, while Melanoides tuberculata had high potential for cadmium than Bellamya bengalensis. Therefore, Bellamya bengalensis is proposed as sentinel organism for monitoring zinc, copper and lead, while Melanoides tuberculata for monitoring cadmium in freshwater. PMID:27498505

  11. Supercharged Snails for Stream Ecology & Water-Quality Studies

    ERIC Educational Resources Information Center

    Stewart, Arthur J.; Ryon, Michael G.

    2003-01-01

    Gill-breathing freshwater snails (Family "Pleuroceridae") are ecologically important, abundant in many streams in the United States, and easy to collect and maintain under classroom conditions. These snails can be used in classroom tests to demonstrate effects of pollutants on aquatic organisms. In more advanced classes, students can cage the…

  12. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate

    SciTech Connect

    Goodfriend, G.A.; Magaritz, M.; Gat, J.R. )

    1989-12-01

    Day-to-day and within-day (diel) variations in {delta}D and {delta}{sup 18}O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in {sup 18}O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in {sup 18}O by ca. 1-2% relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate {sup 18}O should provide a reliable indication of rainfall {sup 18}O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

  13. Use of ice water and salt treatments to eliminate an exotic snail, red-rim melania Melanoides tuberculatus, from small immersible fisheries equipment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ice water and salt treatments were evaluated for disinfection of fisheries equipment contaminated with a non-indigenous tropical snail, the red-rim melania Melanoides tuberculatus. The snail can displace native snails and can transmit trematodes directly to fishes and indirectly to other animals, i...

  14. A study on biological control of six fresh water snails of medical and veterinary importance.

    PubMed

    Abd-Allah, Karim F; Negm-Eldin, Mohsen M; Saleh, Mohamed H; El-Hamshary, Azza M S; El-Gozamy, Bothina M R; Aly, Nagwa S M

    2009-04-01

    This study evaluated the molluscicidal effect of Commiphora mnolmol oil extract (Myrrh), on control of six fresh water snails (Lymnaea natalensis, Bulinus truncatus, Biomphalaria alexandrina, Physa acuta, Melania tuberculata and Cleopatra bulimoides). Also, the extract effect on the egg masses of L. natalensis, B. truncatus, B. alexandrina and Ph. acuta was evaluated. Snails and egg masses were exposed at 16-20 degrees C to various concentrations (conc.). LD50 after 24 hours expo-sure were 264/132, 283/195, 230/252, 200/224, 241/246 & 241/246 ppm for young/adult of L. natalensis, B. truncatus, B. alexandrina, Ph. acuta, M. tuberculata and C. bulimnoides respectively. LDtoo after 24 hours exposure were 400/400 for L. natalensis, B. truncatus, B. alexandrina, M. tuberculata and C. bulimoides, and 300/300 for Ph. acuta. Also, complete mortality (100%) was achieved for the egg masses of L. natalensis, B. truncatus, B. alexandrina and Ph. acuta at concentrations of 300, 200, 300 & 400 ppm respectively. Lower concentrations gave the same results after longer exposure. LD100 of C. molmol oil extract (Myrrh) had a rapid lethal effect on the six snail species and their egg masses in high conc. of 300 & 400 ppm. Commiphora molmol is a promising plant to be included with the candidate plant molluscicides. The oil extract of this plant showed a remarkable molluscicidal activity against used snail species. PMID:19530615

  15. Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments

    USGS Publications Warehouse

    Mitchell, A.J.; Cole, R.A.

    2008-01-01

    The faucet snail Bithynia tentaculata, a nonindigenous aquatic snail from Eurasia, was introduced into Lake Michigan in 1871 and has spread to the mid-Atlantic states, the Great Lakes region, Montana, and most recently, the Mississippi River. The faucet snail serves as intermediate host for several trematodes that have caused large-scale mortality among water birds, primarily in the Great Lakes region and Montana. It is important to limit the spread of the faucet snail; small fisheries equipment can serve as a method of snail distribution. Treatments with chemical disinfection, pH extremes, and heated water baths were tested to determine their effectiveness as a disinfectant for small fisheries equipment. Two treatments eliminated all test snails: (1) a 24-h exposure to Hydrothol 191 at a concentration of at least 20 mg/L and (2) a treatment with 50??C heated water for 1 min or longer. Faucet snails were highly resistant to ethanol, NaCl, formalin, Lysol, potassium permanganate, copper sulfate, Baquacil, Virkon, household bleach, and pH extremes (as low as 1 and as high as 13).

  16. A water snail catches a ride on STS-90 as part of Neurolab

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A water snail (Biomphalaria glabrata), like those that are part of the Neurolab payload on Space Shuttle Mission STS-90, is held up for inspection in the Operations and Checkout Building. The snails will fly in the Closed Equilibrated Biological Aquatic System (CEBAS) Minimodule, a middeck locker-sized fresh water habitat, designed to allow the controlled incubation of aquatic species in a self-stabilizing, artifical ecosystem for up to three weeks under space conditions. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, includes Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D.

  17. Accumulation and distributions of 137Cs in fresh water snail Pila ampullacea

    NASA Astrophysics Data System (ADS)

    Suseno, Heny

    2014-10-01

    Pila ampullacea are found in tropical freshwaters of Indonesia. This snail exhibit several characteristics of ideal indicator organisms in order to understand the bioaccumulation of 137Cs . Biokinetic experiment was performaced in aquaria system and under influenced of concentration K+ in water. The result of experiment shown that Under difference K+ concentration in water, Pila ampullacea have capability to accumulated 137Cs with CF value range 8.95 to 12.52 ml.g-1. Both uptake and depuration rate were influenced by concentration of K+ in water.

  18. Accumulation and distributions of {sup 137}Cs in fresh water snail Pila ampullacea

    SciTech Connect

    Suseno, Heny

    2014-10-24

    Pila ampullacea are found in tropical freshwaters of Indonesia. This snail exhibit several characteristics of ideal indicator organisms in order to understand the bioaccumulation of {sup 137}Cs. Biokinetic experiment was performaced in aquaria system and under influenced of concentration K{sup +} in water. The result of experiment shown that Under difference K{sup +} concentration in water, Pila ampullacea have capability to accumulated {sup 137}Cs with CF value range 8.95 to 12.52 ml.g{sup −1}. Both uptake and depuration rate were influenced by concentration of K{sup +} in water.

  19. Snail Snooping.

    ERIC Educational Resources Information Center

    Miller, Dorothy

    1993-01-01

    Presents an activity in which students in grades 5-8 learn about snail reproduction by observing and charting the activities of land snails, freshwater snails, and slugs. Instructions to implement and extend the activity are provided. (MDH)

  20. An artificial perch to help Snail Kites handle an exotic Apple Snail

    USGS Publications Warehouse

    Pias, Kyle E.; Welch, Zach C.; Kitchens, Wiley M.

    2012-01-01

    In the United States, the Snail Kite (Rostrhamus sociabilis plumbeus) is a federally endangered species and restricted to the wetlands of south-central Florida where the current population numbers less than 1,500. The Snail Kite is an extreme dietary specialist, previously feeding almost exclusively on one species of snail, the Florida Apple Snail (Pomacea paludosa). Within the past decade, an exotic species of apple snail, the Island Apple Snail (Pomacea insularum), has become established on lakes in central Florida. Island Apple Snails are larger than the native Florida Apple Snails, and Snail Kites handle the exotic snails less efficiently. Juvenile Snail Kites, in particular, have lower daily energy balances while feeding on Island Apple Snails. An inexpensive, easy-to-construct platform was developed that would provide Snail Kites with a flat, stable surface on which to extract snails. The platform has the potential to reduce the difficulties Snail Kites experience when handling exotic snails, and may benefit the Snail Kite population as a whole. Initial observations indicate that Snail Kites use the platforms frequently, and snails extracted at the platforms are larger than snails extracted at other perches.

  1. Three Gorges Dam: Impact of Water Level Changes on the Density of Schistosome-Transmitting Snail Oncomelania hupensis in Dongting Lake Area, China

    PubMed Central

    Wu, Jin-Yi; Zhou, Yi-Biao; Chen, Yue; Liang, Song; Li, Lin-Han; Zheng, Sheng-Bang; Zhu, Shao-ping; Ren, Guang-Hui; Song, Xiu-Xia; Jiang, Qing-Wu

    2015-01-01

    Background Schistosomiasis remains an important public health issue in China and worldwide. Oncomelania hupensis is the unique intermediate host of schistosoma japonicum, and its change influences the distribution of S. japonica. The Three Gorges Dam (TGD) has substantially changed the ecology and environment in the Dongting Lake region. This study investigated the impact of water level and elevation on the survival and habitat of the snails. Methods Data were collected for 16 bottomlands around 4 hydrological stations, which included water, density of living snails (form the Anxiang Station for Schistosomiasis Control) and elevation (from Google Earth). Based on the elevation, sixteen bottomlands were divided into 3 groups. ARIMA models were built to predict the density of living snails in different elevation areas. Results Before closure of TGD, 7 out of 9 years had a water level beyond the warning level at least once at Anxiang hydrological station, compared with only 3 out of 10 years after closure of TGD. There were two severe droughts that happened in 2006 and 2011, with much fewer number of flooding per year compared with other study years. Overall, there was a correlation between water level changing and density of living snails variation in all the elevations areas. The density of living snails in all elevations areas was decreasing after the TGD was built. The relationship between number of flooding per year and the density of living snails was more pronounced in the medium and high elevation areas; the density of living snails kept decreasing from 2003 to 2014. In low elevation area however, the density of living snails decreased after 2003 first and turned to increase after 2011. Our ARIMA prediction models indicated that the snails would not disappear in the Dongting Lake region in the next 7 years. In the low elevation area, the density of living snails would increase slightly, and then stabilize after the year 2017. In the medium elevation region

  2. Dry down impacts on apple snail (Pomacea paludosa) demography: Implications for wetland water management

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Percival, H.F.

    2008-01-01

    Florida apple snails (Pomacea paludosa Say) are prey for several wetland-dependent predators, most notably for the endangered Florida snail kite (Rostrhamus sociabilis Vieillot). Management concerns for kites have been raised regarding the impacts of wetland dry downs on snails, but little data exists to validate these concerns. We simulated drying events in experimental tanks, where we observed that snail survival patterns, regardless of hydrology, were driven by a post-reproductive die off. In contrast to earlier reports of little to no dry down tolerance, we found that 70% of pre-reproductive adult-sized snails survived a 12-week dry down. Smaller size classes of snails exhibited significantly lower survival rates (< 50% after eight weeks dry). Field surveys showed that 77% of egg production occurs in April-June. Our hydrologic analyses of six peninsular Florida wetlands showed that most dry downs overlapped a portion of the peak snail breeding season, and 70% of dry downs were ??? 12 weeks in duration. Dry down timing can affect recruitment by truncating annual egg production and stranding juveniles. Dry down survival rates and seasonal patterns of egg cluster production helped define a range of hydrologic conditions that support robust apple snail populations, and illustrate why multiple characteristics of dry down events should be considered in developing target hydrologic regimes for wetland fauna. ?? 2008, The Society of Wetland Scientists.

  3. Does water chemistry limit the distribution of New Zealand mud snails in Redwood National Park?

    USGS Publications Warehouse

    Vazquez, Ryan; Ward, Darren M.; Sepulveda, Adam

    2016-01-01

    New Zealand mud snails (NZMS) are exotic mollusks present in many waterways of the western United States. In 2009, NZMS were detected in Redwood Creek in Redwood National Park, CA. Although NZMS are noted for their ability to rapidly increase in abundance and colonize new areas, after more than 5 years in Redwood Creek, their distribution remains limited to a ca. 300 m reach. Recent literature suggests that low specific conductivity and environmental calcium can limit NZMS distribution. We conducted laboratory experiments, exposing NZMS collected from Redwood Creek to both natural waters and artificial treatment solutions, to determine if low conductivity and calcium concentration limit the distribution of NZMS in Redwood National Park. For natural water exposures, we held NZMS in water from their source location (conductivity 135 μS/cm, calcium 13 mg/L) or water from four other locations in the Redwood Creek watershed encompassing a range of conductivity (77–158 μS/cm) and calcium concentration (<5–13 mg/L). For exposures in treatment solutions, we manipulated both conductivity (range 20–200 μS/cm) and calcium concentration (range <5–17.5 mg/L) in a factorial design. Response variables measured included mortality and reproductive output. Adult NZMS survived for long periods (>4 months) in the lowest conductivity waters from Redwood Creek and all but the lowest-conductivity treatment solutions, regardless of calcium concentration. However, reproductive output was very low in all natural waters and all low-calcium treatment solutions. Our results suggest that water chemistry may inhibit the spread of NZMS in Redwood National Park by reducing their reproductive output.

  4. /sup 45/Ca uptake from water by snails (Lymnaea vulgaris) in control and detergent-polluted samples

    SciTech Connect

    Misra, V.; Lal, H.; Viswanathan, P.N.; Murti, C.R.

    1984-02-01

    A biostatic assay method involving /sup 45/Ca uptake into shells and tissues of snails (Lymnaea vulgaris) in 72 hr was developed to follow the effect of detergent-polluted water on ecosystems. There was a marked decrease in the /sup 45/Ca uptake by shells and tissues of linear alkyl benzene sulfonate-exposed animals as compared to controls. No change in /sup 45/Ca uptake was observed in dead shells, thereby excluding the possibility of passive exchange.

  5. Snail Trails

    ERIC Educational Resources Information Center

    Galus, Pamela

    2002-01-01

    The slime trails of snails lead the author's students to a better understanding of science as inquiry and the processes of science. During this five-day activity, students get up close and personal with one of her favorite creatures, the land snail. Students begin by observing the organism and recording their observations. After making initial…

  6. Survival and behavior of Chinese mystery snails (Bellamya chinensis) in response to simulated water body drawdowns and extended air exposure

    USGS Publications Warehouse

    Unstad, Kody M.; Uden, Daniel R.; Allen, Craig R.; Chaine, Noelle M.; Haak, Danielle M.; Kill, Robert A.; Pope, Kevin L.; Stephen, Bruce J.; Wong, Alec

    2013-01-01

    Nonnative invasive mollusks degrade aquatic ecosystems and induce economic losses worldwide. Extended air exposure through water body drawdown is one management action used for control. In North America, the Chinese mystery snail (Bellamya chinensis) is an invasive aquatic snail with an expanding range, but eradication methods for this species are not well documented. We assessed the ability of B. chinensis to survive different durations of air exposure, and observed behavioral responses prior to, during, and following desiccation events. Individual B. chinensis specimens survived air exposure in a laboratory setting for > 9 weeks, and survivorship was greater among adults than juveniles. Several B. chinensis specimens responded to desiccation by sealing their opercula and/or burrowing in mud substrate. Our results indicate that drawdowns alone may not be an effective means of eliminating B. chinensis. This study lays the groundwork for future management research that may determine the effectiveness of drawdowns when combined with factors such as extreme temperatures, predation, or molluscicides.

  7. Snails home

    NASA Astrophysics Data System (ADS)

    Dunstan, D. J.; Hodgson, D. J.

    2014-06-01

    Many gardeners and horticulturalists seek non-chemical methods to control populations of snails. It has frequently been reported that snails that are marked and removed from a garden are later found in the garden again. This phenomenon is often cited as evidence for a homing instinct. We report a systematic study of the snail population in a small suburban garden, in which large numbers of snails were marked and removed over a period of about 6 months. While many returned, inferring a homing instinct from this evidence requires statistical modelling. Monte Carlo techniques demonstrate that movements of snails are better explained by drift under the influence of a homing instinct than by random diffusion. Maximum likelihood techniques infer the existence of two groups of snails in the garden: members of a larger population that show little affinity to the garden itself, and core members of a local garden population that regularly return to their home if removed. The data are strongly suggestive of a homing instinct, but also reveal that snail-throwing can work as a pest management strategy.

  8. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    PubMed

    Oliver, Ana López-Serrano; Croteau, Marie-Noële; Stoiber, Tasha L; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R; Luoma, Samuel N

    2014-06-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important. PMID:24641838

  9. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    USGS Publications Warehouse

    López-Serrano Oliver, Ana; Croteau, Marie-Noële; Stoiber, Tasha L.; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R.; Luoma, Samuel N.

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important.

  10. Modeling apple snail population dynamics on the Everglades landscape

    USGS Publications Warehouse

    Darby, Phil; DeAngelis, Donald L.; Romanach, Stephanie; Suir, Kevin J.; Bridevaux, Joshua L.

    2015-01-01

    Comparisons of model output to empirical data indicate the need for more data to better understand, and eventually parameterize, several aspects of snail ecology in support of EverSnail. A primary value of EverSnail is its capacity to describe the relative response of snail abundance to alternative hydrologic scenarios considered for Everglades water management and restoration.

  11. Effects of natal departure and water level on survival of juvenile snail kites (Rostrhamus sociabilis) in Florida

    USGS Publications Warehouse

    Dreitz, V.J.; Kitchens, W.M.; DeAngelis, D.L.

    2004-01-01

    Survival rate from fledging to breeding, or juvenile survival, is an important source of variation in lifetime reproductive success in birds. Therefore, determining the relationship between juvenile survival and environmental factors is essential to understanding fitness consequences of reproduction in many populations. With increases in density of individuals and depletion of food resources, quality of most habitats deteriorates during the breeding season. Individuals respond by dispersing in search of food resources. Therefore, to understand the influence of environmental factors on juvenile survival, it is also necessary to know how natal dispersal influences survival of juveniles. We examined effects of various environmental factors and natal dispersal behavior on juvenile survival of endangered Snail Kites (Rostrhamus sociabilis) in central and southern Florida, using a generalized estimating equations (GEEs) approach and model selection criteria. Our results suggested yearly effects and an influence of age and monthly minimum hydrologic levels on juvenile Snail Kite survival. Yearly variation in juvenile survival has been reported by other studies, and other reproductive components of Snail Kites also exhibit such variation. Age differences in juvenile survival have also been seen in other species during the juvenile period. Our results demonstrate a positive relationship between water levels and juvenile survival. We suggest that this is not a direct linear relationship, such that higher water means higher juvenile survival. The juvenile period is concurrent with onset of the wet season in the ecosystem we studied, and rainfall increases as juveniles age. For management purposes, we believe that inferences suggesting increasing water levels during the fledging period will increase juvenile survival may have short-term benefits but lead to long-term declines in prey abundance and possibly wetland vegetation structure.

  12. Developmental toxicity, acute toxicity and mutagenicity testing in freshwater snails Biomphalaria glabrata (Mollusca: Gastropoda) exposed to chromium and water samples.

    PubMed

    Tallarico, Lenita de Freitas; Borrely, Sueli Ivone; Hamada, Natália; Grazeffe, Vanessa Siqueira; Ohlweiler, Fernanda Pires; Okazaki, Kayo; Granatelli, Amanda Tosatte; Pereira, Ivana Wuo; Pereira, Carlos Alberto de Bragança; Nakano, Eliana

    2014-12-01

    A protocol combining acute toxicity, developmental toxicity and mutagenicity analysis in freshwater snail Biomphalaria glabrata for application in ecotoxicological studies is described. For acute toxicity testing, LC50 and EC50 values were determined; dominant lethal mutations induction was the endpoint for mutagenicity analysis. Reference toxicant potassium dichromate (K2Cr2O7) was used to characterize B. glabrata sensitivity for toxicity and cyclophosphamide to mutagenicity testing purposes. Compared to other relevant freshwater species, B. glabrata showed high sensitivity: the lowest EC50 value was obtained with embryos at veliger stage (5.76mg/L). To assess the model applicability for environmental studies, influent and effluent water samples from a wastewater treatment plant were evaluated. Gastropod sensitivity was assessed in comparison to the standardized bioassay with Daphnia similis exposed to the same water samples. Sampling sites identified as toxic to daphnids were also detected by snails, showing a qualitatively similar sensitivity suggesting that B. glabrata is a suitable test species for freshwater monitoring. Holding procedures and protocols implemented for toxicity and developmental bioassays showed to be in compliance with international standards for intra-laboratory precision. Thereby, we are proposing this system for application in ecotoxicological studies. PMID:25259848

  13. [Studies upon behaviour of snails in anthropogenically changed water environment. 1. Locomotor activity of Lymnaea stagnalis (L.), with regard to subpopulations infected with developmental stages of digeneans].

    PubMed

    Pokora, Zbigniew

    2002-01-01

    The aim of the paper was to analyse the locomotor activity of snails, Lymnaea stagnalis, with regard to physico-chemical properties of water in an inhabited reservoir and parasitic infection. The material was collected in selected anthropogenic water environments situated in the Upper Silesian Industrial Region (sinkhole ponds, sand- and clay-excavations). The locomotor activity of each snail was analysed in laboratory conditions by designation of number of penetrated segments, marked in tanks filled with water originating from a given reservoir, during 15', with intervals of 1'. It was observed the significant relationship between locomotor activity of examined snails and the water carbonaceous hardness (r = -0,812, at range of the independent variable 173.0-863.5 mg CaCO3/dm3). Correlation coefficients with other physico-chemical parameters of water were close to zero. Locomotion of snails infected with developmental stages of digenetic trematodes was significantly lower comparing to non-infected individuals. Locomotor activity of these former ones was dependend more on degree of the digestive gland damage by the parasite than on the infection agent. PMID:16883702

  14. Effect of pond water depth on snail populations and fish-borne zoonotic trematode transmission in juvenile giant gourami (Osphronemus goramy) aquaculture nurseries.

    PubMed

    Thien, P C; Madsen, H; Nga, H T N; Dalsgaard, A; Murrell, K D

    2015-12-01

    Infection with fish-borne zoonotic trematodes (FZT) is an important public health problem in many parts of Southeast Asia. People become infected with FZT when eating raw or undercooked fish that contain the infective stage (metacercariae) of FZT. The parasites require specific freshwater snails as first intermediate host and a variety of fish species, both wild caught and cultured, as second intermediate host. Aquaculture production has grown almost exponentially in SE Asia and in order to produce fish free from FZT metacercariae, it is important to mitigate factors promoting transmission to fish. Here we report results from a cross-sectional study to look at the association between pond depth and infection with FZT in giant gourami nursery ponds. Density of intermediate host snails was positively associated with pond depth (count ratio associated with a 1m increase in pond depth was 10.4 (95% C.L.: 1.61-67.1, p<0.5)) and this may partly explain the higher prevalence and intensity of FZT infection in juvenile fish. High fry stocking density (>200 fry m(-3)) was associated with lower host snail density (count ratio=0.15) than low stocking density (<100 fry m(3)). Ponds stocked with 100-200 fry m(-3) had snail counts 0.76 (95% C.L.: 0.33-1.75, p n.s.) of those in ponds stocked with fry density of <100 fry m(-3). Since density of intermediate snail hosts was associated with FZT transmission to fish, effort should be taken to reduce snail density prior to stocking the fry, but focus should also be on habitats surrounding ponds as transmission may occur through cercariae produced outside ponds and carried into ponds with water pumped into ponds. PMID:26209455

  15. Surface freezing of water.

    PubMed

    Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F

    2016-01-01

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided. PMID:27330895

  16. Survival of the faucet snail Bithynia tentaculata after chemical disinfection, pH extremes, and heated water bath treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bithynia tentaculata, the faucet snail, is a non indigenous aquatic snail from Eurasia that was introduced into Lake Michigan in 1871. The snail’s distribution in the United States has expanded to the mid-Atlantic states and the drainage basin of the Great Lakes and most recently to the Mississippi...

  17. Surface-water surveillance

    SciTech Connect

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  18. Influence of an extreme high water event on survival, reproduction, and distribution of snail kites in Florida, USA

    USGS Publications Warehouse

    Bennetts, R.E.; Kitchens, W.M.; Dreitz, V.J.

    2002-01-01

    Hydrology frequently has been reported as the environmental variable having the greatest influence on Florida snail kite (Rostrhamus sociabilis) populations. Although drought has received the most attention, high-water conditions also have been reported to affect kites. Years of high water generally have been reported to be favorable for nesting, although prolonged high water may be detrimental to sustaining suitable habitat. During 1994 and 1995, southern Florida experienced an extreme high water event. This event enabled us to compare survival, nesting success, number of young per successful nest, and spatial distribution of nesting before, during, and after the event. We found no evidence of an effect (either negative or positive) on survival of adult kites. In contrast, juvenile kites experienced the highest survival during the event, although our data suggest greater annual variability than can be explained by the event alone. We found no evidence of an effect of the high water event on nest success or number of young per successful nest. Nest success was highest during the event in the southern portion of the range but was quite similar to other years, both before and after the event. Our data do indicate a substantial shift in the spatial distribution of nesting birds. During the event, nesting activity shifted to higher elevations (i.e., shallower water) in the major nesting areas of the Everglades region. Nesting also occurred in Big Cypress National Preserve during the event, which is typically too dry to support nesting kites. Thus, our data indicate a potential short-term benefit of increased juvenile survival and an expansion of nesting habitat. However, the deterioration of habitat quality from prolonged high water precludes any recommendation for such conditions to be maintained for extended periods. ?? 2002, The Society of Wetland Scientists.

  19. SURFACE WATER EMAP PROJECT

    EPA Science Inventory

    The surface water component of the EPA Environmental Monitoring and Assessment Program (EMAP) Western Pilot is a five-year effort to assess the ecological condition of rivers and streams across 12 states in the western United States. EMAP is designed to monitor indicators of poll...

  20. Production of apple snail for space diet

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Motoki, Shigeru; Space Agriculture Task Force, J.; Katayama, Naomi

    For food production in space at recycling bio-elements under closed environment, appropriate organisms should be chosen to drive the closed materials recycle loop. We propose a combination of green algae, photosynthetic protozoa, and aquatic plants such as Wolffia spp., for the primary producer fixing solar energy to chemical form in biomass, and apple snail, Pomacea bridgesii, which converts this biomass to animal meat. Because of high proliferation rate of green algae or protozoa compared to higher plants, and direct conversion of them to apple snail, the efficiency of food production in this combination is high, in terms of energy usage, space for rearing, and yield of edible biomass. Furthermore, green algae and apple snail can form a closed ecological system with exchanging bio-elements between two member, i.e. excreta of snail turn to fertilizer of algae, and grown algae become feed for snail. Since apple snail stays in water or on wet substrate, control of rearing is easy to make. Mass production technology of apple snail has been well established to utilize it as human food. Nutrients of apple snail are also listed in the standard tables of food composition in Japan. Nutrients for 100 g of apple snail canned in brine are energy 340 kJ, protein 16.5 g, lipid 1.0 g, cholesterol 240 mg, carbohydrate 0.8 g, Ca 400 mg, Fe 3.9 mg, Zn 1.5 mg. It is rich in minerals, especially Ca and Fe. Vitamin contents are quite low, but K 0.005 mg, B2 0.09 mg, B12 0.0006 mg, folate 0.001 mg, and E 0.6 mg. The amino acid score of apple snail could not be found in literature. Overall, apple snail provides rich protein and animal lipid such as cholesterol. It could be a good source of minerals. However, it does not give enough vitamin D and B12 , which are supposed to be supplemented by animal origin foods. In terms of acceptance in food culture, escargot is a gourmet menu in French dishes, and six to ten snail, roughly 50 g, are served for one person. Apple snail reaches to 30 g

  1. Foraging and refuge use by a pond snail: Effects of physiological state, predators, and resources

    NASA Astrophysics Data System (ADS)

    Wojdak, Jeremy M.

    2009-09-01

    The costs and benefits of anti-predator behavioral responses should be functions of the actual risk of predation, the availability of the prey's resources, and the physiological state of the prey. For example, a food-stressed individual risks starvation when hiding from predators, while a well-fed organism can better afford to hide (and pay the cost of not foraging). Similarly, the benefits of resource acquisition are probably highest for the prey in the poorest state, while there may be diminishing returns for prey nearing satiation. Empirical studies of state-dependent behavior are only beginning, however, and few studies have investigated interactions between all three potentially important factors. Here I present the results of a laboratory experiment where I manipulated the physiological state of pond snails ( Physa gyrina), the abundance of algal resources, and predation cues ( Belostoma flumineum waterbugs consuming snails) in a full factorial design to assess their direct effects on snail behavior and indirect effects on algal biomass. On average, snails foraged more when resources were abundant, and when predators were absent. Snails also foraged more when previously exposed to physiological stress. Snails spent more time at the water's surface (a refuging behavior) in the presence of predation cues on average, but predation, resource levels, and prey state had interactive effects on refuge use. There was a consistent positive trait-mediated indirect effect of predators on algal biomass, across all resource levels and prey states.

  2. Internal Surface Water Flows

    USGS Publications Warehouse

    Murray, Mitchell H.

    1999-01-01

    Introduction The South Florida Ecosystem Restoration Program is an intergovernmental effort to reestablish and maintain the ecosystem of south Florida. One element of the restoration effort is the development of a firm scientific basis for resource decision making.The U.S. Geological Survey (USGS) provides scientitic information as part of the South Florida Ecosystem Restoration Program. The USGS began its own project, called the South Florida Ecosystem Project in fiscal year 1995 for the purpose of gathering hydrologic, cartographic, and geologic data that relate to the mainland of south Florida, Florida Bay, and the Florida Keys and Reef ecosystems. Historical changes in water-management practices to accommodate a large and rapidly growing urban population along the Atlantic coast, as well as intensive agricultural activities, have resulted in a highly managed hydrologic system with canals, levees, and pumping stations. These structures have altered the hydology of the Everglades ecosystem on both coastal and interior lands. Surface-water flows in a direction south of Lake Okeechobee have been regulated by an extensive canal network, begun in the 1940's, to provide for drainage, flood control, saltwater intrusion control, agricultural requirements, and various environmental needs. Much of the development and subsequent monitoring of canal and river discharge south of Lake Okeechobee has traditionally emphasized the eastern coastal areas of Florida. Recently, more emphasis has been placed on providing a more accurate water budget for internal canal flows.

  3. Regulation of laboratory populations of snails (Biomphalaria and Bulinus spp.) by river prawns, Macrobrachium spp. (Decapoda, Palaemonidae): implications for control of schistosomiasis

    PubMed Central

    Lafferty, Kevin D.; Kuris, Armand M.

    2014-01-01

    Human schistosomiasis is a common parasitic disease endemic in many tropical and subtropical countries. One barrier to achieving long-term control of this disease has been re-infection of treated patients when they swim, bathe, or wade in surface fresh water infested with snails that harbor and release larval parasites. Because some snail species are obligate intermediate hosts of schistosome parasites, removing snails may reduce parasitic larvae in the water, reducing re-infection risk. Here, we evaluate the potential for snail control by predatory freshwater prawns, Macrobrachium rosenbergii and M. vollenhovenii, native to Asia and Africa, respectively. Both prawn species are high value, protein-rich human food commodities, suggesting their cultivation may be beneficial in resource-poor settings where few other disease control options exist. In a series of predation trials in laboratory aquaria, we found both species to be voracious predators of schistosome-susceptible snails, hatchlings, and eggs, even in the presence of alternative food, with sustained average consumption rates of 12% of their body weight per day. Prawns showed a weak preference for Bulinus truncatus over Biomphalaria glabrata snails. Consumption rates were highly predictable based on the ratio of prawn: snail body mass, suggesting satiation-limited predation. Even the smallest prawns tested (0.5–2g) caused snail recruitment failure, despite high snail fecundity. With the World Health Organization turning attention toward schistosomiasis elimination, native prawn cultivation may be a viable snail control strategy that offers a win-win for public health and economic development. PMID:24388955

  4. Bioaccumulation of heavy metals in water, sediments, aquatic plant and histopathological effects on the golden apple snail in Beung Boraphet reservoir, Thailand.

    PubMed

    Dummee, Vipawee; Kruatrachue, Maleeya; Trinachartvanit, Wachareeporn; Tanhan, Phanwimol; Pokethitiyook, Prayad; Damrongphol, Praneet

    2012-12-01

    Changes in the seasonal concentrations of heavy metals (Cu, Mn, Fe, Zn, Pb and Cd) were determined in water, sediments, snails (Pomacea canaliculata) and aquatic plants (Ipomoea aquatica) in three selected tributaries of the Beung Boraphet reservoir, Nakhon Sawan Province, central Thailand. Only Fe, Cu, Mn and Zn were detected by FAAS in all samples collected. The water quality of Beung Boraphet was medium clean with Fe, Mn, Cu and Zn concentrations well below internationally accepted limits. According to the criteria proposed for sediments by the EPA Region V, Zn and Mn concentrations were within the non-polluted range while Fe and Cu (wet season) concentrations fell into the class of severely polluted sediment. Both P. canaliculata and I. aquatica bioconcentrated more Mn in their tissues than were found in sediments, especially in the wet season. The results of Pearson correlation study and BCF values also indicated similar findings. Only Mn showed the importance of sediment-to-snail concentration and high BCF values in both snails and plants. P. canaliculata exposed to contaminated sediment for two months, showed higher accumulation of metals (Fe, Mn, Cu and Zn) in the digestive tracts and digestive glands than in the foot muscles. Histopathological changes included alterations in the epithelial lining of the digestive tracts, digestive glands and the gills. Loss of cilia and increase in mucous cells were observed in the digestive tracts and gills, while the digestive glands exhibited an increase of dark granules and basophilic cells, and dilation of digestive cells. The results indicated that both P. canaliculata and I. aquatica could be used as biomonitors of sedimentary metal contamination for the Beung Boraphet reservoir. PMID:23079739

  5. Sustaining dry surfaces under water.

    PubMed

    Jones, Paul R; Hao, Xiuqing; Cruz-Chu, Eduardo R; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M; Varanasi, Kripa K; Megaridis, Constantine M; Walther, Jens H; Koumoutsakos, Petros; Espinosa, Horacio D; Patankar, Neelesh A

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  6. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  7. Surface Water Records of Colorado

    USGS Publications Warehouse

    U.S. Geological Survey, Water Resources Division

    1962-01-01

    The surface-water records for the 1962 water year for gaging stations and miscellaneous sites within the State of Colorado are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of J. W. Odell, district engineer, Surface Water Branch.

  8. SURFACE WATER INTAKES

    EPA Science Inventory

    The Safe Drinking Water Information System (SDWIS) GIS layer represents the locations of public water system (PWS) facilities in NY and NJ; every PWS has one or more facilities. Data for this layer came from the Safe Drinking Water Information System/Federal version (SDWIS/FED)...

  9. CONNECTICUT SURFACE WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Surface Water Quality Classifications for Connecticut. It is comprised of two 0Shapefiles with line and polygon features. Both Shapefiles must be used together with the Hydrography datalayer. The polygon Shapefile includes surface water qual...

  10. Changes in the surface pH of voltage-clamped snail neurones apparently caused by H+ fluxes through a channel.

    PubMed Central

    Thomas, R C

    1988-01-01

    1. The surface and intracellular pH of snail neurones was recorded with microelectrodes while the membrane potential was reduced in 10 mV steps for a few seconds each or to positive values for periods of several minutes. 2. Depolarizations to positive membrane potentials caused rapid falls in surface pH (pHs) which varied from cell to cell and from one point to another on the surface of the same cell. 3. When pHi was normal or alkaline, the first few 10 mV steps of depolarization often caused a small pHs increase which changed to a decrease as the depolarization increased. The threshold potential at which the pHs increase changed to a decrease varied with pHi in a linear manner, so that at acid pHi values the threshold potential approached the normal resting potential. There was good agreement between the threshold and H+ equilibrium potentials calculated from pHi and pHs. 4. The size of the pHs decrease observed at a given pHi and depolarization depended on extracellular buffering power in a non-linear manner. Solutions buffered with 20 mM-NaHCO3 had similar surface buffering power to CO2-free solutions buffered with only 1-2 mM-HEPES, pH 7.5. 5. In 1 mM-HEPES pHs changes were larger, and pHi increases slower, than those seen in cells depolarized to the same potential in 20 mM-HEPES. The slowing of the rate of pHi increase suggests that the pHs changes occur all over the cell surface, and not only at the recording site. 6. With long-lasting depolarizations the size of the pHs decrease was proportional to the rate of pHi increase and thus, assuming a constant intracellular buffering power, to the rate of efflux of H+. 7. The results provide further evidence that snail neurones possess a channel permeable to H+ which is opened on depolarization. H+ efflux through this channel could cause rapid acidification of a confined extracellular space. PMID:2455800

  11. Surface Water Response Modeling

    EPA Science Inventory

    During response to spills, or for facility planning, the vulnerability of downstream water resources is a major concern. How long and at what concentration do spilled contaminants reach downstream receptors? Models have the potential to answer these questions, but only if they ...

  12. Measuring Surface Water From Space

    NASA Astrophysics Data System (ADS)

    Partsch, J.; Alsdorf, D.; Rodriguez, E.; Lettenmaier, D.; Mognard, N.; Participants, T.

    2006-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface fresh water discharge and changes in storage globally. For example, we are unable to answer such basic questions as "What is the spatial and temporal variability of water stored on and near the surface of all continents?" Furthermore, key societal issues, such as the susceptibility of life to flood hazards, cannot be answered with the current global, in-situ networks designed to observe river discharge at points but not flood events. The measurements required to answer these hydrologic questions are surface water area, the elevation of the water surface (h), its slope (dh/dx), and temporal change (dh/dt). Advances in remote sensing hydrology, particularly over the past 10 years and even more recently, have demonstrated that these hydraulic variables can be measured reliably from orbiting platforms. Measurements of inundated area have been used to varying degrees of accuracy as proxies for discharge, but are successful only when in-situ data are available for calibration and fail to indicate the dynamic topography of water surfaces. Radar altimeters have a rich, multi-decadal history of successfully measuring elevations of the ocean surface and are now also accepted as capable tools for measuring h along orbital profiles crossing fresh water bodies. However, altimeters are profiling tools which, because of their orbital spacings, miss too many fresh water bodies to be useful hydrologically. High spatial resolution images of dh/dt have been observed with interferometric synthetic aperture radar (SAR), but the method requires emergent vegetation to scatter radar pulses back to the receiving antenna. Essentially, existing spaceborne methods have been used to measure components of surface water hydraulics, but none of the technologies can singularly supply the water volume and hydraulic measurements that are needed to accurately model the

  13. Trematode infections in freshwater snails and cattle from the Kafue wetlands of Zambia during a period of highest cattle-water contact.

    PubMed

    Phiri, A M; Phiri, I K; Chota, A; Monrad, J

    2007-03-01

    A total of 984 snails, comprising nine species, were collected from six areas in the Kafue wetlands between August and October 2003 to assess larval trematode infections. Of these, 135 (13.7%) were positive. Most trematode infections were recorded from Lymnaea natalensis (42.8%), which harboured four of the five morphologically different cercariae found. No trematodes were recovered from Bellamya capillata, Biomphalaria pfeifferi, Melanoides tuberculata, Physa acuta and Cleopatra nswendweensis. One snail (0.2%) of 416 Bulinus snails shed brevifurcate-apharyngeate distome cercariae while three (0.7%) shed amphistomes. Gymnocephalous and longifurcate-pharyngeate distome were the commonest types of cercariae recorded while xiphidiocercaria was the least common. The highest prevalence rates of F. gigantica (68.8%) and amphistomes (50.0%) in cattle (n = 101) were in Chiyasa while those in Kaleya had the lowest (9.1 and 18.2%, respectively). In most habitats, infections were recorded in both cattle and snails. Critical determinants of infection may have been the distance of settlements and/or cattle kraals, the number of animals in nearby homesteads and the presence of susceptible host snails. This study suggests that fascioliasis and amphistomiasis could be major constraints of cattle production in the Kafue wetlands because favourable factors were available to introduce and maintain the infections. It further provides a starting point for some comprehensive studies on snail-related aspects of transmission and snail host ecology in Zambia. PMID:17381873

  14. Aquatic Snails, Passive Hosts of Mycobacterium ulcerans

    PubMed Central

    Marsollier, Laurent; Sévérin, Tchibozo; Aubry, Jacques; Merritt, Richard W.; Saint André, Jean-Paul; Legras, Pierre; Manceau, Anne-Lise; Chauty, Annick; Carbonnelle, Bernard; Cole, Stewart T.

    2004-01-01

    Accumulative indirect evidence of the epidemiology of Mycobacterium ulcerans infections causing chronic skin ulcers (i.e., Buruli ulcer disease) suggests that the development of this pathogen and its transmission to humans are related predominantly to aquatic environments. We report that snails could transitorily harbor M. ulcerans without offering favorable conditions for its growth and replication. A novel intermediate link in the transmission chain of M. ulcerans becomes likely with predator aquatic insects in addition to phytophage insects. Water bugs, such as Naucoris cimicoides, a potential vector of M. ulcerans, were shown to be infected specifically by this bacterium after feeding on snails experimentally exposed to M. ulcerans. PMID:15466578

  15. Measuring surface water from space

    NASA Astrophysics Data System (ADS)

    Alsdorf, Douglas E.; RodríGuez, Ernesto; Lettenmaier, Dennis P.

    2007-06-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface freshwater discharge and changes in storage globally. For example, we are unable to answer such basic questions as "What is the spatial and temporal variability of water stored on and near the surface of all continents?" Furthermore, key societal issues, such as the susceptibility of life to flood hazards, cannot be answered with the current global, in situ networks designed to observe river discharge at points but not flood events. The measurements required to answer these hydrologic questions are surface water area, the elevation of the water surface (h), its slope (∂h/∂x), and temporal change (∂h/∂t). Advances in remote sensing hydrology, particularly over the past 10 years and even more recently, have demonstrated that these hydraulic variables can be measured reliably from orbiting platforms. Measurements of inundated area have been used to varying degrees of accuracy as proxies for discharge but are successful only when in situ data are available for calibration; they fail to indicate the dynamic topography of water surfaces. Radar altimeters have a rich, multidecadal history of successfully measuring elevations of the ocean surface and are now also accepted as capable tools for measuring h along orbital profiles crossing freshwater bodies. However, altimeters are profiling tools, which, because of their orbital spacings, miss too many freshwater bodies to be useful hydrologically. High spatial resolution images of ∂h/∂t have been observed with interferometric synthetic aperture radar, but the method requires emergent vegetation to scatter radar pulses back to the receiving antenna. Essentially, existing spaceborne methods have been used to measure components of surface water hydraulics, but none of the technologies can singularly supply the water volume and hydraulic measurements that are needed to accurately model

  16. Ecology of bacterial communities in the schistosomiasis vector snailBiomphalaria glabrata.

    PubMed

    Ducklow, H W; Clausen, K; Mitchell, R

    1981-09-01

    The internal colony-forming bacterial flora of the schistosome intermediate host snailBiomphalaria glabrata (Say) has been characterized in ca. 500 individual snails from Puerto Rico, Guadeloupe, and St. Lucia, and from laboratory aquaria. Freshly captured wild snails harbor 2-40×10(6) CFU·g(-1), and healthy aquarium snails harbor 4-16×10(7) CFU·g(-1), whereas moribund individuals have 4-10 times as many bacteria as healthy individuals from the same habitats.Pseudomonas spp. are the most common predominant bacteria in normal snails, whereasAcinetobacter, Aeromonas, andMoraxella spp. predominate in moribund snails. External bacterial populations in water appear to have little effect on the composition and size of the flora in any snail. In addition to normal (healthy) and moribund snails, a third group of snails has been distinguished on the basis of internal bacterial density and predominating genera. These "high-density" snails may have undergone stresses and may harbor opportunistic pathogens. The microfloras of wild and laboratory-reared snails can be altered and stimulated to increase in density by crowding the snails or treating them with antibiotics. PMID:24227500

  17. An ecological study of Bithynia snails, the first intermediate host of Opisthorchis viverrini in northeast Thailand.

    PubMed

    Wang, Yi-Chen; Ho, Richard Cheng Yong; Feng, Chen-Chieh; Namsanor, Jutamas; Sithithaworn, Paiboon

    2015-01-01

    Infection with the food-borne trematodiasis, liver fluke Opisthorchis viverrini, is a major public health concern in Southeast Asia. While epidemiology and parasitic incidence in humans are well studied, ecological information on the O. viverrini intermediate hosts remains limited. This study aimed to investigate the factors affecting the distribution and abundance of the first intermediate host, Bithynia siamensis goniomphalos snails. Water quality and snails were sampled in 31 sites in Muang District, Khon Kaen Province, Thailand from June 2012 to January 2013 to characterize the B.s. goniomphalos snail habitats. Species relative abundance and Shannon's diversity and evenness indices were employed to describe snail compositions and diversities across different habitat types. Statistical analyses were conducted to examine the extent to which the water quality variables and species interactions account for the relative abundance of B.s. goniomphalos snails. The results showed that the freshwater habitats of ponds, streams and rice paddies possessed significantly different abiotic water qualities, with water temperature and pH showing distinct statistical differences (P<0.05). Different habitats had different snail diversity and species evenness, with high B.s. goniomphalos snail abundance at rice paddy habitats. The differences in snail abundance might be due to the distinct sets of abiotic water qualities associated with each habitat types. The relative abundance of B.s. goniomphalos snails was found to be negatively correlated with that of Filopaludina martensi martensi snails (r=-0.46, P<0.05), underscoring the possible influence of species interaction on B.s. goniomphalos snail population. Field work observations revealed that rice planting seasons and irrigation could regulate snail population dynamics at rice paddy habitats. This study provides new ecological insights into the factors affecting Bithynia snail distribution and abundance. It bridges the

  18. Modeling snail breeding in Bioregenerative Life Support System

    NASA Astrophysics Data System (ADS)

    Kovalev, Vladimir; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..

    It is known that snail meat is a high quality food that is rich in protein. Hence, heliciculture or land snail farming spreads worldwide because it is a profitable business. The possibility to use the snails of Helix pomatia in Biological Life Support System (BLSS) was studied by Japanese Researches. In that study land snails were considered to be producers of animal protein. Also, snail breeding was an important part of waste processing, because snails were capable to eat the inedible plant biomass. As opposed to the agricultural snail farming, heliciculture in BLSS should be more carefully planned. The purpose of our work was to develop a model for snail breeding in BLSS that can predict mass flow rates in and out of snail facility. There are three linked parts in the model called “Stoichiometry”, “Population” and “Mass balance”, which are used in turn. Snail population is divided into 12 age groups from oviposition to one year. In the submodel “Stoichiometry” the individual snail growth and metabolism in each of 12 age groups are described with stoichiometry equations. Reactants are written on the left side of the equations, while products are written on the right side. Stoichiometry formulas of reactants and products consist of four chemical elements: C, H, O, N. The reactants are feed and oxygen, products are carbon dioxide, metabolic water, snail meat, shell, feces, slime and eggs. If formulas of substances in the stoichiometry equations are substituted with their molar masses, then stoichiometry equations are transformed to the equations of molar mass balance. To get the real mass balance of individual snail growth and metabolism one should multiply the value of each molar mass in the equations on the scale parameter, which is the ratio between mass of monthly consumed feed and molar mass of feed. Mass of monthly consumed feed and stoichiometry coefficients of formulas of meat, shell, feces, slime and eggs should be determined experimentally

  19. Atrazine does not affect algal biomass or snail populations in microcosm communities at environmentally relevant concentrations.

    PubMed

    Baxter, Leilan R; Moore, Dana L; Sibley, Paul K; Solomon, Keith R; Hanson, Mark L

    2011-07-01

    The herbicide atrazine is a photosynthetic inhibitor used around the world in agricultural applications. Contamination of surface waters adjacent to treated areas can directly reduce growth of nontarget aquatic autotrophs, but the severity of impacts is highly dependent on species sensitivity and exposure concentration. Secondary effects resulting from macrophyte or phytoplankton decline may include an expansion of the more tolerant periphyton community. Recently, this shift in the autotrophic community has been proposed as a mechanism for increased rates of parasite infections in amphibians via augmented populations of aquatic snails which act as intermediate hosts to larval trematodes. To further clarify this relationship, an outdoor microcosm study was conducted to examine the effects of atrazine on primary production and snail populations over a range of environmentally relevant concentrations. In July 2009, 15 experimental ponds were treated to achieve initial concentrations of 0, 1, 10, 30, and 100 µg/L atrazine. Over a period of 73 d, measures were taken of macrophyte, phytoplankton, and periphyton biomass, growth, and fecundity of caged snails (Physella spp. and Stagnicola elodes) and free-living snails (Physella spp.). Except for declines in macrophyte biomass at the highest treatment level, no consistent relationships were found between atrazine concentration and any measured parameter. Comparison of these results with previous findings highlights the variability of responses to atrazine exposure between similarly constructed freshwater communities, even at concentrations up to 20 times higher than sustained environmental levels. PMID:21567448

  20. Inquiry, Land Snails, and Environmental Factors.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Krantz, Patrick D.

    2002-01-01

    Introduces land snails for use in inquiry-based science activities. Describes common characteristics and safety considerations while introducing students to land snails. Explains procedures for inquiry-based use of land snails in classrooms. (YDS)

  1. Water molecules orientation in surface layer

    NASA Astrophysics Data System (ADS)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  2. Experimental infection of the digeneans to some congeneric snail species radiated in a single water system: Relative importance of local evolution and phylogenetic constraint.

    PubMed

    Urabe, Misako

    2016-06-01

    To determine the relative importance of local adaptation caused by host-parasite coevolution and resource tracking by the parasites, the susceptibility of the freshwater snail genus Semisulcospira to the digenean parasite genus Genarchopsis was investigated experimentally. Four snail species endemic to the Lake Biwa system in Japan and two non-endemic species were investigated. All but one species was also tested for local variation in susceptibility. Parasites were obtained from Takashima (mix population of Genarchopsis gigi and Genarchopsis chubuensis) and Nagahama (G. chubuensis). In endemic Semisulcospira, closely related specie pairs (Semisulcospira habei and Semisulcospira niponica, Semisulcospira decipiens and Semisulcospira nakasekoae) showed similar susceptibilities to parasites from both localities. S. habei and S. niponica were highly susceptible to parasites from Takashima, but were resistant to parasites from Nagahama. S. decipiens and S. nakasekoae showed moderate susceptibility to parasites from both localities. None of the endemic snail species showed a clear local variation in susceptibility. These results show that the susceptibility of endemic Semisulcospira to Genarchopsis is conservative and can be regarded as an example of resource-tracking. One of the non-endemic snails, Semisulcospira libertina, showed local variation in susceptibility. This variation was not related to the sympatry of the parasites used for the experimental infection, suggesting that it was not the result of local adaptation by parasites. PMID:26773868

  3. Infection with schistosome parasites in snails leads to increased predation by prawns: implications for human schistosomiasis control.

    PubMed

    Swartz, Scott J; De Leo, Giulio A; Wood, Chelsea L; Sokolow, Susanne H

    2015-12-01

    Schistosomiasis - a parasitic disease that affects over 200 million people across the globe - is primarily transmitted between human definitive hosts and snail intermediate hosts. To reduce schistosomiasis transmission, some have advocated disrupting the schistosome life cycle through biological control of snails, achieved by boosting the abundance of snails' natural predators. But little is known about the effect of parasitic infection on predator-prey interactions, especially in the case of schistosomiasis. Here, we present the results of laboratory experiments performed on Bulinus truncatus and Biomphalaria glabrata snails to investigate: (i) rates of predation on schistosome-infected versus uninfected snails by a sympatric native river prawn, Macrobrachium vollenhovenii, and (ii) differences in snail behavior (including movement, refuge-seeking and anti-predator behavior) between infected and uninfected snails. In predation trials, prawns showed a preference for consuming snails infected with schistosome larvae. In behavioral trials, infected snails moved less quickly and less often than uninfected snails, and were less likely to avoid predation by exiting the water or hiding under substrate. Although the mechanism by which the parasite alters snail behavior remains unknown, these results provide insight into the effects of parasitic infection on predator-prey dynamics and suggest that boosting natural rates of predation on snails may be a useful strategy for reducing transmission in schistosomiasis hotspots. PMID:26677260

  4. Polymorphism in pleistocene land snails.

    PubMed

    Owen, D F

    1966-04-01

    Under suitable conditions the colors and patterns of the shells of land snails may be preserved for thousands of years. In a late Pleistocene population of Limicolaria martensiana all the major color forms that occur in modern living snails may be distinguished, and the basic polymorphism is at least 8,000 to 10,000 year old. PMID:17830234

  5. Wave Turbulence on Water Surface

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey; Lukaschuk, Sergei

    2016-03-01

    We overview the wave turbulence approach by example of one physical system: gravity waves on the surface of an infinitely deep fluid. In the theoretical part of our review, we derive the nonlinear Hamiltonian equations governing the water-wave system and describe the premises of the weak wave turbulence theory. We outline derivation of the wave-kinetic equation and the equation for the probability density function, and most important solutions to these equations, including the Kolmogorov-Zakharov spectra corresponding to a direct and an inverse turbulent cascades, as well as solutions for non-Gaussian wave fields corresponding to intermittency. We also discuss strong wave turbulence as well as coherent structures and their interaction with random waves. We describe numerical and laboratory experiments, and field observations of gravity wave turbulence, and compare their results with theoretical predictions.

  6. Surface water discharges from onshore stripper wells.

    SciTech Connect

    Veil, J. A.

    1998-01-16

    Under current US Environmental Protection Agency (EPA) rules, small onshore oil producers are allowed to discharge produced water to surface waters with approval from state agencies; but small onshore gas producers, however, are prohibited from discharging produced water to surface waters. The purpose of this report is to identify those states that allow surface water discharges from small onshore oil operations and to summarize the types of permitting controls they use. It is intended that the findings of this report will serve as a rationale to encourage the EPA to revise its rules and to remove the prohibition on surface water discharges from small gas operations.

  7. The use of cold water to kill the exotic snail, red-rim melania Melanoides tuberculatus, a vector of the fish gill trematode Centrocestus formosanus, caught in dip nets and small seines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A non-indigenous tropical snail, the red-rim melania Melanoides tuberculatus, has become established and is spreading in the United States. This parthenogenic snail can brood young internally, has the potential to displace native snail populations, and can transmit trematodes directly to fish and i...

  8. Water surface capturing by image processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  9. Ground water and surface water; a single resource

    USGS Publications Warehouse

    Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

    1998-01-01

    The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

  10. Ajuba LIM proteins are Snail/Slug corepressors required for neural crest development in Xenopus

    PubMed Central

    Langer, Ellen M.; Feng, Yunfeng; Zhaoyuan, Hou; Rauscher, Frank J.; Kroll, Kristen L.; Longmore, Gregory D.

    2008-01-01

    Snail family transcriptional repressors regulate epithelial mesenchymal transitions during physiological and pathological processes. A conserved SNAG repression domain present in all vertebrate Snail proteins is necessary for repressor complex assembly. Here, we identify the Ajuba family of LIM proteins as functional corepressors of the Snail family via an interaction with the SNAG domain. Ajuba LIM proteins interact with Snail in the nucleus on endogenous E-cadherin promoters and contribute to Snail-dependent repression of E-cadherin. Using Xenopus neural crest as a model of in vivo Snail- or Slug-induced EMT, we demonstrate that Ajuba LIM proteins contribute to neural crest development as Snail/Slug corepressors and are required for in vivo Snail/Slug function. Because Ajuba LIM proteins are also components of adherens junction and contribute to their assembly or stability, their functional interaction with Snail proteins in the nucleus suggests that Ajuba LIM proteins are important regulators of epithelia dynamics communicating surface events with nuclear responses. PMID:18331720

  11. Surface water records of Colorado, 1961

    USGS Publications Warehouse

    U.S. Geological Survey, Water Resources Division

    1961-01-01

    The surface-water records for the 1961 water year for gaging stations and miscellaneous sites within the State of Colorado are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of W. T. Miller, district engineer, Surface Water Branch, succeeded by J. W. Odell.

  12. Combining Remotely Sensed Environmental Characteristics with Social and Behavioral Conditions that Affect Surface Water Use in Spatiotemporal Modelling of Schistosomiasis in Ghana

    NASA Astrophysics Data System (ADS)

    Kulinkina, A. V.; Walz, Y.; Liss, A.; Kosinski, K. C.; Biritwum, N. K.; Naumova, E. N.

    2016-06-01

    Schistosoma haematobium transmission is influenced by environmental conditions that determine the suitability of the parasite and intermediate host snail habitats, as well as by socioeconomic conditions, access to water and sanitation infrastructure, and human behaviors. Remote sensing is a demonstrated valuable tool to characterize environmental conditions that support schistosomiasis transmission. Socioeconomic and behavioral conditions that propagate repeated domestic and recreational surface water contact are more difficult to quantify at large spatial scales. We present a mixed-methods approach that builds on the remotely sensed ecological variables by exploring water and sanitation related community characteristics as independent risk factors of schistosomiasis transmission.

  13. Geochemistry of surface waters of Vojvodina, Yugoslavia

    NASA Astrophysics Data System (ADS)

    Berry Lyons, W.; Lent, Robert M.; Djukic, Nada; Maletin, Steven; Pujin, Vlasta; Carey, Anne E.

    1992-08-01

    Major elements data are presented for a number of surface water samples from the Vojvodina region of Yugoslavia. These include samples from the Danube and Tisa Rivers as well as from three lakes in the Pannonian Plain. The data indicate that surface waters evolved to two major water types: Na-CO 3-SO 4-Cl and Na-Cl. The chemical composition of the surface water from this region has been strongly affected by anthropogenic activities including irrigation and the direct introduction of various chemical species, especially Na and Cl. It appears that the major element chemistry of a number of lakes in this region has changed since the 1950s.

  14. Gray solitons on the surface of water.

    PubMed

    Chabchoub, A; Kimmoun, O; Branger, H; Kharif, C; Hoffmann, N; Onorato, M; Akhmediev, N

    2014-01-01

    The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrödinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons. PMID:24580162

  15. Gray solitons on the surface of water

    NASA Astrophysics Data System (ADS)

    Chabchoub, A.; Kimmoun, O.; Branger, H.; Kharif, C.; Hoffmann, N.; Onorato, M.; Akhmediev, N.

    2014-01-01

    The dynamics of surface gravity water waves can be described by the self-defocusing nonlinear Schrödinger equation. Recent observations of black solitons on the surface of water confirmed its validity for finite, below critical depth. The black soliton is a limiting case of a family of gray soliton solutions with finite amplitude depressions. Here, we report observations of gray solitons in water waves, thus, complementing our previous observations of black solitons.

  16. Pesticide mitigation strategies for surface water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pesticide residues are being increasingly detected in surface water in agricultural and urban areas. In some cases water bodies are being listed under the Clean Water Act 303(d) as impaired and Total Maximum Daily Loads are required to address the impairments in agricultural areas. Pesticides in sur...

  17. IDENTIFYING VULNERABLE SURFACE WATER UTILITIES

    EPA Science Inventory

    This study was conducted to provide a mechanism and framework with which utility managers could analyze the effects of upstream discharges on source waters. Specific components of the project included selection, implementation, and demonstration of a microcomputer-based commerci...

  18. MODELING TOOLS FOR GROUND WATER-SURFACE WATER INTERACTIONS

    EPA Science Inventory

    This project develops algorithms for simulating the dynamic interactions between surface water and ground water in rivers and riparian streams. The algorithms rely on physically based linear response functions which describe the exchange rates and volumes of water between the str...

  19. Aquatic snails from mining sites have evolved to detect and avoid heavy metals.

    PubMed

    Lefcort, H; Abbott, D P; Cleary, D A; Howell, E; Keller, N C; Smith, M M

    2004-05-01

    behavioral assay of aquatic pollution that is easy to use, is extremely sensitive (detection below 10 ppb), and can be constructed for fewer than 100 US dollars. Pulmonate snails are widely distributed in tropical, subtropical, and temperate parts of the globe, and they are often common in polluted waters. For countries such as India and Bangladesh, which must test thousands of shallow wells for possible contamination with heavy metals, our assay would be a good initial test. Once snails detected metals, then those samples could be confirmed by spectrometers. We encourage scientists in underdeveloped nations to consider our assay as an option. PMID:15253045

  20. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  1. Water and Surfaces: a Linkage Unexpectedly Profound

    NASA Astrophysics Data System (ADS)

    Pollack, Gerald H.

    The impact of surfaces on the contiguous water is thought to project no more than a few molecular layers from the surface. On the contrary, we have found that solutes are profoundly excluded from a several-hundred-micrometer-wide zone next to various hydrophilic surfaces, including gels. Such large “exclusion zones” appear to be quite general. Recent studies have shown that the underlying basis is a reorganization of interfacial water molecules into a liquid crystalline array, which then excludes solutes. The impact of this “fourth phase” of water appears to be broad, especially in biology.

  2. Feeding clusters and olfaction in the mangrove snail Terebralia palustris (Linnaeus) (Potamididae: Gastropoda).

    PubMed

    Fratini, S; Cannicci, S; Vannini, M

    2001-07-01

    Large numbers of the snail Terebralia palustris (Linnaeus) (Potamididae; Gastropoda) are frequently observed feeding in a cluster on a single fallen mangrove leaf, yet none are present on leaves nearby. Consequently, we investigated the food-finding ability of T. palustris in a Kenyan mangrove forest using field experiments. We estimated the attractive effect of different cues and analysed the paths (video-recorded) of snails when approaching a food-related odour. This intertidal snail can potentially use both air-borne and water-borne odours to locate food. T. palustris is attracted to conspecifics feeding on leaves, while intact leaves as well as non-feeding snails are not attractive. Moreover, the guiding stimulus appears to be compounds released when the leaves are damaged.T. palustris also seems able to discriminate between different food items; it is more strongly attracted to green mangrove leaves than senescent or fallen ones or mangrove propagules, probably because green leaves release a greater amount of attractive cues.Feeding snails thus recruit more snails to feed on the same leaf. The ecological implications of this behaviour are discussed: a large number of snails on the same leaf counteracts the ability of crabs to remove the leaf being eaten by the snails. PMID:11399273

  3. Water vapor retrieval over many surface types

    SciTech Connect

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  4. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  5. Environmental adaptations of the African snail Limicolaria festiva Martens

    NASA Astrophysics Data System (ADS)

    El Rayah, El Amin; Constantinou, C.; Cloudsley-Thompson, J. L.

    1984-12-01

    L. festiva is able to exist in the hot, arid, Sahel savanna regions of Africa in consequence of its nocturnal circadian rhythm of locomotory activity, and its low rate of water loss during periods of inactivity when an epiphragm has been secreted and while the snail is aestivating.

  6. Small Molecules in the Cone Snail Arsenal.

    PubMed

    Neves, Jorge L B; Lin, Zhenjian; Imperial, Julita S; Antunes, Agostinho; Vasconcelos, Vitor; Olivera, Baldomero M; Schmidt, Eric W

    2015-10-16

    Cone snails are renowned for producing peptide-based venom, containing conopeptides and conotoxins, to capture their prey. A novel small-molecule guanine derivative with unprecedented features, genuanine, was isolated from the venom of two cone snail species. Genuanine causes paralysis in mice, indicating that small molecules and not just polypeptides may contribute to the activity of cone snail venom. PMID:26421741

  7. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  8. Mars water vapor, near-surface

    NASA Technical Reports Server (NTRS)

    Ryan, J. A.; Sharman, R. D.; Lucich, R. D.

    1982-01-01

    In a previous paper we concluded that the temperature sensors aboard the Viking landers (VL-1 and VL-2) were detecting the water vapor frost point. Analysis of one Mars year of data at both lander sites substantiates this conclusion. At VL-1 it is found that the water vapor mixing ratio is constant with height through the bulk of the atmosphere, most of the time. Exceptions are during the onset phases of the two major dust storms when temporary enhancement of near-surface vapor occurs (the same phenomenon is observed at VL-2), and some depletion of near-surface vapor during the decay phase of the first storm, possibly the second storm as well. The former suggests near-surface, northward transport of water vapor with the storms. The latter suggests adsorption of vapor on dust particles followed by surface deposition. At VL-2, severe near-surface depletion of water vapor occurs during northern autumn and winter. The residual vapor is in equilibrium with the surface condensate observed at the site during this period, indicating that the source region for the condensate must be aloft with downward transport by dust fall-out. Since the near-surface water vapor mixing ratio and concentration at VL-1 generally parallels the column abundance over VL-1 obtained by the orbiters, this suggests that VL-1 can be used to give a measure of column abundance for as long as the temperature sensors remain operational.

  9. The Effect of Aquatic Plant Abundance on Shell Crushing Resistance in a Freshwater Snail

    PubMed Central

    Chaves-Campos, Johel; Coghill, Lyndon M.; García de León, Francisco J.; Johnson, Steven G.

    2012-01-01

    Most of the shell material in snails is composed of calcium carbonate but the organic shell matrix determines the properties of calcium carbonate crystals. It has been shown that the deposition of calcium carbonate is affected by the ingestion of organic compounds. We hypothesize that organic compounds not synthesized by the snails are important for shell strength and must be obtained from the diet. We tested this idea indirectly by evaluating whether the abundance of the organic matter that snails eat is related to the strength of their shells. We measured shell crushing resistance in the snail Mexipyrgus churinceanus and the abundance of the most common aquatic macrophyte, the water lily Nymphaea ampla, in ten bodies of water in the valley of Cuatro Ciénegas, Mexico. We used stable isotopes to test the assumption that these snails feed on water lily organic matter. We also measured other factors that can affect crushing resistance, such as the density of crushing predators, snail density, water pH, and the concentration of calcium and phosphorus in the water. The isotope analysis suggested that snails assimilate water lily organic matter that is metabolized by sediment bacteria. The variable that best explained the variation in crushing resistance found among sites was the local abundance of water lilies. We propose that the local amount of water lily organic matter provides organic compounds important in shell biomineralization, thus determining crushing resistance. Hence, we propose that a third trophic level could be important in the coevolution of snail defensive traits and predatory structures. PMID:22970206

  10. The effect of aquatic plant abundance on shell crushing resistance in a freshwater snail.

    PubMed

    Chaves-Campos, Johel; Coghill, Lyndon M; García de León, Francisco J; Johnson, Steven G

    2012-01-01

    Most of the shell material in snails is composed of calcium carbonate but the organic shell matrix determines the properties of calcium carbonate crystals. It has been shown that the deposition of calcium carbonate is affected by the ingestion of organic compounds. We hypothesize that organic compounds not synthesized by the snails are important for shell strength and must be obtained from the diet. We tested this idea indirectly by evaluating whether the abundance of the organic matter that snails eat is related to the strength of their shells. We measured shell crushing resistance in the snail Mexipyrgus churinceanus and the abundance of the most common aquatic macrophyte, the water lily Nymphaea ampla, in ten bodies of water in the valley of Cuatro Ciénegas, Mexico. We used stable isotopes to test the assumption that these snails feed on water lily organic matter. We also measured other factors that can affect crushing resistance, such as the density of crushing predators, snail density, water pH, and the concentration of calcium and phosphorus in the water. The isotope analysis suggested that snails assimilate water lily organic matter that is metabolized by sediment bacteria. The variable that best explained the variation in crushing resistance found among sites was the local abundance of water lilies. We propose that the local amount of water lily organic matter provides organic compounds important in shell biomineralization, thus determining crushing resistance. Hence, we propose that a third trophic level could be important in the coevolution of snail defensive traits and predatory structures. PMID:22970206

  11. Evidence for water structuring forces between surfaces

    PubMed Central

    Stanley, Christopher

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement of water as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate common features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water. PMID:22125414

  12. Stable water layers on solid surfaces.

    PubMed

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems. PMID:26856872

  13. Taken to the limit--Is desiccation stress causing precocious encystment of trematode parasites in snails?

    PubMed

    O'Dwyer, Katie; Poulin, Robert

    2015-12-01

    When hosts experience environmental stress, the quantity and quality of resources they provide for parasites may be diminished, and host longevity may be decreased. Under stress, parasites may adopt alternative strategies to avoid fitness reductions. Trematode parasites typically have complex life cycles, involving asexual reproduction in a gastropod first intermediate host. A rare phenomenon, briefly mentioned in the literature, and termed 'precocious encystment' involves the next stage in the parasites' life cycle (metacercarial cyst) forming within the preceding stage (redia), while still inside the snail. In the trematode Parorchis sp. NZ using rocky shore snails exposed to long periods outside water, we hypothesised that this might be an adaptive strategy against desiccation, preventing parasite emergence from the snail. To test this, we first investigated the effect of prolonged desiccation on the survival of two species of high intertidal snails. Secondly, we measured the reproductive output (cercarial production) of the parasite under wet and dry conditions. Finally, we quantified the influence of desiccation stress on the occurrence of precocious encystment. Snail mortality was higher under dry conditions, indicating stress, and it was somewhat exacerbated for infected snails. Parasite reproductive output differed between wet and dry conditions, with parasites of snails kept in dry conditions producing more cercariae when placed in water. Little variation was observed in the occurrence of precocious encystment, although some subtle patterns emerged. Given the stresses associated with living in high intertidal environments, we discuss precocious encystment as a possible stress response in this trematode parasite. PMID:26344863

  14. Dining local: the microbial diet of a snail that grazes microbial communities is geographically structured.

    PubMed

    O'Rorke, Richard; Cobian, Gerald M; Holland, Brenden S; Price, Melissa R; Costello, Vincent; Amend, Anthony S

    2015-05-01

    Achatinella mustelina is a critically endangered tree snail that subsists entirely by grazing microbes from leaf surfaces of native trees. Little is known about the fundamental aspects of these microbe assemblages: not taxonomic composition, how this varies with host plant or location, nor whether snails selectively consume microbes. To address these questions, we collected 102 snail faecal samples as a proxy for diet, and 102 matched-leaf samples from four locations. We used Illumina amplicon sequencing to determine bacterial and fungal community composition. Microbial community structure was significantly distinct between snail faeces and leaf samples, but the same microbes occurred in both. We conclude that snails are not 'picky' eaters at the microbial level, but graze the surface of whatever plant they are on. In a second experiment, the gut was dissected from non-endangered native tree snails in the same family as Achatinella to confirm that faecal samples reflect gut contents. Over 60% of fungal reads were shared between faeces, gut and leaf samples. Overall, location, sample type (faeces or leaf) and host plant identity all significantly explained the community composition and variation among samples. Understanding the microbial ecology of microbes grazed by tree snails enables effective management when conservation requires captive breeding or field relocation. PMID:25285515

  15. Polarimetric thermal emission from periodic water surfaces

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Wilson, W. J.; Li, F. K.; Johnson, J. T.; Kong, J. A.

    1993-01-01

    Experimental results and theoretical calculations are presented to study the polarimetric emission from water surfaces with directional features. For our ground-based Ku-band radiometer measurements, a water pool was constructed on the roof of a building in the Jet Propulsion Laboratory, and a fiberglass surface with periodic corrugations in one direction was impressed on the top of the water surface to create a stationary water surface underneath it. It is observed that the measured Stokes parameters of corrugated fiberglass-covered water surfaces are functions of azimuth angles and agree very well with the theoretical calculations. The theory, after being verified by the experimental data, was then used to calculate the Stokes parameters of periodic surfaces without fiberglass surface layer and with rms height of the order of wind-generated water ripples. The magnitudes of the azimuthal variation of the calculated emissivities at horizontal and vertical polarizations corresponding to the first two Stokes parameters are found to be comparable to the values measured by airborne radiometers and SSM/I. In addition, the third Stokes parameter not shown in the literature is seen to have approximately twice the magnitude of the azimuth variation of either T(sub h) or T(sub v), which may make it more sensitive to the row direction, while less susceptive to noises because the atmospheric and system noises tend to be unpolarized and are expected to be cancelled out when the third Stokes parameter is derived as the difference of two or three power measurements, as indicated by another experiment carried out at a swimming pool with complicated surroundings. The results indicate that passive polarimetry is a potential technology in the remote sensing of ocean wind vector which is a crucial component in the understanding of global climate change. Issues related to the application of microwave passive polarimetry to ocean wind are also discussed.

  16. Water surface locomotion in tropical canopy ants.

    PubMed

    Yanoviak, S P; Frederick, D N

    2014-06-15

    Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s(-1), with some swimming at absolute speeds >10 cm s(-1). Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondyla spp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants. PMID:24920838

  17. Distribution and abundance of schistosomiasis and fascioliasis host snails along the Mara River in Kenya and Tanzania

    PubMed Central

    Dida, Gabriel O.; Gelder, Frank B.; Anyona, Douglas N.; Matano, Ally-Said; Abuom, Paul O.; Adoka, Samson O.; Ouma, Collins; Kanangire, Canisius K.; Owuor, Phillip O.; Ofulla, Ayub V. O.

    2014-01-01

    We purposively selected 39 sampling sites along the Mara River and its two perennial tributaries of Amala and Nyangores and sampled snails. In addition, water physicochemical parameters (temperature, turbidity, dissolved oxygen, conductivity, alkalinity, salinity and pH) were taken to establish their influence on the snail abundance and habitat preference. Out of the 39 sites sampled, 10 (25.6%) had snails. The snail species encountered included Biomphalaria pfeifferi Krauss – the intermediate host of Schistosoma mansoni Sambon, Bulinus africanus – the intermediate host of Schistosoma haematobium, and Lymnaea natalensis Krauss – the intermediate host of both Fasciola gigantica and F. hepatica Cobbold. Ceratophallus spp., a non-vector snail was also encountered. Most (61.0%) of the snails were encountered in streamside pools. Schistosomiasis-transmitting host snails, B. pfeifferi and B. africanus, were fewer than fascioliasis-transmitting Lymnaea species. All the four different snail species were found to be attached to different aquatic weeds, with B. pfeifferi accounting for over half (61.1%) of the snails attached to the sedge, followed by B. africanus and Lymnaea spp., accounting for 22.2 and 16.7%, respectively. Ceratophallus spp. were non-existent in sedge. The results from this preliminary study show that snails intermediate hosts of schistosomiasis and fascioliasis exists in different habitats, in few areas along the Mara River, though their densities are still low to have any noticeable impacts on disease transmission in case they are infected. The mere presence of the vector snails in these focal regions calls for their immediate control and institution of proper regulations, management, and education among the locals that can help curtail the spread of the snails and also schistosomiasis and fascioliasis within the Mara River basin. PMID:25405008

  18. Effects of washing produce contaminated with the snail and slug hosts of Angiostrongylus cantonensis with three common household solutions.

    PubMed

    Yeung, Norine W; Hayes, Kenneth A; Cowie, Robert H

    2013-06-01

    The emerging infectious disease angiostrongyliasis (rat lungworm disease) is caused by ingesting snails and slugs infected by the nematode Angiostrongylus cantonensis. The definitive hosts of A. cantonensis are rats and the obligatory intermediate hosts are slugs and snails. Many cases result from accidentally ingesting infected snails or slugs on produce (eg, lettuce). This study assessed three readily available household products as washing solutions for removing snails and slugs from produce (romaine lettuce) to lower the probability of accidentally ingesting them. The solutions were acetic acid (vinegar), sodium hypochlorite (bleach), and sodium chloride (domestic salt). Snail and slug species known to be intermediate hosts and that are common in the Hawaiian Islands were used in the experiments: the alien snail Succinea tenella, the alien semi-slug Parmarion martensi, and the alien slugs Veronicella cubensis and Deroceras laeve. None of the products was any more effective than washing and rinsing with tap water alone. Most snails and slugs were removed after treatment but some remained on the lettuce even after washing and rinsing the produce. Only washing, rinsing, and then rinsing each leaf individually resulted in complete removal of all snails and slugs. The study did not address removal of any remaining slime left by the snails and slugs, nor did it address killing of worms. PMID:23901391

  19. Coupled surface-water and ground-water model

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1991-01-01

    In areas with dynamic and hydraulically well connected ground-water and surface-water systems, it is desirable that stream-aquifer interaction be simulated with models of equal sophistication and accuracy. Accordingly, a new, coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference, ground-water model and BRANCH is a one-dimensional numerical model commonly used to simulate flow in open-channel networks. Because time steps used in ground-water modeling commonly are much longer than those used in surface-water simulations, provision has been made for handling multiple BRANCH time steps within one MODFLOW time step. Verification testing of the coupled model was done using data from previous studies and by comparing results with output from a simpler four-point implicit open-channel flow model linked with MODFLOW.

  20. Water molecule conformation outside a metal surface

    NASA Astrophysics Data System (ADS)

    Flores, F.; Gabbay, I.; March, N. H.

    1981-05-01

    The effect of a metal surface on the conformation of a water molecule has been analyzed by discussing two independent effects: (i) the screening of the proton-proton repulsion, (ii) the interaction of the lone-pair orbitals with the surface. Both effects tend to increase the HOH angle. However, the interaction between the lone-pairs with the surface is the dominant effect for a water molecule approaching the surface. In particular, for a chemisorbed state this interaction is responsible for the major part of the molecule deformation. We have estimated that for H 2O chemisorbed on Ru, the HOH angle must increase from the free molecule value of 104.5° by 3.1 ± 0.5° in good agreement with the experimental evidence.

  1. Male characteristics on female mud snails caused by antifouling bottom paints.

    PubMed

    Smith, B S

    1981-02-01

    This study continues an investigation of an anatomical abnormality, named 'imposex', which consists of a superimposition of male characteristics on to a functionally normal female reproductive anatomy of the dioecious snail Nassarius obsoletus Say. Imposex is prevalent in natural populations living near yacht basins and rarely found distant from them. In the current study caged snails were transferred between a yacht basin and a distant 'clean' locality where the natural population of snails was normal. Imposex was induced in some normal snails kept at the marina and suppressed, but not lost in abnormal snails kept at the clean locality. A similar positive result was obtained in the laboratory by exposing normal snails to organotin-containing antifouling paints and abnormal snails to clean sea water. Results were negative in parallel tests of various marina-associated materials which did not contain organotin. The laboratory studies have thus identified a causative factor for the anatomical abnormalities common near yacht basins in the natural environment. They also provide a rare, if not unique, example of a chemical agent which causes the appearance of superfluous anatomical features in an animal. PMID:7185870

  2. Pollution of surface water in Europe

    PubMed Central

    Key, A.

    1956-01-01

    This paper discusses pollution of surface water in 18 European countries. For each an account is given of its physical character, population, industries, and present condition of water supplies; the legal, administrative, and technical means of controlling pollution are then described, and an outline is given of current research on the difficulties peculiar to each country. A general discussion of various aspects common to the European problem of water pollution follows; standards of quality are suggested; some difficulties likely to arise in the near future are indicated, and international collaboration, primarily by the exchange of information, is recommended to check or forestall these trends. PMID:13374532

  3. The Application of Electric Shock as a Novel Pest Control Method for Apple Snail, Pomacea canaliculata (Gastropoda: Ampullariidae)

    NASA Astrophysics Data System (ADS)

    Yagyu, Yoshihito; Tsuji, Satoshi; Satoh, Saburoh; Yamabe, Chobei

    The apple snail, Pomacea canaliculata, brought to Japan from Taiwan for human consumption in the 1980s, has come to be considered as deleterious for rice cultivation. The snail is unable to injure young rice plants while receiving electric shock because the snail retracts its entire body into its shell and shuts its aperture with its operculum. Electric shock should be applied intermittently to reduce the amount of energy that is wasted when the snail is in its shell made of one of the insulator. The minimum electric shock required for controlling snails and the time required for movement after application of electric shock to determine the frequency of each electric shock were investigated using two methods; vertical and horizontal application of the electrical stimulation. The results showed that there is a strong correlation between the strength of electric shock and the reaction of the snails, and electric shock made snails inactive when it was applied 0.35 A/m2 in the horizontal direction and 0.45 A/m2 in the vertical direction with water of 11 mS/m. A positive correlation was also found between electric shock and the reaction of the snails and shell height. In comparison with larger snails, the smaller snails had higher threshold levels against electric current density because their shorter feet tended to have lower voltage dorp. Moreover, the frequency of electric shock should be chosen the minimum duration for the inactive condition, and it was approximately 10 seconds. Consequently the direction of electric current should be in the horizontal direction above 0.35 A/m2 and the frequency of electric shock should be less than 10 seconds for practical use. However, electric shock would have to be maintained at greater than 0.35 A/m2 because snails might become habituated to electric shock and water in paddy field would have high electric conductivity.

  4. Global modelling of Cryptosporidium in surface water

    NASA Astrophysics Data System (ADS)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  5. Global modeling of fresh surface water temperature

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Eikelboom, T.; van Vliet, M. T.; Van Beek, L. P.

    2011-12-01

    Temperature determines a range of water physical properties, the solubility of oxygen and other gases and acts as a strong control on fresh water biogeochemistry, influencing chemical reaction rates, phytoplankton and zooplankton composition and the presence or absence of pathogens. Thus, in freshwater ecosystems the thermal regime affects the geographical distribution of aquatic species through their growth and metabolism, tolerance to parasites, diseases and pollution and life history. Compared to statistical approaches, physically-based models of surface water temperature have the advantage that they are robust in light of changes in flow regime, river morphology, radiation balance and upstream hydrology. Such models are therefore better suited for projecting the effects of global change on water temperature. Till now, physically-based models have only been applied to well-defined fresh water bodies of limited size (e.g., lakes or stream segments), where the numerous parameters can be measured or otherwise established, whereas attempts to model water temperature over larger scales has thus far been limited to regression type of models. Here, we present a first attempt to apply a physically-based model of global fresh surface water temperature. The model adds a surface water energy balance to river discharge modelled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by short and long-wave radiation and sensible and latent heat fluxes. Also included are ice-formation and its effect on heat storage and river hydraulics. We used the coupled surface water and energy balance model to simulate global fresh surface water temperature at daily time steps on a 0.5x0.5 degree grid for the period 1970-2000. Meteorological forcing was obtained from the CRU data set, downscaled to daily values with ECMWF

  6. NANOFILTRATION FOULANTS FROM A TREATED SURFACE WATER

    EPA Science Inventory

    The foulant from pilot nanofiltration membrane elements fed conventionally-treated surface water for 15 months was analyzed for organic, inorganic, and biological parameters. The foulant responsible for flux loss was shown to be a film layer 20 to 80 um thick with the greatest de...

  7. Observing Global Surface Water Flood Dynamics

    NASA Astrophysics Data System (ADS)

    Bates, Paul D.; Neal, Jefferey C.; Alsdorf, Douglas; Schumann, Guy J.-P.

    2014-05-01

    Flood waves moving along river systems are both a key determinant of globally important biogeochemical and ecological processes and, at particular times and particular places, a major environmental hazard. In developed countries, sophisticated observing networks and ancillary data, such as channel bathymetry and floodplain terrain, exist with which to understand and model floods. However, at global scales, satellite data currently provide the only means of undertaking such studies. At present, there is no satellite mission dedicated to observing surface water dynamics and, therefore, surface water scientists make use of a range of sensors developed for other purposes that are distinctly sub-optimal for the task in hand. Nevertheless, by careful combination of the data available from topographic mapping, oceanographic, cryospheric and geodetic satellites, progress in understanding some of the world's major river, floodplain and wetland systems can be made. This paper reviews the surface water data sets available to hydrologists on a global scale and the recent progress made in the field. Further, the paper looks forward to the proposed NASA/CNES Surface Water Ocean Topography satellite mission that may for the first time provide an instrument that meets the needs of the hydrology community.

  8. Thermodynamic properties of water solvating biomolecular surfaces

    NASA Astrophysics Data System (ADS)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  9. Novel shell device for gas exchange in an operculate land snail.

    PubMed

    Páll-Gergely, Barna; Naggs, Fred; Asami, Takahiro

    2016-07-01

    The operculum of terrestrial snails tightly seals the shell aperture providing protection from predators and body-water loss. To allow respiration with a closed operculum, operculate land snails repeatedly evolved shell devices such as tubes or channels that open to the air. In all Asian members of the Alycaeidae, an externally closed tube lies along the suture behind the aperture that possesses a small internal opening into the last whorl at the tube's anterior end. However, this structure presents a paradox: how is gas exchanged through an externally closed tube? Here we show that many microtunnels open into the tube and run beneath radial ribs along the growth line of the last whorl in Alycaeus conformis These tunnels open to the outside of the shell surface near the umbilicus. Examination under high magnification revealed that the outermost shell layer forms these tunnels only in the whorl range beneath the sutural tube. Each tunnel (ca 16 µm diameter) is far narrower than any known metazoan parasite. These findings support our hypothesis that the externally closed sutural tube functions with microtunnels as a specialized apparatus for predator-free gas exchange with minimal water loss when the operculum seals the aperture. PMID:27405378

  10. Surface Water and Ocean Topography (SWOT) mission

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Lindstrom, Eric J.; Vaze, Parag V.; Fu, Lee-Lueng

    2012-09-01

    The Surface Water Ocean Topography (SWOT) mission was recommended in 2007 by the National Research Council's Decadal Survey, "Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond", for implementation by NASA. The SWOT mission is a partnership between two communities, the physical oceanography and the hydrology, to share high vertical accuracy and high spatial resolution topography data produced by the science payload, principally a Ka-band radar Interferometer (KaRIn). The SWOT payload also includes a precision orbit determination system consisting of GPS and DORIS receivers, a Laser Retro-reflector Assembly (LRA), a Jason-class nadir radar altimeter, and a JASON-class radiometer for tropospheric path delay corrections. The SWOT mission will provide large-scale data sets of ocean sea-surface height resolving scales of 15km and larger, allowing the characterization of ocean mesoscale and submesoscale circulation. The SWOT mission will also provide measurements of water storage changes in terrestrial surface water bodies and estimates of discharge in large (wider than 100m) rivers globally. The SWOT measurements will provide a key complement to other NASA spaceborne global measurements of the water cycle measurements by directly measuring the surface water (lakes, reservoirs, rivers, and wetlands) component of the water cycle. The SWOT mission is an international partnership between NASA and the Centre National d'Etudes Spatiales (CNES). The Canadian Space Agency (CSA) is also expected to contribute to the mission. SWOT is currently nearing entry to Formulation (Phase A). Its launch is targeted for October 2020.

  11. Water at surfaces with tunable surface chemistries and the chiral imprint of water around DNA

    NASA Astrophysics Data System (ADS)

    Petersen, Poul

    Aqueous interfaces are ubiquitous in atmospheric chemistry and biological systems but are notoriously hard to probe experimentally. Surface-specific vibrational spectroscopy offers an avenue to directly probe the vibrational modes of the water OH stretching band but this method is challenging to implement to buried surfaces. Here we present results from sum-frequency generation (SFG) spectroscopy probing the buried interface between a functionalized surface and aqueous solutions. Studying such buried surfaces offers the advantage of being able to systematically tune the surface chemistry using self-assembled monolayers, i.e. the hydrophobic and hydrophilic character, and examine the effect on the interfacial water. In addition to water at these controlled surfaces, we have initiated studying water at biological surfaces. This includes the solvation structure around DNA. X-ray experiments at cryogenic temperatures have found crystallographic water in the minor grove of DNA giving rise to the notion of a spine of hydration surrounding DNA. Such structured water should exhibit a chiral structure adapted from DNA. We investigate if such a chiral water structure exist around DNA at room temperature using chiral SFG. This work was supported by the National Science Foundation under a NSF CAREER Grant (CHE-1151079).

  12. Snail modulates cell metabolism in MDCK cells

    SciTech Connect

    Haraguchi, Misako; Indo, Hiroko P.; Iwasaki, Yasumasa; Iwashita, Yoichiro; Fukushige, Tomoko; Majima, Hideyuki J.; Izumo, Kimiko; Horiuchi, Masahisa; Kanekura, Takuro; Furukawa, Tatsuhiko; Ozawa, Masayuki

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  13. Celss nutrition system utilizing snails

    NASA Astrophysics Data System (ADS)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  14. Silver speciation in wastewater effluent, surface waters, and pore waters

    SciTech Connect

    Adams, N.W.H.; Kramer, J.R.

    1999-12-01

    Silver, inorganic sulfide, and thiol compounds were measured in municipal wastewater effluent, receiving waters, and pore waters from an anoxic lake sediment in order to predict silver speciation in these systems. The authors found submicromolar concentrations of inorganic sulfide even in fully oxic surface water. This inorganic sulfide is likely to exist in the form of colloidal metal sulfides, which have been shown to be stable under oxidizing conditions for periods of several hours. Inorganic sulfide in both the wastewater effluent and receiving waters was found to be 200 to 300 times in excess of silver concentrations, whereas inorganic sulfide in pore waters was 1,000 to 15,000 times in excess of silver concentrations. With sulfide in excess of silver, the authors predict silver sulfide complexes to dominate silver speciation. Thiols were present at low nanomolar levels in pore waters but were not detectable in wastewater effluent or receiving waters. Thiols do not appear to be important to silver speciation in these freshwater systems. Partitioning of silver into particular, colloidal, and dissolved size fractions showed that a significant proportion of silver is in the colloidal and dissolved phases. Dissolved phase concentrations were relatively constant in the treatment plant effluent and receiving waters, suggesting that silver in the <10-kDa size fraction is strongly complexed by ligands that are not significantly affected by aggregation or sorption processes.

  15. Water droplet impact on elastic superhydrophobic surfaces.

    PubMed

    Weisensee, Patricia B; Tian, Junjiao; Miljkovic, Nenad; King, William P

    2016-01-01

    Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5-7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics. PMID:27461899

  16. Water droplet impact on elastic superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Weisensee, Patricia B.; Tian, Junjiao; Miljkovic, Nenad; King, William P.

    2016-07-01

    Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5–7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics.

  17. Laser induced surface stress on water droplets.

    PubMed

    Wang, Neng; Lin, Zhifang; Ng, Jack

    2014-10-01

    Laser induced stress on spherical water droplets is studied. At mechanical equilibrium, the body stress vanishes therefore we consider only the surface stress. The surface stress on sub-wavelength droplets is slightly weaker along the light propagation direction. For larger droplets, due to their light focusing effect, the forward stress is significantly enhanced. For a particle roughly 3 micron in radius, when it is excited at whispering gallery mode with Q ∼ 10⁴ by a 1 Watt Gaussian beam, the stress can be enhanced by two orders of magnitude, and can be comparable with the Laplace pressure. PMID:25321955

  18. Snails, stable iostopes, and southwestern desert paleoclimates

    SciTech Connect

    Sharpe, S.E.; Whelan, J.F.; Forester, R.M.; Burdett, J.

    1995-09-01

    Modern and fossil molluscs (snails) occur in many localities in and semi-arid regions throughout the desert southwest. Live terrestrial snails are found under rocks and in forest litter and aquatic taxa inhabit springs, seeps, and/or wetlands. Molluscs uptake local water during their growing season (spring and summer) and incorporate its delta 180 signature into their shells. Preliminary 180 analysis of modem shells from the southern Great Basin indicates that the shells probably reflect meteoric water 180 values during the growing season. This provides a way to estimate the delta 180 value of precipitation and, thereby, the source of the moisture-bearing air masses. Significant 180 variability in shells analyzed include geographic location, elevation, taxonomy, and habitat (terrestrial, spring, or wetland). We found a rough inverse correlation with elevation in modem shells from the Spring Range in southern Nevada. The delta 180 values of modem and fossil shells are also very different; modem values in this location are much higher than those from nearby late Pleistocene-age molluscs suggesting that the Pleistocene summers were variously colder and wetter than today or less evaporative (more humid). Assuming shell material directly reflects the 180 of the growing-season environment, comparison of modem and fossil shell delta 180 values can potentially identify changes in air-mass moisture sources and can help to define seasonal precipitation change through time. Comprehension and quantification of community and isotopic variability in modem gastropods is required to create probabilistic valid transfer functions with fossil materials. Valid inferences about past environmental conditions can then be established with known confidence limits.

  19. Water quality analysis of surface water: a Web approach.

    PubMed

    Prasad, Poonam; Chaurasia, Meenal; Sohony, R A; Gupta, Indrani; Kumar, R

    2013-07-01

    The chemical, physical and biological characteristics of water with respect to its suitability describe its quality. Concentration of pesticides or fertilisers degrades the water quality and affects marine life. A comprehensive environmental data information system helps to perform and complete common tasks in less time with less effort for data verification, data calculations, graph generation, and proper monitoring, which helps in the further mitigation step. In this paper, focus is given to a web-based system developed to express the quality of water in the imprecise environment of monitoring data. Water samples were analyzed for eight different surface water parameters, in which four parameters such as pH, dissolved oxygen, biochemical oxygen demand, and fecal coliform were used for the water quality index calculation following MPCB Water Quality Standards of class A-II for best designated use. The analysis showed that river points in a particular year were in very bad category with certainty level of 0-38% which is unsuitable for drinking purposes; samples in bad category had certainty level that ranged from 38 to 50%; samples in medium to good category had certainty levels from 50 to 100%, and the remaining samples were in good to excellent category, suitable for drinking purposes, with certainty levels from 63 to 100%. PMID:23238782

  20. Atmospheric radiation model for water surfaces

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.

    1982-01-01

    An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.

  1. Impact of invasive apple snails on the functioning and services of natural and managed wetlands

    NASA Astrophysics Data System (ADS)

    Horgan, Finbarr G.; Stuart, Alexander M.; Kudavidanage, Enoka P.

    2014-01-01

    At least 14 species of apple snail (Ampullariidae) have been released to water bodies outside their native ranges; however, less than half of these species have become widespread or caused appreciable impacts. We review evidence for the impact of apple snails on natural and managed wetlands focusing on those studies that have elucidated impact mechanisms. Significant changes in wetland ecosystems have been noted in regions where the snails are established: Two species in particular (Pomacea canaliculata and Pomacea maculata) have become major pests of aquatic crops, including rice, and caused enormous increases in molluscicide use. Invasive apple snails have also altered macrophyte community structure in natural and managed wetlands through selective herbivory and certain apple snail species can potentially shift the balance of freshwater ecosystems from clear water (macrophyte dominated) to turbid (plankton dominated) states by depleting densities of native aquatic plants. Furthermore, the introductions of some apple snail species have altered benthic community structure either directly, through predation, or indirectly, through exploitation competition or as a result of management actions. To date much of the evidence for these impacts has been based on correlations, with few manipulative field or mesocosm experiments. Greater attention to impact monitoring is required, and, for Asia in particular, a landscape approach to impact management that includes both natural and managed-rice wetlands is recommended.

  2. Optical Triangulation on Instationary Water Surfaces

    NASA Astrophysics Data System (ADS)

    Mulsow, C.; Maas, H.-G.; Hentschel, B.

    2016-06-01

    The measurement of water surfaces is a key task in the field of experimental hydromechanics. Established techniques are usually gauge-based and often come with a large instrumental effort and a limited spatial resolution. The paper shows a photogrammetric alternative based on the well-known laser light sheet projection technique. While the original approach is limited to surfaces with diffuse reflection properties, the developed technique is capable of measuring dynamically on reflecting instationary surfaces. Contrary to the traditional way, the laser line is not observed on the object. Instead, using the properties of water, the laser light is reflected on to a set of staggered vertical planes. The resulting laser line is observed by a camera and measured by subpixel operators. A calibration based on known still water levels provides the parameters for the translation of image space measurements into water level and gradient determination in dynamic experiments. As a side-effect of the principle of measuring the reflected laser line rather than the projected one, the accuracy can be improved by almost a factor two. In experiments a standard deviation of 0.03 mm for water level changes could be achieved. The measuring rate corresponds to the frame rate of the camera. A complete measuring system is currently under development for the Federal Waterways Engineering and Research Institute (BAW). This article shows the basic principle, potential and limitations of the method. Furthermore, several system variants optimised for different requirements are presented. Besides the geometrical models of different levels of complexity, system calibration procedures are described too. The applicability of the techniques and their accuracy potential are shown in several practical tests.

  3. How Water Advances on Superhydrophobic Surfaces.

    PubMed

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis. PMID:26991185

  4. How Water Advances on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  5. Survival and growth of freshwater pulmonate and nonpulmonate snails in 28-day exposures to copper, ammonia, and pentachlorophenol

    USGS Publications Warehouse

    Besser, John M.; Dorman, Rebecca A.; Hardesty, Douglas K.; Ingersoll, Christopher G.

    2016-01-01

    We performed toxicity tests with two species of pulmonate snails (Lymnaea stagnalis and Physa gyrina) and four taxa of nonpulmonate snails in the family Hydrobiidae (Pyrgulopsis robusta,Taylorconcha serpenticola, Fluminicola sp., and Fontigens aldrichi). Snails were maintained in static-renewal or recirculating culture systems with adults removed periodically to isolate cohorts of offspring for toxicity testing. This method successfully produced offspring for both species of pulmonate snails and for two hydrobiid species, P. robusta and Fluminicola sp. Toxicity tests were performed for 28 days with copper, ammonia, and pentachlorophenol in hard reconstituted water with endpoints of survival and growth. Tests were started with 1-week-old L. stagnalis, 2-week-old P. gyrina, 5- to 13-week-old P. robusta and Fluminicola sp., and older juveniles and adults of several hydrobiid species. For all three chemicals, chronic toxicity values for pulmonate snails were consistently greater than those for hydrobiid snails, and hydrobiids were among the most sensitive taxa in species sensitivity distributions for all three chemicals. These results suggest that the toxicant sensitivity of nonpulmonate snails in the family Hydrobiidae would not be adequately represented by results of toxicity testing with pulmonate snails.

  6. Survival and Growth of Freshwater Pulmonate and Nonpulmonate Snails in 28-Day Exposures to Copper, Ammonia, and Pentachlorophenol.

    PubMed

    Besser, John M; Dorman, Rebecca A; Hardesty, Douglas L; Ingersoll, Christopher G

    2016-02-01

    We performed toxicity tests with two species of pulmonate snails (Lymnaea stagnalis and Physa gyrina) and four taxa of nonpulmonate snails in the family Hydrobiidae (Pyrgulopsis robusta, Taylorconcha serpenticola, Fluminicola sp., and Fontigens aldrichi). Snails were maintained in static-renewal or recirculating culture systems with adults removed periodically to isolate cohorts of offspring for toxicity testing. This method successfully produced offspring for both species of pulmonate snails and for two hydrobiid species, P. robusta and Fluminicola sp. Toxicity tests were performed for 28 days with copper, ammonia, and pentachlorophenol in hard reconstituted water with endpoints of survival and growth. Tests were started with 1-week-old L. stagnalis, 2-week-old P. gyrina, 5- to 13-week-old P. robusta and Fluminicola sp., and older juveniles and adults of several hydrobiid species. For all three chemicals, chronic toxicity values for pulmonate snails were consistently greater than those for hydrobiid snails, and hydrobiids were among the most sensitive taxa in species sensitivity distributions for all three chemicals. These results suggest that the toxicant sensitivity of nonpulmonate snails in the family Hydrobiidae would not be adequately represented by results of toxicity testing with pulmonate snails. PMID:26747374

  7. Assessing nitrogen pressures on European surface water

    NASA Astrophysics Data System (ADS)

    Grizzetti, B.; Bouraoui, F.; de Marsily, G.

    2008-12-01

    The European environmental legislation on water, in particular the 2000 Water Framework Directive, requires the evaluation of nutrient pressures and the assessment of mitigation measures at the river basin scale. Models have been identified as tools that can contribute to fulfill these requirements. The objective of this research was the implementation of a modeling approach (Geospatial Regression Equation for European Nutrient losses (GREEN)) to assess the actual nitrogen pressures on surface water quality at medium and large basin scale (European scale) using readily available data. In particular the aim was to estimate diffuse nitrogen emissions into surface waters, contributions by different sources (point and diffuse) to the nitrate load in rivers, and nitrogen retention in river systems. A comprehensive database including nutrient sources and physical watershed characteristics was built at the European scale. The modeling partially or entirely covered some of the larger and more populated European river basins, including the Danube, Rhine, Elbe, Weser, and Ems in Germany, the Seine and Rhone in France, and the Meuse basin shared by France and Belgium. The model calibration was satisfactory for all basins. The source contribution to the in-stream nitrogen load, together with the diffuse nitrogen emissions and river nitrogen retention were estimated and were found to be in the range of values reported in the literature. Finally, the model results were extrapolated to estimate the diffuse nitrogen emission and source apportionment at the European scale.

  8. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  9. Inquiry, Land Snails, and Environmental Factors

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Krantz, Patrick D.

    2005-01-01

    Land snails are common invertebrates that fascinate children. Unfortunately, they are seldom used for activities in the science classroom. Snails are inexpensive, take up little space in the classroom, and require only low maintenance, and their learning dividends can be enormous. For example, students can use them in inquiry-based activities that…

  10. Controlling slugs and snails in orchids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slugs and snails are pests of orchids, preferring tender plant tissues such as flowers and root tips. Unlike many insect pests which feed only on certain types of plants, most species of slugs and snails are generalists, feeding on green plants, algae, fungi, decaying plant matter, or decaying anima...

  11. [Prevalence of Aeromonas spp. in surface water].

    PubMed

    Hernández, P; Rodríguez de García, R

    1997-03-01

    Some Aeromonas strains are well recognized enteropathogens according to microbiological, clinical, immunological and epidemiological evidence. The main source of infection seems to be untreated water, these microorganisms can be found in virtually all aquatic environments. Additionally, some Aeromonas, which include enterotoxigenic strains, are capable of rapid growth at 5 degrees C and even of producing toxins. Vegetable products irrigated with contaminated water may reach critical Aeromonas levels after being kept under refrigeration, this could represent a public health risk when they are consumed as uncooked salads. This study was pursued to evaluate such risk. Surface water samples were streaked on starch ampicillin and inositol-brilliant green-bile salts agar dishes. In addition, 100 ml of each sample were filtered through a 0.45 micron Millipore membrane filter. The filters were incubated on alkaline peptone water as enrichment media during 24 h at 35 degrees C. Enrichment broth was then streaked on the selective agars above mentioned. Isolates from both tests were identified using the API 20 E System. The prevalence of Aeromonas strains in the analyzed samples was 17.8%. A higher isolation rate was observed after the enrichment technique. Starch ampicillin agar showed a higher recuperation rate. A Veronii biotype sobria (formerly A. sobria) was isolated with higher frequency. Since this species has been associated with the greatest virulence, the use of contaminated water to irrigate vegetable products that are to be kept under refrigeration and consumed without ulterior cooking may represent a risk to the public health. PMID:9429640

  12. Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways

    PubMed Central

    Giannelli, Alessio; Colella, Vito; Abramo, Francesca; do Nascimento Ramos, Rafael Antonio; Falsone, Luigi; Brianti, Emanuele; Varcasia, Antonio; Dantas-Torres, Filipe; Knaus, Martin; Fox, Mark T.; Otranto, Domenico

    2015-01-01

    Background Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host. Methodology/Principal Findings Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior

  13. Acidic deposition and surface water chemistry

    NASA Astrophysics Data System (ADS)

    Church, M. R.

    A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

  14. Occurrence of a Snail Borne Disease, Cercarial Dermatitis (Swimmer Itch) in Doon Valley (Uttarakhand), India

    PubMed Central

    JAUHARI, Rakesh Kumar; NONGTHOMBAM, Pemola Devi

    2014-01-01

    Abstract Background ‘Cercarial dermatitis’ also known as swimmers itch (Skin allergies) is caused by a trematode parasite, Schistosoma which has two hosts - an invertebrate (snail) and a vertebrate (livestock, human being). Although the availability of both vector snails and pathogens at the selected site the Doon Valley in northern India has already been confirmed but there was a hazy picture of the disease, whether it is due to entrance of cercariae or due to wild variety of grass (Parthenium hysterophorus). The present study is an attempt to provide a way forward towards the vector snails and snail borne diseases in the study area. Methods Snail sampling and identification was done by applying standard methods / using Keys & Catalogues. Associated parasites and cercariometry in snails has been worked out by cercarial shedding. Human involvement at zo-onotic level has been performed in collaboration with Health centers and socio- economic aspect of inhabitants of study area. Results The snail diversity encountered 19 species including the vector species such as Indoplanorbis exustus, Gyraulus convexiusculus, Melanoides tuberculata and Lymnaea acuminata. The cercarial diversity comprised Furcocercous, Monostome, Amphistome and liver fluke / Xiphidiocercaria. During the study (2009–2010), 0.173% was found with cercarial dermatitis among human population in the selected area. The symptoms of disease recorded were red spots and swellings on effected parts of skin. Frequent visits of livestock to the water body and presence of vector snails provides a clue in completing the life cycle of the parasite of the family Schistosomatidae. Conclusion Cercarial dermatitis has been considered a potential risk at those places where warm blooded and snail’s hosts share a link with aquatic bodies with particular emphasis to temperature and time of year. PMID:26060739

  15. The effects of wetland habitat structure on Florida apple snail density

    USGS Publications Warehouse

    Karunaratne, L.B.; Darby, P.C.; Bennetts, R.E.

    2006-01-01

    Wetlands often support a variety of juxtaposed habitat patches (e.g., grass-, shrub- or tree-dominated) differentially suited to support the inhabiting fauna. The proportion of available habitat types has been affected by human activity and consequently has contributed to degrading habitat quality for some species. The Florida apple snail (Pomacea paludosa) has drawn attention as a critical prey item for wetlands wildlife and as an indicator of wetlands restoration success in peninsular Florida, USA. An apparent contradiction has evolved wherein this species appears intolerant of drying events, but these disturbances may be necessary to maintain suitable habitat structure for apple snails. We recently reported that assertions regarding intolerance to dry downs in this species were inaccurate. Here, we compared snail density in habitats with (wet prairie) and without (slough) emergent macrophytes, as well as evaluating the effects of structural attributes within the broad wet prairie habitat type. Snail densities were greater in prairies relative to sloughs (??2= 12.90, df=1, P=0.0003), often by a factor of two to three. Within wet prairie habitats, we found greater snail densities in Panicum hemitomon as compared to Eleocharis cellulosa (??2=31.45, df=1, P=0.0001). Significantly fewer snails were found in dense E. cellulosa as compared to habitats with lower stem density (??2= 10.73, df=1, P=0.011). Our results indicate that wet prairie habitat supports greater snail densities than nymphaea-dominatd slough. Our results have implications for wetlands water management in that continuous inundation has been shown to convert wet prairie to slough habitat, and we suggest this should be avoided in support of apple snails and their predators. ?? 2006, The Society of Wetland Scientists.

  16. Toxicity of copper sulfate and rotenone to Chinese mystery snail (Bellamya chinensis)

    USGS Publications Warehouse

    Haak, Danielle M.; Stephen, Bruce J.; Kill, Robert A.; Smeenk, Nicholas A.; Allen, Craig R.; Pope, Kevin L.

    2014-01-01

    The Chinese mystery snail (Bellamya chinensis) is a freshwater snail native to Southeast Asia, Japan, and Russia and is currently classified as an invasive species in at least 27 states in the USA. The species tolerates a wide range of environmental conditions, making management of established populations difficult. We tested the efficacy of two traditional chemical treatments, rotenone and copper sulfate, on the elimination of adult Chinese mystery snails in laboratory experiments. All snails (N=50) survived 72-hour exposure to rotenone-treated lake water, and 96% (N=25) survived 72-hour exposure to pre-determined rotenone concentrations of 0.25, 2.5, and 25.0 mg/L. All snails (N=10) survived exposure to 1.25 mg/L copper sulfate solution, 90% (N=10) survived exposure to 2.50 mg/L copper sulfate solution, and 80% (N=5) survived exposure to 5.0 mg/L copper sulfate solution. Neither rotenone nor copper sulfate effectively killed adult Chinese mystery snails in laboratory experiments, most likely due to their relatively large size, thick shell, and operculum. Therefore, it appears that populations will be very difficult to control once established, and management should focus on preventing additional spread or introductions of this species.

  17. Surface Crystallization of Supercooled Water in Clouds

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Gore, Warren J. (Technical Monitor)

    2002-01-01

    The process by which liquid cloud droplets homogeneously crystallize into ice is still not well-understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing, initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at -33 C, the reported volume-based freezing rates of ice in supercooled water vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near -40 C.

  18. Surface crystallization of supercooled water in clouds

    PubMed Central

    Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.

    2002-01-01

    The process by which liquid cloud droplets homogeneously crystallize into ice is still not well understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at −33°C, the reported volume-based freezing rates of ice in supercooled water vary by as many as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near −40°C. PMID:12456877

  19. Protonation and Deprotonation on Water's Surface

    NASA Astrophysics Data System (ADS)

    Colussi, A. J.; Enami, S.; Stewart, L.; Hoffmann, M. R.

    2010-12-01

    How the acidity of bulk water (pHbulk) regulates the degree of protonation of Brönsted acids and bases on water surfaces facing hydrophobic media is a key unresolved issue in chemistry and biology. We addressed experimentally the important case of the air/water interface and report the strikingly dissimilar pHbulk-dependences of the protonation/deprotonation of aqueous versus gaseous n-hexanoic acid (HxOH) determined on the surface of aqueous microjets by online electrospray mass spectrometry. We confirm that HxOH(aq) is deprotonated at pHbulk > pKa(HxOH) = 4.8, but find that the deprotonation of HxOH(g) into interfacial HxO-(s) displays two equivalence points at pHbulk ~ 2.5 and ~ 10.0. The weak base HxOH(aq) (pKa(HxOH2+) < - 4) is barely protonated at pHbulk > 1, whereas HxOH(g) is significantly protonated to HxOH2+(s) on pHbulk < 4 water, as expected from the proton affinities PA(HxOH) > PA(H2O) of gas-phase species. The exceptionally large kinetic isotope effect for the protonation of HxOH(g) on D2O/H2O: KIE = HxOH2+/HxODH+ ~ 100, is ascribed to a desolvated transition state. Since ion creation at the interface via proton transfer between H2O itself and neutral species is thermodynamically disallowed i.e., HxOH(g) is actually deprotonated by interfacial OH-(s), whereas Me3N(g) is hardly protonated by H3O+(s) on pHbulk ~ 4 - 8 water (Enami et al., J. Phys. Chem. Lett. 2010, 1, 1599) we conclude that [OH-(s)] > [H3O+(s)] above pHbulk ~ 4, at variance with inferences drawn from spectroscopic signatures or model calculations of water’s surface.

  20. Bacterial flora of the schistosome vector snail Biomphalaria glabrata.

    PubMed Central

    Ducklow, H W; Boyle, P J; Maugel, P W; Strong, C; Mitchell, R

    1979-01-01

    The aerobic heterotrophic bacterial flora in over 200 individuals from 10 wild populations and 3 laboratory colonies of the schistosome vector snail Biomphalaria glabrata was examined. Internal bacterial densities were inversely proportional to snail size and were higher in stressed and laboratory-reared snails. The numerically predominant bacterial genera in individual snails included Pseudomonas, Acinetobacter, Aeromonas, Vibrio, and several members of the Enterobacteriaceae. Enterobacteriaceae seldom predominated in laboratory colonies. Our data suggest that Vibrio extorquens and a Pasteurella sp. tend to predominate in high-bacterial-density snails. These snails may be compromised and may harbor opportunistic snail pathogens. PMID:539821

  1. Bacterial flora of the schistosome vector snail Biomphalaria glabrata.

    PubMed

    Ducklow, H W; Boyle, P J; Maugel, P W; Strong, C; Mitchell, R

    1979-10-01

    The aerobic heterotrophic bacterial flora in over 200 individuals from 10 wild populations and 3 laboratory colonies of the schistosome vector snail Biomphalaria glabrata was examined. Internal bacterial densities were inversely proportional to snail size and were higher in stressed and laboratory-reared snails. The numerically predominant bacterial genera in individual snails included Pseudomonas, Acinetobacter, Aeromonas, Vibrio, and several members of the Enterobacteriaceae. Enterobacteriaceae seldom predominated in laboratory colonies. Our data suggest that Vibrio extorquens and a Pasteurella sp. tend to predominate in high-bacterial-density snails. These snails may be compromised and may harbor opportunistic snail pathogens. PMID:539821

  2. How Stress Alters Memory in ‘Smart’ Snails

    PubMed Central

    Dalesman, Sarah; Lukowiak, Ken

    2012-01-01

    Cognitive ability varies within species, but whether this variation alters the manner in which memory formation is affected by environmental stress is unclear. The great pond snail, Lymnaea stagnalis, is commonly used as model species in studies of learning and memory. The majority of those studies used a single laboratory strain (i.e. the Dutch strain) originating from a wild population in the Netherlands. However, our recent work has identified natural populations that demonstrate significantly enhanced long-term memory (LTM) formation relative to the Dutch strain following operant conditioning of aerial respiratory behaviour. Here we assess how two populations with enhanced memory formation (i.e. ‘smart’ snails), one from Canada (Trans Canada 1: TC1) and one from the U.K. (Chilton Moor: CM) respond to ecologically relevant stressors. In control conditions the Dutch strain forms memory lasting 1–3 h following a single 0.5 h training session in our standard calcium pond water (80 mg/l [Ca2+]), whereas the TC1 and CM populations formed LTM lasting 5+ days following this training regime. Exposure to low environmental calcium pond water (20 mg/l [Ca2+]), which blocks LTM in the Dutch strain, reduced LTM retention to 24 h in the TC1 and CM populations. Crowding (20 snails in 100 ml) immediately prior to training blocks LTM in the Dutch strain, and also did so in TC1 and CM populations. Therefore, snails with enhanced cognitive ability respond to these ecologically relevant stressors in a similar manner to the Dutch strain, but are more robust at forming LTM in a low calcium environment. Despite the two populations (CM and TC1) originating from different continents, LTM formation was indistinguishable in both control and stressed conditions. This indicates that the underlying mechanisms controlling cognitive differences among populations may be highly conserved in L. stagnalis. PMID:22384220

  3. Metabolic acceleration in the pond snail Lymnaea stagnalis?

    NASA Astrophysics Data System (ADS)

    Zimmer, Elke I.; Ducrot, V.; Jager, T.; Koene, J.; Lagadic, L.; Kooijman, S. A. L. M.

    2014-11-01

    Under constant environmental conditions, most animals tend to grow following the von Bertalanffy growth curve. Deviations from this curve can point to changes in the environment that the animals experience, such as food limitation when the available food is not sufficient or suitable. However, such deviations can also point to a phenomenon called metabolic acceleration, which is receiving increasing attention in the field of Dynamic Energy Budget (DEB) modeling. Reasons for such an acceleration are usually changes in shape during ontogeny, which cause changes in the surface area to volume ratio of the organism. Those changes, in turn, lead to changes in some of the model parameters that have length in their dimension. The life-history consequences of metabolic acceleration as implemented in the DEB theory are an s-shaped growth curve (when body size is expressed as a length measure) and a prolongation of the hatching time. The great pond snail Lymnaea stagnalis was earlier found to be food limited during the juvenile phase in laboratory experiments conducted under classical ecotoxicity test protocols. The pond snail has isomorphic shell growth but yet does not exhibit the expected von Bertalanffy growth curve under food limitation. When applying the standard DEB model to data from such life-cycle experiments, we also found that the hatching time is consistently underestimated, which could be a sign of metabolic acceleration. We here present an application of the DEB model including metabolic acceleration to the great pond snail. We account for the simultaneous hermaphroditism of the snail by including a model extension that describes the relative investment into the male and female function. This model allowed us to adequately predict the life history of the snail over the entire life cycle. However, the pond snail does not change in shape substantially after birth, so the original explanation for the metabolic acceleration does not hold. Since the change in shape

  4. Relaxations and Interfacial Water Ordering at the Corundum (110) Surface

    SciTech Connect

    Catalano, Jeffrey G.

    2010-09-17

    In situ high resolution specular X-ray reflectivity measurements were used to examine relaxations and interfacial water ordering occurring at the corundum (110)-water interface. Sample preparation affected the resulting surface structure. Annealing in air at 1373 K produced a reconstructed surface formed through an apparently ordered aluminum vacancy. The effect of the reconstruction on in-plane periodicity was not determined. The remaining aluminum sites on the surface maintain full coordination by oxygen and the surface was coated with a layer of physically adsorbed water. Ordering of water further from the surface was not observed. Acid etching of this surface and preparing a surface through annealing at 723 K both produced an unreconstructed surface with identical relaxations and water ordering. Relaxations were confined primarily to the top {approx}4 {angstrom} of the surface and were dominated by an increased distribution width of the fully occupied surface aluminum site and outward relaxation of the oxygen surface functional groups. A layer of adsorbed water fully coated the surface and occurred in two distinct sites. Water above this showed signs of layering and indicated that water ordering extended 7-10 {angstrom} from the surface. Relaxations and the arrangement of interfacial water were nearly identical on both the unreconstructed corundum and isostructural hematite (110) surfaces. Comparison to corundum and hematite (012) suggests that the arrangement of interfacial water is primarily controlled by mineral surface structure.

  5. Field and laboratory evaluation of the influence of copper-diquat on apple snails in southern Florida

    USGS Publications Warehouse

    Winger, P.V.; Imlay, M.J.; McMillan, W.E.; Martin, T.W.; Takekawa, J.; Johnson, W.W.

    1984-01-01

    The recent decline of apple snail (Pomacea paludosa) populations in canals surrounding Loxahatchee National Wildlife Refuge in southern Florida coincided with the use of copper-diquat for the control of the aquatic weed hydrilla (Hydrilla ver/icillara). Field and laboratory studies were designed to assess the effects of copper-diquat on apple snails, which are the primary food of the endangered snail kite Rostrhamus sociabilis (formerly known as the Everglade kite). Acute toxicities (96-h LC50 values) of Cutrine-Plus and Komeen (chelated formulations of copper) to immature apple snails were 22 and 241-?g/L, respectively. Diquat was toxic at a concentration of 1,800 I-?g/L and did not increase the toxicity of copper when the chemicals were used in combination. Evaluation of field samples indicated that copper concentrations were higher in detritus than in water. plants and mud, and that there was a gradient of copper concentration from the canal to the interior, the highest residues being in samples from the canal. Copper associated with detritus (up to 150 ?g/g) had no effect on growth or survival of apple snails in field cage and tank studies. Also, field applications of copper.diquat to hydrilla had no effect on survival of caged adult and immature snails. Copper from field applications was rapidly taken out of solution by plants and organic material in the water and subsequently incorporated into the bottom detritus. Although the effects of repeated applications of copper-diquat and high body burdens of copper (accumulated during exposure to herbicidal treatment) on survival and reproduction of apple snails are not known, the information available indicates that treatment of hydrilla with copper-diquat was probably not responsible for the decline in the apple snail population. Application at recommended rates should pose no threat to these snails in the organically rich waters of southern Florida.

  6. Mathematical aspects of surface water waves

    NASA Astrophysics Data System (ADS)

    Craig, Walter; Wayne, Clarence E.

    2007-06-01

    The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged `macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important rôle in the future development of the area.

  7. Mathematical simulation of an aquatic snail population.

    PubMed

    Jobin, W R; Michelson, E H

    1967-01-01

    Techniques for controlling the intermediate snail hosts of schistosomiasis have had to be evaluated by field trials, since the complexity of snail population dynamics has so far made it impossible to predict the effects of these techniques and thereby avoid costly field testing.However, in laboratory studies with Biomphalaria glabrata it was found that the fecundity of these snails was directly proportional to F/NV, where F is the total amount of food in the habitat, N the number of snails, and V the volume of the habitat. The use of this fecundity variable together with data published on snail longevity and fecundity made it possible to construct a mathematical model of a snail population which may eventually be useful for evaluating snail control methods.For preliminary verification of the model, its predictions were compared with a published history of a population of Bulinus globosus in a small pond. The general agreement of the predicted and observed population data indicated that the basic structure of the model was sound. PMID:5301741

  8. Chapter 5: Surface water quality sampling in streams and canals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  9. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    NASA Technical Reports Server (NTRS)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  10. Emission of dimers from a free surface of heated water

    NASA Astrophysics Data System (ADS)

    Bochkarev, A. A.; Polyakova, V. I.

    2014-09-01

    The emission rate of water dimers from a free surface and a wetted solid surface in various cases was calculated by a simplified Monte Carlo method with the use of the binding energy of water molecules. The binding energy of water molecules obtained numerically assuming equilibrium between the free surface of water and vapor in the temperature range of 298-438 K corresponds to the coordination number for liquid water equal to 4.956 and is close to the reference value. The calculation results show that as the water temperature increases, the free surface of water and the wetted solid surface become sources of free water dimers. At a temperature of 438 K, the proportion of dimers in the total flow of water molecules on its surface reaches 1%. It is found that in the film boiling mode, the emission rate of dimers decreases with decreasing saturation vapor. Two mechanisms of the emission are described.

  11. Water resources data, Florida, water year 2005. Volume 3A: Southwest Florida surface water

    USGS Publications Warehouse

    Kane, Richard L.; Dickman, Mark

    2005-01-01

    Water resources data for the 2005 water year in Florida consist of continuous or daily discharges for 429 streams, periodic discharge for 9 streams, continuous or daily stage for 218 streams, periodic stage for 5 streams, peak stage for 28 streams and peak discharge for 28 streams, continuous or daily elevations for 15 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 401 wells, periodic ground-water levels for 1,098 wells, and quality-of-water data for 211 surface-water sites and 208 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains records for continuous or daily discharge for 113 streams, periodic discharge for 4 streams, continuous or daily stage for 80 streams, periodic stage for 2 stream, peak stage and discharge for 8 streams, continuous or daily elevations for 3 lakes, continous or daily elevations for 3 lakes, and quality of water for 75 surface water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  12. Water resources data, Florida, water year 2004, volume 3A: southwest Florida surface water

    USGS Publications Warehouse

    Kane, Richard L.

    2004-01-01

    Water resources data for the 2004 water year in Florida consist of continuous or daily discharges for 405 streams, periodic discharge for 12 streams, continuous daily stage for 159 streams, periodic stage for 19 streams, peak stage for 30 streams and peak discharge for 30 streams, continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 408 wells, periodic ground-water levels for 1,188 wells, and quality-of-water data for 140 surface-water sites and 240 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 104 streams, periodic discharge for 6 streams, continuous or daily stage for 36 streams, periodic stage for 14 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 3 lakes, and quality-of-water data for 58 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  13. Global lake surface water temperatures from ATSR

    NASA Astrophysics Data System (ADS)

    MacCallum, Stuart; Merchant, Christopher J.; Layden, Aisling

    2013-04-01

    The ATSR Reprocessing for Climate - Lake (ARC-Lake) project applies optimal estimation (OE) retrievals and probabilistic cloud screening methods to provide lake surface water temperature (LSWT) estimates from the series of (Advanced) Along-Track Scanning Radiometers. This methodology is generic (i.e. applicable to all lakes) as variations in physical properties such as elevation, salinity, and atmospheric conditions are accounted for through the forward modelling of observed radiances. In the initial phases of ARC-Lake, LSWTs were obtained for 258 of Earth's largest lakes. In the final phase of the project, the dataset is extended by applying the OE methodology to smaller lakes, providing LSWT data from 1991 to 2012 for approximately 1000 lakes. In this presentation we will provide an overview of the ARC-Lake project, its publically available data products and some applications of these products.

  14. Surface-water availability, Tuscaloosa County, Alabama

    USGS Publications Warehouse

    Knight, Alfred L.; Davis, Marvin E.

    1975-01-01

    The average annual runoff, about 1,270 mgd (million gallons per day), originating in Tuscaloosa County is equivalent to 20 inches or 0.95 mgd per square mile. The Black Warrior and Sipsey Rivers, the largest streams in the county, have average flows of 5,230 mgd and 580 mgd, respectively, where they leave the county, and median annual 7-day low flows in excess of 150 mgd and 35 mgd, respectively. North River, Big Sandy Creek, and Hurricane Creek have average flows in excess of 100 mgd and median annual 7-day low flows in excess of 2 mgd. Surface water generally contains less than 100 mg/l (milligrams per liter) dissolved solids, less than 10 mg/l chloride, and is soft to moderately hard. Streams having the higher hardness and the higher dissolved-solids content are in eastern Tuscaloosa County.

  15. [Equipment for biological experiments with snails aboard piloted orbital stations].

    PubMed

    Gorgiladze, G I; Korotkova, E V; Kuznetsova, E E; Mukhamedieva, L N; Begrov, V V; Pepeliaev, Iu V

    2010-01-01

    To fly biological experiments aboard piloted orbital stations, research equipment was built up of an incubation container, filter system and automatic temperature controller. Investigations included analysis of the makeup and concentrations of gases produced by animals (snails) during biocycle, and emitted after death. Filters are chemisorption active fibrous materials (AFM) with high sorption rate and water receptivity (cation exchange fiber VION-KN-1 and anion exchange fiber VION-AS-1), and water-repellent carbon adsorbent SKLTS. AFM filters were effective in air cleaning and practically excluded ingress of chemical substances from the container into cabin atmosphere over more than 100 days. PMID:21033402

  16. Surface water quality-assurance plan, U.S. Geological Survey, Kentucky Water Science Center, water year 2006

    USGS Publications Warehouse

    Griffin, Michael S.

    2006-01-01

    This Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Kentucky Water Science Center for activities related to the collection, processing, storage, analysis, and publication of surface-water data.

  17. Metolachlor and atrazine fate in surface water systems

    SciTech Connect

    Rice, P.J.; Anderson, T.A.; Coats, J.R.

    1995-12-31

    The detection of pesticides in surface water and ground water provokes concern involving human health risks associated with pesticide exposure. Monitoring studies of surface waters have detected concentrations of herbicides that exceed the U.S. Environmental Protection Agency proposed maximum contamination level (MCL) for drinking water. Conventional water treatment processes do not remove many herbicides. Tap water drawn from surface-water sources has been reported to contain levels of herbicides above the regulatory limits. There is current interest in the use of artificial wetlands and macrophyte-cultured ponds in waste-water-treatment systems. Aquatic plant-based water treatment systems improve waste water effluent by solid filtration and nutrient assimilation. Various aquatic plants have been shown to accumulate metals, absorb inorganic ions, and accelerate the biodegradation of complex organics. Our research evaluates the fate of metolachlor and atrazine in surface water, surface water/sediment, and surface water/aquatic plant incubation systems to study the influence of sediment and aquatic plants in the removal and biotransformation of herbicides from contaminated waters. Aquatic macrophyte systems may prove to be useful in the remediation of herbicide contaminated surface waters in water treatment facilities or in the reduction of herbicide concentrations from tile drain effluents prior to entering watersheds.

  18. Freshwater snail consumption and angiostrongyliasis in Malaya.

    PubMed

    Liat, L B; Fong, Y L; Krishnansamy, M; Ramachandran, P; Mansor, S

    1978-06-01

    A survey of the freshwater snails, Pila scutata and Bellamyia ingallsiana, as food consumed by the local population was carried out in Peninsular Malaysia. Of these two species the first is preferred; the sizes favoured are between 25--40 mm. Pila snails were found to be consumed by the three communities, viz. Malay, Chinese and Indian, in different ways. The various methods of preparing the snails for consumption are described. P. scutata is an intermediate host of the rat-lung worm, Angiostrongylus malaysiensis. As this worm presumably is the causative agent of human eosinophilic meningoencephalitis, the eating habits of the three races in consuming the snail in relation to the epidemiology of the disease was also discussed. PMID:726037

  19. Photochemical Transformation Processes in Sunlit Surface Waters

    NASA Astrophysics Data System (ADS)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter < 0.1 μm) account for the vast majority of 1O2 and triplet states photoproduction. In hydrophobic sites of particles, the formation rate of 1O2 is considerably lower than in the solution bulk [5], but the absence

  20. Habitat characteristics for different freshwater snail species as determined biologically through macroinvertebrate information.

    PubMed

    El-Khayat, Hanaa M M; Mahmoud, Kadria M A; Mostafa, Bayomy B; Tantawy, Ahmad A; El-Deeb, Fatma A; Ragb, Fawzy M; Ismail, Nahed M; El-Said, Kalil M; Taleb, Hoda M Abu

    2011-12-01

    Macro-invertebrates including freshwater snails collected from 643 sites over 8 successive seasons among the River Nile, branches, main canals and certain drains in eight Egyptian Governorates. Thirteen snail species and one bivalve species were identified. The most distributed were Lanistus carinatus and Physa acuta while the most abundant were Cleopatra bulimoides and Physa acuta during the whole study. The sites that harbored each snail species in all the examined water-courses were grouped seasonally and their biological assessment was determined by their minimum and maximum total point similarity percentage to that of the corresponded reference site and mean of the total points. Habitats for most snail species attained minimum total point's similarity percentage less than 21% (very poor habitat) during autumn and winter then spring while during summer very poor habitat was harbored by only few snail species. P. acuta was the only survived snails in habitat which attained 0 as a minimum total point's similarity percentage during two seasons and L. carinatus and Succinea cleopatra during one season. With respect to medically important snails very poor sites constituted 23% of Biomphalaria alexandrina sites, 14% of Lymnaea natalensis and 9.4% of Bulinus truncatus sites. The studied macroinvertebrate matrices, total number of organisms, taxa richness, the Ephemeroptera, Plecoptera, and Trichoptera (EPT) index, ratio of EPT index to chironomidae, ratio of scraper to filtering collector, contribution of dominant macroinvertebrate major group, comparison revealed descending tolerances from B. alexanrina followed by L. natalensis then B. truncates, but Hilsenhoff Biotic Index (HBI) showed the same tolerance to organic pollution. PMID:22435158

  1. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  2. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  3. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  4. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  5. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  6. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  7. 40 CFR 257.3-3 - Surface water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Water Act, as amended, 33 U.S.C. 1251 et seq., and implementing regulations, specifically 33 CFR part... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a...

  8. Instructions for measuring the rate of evaporation from water surfaces

    USGS Publications Warehouse

    U.S. Geological Survey

    1898-01-01

    The ·rate of evaporation from water surfaces varies with the temperature of the water, the velocity of the wind at the water surface, and the dryness of the air. Consequently, the rate of evaporation from rivers, lakes, canals, or reservoirs varies widely in different localities and for the same locality in different seasons.

  9. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  10. Floating Vegetated Mats For Improving Surface Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of surface and ground waters is an environmental concern. Pollution from both point and nonpoint sources can render water unsuitable for use. Surface waters of concern include streams, rivers, ponds, lakes, canals, and wastewater lagoons. Lagooned wastewater from confined animal feedi...

  11. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  12. 40 CFR 258.27 - Surface water requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  13. Adsorption structure of water molecules on the Be(0001) surface

    SciTech Connect

    Yang, Yu; Li, Yanfang; Wang, Shuangxi; Zhang, Ping

    2014-06-07

    By using density functional theory calculations, we systematically investigate the adsorption of water molecules at different coverages on the Be(0001) surface. The coverage dependence of the prototype water structures and energetics for water adlayer growth are systematically studied. The structures, energetics, and electronic properties are calculated and compared with other available studies. Through our systematic investigations, we find that water molecules form clusters or chains on the Be(0001) surface at low coverages. When increasing the water coverage, water molecules tend to form a 2 × 2 hexagonal network on the Be(0001) surface.

  14. First-principles study of water desorption from montmorillonite surface.

    PubMed

    Zhang, Yao; Meng, Yingfeng; Liu, Houbin; Yang, Mingli

    2016-05-01

    Knowledge about water desorption is important to give a full picture of water diffusion in montmorillonites (MMT), which is a driving factor in MMT swelling. The desorption paths and energetics of water molecules from the surface of MMT with trapped Li(+), Na(+) or K(+) counterions were studied using periodic density functional theory calculations. Two paths--surface and vacuum desorption--were designed for water desorption starting from a stationary structure in which water bonds with both the counterion and the MMT surface. Surface desorption is energetically more favorable than vacuum desorption due to water-surface hydrogen bonds that help stabilize the intermediate structure of water released from the counterion. The energy barriers of water desorption are in the order of Li(+) > Na(+) > K(+), which can be attributed to the short ionic radius of Li(+), which favors strong binding with the water molecule. The temperature dependence of water adsorption and desorption rates were compared based on the computed activation energies. Our calculations reveal that the water desorption on the MMT surface has a different mechanism from water adsorption, which results from surface effects favoring stabilization of water conformers during the desorption process. PMID:27083565

  15. Behavioural responses of the snail Lymnaea acuminata to carbohydrates in snail-attractant pellets

    NASA Astrophysics Data System (ADS)

    Tiwari, Farindra; Singh, D. K.

    Snail control is one of the most important tools in the campaign to reduce the incidence of fascioliasis. In order to attain this objective, the method of bait formulation in order to contain an attractant and a molluscicide is an expedient approach to lure the target snail population to the molluscicide. This study identifies certain carbohydrates, namely sucrose, maltose, glucose, fructose and starch, for preparing such baits. These were tested on Lymnaea acuminata, an intermediate host of the digenean trematodes Fasciola hepatica and Fasciola gigantica. The behavioural responses of snails to these carbohydrates were examined. Significant variations in behavioural responses were observed in the snail even when the five carbohydrates were used in low concentrations in snail-attractant pellets. Starch emerged as the strongest attractant for Lymnaea acuminata, followed by maltose.

  16. Heat shock proteins and survival strategies in congeneric land snails (Sphincterochila) from different habitats.

    PubMed

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2012-09-01

    Polmunate land snails are subject to stress conditions in their terrestrial habitat, and depend on a range of behavioural, physiological and biochemical adaptations for coping with problems of maintaining water, ionic and thermal balance. The involvement of the heat shock protein (HSP) machinery in land snails was demonstrated following short-term experimental aestivation and heat stress, suggesting that land snails use HSPs as part of their survival strategy. As climatic variation was found to be associated with HSP expression, we tested whether adaptation of land snails to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desert species Sphincterochila zonata and a Mediterranean-type species Sphincterochila cariosa. Our study suggests that Sphincterochila species use HSPs as part of their survival strategy following desiccation and heat stress, and as part of the natural annual cycle of activity and aestivation. Our studies also indicate that adaptation to different habitats results in the development of distinct strategies of HSP expression in response to stress, namely the reduced expression of HSPs in the desert-inhabiting species. We suggest that these different strategies reflect the difference in heat and aridity encountered in the natural habitats, and that the desert species S. zonata relies on mechanisms and adaptations other than HSP induction thus avoiding the fitness consequences of continuous HSP upregulation. PMID:22528052

  17. Specialized insulin is used for chemical warfare by fish-hunting cone snails.

    PubMed

    Safavi-Hemami, Helena; Gajewiak, Joanna; Karanth, Santhosh; Robinson, Samuel D; Ueberheide, Beatrix; Douglass, Adam D; Schlegel, Amnon; Imperial, Julita S; Watkins, Maren; Bandyopadhyay, Pradip K; Yandell, Mark; Li, Qing; Purcell, Anthony W; Norton, Raymond S; Ellgaard, Lars; Olivera, Baldomero M

    2015-02-10

    More than 100 species of venomous cone snails (genus Conus) are highly effective predators of fish. The vast majority of venom components identified and functionally characterized to date are neurotoxins specifically targeted to receptors, ion channels, and transporters in the nervous system of prey, predators, or competitors. Here we describe a venom component targeting energy metabolism, a radically different mechanism. Two fish-hunting cone snails, Conus geographus and Conus tulipa, have evolved specialized insulins that are expressed as major components of their venoms. These insulins are distinctive in having much greater similarity to fish insulins than to the molluscan hormone and are unique in that posttranslational modifications characteristic of conotoxins (hydroxyproline, γ-carboxyglutamate) are present. When injected into fish, the venom insulin elicits hypoglycemic shock, a condition characterized by dangerously low blood glucose. Our evidence suggests that insulin is specifically used as a weapon for prey capture by a subset of fish-hunting cone snails that use a net strategy to capture prey. Insulin appears to be a component of the nirvana cabal, a toxin combination in these venoms that is released into the water to disorient schools of small fish, making them easier to engulf with the snail's distended false mouth, which functions as a net. If an entire school of fish simultaneously experiences hypoglycemic shock, this should directly facilitate capture by the predatory snail. PMID:25605914

  18. Spreading of Cholera through Surface Water

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  19. Factors affecting response of surface waters to acidic deposition

    SciTech Connect

    Turner, R.S.; Johnson, D.W.; Elwood, J.W.; Van Winkle, W.; Clapp, R.B.; Reuss, J.O.

    1986-04-01

    Knowledge of watershed hydrology and of the biogeochemical reactions and elemental pools and fluxes occurring in watersheds can be used to classify the response of watersheds and surface waters to acidic deposition. A conceptual mosel is presented for classifying watersheds into those for which (1) surface water chemistry will change rapidly with deposition quality (direct response) (2) surface water chemistry will change only slowly over time (delayed response), and (3) surface water chemistry will not change significantly, even with continued acidic deposition (capacity-protected). Techniques and data available for classification of all watersheds in a region into these categories are discussed.

  20. Snail control in urban sites in Brazil with slow-release hexabutyldistannoxane and pentachlorophenol*

    PubMed Central

    Toledo, J. V.; Da Silva, C. S. Monteiro; Bulhões, M. S.; Leme, L. A. Paes; Netto, J. A. Da Silva; Gilbert, B.

    1976-01-01

    Slow release formulations of hexabutyldistannoxane (TBTO) and pentachlorophenol (PCP) were tested for the control of Biomphalaria tenagophila in 52 urban sites in Rio de Janeiro. TBTO acted faster and lasted longer than PCP and at 15 g/m2 it eliminated snails from 76% of the treated sites for 1 year. Water pollution and rate of flow had no significant influence on the molluscicidal properties of either compound, but alkalinity lowered the activity of TBTO. Failure to control snail populations was due mainly to human interference and to the non-treatment of adjacent breeding sites that were temporarily dry and therefore overlooked. PMID:1088356

  1. Effect of surface hydrophilicity on the confined water film

    NASA Astrophysics Data System (ADS)

    Liu, Shuhai; Ma, Liran; Zhang, Chenhui; Lu, Xinchun

    2007-12-01

    The effect of surface hydrophilicity on the water film confined within a nanogap between a smooth plate and a highly polished steel ball has been investigated. It was found that the confined water film formed the thicker lubricate film than the prediction of elastic-isoviscous lubrication theory. Experimental results indicated that the hydrophobic surface induced the thicker water film than the hydrophilic one. It is thought that the "structured" interfacial water layer is formed between the solid surfaces and the hydrophobic group induces the more ordered hydrogen-bonding network of clathrate cages which forms the thicker water film than hydrophilic one.

  2. Structure of water adsorbed on a mica surface

    SciTech Connect

    Park, Sung-Ho; Sposito, Garrison

    2002-01-29

    Monte Carlo simulations of hydration water on the mica (001) surface under ambient conditions revealed water molecules bound closely to the ditrigonal cavities in the surface, with a lateral distribution of approximately one per cavity, and water molecules interposed between K{sup +} counter ions in a layer situated about 2.5 {angstrom} from a surface O along a direction normal to the (001) plane. The calculated water O density profile was in quantitative agreement with recent X-ray reflectivity measurements indicating strong lateral ordering of the hydration water but liquid-like disorder otherwise.

  3. Salinity adaptation of the invasive New Zealand mud snail (Potamopyrgus antipodarum) in the Columbia River estuary (Pacific Northwest, USA): Physiological and molecular studies

    USGS Publications Warehouse

    Hoy, Marshal; Boese, Bruce L.; Taylor, Louise; Reusser, Deborah; Rodriguez, Rusty

    2012-01-01

    In this study, we examine salinity stress tolerances of two populations of the invasive species New Zealand mud snail Potamopyrgus antipodarum, one population from a high salinity environment in the Columbia River estuary and the other from a fresh water lake. In 1996, New Zealand mud snails were discovered in the tidal reaches of the Columbia River estuary that is routinely exposed to salinity at near full seawater concentrations. In contrast, in their native habitat and throughout its spread in the western US, New Zealand mud snails are found only in fresh water ecosystems. Our aim was to determine whether the Columbia River snails have become salt water adapted. Using a modification of the standard amphipod sediment toxicity test, salinity tolerance was tested using a range of concentrations up to undiluted seawater, and the snails were sampled for mortality at daily time points. Our results show that the Columbia River snails were more tolerant of acute salinity stress with the LC50 values averaging 38 and 22 Practical Salinity Units for the Columbia River and freshwater snails, respectively. DNA sequence analysis and morphological comparisons of individuals representing each population indicate that they were all P. antipodarum. These results suggest that this species is salt water adaptable and in addition, this investigation helps elucidate the potential of this aquatic invasive organism to adapt to adverse environmental conditions.

  4. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  5. An ontology design pattern for surface water features

    USGS Publications Warehouse

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  6. Structure and properties of water film adsorbed on mica surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-01

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  7. Reproduction and demography of the Florida Everglade (Snail) Kite

    USGS Publications Warehouse

    Snyder, N.F.R.; Beissinger, S.R.; Chandler, R.E.

    1989-01-01

    An 18-year study of reproduction and survival of the Florida Everglade (Snail) Kite (Rostrhamus sociabilis plumbeus) has revealed the following: extremely poor nesting success (only 13.6% of nests found at the nest-building stage successful); extremely long breeding seasons (some reproductive activity in almost all months in good years); frequent multiple brooding and frequent multiple brooding and frequent renesting after failure; low egg hatchability (81%); high failure rates due to nest collapse, desertion, and predation; extremely high survival of juveniles and adults under good water conditions; and high vulnerability to drought due to near total dependency on a single species of drought-sensitive snail for food. Despite low nesting success, the species has increased rapidly under good conditions, mainly because of multiple nesting attempts within long breeding seasons and high survival rates of free-flying birds. Nesting success varied significantly between regions and nest substrates, but not as a function of seasons or solitary vs. colonial nesting. While nesting success was reduced in low water years, this effect was at least partly due to heavy use of poor nest substrates under such conditions. Clutch size and numbers of young per successful nest varied with regions, but not as a function of seasons or water levels. The effects of coloniality on clutch size and numbers of young were inconsistent. Significant effects of nest-substrate types on clutch size and numbers of young were apparently artifacts of substrate differences between regions.

  8. Molecular dynamics studies of interfacial water at the alumina surface.

    SciTech Connect

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

  9. Biogeochemistry of DMS in Surface Waters

    NASA Technical Reports Server (NTRS)

    Dacey, J. W. H.

    1997-01-01

    Dimethylsulfide (DMS) is important in influencing the formation of aerosols in the troposphere over large areas of the world's oceans. Understanding the dynamics of aerosols is important to understanding the earth's radiation balance. In evaluating the factors controlling DMS in the troposphere it is vital to understand the dynamics of DMS in the surface ocean. The biogeochemical processes controlling DMS concentration in seawater are myriad; modeling and theoretical estimation are problematic. At the beginning of this project we believed that we were on the verge of simplifying the ship-track measurement of DMS, and we proposed to deploy such a system to develop a database relating high frequency DMS measurements to biological and physicochemical and optical properties of surface water that can be quantified by remote sensing techniques. We designed a system to measure DMS concomitantly with other basic chemical and biological data in a flow-through system. The project was collaborative between Woods Hole Oceanographic Institution (WHOI) and Bermuda Biological Station for Research (BBSR). The project on which we are reporting was budgeted for only one year with a one year no-cost extension. At WHOI our effort was directed towards designing traps which would be used to concentrate DMS from seawater and allow storage for subsequent analysis. At that time, GC systems were too large for easy long-term deployment on a research vessel like R/V Weatherbird, so we focused on simplifying the shipboard sampling procedure. Initial studies of sample recovery with high levels of DMS suggested that Carboxen 1000, a relatively new carbon molecular sieve, could be used as a stable storage medium. The affinity of Carboxen for DMS is several orders of magnitude higher than gold wool (another adsorbent used for DMS collection) on a weight or volume basis. Furthermore, Carboxen's affinity for DMS is also far less susceptible to humidity than gold wool. Unfortunately, further

  10. Models of Fate and Transport of Pollutants in Surface Waters

    ERIC Educational Resources Information Center

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  11. TOTAL ALKALINITY OF SURFACE WATERS OF THE US

    EPA Science Inventory

    This map provides a synoptic illustration of the national patterns of surface water alkalinity in the conterminous United States. Alkalinity is the most readily available measure of the acid-neutralizing capacity of surface waters and provides a reasonable estimate o...

  12. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  13. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    EPA Science Inventory

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  14. Effect of Surface Energy on Freezing Temperature of Water.

    PubMed

    Zhang, Yu; Anim-Danso, Emmanuel; Bekele, Selemon; Dhinojwala, Ali

    2016-07-13

    Previous studies have found that superhydrophobic surfaces are effective in delaying freezing of water droplets. However, the freezing process of water droplets on superhydrophobic surfaces depends on factors such as droplet size, surface area, roughness, and cooling rate. The role of surface energy, independent of any other parameters, in delaying freezing of water is not understood. Here, we have used infrared-visible sum frequency generation spectroscopy (SFG) to study the freezing of water next to solid substrates with water contact angles varying from 5° to 110°. We find that the freezing temperature of water decreases with increasing surface hydrophobicity only when the sample volume is small (∼10 μL). For a larger volume of water (∼300 μL), the freezing temperature is independent of surface energy. For water next to the surfaces with contact angle ≥54°, we observe a strong SFG peak associated with highly coordinated water. This research sheds new light on understanding the key factors in designing new anti-icing coatings. PMID:27314147

  15. Dynamic behavior of interfacila water at the silica surface

    SciTech Connect

    Argyris, Dr. Dimitrios; Cole, David R; Striolo, Alberto

    2009-01-01

    Molecular dynamics simulations were employed to study the dynamics properties of water at the silica-liquid interface at ambient temperature. Three different degrees of hydroxylation of a crystalline silica surface were used. To assess the water dynamic properties we calculated the residence probability and in-plane mean square displacement as a function of distance from the surface. The data indicate that water molecules at the fully hydroxylated surface remain longer, on average, in the interfacial region than in the other cases. By assessing the dynamics of molecular dipole moment and hydrogen-hydrogen vector an anisotropic reorientation was discovered for interfacial water in contact with any of the surfaces considered. However, the features of the anisotropic reorientation observed for water molecules depend strongly on the relative orientation of interfacial water molecules and their interactions with surface hydroxyl groups. On the partially hydroxylated surface, where water molecules with hydrogen-down and hydrogen-up orientation are both found, those water molecules associated with surface hydroxyl groups remain at the adsorbed locations longer and reorient slower than the other water molecules. A number of equilibrium properties, including density profiles, hydrogen bond networks, charge densities, and dipole moment densities are also reported to explain the dynamics results.

  16. Water resources data, New Jersey, water year 2004-volume 1. surface-water data

    USGS Publications Warehouse

    Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  17. Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data

    USGS Publications Warehouse

    White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  18. Sea-ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Over 1500 water samples from surface and from standard hydrographic depths were collected during June and July 1973 from Bering Sea and Gulf of Alaska. The measurement of temperature, salinity, and productivity indicated that various distinct water masses cover the Bering Sea Shelf. The suspended load in surface waters will be correlated with the ERTS-1 imagery as it becomes available to delineate the surface water circulation. The movement of ice floes in the Bering Strait and Bering Sea indicated that movement of ice varies considerably and may depend on wind stress as well as ocean currents.

  19. Herbicide Metabolites in Surface Water and Groundwater: Introduction and Overview

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.

    1996-01-01

    Several future research topics for herbicide metabolites in surface and ground water are outlined in this chapter. They are herbicide usage, chemical analysis of metabolites, and fate and transport of metabolites in surface and ground water. These three ideas follow the themes in this book, which are the summary of a symposium of the American Chemical Society on herbicide metabolites in surface and ground water. First, geographic information systems allow the spatial distribution of herbicide-use data to be combined with geochemical information on fate and transport of herbicides. Next these two types of information are useful in predicting the kinds of metabolites present and their probable distribution in surface and ground water. Finally, methods development efforts may be focused on these specific target analytes. This chapter discusses these three concepts and provides an introduction to this book on the analysis, chemistry, and fate and transport of herbicide metabolites in surface and ground water.

  20. Water adsorption on the LaMnO3 surface

    NASA Astrophysics Data System (ADS)

    Billman, Chris R.; Wang, Yan; Cheng, Hai-Ping

    2016-02-01

    Studying the adsorption of water on the metallic LaMnO3 surface can provide insight into this complicated surface-adsorbate interaction. Using density functional theory, we investigated the adsorption of a water monomer, dimer, trimer, and a monolayer on the surface. The electronic structure of ground state configurations is explored using analysis of density of states, charge density, and crystal orbital overlap populations. We found that the interaction between the surface and water molecules is stronger than hydrogen bonding between molecules, which facilitates wetting of the surface. Adsorbed water molecules form very strong hydrogen bonds, with substantially shifted OH stretch modes. For the monolayer of adsorbed water, a hint of a bilayer is observed with a height separation of only 0.2 A˚. However, simulated scanning tunneling microscopy images and vibrational spectra suggest a significant difference between the two layers due to intermolecular bonding and interaction with the substrate.

  1. Water Adsorption on the LaMnO3 Surface

    NASA Astrophysics Data System (ADS)

    Billman, Chris; Wang, Yan; Cheng, Hai-Ping

    Studying the adsorption of water on the metallic LaMnO3 surface can provide insight into this complicated surface-adsorbate interaction. Using density functional theory, we investigated the adsorption of a water monomer, dimer, trimer and a monolayer on the surface. The electronic structure of ground state configurations is explored using analysis of density of states, charge density, and crystal orbital overlap populations. We found that the interaction between the surface and water molecules is stronger than hydrogen bonding between molecules, which facilitates wetting of the surface. Adsorbed water molecules form very strong hydrogen bonds, with substantially shifted OH stretch modes. For the monolayer of adsorbed water, a hint of a bilayer is observed with a height separation of only 0.2 Å. However, simulated scanning tunneling microscopy (STM) images and vibrational spectra suggest a significant difference between the two layers due to intermolecular bonding and interaction with the substrate.

  2. Water-Mediated Interactions between Hydrophilic and Hydrophobic Surfaces.

    PubMed

    Kanduč, Matej; Schlaich, Alexander; Schneck, Emanuel; Netz, Roland R

    2016-09-01

    All surfaces in water experience at short separations hydration repulsion or hydrophobic attraction, depending on the surface polarity. These interactions dominate the more long-ranged electrostatic and van der Waals interactions and are ubiquitous in biological and colloidal systems. Despite their importance in all scenarios where the surface separation is in the nanometer range, the origin of these hydration interactions is still unclear. Using atomistic solvent-explicit molecular dynamics simulations, we analyze the interaction free energies of charge-neutral model surfaces with different elastic and water-binding properties. The surface polarity is shown to be the most important parameter that not only determines the hydration properties and thereby the water contact angle of a single surface but also the surface-surface interaction and whether two surfaces attract or repel. Elastic properties of the surfaces are less important. On the basis of surface contact angles and surface-surface binding affinities, we construct a universal interaction diagram featuring three different interaction regimes-hydration repulsion, cavitation-induced attraction-and for intermediate surface polarities-dry adhesion. On the basis of scaling arguments and perturbation theory, we establish simple combination rules that predict the interaction behavior for combinations of dissimilar surfaces. PMID:27487420

  3. Trematode maturation patterns in a migratory snail host: What happens during upshore residency in a Mediterranean lagoon?

    PubMed

    Born-Torrijos, Ana; Raga, Juan Antonio; Holzer, Astrid Sibylle

    2016-02-01

    Maturation of trematode larval stages is expected to be temporally and spatially adapted to maximise the encounter with the adequate downstream host, i.e. the host, which will be infected by this parasite stage. Since studies on intramolluscan parasite maturation are scarce but important in the context of parasite transmission, the larval development inside sporocysts was monitored during upshore residency of the snail host Gibbula adansonii (Trochidae), i.e., from March to May (2011 and 2013), when these snails temporarily reside in the intertidal habitat of a Western Mediterranean lagoon (40° 37' 35″ N, 0° 44' 31″ E, Spain). Data on the relative quantity of different maturation stages of Cainocreadium labracis and Macvicaria obovata (Opecoelidae) parasitising the G. adansonii as well as on snail and sporocyst size were explored using linear models and linear mixed models. The effect of the trematodes on snail growth was shown to be species-specific, with snail and sporocyst size acting as proxies of the reproductive capacity of M. obovata but not that of C. labracis. The number of cercarial embryos and germinal balls did not show monthly variation in either parasite species, but a higher number of mature stages and the highest maturity index was found in April. Hence, during the snail's limited spawning-related presence in the upshore waters of the lagoon, continuous production and output of infectious cercariae was observed, which indicates a link between larval maturation and snail migration. The synchronization of snails, mature parasite transmission stages and downstream hosts in time and space guarantees a successful completion of the life cycle. PMID:26446090

  4. Water adsorbate influence on the Cu(110) surface optical response

    NASA Astrophysics Data System (ADS)

    Baghbanpourasl, Amirreza; Schmidt, Wolf Gero; Denk, Mariella; Cobet, Christoph; Hohage, Michael; Zeppenfeld, Peter; Hingerl, Kurt

    2015-11-01

    Surface reflectance anisotropy may be utilized for characterizing surfaces, interfaces, and adsorption structures. Here, the reflectance anisotropy and surface dielectric functions of the thermodynamically most favored water adsorbate structures on the Cu(110) surface (i.e. hexagonal bilayers, pentagonal chains, and partially dissociated water structures) are calculated from density-functional theory and compared with recent experimental data. It is shown that the water overlayer structures modify in a geometry-specific way the optical anisotropy of the bare surface which can be exploited for in situ determination of the adsorption structures. For hexagonal bilayer overlayer geometries, strong features in the vacuum ultraviolet region are predicted. The theoretical analysis shows a noticeable influence of intraband transitions also for higher photon energies and rather slight influences of the van der Waals interaction on the spectral signatures. Water induced strain effects on the surface optical response are found to be negligible.

  5. Adsorption of n-alkane vapours at the water surface.

    PubMed

    Biscay, Frédéric; Ghoufi, Aziz; Malfreyt, Patrice

    2011-06-21

    Monte Carlo simulations are reported here to predict the surface tension of the liquid-vapour interface of water upon adsorption of alkane vapours (methane to hexane). A decrease of the surface tension has been established from n-pentane. A correlation has been evidenced between the decrease of the surface tension and the absence of specific arrangement at the water surface for n-pentane and n-hexane. The thermodynamic stability of the adsorption layer and the absence of film for longer alkanes have been checked through the calculation of a potential of mean force. This complements the work recently published [Ghoufi et al., Phys. Chem. Chem. Phys., 2010, 12, 5203] concerning the adsorption of methane at the water surface. The decrease of the surface tension has been interpreted in terms of the degree of hydrogen bonding of water molecules at the liquid-vapour interface upon adsorption. PMID:21584320

  6. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  7. Interfacial thermodynamics of confined water near molecularly rough surfaces

    PubMed Central

    Mittal, Jeetain; Hummer, Gerhard

    2012-01-01

    We study the effects of nanoscopic roughness on the interfacial free energy of water confined between solid surfaces. SPC/E water is simulated in confinement between two infinite planar surfaces that differ in their physical topology: one is smooth and the other one is physically rough on a nanometer length scale. The two thermodynamic ensembles considered, with constant pressure either normal or parallel to the walls, correspond to different experimental conditions. We find that molecular-scale surface roughness significantly increases the solid-liquid interfacial free energy compared to the smooth surface. For our surfaces with a water-wall interaction energy minimum of −1.2 kcal/mol, we observe a transition from a hydrophilic surface to a hydrophobic surface at a roughness amplitude of about 3 Å and a wave length of 11.6 Å, with the interfacial free energy changing sign from negative to positive. In agreement with previous studies of water near hydrophobic surfaces, we find an increase in the isothermal compressibility of water with increasing surface roughness. Interestingly, average measures of the water density and hydrogen-bond number do not contain distinct signatures of increased hydrophobicity. In contrast, a local analysis indicates transient dewetting of water in the valleys of the rough surface, together with a significant loss of hydrogen bonds, and a change in the dipole orientation toward the surface. These microscopic changes in the density, hydrogen bonding, and water orientation contribute to the large increase in the interfacial free energy, and the change from a hydrophilic to a hydrophobic character of the surface. PMID:21043431

  8. Water surface tension modulates the swarming mechanics of Bacillus subtilis.

    PubMed

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation. PMID:26557106

  9. Water surface tension modulates the swarming mechanics of Bacillus subtilis

    PubMed Central

    Ke, Wan-Ju; Hsueh, Yi-Huang; Cheng, Yu-Chieh; Wu, Chih-Ching; Liu, Shih-Tung

    2015-01-01

    Many Bacillus subtilis strains swarm, often forming colonies with tendrils on agar medium. It is known that B. subtilis swarming requires flagella and a biosurfactant, surfactin. In this study, we find that water surface tension plays a role in swarming dynamics. B. subtilis colonies were found to contain water, and when a low amount of surfactin is produced, the water surface tension of the colony restricts expansion, causing bacterial density to rise. The increased density induces a quorum sensing response that leads to heightened production of surfactin, which then weakens water surface tension to allow colony expansion. When the barrier formed by water surface tension is breached at a specific location, a stream of bacteria swarms out of the colony to form a tendril. If a B. subtilis strain produces surfactin at levels that can substantially weaken the overall water surface tension of the colony, water floods the agar surface in a thin layer, within which bacteria swarm and migrate rapidly. This study sheds light on the role of water surface tension in regulating B. subtilis swarming, and provides insight into the mechanisms underlying swarming initiation and tendril formation. PMID:26557106

  10. Differential spatial repositioning of activated genes in Biomphalaria glabrata snails infected with Schistosoma mansoni.

    PubMed

    Arican-Goktas, Halime D; Ittiprasert, Wannaporn; Bridger, Joanna M; Knight, Matty

    2014-09-01

    Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in

  11. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  12. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    EPA Science Inventory

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  13. SURFACE AND SUBSURFACE WATER QUALITY HYDROLOGY IN SURFACE MINED WATERSHEDS. PART I: TEXT

    EPA Science Inventory

    Surface mining disturbs the natural sequence of geologic strata, and, therefore, potentially modifies the quantity and quality of water on a watershed disturbed by surface mining. Such a watershed disturbed by surface mining was monitored in Colorado. In addition, surface runoff,...

  14. Crocodylus niloticus (Crocodilia) is highly sensitive to water surface waves.

    PubMed

    Grap, Nadja J; Monzel, Anna S; Kohl, Tobias; Bleckmann, Horst

    2015-10-01

    Crocodiles show oriented responses to water surface wave stimuli but up to now behavioral thresholds are missing. This study determines the behavioral thresholds of crocodilians to water surface waves. Nile crocodiles (Crocodylus niloticus) were conditioned to respond to single-frequency water surface wave stimuli (duration 1150 ms, frequency 15, 30, 40, 60 and 80 Hz), produced by blowing air onto the water surface. Our study shows that C. niloticus is highly sensitive to capillary water surface waves. Threshold values decreased with increasing frequency and ranged between 10.3 μm (15 Hz) and 0.5 μm (80 Hz) peak-to-peak wave amplitude. For the frequencies 15 Hz and 30 Hz the sensitivity of one spectacled caiman (Caiman crocodilus) to water surface waves was also tested. Threshold values were 12.8 μm (15 Hz) down to 1.76 μm (30 Hz), i.e. close to the threshold values of C. niloticus. The surface wave sensitivity of crocodiles is similar to the surface wave sensitivity of semi-aquatic insects and fishing spiders but does not match the sensitivity of surface-feeding fishes which is higher by one to two orders of magnitude. PMID:26153334

  15. Surface properties of a single perfluoroalkyl group on water surfaces studied by surface potential measurements.

    PubMed

    Shimoaka, Takafumi; Tanaka, Yuki; Shioya, Nobutaka; Morita, Kohei; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2016-12-01

    A discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C-F bonds, a single Rf group would possess a hydrophilic-like character on the surface. To reveal the hydration character of a single Rf group, in the present study, surface potential (ΔV) measurements are performed for Langmuir monolayers of Rf-containing compounds. From a comparative study with a monolayer of a normal hydrocarbon compound, the hydration/dehydration dynamics of a lying Rf group on water has first been monitored by ΔV measurements, through which a single Rf group has been revealed to have a unique "dipole-interactive" character, which enables the Rf group interacted with the water 'surface.' In addition, the SDA theory proves to be useful to predict the 2D aggregation property across the phase transition temperature of 19°C by use of the ΔV measurements. PMID:27569518

  16. The dual protection of a micro land snail against a micro predatory snail.

    PubMed

    Wada, Shinichiro; Chiba, Satoshi

    2013-01-01

    Defense against a single predatory attack strategy may best be achieved not by a single trait but by a combination of different traits. We tested this hypothesis experimentally by examining the unique shell traits (the protruded aperture and the denticles within the aperture) of the micro land snail Bensonella plicidens. We artificially altered shell characteristics by removing the denticles and/or cutting the protruded aperture. These snails were offered to the carnivorous micro land snail Indoennea bicolor, which preys on the snails by gaining entry to their shell. B. plicidens exhibited the best defence when both of the traits studied were present; the defensive ability of B. plicidens decreased if either trait was removed and was further reduced if both traits were removed. These results suggest that a combination of different traits provides more effective defence against attack by the predator than either single trait by itself. PMID:23326582

  17. The Dual Protection of a Micro Land Snail against a Micro Predatory Snail

    PubMed Central

    Wada, Shinichiro; Chiba, Satoshi

    2013-01-01

    Defense against a single predatory attack strategy may best be achieved not by a single trait but by a combination of different traits. We tested this hypothesis experimentally by examining the unique shell traits (the protruded aperture and the denticles within the aperture) of the micro land snail Bensonella plicidens. We artificially altered shell characteristics by removing the denticles and/or cutting the protruded aperture. These snails were offered to the carnivorous micro land snail Indoennea bicolor, which preys on the snails by gaining entry to their shell. B. plicidens exhibited the best defence when both of the traits studied were present; the defensive ability of B. plicidens decreased if either trait was removed and was further reduced if both traits were removed. These results suggest that a combination of different traits provides more effective defence against attack by the predator than either single trait by itself. PMID:23326582

  18. Interaction of surface and subsurface waters in the system

    NASA Astrophysics Data System (ADS)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Bychinski, Valerii; Sandimirov, Sergey

    2010-05-01

    Purpose of the study - to assess the influence of the Khibiny massif on the formation of the chemical composition of surface and subsurface waters, generated within its boundaries using physical-chemical modeling ("Selector" software package). Objects of monitoring - rivers with sources in the upper reaches of the Khibiny massif (surface waters), and boreholes, located in these rivers' valleys (subsurface waters) have been chosen as objects of monitoring. Processes of formation of surface and subsurface waters, generated within the boundaries of the Khibiny massif, have been considered within the framework of a unified system "water-rock-atmosphere-carbon". The initial data of the model: chemical compositions of the Khibiny massif rocks and chemical analyses of atmospheric and surface waters. Besides, there have been considered Clarke concentrations S, Cl, F, C, their influence on the formation of chemical composition of water solutions; geochemical mobility of chemical elements. The previously developed model has been improved with the purpose of assessment of the influence of organic substance, either liquid or solid, on the formation of the chemical composition of water. The record of the base model of the multisystem includes 24 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-H-O-e), 872 dependent components, including, in a water solution - 295, in a gas phase - 76, liquid hydrocarbons - 111, solid phases, organic and mineral substances - 390. The record of solid phases of multisystem is made with consideration of the mineral composition of the Khibiny massif. Using the created model, the physical-chemical modeling of surface and subsurface water generation has been carried out: 1. The system "water-rock-atmosphere" has been studied, depending on the interaction degree (ksi) of rock with water. A model like this allowed investigating the interactions of surface waters (rivers and lakes) with rocks that form the Khibiny massif. 2

  19. Quality of Surface Water in Missouri, Water Year 2007

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2007 water year (October 1, 2006 through September 30, 2007), data were collected at 67 stations including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, dissolved nitrite plus nitrte, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations, which primarily have been classified in groups corresponding to the physiography of the State, main land use, or unique station types. In addition, a summary of hydrologic conditions in the State during water year 2007 is presented.

  20. Modeling snail breeding in a bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Kovalev, V. S.; Manukovsky, N. S.; Tikhomirov, A. A.; Kolmakova, A. A.

    2015-07-01

    The discrete-time model of snail breeding consists of two sequentially linked submodels: "Stoichiometry" and "Population". In both submodels, a snail population is split up into twelve age groups within one year of age. The first submodel is used to simulate the metabolism of a single snail in each age group via the stoichiometric equation; the second submodel is used to optimize the age structure and the size of the snail population. Daily intake of snail meat by crewmen is a guideline which specifies the population productivity. The mass exchange of the snail unit inhabited by land snails of Achatina fulica is given as an outcome of step-by-step modeling. All simulations are performed using Solver Add-In of Excel 2007.

  1. Modeling snail breeding in a bioregenerative life support system.

    PubMed

    Kovalev, V S; Manukovsky, N S; Tikhomirov, A A; Kolmakova, A A

    2015-07-01

    The discrete-time model of snail breeding consists of two sequentially linked submodels: "Stoichiometry" and "Population". In both submodels, a snail population is split up into twelve age groups within one year of age. The first submodel is used to simulate the metabolism of a single snail in each age group via the stoichiometric equation; the second submodel is used to optimize the age structure and the size of the snail population. Daily intake of snail meat by crewmen is a guideline which specifies the population productivity. The mass exchange of the snail unit inhabited by land snails of Achatina fulica is given as an outcome of step-by-step modeling. All simulations are performed using Solver Add-In of Excel 2007. PMID:26256627

  2. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    SciTech Connect

    Elder, J.F.; Collins, J.J. )

    1991-01-01

    Freshwater molluscs--snails and bivalves--have been used frequently as bioindicator organisms. With increasing needs for research on contaminant effects in freshwater ecosystems, this kind of biomonitoring is likely to develop further in the future. Molluscs can be used effectively for studies of both organic and inorganic contaminants; this review focuses on studies involving bioaccumulation and toxicity of metals. Two important advantages of snails and bivalves over most other freshwater organisms for biomonitoring research are their large size and limited mobility. In addition, they are abundant in many types of freshwater environments and are relatively easy to collect and identify. At metal concentrations that are within ranges common to natural waters, they are generally effective bioaccumulators of metals. Biomonitoring studies with freshwater molluscs have covered a wide diversity of species, metals, and environments. The principal generalization that can be drawn from this research is that bioaccumulation and toxicity are extremely situation dependent; hence, it is difficult to extrapolate results from any particular study to other situations where the biological species or environmental conditions are different. Even within one species, individual characteristics such as size, life stage, sex, and genotype can have significant effects on responses to contaminants. The bioavailability of the metal is highly variable and depends on pH, presence of organic ligands, water hardness, and numerous other controlling factors. Despite this variability, past studies provide some general principles that can facilitate planning of research with freshwater snails and bivalves as metal bioindicators. These principles may also be useful in understanding and managing freshwater ecosystems.

  3. Compton Scattering from Bulk and Surface of Water

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Kuzmenko, Ivan; Vaknin, David

    2014-03-01

    Elastic and Compton scattering at grazing angle X-ray incidence from water show distinct behaviors below and above the critical angle for total reflections suggesting surface restructuring of the water surface. Using X-ray synchrotron radiation in reflectivity mode, we collect the Thomson and Compton scattering signals with energy dispersive detector at various angles near the normal to surface as a function of the angle of incidence. Analysis of the ratio between the Thomson and Compton intensity above the critical angle (which mainly probes bulk water) is a constant as expected from incoherent scattering from single water molecule, whereas the signal from the surface shows strong angular dependence on the incident angle. Although we do not fully understand the phenomena, we attribute the observation to more organized water at the interface. Ames Laboratory, DOE under contract No. DE-AC02-07CH11358 and Advanced Photon Source, DOE under contract No. DE-AC02-06CH11357.

  4. Interaction Of Water Molecules With SiC(001) Surfaces

    SciTech Connect

    Cicero, G; Catellani, A; Galli, G

    2004-08-10

    We have investigated the interaction of water molecules with the polar Si- and C- terminated surfaces of cubic Silicon Carbide by means of ab initio molecular dynamics simulations at finite temperature. Different water coverages were considered, from {1/4} to a complete monolayer. Irrespective of coverage, we find that water dissociates on the silicon terminated surfaces, leading to important changes in both its structural and electronic properties. On the contrary, the carbon terminated surface remains inert when exposed to water. We propose experiments to reveal the ionic and electronic structure of wet Si-terminated surfaces predicted by our calculations, which at full coverage are notably different from those of hydrated Si(001) substrates. Finally, we discuss the implications of our results for SiC surface functionalization.

  5. Interaction between water cluster ions and mica surface

    SciTech Connect

    Ryuto, Hiromichi Ohmura, Yuki; Nakagawa, Minoru; Takeuchi, Mitsuaki; Takaoka, Gikan H.

    2014-03-15

    Water cluster ion beams were irradiated on mica surfaces to investigate the interaction between molecular cluster ions and a mica surface. The contact angle of the mica surface increased with increasing dose of the water cluster ion beam, but the increase in the contact angle was smaller than that induced by an ethanol cluster ion beam. The surface roughness also increased with increasing dose of the water cluster ion beam, whereas the intensity of K 2p x-ray photoelectron spectroscopy peaks decreased with increasing dose of the water cluster ion beam. The decrease in the number of potassium atoms together with the increase in the surface roughness may be the causes of the increase in the contact angle.

  6. Behavior of severely supercooled water drops impacting on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Maitra, Tanmoy; Antonini, Carlo; Tiwari, Manish K.; Mularczyk, Adrian; Imeri, Zulkufli; Schoch, Philippe; Poulikakos, Dimos

    2014-11-01

    Surface icing, commonplace in nature and technology, has broad implications to daily life. To prevent surface icing, superhydrophobic surfaces/coatings with rationally controlled roughness features (both at micro and nano-scale) are considered to be a promising candidate. However, to fabricate/synthesize a high performance icephobic surface or coating, understanding the dynamic interaction between water and the surface during water drop impact in supercooled state is necessary. In this work, we investigate the water/substrate interaction using drop impact experiments down to -17°C. It is found that the resulting increased viscous effect of water at low temperature significantly affects all stages of drop dynamics such as maximum spreading, contact time and meniscus penetration into the superhydrophobic texture. Most interestingly, the viscous effect on the meniscus penetration into roughness feature leads to clear change in the velocity threshold for rebounding to sticking transition by 25% of supercooled drops. Swiss National Science Foundation (SNF) Grant 200021_135479.

  7. Liquid water can slip on a hydrophilic surface

    PubMed Central

    Ho, Tuan Anh; Papavassiliou, Dimitrios V.; Lee, Lloyd L.; Striolo, Alberto

    2011-01-01

    Understanding and predicting the behavior of water, especially in contact with various surfaces, is a scientific challenge. Molecular-level understanding of hydrophobic effects and their macroscopic consequences, in particular, is critical to many applications. Macroscopically, a surface is classified as hydrophilic or hydrophobic depending on the contact angle formed by a water droplet. Because hydrophobic surfaces tend to cause water slip whereas hydrophilic ones do not, the former surfaces can yield self-cleaning garments and ice-repellent materials whereas the latter cannot. The results presented herein suggest that this dichotomy might be purely coincidental. Our simulation results demonstrate that hydrophilic surfaces can show features typically associated with hydrophobicity, namely liquid water slip. Further analysis provides details on the molecular mechanism responsible for this surprising result. PMID:21911406

  8. Carbon evasion from surface waters in Alaska

    NASA Astrophysics Data System (ADS)

    Butman, D. E.; Stackpoole, S. M.; Clow, D. W.; Striegl, R. G.; Verdin, K. L.

    2014-12-01

    Gaseous evasion of carbon dioxide and methane from freshwater surfaces has been shown to be upwards of 50% of the total freshwater carbon flux. In many cases, surface efflux is the dominant removal pathway for carbon, however large-scale estimates remain poorly constrained. As part of the ongoing efforts to quantify the carbon sequestration potential of natural ecosystems in the US by the USGS LandCarbon Program, we present the results of a synthesis of available CO2 in streams and rivers, and CO2 and CH4 measurements in lakes across Alaska. For stream carbon, we performed modifications to a synthetic streamline dataset derived from the Elevation Derivatives for National Applications (EDNA) to reflect more recent and accurate climate. Stream and river surface areas only account for 0.54% of the total area of Alaska while preliminary data suggests lakes account for nearly 3.4%. Preliminary analysis suggests 24 Tg-C yr-1 is evaded from fluvial surfaces, with the highest fluxes located in the southeastern region of the state driven by longer periods above freezing, high annual precipitation, and steep topography. We are currently quantifying the uncertainties in these estimates as well as analyzing a new dataset on CO2 and CH4 concentrations in Alaskan lakes. We will present the first estimate for the total freshwater surface carbon flux for Alaska.

  9. Snail promotes an invasive phenotype in lung carcinoma

    PubMed Central

    2012-01-01

    Background Snail is a transcriptional factor which is known to influence the epitheliomesenchymal transition (EMT) by regulating adhesion proteins such as E-cadherin and claudins as well as matrix metalloproteases (MMP). Methods To evaluate the functional importance of snail, a transciptional factor involved in EMT in lung tumors, we investigated its expression in a large set of lung carcinomas by immunohistochemistry. Expression of snail and effects of snail knockdown was studied in cell lines. Results Nuclear snail expression was seen in 21% of cases this being strongest in small cell lung carcinomas (SCLC). There was significantly greater snail expression in SCLC compared to squamous cell or adenocarcinoma. Positive snail expression was associated with poor survival in the whole material and separately in squamous cell and adenocarcinomas. In Cox regression analysis, snail expression showed an independent prognostic value in all of these groups. In several cell lines knockdown of snail reduced invasion in both matrigel assay and in the myoma tissue model for invasion. The influence of snail knockdown on claudin expression was cell type specific. Snail knockdown in these cell lines modified the expression of MMP2 and MMP9 but did not influence the activation of these MMPs to any significant degree. Conclusions The results show that snail plays an important role in the invasive characteristics of lung carcinoma influencing the survival of the patients. Snail knockdown might thus be one option for targeted molecular therapy in lung cancer. Snail knockdown influenced the expression of claudins individually in a cell-line dependent manner but did not influence MMP expressions or activations to any significant degree. PMID:23157169

  10. Mate desertion in the snail kite

    USGS Publications Warehouse

    Beissinger, S.R.; Snyder, N.F.R.

    1988-01-01

    Mate desertion during the breeding cycle was documented at 28 of 36 (78%) snail kite, Rostrhamus sociabilis nests in Florida between 1979 and 1983. Offspring mortality occurred at only one deserted nest, however. Parents that were deserted by their mates continued to care for their young until independence (3?5 additional weeks) and provided snails at a rate similar to that of both parents combined before desertion. Males and females deserted with nearly equal frequency, except in 1982 when more females deserted. No desertion occurred during drought years, whereas desertion occurred at nearly every nest during favourable conditions. The occurrence of mate desertion was generally related to indirect measures of snail abundance: foraging range, snail delivery rates to the young and growth rates. Small broods were deserted more frequently by females than by males and tended to be deserted earlier than large ones. After desertion, deserters had the opportunity to re-mate and nest again since breeding seasons were commonly lengthy, but whether they did so was impossible to determine conclusively in most cases. The deserted bird sometimes incurred increased energetic costs and lost breeding opportunities during periods of monoparental care.

  11. Measurements of Water Surface Snow Lines in Classical Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Blevins, Sandra M.; Pontoppidan, Klaus M.; Banzatti, Andrea; Zhang, Ke; Najita, Joan R.; Carr, John S.; Salyk, Colette; Blake, Geoffrey A.

    2016-02-01

    We present deep Herschel-PACS spectroscopy of far-infrared water lines from a sample of four protoplanetary disks around solar-mass stars, selected to have strong water emission at mid-infrared wavelengths. By combining the new Herschel spectra with archival Spitzer-IRS spectroscopy, we retrieve a parameterized radial surface water vapor distribution from 0.1 to 100 au using two-dimensional dust and line radiative transfer modeling. The surface water distribution is modeled with a step model composed of a constant inner and outer relative water abundance and a critical radius at which the surface water abundance is allowed to change. We find that the four disks have critical radii of ˜3-11 au, at which the surface water abundance decreases by at least 5 orders of magnitude. The measured values for the critical radius are consistently smaller than the location of the surface snow line, as predicted by the observed spectral energy distribution. This suggests that the sharp drop-off of the surface water abundance is not solely due to the local gas-solid balance, but may also be driven by the deactivation of gas-phase chemical pathways to water below 300 K. Assuming a canonical gas-to-dust ratio of 100, as well as coupled gas and dust temperatures Tgas = Tdust, the best-fit inner water abundances become implausibly high (0.01-1.0 {{{{H}}}2}-1). Conversely, a model in which the gas and dust temperatures are decoupled leads to canonical inner-disk water abundances of ˜ {10}-4 {{{H}}}2-1, while retaining gas-to-dust ratios of 100. That is, the evidence for gas-dust decoupling in disk surfaces is stronger than for enhanced gas-to-dust ratios.

  12. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  13. Thin Water Films at Multifaceted Hematite Particle Surfaces.

    PubMed

    Boily, Jean-François; Yeşilbaş, Merve; Uddin, Munshi Md Musleh; Baiqing, Lu; Trushkina, Yulia; Salazar-Alvarez, Germàn

    2015-12-01

    Mineral surfaces exposed to moist air stabilize nanometer- to micrometer-thick water films. This study resolves the nature of thin water film formation at multifaceted hematite (α-Fe2O3) nanoparticle surfaces with crystallographic faces resolved by selected area electron diffraction. Dynamic vapor adsorption (DVA) in the 0-19 Torr range at 298 K showed that these particles stabilize water films consisting of up to 4-5 monolayers. Modeling of these data predicts water loadings in terms of an "adsorption regime" (up to 16 H2O/nm(2)) involving direct water binding to hematite surface sites, and of a "condensation regime" (up to 34 H2O/nm(2)) involving water binding to hematite-bound water nanoclusters. Vibration spectroscopy identified the predominant hematite surface hydroxo groups (-OH, μ-OH, μ3-OH) through which first layer water molecules formed hydrogen bonds, as well as surface iron sites directly coordinating water molecules (i.e., as geminal η-(OH2)2 sites). Chemometric analyses of the vibration spectra also revealed a strong correspondence in the response of hematite surface hydroxo groups to DVA-derived water loadings. These findings point to a near-saturation of the hydrogen-bonding environment of surface hydroxo groups at a partial water vapor pressure of ∼8 Torr (∼40% relative humidity). Classical molecular dynamics (MD) resolved the interfacial water structures and hydrogen bonding populations at five representative crystallographic faces expressed in these nanoparticles. Simulations of single oriented slabs underscored the individual roles of all (hydro)oxo groups in donating and accepting hydrogen bonds with first layer water in the "adsorption regime". These analyses pointed to the preponderance of hydrogen bond-donating -OH groups in the stabilization of thin water films. Contributions of μ-OH and μ3-OH groups are secondary, yet remain essential in the stabilization of thin water films. MD simulations also helped resolve crystallographic

  14. LANDSCAPE INDICATORS OF SURFACE WATER CONDITIONS

    EPA Science Inventory

    This task comprises three inter-related projects: 1) impervious surface mapping and evaluation of its impact ; 2) detection of BMPs and estimation of their ability to reduce nutrient input into streams, and; 3) detection of isolated wetlands. Each substask addresses critical is...

  15. Interactions between ground water and surface water in the Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; DeHan, R.S.; Hirten, J.J.; Catches, J.S.

    1997-01-01

    Ground water and surface water constitute a single dynamic system in roost parts of the Suwannee River basin due to the presence of karat features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.

  16. Third Stokes parameter emission from a periodic water surface

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.

    1991-01-01

    An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.

  17. Assessment of information on ground-water/surface-water interactions in the northern midcontinent

    USGS Publications Warehouse

    Strobel, Michael L.

    1995-01-01

    Ground-water/surface-water interactions are important to the hydrology of shallow aquifers, streams, lakes, and wetlands. Information on ground-water/surface-water interactions in the northern midcontinent was assessed. The ground-water/surface-water interactions in physiographic and climatic areas that contain many wetlands differed from the interactions in areas that consisted predominantly of alluvial aquifers along large streams. In both types of areas, however, the interactions are complex. The distribution of shallow ground-water observation wells in the northern midcontinent and the frequency of measurement were evaluated. Most shallow wells are located adjacent to major streams, especially in areas where wetlands are not a dominant surface-water feature. The frequency of measurement was inconsistent between states.

  18. Coherent structures in liquid water close to hydrophilic surfaces

    NASA Astrophysics Data System (ADS)

    Del Giudice, Emilio; Tedeschi, Alberto; Vitiello, Giuseppe; Voeikov, Vladimir

    2013-06-01

    Quantum Electrodynamics (QED) predicts the occurrence of a number of coherent dynamical phenomena in liquid water. In the present paper we focus our attention on the joint coherent oscillation of the almost free electrons produced by the coherent oscillation of the electron clouds of water molecules, which has been described in previous publications, and of the negative electric charges lying on the solid surfaces wet by water. This joint coherent oscillation gives rise to a number of phenomenological consequences which are found to exist in the physical reality and coincide with the layers of Exclusion Zone (EZ) water experimentally observed close to hydrophilic surfaces.

  19. Quality of surface water in Missouri, water year 2009

    USGS Publications Warehouse

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  20. Turbulent flow over an interactive alternating land-water surface

    NASA Astrophysics Data System (ADS)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  1. Physiology of the invasive apple snail Pomacea maculata: tolerance to low temperatures

    USGS Publications Warehouse

    Lewis E. Deaton; William Schmidt; Brody Leblanc; Carter, Jacoby; Kristy Mueck; Merino, Sergio

    2016-01-01

    Apple snails of the genus Pomacea native to South America have invaded and become established in Europe, Asia, and the United States. Both the channeled apple snail Pomacea canaliculata and the island apple snail Pomacea maculata have been reported in the United States. The two species are difficult to distinguish using morphological characters, leading to uncertainty about the identity of the animals from populations in the United States. Because the snails are subtropical, their tolerance of low temperatures is a critical factor in limiting the spread of the animals from present localities along the coast of the Gulf of Mexico to more northern areas. The tolerance of P. maculata collected in Louisiana to temperatures as low as 0°C was examined. There was no mortality among animals maintained in water at temperatures of 20°C or 15°C for 10 days. Survival of animals during a 10-day exposure to water at temperatures 10°C and 5°C was 50%. The LD50 for a 10-day exposure was 7°C. Snails did not survive more than 5 days in liquid water at 0°C. Ammonia excretion by animals in temperatures of 20°C and 15°C was comparable to values reported for freshwater gastropods; at very low temperatures, excretion of ammonia was decreased. There was no difference in the mean values of the osmolality of the hemolymph of animals exposed to 20°C, 15°C and 10°C for 10 days. Sequencing of mitochondrial cytochrome oxidase 1 identified the animals in the Louisiana population used in this study as P. maculata.

  2. Phosphorus removal with membrane filtration for surface water treatment.

    PubMed

    Dietze, A; Gnirss, R; Wiesmann, U

    2002-01-01

    Surface waters are often burdened with inflows of low quality water, so that drinking-water production, swimming or ground water charging must be restricted. To ensure the long-term use of such surface water it is necessary to treat the influents or the water used for ground water charging. The current treatment process for phosphorus and turbidity removal is a process combination called floc filtration. By using this conventional method it is possible to reduce the dissolved ortho-phosphate and the turbidity (particulate phosphorus) as well as the amounts of algae and pathogenic organisms to very low concentrations. The high degree of reduction is only achieved by a relatively high dosage of chemicals. A comparison will be made between this process, which represents the state-of-the-art, and the combination of precipitation/coagulation with micro-/ultrafiltration in dead-end filtration mode. PMID:12361018

  3. Summary of I-129 measurements in ground and surface waters

    SciTech Connect

    Kantelo, M.V.

    1987-11-17

    The iodine-129 content of groundwater and surface water at on-plant (Savannah River Plant) and off-plant locations has been determined at irregular intervals since 1970 using neutron activation analysis. I-129 was detected in groundwater near the Burial Ground and near the seepage basins of the Separations areas. For reference, I-129 concentrations in the groundwater can be compared to the EPA drinking water standard. At a few locations the concentrations exceeded both the existing and pending EPA drinking water standard. In surface water, Four Mile Creek was the only SRP stream found to transport significant I-129 to the Savannah River. Dilution by C-Reactor discharge and the Savannah River reduced the off-plant I-129 concentrations in river water to less than 1% of the existing EPA drinking water standard and less than 0.01% of the pending EPA drinking water standard.

  4. Two-dimensional percolation at the free water surface and its relation with the surface tension anomaly of water.

    PubMed

    Sega, Marcello; Horvai, George; Jedlovszky, Pál

    2014-08-01

    The percolation temperature of the lateral hydrogen bonding network of the molecules at the free water surface is determined by means of molecular dynamics computer simulation and identification of the truly interfacial molecules analysis for six different water models, including three, four, and five site ones. The results reveal that the lateral percolation temperature coincides with the point where the temperature derivative of the surface tension has a minimum. Hence, the anomalous temperature dependence of the water surface tension is explained by this percolation transition. It is also found that the hydrogen bonding structure of the water surface is largely model-independent at the percolation threshold; the molecules have, on average, 1.90 ± 0.07 hydrogen bonded surface neighbors. The distribution of the molecules according to the number of their hydrogen bonded neighbors at the percolation threshold also agrees very well for all the water models considered. Hydrogen bonding at the water surface can be well described in terms of the random bond percolation model, namely, by the assumptions that (i) every surface water molecule can form up to 3 hydrogen bonds with its lateral neighbors and (ii) the formation of these hydrogen bonds occurs independently from each other. PMID:25106600

  5. Water diffusion on TiO2 anatase surface

    NASA Astrophysics Data System (ADS)

    Agosta, L.; Gala, F.; Zollo, G.

    2015-06-01

    Compatibility between biological molecules and inorganic materials, such as crystalline metal oxides, is strongly dependent on the selectivity properties and the adhesion processes at the interface between the two systems. Among the many different aspects that affect the adsorption processes of peptides or proteins onto inorganic surfaces, such as the charge state of the amino acids, the peptide 3D structure, the surface roughness, the presence of vacancies or defects on and below the surface, a key role is certainly played by the water solvent whose molecules mediate the interaction. Then the surface hydration pattern may strongly affect the adsorption behavior of biological molecules. For the particular case of (101) anatase TiO2 surface that has a fundamental importance in the interaction of biocompatible nano-devices with biological environment, it was shown, both theoretically and experimentally, that various hydration patterns are close in energy and that the water molecules are mobile at as low temperature values as 190 K. Then it is important to understand the dynamical behavior of first hydration layer of the (101) anatase surface. As a first approach to this problem, density functional calculations are used to investigate water diffusion on the (101) anatase TiO2 surface by sampling the potential energy surface of water molecules of the first hydration layer thus calculating the water molecule migration energy along some relevant diffusion paths on the (101) surface. The measured activation energy of water migration seems in contrast with the observed surface mobility of the water molecules that, as a consequence could be explained invoking a strong role of the entropic term in the context of the transition state theory.

  6. Identifying and Mapping Seasonal Surface Water Frost with MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Bandfield, J. L.; Wood, S. E.

    2013-12-01

    The Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured surface broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. However, few studies have investigated seasonal surface water frost and its role in the global water cycle. We examine zonally-averaged TES daytime albedo, temperature, and water vapor abundance data [after Smith, 2004] to map the presence of surface water frost on Mars. Surface water frost occurs in the polar and mid latitudes, in regions with surface temperatures less than 220 K and above 150 K, and can significantly increase albedo relative to the bare surface. In the northern hemisphere water frost is most apparent in late fall/early winter, before the onset of carbon dioxide frost. Dust storms occurring near northern winter solstice affect albedo data and prevent us from putting a latitudinal lower limit on the water frost in the northern hemisphere. Regardless, seasonal water frost occurs at least as low as 48°N in Utopia Planitia, beginning at Ls=~230°, as observed by Viking Lander 2 [Svitek and Murray, 1990]. Daytime surface water frost was also observed at the Phoenix Lander site (68°N) beginning at Ls=~160° [Cull et al., 2010]. The timing of albedo variations observed by TES agree relatively well with lander observations of seasonal frost. Seasonal water frost is not detected during fall in the southern hemisphere. A potential explanation for this discrepancy, compared with frost detections in the north, is the disparity in atmospheric water vapor abundance between the two hemispheres. The frost point temperatures for water vapor

  7. Formation of Water on a Warm Amorphous Silicate Surface

    NASA Astrophysics Data System (ADS)

    Vidali, Gianfranco; He, Jiao

    2014-06-01

    It is well established that reactions on interstellar dust grain surfaces are indispensable for water formation in space. Among all the intermediate products that lead to water formation, the OH radical is especially important because is a product of all the three main water formation surface routes, i.e., the hydrogenation of O, O2, and O3, and it also connects these three routes. The desorption energy of OH from dust grain surfaces, along with dust grain temperature, determines the availability OH for grain surface versus gas-phase reactions. We experimentally investigated water formation on the surface of a warm amorphous silicate via H+O3→OH+O2. The surface temperature was kept at 50 K so as to exclude the interference of O2. It is found that OH has a significant residence time at 50 K. The OH desorption energy from amorphous silicate surface is calculated to be at least 1680 K, and possibly as high as 4760 K. Water is formed efficiently via OH+H and OH+H2, and the product H2O stays on the surface upon formation. Deuterium has also been used in place of hydrogen to check isotopic effects. This work is supported by NSF, Astronomy & Astrophysics Division (Grants No. 0908108 and 1311958) and NASA (Grant No. NNX12AF38G). We thank Dr. J.Brucato of the Astrophysical Observatory of Arcetri for providing the samples used in these experiments.

  8. Surface Propensities of the Self-Ions of Water

    PubMed Central

    2016-01-01

    The surface charge of water, which is important in a wide range of chemical, biological, material, and environmental contexts, has been a subject of lengthy and heated debate. Recently, it has been shown that the highly efficient LEWIS force field, in which semiclassical, independently mobile valence electron pairs capture the amphiproticity, polarizability and H-bonding of water, provides an excellent description of the solvation and dynamics of hydroxide and hydronium in bulk water. Here we turn our attention to slabs, cylinders, and droplets. In extended simulations with 1000 molecules, we find that hydroxide consistently prefers the surface, hydronium consistently avoids the surface, and the two together form an electrical double layer until neutralization occurs. The behavior of hydroxide can largely be accounted for by the observation that hydroxide moving to the surface loses fewer hydrogen bonds than are gained by the water molecule that it displaces from the surface. At the same time, since the orientation of the hydroxide increases the ratio of dangling hydrogens to dangling lone pairs, the proton activity of the exposed surface may be increased, rather than decreased. Hydroxide also moves more rapidly in the surface than in the bulk, likely because the proton donating propensity of neighboring water molecules is focused on the one hydrogen that is not dangling from the surface. PMID:27163053

  9. Surface Propensities of the Self-Ions of Water.

    PubMed

    Bai, Chen; Herzfeld, Judith

    2016-04-27

    The surface charge of water, which is important in a wide range of chemical, biological, material, and environmental contexts, has been a subject of lengthy and heated debate. Recently, it has been shown that the highly efficient LEWIS force field, in which semiclassical, independently mobile valence electron pairs capture the amphiproticity, polarizability and H-bonding of water, provides an excellent description of the solvation and dynamics of hydroxide and hydronium in bulk water. Here we turn our attention to slabs, cylinders, and droplets. In extended simulations with 1000 molecules, we find that hydroxide consistently prefers the surface, hydronium consistently avoids the surface, and the two together form an electrical double layer until neutralization occurs. The behavior of hydroxide can largely be accounted for by the observation that hydroxide moving to the surface loses fewer hydrogen bonds than are gained by the water molecule that it displaces from the surface. At the same time, since the orientation of the hydroxide increases the ratio of dangling hydrogens to dangling lone pairs, the proton activity of the exposed surface may be increased, rather than decreased. Hydroxide also moves more rapidly in the surface than in the bulk, likely because the proton donating propensity of neighboring water molecules is focused on the one hydrogen that is not dangling from the surface. PMID:27163053

  10. Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsieh, Chien-Te; Chen, Jin-Ming; Kuo, Rong-Rong; Lin, Ta-Sen; Wu, Chu-Fu

    2005-02-01

    Various rough surfaces coated with titanium oxide nanoparticles and perfluoroalkyl methacrylic copolymer were conducted to explore the influence of surface roughness on the performance of water- and oil-repellence. Surface characteristics determined from nitrogen physisorption at -196 °C showed that the surface area and pore volume increased significantly with the extent of nanoparticle ratio, indicating an increase of surface roughness. Due to the surface nano-coating, the maximum contact angles of water and ethylene glycol (EG) droplets increased up to 56 and 48%, respectively, e.g. from 105° to 164° for water droplets and from 96° to 144° for EG droplets. The excellent water- and oil-repellence of the prepared surfaces was ascribed to this increase of surface roughness and fluorinated-contained surface. Compared with Wenzel model, the Cassie model yielded a fairly good fit to the simulation of contact angle with surface roughness. However, a derivation of 3°-10° at higher roughness still existed. This phenomenon was very likely due to the surface heterogeneity with different pore size distributions of the fractal surfaces. In this case, it was unfavorable for super repellency from rough surface with larger mesopore fraction because of its capillary condensation, reflecting that micropore provided more air resistance against wettability.

  11. Allying with armored snails: the complete genome of gammaproteobacterial endosymbiont

    PubMed Central

    Nakagawa, Satoshi; Shimamura, Shigeru; Takaki, Yoshihiro; Suzuki, Yohey; Murakami, Shun-ichi; Watanabe, Tamaki; Fujiyoshi, So; Mino, Sayaka; Sawabe, Tomoo; Maeda, Takahiro; Makita, Hiroko; Nemoto, Suguru; Nishimura, Shin-Ichiro; Watanabe, Hiromi; Watsuji, Tomo-o; Takai, Ken

    2014-01-01

    Deep-sea vents harbor dense populations of various animals that have their specific symbiotic bacteria. Scaly-foot gastropods, which are snails with mineralized scales covering the sides of its foot, have a gammaproteobacterial endosymbiont in their enlarged esophageal glands and diverse epibionts on the surface of their scales. In this study, we report the complete genome sequencing of gammaproteobacterial endosymbiont. The endosymbiont genome displays features consistent with ongoing genome reduction such as large proportions of pseudogenes and insertion elements. The genome encodes functions commonly found in deep-sea vent chemoautotrophs such as sulfur oxidation and carbon fixation. Stable carbon isotope (13C)-labeling experiments confirmed the endosymbiont chemoautotrophy. The genome also includes an intact hydrogenase gene cluster that potentially has been horizontally transferred from phylogenetically distant bacteria. Notable findings include the presence and transcription of genes for flagellar assembly, through which proteins are potentially exported from bacterium to the host. Symbionts of snail individuals exhibited extreme genetic homogeneity, showing only two synonymous changes in 19 different genes (13 810 positions in total) determined for 32 individual gastropods collected from a single colony at one time. The extremely low genetic individuality in endosymbionts probably reflects that the stringent symbiont selection by host prevents the random genetic drift in the small population of horizontally transmitted symbiont. This study is the first complete genome analysis of gastropod endosymbiont and offers an opportunity to study genome evolution in a recently evolved endosymbiont. PMID:23924784

  12. A siphon gage for monitoring surface-water levels

    USGS Publications Warehouse

    McCobb, T.D.; LeBlanc, D.R.; Socolow, R.S.

    1999-01-01

    A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold regions cause discontinuity and inaccuracy in the data collected. Installation and field testing of a siphon gage using 0.75-in-diameter polyethylene tubing at Ashumet Pond in Falmouth, Massachusetts, demonstrated that the siphon gage can provide long-term data with a field effort and accuracy equivalent to measurement of ground-water levels at an observation well.A device that uses a siphon tube to establish a hydraulic connection between the bottom of an onshore standpipe and a point at the bottom of a water body was designed and tested for monitoring surface-water levels. Water is added to the standpipe to a level sufficient to drive a complete slug of water through the siphoning tube and to flush all air out of the system. The water levels in the standpipe and the water body equilibrate and provide a measurable static water surface in the standpipe. The siphon gage was designed to allow quick and accurate year-round measurements with minimal maintenance. Currently available devices for monitoring surface-water levels commonly involve time-consuming and costly installation and surveying, and the movement of reference points and the presence of ice cover in cold

  13. ICESat-derived inland water surface spot heights

    NASA Astrophysics Data System (ADS)

    O'Loughlin, Fiachra E.; Neal, Jeffrey; Yamazaki, Dai; Bates, Paul D.

    2016-04-01

    Accurate measurement of water surface height is key to many fields in hydrology and limnology. Satellite radar and laser altimetry have been shown to be useful means of obtaining such data where no ground gauging stations exist, and the accuracy of different satellite instruments is now reasonably well understood. Past validation studies have shown water surface height data from the ICESat instrument to have the highest vertical accuracy (mean absolute errors of ˜10 cm for ICESat, compared, for example, with ˜28 cm from Envisat), yet no freely available source of processed ICESat data currently exists for inland water bodies. Here we present a database of processed and quality checked ICESat-derived inland water surface heights (IWSH) for water bodies greater than 3 arc sec (˜92 m at the equator) in width. Four automated methods for removing spurious observations or outliers were investigated, along with the impact of using different water masks. We find that the best performing method ensures that observations used are completely surrounded by water in the SRTM Water Body data. Using this method for removing spurious observations, we estimate transect-averaged water surface heights at 587,292 unique locations from 2003 to 2009, with the number of locations proportional to the size of the river.

  14. Wave-Generated Flows on the Water Surface

    NASA Astrophysics Data System (ADS)

    Shats, Michael; Punzmann, Horst; Francois, Nicolas; Xia, Hua

    2016-06-01

    Predicting trajectories of fluid parcels on the water surface perturbed by waves is a difficult mathematical and theoretical problem. It is even harder to model flows generated on the water surface due to complex three-dimensional wave fields, which commonly result from the modulation instability of planar waves. We have recently shown that quasi-standing, or Faraday, waves are capable of generating horizontal fluid motions on the water surface whose statistical properties are very close to those in two-dimensional turbulence. This occurs due to the generation of horizontal vortices. Here we show that progressing waves generated by a localized source are also capable of creating horizontal vortices. The interaction between such vortices can be controlled and used to create stationary surface flows of desired topology. These results offer new methods of surface flow generation, which allow engineering inward and outward surface jets, large-scale vortices and other complex flows. The new principles can be also be used to manipulate floaters on the water surface and to form well-controlled Lagrangian coherent structures on the surface. The resulting flows are localized in a narrow layer near the surface, whose thickness is less than one wavelength.

  15. The biological impact of landfill leachate on nearby surface water

    SciTech Connect

    Geis, S.W.

    1994-12-31

    Five landfill sites were evaluated for their potential to adversely impact the biotic community of surface waters. Acute and chronic aquatic toxicity tests were used to determine the toxicity of water samples collected from landfill monitoring wells and the nearest surface water. Four of the five landfill sites exhibited acute or chronic toxicity to Ceriodaphnia dubia, Daphnia magna, or Pimephales promelas. Toxicity identification procedures performed on water samples revealed toxic responses to metals and one toxic response to organic compounds. Surface water toxicity at an industrial landfill is most likely due to zinc from a tire production facility. Iron and a surfactant were determined to be the probable causes for toxicity at two municipal solid waste landfills.

  16. Intermolecular Casimir-Polder forces in water and near surfaces

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Persson, Clas; Sernelius, Bo E.; Parsons, Drew F.; Malthe-Sørenssen, Anders; Boström, Mathias

    2014-09-01

    The Casimir-Polder force is an important long-range interaction involved in adsorption and desorption of molecules in fluids. We explore Casimir-Polder interactions between methane molecules in water, and between a molecule in water near SiO2 and hexane surfaces. Inclusion of the finite molecular size in the expression for the Casimir-Polder energy leads to estimates of the dispersion contribution to the binding energies between molecules and between one molecule and a planar surface.

  17. Reassigning the most stable surface of hydroxyapatite to the water resistant hydroxyl terminated (010) surface

    NASA Astrophysics Data System (ADS)

    Zeglinski, Jacek; Nolan, Michael; Thompson, Damien; Tofail, Syed A. M.

    2014-05-01

    Understanding the surface stability and crystal growth morphology of hydroxyapatite is important to comprehend bone growth and repair processes and to engineer protein adsorption, cellular adhesion and biomineralization on calcium phosphate based bone grafts and implant coatings. It has generally been assumed from electronic structure calculations that the most stable hydroxyapatite surface is the (001) surface, terminated just above hydroxyl ions perpendicular to the {001} crystal plane. However, this is inconsistent with the known preferential growth direction of hydroxyapatite crystals and previous experimental work which indicates that, contrary to currently accepted theoretical predictions, it is actually the (010) surface that is preferentially exposed. The surface structure of the (010) face is still debated and needs reconciliation. In this work, we use a large set of density functional theory calculations to model the interaction of water with hydroxyapatite surfaces and probe the surface stability and resistance to hydrolytic remodeling of a range of surface faces including the (001) surface and the phosphate-exposed, calcium-exposed, and hydroxyl-exposed terminations of the (010) surface. For the (001) surface and the phosphate-exposed (010) surface, dissociative water adsorption is favorable. In contrast, the hydroxyl-terminated (010) surface will not split water and only molecular adsorption of water is possible. Our calculations show, overall, that the hydroxyl-terminated (010) surface is the most stable and thus should be the predominant form of the hydroxyapatite surface exposed in experiments. This finding reconciles discrepancies between the currently proposed surface terminations of hydroxyapatite and the experimentally observed crystal growth direction and surface stability, which may aid efforts to accelerate biomineralization and better control bone-repair processes on hydroxyapatite surfaces.

  18. Formation and transport of deethylatrazine and deisopropylatrazine in surface water

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.

    1994-01-01

    Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  19. Occurrence of deeethylatrazine and deisopropylatrazine in surface and ground water

    SciTech Connect

    Thurman, E.M.; Goolsby, D.A.

    1996-10-01

    Field-disappearance studies and a regional study of nine rivers in the Midwest show that deethylatrazine (DEA) and deisopropylatrazine (DIA) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine and cyanazine. The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 mg/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations giving a {open_quotes}second flush{close_quotes} of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4{plus_minus}0.1 when atrazine is the major triazine present to 0.6{plus_minus}0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  20. Landfill disposal of unused medicines reduces surface water releases.

    PubMed

    Tischler, Lial; Buzby, Mary; Finan, Douglas S; Cunningham, Virginia L

    2013-01-01

    The pharmaceutical industry is conducting research to evaluate the pathways and fate of active pharmaceutical ingredients from the consumer to surface waters. One potential pathway identified by the researchers is the disposal of unused pharmaceutical products that are discarded by consumers in household trash and disposed of in municipal solid waste landfills. This study was designed to evaluate relative amounts of surface water exposures through the landfill disposal pathway compared to patient use and flushing of unused medicine pathways. The estimated releases to surface water of 24 example active pharmaceutical ingredients (APIs) in landfill leachate were calculated for 3 assumed disposal scenarios: 5%, 10%, and 15% of the total annual quantity of API sold is discarded and unused. The estimated releases from landfills to surface waters, after treatment of the leachate, were compared to the total amount of each example API that would be released to surface waters from publicly owned treatment works, generated by patient use and excretion. This study indicates that the disposal of unused medications in municipal solid waste landfills effectively eliminates the unused medicine contribution of APIs to surface waters; greater than 99.9% of APIs disposed of in a landfill are permanently retained. PMID:22556107

  1. Epidemiology of Schistosoma mansoni infection and its relationship to snail distribution in a village at the Nile bank south to Cairo.

    PubMed

    Sayed, Hanan A; El-Ayyat, Afaf; Kader, Ahmed Abdel; Sabry, Hoda Y; Amer, Neimat M

    2004-01-01

    The relationship between epidemiology of S. mansoni infection and snail distribution at a village, related to Guiza Governorate and lies south to Cairo, was investigated. A systematic random sample of houses was selected. All inhabitants of the houses were invited to share in the study. The Number examined was 704. Urine and stools were examined using Nucleopore filtration and standard Kato-Katz techniques, respectively. Snail collection was done from 35 sites along the water bodies related to the village. Snails collected were examined by cercariae shedding under light. Snail differentiation was done. The results showed that the prevalence of Schistosoma mansoni human infection was 25.1 % and GMEC was 2.4 +/- 5.5. Schistosoma haematobium infection was zero percent. Biomphlaria alexandrina snail infection rate was 3.7% with density equal 0.5 +/- 1.3. Bulinus truncatus snail infection rate was zero percent. The pattern of S. mansoni human infection was closely related to snail distribution and infection. Presence of a hybrid species of B. alexandrina and B. glabrata may explain the epidemiological pattern found in the studied village. PMID:16916052

  2. Surface solvation for an ion in a water cluster.

    PubMed

    Herce, David H; Perera, Lalith; Darden, Thomas A; Sagui, Celeste

    2005-01-01

    We have used molecular dynamics simulations to study the structural, dynamical, and thermodynamical properties of ions in water clusters. Careful evaluations of the free energy, internal energy, and entropy are used to address controversial or unresolved issues, related to the underlying physical cause of surface solvation, and the basic assumptions that go with it. Our main conclusions are the following. (i) The main cause of surface solvation of a single ion in a water cluster is both water and ion polarization, coupled to the charge and size of the ion. Interestingly, the total energy of the ion increases near the cluster surface, while the total energy of water decreases. Also, our analysis clearly shows that the cause of surface solvation is not the size of the total water dipole (unless this is too small). (ii) The entropic contribution is the same order of magnitude as the energetic contribution, and therefore cannot be neglected for quantitative results. (iii) A pure energetic analysis can give a qualitative description of the ion position at room temperature. (iv) We have observed surface solvation of a large positive iodinelike ion in a polarizable water cluster, but not in a nonpolarizable water cluster. PMID:15638604

  3. Digenean trematode infections of native freshwater snails and invasive Potamopyrgus antipodarum in the Grand Teton National Park/John D. Rockefeller Memorial Parkway Area.

    PubMed

    Adema, C M; Lun, C-M; Hanelt, B; Seville, R S

    2009-02-01

    Outside its native range, the invasive New Zealand mud snail (NZMS), Potamopyrgus antipodarum, is rarely reported to harbor parasites. To test this observation, 7 sites along the Snake River and Polecat Creek in the Grand Teton National Park/John D Rockefeller Memorial Parkway area (Wyoming) were surveyed for native aquatic snails, NZMS, and associated digenean trematodes, in July 2005. At 6 sites, native snails harbored patent digenean infections; within 2 hr, < or =10% of lymnaeid snails shed furcocercariae or xiphidiocercariae, and < or =42% of physid snails released furcocercariae or echinostome cercariae. Partial 18S rDNA sequences were recovered from several furcocercariae. Potamopyrgus antipodarum was present at, and collected from, 5 sites. Polymerase chain reaction assays targeting digenean rDNA sequences in DNA extracted from pools of 150 NZMS snails did not detect parasites. The examination of 960 NZMS by overnight shedding yielded 1 occurrence of (surface-encysted) metacercariae of an unclassified notocotylid (based on 18S and 28S rDNA sequences). The dissection of 150 ethanol-fixed NZMS (30/site) revealed 2 types of digenean metacercariae encysted in tissues of 5 snails from Polecat Creek. Thus, invasive NZMS may serve as first and second intermediate host for digenean parasites. PMID:18576875

  4. CHARACTERIZING SURFACE WATERS THAT MAY NOT REQUIRE FILTRATION

    EPA Science Inventory

    Field data from various utilities were studied with the object of identifying a set of characteristics of a surface water that might allow it to be successfully treated by disinfection alone, thus avoiding the need to filter. It was found possible to define water quality standard...

  5. SURFACE WATER QUALITY PARAMETERS FOR MONITORING OIL SHALE DEVELOPMENT

    EPA Science Inventory

    This report develops and recommends prioritized listings of chemical, physical, and biological parameters which can be used to assess the environmental impact of oil shale development on surface water resources. Each of the potential water-related problems is addressed in the con...

  6. Dark solitons on the surface of water

    NASA Astrophysics Data System (ADS)

    Chabchoub, Amin

    2014-05-01

    The nonlinear Schrödinger equation (NLS) models the evolution dynamics in time and space of weakly nonlinear water wave trains in finite or infinite depth. In the defocusing regime (finite depth), the NLS admits a family of soliton solutions, which describe the strong depression of wave envelopes. These solitons are referred to dark solitons and have been already observed in optics and in Bose-Einstein condensates. We present experimental results on gray and black solitons, propagating in a wave flume. Furthermore, we analyze the data and discuss the discrepancies observed with respect to theoretical predictions. The results prove that in the case of weak-nonlinearity of the waves, the NLS describes well the dynamics of nonlinear wave packets in finite depth.

  7. Dynamics of ice nucleation on water repellent surfaces.

    PubMed

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications. PMID:22235939

  8. Specialized insulin is used for chemical warfare by fish-hunting cone snails

    PubMed Central

    Safavi-Hemami, Helena; Gajewiak, Joanna; Karanth, Santhosh; Robinson, Samuel D.; Ueberheide, Beatrix; Douglass, Adam D.; Schlegel, Amnon; Imperial, Julita S.; Watkins, Maren; Bandyopadhyay, Pradip K.; Yandell, Mark; Li, Qing; Purcell, Anthony W.; Norton, Raymond S.; Ellgaard, Lars; Olivera, Baldomero M.

    2015-01-01

    More than 100 species of venomous cone snails (genus Conus) are highly effective predators of fish. The vast majority of venom components identified and functionally characterized to date are neurotoxins specifically targeted to receptors, ion channels, and transporters in the nervous system of prey, predators, or competitors. Here we describe a venom component targeting energy metabolism, a radically different mechanism. Two fish-hunting cone snails, Conus geographus and Conus tulipa, have evolved specialized insulins that are expressed as major components of their venoms. These insulins are distinctive in having much greater similarity to fish insulins than to the molluscan hormone and are unique in that posttranslational modifications characteristic of conotoxins (hydroxyproline, γ-carboxyglutamate) are present. When injected into fish, the venom insulin elicits hypoglycemic shock, a condition characterized by dangerously low blood glucose. Our evidence suggests that insulin is specifically used as a weapon for prey capture by a subset of fish-hunting cone snails that use a net strategy to capture prey. Insulin appears to be a component of the nirvana cabal, a toxin combination in these venoms that is released into the water to disorient schools of small fish, making them easier to engulf with the snail’s distended false mouth, which functions as a net. If an entire school of fish simultaneously experiences hypoglycemic shock, this should directly facilitate capture by the predatory snail. PMID:25605914

  9. An Ontology Design Pattern for Surface Water Features

    SciTech Connect

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E; Feng, Chen-Chieh; Usery, Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  10. Using water isotopes in the evaluation of land surface models

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Risi, Camille; Ottlé, Catherine; Bastrikov, Vladislav; Valdayskikh, Victor; Cattani, Olivier; Jouzel, Jean; Gribanov, Konstantin; Nekrasova, Olga; Zacharov, Vyacheslav; Ogée, Jérôme; Wingate, Lisa; Raz-Yaseef, Naama

    2013-04-01

    Several studies show that uncertainties in the representation of land surface processes contribute significantly to the spread in projections for the hydrological cycle. Improvements in the evaluation of land surface models would therefore translate into more reliable predictions of future changes. The isotopic composition of water is affected by phase transitions and, for this reason, is a good tracer for the hydrological cycle. Particularly relevant for the assessment of land surface processes is the fact that bare soil evaporation and transpiration bear different isotopic signatures. Water isotopic measurement could thus be employed in the evaluation of the land surface hydrological budget. With this objective, isotopes have been implemented in the most recent version of the land surface model ORCHIDEE. This model has undergone considerable development in the past few years. In particular, a newly discretised (11 layers) hydrology aims at a more realistic representation of the soil water budget. In addition, biogeophysical processes, as, for instance, the dynamics of permafrost and of its interaction with snow and vegetation, have been included. This model version will allow us to better resolve vertical profiles of soil water isotopic composition and to more realistically simulate the land surface hydrological and isotopic budget in a broader range of climate zones. Model results have been evaluated against temperature profiles and isotopes measurements in soil and stem water at sites located in semi-arid (Yatir), temperate (Le Bray) and boreal (Labytnangi) regions. Seasonal cycles are reasonably well reproduced. Furthermore, a sensitivity analysis investigates to what extent water isotopic measurements in soil water can help constrain the representation of land surface processes, with a focus on the partitioning between evaporation and transpiration. In turn, improvements in the description of this partitioning may help reduce the uncertainties in the land

  11. A Model of Surface Energy Budget over Water, Snow and Ice Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, J.; Bras, R. L.

    2012-12-01

    The recently developed maximum entropy production (MEP) model of turbulent and conductive heat fluxes over land surfaces is generalized to water/snow/ice surfaces. Analogous to the case of land surfaces, an analytical solution of latent, sensible and surface water/snow/ice heat flux is derived as a function of surface temperature (e.g. sea surface temperature) and surface net short- and long wave radiation. Compared to the classical bulk transfer equations based models, the MEP model does not need wind speed, near-surface air temperature and roughness lengths as input. The model is parameter parsimonious. A test of the MEP model against observations from several field experiments has suggested its usefulness and potential for predicting conductive and turbulent fluxes over water/snow/ice surfaces. The model is a suitable tool for remote sensing of the surface energy balance over oceans, snow covered Antarctica and sea ice. The model can also be incorporated into regional and global atmospheric models as an alternative algorithm for surface energy/water balance.

  12. Probing the water on chemically heterogeneous surface: interfacial-structural analysis for surface charge distribution

    NASA Astrophysics Data System (ADS)

    Shin, Sucheol; Willard, Adam

    We introduce the novel method for predicting the charge distribution of chemically heterogeneous surface, but reconstructed from the perspective of the interfacial water molecules. Our approach is to analyze the response of water to a disordered surface and infer from that response the heterogeneous distribution of surface charge. We accomplish this using a framework that is based on a probabilistic description of water's interfacial molecular structure and maximum likelihood estimation. This framework allows to deduce the apparent charge that is most congruently represented by the set of water configurations over the particular region of a surface. We demonstrate that the estimated charge distribution is consistent to the actual distribution for a static model substrate and hence that our method can be applied to investigate a dynamic fluctuating substrate such as the surface of a hydrated protein. This novel technique provides the useful information that can reflect the influence of fluctuations in the structure of biomolecule.

  13. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  14. A GIS water balance approach to support surface water flood risk management

    NASA Astrophysics Data System (ADS)

    Diaz-Nieto, J.

    Concern has arisen as to whether the lack of appropriate consideration to surface water in urban spatial planning is reducing our capacity to manage surface water flood risk. Appropriate tools are required that allow spatial planners to explore opportunities and solutions for surface after flooding at large spatial scales. An urban surface water balance model has been developed that screens large urban areas to identify flooded areas and which allows solutions to be explored. The model hypothesis is that key hydrological characteristics; storage volume and location, flow paths and surface water generation capture the key processes responsible for surface water flooding> The model uses a LiDAR DEM (Light Detection and Ranging Digital Elevation Model) as the basis for determining surface water accumulation in a catchment and has been developed so that it requires minimal inputs and computational resources. The urban surface water balance approach is applied to Keighley in West Yorkshire where several instances of surface water flooding have been reported. This research used a postal questionnaire, followed up with site visits to collect data on surface water flooding locations in Keighley. A qualitative analysis based on field visits revealed that the degree of interaction with the sewer network varies spatially, and as the importance of the interaction of the sewer system increase, the accuracy of the model results are lowered. It also highlighted that local detail not present in the DEM, the presence of urban drainage assets and the performance of the sewer system which are not be represented in the model, can determine the accuracy of model results. Model results were used as a basis to develop solutions to surface water flooding. A least cost path methodology was developed to identify managed flood routes as a solution. These were translated into model inputs in the form a modified DEM.

  15. Profile of the Interface between a Hydrophobic Surface and Water

    NASA Astrophysics Data System (ADS)

    Perez-Salas, Ursula; Stalgren, Johan; Majkrzak, Charles; Heinrich, Frank; Toney, Michael; Vanderah, David

    2008-03-01

    Aqueous interfaces are ubiquitous and play a fundamental role in biology, chemistry, and geology. The structure of water near interfaces is of the utmost importance, including chemical reactivity and macromolecular function. Theoretical work by Chandler et al. on polar-apolar interfaces predicts that a water depletion layer exists between a hydrophobic surface and bulk water for hydrophobes larger than ˜20nm2 (a ˜4A in radius apolar molecule). Until now, what the interface really looks like remains in dispute since recent experiments give conflicting results: from complete wetting (no water depletion layer) to a water depletion layer. Those experiments that have found a water depletion layer report 40-70% water in the depletion zone: 40 -70% and a width of ˜3A. However, an alternative interpretation to the profiles exists where no depletion layer is required. By studying hydrophobic SAM surfaces against several water mixtures we obtained the hydrophobic/water profile by phase sensitive neutron reflectivity. With this model independent technique we observe a 2 times wider and drier depletion water layer: 6A thick and 0-25% water. Given the level of disagreement, I will review the topic of immiscible interfaces and show how phase sensitive reflectometry is unique in obtaining nm resolution profiles without fitting bias.

  16. Occurrence of Giardia and Cryptosporidium spp. in surface water supplies.

    PubMed Central

    LeChevallier, M W; Norton, W D; Lee, R G

    1991-01-01

    Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for source waters of 66 surface water treatment plants in 14 states and 1 Canadian province. The results showed that cysts and oocysts were widely dispersed in the aquatic environment. Giardia spp. were detected in 81% of the raw water samples. Cryptosporidium spp. were found in 87% of the raw water locations. Overall, Giardia or Cryptosporidium spp. were detected in 97% of the raw water samples. Higher cyst and oocyst densities were associated with source waters receiving industrial or sewage effluents. Significant correlations were found between Giardia and Cryptosporidium densities and raw water quality parameters such as turbidity and total and fecal coliform levels. Statistical modeling suggests that cyst and oocyst densities could be predicted on the basis of watershed and water quality characteristics. The occurrence of high levels of Giardia cysts in raw water samples may require water utilities to apply treatment beyond that outlined in the Surface Water Treatment Rule of the U.S. Environmental Protection Agency. PMID:1822675

  17. Nucleate boiling of water from plain and structured surfaces

    SciTech Connect

    Das, A.K.; Das, P.K.; Saha, P.

    2007-08-15

    Heat transfer from plain surface and from surfaces with distinct nucleation sites has been investigated under saturated pool boiling condition. Surfaces have been prepared with regular array of discrete nucleation sites formed by micro-drilling. Distilled water has been used as the boiling liquid. Out of various available correlations, Rohsenow correlation [W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME 74 (1952) 969-976] gives best agreement with the experimental data from plain surface at low degree of superheat. A mechanistic model also provides a good trend matching with the same experimental data. With the introduction of artificial nucleation sites substantial augmentation in heat transfer for distilled water compared to the plane surface has been noted. Continuous increase in nucleation site density increases the rate of heat transfer with a diminishing trend of enhancement. A correlation similar to that of Yamagata et al. [K. Yamagata, F. Hirano, K. Nishiwaka, H. Matsouka, Nucleate boiling of water on the horizontal heating surface, Mem. Fac. Eng. Kyushu 15 (1955) 98] has been developed to fit the experimental data of plane surface. Modification of the same correlation to take care of the nucleation site density has been developed and used to predict the experimental data from augmented surfaces. (author)

  18. Asphaltene surface activity at oil/water interfaces

    SciTech Connect

    Sheu, E.Y.; Shields, M.B.

    1995-11-01

    Small angle neutron scattering (SANS) dynamic surface tension (DST), dynamic interfacial tension (DIFT), and zero shear viscosity were used to study the surface activity of Ratawi asphaltenes in organic solvents, in the asphaltene/water/toluene emulsions and at the toluene/aqueous solution interfaces. In organic solvents, the kinetic process of micellization and the micellar structure are characterized. Their dependence on asphaltene concentration was investigated. The emulsion droplet structure and their capability in water uptake was tested. Also, the enhancement of surface activity of asphaltenes and its potential applications are briefly discussed.

  19. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces.

    PubMed

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-01-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field. PMID:24149467

  20. Rupture and dewetting of water films on solid surfaces.

    PubMed

    Mulji, Neil; Chandra, Sanjeev

    2010-12-01

    An experimental study was conducted to observe rupture and dewetting of water films, 0.5-2mm thick, on solid surfaces. The effects of surface roughness, wettability, protrusions on surfaces, and air entrapment between films and surfaces were studied. Film thickness measurements were made and film rupture and surface dewetting photographed. Experiments showed that liquid films ruptured first along the highest edges of test surfaces. Placing a protrusion on the surface had no effect-the liquid film continued to rupture along the edges. A thermodynamic model was developed to show that protrusions lower the surface energy of the system and promote wetting. Increasing surface roughness therefore increases film stability by resisting rupture and dewetting. Water films could be punctured by introducing an air bubble that burst and created a hole. The hole would close if the film was thick and the solid-liquid contact angle was either small or large; the hole would grow larger if the film was thin and the contact angle was in the mid-range (∼80°). An analytical model that calculates the difference between the surface energies of the two states can be used to predict whether a hole would lead to surface dewetting or not. PMID:20817200

  1. Tensile testing of ultra-thin films on water surface

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Han; Nizami, Adeel; Hwangbo, Yun; Jang, Bongkyun; Lee, Hak-Joo; Woo, Chang-Su; Hyun, Seungmin; Kim, Taek-Soo

    2013-10-01

    The surface of water provides an excellent environment for gliding movement, in both nature and modern technology, from surface living animals such as the water strider, to Langmuir-Blodgett films. The high surface tension of water keeps the contacting objects afloat, and its low viscosity enables almost frictionless sliding on the surface. Here we utilize the water surface as a nearly ideal underlying support for free-standing ultra-thin films and develop a novel tensile testing method for the precise measurement of mechanical properties of the films. In this method, namely, the pseudo free-standing tensile test, all specimen preparation and testing procedures are performed on the water surface, resulting in easy handling and almost frictionless sliding without specimen damage or substrate effects. We further utilize van der Waals adhesion for the damage-free gripping of an ultra-thin film specimen. Our approach can potentially be used to explore the mechanical properties of emerging two-dimensional materials.

  2. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  3. Surface nanobubble nucleation dynamics during water-ethanol exchange

    NASA Astrophysics Data System (ADS)

    Chan, Chon U.; Ohl, Claus-Dieter

    2015-11-01

    Water-ethanol exchange has been a promising nucleation method for surface attached nanobubbles since their discovery. In this process, water and ethanol displace each other sequentially on a substrate. As the gas solubility is 36 times higher in ethanol than water, it was suggested that the exchange process leads to transient supersaturation and is responsible for the nanobubble nucleation. In this work, we visualize the nucleation dynamics by controllably mixing water and ethanol. It depicts the temporal evolution of the conventional exchange in a single field of view, detailing the conditions for surface nanobubble nucleation and the flow field that influences their spatial organization. This technique can also pattern surface nanobubbles with variable size distribution.

  4. Circumnutation on the water surface: female flowers of Vallisneria.

    PubMed

    Kosuge, Keiko; Iida, Satoko; Katou, Kiyoshi; Mimura, Tetsuro

    2013-01-01

    Circumnutation, the helical movement of growing organ tips, is ubiquitous in land plants. The mechanisms underlying circumnutation have been debated since Darwin's time. Experiments in space and mutant analyses have revealed that internal oscillatory (tropism-independent) movement and gravitropic response are involved in circumnutation. Female flower buds of tape grass (Vallisneria asiatica var. biwaensis) circumnutate on the water surface. Our observations and experiments with an artificial model indicated that gravitropism is barely involved in circumnutation. Instead, we show that helical intercalary growth at the base of peduncle plays the primary role in all movements in Vallisneria. This growth pattern produces torsional bud rotation, and gravity and buoyancy forces have a physical effect on the direction of peduncle elongation, resulting in bud circumnutation on the water surface. In contrast to other water-pollinated hydrophilous plants, circumnutation in Vallisneria enables female flowers to actively collect male flowers from a larger surface area of water. PMID:23355948

  5. [Current status of surface water acidification in Northeast China].

    PubMed

    Xu, Guang-yi; Kang, Rong-hua; Luo, Yao; Duan, Lei

    2013-05-01

    In order to evaluate the status of surface water acidification in Northeast China, chemical composition of 33 small streams was investigated in August, 2011. It was found that only a few waters located in Changbai Mountain had pH of lower than 6.0, and all waters had acid neutralizing capacity (ANC) of higher than 0.2 meq x L(-1). This indicated that surface water acidification was not a regional environmental issue in Northeast China. HCO3- was the major anion, with SO4(2-) concentration mostly below 150 microeq x L(-1) and even much lower NO3- concentration. Low concentration of SO4(2-) and NO3- means no serious acid deposition in this area. However, the distribution of acidic forest soils, with low base cation weathering rate, could only provide limited buffering capacity for surface water to acidification in Northeast China, and the potential risk of water acidification still existed. Currently, acid deposition in Northeast Asia could hardly cause severe acidification of surface water. The neighboring countries should therefore not amplify the environmental impact by transboundary air pollutants from China. PMID:23914517

  6. High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zhang, Xingwang; Lei, Lecheng

    2013-06-01

    Although electrohydraulic discharge is effective for wastewater treatment, its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment, water-surface discharge is the preferred choice. However, the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water. As a result, the efficiency of the water treatment might be affected and the service life of the reactor might be shortened. In order to avoid the corrosion problem, nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study. Carbon-felt and water were used as the high voltage electrode and ground electrode, respectively. A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy efficiency, and furthermore, the corrosion of metal electrodes was avoided.

  7. Movement of agricultural chemicals between surface water and ground water, lower Cedar River basin, Iowa

    USGS Publications Warehouse

    Squillace, Paul J.; Caldwell, J.P.; Schulmeyer, P.M.; Harvey, C.A.

    1996-01-01

    Bank storage is probably an important source of agricultural chemicals discharged from the alluvial aquifer but becomes depleted with time after surface runoff. Herbicides discharged from the alluvial aquifer during periods of extended base flow entered the alluvial aquifer with ground-water recharge at some distance from the river. The movement of nitrate between surface water and ground water is minor, when compared to the herbicides, even though nitrite was detected in the Cedar River during runoff.

  8. Mucus secretion by the freshwater snail Lymnaea stagnalis limits aluminum concentrations of the aqueous environment

    SciTech Connect

    Jugdaohsingh, R.; Thompson, R.P.H.; Powell, J.J.; Campbell, M.M.; Mccrohan, C.R.; White, K.N.

    1998-09-01

    Extracellular mucopolysaccharide (EPS) is a significant component in many waters. Its role in the cycling and mobilization of metals is unclear. In vitro studies were conducted to examine the influence of EPS, secreted by the freshwater pond snail, Lymnaea stagnalis, on soluble water Al concentrations at near-neutral pH. Snails maintained in aerated water of known ion content and added aluminum reduced Al in solution as compared to controls. Although snails accumulated Al into soft tissue, this only accounted for a small percentage of the total reduction. The remaining Al was recovered following acidification of the water. This observation was attributed to pedal EPS secreted by L. stagnalis which is chiefly insoluble and substrate bound. The Al that remained in solution was more labile, possibly due to the influence of soluble EPS. Further experiments with isolated EPS, confirmed that this poorly soluble film binds and reduces Al in solution. The influence of EPS on the solution chemistry and bioavailability of Al and possibly other metals may be important in natural waters.

  9. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... AGENCY 40 CFR Parts 141 and 142 Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of public..., concerning information that may inform the regulatory review of the uncovered finished water...

  10. Surface water data at Los Alamos National Laboratory: 1996 water year. Progress report

    SciTech Connect

    Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.; McLean, C.T.

    1996-11-01

    The principle investigators collected and computed surface water discharge data from 17 stream-gaging stations that cover most of Los Alamos National Laboratory. The data show less runoff than do data for the 1995 water year. Water chemistry data from larger storm events occurring at some stations are also published here.

  11. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  12. MONITORING OXIDATION-REDUCTION PROCESS DURING GROUND WATER-SURFACE WATER INTERACTIONS AT THE CHICKASAW NRA

    EPA Science Inventory

    Mineralized ground waters at the Chickasaw National Recreational Area contain hydrogen sulfide, i.e., sulfur in the -2 valence state. As these mineralized ground waters discharge at the surface and mix with oxygen-rich waters a series of abiotic and biotic reactions occur that c...

  13. Structural and dynamical properties of water on chemically modified surfaces: The role of the instantaneous surface

    NASA Astrophysics Data System (ADS)

    Bekele, Selemon; Tsige, Mesfin

    Surfaces of polymers such as atactic polystyrene (aPS) represent very good model systems for amorphous material surfaces. Such polymer surfaces are usually modified either chemically or physically for a wide range of applications that include friction, lubrication and adhesion. It is thus quite important to understand the structural and dynamical properties of liquids that come in contact with them to achieve the desired functional properties. Using molecular dynamics (MD) simulations, we investigate the structural and dynamical properties of water molecules in a slab of water in contact with atactic polystyrene surfaces of varying polarity. We find that the density of water molecules and the number distribution of hydrogen bonds as a function of distance relative to an instantaneous surface exhibit a structure indicative of a layering of water molecules near the water/PS interface. For the dynamics, we use time correlation functions of hydrogen bonds and the incoherent structure function for the water molecules. Our results indicate that the polarity of the surface dramatically affects the dynamics of the interfacial water molecules with the dynamics slowing down with increasing polarity. This work was supported by NSF Grant DMR1410290.

  14. Experimental Values of the Surface Tension of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Hacker, P. T.

    1951-01-01

    The results of surface-tension measurements for supercooled water are presented. A total of 702 individual measurements of surface tension of triple-distilled water were made in the temperature range, 27 to -22.2 C, with 404 of these measurements at temperatures below 0 C. The increase in magnitude of surface tension with decreasing temperature, as indicated by measurements above 0 C, continues to -22.2 C. The inflection point in the surface-tension - temperature relation in the vicinity of 0 C, as indicated by the International Critical Table values for temperatures down to -8 C, is substantiated by the measurements in the temperature range, 0 to -22.2 C. The surface tension increases at approximately a linear rate from a value of 76.96+/-0.06 dynes per centimeter at -8 C to 79.67+/-0.06 dynes per centimeter at -22.2 C.

  15. Influence of surface structure and chemistry on water droplet splashing.

    PubMed

    Koch, Kerstin; Grichnik, Roland

    2016-08-01

    Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354737

  16. Snail1 Mediates Hypoxia-Induced Melanoma Progression

    PubMed Central

    Liu, Shujing; Kumar, Suresh M.; Martin, James S.; Yang, Ruifeng; Xu, Xiaowei

    2011-01-01

    Tumor hypoxia is a known adverse prognostic factor, and the hypoxic dermal microenvironment participates in melanomagenesis. High levels of hypoxia inducible factor (HIF) expression in melanoma cells, particularly HIF-2α, is associated with poor prognosis. The mechanism underlying the effect of hypoxia on melanoma progression, however, is not fully understood. We report evidence that the effects of hypoxia on melanoma cells are mediated through activation of Snail1. Hypoxia increased melanoma cell migration and drug resistance, and these changes were accompanied by increased Snail1 and decreased E-cadherin expression. Snail1 expression was regulated by HIF-2α in melanoma. Snail1 overexpression led to more aggressive tumor phenotypes and features associated with stem-like melanoma cells in vitro and increased metastatic capacity in vivo. In addition, we found that knockdown of endogenous Snail1 reduced melanoma proliferation and migratory capacity. Snail1 knockdown also prevented melanoma metastasis in vivo. In summary, hypoxia up-regulates Snail1 expression and leads to increased metastatic capacity and drug resistance in melanoma cells. Our findings support that the effects of hypoxia on melanoma are mediated through Snail1 gene activation and suggest that Snail1 is a potential therapeutic target for the treatment of melanoma. PMID:21996677

  17. Fecundity of the Chinese mystery snail in a Nebraska reservoir

    USGS Publications Warehouse

    Stephen, Bruce J.; Allen, Craig R.; Chaine, Noelle M.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.; Wong, Alec

    2013-01-01

    The Chinese mystery snail (Bellamya chinensis) is a non-indigenous, invasive species in freshwater ecosystems of North America. We provide fecundity estimates for a population of these snails in a Nebraska reservoir. We dissected 70 snails, of which 29 were females. Nearly all female snails contained developing young, with an average of 25 young per female. Annual fecundity was estimated at between 27.2 and 33.3 young per female per year. Based on an estimated adult population and the calculated fecundity, the annual production for this reservoir was between 2.2 and 3.7 million young.

  18. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    PubMed Central

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  19. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    PubMed

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  20. [Distribution of arsenic in surface water in Tibet].

    PubMed

    Wang, Ming-Guo; Li, She-Hong; Wang, Hui; Xiao, Tang-Fu; Zheng, Bao-Shan

    2012-10-01

    This research was aimed on studying the arsenic distribution of water in Yarlung Zangbo and Singe Zangbo basins in Tibet. Results showed that arsenic concentrations were different in different types of the water. The sequence of arsenic concentration from high to low was hot spring water (4920 microg x L(-1) +/- 1520 microg x L(-1), n =2), salt lake water (2180 microg x L(-1) +/- 3840 microg x L(-1), n =7), well water (194 microg x L(-1), n = 1), freshwater lake water (163 microg x L(-1) +/- 202 microg x L(-1), n =2) and stream water (35.5 microg x L(-1) +/- 57.0 microg x L(-1), n=74). The high arsenic concentration in surface water in Singe Zangbo and the upstream of Yarlung Zangbo were found. The average concentration of arsenic in water from Singe Zangbo (58.4 microg x L(-1) +/- 69.9 microg x L(-1), n = 39) was significantly higher than that from Yarlung Zangbo (10.8 microg x L(-1) +/- 16.9 microg x L(-1), n = 30). Arsenic concentration in 43.2% of stream water samples and all of the hot springs, saline lakes and well water were higher than 10 microg x L(-1). Yarlung Zangbo and Singe Zangbo are important sources of drinking water for the local people. There is a high risk for the local people who may suffer from chronic arsenic poisoning. PMID:23233967

  1. A Mechanism for Near-Surface Water Ice on Mars

    NASA Astrophysics Data System (ADS)

    Travis, B. J.; Feldman, W. C.; Maurice, S.

    2009-12-01

    Recent findings (e.g., Byrne et al, 2009) indicate that water ice lies very close to the surface at mid-latitudes on Mars. Re-interpretation of neutron and gamma-ray data is consistent with water ice buried less than a meter or two below the surface. Hydrothermal convection of brines provides a mechanism for delivering water to the near-surface. Previous numerical and experimental studies with pure water have indicated that hydrothermal circulation of pore water should be possible, given reasonable estimates of geothermal heat flux and regolith permeability. For pure water convection, the upper limit of the liquid zone would lie at some depth, but in the case of salt solutions, the boundary between liquid and frozen pore water could reach virtually to the surface. The principal drivers for hydrothermal circulation are regolith permeability, geothermal heat flux, surface temperature and salt composition. Both the Clifford and the Hanna-Phillips models of Martian regolith permeability predict sufficiently high permeabilities to sustain hydrothermal convection. Salts in solution will concentrate in upwelling plumes as the cold surface is approached. As water ice is excluded upon freezing, the remaining solution becomes a more concentrated brine, reaching its eutectic concentration before freezing. Numerical simulations considering several salts (NaCl, CaCl2, MgSO4), and a range of heat fluxes (20 - 100 mW/m2) covering the range of estimated present day heat flux (20 to 40 mW/m2) to moderately elevated conditions (60 to 100 mW/m2) such as might exist in the vicinity of volcanoes and craters, all indicate the same qualitative behavior. A completely liquid, convective regime occurs at depth, overlain by a partially frozen "mushy" layer (but still convecting despite the increased viscosity), overlain by a thin frozen layer at the surface. The thicknesses of these layers depend on the heat flux, surface temperature and the salt. As heat flux increases, the mushy region

  2. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    SciTech Connect

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely

  3. Model for outgassing of water from metal surfaces

    SciTech Connect

    Li, Minxu; Dylla, Fred

    1993-06-01

    Numerous measurements of outgassing from metal surfaces show that the outgassing obeys a power law of the form Q=Q{sub 10}t{sup -alpha}, where alpha is typically near unity. For unbaked systems, outgassing is dominated by water. This work demonstrates that alpha is a function of the water vapor exposure during venting of the system, and the physical properties of the passivation oxide layer on the surface. An analytic expression for the outgassing rate is derived based on the assumption that the rate of water diffusing through the passivation oxide layer to the surface governs the rate of its release into the vacuum. The source distribution function for the desorbing water is assumed to be a combination of a Gaussian distribution centered at the interior surface driven by atmospheric exposure, and a uniform concentration throughout the bulk. We have measured the outgassing rate from a clean stainless-steel (type 304) chamber as a function of water exposure to the chamber surface from <1 to 600 monolayers. The measured outgassing rate data show that alpha tends to 0.5 for low H{sub 2}O exposures and tends to 1.5 for high H{sub 2}O exposures as predicted by the model.

  4. Integrated Land Surface Water State Indicators for Climate Assessment

    NASA Astrophysics Data System (ADS)

    Lamb, B. T.; McDonald, K. C.; Steiner, N.; Azarderakhsh, M.; Schroeder, R.

    2014-12-01

    Accurate characterization of seasonal freeze/thaw transition timing coupled with accompanying characterization of snowpack water content, surface inundation, and radiation balance give the potential for an unambiguous indication of climate change. Earth remote sensing data sources have demonstrated utility for determining these surface and radiation balance state variables. NASA's Climate Indicators Team seeks to develop and test potential climate indicators that employ NASA capabilities to support the National Climate Assessemnt and are useful to decision makers. We present development of a set of climate indicators built upon remote sensing measures of surface water state variables: Landscape freeze/thaw (FT), Snow Water Equivalent (SWE), Surface inundation fraction (Fw), and radiative flux. Indicators based on and derived from these parameters may be assembled from integrated remote sensing datasets and provide key information in assessment of climate state. Combined, these state variables provide unique insight into linkages and feedbacks in terrestrial energy, water and carbon cycles and allow examination to the response of the integrated system to climate drivers. Assembled from existing remote sensing datasets, these deliverables will represent the first broad-scale observationally-based, comprehensive measures of surface water state and distribution coupled to atmospheric radiation for use in climate change assessment.

  5. Properties of water surface discharge at different pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Ruma, Hosseini, S. H. R.; Yoshihara, K.; Akiyama, M.; Sakugawa, T.; Lukeš, P.; Akiyama, H.

    2014-09-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H2O2) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H2O2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  6. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect

    Ruma,; Yoshihara, K.; Hosseini, S. H. R. Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  7. Fluctuating Helical Asymmetry and Morphology of Snails (Gastropoda) in Divergent Microhabitats at ‘Evolution Canyons I and II,’ Israel

    PubMed Central

    Raz, Shmuel; Schwartz, Nathan P.; Mienis, Hendrik K.; Nevo, Eviatar; Graham, John H.

    2012-01-01

    Background Developmental instability of shelled gastropods is measured as deviations from a perfect equiangular (logarithmic) spiral. We studied six species of gastropods at ‘Evolution Canyons I and II’ in Carmel and the Galilee Mountains, Israel, respectively. The xeric, south-facing, ‘African’ slopes and the mesic, north-facing, ‘European’ slopes have dramatically different microclimates and plant communities. Moreover, ‘Evolution Canyon II’ receives more rainfall than ‘Evolution Canyon I.’ Methodology/Principal Findings We examined fluctuating asymmetry, rate of whorl expansion, shell height, and number of rotations of the body suture in six species of terrestrial snails from the two ‘Evolution Canyons.’ The xeric ‘African’ slope should be more stressful to land snails than the ‘European’ slope, and ‘Evolution Canyon I’ should be more stressful than ‘Evolution Canyon II.’ Only Eopolita protensa jebusitica showed marginally significant differences in fluctuating helical asymmetry between the two slopes. Contrary to expectations, asymmetry was marginally greater on the ‘European’ slope. Shells of Levantina spiriplana caesareana at ‘Evolution Canyon I,’ were smaller and more asymmetric than those at ‘Evolution Canyon II.’ Moreover, shell height and number of rotations of the suture were greater on the north-facing slopes of both canyons. Conclusions/Significance Our data is consistent with a trade-off between drought resistance and thermoregulation in snails; Levantina was significantly smaller on the ‘African’ slope, for increasing surface area and thermoregulation, while Eopolita was larger on the ‘African’ slope, for reducing water evaporation. In addition, ‘Evolution Canyon I’ was more stressful than Evolution Canyon II’ for Levantina. PMID:22848631

  8. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  9. Heat shock protein expression in relation to reproductive cycle in land snails: Implications for survival.

    PubMed

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2011-10-01

    Land snails are subject to daily and seasonal variations in temperature and in water availability and use heat shock proteins (HSPs) as part of their survival strategy. We tested whether the reproductive cycle of land snails affects the endogenous levels of HSPs, and their involvement in the reproductive process. We examined HSP levels in the foot tissue of two Sphincterochila species, S. cariosa and S. zonata, before and after laying eggs, and analyzed the albumen gland (reproductive organ) of both species and eggs of S. cariosa for the presence and quantity of various HSPs. Our study shows reduction in the expression level of Hsp70 isoforms and Hsp90 in S. zonata foot and of Hsp74 in S. cariosa foot during the period preceding egg laying compared to the post-reproductive stage. Hsp70 isoforms and Hsp25 were highly expressed in both large albumen glands and in freshly laid eggs of S. cariosa, whereas large albumen glands of S. zonata expressed mainly Hsp70 isoforms. We conclude that a trade-off between survival and fertility is responsible for the expression level of HSPs in the foot tissue of Sphincterochila snails. Our study shows that HSPs are involved in the reproductive process. We propose that parental provision of HSPs may be part of a "be prepared" strategy of Sphincterochila snails, and that HSPs may play important roles in the survival strategy of land snails during the early life stages. Our observations also highlight the importance of the reproductive status in study of whole organisms, especially when assessing the HSP response to stress. PMID:21664480

  10. Surface water pesticide modelling for decision support in drinking water production

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Dams, Jef; Bronders, Jan; Peleman, Gisèle; Verdickt, Liesbeth

    2015-04-01

    The occurrence of pesticides and other contaminants in river systems may compromise the use of surface water for drinking water production. To reduce the cost of removal of pesticides from the raw water, drinking water companies can: search for other raw water sources, invest in water storage capacity to overcome periods with high pesticide concentrations (often related to the application period), or impose measures to reduce the emission of pesticides to surface water (i.e. sustainable application strategies or use restrictions). To select the most appropriate water management options, the costs and effects of the aforementioned actions need to be evaluated. This evaluation requires knowledge on the concentrations and loads of pesticides at the point of drinking water abstraction, as well as insight in the contribution and the temporal variability of different sources or subbasins. In such a case, a modelling approach can assist in generating measurement-based datasets and to compare different scenarios for water management. We illustrate how a modelling approach can provide decision support for water management related to drinking water abstraction from surface water in a catchment that suffers from elevated pesticide concentrations. The study area is a water production center (WPC) located in northwestern Belgium. The WPC abstracts raw water from the river IJzer or from a natural pond and its connected streams. The available quantities as well as the quality of the water vary throughout the year. The WPC uses a reservoir of 3 million m³ to capture and store raw water to overcome periods with limited water availability and/or poor water quality. However, the pressure on water increases and in the future this buffering capacity might be no longer sufficient to fulfill the drinking water production demand. A surface water quality model for the area is set up using InfoWorks RS. The model is applied to obtain insight in the concentrations and loads at the different

  11. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  12. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    NASA Astrophysics Data System (ADS)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  13. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  14. Spatial development of the wind-driven water surface flow

    NASA Astrophysics Data System (ADS)

    Chemin, Rémi; Caulliez, Guillemette

    2015-04-01

    The water velocity field induced by wind and waves beneath an air-water interface is investigated experimentally versus fetch in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. The surface drift current was also derived from visualizations of small floating drifters recorded by a video camera looking vertically from above the water surface. Surface wave height and slopes were determined simultaneously by means of capacitance gauges and a single-point laser slope system located in the immediate vicinity of the profiler. Observations were made at steady low to moderate wind speeds and various fetches ranging between 1 and 15 meters. This study first corroborates that the thin subsurface water boundary layer forced by wind at the leading edge of the water sheet is laminar. The surface drift current velocity indeed increases gradually with fetch, following a 1/3 power law characteristic of an accelerated flat-plate laminar boundary layer. The laminar-turbulent transition manifests itself by a sudden decrease in the water surface flow velocity and a rapid deepening of the boundary layer due to the development of large-scale longitudinal vortices. Further downstream, when characteristic capillary-gravity wind waves develop at the surface, the water flow velocity increases again rapidly within a sublayer of typically 4 mm depth. This phenomenon is explained by the occurrence of an intense momentum flux from waves to the mean flow due to the dissipation of parasitic capillaries generated ahead of the dominant wave crests. This phenomenon also sustains significant small-scale turbulent motions within the whole boundary layer. However, when gravity-capillary waves of length longer than 10 cm then grow at the water surface, the mean flow velocity field decreases drastically over the whole boundary layer thickness. At the same

  15. Influence of building resolution on surface water inundation outputs

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Yu, Dapeng; Pattison, Ian

    2016-04-01

    Surface water (pluvial) flooding occurs when intense precipitation events overwhelm the drainage capacity of an area and excess water is unable to infiltrate into the ground or drain via natural or artificial drainage channels. In the UK, over 3 million properties are at risk from surface water flooding alone, accounting for approximately one third of all UK flood risk. This risk is predicted to increase due to future climatic changes resulting in an increasing magnitude and frequency of intense precipitation events. Numerical modelling is a well-established method of investigating surface water flood risk, allowing the researcher to gain an understanding of the depth, extent and severity of actual or hypothetical flood scenarios. Although numerical models allow the simulation of surface water inundation in a particular region, the model parameters (e.g. roughness, hydraulic conductivity) and resolution of topographic data have been shown to exert a profound influence on the inundation outputs which often leads to an over- or under-estimation of flood depths and extent without the use of external validation data to calibrate model outputs. Although previous research has demonstrated that model outputs are highly sensitive to Digital Elevation Model (DEM) mesh resolution, with flood inundation over large and complex topographies often requiring mesh resolutions coarser than the structural features (e.g. buildings) present within the study catchment, the specific influence of building resolution on surface flowpaths and connectivity during a surface water flood event has not been investigated. In this study, a LiDAR-derived DEM and OS MasterMap buildings layer of the Loughborough University campus, UK, were rasterized into separate 1m, 5m and 10m resolution layers. These layers were combined to create a series of Digital Surface Models (DSM) with varying, mismatching building and DEM resolutions (e.g. 1m DEM resolution, 10m building resolution, etc.) to understand

  16. Effects of Surface-Water Diversions on Habitat Availability for Native Macrofauna, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.; Wolff, Reuben H.

    2005-01-01

    Effects of surface-water diversions on habitat availability for native stream fauna (fish, shrimp, and snails) are described for 21 streams in northeast Maui, Hawaii. Five streams (Waikamoi, Honomanu, Wailuanui, Kopiliula, and Hanawi Streams) were chosen as representative streams for intensive study. On each of the five streams, three representative reaches were selected: (1) immediately upstream of major surface-water diversions, (2) midway to the coast, and (3) near the coast. This study focused on five amphidromous native aquatic species (alamoo, nopili, nakea, opae, and hihiwai) that are abundant in the study area. The Physical Habitat Simulation (PHABSIM) System, which incorporates hydrology, stream morphology and microhabitat preferences to explore relations between streamflow and habitat availability, was used to simulate habitat/discharge relations for various species and life stages, and to provide quantitative habitat comparisons at different streamflows of interest. Hydrologic data, collected over a range of low-flow discharges, were used to calibrate hydraulic models of selected transects across the streams. The models were then used to predict water depth and velocity (expressed as a Froude number) over a range of discharges up to estimates of natural median streamflow. The biological importance of the stream hydraulic attributes was then assessed with the statistically derived suitability criteria for each native species and life stage that were developed as part of this study to produce a relation between discharge and habitat availability. The final output was expressed as a weighted habitat area of streambed for a representative stream reach. PHABSIM model results are presented to show the area of estimated usable bed habitat over a range of streamflows relative to natural conditions. In general, the models show a continuous decrease in habitat for all modeled species as streamflow is decreased from natural conditions. The PHABSIM modeling results

  17. The convoluted evolution of snail chirality

    NASA Astrophysics Data System (ADS)

    Schilthuizen, M.; Davison, A.

    2005-11-01

    The direction that a snail (Mollusca: Gastropoda) coils, whether dextral (right-handed) or sinistral (left-handed), originates in early development but is most easily observed in the shell form of the adult. Here, we review recent progress in understanding snail chirality from genetic, developmental and ecological perspectives. In the few species that have been characterized, chirality is determined by a single genetic locus with delayed inheritance, which means that the genotype is expressed in the mother's offspring. Although research lags behind the studies of asymmetry in the mouse and nematode, attempts to isolate the loci involved in snail chirality have begun, with the final aim of understanding how the axis of left-right asymmetry is established. In nature, most snail taxa (>90%) are dextral, but sinistrality is known from mutant individuals, populations within dextral species, entirely sinistral species, genera and even families. Ordinarily, it is expected that strong frequency-dependent selection should act against the establishment of new chiral types because the chiral minority have difficulty finding a suitable mating partner (their genitalia are on the ‘wrong’ side). Mixed populations should therefore not persist. Intriguingly, however, a very few land snail species, notably the subgenus Amphidromus sensu stricto, not only appear to mate randomly between different chiral types, but also have a stable, within-population chiral dimorphism, which suggests the involvement of a balancing factor. At the other end of the spectrum, in many species, different chiral types are unable to mate and so could be reproductively isolated from one another. However, while empirical data, models and simulations have indicated that chiral reversal must sometimes occur, it is rarely likely to lead to so-called ‘single-gene’ speciation. Nevertheless, chiral reversal could still be a contributing factor to speciation (or to divergence after speciation) when

  18. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  19. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  20. Modeling studies of geothermal systems with a free water surface

    SciTech Connect

    Bodvarsson, G.S.; Pruess, K.

    1983-12-01

    A numerical simulator was developed for the modeling of air-steam-water systems. The simulator was applied to various problems involving injection into or production from a geothermal reservoir in hydraulic communication with a shallow free-surface aquifer. First, a one-dimensional column problem is considered and the water level movement during exploitation is studied using different capillary pressure functions. Second, a two-dimensional radial model is used to study and compare reservoir depletion for cases with and without a free-surface aquifer. Finally, the contamination of a shallow free-surface aquifer due to cold water injection is investigated. The primary aim of these studies is to obtain an understanding of the response of a reservoir in hydraulic communication with a unconfined aquifer during exploitation or injection and to determine under which circumstances conventional modeling techniques (fully saturated systems) can be applied to such systems.

  1. Occurrence of illicit drugs in surface waters in China.

    PubMed

    Li, Kaiyang; Du, Peng; Xu, Zeqiong; Gao, Tingting; Li, Xiqing

    2016-06-01

    Illicit drugs have been recognized as a group of emerging contaminants. In this work, occurrence of common illicit drugs and their metabolites in Chinese surface waters was examined by collecting samples from 49 lakes and 4 major rivers across the country. Among the drugs examined, methamphetamine and ketamine were detected with highest frequencies and concentration levels, consistent with the fact that these are primary drugs of abuse in China. Detection frequencies and concentrations of other drugs were much lower than in European lakes and rivers reported in the literature. In most Chinese surface waters methamphetamine and ketamine were detected at concentrations of several ng L(-1) or less, but in some southern lakes and rivers, these two drugs were detected at much higher concentrations (up to several tens ng L(-1)). Greater occurrence of methamphetamine and ketamine in southern surface waters was attributed to greater abuse and more clandestine production of the two drugs in southern China. PMID:26942687

  2. Radar image sequence analysis of inhomogeneous water surfaces

    NASA Astrophysics Data System (ADS)

    Seemann, Joerg; Senet, Christian M.; Dankert, Heiko; Hatten, Helge; Ziemer, Friedwart

    1999-10-01

    The radar backscatter from the ocean surface, called sea clutter, is modulated by the surface wave field. A method was developed to estimate the near-surface current, the water depth and calibrated surface wave spectra from nautical radar image sequences. The algorithm is based on the three- dimensional Fast Fourier Transformation (FFT) of the spatio- temporal sea clutter pattern in the wavenumber-frequency domain. The dispersion relation is used to define a filter to separate the spectral signal of the imaged waves from the background noise component caused by speckle noise. The signal-to-noise ratio (SNR) contains information about the significant wave height. The method has been proved to be reliable for the analysis of homogeneous water surfaces in offshore installations. Radar images are inhomogeneous because of the dependency of the image transfer function (ITF) on the azimuth angle between the wave propagation and the antenna viewing direction. The inhomogeneity of radar imaging is analyzed using image sequences of a homogeneous deep-water surface sampled by a ship-borne radar. Changing water depths in shallow-water regions induce horizontal gradients of the tidal current. Wave refraction occurs due to the spatial variability of the current and water depth. These areas cannot be investigated with the standard method. A new method, based on local wavenumber estimation with the multiple-signal classification (MUSIC) algorithm, is outlined. The MUSIC algorithm provides superior wavenumber resolution on local spatial scales. First results, retrieved from a radar image sequence taken from an installation at a coastal site, are presented.

  3. The effect of surface water and wetting on gecko adhesion.

    PubMed

    Stark, Alyssa Y; Sullivan, Timothy W; Niewiarowski, Peter H

    2012-09-01

    Despite profound interest in the mechanics and performance of the gecko adhesive system, relatively few studies have focused on performance under conditions that are ecologically relevant to the natural habitats of geckos. Because geckos are likely to encounter surfaces that are wet, we used shear force adhesion measurements to examine the effect of surface water and toe pad wetting on the whole-animal performance of a tropical-dwelling gecko (Gekko gecko). To test the effect of surface wetting, we measured the shear adhesive force of geckos on three substrate conditions: dry glass, glass misted with water droplets and glass fully submerged in water. We also investigated the effect of wetting on the adhesive toe pad by soaking the toe pads prior to testing. Finally, we tested for repeatability of the adhesive system in each wetting condition by measuring shear adhesion after each step a gecko made under treatment conditions. Wetted toe pads had significantly lower shear adhesive force in all treatments (0.86 ± 0.09 N) than the control (17.96 ± 3.42 N), as did full immersion in water (0.44 ± 0.03 N). Treatments with droplets of water distributed across the surface were more variable and did not differ from treatments where the surface was dry (4.72 ± 1.59 N misted glass; 9.76 ± 2.81 N dry glass), except after the gecko took multiple steps. These findings suggest that surface water and the wetting of a gecko's adhesive toe pads may have significant consequences for the ecology and behavior of geckos living in tropical environments. PMID:22875772

  4. Improved simulation of groundwater - surface water interaction in catchment models

    NASA Astrophysics Data System (ADS)

    teklesadik, aklilu; van Griensven, Ann; Anibas, Christian; Huysmans, Marijke

    2016-04-01

    Groundwater storage can have a significant contribution to stream flow, therefore a thorough understanding of the groundwater surface water interaction is of prime important when doing catchment modeling. The aim of this study is to improve the simulation of groundwater - surface water interaction in a catchment model of the upper Zenne River basin located in Belgium. To achieve this objective we used the "Groundwater-Surface water Flow" (GSFLOW) modeling software, which is an integration of the surface water modeling tool "Precipitation and Runoff Modeling system" (PRMS) and the groundwater modeling tool MODFLOW. For this case study, the PRMS model and MODFLOW model were built and calibrated independently. The PRMS upper Zenne River basin model is divided into 84 hydrological response units (HRUs) and is calibrated with flow data at the Tubize gauging station. The spatial discretization of the MODFLOW upper Zenne groundwater flow model consists of 100m grids. Natural groundwater divides and the Brussels-Charleroi canal are used as boundary conditions for the MODFLOW model. The model is calibrated using piezometric data. The GSFLOW results were evaluated against a SWAT model application and field observations of groundwater-surface water interactions along a cross section of the Zenne River and riparian zone. The field observations confirm that there is no exchange of groundwater beyond the Brussel-Charleroi canal and that the interaction at the river bed is relatively low. The results show that there is a significant difference in the groundwater simulations when using GSFLOW versus SWAT. This indicates that the groundwater component representation in the SWAT model could be improved and that a more realistic implementation of the interactions between groundwater and surface water is advisable. This could be achieved by integrating SWAT and MODFLOW.

  5. Salty glycerol versus salty water surface organization: bromide and iodide surface propensities.

    PubMed

    Huang, Zishuai; Hua, Wei; Verreault, Dominique; Allen, Heather C

    2013-07-25

    Salty NaBr and NaI glycerol solution interfaces are examined in the OH stretching region using broadband vibrational sum frequency generation (VSFG) spectroscopy. Raman and infrared (IR) spectroscopy are used to further understand the VSFG spectroscopic signature. The VSFG spectra of salty glycerol solutions reveal that bromide and iodide anions perturb the interfacial glycerol organization in a manner similar as that found in aqueous halide salt solutions, thus confirming the presence of bromide and iodide anions at the glycerol surface. Surface tension measurements are consistent with the surface propensity suggested by the VSFG data and also show that the surface excess increases with increasing salt concentration, similar to that of water. In addition, iodide is shown to have more surface prevalence than bromide, as has also been determined from aqueous solutions. These results suggest that glycerol behaves similarly to water with respect to surface activity and solvation of halide anions at its air/liquid interface. PMID:23663033

  6. Salmonellae as an Index of Pollution of Surface Waters

    PubMed Central

    Cherry, William B.; Hanks, John B.; Thomason, Berenice M.; Murlin, Alma M.; Biddle, James W.; Croom, John M.

    1972-01-01

    Screening enrichments of surface water specimens by means of a polyvalent fluorescent antibody reagent for the salmonellae yielded approximately 60% more positive specimens than was obtained by cultural procedures. It is not known what fraction of the excess of fluorescent antibody-positive over culturally positive specimens represents staining of non-salmonellae or non-arizonae as opposed to the staining of non-cultivatable organisms of these two genera. Cotton gauze and rayon-polypropylene fiber swabs were equally sensitive for collecting salmonellae from the streams examined. Tetrathionate enrichment incubated at 41.5 C appeared to be superior to selenite-cystine for isolation of salmonellae from surface waters. Twenty-eight serotypes of Salmonella and two serotypes of Arizona were identified in the 121 positive specimens. In water rated moderately polluted, 65% of all specimens tested were positive; in minimally polluted waters, 38% were positive; and in unpolluted streams, 44% were positive. PMID:4562473

  7. Microcystins in potable surface waters: toxic effects and removal strategies.

    PubMed

    Roegner, Amber F; Brena, Beatriz; González-Sapienza, Gualberto; Puschner, Birgit

    2014-05-01

    In freshwater, harmful cyanobacterial blooms threaten to increase with global climate change and eutrophication of surface waters. In addition to the burden and necessity of removal of algal material during water treatment processes, bloom-forming cyanobacteria can produce a class of remarkably stable toxins, microcystins, difficult to remove from drinking water sources. A number of animal intoxications over the past 20 years have served as sentinels for widespread risk presented by microcystins. Cyanobacterial blooms have the potential to threaten severely both public health and the regional economy of affected communities, particularly those with limited infrastructure or resources. Our main objectives were to assess whether existing water treatment infrastructure provides sufficient protection against microcystin exposure, identify available options feasible to implement in resource-limited communities in bloom scenarios and to identify strategies for improved solutions. Finally, interventions at the watershed level aimed at bloom prevention and risk reduction for entry into potable water sources were outlined. We evaluated primary studies, reviews and reports for treatment options for microcystins in surface waters, potable water sources and treatment plants. Because of the difficulty of removal of microcystins, prevention is ideal; once in the public water supply, the coarse removal of cyanobacterial cells combined with secondary carbon filtration of dissolved toxins currently provides the greatest potential for protection of public health. Options for point of use filtration must be optimized to provide affordable and adequate protection for affected communities. PMID:24038121

  8. Molecular dynamics studies of water deposition on hematite surfaces

    NASA Astrophysics Data System (ADS)

    Kvamme, Bjørn; Kuznetsova, Tatiana; Haynes, Martin

    2012-12-01

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.

  9. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  10. Nanostructuring of metal surfaces by corrosion for efficient water splitting

    NASA Astrophysics Data System (ADS)

    Lee, Jooyoung; Lim, Guh-Hwan; Lim, Byungkwon

    2016-01-01

    We show that simply by corroding Ni foam in an aqueous solution, it is possible to produce nanostructured surfaces. When Ni foam was corroded in water or an aqueous solution containing NaCl, a dense array of Ni(OH)2 nanosheets was produced on the surface of the foam. When corroded in the presence of RuCl3, the nanostructured surface composed of Ni(OH)2 nanosheets decorated with ultrasmall RuO2 nanoparticles was obtained. At an applied voltage of 1.7 V, the combination of these two nanostructured surfaces yielded a water-splitting current density more than three times that obtained on the commercial Pt wire electrodes.

  11. Distribution of metals and accumulation of lead by different tissues in the freshwater snail Lymnaea stagnalis (L.)

    SciTech Connect

    Pyatt, F.B.; Pyatt, A.J.; Pentreath, V.W.

    1997-07-01

    The concentrations of several metals in different body tissues of the freshwater snail, Lymnaea stagnalis (L.), collected from an uncontaminated environment, were measured by electron probe X-ray microanalysis. Significant concentrations of the potentially toxic elements manganese, titanium, and copper were detected in all tissues, although they were not detectable in the water sampled at collection; bioaccumulation is thus evidenced. Highest concentrations of manganese and copper were present in the shell, while highest concentrations of titanium were present in the head and foot. Experimental snails were continuously exposed to lead chloride (lead at 5 ppm) for an experimental period of 3 weeks. Both elements were accumulated to different extents by the snail tissues but with high concentrations again in the head of the animals, and chloride also in the visceral hump. No significant alterations in the distribution of the other elements measured were observed in the lead chloride-exposed animals.

  12. The use of radar imagery for surface water investigations

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.

    1981-01-01

    The paper is concerned with the interpretation of hydrologic features using L-band (HH) imagery collected by aircraft and Seasat systems. Areas of research needed to more precisely define the accuracy and repeatability of measurements related to the conditions of surfaces and boundaries of fresh water bodies are identified. These include: the definition of shoreline, the nature of variations in surface roughness across a water body and along streams and lake shores, and the separation of ambiguous conditions which appear similar to lakes.

  13. Heterogeneous Nucleation of Naphthalene Vapor on Water Surface

    PubMed

    Smolík; Schwarz

    1997-01-15

    The evaporation of a water drop into a ternary gaseous mixture of air, steam, and naphthalene vapor was investigated. The experimental results were compared with a theoretical prediction based on a numerical solution of coupled boundary layer equations for heat and mass transfer from a drop moving in ternary gas. In the experiments the naphthalene vapor condensed on the water drop as a supercooled liquid even at temperatures far below the melting point of naphthalene. The condensation on drop surface is discussed in terms of classical theory of heterogeneous nucleation on smooth surfaces. PMID:9028892

  14. Parametrically excited water surface ripples as ensembles of oscillons.

    PubMed

    Shats, M; Xia, H; Punzmann, H

    2012-01-20

    We show that ripples on the surface of deep water which are driven parametrically by monochromatic vertical vibration represent ensembles of oscillating solitons, or quasiparticles, rather than waves. The horizontal mobility of oscillons determines the broadening of spectral lines and transitions from chaos to regular patterns. It is found that microscopic additions of proteins to water dramatically affect the oscillon mobility and drive transitions from chaos to order. The shape of the oscillons in physical space determines the shape of the frequency spectra of the surface ripple. PMID:22400746

  15. [Simultaneous Analysis of 18 Glucocorticoids in Surface Water].

    PubMed

    Guo, Wen-jing; Chang, Hong; Sun, De-zhi; Wu, Feng-chang; Yang, Hao

    2015-07-01

    A method of ultra-performance liquid chomatography tandam mass spectrometry(UPLC-MS/MS) combined with solid-phase extraction (SPE) has been developed for simultaneous analysis of 18 glucocorticoids in surface water. The analytes were first enriched and purified through a HLB cartridge, and eluted with acetonitrile/ethyl acetate (1:1, V/V), then detected by UPLC-MS/MS. The detection used gradient elution process with methanol and 0. 1% formic acid/water (V/V) as the mobile phase to achieve baseline separations of these 18 analytes. The linear range was 1. 0-1 000 µg.L-1. The method detection limits (MDLs) were 0. 10-1. 0 ng.L-1 except for cortisone acetate and cortisol acetate(10 ng.L-1) with overall mean recoveries of 65% - 108% in surface water. Application of this method for 5 surface waters from Beijing area showed that 8 glucocorticoids were detected with the concentration range of 0. 20-476 ng.L-1. Triamcinolone, triamcinolone acetonide, cortisol acetate and clobetasol propionate were detected for the first time in surface water samples, suggesting that this method is efficient for real sample analysis. PMID:26489346

  16. Aluminum in acidic surface waters: chemistry, transport, and effects.

    PubMed Central

    Driscoll, C T

    1985-01-01

    Ecologically significant concentrations of Al have been reported in surface waters draining "acid-sensitive" watersheds that are receiving elevated inputs of acidic deposition. It has been hypothesized that mineral acids from atmospheric deposition have remobilized Al previously precipitated within the soil during soil development. This Al is then thought to be transported to adjacent surface waters. Dissolved mononuclear Al occurs as aquo Al, as well as OH-, F-, SO4(2-), and organic complexes. Although past investigations have often ignored non-hydroxide complexes of Al, it appears that organic and F complexes are the predominant forms of Al in dilute (low ionic strength) acidic surface waters. The concentration of inorganic forms of Al increases exponentially with decreases in solution pH. This response is similar to the theoretical pH dependent solubility of Al mineral phases. The concentration of organic forms of Al, however, is strongly correlated with variations in organic carbon concentration of surface waters rather than pH. Elevated concentrations of Al in dilute acidic waters are of interest because: Al is an important pH buffer; Al may influence the cycling of important elements like P, organic carbon, and trace metals; and Al is potentially toxic to aquatic organisms. An understanding of the aqueous speciation of Al is essential for an evaluation of these processes. PMID:3935428

  17. Insight into water molecules bonding on 4d metal surfaces

    NASA Astrophysics Data System (ADS)

    Carrasco, Javier; Michaelides, Angelos; Scheffler, Matthias

    2008-03-01

    Water-metal interactions are of capital importance to a wide variety of phenomena in materials science, catalysis, corrosion, electrochemistry, etc. Here we address the nature of the bond between water molecules and metal surfaces through a careful systematic study. Specifically, the bonding of isolated water molecules to a series of close-packed transition metal surfaces - Ru(0001), Rh(111), Pd(111) and Ag(111) - has been examined in detail with density functional theory (DFT). Aiming to understand the origin behind energetic and structural trends along the 4d series we employ a range of analysis tools, such as decomposition of the density of states, electron density differences, electronic reactivity function and inspection of individual Kohn-Sham orbitals. The results obtained allow us to rationalize the bonding between water and transition metal surfaces as a balance of covalent and electrostatic interactions. A frontier orbital scheme based on so-called two-center four-electron interactions between molecular orbitals of water and d band states of the surface proves incisive in understanding these systems.

  18. The antidepressants venlafaxine ("Effexor") and fluoxetine ("Prozac") produce different effects on locomotion in two species of marine snail, the oyster drill (Urosalpinx cinerea) and the starsnail (Lithopoma americanum).

    PubMed

    Fong, Peter P; Bury, Taylor B; Dworkin-Brodsky, Abigail D; Jasion, Christina M; Kell, Rose C

    2015-02-01

    Human antidepressants have been previously shown to induce foot detachment from the substrate in aquatic snails. Prior to foot detachment, antidepressants also affect snail crawling speed. We tested two commonly prescribed antidepressants, venlafaxine ("Effexor") and fluoxetine ("Prozac") on crawling speed and time to reach the air-water interface in two species of marine snail, the oyster drill Urosalpinx cinerea and the American starsnail Lithopoma americanum. Exposure to venlafaxine increased crawling speed in both species, while fluoxetine slowed them down. Our lowest LOEC (lowest observed effect concentration) was 31.3 μg/L venlafaxine in Urosalpinx. Similarly, snails (L. americanum) exposed to venlafaxine tended to move faster and more often to the air-water interface, but exposure to fluoxetine slowed them down. Our lowest LOEC was 345 μg/L fluoxetine in Lithopoma. These results indicate that venlafaxine boosts locomotion, while fluoxetine reduces it, and both behaviors are preludes to foot detachment. The different effects of these two antidepressants on snail locomotion suggest differing physiological mechanisms of action in marine snails as well as possible ecological consequences. PMID:25481651

  19. Energy Landscape of Water and Ethanol on Silica Surfaces

    SciTech Connect

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.

  20. Energy Landscape of Water and Ethanol on Silica Surfaces

    DOE PAGESBeta

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reachingmore » its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less

  1. Surface-Heating Algorithm for Water at Nanoscale.

    PubMed

    Y D, Sumith; Maroo, Shalabh C

    2015-09-17

    A novel surface-heating algorithm for water is developed for molecular dynamics simulations. The validated algorithm can simulate the transient behavior of the evaporation of water when heated from a surface, which has been lacking in the literature. In this work, the algorithm is used to study the evaporation of water droplets on a platinum surface at different temperatures. The resulting contact angles of the droplets are compared to existing theoretical, numerical, and experimental studies. The evaporation profile along the droplet's radius and height is deduced along with the temperature gradient within the drop, and the evaporation behavior conforms to the Kelvin-Clapeyron theory. The algorithm captures the realistic differential thermal gradient in water heated at the surface and is promising for studying various heating/cooling problems, such as thin film evaporation, Leidenfrost effect, and so forth. The simplicity of the algorithm allows it to be easily extended to other surfaces and integrated into various molecular simulation software and user codes. PMID:26722754

  2. Computer programs for modeling flow and water quality of surface water systems

    USGS Publications Warehouse

    Lorens, J.A.

    1982-01-01

    A selection of available computer programs for modeling flow and water quality in surface water systems is described. The models include programs developed as part of the U.S. Geological Survey Water Resources Division hydrologic research activities and others developed by other agencies, universities, and consulting firms. Each model description includes a statement of program use; data requirements; computer costs; availability of documentation and reference material; and a contact person for additional information. The report is intended to assist the researcher by presenting a very brief description of the surface-water models which are readily available for project use. (USGS)

  3. Identification of optimum scopes of environmental factors for snails using spatial analysis techniques in Dongting Lake Region, China

    PubMed Central

    2014-01-01

    Background Owing to the harmfulness and seriousness of Schistosomiasis japonica in China, the control and prevention of S. japonica transmission are imperative. As the unique intermediate host of this disease, Oncomelania hupensis plays an important role in the transmission. It has been reported that the snail population in Qiangliang Lake district, Dongting Lake Region has been naturally declining and is slowly becoming extinct. Considering the changes of environmental factors that may cause this phenomenon, we try to explore the relationship between circumstance elements and snails, and then search for the possible optimum scopes of environmental factors for snails. Methods Moisture content of soil, pH, temperature of soil and elevation were collected by corresponding apparatus in the study sites. The LISA statistic and GWR model were used to analyze the association between factors and mean snail density, and the values in high-high clustered areas and low-low clustered areas were extracted to find out the possible optimum ranges of these elements for snails. Results A total of 8,589 snail specimens were collected from 397 sampling sites in the study field. Besides the mean snail density, three environmental factors including water content, pH and temperature had high spatial autocorrelation. The spatial clustering suggested that the possible optimum scopes of moisture content, pH, temperature of the soil and elevation were 58.70 to 68.93%, 6.80 to 7.80, 22.73 to 24.23°C and 23.50 to 25.97 m, respectively. Moreover, the GWR model showed that the possible optimum ranges of these four factors were 36.58 to 61.08%, 6.541 to 6.89, 24.30 to 25.70°C and 23.50 to 29.44 m, respectively. Conclusion The results indicated the association between snails and environmental factors was not linear but U-shaped. Considering the results of two analysis methods, the possible optimum scopes of moisture content, pH, temperature of the soil and elevation were 58.70% to 68.93%, 6

  4. Estimation of water surface elevations for the Everglades, Florida

    NASA Astrophysics Data System (ADS)

    Palaseanu, Monica; Pearlstine, Leonard

    2008-07-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring gages and modeling methods that provides scientists and managers with current (2000-present) online water surface and water depth information for the freshwater domain of the Greater Everglades. This integrated system presents data on a 400-m square grid to assist in (1) large-scale field operations; (2) integration of hydrologic and ecologic responses; (3) supporting biological and ecological assessment of the implementation of the Comprehensive Everglades Restoration Plan (CERP); and (4) assessing trophic-level responses to hydrodynamic changes in the Everglades. This paper investigates the radial basis function multiquadric method of interpolation to obtain a continuous freshwater surface across the entire Everglades using radio-transmitted data from a network of water-level gages managed by the US Geological Survey (USGS), the South Florida Water Management District (SFWMD), and the Everglades National Park (ENP). Since the hydrological connection is interrupted by canals and levees across the study area, boundary conditions were simulated by linearly interpolating along those features and integrating the results together with the data from marsh stations to obtain a continuous water surface through multiquadric interpolation. The absolute cross-validation errors greater than 5 cm correlate well with the local outliers and the minimum distance between the closest stations within 2000-m radius, but seem to be independent of vegetation or season.

  5. Surface-water and climatological data, Salt Lake County, Utah, water year 1980

    USGS Publications Warehouse

    Pyper, G.E.; Christensen, R.C.; Stephens, D.W.; McCormack, H.F.; Conroy, L.S.

    1981-01-01

    This report presents streamflow, water-quality, precipitation, and storm-runoff data collected in Salt Lake County, Utah, during the 1980 water year and certain water-quality data for the 1979 water year which were included for comparative purposes. Surface-water data consist of daily mean values of flow at 33 sites on natural streams, canals, and conduits. Water-quality data consist of chemical, biologic, and sediment analyses at 30 sites. Precipitation data consist of daily and monthly total at nine sites. Storm-runoff data consist of 5 and 15-minute interval discharge data for storms of July 1-2, August 19, and August 25, 1980, for most surface-water sites. (USGS)

  6. BIOMECHANICS. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects.

    PubMed

    Koh, Je-Sung; Yang, Eunjin; Jung, Gwang-Pil; Jung, Sun-Pill; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Wood, Robert J; Kim, Ho-Young; Cho, Kyu-Jin

    2015-07-31

    Jumping on water is a unique locomotion mode found in semi-aquatic arthropods, such as water striders. To reproduce this feat in a surface tension-dominant jumping robot, we elucidated the hydrodynamics involved and applied them to develop a bio-inspired impulsive mechanism that maximizes momentum transfer to water. We found that water striders rotate the curved tips of their legs inward at a relatively low descending velocity with a force just below that required to break the water surface (144 millinewtons/meter). We built a 68-milligram at-scale jumping robotic insect and verified that it jumps on water with maximum momentum transfer. The results suggest an understanding of the hydrodynamic phenomena used by semi-aquatic arthropods during water jumping and prescribe a method for reproducing these capabilities in artificial systems. PMID:26228144

  7. Improving SNMR data sensitivity to infiltrating water in the presence of large bodies of surface water

    NASA Astrophysics Data System (ADS)

    Falzone, S.; Keating, K.; Grunewald, E. D.; Walsh, D. O.

    2014-12-01

    Surface nuclear magnetic resonance (SNMR) is a geophysical method used to image water content with depth. Recently SNMR has been used to monitor infiltration events in the vadose zone; however, this application can be complicated by the presence of large signals associated with the ponded surface water. In this study, we develop algorithms to reduce this surface water signal for improved sensitivity to the infiltrated groundwater. Using synthetic models, we examine the accuracy of these algorithms. We then assess our approach using a field dataset collected from a five-week SNMR survey conducted during an infiltration event at the South Aura Valley Storage and Recovery Project (SAVSARP) site in Tucson, AZ. Three different algorithms were developed to remove the surface water from the SNMR data: (1) late time mono-exponential subtraction, in which signal from late in the measurement is used to model surface water signal; (2) model subtraction, in which the Earth's magnetic field subsurface conductive structure, and water layer thickness are used to model the surface water signal; and (3) late time inversion correction, in which model parameters in the relaxation time distributions corresponding to slower relaxation times are zeroed. We used two readily available SNMR inversion codes to verify the three approaches: the GMR Inversion software and the MRS Matlab toolkit. Synthetic models were recovered using both inversion codes by applying the late time mono-exponential subtraction and the model subtraction algorithms, while the late time inversion correction algorithm produced poorly resolved relaxation time distribution models. The corrected dataset from the start of the SAVSARP survey contained features in the relaxation time distribution and water content versus depth models that were consistent with observed features present in other datasets from the survey. We conclude that either the late time mono-exponential subtraction or the model subtraction algorithm are

  8. Water Surface Ripples Generated by the Turbulent Boundary Layer of a Surface-Piercing Moving Wall

    NASA Astrophysics Data System (ADS)

    Washuta, N.; Masnadi, N.; Duncan, J. H.

    2014-11-01

    Free surface ripples created by subsurface turbulence along a surface-piercing moving wall are studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. One of the two 7.5-m-long belt sections between the rollers is in contact with the water in a large open-surface water tank and the water level is adjusted so that the top of the belt pierces the water free surface. The belt is launched from rest with a 3 g acceleration in order to quickly reach a steady state velocity. This belt motion creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along the side of a ship hull moving at the belt velocity, with a length equivalent to the length of belt that has passed the measurement region. The water surface ripples generated by the subsurface turbulence are measured in a plane normal to the belt using a cinematic LIF technique. It is found that the overall RMS surface fluctuations increase linearly with belt speed and that the spatial distributions of the fluctuations show a sharp increase near the wall. The support of the Office of Naval Research is gratefully acknowledged.

  9. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    NASA Astrophysics Data System (ADS)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  10. Radiolysis Concerns for Water Shielding in Fission Surface Power Applications

    SciTech Connect

    Schoenfeld, Michael P.; Anghaie, Samim

    2008-01-21

    This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion.

  11. Enhanced Water Splitting Efficiency Through Selective Surface State Removal.

    PubMed

    Zandi, Omid; Hamann, Thomas W

    2014-05-01

    Hematite (α-Fe2O3) thin film electrodes prepared by atomic layer deposition (ALD) were employed to photocatalytically oxidize water under 1 sun illumination. It was shown that annealing at 800 °C substantially improves the water oxidation efficiency of the ultrathin film hematite electrodes. The effect of high temperature treatment is shown to remove one of two surface states identified, which reduces recombination and Fermi level pinning. Further modification with Co-Pi water oxidation catalyst resulted in unprecedented photocurrent onset potential of ∼0.6 V versus reversible hydrogen electrode (RHE; slightly positive of the flat band potential). PMID:26270090

  12. Distribution of tritium in precipitation and surface water in California

    NASA Astrophysics Data System (ADS)

    Harms, Patrick A.; Visser, Ate; Moran, Jean E.; Esser, Brad K.

    2016-03-01

    The tritium concentration in the surface hydrosphere throughout California was characterized to examine the reasons for spatial variability and to enhance the applicability of tritium in hydrological investigations. Eighteen precipitation samples were analyzed and 148 samples were collected from surface waters across California in the Summer and Fall of 2013, with repeat samples from some locations collected in Winter and Spring of 2014 to examine seasonal variation. The concentration of tritium in present day precipitation varied from 4.0 pCi/L near the California coast to 17.8 pCi/L in the Sierra Nevada Mountains. Concentrations in precipitation increase in spring due to the 'Spring Leak' phenomenon. The average coastal concentration (6.3 ± 1.2 pCi/L) in precipitation matches estimated pre-nuclear levels. Surface water samples show a trend of increasing tritium with inland distance. Superimposed on that trend, elevated tritium concentrations are found in the San Francisco Bay area compared to other coastal areas, resulting from municipal water imported from inland mountain sources and local anthropogenic sources. Tritium concentrations in most surface waters decreased between Summer/Fall 2013 and Winter/Spring 2014 likely due to an increased groundwater signal as a result of drought conditions in 2014. A relationship between tritium and electrical conductivity in surface water was found to be indicative of water provenance and anthropogenic influences such as agricultural runoff. Despite low initial concentrations in precipitation, tritium continues to be a valuable tracer in a post nuclear bomb pulse world.

  13. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    SciTech Connect

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  14. DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES

    EPA Science Inventory

    Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

  15. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  16. Bulk and Surface Interactions of Hydrophilic Polyacrylates with Water

    NASA Astrophysics Data System (ADS)

    Chen, Wan-Lin; Shull, Kenneth R.

    1998-03-01

    The adsorption of water by a series of hydrophilic acrylic coatings has been investigated in controlled humidity environments using a quartz crystal microbalance. The amounts of water adsorption are strongly dependent on the lengths of the polyethylene glycol (PEG) side chains of the acrylic polymers. We have also studied the properties of block copolymers which have a PEG-acrylate block coupled to hydrophobic poly(methyl methacrylate) (PMMA) or polystyrene (PS) blocks. The dynamic wetting behavior of water on these polymeric surfaces has been monitored by video microscopy during spreading of water drops on polymer thin films. The swelling and spreading rate data provide a useful characterization of the interactions of these materials with water.

  17. The Apollo lunar surface water vapor event revisited

    NASA Technical Reports Server (NTRS)

    Freeman, J. W., Jr.; Hills, H. K.

    1991-01-01

    On March 7, 1971, the first sunrise following the Apollo 14 mission, the Suprathermal Ion Detector Experiment (SIDE) deployed at the Apollo 14 site reported an intense flux of ions whose mass per charge was consistent with water vapor. The amount of water is examined, and the various acceleration processes, responsible for accelerating ions into the SIDE, are discussed. It is concluded that during most of the event the observed water vapor ions were accelerated by the negative lunar surface electric potential and, secondly, that this event was probably the result of mission associated water vapor, either from the LM ascent and descent stage rockets or from residual water in the descent stage tanks.

  18. Phenotypic Plasticity of the Introduced New Zealand Mud Snail, Potamopyrgus antipodarum, Compared to Sympatric Native Snails

    PubMed Central

    Levri, Edward P.; Krist, Amy C.; Bilka, Rachel; Dybdahl, Mark F.

    2014-01-01

    Phenotypic plasticity is likely to be important in determining the invasive potential of a species, especially if invasive species show greater plasticity or tolerance compared to sympatric native species. Here in two separate experiments we compare reaction norms in response to two environmental variables of two clones of the New Zealand mud snail, Potamopyrgus antipodarum, isolated from the United States, (one invasive and one not yet invasive) with those of two species of native snails that are sympatric with the invader, Fossaria bulimoides group and Physella gyrina group. We placed juvenile snails in environments with high and low conductivity (300 and 800 mS) in one experiment, and raised them at two different temperatures (16°C and 22°C) in a second experiment. Growth rate and mortality were measured over the course of 8 weeks. Mortality rates were higher in the native snails compared to P. antipodarum across all treatments, and variation in conductivity influenced mortality. In both experiments, reaction norms did not vary significantly between species. There was little evidence that the success of the introduced species is a result of greater phenotypic plasticity to these variables compared to the sympatric native species. PMID:24699685

  19. Behavior of Ru surfaces after ozonated water treatment

    NASA Astrophysics Data System (ADS)

    Seo, Dongwan; Park, Chanhyoung; Jung, Juneui; Yoon, Mihyun; Lee, Dongwook; Kim, Chang Yeol; Lim, Sangwoo

    2011-10-01

    In order for the development of cleaning technology of extreme ultra violet lithography photomask, the behavior of Ru surfaces after treatment with ozonated deionized water (DIO 3) solution was studied using Ru and ruthenium oxide particles and 2 nm-thick Ru capping layers. No significant changes in crystalline structures or chemical states of the Ru surfaces, nor any similarities with the structures or states of ruthenium oxide, were observed after DIO 3 treatment. Oxidation of ruthenium to form RuO 2 or RuO 3 was not observed. Adsorption of H 2O molecules on the Ru layer increased the surface roughness, but the desorption of H 2O molecules recovered it. Local chemisorption of H 2O molecules on the Ru surface may be the reason why rougher Ru surfaces were observed after DIO 3 cleaning.

  20. Geochemical characterization of surface water and spring water in SE Kashmir Valley, western Himalaya: Implications to water-rock interaction

    NASA Astrophysics Data System (ADS)

    Jeelani, Gh; Bhat, Nadeem A.; Shivanna, K.; Bhat, M. Y.

    2011-10-01

    Water samples from precipitation, glacier melt, snow melt, glacial lake, streams and karst springs were collected across SE of Kashmir Valley, to understand the hydrogeochemical processes governing the evolution of the water in a natural and non-industrial area of western Himalayas. The time series data on solute chemistry suggest that the hydrochemical processes controlling the chemistry of spring waters is more complex than the surface water. This is attributed to more time available for infiltrating water to interact with the diverse host lithology. Total dissolved solids (TDS), in general, increases with decrease in altitude. However, high TDS of some streams at higher altitudes and low TDS of some springs at lower altitudes indicated contribution of high TDS waters from glacial lakes and low TDS waters from streams, respectively. The results show that some karst springs are recharged by surface water; Achabalnag by the Bringi stream and Andernag and Martandnag by the Liddar stream. Calcite dissolution, dedolomitization and silicate weathering were found to be the main processes controlling the chemistry of the spring waters and calcite dissolution as the dominant process in controlling the chemistry of the surface waters. The spring waters were undersaturated with respect to calcite and dolomite in most of the seasons except in November, which is attributed to the replenishment of the CO2 by recharging waters during most of the seasons.

  1. The hydrochemical framework of surface water basins in southern Ghana

    NASA Astrophysics Data System (ADS)

    Yidana, Sandow Mark

    2009-04-01

    Surface water resources play a crucial role in the domestic water delivery system in Ghana. In addition, sustainable food production is based on the quality and quantity of water resources available for irrigation purposes to supplement rain-fed agricultural activities in the country. The objective of this research was to determine the main controls on the hydrochemistry of surface water resources in the southern part of Ghana and assess the quality of water from these basins for irrigation activities in the area. R-mode factor and cluster analyses were applied to 625 data points from 6 river basins in southern Ghana after the data had been log transformed and standardized for homogeneity. This study finds that surface water chemistry in the south is controlled by the chemistry of silicate mineral weathering, chemistry of rainfall, fertilizers from agricultural activities in the area, as well as the weathering of carbonate minerals. A Gibb’s diagram plotted with total dissolved solids (TDS) on the vertical axis against (Na+ + K+)/(Ca2+ + K+ + Na+) on the horizontal axis indicates that rock weathering plays a significant role in the hydrochemistry. Activity diagrams for the CaO-Na2O-Al2O-SiO2-H2O and CaO-MgO-Al2O3-SiO2-H2O systems suggest that kaolinite is the most stable clay mineral phase in the system. In addition, an assessment of the irrigation quality of water from these basins suggests that the basins are largely low sodium—low to medium salinity basins, delivering water of acceptable quality for irrigation purposes.

  2. CONTROLLING STORM WATER RUNOFF WITH TRADABLE CREDITS FOR IMPERVIOUS SURFACES

    EPA Science Inventory

    Storm water flow off impervious surface in a watershed can lead to stream degradation, habitat alteration, low base flows and toxic leading. We show that a properly designed tradable runoff credit (TRC) system creates economic incentives for landowners to employ best management p...

  3. Zearalenone occurrence in surface waters in central Illinois, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zearalenone (ZEN) is an estrogenic secondary metabolite produced by certain fungi that commonly infest important cereal crops, such as corn and wheat. The ability of ZEN to move from contaminated crops to surface waters has been demonstrated previously. This article reports the development of a meth...

  4. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  5. Uranium in US surface, ground, and domestic waters

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters, comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  6. Uranium in US surface, ground, and domestic waters

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  7. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  8. Simulating the fate and transport of nanomaterials in surface waters

    EPA Science Inventory

    The unique properties of nanomaterials have resulted in their increased production. However, it is unclear how nanomaterials will move and react once released to the environment One approach for addressing possible exposure of nanomaterials in surface waters is by using numerical...

  9. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  10. PARTITION COEFFICIENTS FOR METALS IN SURFACE WATER, SOIL, AND WASTE

    EPA Science Inventory

    This report presents metal partition coefficients for the surface water pathway and for the source model used in the Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment (3MRA) technology under development by the U.S. Environmental Protection Agency. Partition ...

  11. CHARACTERIZING SURFACE WATERS THAT MAY NOT REQUIRE FILTRATION

    EPA Science Inventory

    A relatively clean raw surface water can be determined that is amenable to disinfection as the only controlling treatment process. The essential criteria and associated standards are: ecal coliform, 20 organisms/100 mL; Turbidity, 1.0 NTU; Color, 15 ACU; Chlorine Demand, 2 mg/L. ...

  12. AIRBONE LASER FLUOROSENSING OF SURFACE WATER CHLOROPHYLL 'A'

    EPA Science Inventory

    A prototype airborne laser fluorosensor for monitoring surface water chlorophyll 'a' has been tested over Lake Mead, Nevada. Trends in the remotely sensed data are in close correspondence with ground truth data. It is suggested that system performance can be improved by concurren...

  13. REMOTE MONITORING OF ORGANIC CARBON IN SURFACE WATERS

    EPA Science Inventory

    This study shows that the intensity of the Raman normalized fluorescence emission induced in surface waters by ultraviolet radiation can be used to provide a unique remote sensing capability for airborne monitoring the concentration of dissolved organic carbon (DOC). Trace concen...

  14. Long-term trends in precipitation and surface water chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter shows long-term data and trends in precipitation and surface water chemistry for each site. It contains a brief introduction to the topic, and methods of measurements, selection of variables, and their data source. It consists primarily of a large number of figures showing long-term da...

  15. North American Paleozoic land snails with a summary of other Paleozoic nonmarine snails

    USGS Publications Warehouse

    Solem, Alan; Yochelson, Ellis Leon

    1979-01-01

    Land snails from the Paleozoic of North America are known from the coal fields of eastern Canada, from the Dunkard basin west of the Allegheny Mountains, and from the western margin of the Illinois basin. The earliest finds were made about 125 years ago; essentially no new information has been recorded for a century. Large collections of Anthracopupa from the Dunkard basin sparked inquiry into the land snails from the other two areas. Studies using the SEM (scanning electron microscope) have provided considerable insight into microdetails of shell structure, which allow systematic assignment of these gastropods. All may be assigned to extant families, except one, for which insufficient material allows only superfamily assignment. The prosobranch Dawsonella is confirmed as being a terrestrial neritacean gastropod. To date, it is known only from the upper Middle Pennsylvanian of Illinois and Indiana. All the other Paleozoic land snails are stylommatophoran pulmonates; their current classification as nonmarine cyclophoraceans is not correct. Restudy of material from the Joggins section of Nova Scotia indicates that representatives of two ordinal groups of pulmonates appeared simultaneously in upper Lower Pennsylvanian strata; the oldest land prosobranch is found in only very slightly younger rocks. Zonites (Conulus) priscus is reassigned to the new genus Protodiscus in the extant family Discidae. Dendropupa is placed within the family Enidae, Anthraaopupa is placed in the family Tornatellinidae, and 'Pupa' bigsbii is assigned to the superfamily Pupillacea. All four of these family-level taxa are diverse and belong to two orders within the superorder Stylommatophora, heretofore considered a derived rather than an ancestral stock. Anthracopupa ohioensis Whitfield is a highly variable species, and two other species Naticopsis (?) diminuta and A.(?) dunkardona, both named by Stauffer and Schroyer, are placed in synonymy with it. To obtain taxonomic data to support the

  16. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    NASA Astrophysics Data System (ADS)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  17. Surface water-groundwater connectivity in deltaic distributary channel networks

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey H.; Edmonds, Douglas A.; Knights, Deon

    2015-12-01

    Delta distributary channel networks increase river water contact with sediments and provide the final opportunity to process nutrients and other solutes before river water discharges to the ocean. In order to understand surface water-groundwater interactions at the scale of the distributary channel network, we created three numerical deltas that ranged in composition from silt to sand using Delft3D, a morphodynamic flow and sediment transport model. We then linked models of mean annual river discharge to steady groundwater flow in MODFLOW. Under mean annual discharge, exchange rates through the numerical deltas are enhanced relative to a single-threaded river. We calculate that exchange rates across a <10 km2 network are equivalent to exchange through ~10-100 km of single-threaded river channel. Exchange rates are greatest in the coarse-grained delta due to its permeability and morphology. Groundwater residence times range from hours to centuries and have fractal tails. Deltas are vanishing due to relative sea level rise. River diversion projects aimed at creating new deltaic land should also aim to restore surface water-groundwater connectivity, which is critical for biogeochemical processing in wetlands. We recommend designing diversions to capture more sand and thus maximize surface water-groundwater connectivity.

  18. The Mitochondrial Genome of the Venomous Cone Snail Conus consors

    PubMed Central

    Brauer, Age; Kurz, Alexander; Stockwell, Tim; Baden-Tillson, Holly; Heidler, Juliana; Wittig, Ilka; Kauferstein, Silke; Mebs, Dietrich; Stöcklin, Reto; Remm, Maido

    2012-01-01

    Cone snails are venomous predatory marine neogastropods that belong to the species-rich superfamily of the Conoidea. So far, the mitochondrial genomes of two cone snail species (Conus textile and Conus borgesi) have been described, and these feed on snails and worms, respectively. Here, we report the mitochondrial genome sequence of the fish-hunting cone snail Conus consors and describe a novel putative control region (CR) which seems to be absent in the mitochondrial DNA (mtDNA) of other cone snail species. This possible CR spans about 700 base pairs (bp) and is located between the genes encoding the transfer RNA for phenylalanine (tRNA-Phe, trnF) and cytochrome c oxidase subunit III (cox3). The novel putative CR contains several sequence motifs that suggest a role in mitochondrial replication and transcription. PMID:23236512

  19. Water-Mediated Proton Hopping on an Iron Oxide Surface

    SciTech Connect

    Merte, L. R.; Peng, Guowen; Bechstein, Ralf; Rieboldt, Felix; Farberow, Carrie A.; Grabow, Lars C.; Kudernatsch, Wilhelmine; Wendt, Stefen; Laegsgaard, E.; Mavrikakis, Manos; Besenbacher, Fleming

    2012-05-18

    The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H3O+-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO2(110), where water dissociation is a key step in proton diffusion.

  20. Visual tracking system for water surface moving targets

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Beetz, Michael; Gedikli, Suat

    2007-11-01

    Water surface moving targets tracking is a challenging problem in the field of computer vision. Because moving targets are in a cluttered environment and are occluded randomly by splashed water, it is difficult to accurately extract and track them. In this paper, by analyzing water surface's color and motion statistical characteristics, a two-step segmentation algorithm is proposed to extract these targets. Then a multi-view tracking systme is established to estimate the 3D trajectory of moving targets' center. We employ this system to canoe competition, and to compare our result with the standard 3D trajectories, which can be calculated by using the markers on the canoes. THe experiments show that the root median square error between our trajectories and the standard ones is very low.

  1. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    SciTech Connect

    D.A. Shaull; D. Ortiz; M.R. Alexander; R.P. Romero

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  2. Survey of the Mutagenicity of Surface Water, Sediments, and Drinking Water from the Penobscot Indian Nation.

    EPA Science Inventory

    Survey of the Mutagenicity of Surface Water, Sediments, andDrinking Water from the Penobscot Indian NationSarah H. Warren, Larry D. Claxton,1, Thomas J. Hughes,*, Adam Swank,Janet Diliberto, Valerie Marshall, Daniel H. Kusnierz, Robert Hillger, David M. DeMariniNational Health a...

  3. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    SciTech Connect

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  4. Field Evaluation Of Arsenic Speciation In Sediments At The Ground Water/Surface Water Interface

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic at the ground water/surface water interface of the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speciation and mineralog...

  5. Biological indicators of ground water-surface water interaction: An update

    SciTech Connect

    1998-09-01

    This document discusses recent research about the use of biological indicators as a tool to evaluate the interaction of ground water and surface water. Topics covered include: hyporheic zone organism sample collection and study methods, study settings and contaminants, and general effectiveness of this research. An extensive bibliography appears at the end of this document.

  6. Surface Chemistry and Water Dispersability of Carbon Black Materials

    SciTech Connect

    Contescu, Cristian I; Baker, Frederick S; Burchell, Timothy D

    2006-01-01

    Formulation of water-stable carbon black dispersions is a double-sided task, which requires selection of a proper dispersing agents and matching it with the properties of a specific carbon black. Among other properties that affect water dispersability of carbon blacks (particle size, surface area, and aggregate structure), surface chemistry plays a prime-order role. We have characterized physical and chemical properties of several carbon black materials, and correlated them with the stability of dispersions formed with ionic and non-ionic surfactants. In particular, chemical characterization of surface functional groups on carbon blacks based on potentiometric titration measurements (pKa spectra) provided a comprehensive picture of pH effects on dispersion stability. The results obtained were complemented by information from physical characterization methods, such as XPS and FTIR. The selection of a suitable dispersing agent able to withstand large pH variations will be discussed.

  7. Cholesterol enhances surface water diffusion of phospholipid bilayers

    SciTech Connect

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi; Olijve, Luuk L. C.

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  8. Cholesterol enhances surface water diffusion of phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Yuan; Olijve, Luuk L. C.; Kausik, Ravinath; Han, Songi

    2014-12-01

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed 1H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5-10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster

  9. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. PMID:25086698

  10. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    NASA Astrophysics Data System (ADS)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  11. Hydraulic exchange between a coral reef and surface sea water

    SciTech Connect

    Tribble, G.W.; Sansone, F.J.; Li, Yuan-Hui

    1992-10-01

    Hydraulic exchange between overlying sea water and the internal structure of a patch reef in Kaneohe Bay, Oahu, Hawaii, was studied with an array of wells, 1, 2, and 4 m deep. Two natural chemical tracers, radon, and salinity, were used to calculate the exchange rate between surface sea water and reef interstitial waters. Dissolved radon concentrations are substantially higher in interstitial waters than is surface water. The degree of radon enrichment is quantitatively related to the time elapsed since interstitial water had equilibrated with the atmosphere. Residence time estimates are 1-40 days, with deeper wells having slower exchange. The average residence time for 1-m-deep wells was 2.1 days. A rainstorm-induced dilution of the salinity of Kaneohe Bay provides the second tracer. Samples of surface and reef interstitial waters following this salinity perturbation are used to calculate an average residence time of 2.6 days at a depth of 1 m and 42 days at a depth of 2 m. Three types of physical forces thought to cause exchange between surface and interstitial water are considered by measurement of the forcing functions and reef permeability. Hydraulic conductivities are about 50 m/d, with lower values near the seaward side of the reef. Most exchange seems to be caused by high-frequency, wave-driven oscillatory pumping and by unidirectional hydraulic head gradients (of uncertain origin) that are stable for at least 3-4 days. Wave-driven mixing is probably more important shallower in the reef, whereas head-driven flow may dominate deeper in the reef. Tidal pumping does not seem to contribute to exchange. All methods indicate that exchange in the upper part of Checker Reef is primarily through vertical exchange. The best estimate for the residence time of water at a depth of 1 m is 2 days. Water at depths of 204 m probably has a residence time of weeks to months. 49 refs., 8 figs., 6 tabs.

  12. Sea, ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.

    1972-01-01

    The author has identified the following significant results. Two cruises were conducted in Cook Inlet to obtain ground truth. Forty-seven stations during 22-23 August and 68 stations during 25-29 September 1972 were occupied and temperature, salinity, percent light transmission, and suspended load of surface waters obtained. Similar data at various depths was also obtained at selected stations. Cook Inlet is an estuary with complex mixing of river discharges and ocean water. The Upper Cook Inlet shows a gradual and systematic decrease in salinity, however, west of Kenai the mixing of waters is complex. The sediments in suspension originating at the head of the inlet generally settle out east of Kenai and Drift River. Sediment load in suspension decreased gradually from 1700 mg/1 near Anchorage to about 50 mg/1 in the Narrows. In the Lower Cook Inlet the suspended load varied between 1-10 mg/1. Surface waters with sediments in suspension and ocean water with relatively lower sediment concentration are clearly discernible in ERTS-1 images obtained during September 18, 1972 pass over Cook Inlet. The movement and mixing of these waters can also be delineated in the images.

  13. Optimizing Nanopore Surface Properties for High-Efficiency Water Desalination

    NASA Astrophysics Data System (ADS)

    Cohen-Tanugi, David; Grossman, Jeffrey

    2011-03-01

    As water resources worldwide become rapidly scarcer, it is becoming increasingly important to devise new techniques to obtain clean water from seawater. At present, water purification technologies are limited by costly energy requirements relative to the theoretical thermodynamic limit and by insufficient understanding of the physical processes underlying ion filtration and fluid transport at the molecular scale. New advances in computational materials science offer a promising way to deepen our understanding of these physical phenomena. In this presentation, we describe a new approach for high-efficiency water desalination based on surface-engineered porous materials. This approach is especially relevant for promising technologies such as nanofiltration and membrane distillation, which offers promising advantages over traditional desalination technologies using mesoporous membranes that are only permeable to pure water vapor. More accurate molecular modeling of mesoporous and nanoporous materials represents a key step towards efficient large-scale treatment of seawater. Results regarding the effect of pore properties (surface texture, morphology, density, tortuosity) on desired performance characteristics such as ion selectivity, maximal water flux and energy requirements will be presented.

  14. Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation.

    PubMed

    Deng, Shubo; Zhou, Qin; Yu, Gang; Huang, Jun; Fan, Qing

    2011-02-01

    Perfluorooctanoate (PFOA) has been detected in surface water all over the world, and little is known of its removal by coagulation in water treatment plants. In this study, polyaluminium chloride (PACl) was used to remove PFOA from surface water, and the effects of coagulant dose, solution pH, temperature, and initial turbidity on the removal of both PFOA and suspended solids (SS) from water were investigated. Since the SS had high sorption affinity for PFOA, most PFOA was adsorbed on the particles and removed via the SS removal in the coagulation process. PFOA concentrations in aqueous phase decreased with increasing initial turbidity and PACl dose, while they increased with increasing solution pH and temperature. Other perfluorinated compounds (PFCs) with different C-F chain lengths and functional groups were also compared with PFOA. It was proved that hydrophobic interaction played an important role in the adsorption of PFOA on the SS. The addition of powdered activated carbon (PAC) before the coagulation process significantly enhanced the removal efficiency of PFOA in water, and the residual PFOA concentrations in water were less than 1 μg/L after the addition of 1-16 mg/L PAC and subsequent coagulation when the initial PFOA concentrations were in the range of 0.5-3 mg/L. PMID:21163511

  15. Surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xin, Pei; Shen, Chengji

    2014-05-01

    Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.

  16. Surface Water and Ground Water Interactions in an Irrigated Valley in Northern New Mexico

    NASA Astrophysics Data System (ADS)

    Ochoa, C.; Fernald, A.; Guldan, S.; Tidwell, V.; King, P.; Cevik, Y.; Cusack, C.

    2008-12-01

    Interactions between surface water and ground water can provide many benefits like terrestrial and aquatic species habitat, aquifer recharge, and shallow ground water return flow. In northern New Mexico, the use of traditional irrigation systems has effectively expanded riparian functions to encompass full irrigated valley width. The objective of this study was to characterize the surface water and ground water interactions occurring in an irrigated valley along the Rio Grande in northern New Mexico. We used a combination of field measurements and modeling for determining different components of the water budget. Our results show that on average ditch flow is 0.9 cms, ditch seepage is 10%, irrigated field deep percolation is 30%, and ground water level rise is 0.4 m over the entire valley after the irrigation season started. We calculated that on average, 50% of the water diverted into the main irrigation ditch returns back to the river as surface return flow and about 10% of the total ditch inflow returns as groundwater flow. Results from this study show that a significant amount of water being diverted into the valley returns back to the river after completing its task of supporting important production and ecological functions in this expanded riverine valley.

  17. Alterations in the fatty acid profile, antioxidant enzymes and protein pattern of Biomphalaria alexandrina snails exposed to the pesticides diazinon and profenfos.

    PubMed

    Bakry, Fayez A; El-Hommossany, Karem; Abd El-Atti, Mahmoud; Ismail, Somaya M

    2016-04-01

    The use of pesticides is widespread in agricultural activities. These pesticides may contaminate the irrigation and drainage systems during agriculture activities and pests' control and then negatively affect the biotic and a biotic component of the polluted water courses. The present study aimed to evaluate the effect of the pesticides diazinon and profenfos on some biological activities of Biomphalaria alexandrina snails such as fatty acid profile, some antioxidant enzymes (thioredoxin reductase (TrxR), sorbitol dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT) as well as glutathione reductase (GR) and lipid peroxidation (LP)) and protein patterns in snails' tissues exposed for 4 weeks to LC10 of diazinon and profenfos. The results showed that the two pesticides caused considerable reduction in survival rates and egg production of treated snails. Identification of fatty acid composition in snail tissues treated with diazinon and profenfos pesticides was carried out using gas-liquid chromatography (GLC). The results declared alteration in fatty acid profile, fluctuation in percentage of long chain and short chain fatty acid contributions either saturated or unsaturated ones, and a decrease in total lipid content in tissues of snails treated with these pesticides. The data demonstrate that there was a significant inhibition in the activities of tissues SOD, CAT, glutathione reductase (GR), TrxR, and SDH in tissues of treated snails, while a significant elevation was detected in LP as compared to the normal control. On the other hand, the electrophoretic pattern of total protein showed differences in number and molecular weights of protein bands due to the treatment of snails. It was concluded that the residues of diazinon and profenfos pesticides in aquatic environments have toxic effects onB. alexandrina snails. PMID:24215063

  18. Observation of dynamic water microadsorption on Au surface

    SciTech Connect

    Huang, Xiaokang Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  19. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  20. How parasitism, stream substrate, and movement patterns mediate response to disturbance in the snail Elimia flava

    NASA Astrophysics Data System (ADS)

    Tomba, A. M.; Feminella, J. W.

    2005-05-01

    Snails in the genus Elimia are abundant in southeastern USA streams, and also serve as intermediate hosts to parasitic trematodes. Previous work indicated that high-flows decrease snail abundance and trematode prevalence, and others have shown substrate type and snail size affect likelihood of snail dislodgement. To investigate how parasitism, size, substrate, and snail behavior influenced dislodgement, we placed Elimia flava in artificial streams containing tile or gravel substrates, and then exposed them to progressively increasing flow velocities ( ~10, 40, 90 cm/s) for 5 minutes each. We recorded snail behavior and time to dislodgement, and then preserved snails to quantify their size and parasite load. Snails on tile dislodged significantly faster than snails on gravel, and snails with high parasite loads also dislodged faster than snails without parasites. Parasitism also appeared to affect movement patterns: snails showing predominantly downstream movement had higher parasite loads than those that did not. Behavior also affected dislodgement probability, as snails moving upstream or to the waterline remained on the substrate longer than snails not showing those behaviors. Parasitism, substrate composition, and snail movement are useful predictors of the likelihood of dislodgement, and parasitism and substrate may both increase snail vulnerability to flow disturbance.

  1. The ecology of vector snail habitats and mosquito breeding-places

    PubMed Central

    Muirhead-Thomson, R. C.

    1958-01-01

    The ecology of freshwater snails—in particular those which act as intermediate hosts of bilharziasis—is reviewed in the light of the much more extensive knowledge available on the breeding-places of anopheline mosquitos. Experimental ecological methods are recommended for the field and laboratory investigation of a number of common problems involved in the study of snail habitats and mosquito breeding-places. Among the environmental factors discussed are temperature, oxygen concentration, water movement, pollution and salinity. Sampling methods for estimating populations of both snails and mosquito larvae are also described. An attempt is made to show how malacologists and entomologists alike would benefit from improved facilities for keeping abreast of general developments in the wider field of freshwater ecology. PMID:13596888

  2. Surface tension of ab initio liquid water at the water-air interface

    NASA Astrophysics Data System (ADS)

    Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D.

    2016-05-01

    We report calculations on the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the influence of the cell size on surface tension of water from force field molecular dynamics simulations. We find that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is essential for small systems that are customary in AIMD simulations. Moreover, AIMD simulations reveal that the use of a double-ζ basis set overestimates the experimentally measured surface tension due to the Pulay stress while more accurate triple and quadruple-ζ basis sets give converged results. We further demonstrate that van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension while the van der Waals correction with the Grimme's D2 technique results in a value for the surface tension that is too high. The Grimme's D3 van der Waals correction provides a surface tension close to the experimental value. Whereas the specific choices for the van der Waals correction and basis sets critically affect the calculated surface tension, the surface tension is remarkably insensitive to the details of the exchange and correlation functionals, which highlights the impact of long-range interactions on the surface tension. Our simulated values provide important benchmarks, both for improving van der Waals corrections and AIMD simulations of aqueous interfaces.

  3. Investigating surface water-well interaction using stable isotope ratios of water

    USGS Publications Warehouse

    Hunt, R.J.; Coplen, T.B.; Haas, N.L.; Saad, D.A.; Borchardt, M. A.

    2005-01-01

    Because surface water can be a source of undesirable water quality in a drinking water well, an understanding of the amount of surface water and its travel time to the well is needed to assess a well's vulnerability. Stable isotope ratios of oxygen in river water at the City of La Crosse, Wisconsin, show peak-to-peak seasonal variation greater than 4??? in 2001 and 2002. This seasonal signal was identified in 7 of 13 city municipal wells, indicating that these 7 wells have appreciable surface water contributions and are potentially vulnerable to contaminants in the surface water. When looking at wells with more than 6 sampling events, a larger variation in ??18O compositions correlated with a larger fraction of surface water, suggesting that samples collected for oxygen isotopic composition over time may be useful for identifying the vulnerability to surface water influence even if a local meteoric water line is not available. A time series of ??18O from one of the municipal wells and from a piezometer located between the river and the municipal well showed that the travel time of flood water to the municipal well was approximately 2 months; non-flood arrival times were on the order of 9 months. Four independent methods were also used to assess time of travel. Three methods (groundwater temperature arrival times at the intermediate piezometer, virus-culture results, and particle tracking using a numerical groundwater-flow model) yielded flood and non-flood travel times of less than 1 year for this site. Age dating of one groundwater sample using 3H-3He methods estimated an age longer than 1 year, but was likely confounded by deviations from piston flow as noted by others. Chlorofluorocarbons and SF6 analyses were not useful at this site due to degradation and contamination, respectively. This work illustrates the utility of stable hydrogen and oxygen isotope ratios of water to determine the contribution and travel time of surface water in groundwater, and

  4. Effects of sewage sludge amendment on snail growth and trace metal transfer in the soil-plant-snail food chain.

    PubMed

    Bourioug, Mohamed; Gimbert, Frédéric; Alaoui-Sehmer, Laurence; Benbrahim, Mohammed; Badot, Pierre-Marie; Alaoui-Sossé, Badr; Aleya, Lotfi

    2015-11-01

    Cu, Zn, Pb, and Cd concentrations in a soil plant (Lactuca sativa) continuum were measured after sewage sludge amendment. The effects of sewage sludge on growth and trace metal bioaccumulation in snails (Cantareus aspersus) were investigated in a laboratory experiment specifically designed to identify contamination sources (e.g., soil and leaves). Application of sewage sludge increased trace metal concentrations in topsoil. However, except Zn, metal concentrations in lettuce leaves did not reflect those in soil. Lettuce leaves were the main source of Zn, Cu, and Cd in exposed snails. Bioaccumulation of Pb suggested its immediate transfer to snails via the soil. No apparent toxic effects of trace metal accumulation were observed in snails. Moreover, snail growth was significantly stimulated at high rates of sludge application. This hormesis effect may be due to the enhanced nutritional content of lettuce leaves exposed to sewage sludge. PMID:26165994

  5. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices

  6. Surface-enhanced Raman for monitoring toxins in water

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Clauson, Susan L.; Bertone, Jane F.; Christesen, Steven D.

    2004-02-01

    Protection of the drinking water supply from a terrorist attack is of critical importance. Since the water supply is vast, contamination prevention is difficult. Therefore, rapid detection of contaminants, whether a military chemical/biological threat, a hazardous chemical spill, naturally occurring toxins, or bacterial build-up is a priority. The development of rapid environmentally portable and stable monitors that allow continuous monitoring of the water supply is ideal. EIC Laboratories has been developing Surface-Enhanced Raman Spectroscopy (SERS) to detect chemical agents, toxic industrial chemicals (TICs), viruses, cyanotoxins and bacterial agents. SERS is an ideal technique for the Joint Service Agent Water Monitor (JSAWM). SERS uses the enhanced Raman signals observed when an analyte adsorbs to a roughened metal substrate to enable trace detection. Proper development of the metal substrate will optimize the sensitivity and selectivity towards the analytes of interest.

  7. Searching for liquid water in Europa by using surface observatories.

    PubMed

    Khurana, Krishan K; Kivelson, Margaret G; Russell, Christopher T

    2002-01-01

    Liquid water, as far as we know, is an indispensable ingredient of life. Therefore, locating reservoirs of liquid water in extraterrestrial bodies is a necessary prerequisite to searching for life. Recent geological and geophysical observations from the Galileo spacecraft, though not unambiguous, hint at the possibility of a subsurface ocean in the Jovian moon Europa. After summarizing present evidence for liquid water in Europa, we show that electromagnetic and seismic observations made from as few as two surface observatories comprising a magnetometer and a seismometer offer the best hope of unambiguous characterization of the three-dimensional structure of the ocean and the deeper interior of this icy moon. The observatories would also help us infer the composition of the icy crust and the ocean water. PMID:12449858

  8. Evaluation of the Surface-Water Quantity, Surface-Water Quality, and Rainfall Data-Collection Programs in Hawaii, 1994

    USGS Publications Warehouse

    Fontaine, Richard A.

    1996-01-01

    This report documents the results of an evaluation of the surface-water quantity, surface-water quality, and rainfall data-collection programs in Hawaii. Fourteen specific issues and related goals were identified for the surface-water quantity program and a geographic information systems (GIS) data base was developed summarizing information for all surface-water stream gages that have been operated in Hawaii by the U.S. Geological Survey. Changes in status, which for some gages includes discontinuing operation, need to be considered at 42 sites where data are currently collected. The current surface-water quantity data base was determined to be adequate to address only two of the 14 specific issues and related goals. Alternatives were identified to address the areas where future issues and goals could not be adequately addressed. Options include new and expanded data collection, use of regional regression analyses, hydrologic and hydraulic modeling, and analysis and publication of existing data. A total of 47 streams were identified where additional stream-gaging stations are needed. Evaluation of the surface-water quality program was limited to a description of the U.S. Geological Survey's historical and existing programs and available analyses of data. Limitations of the program are described which primarily included lack of data regarding suspended sediment, land-use effects, quality of stream discharge to oceans, background water quality and nonpoint sources of contamination. Evaluation of the rainfall data program indicated that identified future goals could be discussed as either regional, systems related, current needs, forecasting, water quality, or trend analysis related. To address these goals, data from about 2,000 rain gages, 528 of which are active, are available. Data were found to only partially meet identified goals. Alternatives discussed to address the limitations include the need for more recording gages, primarily in areas of high rainfall

  9. Ionization dynamics of water dimer on ice surface

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2016-05-01

    The solid surface provides an effective two-dimensional reaction field because the surface increases the encounter probability of bi-molecular collision reactions. Also, the solid surface stabilizes a reaction intermediate because the excess energy generated by the reaction dissipates into the bath modes of surface. The ice surface in the universe is one of the two dimensional reaction fields. However, it is still unknown how the ice surface affects to the reaction mechanism. In the present study, to elucidate the specific property of the ice surface reaction, ionization dynamics of water dimer adsorbed on the ice surface was theoretically investigated by means of direct ab-initio molecular dynamics (AIMD) method combined with ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) technique, and the result was compared with that of gas phase reaction. It was found that a proton is transferred from H2O+ to H2O within the dimer and the intermediate complex H3O+(OH) is formed in both cases. However, the dynamic features were different from each other. The reaction rate of the proton transfer on the ice surface was three times faster than that in the gas phase. The intermediate complex H3O+(OH) was easily dissociated to H3O+ and OH radical on the ice surface, and the lifetime of the complex was significantly shorter than that of gas phase (100 fs vs. infinite). The reason why the ice surface accelerates the reaction was discussed in the present study.

  10. National primary drinking water regulations: Long Term 1 Enhanced Surface Water Treatment Rule. Final rule.

    PubMed

    2002-01-14

    In this document, EPA is finalizing the Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR). The purposes of the LT1ESWTR are to improve control of microbial pathogens, specifically the protozoan Cryptosporidium, in drinking water and address risk trade- offs with disinfection byproducts. The rule will require systems to meet strengthened filtration requirements as well as to calculate levels of microbial inactivation to ensure that microbial protection is not jeopardized if systems make changes to comply with disinfection requirements of the Stage 1 Disinfection and Disinfection Byproducts Rule (DBPR). The LT1ESWTR applies to public water systems that use surface water or ground water under the direct influence of surface water and serve fewer than 10,000 persons. The LT1ESWTR builds upon the framework established for systems serving a population of 10,000 or more in the Interim Enhanced Surface Water Treatment Rule (IESWTR). This rule was proposed in combination with the Filter Backwash Recycling Rule (FBRR) in April 2000. PMID:11800007

  11. Mitigation of acid deposition: Liming of surface waters. Final report

    SciTech Connect

    Bartoshesky, J.; Price, R.; DeMuro, J.

    1989-05-01

    In recent years acid deposition has become a serious concern internationally. Scientific literature has documented the acidification of numerous lakes and streams in North America and Scandinavia resulting in the depletion or total loss of fisheries and other aquatic biota. Liming represents the only common corrective practice aimed specifically at remediating an affected acid receptor. This report reviews a range of liming technologies and liming materials, as well as the effect of surface-water liming on water quality and aquatic biota. As background to the liming discussion, the hydrologic cycle and the factors that make surface waters sensitive to acid deposition are also discussed. Finally, a brief review of some of the liming projects that have been conducted, or are currently in operation is presented, giving special emphasis to mitigation efforts in Maryland. Liming has been effectively used to counteract surface-water acidification in parts of Scandinavia, Canada, and the U.S. To date, liming has generally been shown to improve physical and chemical conditions and enhance the biological recovery of aquatic ecosystems affected by acidification.

  12. Pesticide monitoring in surface water and groundwater using passive samplers

    NASA Astrophysics Data System (ADS)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  13. Linking land use with pesticides in Dutch surface waters.

    PubMed

    Van't, Zelfde M T; Tamis, W L M; Vijver, M G; De Snoo, G R

    2012-01-01

    Compared with other European countries The Netherlands has a relatively high level of pesticide consumption, particularly in agriculture. Many of the compounds concerned end up in surface waters. Surface water quality is routinely monitored and numerous pesticides are found to be present in high concentrations, with various standards being regularly exceeded. Many standards-breaching pesticides exhibit regional patterns that can be traced back to land use. These patterns have been statistically analysed by correlating surface area per land use category with standards exceedance per pesticide, thereby identifying numerous significant correlations with respect to breaches of both the ecotoxicological standard (Maximum Tolerable Risk, MTR) and the drinking water standard. In the case of the MTR, greenhouse horticulture, floriculture and bulb-growing have the highest number as well as percentage of standard-breaching pesticides, despite these market segments being relatively small in terms of area cropped. Cereals, onions, vegetables, perennial border plants and pulses are also associated with many pesticides that exceed the drinking water standard. When a correction is made for cropped acreage, cereals and potatoes also prove to be a major contributor to monitoring sites where the MTR standard is exceeded. Over the period 1998-2006 the land-use categories with the most and highest percentage of standards-exceeding pesticides (greenhouse horticulture, bulb-growing and flower cultivation) showed an increase in the percentage of standards-exceeding compounds. PMID:23885409

  14. Assembled monolayers of hydrophilic particles on water surfaces.

    PubMed

    Moon, Geon Dae; Lee, Tae Il; Kim, Bongsoo; Chae, GeeSung; Kim, Jinook; Kim, SungHee; Myoung, Jae-Min; Jeong, Unyong

    2011-11-22

    A facile and quick approach to prepare self-assembled monolayers of water-dispersible particles on the water surface is presented. Particle suspensions in alcohols were dropped on a water reservoir to form long-range ordered monolayers of various particles, including spherical solid particles, soft hydrogel particles, metal nanoparticles, quantum dots, nanowires, single-wall carbon nanotubes (SWCNTs), nanoplates, and nanosheets. A systematic study was conducted on the variables affecting the monolayer assembly: the solubility parameter of spreading solvents, particle concentration, zeta potential of the particles in the suspension, surface tension of the water phase, hardness of the particles, and addition of a salt in the suspension. This method requires no hydrophobic surface treatment of the particles, which is useful to exploit these monolayer films without changing the native properties of the particles. The study highlights a quick 2D colloidal assembly without cracks in the wafer scale as well as transparent conductive thin films made of SWCNTs and graphenes. PMID:21962177

  15. The Character of the Solar Wind, Surface Interactions, and Water

    NASA Technical Reports Server (NTRS)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  16. Determination of antibiotic residues in manure, soil, and surface waters

    USGS Publications Warehouse

    Christian, T.; Schneider, R.J.; Farber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E.

    2003-01-01

    In the last years more and more often detections of antimicrobially active compounds ("antibiotics") in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run-off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1...2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 ??g/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.

  17. Effect of Surface Chemistry on Water Interaction with Cu(111).

    PubMed

    Antony, Andrew C; Liang, Tao; Akhade, Sneha A; Janik, Michael J; Phillpot, Simon R; Sinnott, Susan B

    2016-08-16

    The interfacial dynamics of water in contact with bare, oxidized, and hydroxylated copper surfaces are examined using classical molecular dynamics (MD) simulations. A third-generation charge-optimized many-body (COMB3) potential is used in the MD simulations to investigate the adsorption of water molecules on Cu(111), and the results are compared to the findings of density functional theory (DFT) calculations. The adsorption energies and structures predicted by COMB3 are generally consistent with those determined with DFT. The COMB3 potential is then used to investigate the wetting behavior of water nanodroplets on Cu(111) at 20, 130, and 300 K. At room temperature, the simulations predict that the spreading rate of the base radius, R0, of a water droplet with a diameter of about 1.5 nm exhibits a spreading rate of R0 ≈ t(0.16) and a final base radius of 3.5 nm. At 20 and 130 K, water droplets are predicted to retain their structure after adsorption on Cu(111) and to undergo minimal spreading in agreement with scanning tunneling microscopy data. When the same water droplet encounters a reconstructed, oxidized Cu(111) surface, the classical MD simulations predict wetting with a spreading rate of R ≈ t(0.14) and a final base radius of 3.0 nm. Similarly, our MD simulations predict a spreading rate of R ≈ t(0.14) and a final base radius of 2.5 nm when water encounters OH-covered Cu(111). These results indicate that oxidation and hydroxylation cause a reduction in the degree of spreading and final base radius that is directly associated with a decreased spreading rate for water nanodroplets on copper. PMID:27442055

  18. Home-built Surface Plasmon Resonance Apparatus for Studying Interactions Between Water and a Hydrophobic Surface

    NASA Astrophysics Data System (ADS)

    McNany, Dylan; Brown, Erin; Petersen, Shannon; Poynor, Adele

    2014-03-01

    Water acts in many anomalous ways, especially when near a hydrophobic surface. Surface plasmon resonance (SPR), a quantum optical method is used to study these unusual effects. Through the use of SPR, studies of the depletion layer (a very thin low-density layer, only a few nanometers thick) can be conducted. Employing a home-built SPR device, along with a monolayer coated gold slide, studies are conducted using a variety of differing dielectrics (water, air, methanol). Modifications of the SPR apparatus allow us to find the assumed thickness of the depleted region.

  19. Sensors and OBIA synergy for operational monitoring of surface water

    NASA Astrophysics Data System (ADS)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  20. Relationships between nutrient enrichment, pleurocerid snail density and trematode infection rate in streams

    USGS Publications Warehouse

    Ciparis, Serena; Iwanowicz, Deborah D.; Voshell, J. Reese, Jr.

    2013-01-01

    Summary 1. Nutrient enrichment is a widespread environmental problem in freshwater ecosystems. Eutrophic conditions caused by nutrient enrichment may result in a higher prevalence of infection by trematode parasites in host populations, due to greater resource availability for the molluscan first intermediate hosts. 2. This study examined relationships among land use, environmental variables indicating eutrophication, population density of the pleurocerid snail, Leptoxis carinata, and trematode infections. Fifteen study sites were located in streams within the Shenandoah River catchment (Virginia, U.S.A.), where widespread nutrient enrichment has occurred. 3. Snail population density had a weak positive relationship with stream water nutrient concentration. Snail population density also increased as human activities within stream catchments increased, but density did not continue to increase in catchments where anthropogenic disturbance was greatest. 4. Cercariae from five families of trematodes were identified in L. carinata, and infection rate was generally low (<10%). Neither total infection rate nor the infection rate of individual trematode types showed a positive relationship with snail population density, nutrients or land use. 5. There were statistically significant but weak relationships between the prevalence of infection by two trematode families and physical and biological variables. The prevalence of Notocotylidae was positively related to water depth, which may be related to habitat use by definitive hosts. Prevalence of Opecoelidae had a negative relationship with orthophosphate concentration and a polynomial relationship with chlorophyll a concentration. Transmission of Opecoelid trematodes between hosts may be inhibited by eutrophic conditions. 6. Leptoxis carinata appears to be a useful species for monitoring the biological effects of eutrophication and investigating trematode transmission dynamics in lotic systems.

  1. Heat shock proteins and resistance to desiccation in congeneric land snails.

    PubMed

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2010-07-01

    Land snails are subject to daily and seasonal variations in temperature and in water availability and depend on a range of behavioral and physiological adaptations for coping with problems of maintaining water, ionic, and thermal balance. Heat shock proteins (HSPs) are a multigene family of proteins whose expression is induced by a variety of stress agents. We used experimental desiccation to test whether adaptation to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desiccation-resistant, desert species Sphincterochila zonata, and a Mediterranean-type, desiccation-sensitive species Sphincterochila cariosa. We examined the HSP response in the foot, hepatopancreas, and kidney tissues of snails exposed to normothermic desiccation. Our findings show variations in the HSP response in both timing and magnitude between the two species. The levels of endogenous Hsp72 in S. cariosa were higher in all the examined tissues, and the induction of Hsp72, Hsp74, and Hsp90 developed earlier than in S. zonata. In contrary, the induction of sHSPs (Hsp25 and Hsp30) was more pronounced in S. zonata compared to S. cariosa. Our results suggest that land snails use HSPs as part of their survival strategy during desiccation and as important components of the aestivation mechanism in the transition from activity to dormancy. Our study underscores the distinct strategy of HSP expression in response to desiccation, namely the delayed induction of Hsp70 and Hsp90 together with enhanced induction of sHSPs in the desert-dwelling species, and suggests that evolution in harsh environments will result in selection for reduced Hsp70 expression. PMID:19953352

  2. Development of Helisoma trivolvis pond snails as biological samplers for biomonitoring of current-use pesticides.

    PubMed

    Morrison, Shane A; Belden, Jason B

    2016-09-01

    Nontarget aquatic organisms residing in wetlands are commonly exposed to current-use pesticides through spray drift and runoff. However, it is frequently challenging to measure exposure because of rapid dissipation of pesticides from water and reduced bioavailability. The authors' hypothesis is that freshwater snails can serve as bioindicators of pesticide exposure based on their capacity to passively accumulate tissue residues. Helisoma trivolvis snails were evaluated as biomonitors of pesticide exposure using a fungicide formulation that contains pyraclostrobin and metconazole and is frequently applied to crops surrounding depressional wetlands. Exposure-response studies indicate that H. trivolvis are tolerant of pyraclostrobin and metconazole at concentrations >10 times those lethal to many aquatic species, with a median lethal concentration based on pyraclostrobin of 441 μg/L (95% confidence interval of 359-555 μg/L). Bioconcentration factors ranged from 137 mL/g to 211 mL/g and from 39 mL/g to 59 mL/g for pyraclostrobin and metconazole, respectively. Elimination studies suggested one-compartmental elimination and snail tissue half-lives (t50 ) of approximately 15 h and 5 h for pyraclostrobin and metconazole, respectively. Modeling derived toxicokinetic parameters in the context of an environmentally relevant pulsed exposure suggests that residues can be measured in snails long after water concentrations fall below detection limits. With high fungicide tolerance, rapid accumulation, and slow elimination, H. trivolvis may be viable for biomonitoring of pyraclostrobin and should be investigated for other pesticides. Environ Toxicol Chem 2016;35:2320-2329. © 2016 SETAC. PMID:26876158

  3. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these

  4. Adsorption of ethanol and water on calcite: dependence on surface geometry and effect on surface behavior.

    PubMed

    Keller, K S; Olsson, M H M; Yang, M; Stipp, S L S

    2015-04-01

    Molecular dynamics (MD) simulations were used to explore adsorption on calcite, from a 1:1 mixture of ethanol and water, on planar {10.4} and stepped, i.e. vicinal, surfaces. Varying the surface geometry resulted in different adsorption patterns, which would directly influence the ability of ethanol to control calcite crystal growth, dissolution, and adsorption/desorption of other ions and molecules. Ethanol forms a well-ordered adsorbed layer on planar faces and on larger terraces, such as between steps and defects, providing little chance for water, with its weaker attachment, to displace it. However, on surfaces with steps, adsorption affinity depends on the length of the terraces between the steps. Long terraces allow ethanol to form a well-ordered, hydrophobic layer, but when step density is high, ethanol adsorption is less ordered, allowing water to associate at and near the steps and even displacing pre-existing ethanol. Water adsorbed at steps forms mass transport pathways between the bulk solution and the solid surface. Our simulations confirm the growth inhibiting properties of ethanol, also explaining how certain crystal faces are more stabilized because of their surface geometry. The -O(H) functional group on ethanol forms tight bonds with calcite; the nonpolar, -CH3 ends, which point away from the surface, create a hydrophobic layer that changes surface charge, thus wettability, and partly protects calcite from precipitation and dissolution. These tricks could easily be adopted by biomineralizing organisms, allowing them to turn on and off crystal growth. They undoubtedly also play a role in the wetting properties of mineral surfaces in commercial CaCO3 manufacture, oil production, and contamination remediation. PMID:25790337

  5. Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana

    PubMed Central

    Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196

  6. A "First Principles" Potential Energy Surface for Liquid Water from VRT Spectroscopy of Water Clusters

    SciTech Connect

    Goldman, N; Leforestier, C; Saykally, R J

    2004-05-25

    We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface. VRT(ASP-W)III is shown to not only be a model of high ''spectroscopic'' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared to those from ab initio Molecular Dynamics, other potentials of ''spectroscopic'' accuracy, and to experiment. The results herein represent the first time that a ''spectroscopic'' potential surface is able to correctly model condensed phase properties of water.

  7. Global analysis of urban surface water supply vulnerability

    NASA Astrophysics Data System (ADS)

    Padowski, Julie C.; Gorelick, Steven M.

    2014-10-01

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy.

  8. Disconnected surface water and groundwater: from theory to practice.

    PubMed

    Brunner, Philip; Cook, Peter G; Simmons, Craig T

    2011-01-01

    When describing the hydraulic relationship between rivers and aquifers, the term disconnected is frequently misunderstood or used in an incorrect way. The problem is compounded by the fact that there is no definitive literature on the topic of disconnected surface water and groundwater. We aim at closing this gap and begin the discussion with a short introduction to the historical background of the terminology. Even though a conceptual illustration of a disconnected system was published by Meinzer (1923), it is only within the last few years that the underlying physics of the disconnection process has been described. The importance of disconnected systems, however, is not widely appreciated. Although rarely explicitly stated, many approaches for predicting the impacts of groundwater development on surface water resources assume full connection. Furthermore, management policies often suggest that surface water and groundwater should only be managed jointly if they are connected. However, although lowering the water table beneath a disconnected section of a river will not change the infiltration rate at that point, it can increase the length of stream that is disconnected. Because knowing the state of connection is of fundamental importance for sustainable water management, robust field methods that allow the identification of the state of connection are required. Currently, disconnection is identified by showing that the infiltration rate from a stream to an underlying aquifer is independent of the water table position or by identifying an unsaturated zone under the stream. More field studies are required to develop better methods for the identification of disconnection and to quantify the implications of heterogeneity and clogging processes in the streambed on disconnection. PMID:20849421

  9. Storm water contamination and its effect on the quality of urban surface waters.

    PubMed

    Barałkiewicz, Danuta; Chudzińska, Maria; Szpakowska, Barbara; Świerk, Dariusz; Gołdyn, Ryszard; Dondajewska, Renata

    2014-10-01

    We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water. PMID:24981877

  10. Surface Water Quality Trends from EPA's LTM Network

    NASA Astrophysics Data System (ADS)

    Funk, C.; Lynch, J. A.

    2013-12-01

    Surface water chemistry provides direct indicators of the potential effects of anthropogenic impacts, such as acid deposition and climate change, on the overall health of aquatic ecosystems. Long-term surface water monitoring networks provide a host of environmental data that can be used, in conjunction with other networks, to assess how water bodies respond to stressors and if they are potentially at risk (e.g., receiving pollutant deposition beyond its critical load). Two EPA-administered monitoring programs provide information on the effects of acidic deposition on headwater aquatic systems: the Long Term Monitoring (LTM) program and the Temporally Integrated Monitoring of Ecosystems (TIME) program, designed to track the effectiveness of the 1990 Clean Air Act Amendments (CAAA) in reducing the acidity of surface waters in acid sensitive ecoregions of the Northeast and Mid-Atlantic. Here we present regional variability of long term trends in surface water quality in response to substantial reductions in atmospheric deposition. Water quality trends at acid sensitive LTM sites exhibit decreasing concentrations of sulfate at 100% of monitored sites in the Adirondack Mountains and New England, 80% of Northern Appalachian Plateau sites, and yet only 15% of sites in the Ridge and Blue Ridge Provinces over the 1990-2011 period of record. Across all regions, most LTM sites exhibited constant or only slightly declining nitrate concentrations over the same time period. Acid Neutralizing Capacity (ANC) levels improved at 68% and 45% of LTM sites in the Adirondacks and Northern Appalachian Plateau, respectively, but few sites showed increases in New England or the Ridge and Blue Ridge Provinces due to lagging improvements in base cation concentration. The ANC of northeastern TIME lakes was also evaluated from 1991 to 1994 and 2008 to 2011. The percentage of lakes with ANC values below 50 μeq/L, lakes of acute or elevated concern, dropped by about 7%, indicating improvement

  11. Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters

    SciTech Connect

    ,

    1981-04-01

    The study objective of "The Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters" is to synthesize and test radionuclide transport models capable of realistically assessing radionuclide transport in various types of surface water bodies by including the sediment-radionuclide interactions. These interactions include radionuclide adsorption by sediment; desorption from sediment into water; and transport, deposition, and resuspension of sorbed radionuclides controlled by the sediment movements. During FY-1979, the modification of sediment and contaminant (radionuclide) transport model, FETRA, was completed to make it applicable to coastal waters. The model is an unsteady, two-dimensional (longitudinal and lateral) model that consists of three submodels (for sediment, dissolved-contaminant, and particulate-contaminant transport), coupled to include the sediment-contaminant interactions. In estuaries, flow phenomena and consequent sediment and radionuclide migration are often three-dimensional in nature mainly because of nonuniform channel cross-sections, salinity intrusion, and lateral-flow circulation. Thus, an unsteady, three-dimensional radionuclide transport model for estuaries is also being synthesized by combining and modifying a PNL unsteady hydrothermal model and FETRA. These two radionuclide transport models for coastal waters and estuaries will be applied to actual sites to examine the validity of the codes.

  12. The impact of land use on microbial surface water pollution.

    PubMed

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. PMID:25456147

  13. Assessment of groundwater under direct influence of surface water.

    PubMed

    Nnadi, Fidelia N; Fulkerson, Mark

    2002-08-01

    Waterborne pathogens are known to reside in surface water systems throughout the U.S. Cryptosporidium outbreaks over recent years are the result of drinking water supplied from such sources. Contamination of aquifers has also led to several reported cases from drinking water wells. With high resistance to typical groundwater treatment procedures, aquifer infiltration by Cryptosporidium poses a serious threat. As groundwater wells are the main source of drinking water supply in the State of Florida, understanding factors that affect the presence of Cryptosporidium would prevent future outbreaks. This study examines karst geology, land use, and hydrogeology in the State of Florida as they influence the risk of groundwater contamination. Microscopic Particulate Analysis (MPA) sampling was performed on 719 wells distributed across Florida. The results of the sampling described each well as having high, moderate, or low risk to surface water influence. The results of this study indicated that the hydrogeology of an area tends to influence the MPA Risk Index (RI) of a well. Certain geologic formations were present for the majority of the high risk wells. Residential land use contained nearly half of the wells sampled. The results also suggested that areas more prone to sinkhole development are likely to contain wells with a positive RI. PMID:15328687

  14. Input dynamics of pesticide transformation products into surface water

    NASA Astrophysics Data System (ADS)

    Kern, Susanne; Singer, Heinz; Hollender, Juliane; Schwarzenbach, René P.; Fenner, Kathrin

    2010-05-01

    Some pesticide transformation products have been observed to occur in higher concentrations and more frequently than the parent active pesticide in surface water and groundwater. These products are often more mobile and sometimes more stable than the parent pesticide. If they also represent the major product into which the parent substance is transformed, these transformation products may dominate observed pesticide occurrences in surface water and groundwater. Their potential contribution to the overall risk to the aquatic environment caused by the use of the parent pesticide should therefore not be neglected in chemical risk and water quality assessments. The same is true for transformation products of other compound classes that might reach the soil environment, such as veterinary pharmaceuticals. However, the fate and input pathways of transformation products of soil-applied chemicals into surface water are not yet well understood, which largely prevents their appropriate inclusion into chemical risk and water quality assessments. Here, we studied whether prioritization methods based on available environmental fate data from pesticide registration dossiers in combination with basic fate models could help identify transformation products which can be found in relevant concentrations in surface and groundwater and which should therefore be included into monitoring programs. A three-box steady state model containing air, soil, and surface water compartments was used to predict relative inputs of pesticide transformation products into surface waters based on their physico-chemical and environmental fate properties. The model predictions were compared to monitoring data from a small Swiss river located in an intensely agricultural catchment (90 km2) which was flow-proportionally sampled from May to October 2008 and screened for 74 pesticides as well as 50 corresponding transformation products. Sampling mainly occurred during high discharge, but additional samples

  15. Dynamics of microdroplets over the surface of hot water

    NASA Astrophysics Data System (ADS)

    Umeki, Takahiro; Ohata, Masahiko; Nakanishi, Hiizu; Ichikawa, Masatoshi

    2015-01-01

    When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 μm ii) they levitate above the water surface by 10 ~ 100 μm iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2 m/s and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet.

  16. Dynamics of microdroplets over the surface of hot water

    PubMed Central

    Umeki, Takahiro; Ohata, Masahiko; Nakanishi, Hiizu; Ichikawa, Masatoshi

    2015-01-01

    When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 μm; ii) they levitate above the water surface by 10 ~ 100 μm; iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2 m/s; and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet. PMID:25623086

  17. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    USGS Publications Warehouse

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  18. Spatial mosaic evolution of snail defensive traits

    PubMed Central

    Johnson, Steven G; Hulsey, C Darrin; de León, Francisco J García

    2007-01-01

    Background Recent models suggest that escalating reciprocal selection among antagonistically interacting species is predicted to occur in areas of higher resource productivity. In a putatively coevolved interaction between a freshwater snail (Mexipyrgus churinceanus) and a molluscivorous cichlid (Herichthys minckleyi), we examined three components of this interaction: 1) spatial variation in two putative defensive traits, crushing resistance and shell pigmentation; 2) whether abiotic variables or frequency of molariform cichlids are associated with spatial patterns of crushing resistance and shell pigmentation and 3) whether variation in primary productivity accounted for small-scale variation in these defensive traits. Results Using spatial autocorrelation to account for genetic and geographic divergence among populations, we found no autocorrelation among populations at small geographic and genetic distances for the two defensive traits. There was also no correlation between abiotic variables (temperature and conductivity) and snail defensive traits. However, crushing resistance and frequency of pigmented shells were negatively correlated with molariform frequency. Crushing resistance and levels of pigmentation were significantly higher in habitats dominated by aquatic macrophytes, and both traits are phenotypically correlated. Conclusion Crushing resistance and pigmentation of M. churinceanus exhibit striking variation at small spatial scales often associated with differences in primary productivity, substrate coloration and the frequency of molariform cichlids. These local geographic differences may result from among-habitat variation in how resource productivity interacts to promote escalation in prey defenses. PMID:17397540

  19. What can be learnt from a snail?

    PubMed

    Johannesson, Kerstin

    2016-01-01

    The marine snail Littorina saxatilis is a common inhabitant of intertidal shores of the north Atlantic. It is amazingly polymorphic and forms reproductively isolated ecotypes in microhabitats where crabs are either present and wave action is less furious, or where waves are strong and crabs are absent. Decades of research have unveiled much of the ecological and demographic context of the formation of crab- and wave-ecotype snails showing important phenotypic differences being inherited, differential selection being strong over adjacent microhabitats, local dispersal being restricted, and long-distance transports of individuals being rare. In addition, strong assortative mating of ecotypes has been shown to include a component of male mate preference based on female size. Several studies support ecotypes being diverged locally and under gene flow in a parallel and highly replicated fashion. The high level of replication at various levels of independence (from local to pan-European scale) provides excellent opportunities to investigate the detailed mechanisms of microevolution, including the formation of barriers to gene flow. Current investigations benefit from a draft reference genome and an integration of genomic approaches, modelling and experiments to unveil molecular and ecological components of speciation and their interactions. PMID:27087845

  20. Chiral Speciation in Terrestrial Pulmonate Snails

    PubMed Central

    Gittenberger, Edmund; Hamann, Thomas D.; Asami, Takahiro

    2012-01-01

    On the basis of data in the literature, the percentages of dextral versus sinistral species of snails have been calculated for western Europe, Turkey, North America (north of Mexico), and Japan. When the family of Clausiliidae is represented, about a quarter of all snail species may be sinistral, whereas less than one per cent of the species may be sinistral where that family does not occur. The number of single-gene speciation events on the basis of chirality, resulting in the origin of mirror image species, is not closely linked to the percentage of sinistral versus dextral species in a particular region. Turkey is nevertheless exceptional by both a high percentage of sinistral species and a high number of speciation events resulting in mirror image species. Shell morphology and genetic background may influence the ease of chirality-linked speciation, whereas sinistrality may additionally be selected against by internal selection. For the Clausiliidae, the fossil record and the recent fauna suggest that successful reversals in coiling direction occurred with a frequency of once every three to four million years. PMID:22532825

  1. The surface composition of Charon - Tentative identification of water ice

    NASA Technical Reports Server (NTRS)

    Marcialis, Robert L.; Lebofsky, Larry A.; Rieke, George H.

    1987-01-01

    The Mar. 3, 1987, Charon occultation by Pluto was observed in the infrared at 1.5, 1.7, 2.0, and 2.35 micrometers. Subtraction of fluxes measured between second and third contacts from measurements made before and after the event has yielded individual spectral signatures for each body at these wavelengths. Charon's surface appears depleted in methane relative to Pluto. Constancy of flux at 2.0 micrometers throughout the event shows that Charon is effectively black at this wavelength, which is centered on a very strong water absorption band. Thus, the measurements suggest the existence of water ice on Pluto's moon.

  2. Water condensation on ultrahydrophobic flexible micro pillar surface

    NASA Astrophysics Data System (ADS)

    Narhe, Ramchandra

    2016-05-01

    We investigated the growth dynamics of water drops in controlled condensation on ultrahydrophobic geometrically patterned polydimethylsiloxane (PDMS) cylindrical micro pillars. At the beginning, the condensed drops size is comparable to the pattern dimensions. The interesting phenomenon we observe is that, as the condensation progresses, water drops between the pillars become unstable and enforced to grow in the upward direction along the pillars surface. The capillary force of these drops is of the order of μ\\text{N} and acts on neighboring pillars. That results into bending of the pillars. Pillars bending enhances the condensation and favors the most energetically stable Wenzel state.

  3. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  4. The emerging role of Snail1 in the tumor stroma.

    PubMed

    Herrera, A; Herrera, M; Peña, C

    2016-09-01

    The transcription factor Snail1 leads to the epithelial-mesenchymal transition by repressing the adherent and tight junctions in epithelial cells. This process is related to an increase of cell migratory and mesenchymal properties during both embryonic development and tumor progression. Although Snail1 expression is very limited in adult animals, emerging evidence has placed Snail at the forefront of medical science. As a transcriptional repressor, Snail1 confers cancer stem cell-like traits on tumor cells and promotes drug resistance, tumor recurrence and metastasis. In this review, we summarize recent reports that suggest the pro-tumorigenic roles of Snail1 expression in tumor stroma. The crosstalk between tumor and stromal cells mediated by Snail1 regulates paracrine communication, pro-tumorigenic abilities of cancer cells, extracellular matrix characteristics and mesenchymal differentiation in cancer stem cells and cancer-associated fibroblasts. Therefore, understanding the regulation and functional roles of Snail1 in the tumor microenvironment will provide us with new therapies for treating metastatic disease. PMID:26687368

  5. How much surface water can gilgai microtopography capture?

    NASA Astrophysics Data System (ADS)

    Kishné, A. Sz.; Morgan, C. L. S.; Neely, H. L.

    2014-05-01

    Gilgai microtopography is associated with landscapes of strongly shrinking-swelling soils (Vertisols) and affects spatial and temporal variability of runoff, and thus the generation of stream flow and plant-available water. However, no report is available on the amount of surface water that a landscape with gilgai depressions can retain. Our objective was to assess water capturing capacity of a typical Vertisol landscape with gilgai depressions in the Blackland Prairie Major Land Resource Area of Texas. The 45 by 40 m study site was located on a Vertisol with circular gilgai covered by improved pasture on a summit with slope of less than 3%. A digital elevation model (DEM) with 0.25 m2 cell size was created from elevation data acquired by using GPS. Water capturing capacity of gilgai depressions was estimated at 10 randomly selected local gilgai basins by analyzing spatial distribution of Topographic Wetness Index (TWI). Our findings indicate that the average circular gilgai depression can hold 0.78 m3 of water leading to an estimate of 0.024 m3 m-2 water capturing capacity in a circular gilgai landscape, assuming no infiltration. The gilgai could capture a maximum of 43.74 m3 of rain and runoff water at the 1800 m2 study site. Consequently, if the soil were saturated and not infiltrating any water, no runoff would be expected following a 24.3 mm m-2, 1 h precipitation, affecting estimates of streamflow (runoff) and plant available water (redistribution and infiltration) at the m to km scale.

  6. Surface Tension Mediated Under-Water Adhesion of Rigid Spheres on Soft, Charged Surfaces

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Das, Siddhartha

    2015-11-01

    Understanding the phenomenon of surface-tension-mediated under-water adhesion is necessary for studying a plethora of physiological and technical phenomena, such as the uptake of bacteria or nanoparticle by cells, attachment of virus on bacterial surfaces, biofouling on large ocean vessels and marine devices, etc. This adhesion phenomenon becomes highly non-trivial in case the soft surface where the adhesion occurs is also charged. Here we propose a theory for analyzing such an under-water adhesion of a rigid sphere on a soft, charged surface, represented by a grafted polyelectrolyte layer (PEL). We develop a model based on the minimization of free energy that, in addition to considering the elastic and the surface-tension-mediated adhesion energies, also accounts for the PEL electric double layer (EDL) induced electrostatic energies. We show that in the presence of surface charges, adhesion gets enhanced. This can be explained by the fact that the increase in the elastic energy is better balanced by the lowering of the EDL energy associated with the adhesion process. The entire behaviour is further dictated by the surface tension components that govern the adhesion energy.

  7. Impact of river restoration on groundwater - surface water - interactions

    NASA Astrophysics Data System (ADS)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  8. Reactivity of Tc at the Groundwater-Surface Water Interface

    NASA Astrophysics Data System (ADS)

    Zachara, J. M.; Fredrickson, J.; McKinley, J.

    2014-12-01

    Technetium-99 (t1/2 =211,000y) is environmentally mobile as the pertechnetate oxyanion [99Tc(VII)O4-(aq)]. Tc(VII) may react to less soluble Tc(IV) at intermediate redox potentials (Eo = -0.36 V) through heterogeneous reduction with solid-phase biogenic reaction products. 99Tc is forecast to migrate through groundwater to the Columbia River at the U.S. DOE Hanford site in Washington State. Discharge to surface water will occur through a groundwater-surface water interaction zone with complex hydrogeology and biogeochemistry that is stimulated by the overlapping nutrient regimes of groundwater and surface water. The reactivity of pertechnetate in reduced sediments from this zone was investigated to determine effects of biogenic ferrous-Fe and sulfide-S on Tc(VII) reduction rate; and the resulting speciation, mineral association, and physical location of Tc(IV). 99Tc(VII) was reduced to near detection (<10-9 Mol/L) over periods of days to months. Tc(VII) reduction rate was first order in [Tc(VII)]aq and sediment mass, but correlations with specific biogenic reductant concentrations [(Fe(II), ferrous mono-sulfide] were not found. Tc(IV) was isolated to fine-grained aggregates (0.1 to 0.5 mm) of "mud", consisting of primary mineral material embedded within a phyllosilicate or clay matrix. EXAFS revealed that product Tc(IV) existed as combinations of a Tc(IV)O2-like phase ,Tc(IV)-Fe surface clusters, and/or TcSx. Ferrous mono-sulfide was implicated as a more selective reductant. Migration of Tc(VII) through the interaction zone will be controlled by water residence time and the density and spatial distribution of fine-grained aggregates that host reductive biogeochemical processes in otherwise coarse-textured, partially oxygenated sediments.

  9. Surface water risk assessment of pesticides in Ethiopia.

    PubMed

    Teklu, Berhan M; Adriaanse, Paulien I; Ter Horst, Mechteld M S; Deneer, John W; Van den Brink, Paul J

    2015-03-01

    Scenarios for future use in the pesticide registration procedure in Ethiopia were designed for 3 separate Ethiopian locations, which are aimed to be protective for the whole of Ethiopia. The scenarios estimate concentrations in surface water resulting from agricultural use of pesticides for a small stream and for two types of small ponds. Seven selected pesticides were selected since they were estimated to bear the highest risk to humans on the basis of volume of use, application rate and acute and chronic human toxicity, assuming exposure as a result of the consumption of surface water. Potential ecotoxicological risks were not considered as a selection criterion at this stage. Estimates of exposure concentrations in surface water were established using modelling software also applied in the EU registration procedure (PRZM and TOXSWA). Input variables included physico-chemical properties, and data such as crop calendars, irrigation schedules, meteorological information and detailed application data which were specifically tailored to the Ethiopian situation. The results indicate that for all the pesticides investigated the acute human risk resulting from the consumption of surface water is low to negligible, whereas agricultural use of chlorothalonil, deltamethrin, endosulfan and malathion in some crops may result in medium to high risk to aquatic species. The predicted environmental concentration estimates are based on procedures similar to procedures used at the EU level and in the USA. Addition of aquatic macrophytes as an ecotoxicological endpoint may constitute a welcome future addition to the risk assessment procedure. Implementation of the methods used for risk characterization constitutes a good step forward in the pesticide registration procedure in Ethiopia. PMID:25481716

  10. Surface potential of the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew; Pratt, Lawrence R.

    1988-01-01

    An analysis of an extended molecular dynamics calculation of the surface potential (SP) of the water liquid-vapor interface is presented. The SP predicted by the TIP4P model is -(130 + or - 50) mV. This value is of reasonable magnitude but of opposite sign to the expectations based on laboratory experiments. The electrostatic potential shows a nonmonotonic variation with depth into the liquid.

  11. High Surface Area Inorganic Membrane for Water Removal

    SciTech Connect

    2008-12-01

    This factsheet describes a research project whose objective is to demonstrate the fabrication and performance advantages of minichannel planar membrane modules made of porous metallic supports of surface area packing density one order of magnitude higher than the conventional membrane tube. The new, transformational, ceramic/metallic, hybrid membrane technology will be used for water/ethanol separations and reduce energy consumption by >20% over distillation and adsorption.

  12. Simulating piecewise-linear surface water and ground water interactions with MODFLOW.

    PubMed

    Zaadnoordijk, Willem Jan

    2009-01-01

    The standard MODFLOW packages offer limited capabilities to model piecewise-linear boundary conditions to describe ground water-surface water interaction. Specifically, MODFLOW is incapable of representing a Cauchy-type boundary with different resistances for discharge or recharge conditions. Such a more sophisticated Cauchy boundary condition is needed to properly represent surface waters alternatively losing water through the bottom (high resistance) or gaining water mostly near the water surface (low resistance). One solution would be to create a new package for MODFLOW to accomplish this. However, it is also possible to combine multiple instances of standard packages in a single cell to the same effect. In this specific example, the general head boundary package is combined with the drain package to arrive at the desired piecewise-linear behavior. In doing so, the standard USGS MODFLOW version can be used without any modifications at the expense of a minor increase in preprocessing and postprocessing and computational effort. The extra preprocessing for creating the input and extra postprocessing to determine the water balance in terms of the physical entities from the MODFLOW cell fluxes per package can be taken care of by a user interface. PMID:19473274

  13. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

    PubMed Central

    Van Dijk, Tessa C.; Van Staalduinen, Marja A.; Van der Sluijs, Jeroen P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l−1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l−1 (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  14. Macro-invertebrate decline in surface water polluted with imidacloprid.

    PubMed

    Van Dijk, Tessa C; Van Staalduinen, Marja A; Van der Sluijs, Jeroen P

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1). For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1) (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  15. Hot water surface pasteurization for inactivating Salmonella on surfaces of mature green tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of salmonellosis have been associated with the consumption of tomatoes contaminated with Salmonella. Commercial washing processes for tomatoes are limited in their ability to inactivate and/or remove this human pathogen. Our objective was to develop a hot water surface pasteurization pro...

  16. Water Protects Graphitic Surface from Airborne Hydrocarbon Contamination.

    PubMed

    Li, Zhiting; Kozbial, Andrew; Nioradze, Nikoloz; Parobek, David; Shenoy, Ganesh Jagadeesh; Salim, Muhammad; Amemiya, Shigeru; Li, Lei; Liu, Haitao

    2016-01-26

    The intrinsic wettability of graphitic materials, such as graphene and graphite, can be readily obscured by airborne hydrocarbon within 5-20 min of ambient air exposure. We report a convenient method to effectively preserve a freshly prepared graphitic surface simply through a water treatment technique. This approach significantly inhibits the hydrocarbon adsorption rate by a factor of ca. 20×, thus maintaining the intrinsic wetting behavior for many hours upon air exposure. Follow-up characterization shows that a nanometer-thick ice-like water forms on the graphitic surface, which remains stabilized at room temperature for at least 2-3 h and thus significantly decreases the adsorption of airborne hydrocarbon on the graphitic surface. This method has potential implications in minimizing hydrocarbon contamination during manufacturing, characterization, processing, and storage of graphene/graphite-based devices. As an example, we show that a water-treated graphite electrode maintains a high level of electrochemical activity in air for up to 1 day. PMID:26673269

  17. Oil capture from a water surface by a falling sphere

    NASA Astrophysics Data System (ADS)

    Smolka, Linda; McLaughlin, Clare; Witelski, Thomas

    2015-11-01

    When a spherical particle is dropped from rest into an oil lens that floats on top of a water surface, a portion of the oil adheres to the sphere. Once the sphere comes to rest at the subsurface, the oil forms a pendant drop that remains attached in equilibrium to the sphere effectively removing oil from the water surface. Best fit solutions of the Laplace equation to experimental profiles are used to investigate the parameter dependence of the radius of curvature and the filling and contact angles at the three-phase contact line of the pendant drop for spheres with different wetting properties, densities and radii. The volume of oil captured by a sphere increases with a sphere's mass and diameter. However, lighter and smaller spheres capture more oil relative to their own volume than do heavier and larger spheres (scaling with the sphere mass ~M - 0 . 544) and are thus more efficient at removing oil from a water surface. The authors wish to acknowledge the support of the National Science Foundation Grant Nos. DMS-0707755 and DMS-0968252.

  18. ERTS imagery applied to Alaskan coastal problems. [surface water circulation

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burbank, D. C.; Burns, J. J.

    1974-01-01

    Along the Alaska coast, surface water circulation is relatively easy to study with ERTS imagery. Highly turbid river water, sea ice, and fluvial ice have proven to be excellent tracers of the surface waters. Sea truth studies in the Gulf of Alaska, Cook Inlet, Bristol Bay, and the Bering Strait area have established the reliability of these tracers. ERTS imagery in the MSS 4 and 5 bands is particularly useful for observing lower concentrations of suspended sediment, while MSS 6 data is best for the most concentrated plumes. Ice features are most clearly seen on MSS 7 imagery; fracture patterns and the movement of specific floes can be used to map circulation in the winter when runoff is restricted, if appropriate allowance is made for wind influence. Current patterns interpreted from satellite data are only two-dimensional, but since most biological activity and pollution are concentrated near the surface, the information developed can be of direct utility. Details of Alaska inshore circulation of importance to coastal engineering, navigation, pollution studies, and fisheries development have been clarified with satellite data. ERTS has made possible the analysis of circulation in many parts of the Alaskan coast.

  19. Recovery of energetically overexploited urban aquifers using surface water

    NASA Astrophysics Data System (ADS)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  20. Excess pore water pressure due to ground surface erosion

    NASA Astrophysics Data System (ADS)

    Llewellyn Smith, Stefan; Gagniere, Steven

    2015-11-01

    Erosional unloading is the process whereby surface rocks and soil are removed by external processes, resulting in changes to water pressure within the underlying aquifer. We consider a mathematical model of changes in excess pore water pressure as a result of erosional unloading. Neuzil and Pollock (1983) studied this process in the case where the water table initially coincides with the surface. In contrast, we analyze an ideal aquifer which is initially separated from the ground surface by an unsaturated zone. The model is solved using Laplace Transform methods in conjunction with a boost operator derived by King (1985). The boost operator is used to boost the solution (in the Laplace domain) to a frame of reference moving at constant velocity with respect to the original frame. We use our solution to analyze the evolution of the pressure during erosion of the aquifer itself for small and large erosion rates. We also examine the flux at the upper boundary as a function of time and present a quasi-steady approximation valid for very small erosion rates in the appendix.

  1. VanA-Type MRSA (VRSA) Emerged in Surface Waters.

    PubMed

    Icgen, Bulent

    2016-09-01

    Due to the widespread occurrence of mecA-encoded methicillin resistance in Staphylococcus aureus (MRSA), treatment of staphylococcal infections is shifted to glycopeptide antibiotics like vancomycin and teicoplanin. The selective pressure of glycopeptides has eventually led to the emergence of staphylococci with increased resistance. Of great concern is vanA-encoded high level vancomycin and teicoplanin resistance in MRSA (VRSA). Therefore, this study aimed at investigating the occurrence of VRSA in surface waters. Out of 290, two staphylococcal isolates identified as MRSA Al11, Ba01, and one as MRS Co11 through 16S rRNA sequencing, also displayed high level resistance towards vancomycin and teicoplanin. These staphylococcal isolates were found to harbor vanA gene with sequence similarities of 99 %-100 % to the vanA gene extracted from vancomycin- and teicoplanin-resistant enterococcal (VRE) surface water isolates of Enterococcus faecalis Cr07, E07, Pb06 and E. faecium E330. High level glycopeptide resistance rendering protein encoded by the vanA gene, D-alanine-D-lactate ligase found in VRE, was also shown to be present in all vanA-type staphylococcal isolates through western blot. Current study elucidated that surface waters provide high potential for enterococcal vanA gene being transferred to MRSA, so called VRSA, and require special scientific consideration. PMID:27216737

  2. Effective modification of particle surface properties using ultrasonic water mist.

    PubMed

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki; Antikainen, Osmo; Siiriä, Simo; Veski, Peep; Yliruusi, Jouko

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied by a vibratory feeder and exposed to an instantaneous effect of water mist generated from an ultrasound nebulizer. The processed and original powders were evaluated with respect to morphology (scanning electron microscopy, atomic force microscopy, and spatial filtering technique), flow, and solid state properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures of the studied materials. The proposed water mist treatment technique appears to be a robust, rapid, and promising tool for the improvement of the technological properties of pharmaceutical powders. PMID:19288203

  3. Water and Regolith Shielding for Surface Reactor Missions

    SciTech Connect

    Poston, David I.; Sadasivan, Pratap; Dixon, David D.; Ade, Brian J.; Leichliter, Katrina J.

    2006-01-20

    This paper investigates potential shielding options for surface power fission reactors. The majority of work is focused on a lunar shield that uses a combination of water in stainless-steel cans and lunar regolith. The major advantage of a water-based shield is that development, testing, and deployment should be relatively inexpensive. This shielding approach is used for three surface reactor concepts: (1) a moderated spectrum, NaK cooled, Hastalloy/UZrH reactor, (2) a fast-spectrum, NaK-cooled, SS/UO2 reactor, and (3) a fast-spectrum, K-heat-pipe-cooled, SS/UO2 reactor. For this study, each of these reactors is coupled to a 25-kWt Stirling power system, designed for 5 year life. The shields are designed to limit the dose both to the Stirling alternators and potential astronauts on the surface. The general configuration used is to bury the reactor, but several other options exist as well. Dose calculations are presented as a function of distance from reactor, depth of buried hole, water boron concentration (if any), and regolith repacked density.

  4. Sea ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burns, J. J.

    1973-01-01

    The author has identified the following significant results. Sediments contributed by the Copper River in the Gulf of Alaska are carried westward along the shore as a distinct plume. Oceanic water relatively poor in suspended material appears to intrude near Montague Island, and turbid water between Middleton Island and Kayak Island is the result of Ekman between transport. An anticlockwise surface water circulation is observed in this region. Ground truth data indicate striking similarity with ERTS-1 imagery obtained on October 12, 1972. Observations of ERTS-1 imagery reveal that various characteristics and distribution of sea ice in the Arctic Ocean can be easily studied. Formation of different types of sea ice and their movement is quite discrenible. Sea ice moves parallel to the cost in near shore areas and to the northerly direction away from the coast.

  5. Evaporating behaviors of water droplet on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Hao, PengFei; Lv, CunJing; He, Feng

    2012-12-01

    We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars. Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation, even though the solid area fractions of the microstructured substrates remained constant. We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures, but also by the initial volume of the water droplet. The measured critical pressure is consistent with the theoretical model, which validated the pressure-induced impalement mechanism for the wetting state transition.

  6. Mean surface water balance over Africa and its interannual variability

    SciTech Connect

    Nicholson, S.E.; Kim, J.; Ba, M.B.; Lare, A.R.

    1997-12-01

    This article presents calculations of surface water balance for the African continent using a revised version of the Lettau climatonomy. Calculations are based on approximately 1400 rainfall stations, with records generally covering 60 yr or longer. Continental maps of evapotranspiration. runoff, and soil moisture are derived for January, July, and the annual mean. The model is also used to provide a gross estimate of the interannual variability of these parameters over most of the continent and local water balance calculations for a variety of locations in Africa. The results are compared with four other comprehensive global water balance studies. The results of this study are being used to produce a gridded dataset for the continent, with potential applications for numerical modeling studies. 50 refs., 18 figs., 3 tabs.

  7. Friction and Surface Temperature of Wet Hair Containing Water, Oil, or Oil-in-Water Emulsion.

    PubMed

    Aita, Yuuki; Nonomura, Yoshimune

    2016-06-01

    The surface properties and the tactile texture of human hair are important in designing hair-care products. In this study, we evaluated the temporal changes of friction and temperature during the drying process of wet human hair containing water, silicone oil, or oil-in-water (O/W) emulsion. The wet human hair including water or O/W emulsion have a moist feel, which was caused by the temperature reduction of approximately 3-4°C. When human hair is treated with silicone oil, more than 60% of the subjects felt their hair to be slippery and smooth like untreated hair. Treating hair with O/W emulsion after drying made the subject perceive a slippery feeling because the surfactant reduced friction on the hair surface. These results indicated that both friction and thermal properties of the hair surface are important to control the tactile texture of the human hair. PMID:27181247

  8. Sea, ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Sharma, G. D.; Wright, F. F.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery has been extremely useful in understanding the tidal water movements in a large estuary such as Cook Inlet. As more imagery obtained during various tidal stages become available it appears that complex and fast changing micro-circulation patterns develop in various regions of Cook Inlet during each advancing and receding tide. More ERTS-1 synoptic imagery is needed to fully understand the effect of the approach of tidal front on the water movements in the various regions through the estuary. The conventional onboard ship data gathered during various cruises although revealed the overall circulation pattern in Cook Inlet but failed to show micro-subgyres which develop in various regions during each tide which are discernible on ther ERTS-1 imagery. Suspended load distribution in the Bering Sea during summer varies significantly. In areas of phytoplankton bloom and at the river mouths the suspended load is higher than the 1 mg/1 which is found over most areas. The influence of major rivers on temperature, salinity, and suspended load in surface water as well as at shallow depth is apparent. On the Bering shelf a strong pycnocline generally at depth 10-20 m is formed by surface fresh water flow which retains sediment in suspension over extended periods.

  9. Effect of Radiant Energy on Near-Surface Water

    PubMed Central

    Chai, Binghua; Yoo, Hyok; Pollack, Gerald H.

    2010-01-01

    While recent research on interfacial water has focused mainly on the few interfacial layers adjacent to the solid boundary, century-old studies have extensively shown that macroscopic domains of liquids near interfaces acquire features different from the bulk. Interest in these long-range effects has been rekindled by recent observations showing that colloidal and molecular solutes are excluded from extensive regions next to many hydrophilic surfaces [Zheng and Pollack Phys. Rev. E 2003, 68, 031408]. Studies of these aqueous “exclusion zones” reveal a more ordered phase than bulk water, with local charge separation between the exclusion zones and the regions beyond [Zheng et al. Colloid Interface Sci. 2006, 127, 19; Zheng and Pollack Water and the Cell: Solute exclusion and potential distribution near hydrophilic surfaces; Springer: Netherlands, 2006; pp 165–174], here confirmed using pH measurements. The main question, however, is where the energy for building these charged, low-entropy zones might come from. It is shown that radiant energy profoundly expands these zones in a reversible, wavelength-dependent manner. It appears that incident radiant energy may be stored in the water as entropy loss and charge separation. PMID:19827846

  10. Groundwater surface water interaction study using natural isotopes tracer

    NASA Astrophysics Data System (ADS)

    Yoon, Yoon Yeol; Kim, Yong Chul; Cho, Soo Young; Lee, Kil Yong

    2015-04-01

    Tritium and stable isotopes are a component of the water molecule, they are the most conservative tracer for groundwater study. And also, radon is natural radioactive nuclide and well dissolved in groundwater. Therefore, these isotopes are used natural tracer for the study of surface water and groundwater interaction of water curtain greenhouse area. The study area used groundwater as a water curtain for warming tool of greenhouse during the winter, and is associated with issues of groundwater shortage while being subject to groundwater-river water interaction. During the winter time, these interactions were studied by using Rn-222, stable isotopes and H-3. These interaction was monitored in multi depth well and linear direction well of groundwater flow. And dam effect was also compared. Samples were collected monthly from October 2013 to April 2014. Radon and tritium were analyzed using Quantulus low background liquid scintillation counter and stable isotopes were analyzed using an IRIS (Isotope Ratio Infrared Spectroscopy ; L2120-i, Picarro). During the winter time, radon concentration was varied from 0.07 Bq/L to 8.9 Bq/L and different interaction was showed between dam. Surface water intrusion was severe at February and restored April when greenhouse warming was ended. The stable isotope results showed different trend with depth and ranged from -9.16 ‰ to -7.24 ‰ for δ 18O value, while the δD value was ranged from -57.86 ‰ to -50.98 ‰. The groundwater age as dated by H-3 was ranged 0.23 Bq/L - 0.59 Bq/L with an average value of 0.37 Bq/L.

  11. River Discharge and Bathymetry Estimation from Hydraulic Inversion of Surface Currents and Water Surface Elevation Observations

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2015-12-01

    We developed an inversion model for river bathymetry and discharge estimation based on measurements of surface currents, water surface elevation and shoreline coordinates. The model uses a simplification of the 2D depth-averaged steady shallow water equations based on a streamline following system of coordinates and assumes spatially uniform bed friction coefficient and eddy viscosity. The spatial resolution of the predicted bathymetry is related to the resolution of the surface currents measurements. The discharge is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The inversion model was tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID. The measurements were obtained in August 2010 when the discharge was about 223 m3/s and the maximum river depth was about 6.5 m. Surface currents covering a 10 km reach with 8 m spatial resolution were estimated from airborne infrared video and were converted to depth-averaged currents using acoustic Doppler current profiler (ADCP) measurements along eight cross-stream transects. The streamwise profile of the water surface elevation was measured using real-time kinematic GPS from a drifting platform. The value of the friction coefficient was obtained from forward calibration simulations that minimized the difference between the predicted and measured velocity and water level along the river thalweg. The predicted along/cross-channel water depth variation was compared to the depth measured with a multibeam echo sounder. The rms error between the measured and predicted depth along the thalweg was found to be about 60cm and the estimated discharge was 5% smaller than the discharge measured by the ADCP.

  12. Digenetic larvae in Schistosome snails from El Fayoum, Egypt with detection of Schistosoma mansoni in the snail by PCR.

    PubMed

    Aboelhadid, Shawky M; Thabet, Marwa; El-Basel, Dayhoum; Taha, Ragaa

    2016-09-01

    The present study aims to detect the digenetic larvae infections in Bulinus truncatus and Biomphalaria alexandrina snails and also PCR detection of Schistosoma mansoni infection. The snails were collected from different branches of Yousef canal and their derivatives in El Fayoum Governorate. The snails were investigated for infection through induction of cercarial shedding by exposure to light and crushing of the snails. The shed cercariae were S. mansoni, Pharyngeate longifurcate type I and Pharyngeate longifurcate type II from B. alexandrina, while that found in B. truncatus were Schitosoma haematobium and Xiphidiocercaria species cercariae. The seasonal prevalence of infection was discussed. Polymerase chain reaction was used for the detection of S. mansoni in the DNA from field collected infected and non infected snails. The results of PCR showed that the pool of B. alexandrina snails which shed S. mansoni cercariae in the laboratory, gave positive reaction in the samples. Pooled samples of field collected B. alexandrina that showed negative microscopic shedding of cercariae gave negative and positive PCR in a consecutive manner. Accordingly, a latent infection in the snail (negative microscopic) could be detected by using PCR. PMID:27605774

  13. Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail.

    PubMed

    Trussell, G C

    2000-02-01

    Understanding the genetic and environmental bases of phenotypic variation and how they covary on local and broad geographic scales is an important goal of evolutionary ecology. Such information can shed light on how organisms adapt to different and changing environments and how life-history trade-offs arise. Surveys of phenotypic variation in 25 Littorina obtusata populations across an approximately 400-km latitudinal gradient in the Gulf of Maine revealed pronounced clines. The shells of snails from northern habitats weighed less and were thinner and weaker in compression than those of conspecifics from southern habitats. In contrast, body size (as measured by soft tissue mass) followed an opposite pattern; northern snails weighed more than southern snails. A reciprocal transplant between a northern and southern habitat revealed substantial plasticity in shell form and body mass and their respective measures of growth. Southern snails transplanted to the northern habitat produced lighter, thinner shells and more body mass than controls raised in their native habitat. In contrast, northern snails transplanted to the southern site produced heavier, thicker shells and less body mass than controls raised in their native habitat. Patterns of final phenotypic variation for all traits were consistent with cogradient variation (i.e., a positive covariance between genetic and environmental influences). However, growth in shell traits followed a countergradient pattern (i.e., a negative covariance between genetic and environmental influences). Interestingly, body growth followed a cogradient pattern, which may reflect constraints imposed by cogradient variation in final shell size and thickness. This result suggests the existence of potential life-history trade-offs associated with increased shell production. Differences in L. obtusata shell form, body mass, and their respective measures of growth are likely induced by geographic differences in both water temperature and

  14. Distribution and abundance of the Japanese snail, Viviparus japonicus, and associated macrobenthos in Sandusky Bay, Ohio

    USGS Publications Warehouse

    Wolfert, David R.; Hiltunen, Jarl K.

    1968-01-01

    A survey of the macrobenthos of Sandusky Bay, Lake Erie, in June, 1963, provided information on the abundance and distribution of the introduced Japanese snail, Viviparus japonicus, which has become a nuisance to commercial seine fishermen. The abundance and distribution varied considerably within the bay; at the time of the survey, most snails were found near the north-central shore. Environmental characteristics were nearly uniform and had no apparent effect on the distribution; concentrations in different areas at different times appeared to result from water movements induced by winds. The time of the study coincided with a period of reproduction; young-of-the-year snails were most abundant in areas where adults were most common. The frequency distributions of shell height and diameter suggested the presence of two age groups of adults in the population. Considerable natural mortality was seen, both at the time of the study and in other seasons. Only three other gastropods were observed in the bay; the most abundant was another viviparid, Campeloma decisum. Other mollusks present were four species of Sphaeriidae and 18 species of Unionidae. A summary of invertebrates found, other than the mollusks, is also presented.

  15. Adjustment of metabolite composition in the haemolymph to seasonal variations in the land snail Helix pomatia.

    PubMed

    Nicolai, Annegret; Filser, Juliane; Lenz, Roman; Bertrand, Carole; Charrier, Maryvonne

    2011-05-01

    In temperate regions, land snails are subjected to subzero temperatures in winter and hot temperatures often associated to drought in summer. The response to these environmental factors is usually a state of inactivity, hibernation and aestivation, respectively, in a temperature and humidity buffered refuge, accompanied by physiological adjustments to resist cold or heat stress. We investigated how environmental factors in the microhabitat and body condition influence the metabolite composition of haemolymph of the endangered species Helix pomatia. We used UPLC and GC-MS techniques and analyzed annual biochemical variations in a multivariate model. Hibernation and activity months differed in metabolite composition. Snails used photoperiod as cue for seasonal climatic variations to initiate a physiological state and were also highly sensitive to temperature variations, therefore constantly adjusting their physiological processes. Galactose levels gave evidence for the persistence of metabolic activity with energy expenditure during hibernation and for high reproductive activity in June. Triglycerides accumulated prior to hibernation might act as cryoprotectants or energy reserves. During the last month of hibernation snails activated physiological processes related to arousal. During activity, protein metabolism was reflected by high amino acid level. An exceptional aestivation period was observed in April giving evidence for heat stress responses, like the protection of cells from dehydration by polyols and saccharides, the membrane stabilization by cholesterol and enhanced metabolism using the anaerobic succinic acid pathway to sustain costly stress responses. In conclusion, physiological adjustments to environmental variations in Helix pomatia involve water loss regulation, cryoprotectant or heatprotectant accumulation. PMID:21136264

  16. Effects of 17α-methyltestosterone on the reproduction of the freshwater snail Biomphalaria glabrata.

    PubMed

    Rivero-Wendt, C L G; Borges, A C; Oliveira-Filho, E C; Miranda-Vilela, A L; Ferreira, M F N; Grisolia, C K

    2014-01-01

    17-α-methyltestosterone (MT) is a synthetic hormone used in fish hatcheries to induce male monosex. Snails hold promise as possible test models to assess chemicals acting on the endocrine system. Biomphalaria glabrata is an aquatic gastropod mollusk (Pulmonata, Planorbidae) that can be easily maintained in aquaria, predisposing the species for use in ecotoxicological testing. This study evaluated the reproductive effects of MT on B. glabrata by examining histological changes and its reproductive performance. Ten snails per group were exposed for 4 weeks to different concentrations of MT (0.01, 0.1, and 1.0 mg/L). The total number of laid eggs, egg mass per group, size of type V oocytes, and production of spermatozoids were determined. Reproduction of B. glabrata was affected by MT. At the lowest concentration (0.01 mg/L), MT caused a statistically significant increase in the number of egg mass per snail compared with controls unexposed to MT. Histopathology analyses showed an increase in the sperm production at the higher MT concentrations of 0.1 and 1.0 mg/L. Chromatographic analyses of water samples showed that MT concentrations rapidly declined within a 96-h period. These results highlight the importance of giving more support to regulatory authorities, since MT is not registered for use on fish hatcheries in many countries around the world. Wastewater from fish farms discharged into aquatic ecosystems should be monitored for MT residues, since its presence could compromise the reproduction of other native snail species. PMID:24615026

  17. Characterizing the Interaction between Groundwater and Surface Water in the Boise River for Water Sustainability

    NASA Astrophysics Data System (ADS)

    Hernandez, J.; Tan, K.; Portugais, B.

    2014-12-01

    Management of water resources has increasingly become aware of the importance of considering groundwater and surface water as an interconnected, single resource. Surface water is commonly hydraulically connected to groundwater, but the interactions are difficult to observe and measure. Such a conjunctive approach has often been left out of water-management considerations because of a lack of understanding of the processes occurring. The goal of this research is to increase the better understanding of the interaction between the surface water and groundwater using the study case of the Treasure Valley Aquifer and the Boise River in Idaho, framed on water sustainability. Water-budgets for the Treasure Valley for the calendar years 1996 and 2000 suggest that the Boise River lost to the shallow aquifer almost 20 Hm3 and 95 Hm3, respectively, along the Lucky Peak to Capitol Bridge reach. Groundwater discharge occurred into the Boise River, along the Capitol Bridge to Parma reach, at about 645 Hm3 and 653 Hm3for the calendar years 1996 and 2000, respectively (USBR). These figures highlight the importance of better understanding of the water flow because of disparity, which would impact groundwater management practices. There is a need of better understanding of the groundwater-surface water interface for predicting responses to natural and human-induced stresses. A groundwater flow model was developed to compute the rates and directions of groundwater movement through aquifer and confining units in the subsurface. The model also provides a representation of the interaction that occurs between the Boise River and the shallow aquifer in the Treasure Valley. Work in progress on the general flow pattern allows assessing of the connectivity between shallow aquifer and river for helping understanding the impacts of groundwater extraction. Quantifying the interaction between the two freshwater sources would be beneficial in proper water management decisions in order to optimize

  18. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas

    PubMed Central

    2014-01-01

    The organochlorines (OClPs) and organophosphates (OPPs) pesticides in surface and ground water having intensive agriculture activity were investigated to evaluate their potential pollution and risks on human health. As per USEPA 8081 B method, liquid-liquid extraction followed by Gas-Chromatographic technique with electron capture detector and mass selective detector (GC-MS) were used for monitoring of pesticides. Among organochlorines, α,β,γ,δ HCH’s, aldrin, dicofol, DDT and its derivatives, α,β endosulphan’s and endosulphan-sulphate were analysed; dichlorovos, ethion, parathion-methyl, phorate, chlorpyrifos and profenofos were determined among organophosphates. As compared to ground water, higher concentrations of OClPs and OPPs were found in surface water. Throughout the monitoring study, α - HCH (0.39 μg/L in Amravati region),α - endosulphan (0.78 μg/L in Yavatmal region), chlorpyrifos (0.25 μg/L in Bhandara region) and parathion-methyl (0.09 μg/L in Amravati region) are frequently found pesticide in ground water, whereas α,β,γ-HCH (0.39 μg/L in Amravati region), α,β - endosulphan (0.42 μg/L in Amravati region), dichlorovos (0.25 μg/L in Yavatmal region), parathion-methyl (0.42 μg/L in Bhandara region), phorate (0.33 μg/L in Yavatmal region) were found in surface water. Surface water was found to be more contaminated than ground water with more number of and more concentrated pesticides. Among pesticides water samples are found to be more contaminated by organophosphate than organochlorine. Pesticides in the surface water samples from Bhandara and Yavatmal region exceeded the EU (European Union) limit of 1.0 μg/L (sum of pesticide levels in surface water) but were within the WHO guidelines for individual pesticides. PMID:24398360

  19. Agricultural insecticides threaten surface waters at the global scale.

    PubMed

    Stehle, Sebastian; Schulz, Ralf

    2015-05-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  20. Incorporating groundwater-surface water interaction into river management models.

    PubMed

    Valerio, Allison; Rajaram, Harihar; Zagona, Edith

    2010-01-01

    Accurate representation of groundwater-surface water interactions is critical to modeling low river flows in the semi-arid southwestern United States. Although a number of groundwater-surface water models exist, they are seldom integrated with river operation/management models. A link between the object-oriented river and reservoir operations model, RiverWare, and the groundwater model, MODFLOW, was developed to incorporate groundwater-surface water interaction processes, such as river seepage/gains, riparian evapotranspiration, and irrigation return flows, into a rule-based water allocations model. An explicit approach is used in which the two models run in tandem, exchanging data once in each computational time step. Because the MODFLOW grid is typically at a finer resolution than RiverWare objects, the linked model employs spatial interpolation and summation for compatible communication of exchanged variables. The performance of the linked model is illustrated through two applications in the Middle Rio Grande Basin in New Mexico where overappropriation impacts endangered species habitats. In one application, the linked model results are compared with historical data; the other illustrates use of the linked model for determining management strategies needed to attain an in-stream flow target. The flows predicted by the linked model at gauge locations are reasonably accurate except during a few very low flow periods when discrepancies may be attributable to stream gaging uncertainties or inaccurate documentation of diversions. The linked model accounted for complex diversions, releases, groundwater pumpage, irrigation return flows, and seepage between the groundwater system and canals/drains to achieve a schedule of releases that satisfied the in-stream target flow. PMID:20412319

  1. Agricultural insecticides threaten surface waters at the global scale

    PubMed Central

    Stehle, Sebastian; Schulz, Ralf

    2015-01-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  2. Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India.

    PubMed

    Kannan, Kurunthachalam; Praamsma, Meredith L; Oldi, John F; Kunisue, Tatsuya; Sinha, Ravindra K

    2009-06-01

    Perchlorate (ClO(4)(-)), which is used as an oxidizer in jet and rocket fuels, pyrotechnic devices and explosives, is a widespread contaminant in surface waters and groundwater of many countries. Perchlorate is known to affect thyroid function. Despite the compound's widespread occurrence and potential health effects, perchlorate levels in drinking water in India are not known. In this study, water samples collected from 13 locations in six states (n=66), and saliva samples collected from four locations in three states (n=74) in India, were analyzed for perchlorate using high performance liquid chromatography interfaced with tandem mass spectrometry (HPLC-MS/MS). Perchlorate was detected in most (76%) of the water samples analyzed at concentrations above the quantitation limit of 0.02 microg L(-1); concentrations ranged from <0.02 to 6.9 microg L(-1) (mean: 0.42+/-1.1 microg L(-1); median: 0.07 microg L(-1)). Mean concentrations of perchlorate in drinking water, groundwater, bottled water, surface water and rain water were 0.1, 1.0, <0.02, 0.05 and <0.02 microg L(-1), respectively. From a total of 66 water samples analyzed, only three samples contained perchlorate levels above 1 microg L(-1); all three were groundwater samples. Perchlorate was found in the saliva samples analyzed at concentrations above 0.2 microg L(-1) and up to 4.7 microg L(-1) (mean: 1.3+/-1.3 microg L(-1); median: 0.91 microug L(-1)). No remarkable differences in perchlorate concentrations were found among the sampling locations of water or saliva or in subgroups stratified by gender or age. Perchlorate concentrations in water samples from India are one to two orders of magnitude lower than the concentrations reported for the United States. PMID:19328520

  3. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    NASA Technical Reports Server (NTRS)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  4. CONCEPTUAL DESIGN OF THE SURFACE WATER COMPONENT OF THE NATIONAL WATER QUALITY ASSESSMENT (NAWQA) PROGRAM.

    USGS Publications Warehouse

    Hirsch, Robert M.

    1986-01-01

    The US Geological Survey started, in a pilot phase, a program to provide nationally consistent information on the status and trends in the quality of the nation's fresh water. The program also intends to identify and describe the relationships between both the status and trends in water quality as they relate to natural factors, and the history of land-use, and land- and waste-management practices. The program is organized into hydrologically based study units and, for the study of surface water, involves a combination of fixed-station, synoptic and intensive study approaches. Network design considerations are discussed.

  5. Modeling the relationship between land use and surface water quality.

    PubMed

    Tong, Susanna T Y; Chen, Wenli

    2002-12-01

    It is widely known that watershed hydrology is dependent on many factors, including land use, climate, and soil conditions. But the relative impacts of different types of land use on the surface water are yet to be ascertained and quantified. This research attempted to use a comprehensive approach to examine the hydrologic effects of land use at both a regional and a local scale. Statistical and spatial analyses were employed to examine the statistical and spatial relationships of land use and the flow and water quality in receiving waters on a regional scale in the State of Ohio. Besides, a widely accepted watershed-based water quality assessment tool, the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS), was adopted to model the plausible effects of land use on water quality in a local watershed in the East Fork Little Miami River Basin. The results from the statistical analyses revealed that there was a significant relationship between land use and in-stream water quality, especially for nitrogen, phosphorus and Fecal coliform. The geographic information systems (GIS) spatial analyses identified the watersheds that have high levels of contaminants and percentages of agricultural and urban lands. Furthermore, the hydrologic and water quality modeling showed that agricultural and impervious urban lands produced a much higher level of nitrogen and phosphorus than other land surfaces. From this research, it seems that the approach adopted in this study is comprehensive, covering both the regional and local scales. It also reveals that BASINS is a very useful and reliable tool, capable of characterizing the flow and water quality conditions for the study area under different watershed scales. With little modification, these models should be able to adapt to other watersheds or to simulate other contaminants. They also can be used to study the plausible impacts of global environmental change. In addition, the information on the hydrologic

  6. Models of Fate and Transport of Pollutants in Surface Waters

    NASA Astrophysics Data System (ADS)

    Okome, Gloria Eloho

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states. These measurements are used with the known scientific principles to identify processes and to estimate the future environmental conditions. Conceptual and computational models are needed to analyze environmental processes by applying the knowledge gained from experimentation and theory. Usually, a computational framework includes the mathematics and the physics of the phenomenon, and the measured characteristics to model pollutants interactions and transport in surface water. However, under certain conditions, the complexity of the situation in the actual environment precludes the utilization of these techniques. Pollutants in several forms: Nitrogen (Nitrate, Nitrite, Kjeldhal Nitrogen and Ammonia), Phosphorus (orthophosphate and total phosphorus), bacteria (E-coli and Fecal coliform), Salts (Chloride and Sulfate) are chosen to follow for this research. The objective of this research is to model the fate and transport of these pollutants in non-ideal conditions of surface water measurements and to develop computational methods to forecast their fate and transport. In an environment of extreme drought such as in the Brazos River basin, where small streams flow intermittently, there is added complexity due to the absence of regularly sampled data. The usual modeling techniques are no longer applicable because of sparse measurements in space and time. Still, there is a need to estimate the conditions of the environment from the information that is present. Alternative methods for this estimation must be devised and applied to this situation, which is the task of this dissertation. This research devices a forecasting technique that is

  7. A new device for collecting time-integrated water samples from springs and surface water bodies

    USGS Publications Warehouse

    Panno, S.V.; Krapac, I.G.; Keefer, D.A.

    1998-01-01

    A new device termed the 'seepage sampler' was developed to collect representative water samples from springs, streams, and other surface-water bodies. The sampler collects composite, time-integrated water samples over short (hours) or extended (weeks) periods without causing significant changes to the chemical composition of the samples. The water sample within the sampler remains at the ambient temperature of the water body and does not need to be cooled. Seepage samplers are inexpensive to construct and easy to use. A sampling program of numerous springs and/or streams can be designed at a relatively low cost through the use of these samplers. Transient solutes migrating through such flow systems, potentially unnoticed by periodic sampling, may be detected. In addition, the mass loading of solutes (e.g., agrichemicals) may be determined when seepage samplers are used in conjunction with discharge measurements.

  8. In vitro genotoxicity of chlorinated drinking water processed from humus-rich surface water

    SciTech Connect

    Liimatainen, A.; Grummt, T.

    1988-11-01

    Chlorination by-products of drinking waters are capable of inducing sister chromatid exchanges (SCE) and chromosome aberrations (CA) in vitro, in addition to their mutagenic activity in the Ames test. Finnish drinking waters, processed from humus-rich surface water using chlorine disinfection, have been found to be highly mutagenic in the Ames' test. The highest activities have been found in the acidic, non-volatile fraction of the water concentrates using tester strain TA100 without metabolic activation by S9mix. The mutagenicities have varied between 500 and 14,000 induced revertants per liter. These figures are one to two magnitudes higher than those reported elsewhere. The authors studied five Finnish drinking water samples for their potency to exert genotoxic effects, SCEs and CAs, in mammalian cells in vitro (human peripheral lymphocytes and Chinese