Science.gov

Sample records for surfaces synchrotron x-ray

  1. Reference-free total reflection X-ray fluorescence analysis of semiconductor surfaces with synchrotron radiation.

    PubMed

    Beckhoff, Burkhard; Fliegauf, Rolf; Kolbe, Michael; Müller, Matthias; Weser, Jan; Ulm, Gerhard

    2007-10-15

    Total reflection X-ray fluorescence (TXRF) analysis is a well-established method to monitor lowest level contamination on semiconductor surfaces. Even light elements on a wafer surface can be excited effectively when using high-flux synchrotron radiation in the soft X-ray range. To meet current industrial requirements in nondestructive semiconductor analysis, the Physikalisch-Technische Bundesanstalt (PTB) operates dedicated instrumentation for analyzing light element contamination on wafer pieces as well as on 200- and 300-mm silicon wafer surfaces. This instrumentation is also suited for grazing incidence X-ray fluorescence analysis and conventional energy-dispersive X-ray fluorescence analysis of buried and surface nanolayered structures, respectively. The most prominent features are a high-vacuum load-lock combined with an equipment front end module and a UHV irradiation chamber with an electrostatic chuck mounted on an eight-axis manipulator. Here, the entire surface of a 200- or a 300-mm wafer can be scanned by monochromatized radiation provided by the plane grating monochromator beamline for undulator radiation in the PTB laboratory at the electron storage ring BESSY II. This beamline provides high spectral purity and high photon flux in the range of 0.078-1.86 keV. In addition, absolutely calibrated photodiodes and Si(Li) detectors are used to monitor the exciting radiant power respectively the fluorescence radiation. Furthermore, the footprint of the excitation radiation at the wafer surface is well-known due to beam profile recordings by a CCD during special operation conditions at BESSY II that allow for drastically reduced electron beam currents. Thus, all the requirements of completely reference-free quantitation of TXRF analysis are fulfilled and are to be presented in the present work. The perspectives to arrange for reference-free quantitation using X-ray tube-based, table-top TXRF analysis are also addressed. PMID:17880182

  2. 3-D surface profile measurements of large x-ray synchrotron radiation mirrors using stitching interferometry.

    SciTech Connect

    Assoufid, L.; Bray, M.; Qian, J.; Shu, D.

    2002-09-12

    Stitching interferometry, using small-aperture, high-resolution, phase-measuring interferometry, has been proposed for quite some time now as a metrology technique to obtain 3-dimensional profiles of surfaces of oversized optical components and substrates. The aim of this work is to apply this method to the specific case of long grazing-incidence x-ray mirrors, such as those used in beamlines at synchrotron radiation facilities around the world. Both fabrication and characterization of these mirrors would greatly benefit from this technique because it offers the potential for providing measurements with accuracy and resolution better than those obtained using existing noncontact laser profilers, such as the long trace profiler (LTP). Measurement data can be used as feedback for computer-controlled fabrication processes to correct for possible topography errors. The data can also be used for simulating and predicting mirror performance under realistic conditions. A semiautomated stitching system was built and tested at the X-ray Optics Metrology Laboratory of the Advanced Photon Source at Argonne National Laboratory. The initial objective was to achieve a measurement sensitivity on the order of 1 {micro}rad rms. Preliminary tests on a 1 m-long x-ray mirror showed system repeatability of less than 0.6 {micro}rad rms. This value is comparable to that of a conventional LTP. The measurement accuracy was mostly affected by environmental perturbations and system calibration effects. With a fully automated and improved system (to be built in the near future), we expect to achieve measurement sensitivity on the order of 0.0 {micro}rad rms or better. In this paper, after a brief review of basic principles and general technical difficulties and challenges of the stitching technique, a detailed description of the measurement setup is given and preliminary results obtained with it are analyzed and discussed.

  3. Assessment of Barium Sulphate Formation and Inhibition at Surfaces with Synchrotron X-ray Diffraction (SXRD)

    SciTech Connect

    E Mavredaki; A Neville; K Sorbie

    2011-12-31

    The precipitation of barium sulphate from aqueous supersaturated solutions is a well-known problem in the oil industry often referred to as 'scaling'. The formation and growth of barite on surfaces during the oil extraction process can result in malfunctions within the oil facilities and serious damage to the equipment. The formation of barium sulphate at surfaces remains an important topic of research with the focus being on understanding the mechanisms of formation and means of control. In situ synchrotron X-ray diffraction (SXRD) was used to investigate the formation of barium sulphate on a stainless steel surface. The effect of Poly-phosphinocarboxylic acid (PPCA) and Diethylenetriamine-penta-methylenephosphonic acid (DETPMP) which are two commercial inhibitors for barium sulphate was examined. The in situ SXRD measurements allowed the identification of the crystal faces of the deposited barite in the absence and presence of the two inhibitors. The preferential effect of the inhibitors on some crystal planes is reported and the practical significance discussed.

  4. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    SciTech Connect

    Bu, Wei

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  5. Effects of Surface Processing on the Response of CZT Gamma Detectors: Studies with a Collimated Synchrotron X-Ray Beam

    SciTech Connect

    Hossain,A.; Bolotnikov, A.; Camarda, G.; Cui, Y.; Babalola, S.; Burger, A.; James, R.

    2008-01-01

    Using a microscale X-ray mapping technique incorporating a synchrotron beam, we are able to reveal the fine details of the surface properties in cadmium zinc telluride (CZT) semiconductor detectors. A detector, with various degrees of surface roughness, was irradiated by a high-spatial-resolution X-ray beam. The detector's response was analyzed and displayed as a two-dimensional (2-D) map, and the charge collection was obtained from the peak positions in the spectra versus the beam's location, which reflects the local material properties. We noted the correlation between the 2-D image and the spectral response of the charge collection at different locations on the surface area, which indicates that a rough surface tends to contain trapping centers, thereby enhancing leakage current and distorting the signal. We also discuss our observations on the transition effect at the boundary area of a rough and a smooth surface under identical conditions.

  6. Fast in situ phase and stress analysis during laser surface treatment: a synchrotron x-ray diffraction approach.

    PubMed

    Kostov, V; Gibmeier, J; Wilde, F; Staron, P; Rössler, R; Wanner, A

    2012-11-01

    An in situ stress analysis by means of synchrotron x-ray diffraction was carried out during laser surface hardening of steel. A single exposure set-up that based on a special arrangement of two fast silicon strip line detectors was established, allowing for fast stress analysis according to the sin(2)ψ x-ray analysis method. For the in situ experiments a process chamber was designed and manufactured, which is described in detail. First measurements were carried out at the HZG undulator imaging beamline (IBL, beamline P05) at the synchrotron storage ring PETRA III, DESY, Hamburg (Germany). The laser processing was carried out using a 6 kW high power diode laser system. Two different laser optics were compared, a Gaussian optic with a focus spot of ø 3 mm and a homogenizing optic with a rectangular spot dimension of 8 × 8 mm(2). The laser processing was carried out using spot hardening at a heating-/cooling rate of 1000 K/s and was controlled via pyrometric temperature measurement using a control temperature of 1150 °C. The set-up being established during the measuring campaign allowed for this first realization data collection rates of 10Hz. The data evaluation procedure applied enables the separation of thermal from elastic strains and gains unprecedented insight into the laser hardening process. PMID:23206092

  7. Imaging the heterogeneity of mineral surface reactivity using Ag(I) and synchrotron X-ray microscopy

    SciTech Connect

    Amonette, James E.; Heald, Steve M.; Russell, Colleen K.

    2003-10-01

    Microscopic-scale imaging of reduced zones on the surfaces of minerals can be achieved by reaction with dilute Ag(I) solutions and subsequent analysis using synchrotron X-ray microscopy (XRM) above the Ag K-edge (25.5 keV). The principal reductant is Fe(II), but other reductants such as sulfide may contribute. Reduced zones may exist instrinsically, as in the structure of biotite and augite, or may be generated by reaction with chemical agents such as dithionite or treatment with sulfate-reducing bacteria (SRB). We demonstrate the method on flakes of specular hematite and biotite, as well as on thin sections of different rocks (arfvedsonitic granite, oolitic hematite, diabase, and quartz conglomerate) treated with SRB, and discuss possible artifacts that can occur. To our knowledge, this is the only microscopic technique that can image Fe(II) zones on the surface of an Fe-bearing mineral with monolayer sensitivity.

  8. Challenges for Synchrotron X-Ray Optics

    NASA Astrophysics Data System (ADS)

    Freund, Andreas K.

    2002-12-01

    It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power to make it suitable for being used on the experimental stations. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfill this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has always been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and systems based on bent surfaces, for example, Kirkpatrick-Baez systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. The overview of the present challenges includes the properties of present and also mentions aspects of future x-ray sources such as the "ultimate" storage ring and free electron lasers. These challenges range from the thermal performances of monochromators to the surface quality of mirrors, from coherence preservation of modern multilayers to short pulse preservation by crystals, and from micro- and nano

  9. X-ray microscopy using synchrotron radiation

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.; Smith, J.V.; Spanne, P.; Sutton, S.R.

    1989-01-01

    The system for x-ray microscopy now being developed at the X-26 beam line of the Brookhaven National Synchrotron Light Source (NSLS) is described here. Examples of the use of x-ray microscopy for trace element geochemistry, biology and medicine, and materials investigations are given to emphasize the scientific applications of the technique. Future directions for the improvement and further development of the X-26 microscope and of the x-ray microscopy field in general are discussed. 11 refs., 7 figs.

  10. Synchrotron beamlines for x-ray lithography

    NASA Astrophysics Data System (ADS)

    Trippe, Anthony P.; Pearce, W. J.

    1994-02-01

    Louisiana State University established the J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD). Designed and constructed by the Brobeck Division of Maxwell Laboratories, the CAMD synchrotron light source is the first electron storage ring to be built by a commercial company in the United States. The synchrotron x-ray radiation generated at CAMD is an extremely useful exposure source for both thin and thick film lithography. Passing through a beamline containing two plane mirrors, the synchrotron light is used to expose thin resists for lithography of patterns with feature sizes of 0.25 micron and smaller. Two thick-resist beamlines, one using a single aspheric (collimating) mirror and one using a plane mirror, provide the higher flux photons required for miniaturization in silicon to produce microscopic mechanical devices including gears, motors, filters, and valves.

  11. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  12. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    NASA Astrophysics Data System (ADS)

    Lafford, T. A.; Villanova, J.; Plassat, N.; Dubois, S.; Camel, D.

    2013-03-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  13. Measuring Cavitation with Synchrotron X-Rays

    NASA Astrophysics Data System (ADS)

    Duke, Daniel; Kastengren, Alan; Powell, Chris; X-Ray Fuel Spray Group, Energy Systems Division Team

    2012-11-01

    Cavitation plays an important role in the formation of sprays from small nozzles such as those found in fuel injection systems. A sharp-edged inlet from the sac into the nozzle of a diesel fuel injector is shown to inititate a strong sheet-like cavitation along the boundary layer of the nozzle throat, which is difficult to measure and can lead to acoustic damage. To investigate this phenomenon, a diagnostic technique capable of mapping the density field of the nozzle through regions of intense cavitation is required. Available visible-light techniques are limited to qualitative observations of the outer extent of cavitation zones. However, brilliant X-rays from a synchrotron source have negligible refraction and are capable of penetrating the full extent of cavitation zones. We present the early results of a novel application of line-of-sight, time-resolved X-ray radiography on a cavitating model nozzle. Experiments were conducted at Sector 7-BM of the Advanced Photon Source. Density and vapor distribution are measured from the quantitative absorption of monochromatic X-rays. The density field can then be tomographically reconstructed from the projections. The density is then validated against a range of compressible and incompressible numerical simulations. This research was performed at the 7-BM beamline of the Advanced Photon Source. We acknowledge the support of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 and the DOE Vehicle Technologies Program (DOE-EERE).

  14. Structure analysis of the Ag (001) surface at 25 K by synchrotron x-ray crystal truncation rod scattering

    SciTech Connect

    Sakata, O.; Shimada, Y.; Walker, C.J.; Yi, M.-S.; Imai, Y.

    2004-05-12

    We have commissioned an ultra-high vacuum chamber for surface structure determination at an undulator beamline BL13XU, SPring-8. As a test experiment, a structure of a Ag (001) surface at a temperature of 25 K has been studied by analyzing x-ray scattering intensities along several surface crystal truncation rods (CTR). Results of least-squares fits to the CTR data show that the top atomic layer was shifted inwards by 0.0011 nm {+-} 0.0003 nm relative to the bulk position.

  15. X-ray studies of multilayer semiconductors using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Huang, Shiwen

    X-ray scattering and absorption techniques utilizing synchrotron radiation have been used to study a variety of multilayer semiconductors. The angular-dependent x-ray scattering at grazing incidence angles (grazing incidence x-ray scattering, GIXS) provides structural information of interfaces in these materials, such as rms interfacial roughness, cross- and lateral-correlation lengths, etc. Long-range order structures in material are probed by large-angle scattering (x-ray diffraction), in which strain and lattice constant as well as crystallinity of the epilayers are measured. Local structural variations in materials including local bond length, coordination number, and local disorder are obtained quantitatively by examining the modulation in the x-ray absorption spectrum some 40 eV above the absorption edge (extended x-ray absorption fine structure, EXAFS). Materials studied in the present work are SiGe/Si heterostructures, MnAs/GaAs ferromagnetic-semiconductor films, solar cell films, ZnSe-based II-VI semiconductor thin films, InGaAs/GaAs and GaAs/AlAs superlattices. Results obtained have shown (i) evidence for strain-induced surface/interface morphology variations in SiGe/Si heterostructures, (ii) template-dependent microstructures in MnAs/GaAs, (iii) changes in interface structures for films of different formations in solar cell films, (iv) differences between samples prepared by different epitaxial growth methods in II-VI semiconductor films, (v) observation of lateral structural ordering in one of the InGaAs/GaAs superlattices, (vi) differences in interfacial microstructures between MBE-grown samples with different interrupts in GaAs/AlAs superlattices. Most of all, x- rays are found to be a very useful nondestructive tool for probing microscopic structures in various multilayer semiconductor materials.

  16. X-ray reflectivity and surface roughness

    SciTech Connect

    Ocko, B.M.

    1988-01-01

    Since the advent of high brightness synchrotron radiation sources there has been a phenomenal growth in the use of x-rays as a probe of surface structure. The technique of x-ray reflectivity is particularly relevant to electrochemists since it is capable of probing the structure normal to an electrode surface in situ. In this paper the theoretical framework for x-ray reflectivity is reviewed and the results from previous non-electrochemistry measurements are summarized. These measurements are from the liquid/air interface (CCl/sub 4/), the metal crystal vacuum interface (Au(100)), and from the liquid/solid interface(liquid crystal/silicon). 34 refs., 5 figs.

  17. EVOLUTION OF SYNCHROTRON X-RAYS IN SUPERNOVA REMNANTS

    SciTech Connect

    Nakamura, Ryoko; Bamba, Aya; Dotani, Tadayasu; Ishida, Manabu; Kohri, Kazunori

    2012-02-20

    A systematic study of the synchrotron X-ray emission from supernova remnants (SNRs) has been conducted. We selected a total of 12 SNRs whose synchrotron X-ray spectral parameters are available in the literature with reasonable accuracy and studied how their luminosities change as a function of radius. It is found that the synchrotron X-ray luminosity tends to drop especially when the SNRs become larger than {approx}5 pc, despite large scatter. This may be explained by the change of spectral shape caused by the decrease of the synchrotron roll-off energy. A simple evolutionary model of the X-ray luminosity is proposed and is found to reproduce the observed data approximately, with reasonable model parameters. According to the model, the total energy of accelerated electrons is estimated to be 10{sup 47-48} erg, which is well below the supernova explosion energy. The maximum energies of accelerated electrons and protons are also discussed.

  18. The metrology of spherical shells using synchrotron x ray microtomography

    NASA Technical Reports Server (NTRS)

    Hmelo, Anthony B.; Allen, James L.; Damico, Kevin L.

    1990-01-01

    With recent advances in solid state imaging technology and the increasing availability of synchrotron x-ray radiation sources, synchrotron x-ray microtomography is emerging as a nondestructive technique for the evaluation of the structure and composition of small specimens with spatial resolution in the micron range. Synchrotron radiation offers the following advantages over conventional x-ray sources: high brightness, continuous emission which is tunable over a large energy range, faster data collection rates, and a highly collimated beam of large cross section permitting the illumination of large specimens. Synchrotron x-ray microtomography enables the structure of individual spheres to be evaluated in order to reveal the concentricity and sphericity of the internal void and the uniformity of the shell wall in the case of high quality spherical shells for Sandia National Laboratories' Inertial Confinement Fusion project.

  19. X-ray fluorescence imaging with synchrotron radiation

    SciTech Connect

    Rivers, M.L.

    1987-01-01

    The micro-distribution of trace elements is of great interest in fields such as geochemistry, biology and material science. The synchrotron x-ray fluorescence microprobe provides a technique to quantitatively measure trace element compositions at individual points and to construct semiquantitative two dimensional maps of trace element compositions. This paper describes an x-ray fluorescence system used at the National Synchrotron Light Source.

  20. Synchrotron X-ray techniques for fluid dynamics

    NASA Astrophysics Data System (ADS)

    Kastengren, Alan; Powell, Christopher F.

    2014-03-01

    X-ray diagnostics have the potential for making quantitative measurements in many flowfields where optical diagnostics are challenging, especially multiphase flows. In the past, many such measurements have been taken with laboratory-scale X-ray sources. This review describes the measurements that are possible with synchrotron X-ray sources, which can provide high-flux, tunable, monochromatic X-ray beams that cannot be created with laboratory sources. The relevant properties of X-rays and their interactions with matter are described. The types and capabilities of various X-ray optics and sources are discussed. Finally, four major X-ray diagnostics are described in detail. X-ray radiography provides quantitative measurements of density in variable-density flows. X-ray phase-contrast imaging is used to visualize multiphase flows with high spatial and temporal resolution. X-ray fluorescence spectroscopy shows significant promise to study mixing in single-phase and multiphase flows. Small-angle X-ray scattering is a powerful technique to examine small-scale particles in flows.

  1. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  2. Synchrotron x-ray scattering study on the evolution of surface morphology of the InN/Al2O3)(0001 system

    NASA Astrophysics Data System (ADS)

    Lee, Ik Jae; Kim, Jin Woo; Hur, Tae-Bong; Hwang, Yoon-Hwae; Kim, Hyung-Kook

    2002-07-01

    Dynamic scaling behavior was studied for InN films grown on sapphire(0001) substrates using high-resolution synchrotron x-ray reflectivity and atomic force microscopy measurements. In the early stage of growth, highly strained planar InN films were grown. As the film thickness approaches an effective critical thickness, the growth gradually crosses over to the island growth. Concurrently, the relaxation of the lattice strain begins and the growth front becomes rougher. The roughness increases mostly during the intermediate crossover regime where the strain is relieved. In this regime, the dynamic scaling exponent, beta, is estimated as 1.754plus-or-minus0.071. The evolution of the surface roughness in the final-stage growth can be described by the dynamic scaling exponent of 0.236plus-or-minus0.022.

  3. Lead adsorption at the calcite-water interface: Synchrotron x-ray standing wave and x-ray reflectivity studies

    SciTech Connect

    Sturchio, N.C.; Chiarello, R.P.; You, Hoydoo

    1997-01-01

    By combining synchrotron X-ray standing wave (XSW) measurements with synchrotron X-ray reflectivity measurements, we have determined: (1) the precise three-dimensional location within the calcite unit cell of submonolayer Pb ions adsorbed at the calcite (104) surface from dilute aqueous solutions, and (2) the precise one-dimensional location of these unit cells relative to the calcite surface. Our XSW measurements, using three separate calcite Bragg reflections for triangulation, show that most adsorbed Pb ions occupy Ca sites in the calcite lattice with an ordered coverage of 0.05 equivalent monolayers, while the remaining Pb ions are disordered with a coverage of 0.03 equivalent monolayers. Our X-ray reflectivity measurements show that the ordered Ph ions occur primarily (>70%) in the surface atomic layer of calcite. Atomic force microscopy (AFM) was used to characterize the topography of the calcite (104) surface under conditions similar to the X-ray experiments. The quantitative morphological information obtained by AFM was used to develop realistic models of the calcite surface. The calculated X-ray reflectivities for these model surfaces were compared with the measured X-ray reflectivities. The new combined X-ray method that we have developed can be used to determine the atomic-scale structure of other metals adsorbed at mineral-water interfaces. Such high-resolution structural determinations are essential before detailed conceptual and theoretical models can be further developed to understand and predict the behavior of dissolved metals in mineral-water systems. 60 refs., 8 figs., 3 tabs.

  4. Synchrotron x-ray modification of nanoparticle superlattice formation

    NASA Astrophysics Data System (ADS)

    Lu, Chenguang; Akey, Austin J.; Herman, Irving P.

    2012-09-01

    The synchrotron x-ray radiation used to perform small angle x-ray scattering (SAXS) during the formation of three-dimensional nanoparticle superlattices by drop casting nanoparticle solutions affects the structure and the local crystalline order of the resulting films. The domain size decreases due to the real-time SAXS analysis during drying and more macroscopic changes are visible to the eye.

  5. Phase-contrast x-ray tomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bonse, Ulrich; Beckmann, Felix; Bartscher, Markus; Biermann, Theodor; Busch, Frank; Guennewig, Olaf

    1997-10-01

    The principle and experimental l realization of x-ray phase- contrast in compute assisted microtomography ((mu) CT) at the micrometer resolution level is described. The camera used is a modification of a setup previously developed by us for attenuation-contrast (mu) CT using synchrotron x-rays. Phase detection is accomplished by employing the x-ray interferometer. By using x-ray phase contrast it is possible to image structural details in low-z biological tissues much better than with absorption contrast. The advantage of phase over attenuation contrast is not limited to light element or to low x-ray energies. Examples of applying phase contrast (mu) CT to the structural investigation of rat trigeminal nerve are given.

  6. X-ray and synchrotron studies of porous silicon

    SciTech Connect

    Sivkov, V. N.; Lomov, A. A.; Vasil'ev, A. L.; Nekipelov, S. V.; Petrova, O. V.

    2013-08-15

    The results of comprehensive studies of layers of porous silicon of different conductivity types, grown by anodizing standard Si(111) substrates in an electrolyte based on fluoric acid and ethanol with the addition of 5% of iodine and kept in air for a long time, are discussed. Measurements are performed by scanning electron microscopy, high-resolution X-ray diffraction, and ultrasoft X-ray spectroscopy using synchrotron radiation. The structural parameters of the layers (thickness, strain, and porosity) and atomic and chemical composition of the porous-silicon surface are determined. It is found that an oxide layer 1.5-2.3-nm thick is formed on the surface of the silicon skeleton. The near-edge fine structure of the Si 2p absorption spectrum of this layer corresponds to the fine structure of the 2p spectrum of well coordinated SiO{sub 2}. In this case, the fine structure in the Si 2p-edge absorption region of the silicon skeleton is identical to that of the 2p absorption spectrum of crystalline silicon.

  7. Synchrotron X-ray footprinting on tour

    PubMed Central

    Bohon, Jen; D’Mello, Rhijuta; Ralston, Corie; Gupta, Sayan; Chance, Mark R.

    2014-01-01

    Synchrotron footprinting is a valuable technique in structural biology for understanding macromolecular solution-state structure and dynamics of proteins and nucleic acids. Although an extremely powerful tool, there is currently only a single facility in the USA, the X28C beamline at the National Synchrotron Light Source (NSLS), dedicated to providing infrastructure, technology development and support for these studies. The high flux density of the focused white beam and variety of specialized exposure environments available at X28C enables footprinting of highly complex biological systems; however, it is likely that a significant fraction of interesting experiments could be performed at unspecialized facilities. In an effort to investigate the viability of a beamline-flexible footprinting program, a standard sample was taken on tour around the nation to be exposed at several US synchrotrons. This work describes how a relatively simple and transportable apparatus can allow beamlines at the NSLS, CHESS, APS and ALS to be used for synchrotron footprinting in a general user mode that can provide useful results. PMID:24365913

  8. X-ray polarization splitting by a single crystal evaluated with synchrotron x-rays

    SciTech Connect

    Pereira, N. R.; Presura, R.; Wallace, M.; Kastengren, A.

    2014-07-15

    In hexagonal crystals such as quartz, an asymmetric Bragg reflection from two equivalent internal crystal planes can separate unpolarized x-rays into two linearly polarized components. The perfectly polarized and tunable x-rays from a synchrotron are ideal to evaluate polarization spitting in detail. One unanticipated feature is that additional reflections from the crystal affect the diffraction intensity of the two polarized components, an effect that is unlikely to matter in polarization spectroscopy of radiating plasmas for which the crystal is intended.

  9. 3D synchrotron x-ray microtomography of paint samples

    NASA Astrophysics Data System (ADS)

    Ferreira, Ester S. B.; Boon, Jaap J.; van der Horst, Jerre; Scherrer, Nadim C.; Marone, Federica; Stampanoni, Marco

    2009-07-01

    Synchrotron based X-ray microtomography is a novel way to examine paint samples. The three dimensional distribution of pigment particles, binding media and their deterioration products as well as other features such as voids, are made visible in their original context through a computing environment without the need of physical sectioning. This avoids manipulation related artefacts. Experiments on paint chips (approximately 500 micron wide) were done on the TOMCAT beam line (TOmographic Microscopy and Coherent rAdiology experimenTs) at the Paul Scherrer Institute in Villigen, CH, using an x-ray energy of up to 40 keV. The x-ray absorption images are obtained at a resolution of 350 nm. The 3D dataset was analysed using the commercial 3D imaging software Avizo 5.1. Through this process, virtual sections of the paint sample can be obtained in any orientation. One of the topics currently under research are the ground layers of paintings by Cuno Amiet (1868- 1961), one of the most important Swiss painters of classical modernism, whose early work is currently the focus of research at the Swiss Institute for Art Research (SIK-ISEA). This technique gives access to information such as sample surface morphology, porosity, particle size distribution and even particle identification. In the case of calcium carbonate grounds for example, features like microfossils present in natural chalks, can be reconstructed and their species identified, thus potentially providing information towards the mineral origin. One further elegant feature of this technique is that a target section can be selected within the 3D data set, before exposing it to obtain chemical data. Virtual sections can then be compared with cross sections of the same samples made in the traditional way.

  10. Synchrotron x-ray reticulography: principles and applications

    NASA Astrophysics Data System (ADS)

    Lang, A. R.; Makepeace, A. P. W.

    1999-05-01

    Synchrotron x-ray reticulography is a versatile new technique for mapping misorientations in single crystals. It is nearly as simple to perform as conventional single-crystal Laue topography, yet it yields quantitative data on misorientations that would demand long sequences of images if the double-crystal technique were applied. In reticulography a fine-scale x-ray absorbing mesh is placed between a Laue-diffracting crystal specimen and the topograph-recording photographic plate. The mesh splits the diffracted beam into an array of individually identifiable microbeams. Direction differences between microbeams, which give the orientation differences between the crystal elements reflecting them, are measured from their relative shifts within the array when mesh-to-plate distance is changed. The angular sensitivity of reticulography depends upon the angular size of the x-ray source. At Station 7.6 at the SRS, Daresbury, 80 m from the tangent point, and with source size FWHM (full width half maximum) = 0.23 mm vertically, the incidence angular range in the vertical plane is only 0.6 arcsec, and misorientations down to this magnitude are measurable. Applications of reticulography to three quite different problems are described, illustrating the method's versatility. The problems are: (1) measuring surface lattice-plane tilts due to an array of dislocations in a large synthetic diamond; (2) determining the sense of the Burgers vector of a giant screw dislocation in SiC; and (3) measuring lattice curvature above an energetic ion implant in a natural diamond.

  11. Wavelength dispersive analysis with the synchrotron x ray fluorescence microprobe

    NASA Technical Reports Server (NTRS)

    Rivers, M. L.; Thorn, K. S.; Sutton, S. R.; Jones, K. W.; Bajt, S.

    1993-01-01

    A wavelength dispersive spectrometer (WDS) was tested on the synchrotron x ray fluorescence microprobe at Brookhaven National Laboratory. Compared to WDS spectra using an electron microprobe, the synchrotron WDS spectra have much better sensitivity and, due to the absence of bremsstrahlung radiation, lower backgrounds. The WDS spectrometer was successfully used to resolve REE L fluorescence spectra from standard glasses and transition metal K fluorescence spectra from kamacite.

  12. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  13. X-Ray Absorption Spectra of Uranium by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hirohiko; Fujima, Kazumi; Taniguchi, Kazuo; Miyake, Chie; Imoto, Shosuke

    1981-08-01

    The X-ray absorption spectra of U, UO2 and UCl4 near the U OIV and OV thresholds have been measured by use of synchrotron radiation. The absorption peaks at about 100 eV and 110 eV are observed for all of these materials. However, the detailed structure of the spectra depend on the chemical state.

  14. TOPICAL REVIEW: Medical applications of synchrotron radiation x-rays

    NASA Astrophysics Data System (ADS)

    Lewis, R.

    1997-07-01

    The use of synchrotron radiation is not widespread in the field of medicine and in fact few health-care professionals have even heard of it. It is the purpose of this article to explain what it is and to give some examples of how it can contribute to medical science. X-rays have been used for diagnostic medical imaging for more than 100 years and, whilst new techniques such as computed tomography have been developed, the means of producing x-rays has altered little during that time. Synchrotron radiation sources provide multiple, extremely intense and tuneable beams of photons over a huge range of energies from infrared through to hard x-rays. Their advent has revolutionized many experimental techniques and synchrotron radiation is being applied across many fields from imaging to molecular dynamics. It has spawned several methods for studying live and wet tissue samples, yielding information on both structure and composition on all length scales down to atomic resolution. Such techniques have played a crucial role in the development of molecular biology and the solution of protein structures. The application of synchrotron radiation in the field of radiography is now expanding and it is clear that very substantial improvements in image quality and patient dose can be realized. Following an overview of the production and properties of synchrotron radiation, some of the ways in which this remarkable tool has already been exploited for medical research are reviewed and some potential clinical opportunities highlighted.

  15. Applications of synchrotron x-ray fluorescence to extraterrestrial materials

    SciTech Connect

    Sutton, S.R.; Rivers, M.L.; Smith, J.V.

    1986-01-01

    Synchrotron x-ray fluorescence (SXRF) is a valuable technique for trace element analyses of extraterrestrial materials permitting minimum detection limits less than 1 ppM for 20 micrometer spots. SXRF measurements have been performed on iron meteorites and micrometeorites using white synchrotron radiation and an energy dispersive x-ray detector at the National Synchrotron Light Source (X-26C), Brookhaven National Laboratory (NY). Partitioning of Cu between troilite (FeS) and metal in the nine iron meteorites studied suggests sub-solidus re-equilibration in these objects. A technique has been developed for determining self-absorption corrections for filtered, continuum excitation of small specimens, such as stratospheric particles and refractory inclusions in meteorites.

  16. X-ray multilayer optics for Indus synchrotrons application

    NASA Astrophysics Data System (ADS)

    Nayak, Maheswar; Pradhan, P. C.; Lodha, G. S.

    2015-06-01

    We present the state-of-the-art X-ray multilayer optics fabrication facilities at Indus synchrotrons complex. The facilities are regularly used for fabrication of high quality x-ray multilayer structures. The results on two representative materials combination of Mo/Si and W/B4C are presented. In Mo/Si multilayer system, we have achieved ˜70% of reflectivity (near normal incidence angle) at soft x-ray region. Large area (300mm×50mm) Mo/Si multilayers are also successively fabricated for monochromator application in hard x-ray region. Whereas in W/B4C system, we demonstrate the capability of these facilities to fabricate ultra short period multilayer (periodicity ˜15-20 Å) with large number of layer pairs in the range of 200-400 for transmission polarizer near Fe L-edge and for monochromator application in hard x-ray region. Hard x-ray reflectivity of ˜54% is achieved from W/B4C MLs with periodicity ˜20 Å and number of layer pairs 300.

  17. SYNCHROTRON X-RAY BASED CHARACTERIZATION OF CDZNTE CRYSTALS

    SciTech Connect

    Duff, M

    2006-09-28

    Synthetic CdZnTe or 'CZT' crystals can be used for the room temperature-based detection of {gamma}-radiation. Structural/morphological heterogeneities within CZT, such as twinning, inclusions, and polycrystallinity can affect detector performance. We used a synchrotron-based X-ray technique, specifically extended X-ray absorption fine-structure (EXAFS) spectroscopy, to determine whether there are differences on a local structural level between intact CZT of high and low radiation detector performance. These studies were complemented by data on radiation detector performance and transmission IR imaging. The EXAFS studies revealed no detectable local structural differences between the two types of CZT materials.

  18. Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging.

    PubMed

    Eastwood, David S; Bayley, Paul M; Chang, Hee Jung; Taiwo, Oluwadamilola O; Vila-Comamala, Joan; Brett, Daniel J L; Rau, Christoph; Withers, Philip J; Shearing, Paul R; Grey, Clare P; Lee, Peter D

    2015-01-01

    The electrodeposition of metallic lithium is a major cause of failure in lithium batteries. The 3D microstructure of electrodeposited lithium 'moss' in liquid electrolytes has been characterised at sub-micron resolution for the first time. Using synchrotron X-ray phase contrast imaging we distinguish mossy metallic lithium microstructures from high surface area lithium salt formations by their contrasting X-ray attenuation. PMID:24898258

  19. Synchrotron x-ray scattering studies of rapidly evolving nanoscale interfacial systems

    NASA Astrophysics Data System (ADS)

    Dai, Yeling

    In light of the development of third-generation synchrotron sources which deliver extremely bright radiation beam over a board energy band, tremendous progress has been made in x-ray science and the diverse range of disciplines that can be studied with x-ray. The special properties of synchrotron-produced x-ray such as coherence, polarization, etc., combined with different extreme experimental conditions, can meet almost any requirement of the research for material characterization, imaging, molecular dynamics, surface/interface physics and so on. In this work we will demonstrate how outstanding properties of synchrotron x-ray can be use to study the structural and dynamic properties of rapidly evolving nano-scale interfacial systems. A large part of this thesis is devoted to the investigation of the surface capillary fluctuations of laterally confined supported polystyrene films using x-ray photon correlation spectroscopy (XPCS), a young coherent scattering technique that can probes the dynamics of matter. The structural evolution of interfacial/surface system, such as the self-assembled nanoparticle film at water-air interface and the nano-imprinted polystyrene pattern, can be studied by different time-resolved x-ray small angle scattering techniques in grazing incidence geometry (GISAXS,GIXOS,GID), as well as the conventional specular reflectivity (XR) measurement. Particularly in the case of the liquid surface research, special efforts have been made to improve a recently developed diffuse scattering technique Grazing incidence off-specular x-ray scattering (GIXOS) for probing the structure at liquid interface with much better temporal resolution compared with that of XR. In this work We will present all the experimental results together with conclusive data analysis from the studies of these evolving systems with x-ray scattering techniques. In comparison to the reciprocal space studies with x-ray scattering tools, part of this thesis is devoted to the

  20. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.

    SciTech Connect

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-07-21

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

  1. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  2. Application of X-ray synchrotron microscopy instrumentation in biology

    SciTech Connect

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  3. Calcified-tissue investigations using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Spanne, P.; Schidlovsky, G.; Dejun, X. ); Bockman, R.S. . Medical Coll.); Rabinowitz, M.B. ); Hammond, P.B.; Bornschein, R.L. ); Hoeltzel, D.A. )

    1990-10-01

    Synchrotron x-ray microscopy (SXRM) in both emission and absorption modes has been used to examine elemental distributions in specimens of rat tibia, human deciduous teeth, and an orthopedic implant phantom. The work was performed with a spatial resolution of 8 {mu}m for the emission work and 25 {mu}m for the absorption work. The results illustrate the usefulness of SXRM for measurements of different types of calcified tissue. 3 figs.

  4. Ray tracing homogenizing mirrors for synchrotron x-ray lithography

    NASA Astrophysics Data System (ADS)

    Homer, Michael; Rosser, Roy J.; Speer, R. J.

    1991-12-01

    Saddle toroid array mirrors (STAMs) are novel grazing-incidence mirrors. They have been proposed as the optical component that most efficiently matches synchrotron orbital radiation (SOR) to the needs of proximity x-ray lithography. However, STAMs have yet to be accepted by the synchrotron lithography community because of the lack of detailed data on their expected performance, due primarily to the difficulty of raytracing such mirrors using existing optical raytrace programs. A raytracing package written especially to study the design and optimization of these unusually shaped mirrors and the very encouraging results obtained with the package to date are described. The optimum STAM designs turn out to be the most effective way of homogeneously illuminating a rectangular proximity x-ray lithography mask, improving on existing scanning mirror systems by at least a factor of four. They have the added advantage of being stationary, which should lead to greater reliability--a quality of considerable value in the production environment these mirrors are intended for, namely the ultra-high vacuum of a synchrotron beamline. Based on the results of the raytracing, a prototype STAM has been constructed, and preparations are being made for an x-ray test of the device.

  5. High counting rates of x-ray photon detection using APD detectors on synchrotron machines

    SciTech Connect

    Kakuno, E. M.; Giacomolli, B. A.; Scorzato, C. R.

    2012-05-17

    In this work we show the results of 10 x 10 mm{sup 2} Si-APD detector's test with guard ring detecting x-rays. The result of mapping surface is also exhibited. We show and discuss the difficulty of single photon detection in high counting rate experiments in synchrotrons machines.

  6. X-ray diffraction microtomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Barroso, R. C.; Lopes, R. T.; de Jesus, E. F. O.; Oliveira, L. F.

    2001-09-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtained diffraction patterns form the basis of a selective tomography technique. Preliminary images are presented.

  7. Synchrotron X-ray Enhanced Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Rose, Volker; Freeland, John

    2011-03-01

    Proper understanding of complex phenomena occurring in nanostructures requires tools with both the ability to resolve the nanometer scale as well as provide detailed information about chemical, electronic, and magnetic structure. Scanning tunneling microscopy (STM) achieves the requisite high spatial resolution; however, direct elemental determination is not easily accomplished. X-ray microscopies, on the other hand, provide elemental selectivity, but currently have spatial resolution only of tens of nanometers. We present a novel and radically different concept that employs detection of local synchrotron x-ray interactions utilizing a STM that provides spatial resolution, and x-ray absorption directly yields chemical, electronic, and magnetic sensitivity. If during tunneling the sample is simultaneously illuminated with monochromatic x-rays, characteristic absorption will arise. Electrons that are excited into unoccupied levels close to the Fermi level modulate the tunneling current giving rise to elemental contrast. This work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357.

  8. Miniature pulsed magnet system for synchrotron x-ray measurements

    SciTech Connect

    Linden, Peter J. E. M. van der; Mathon, Olivier; Strohm, Cornelius; Sikora, Marcin

    2008-07-15

    We have developed a versatile experimental apparatus for synchrotron x-ray measurements in pulsed high magnetic fields. The apparatus consists of a double cryostat incorporating a liquid nitrogen bath to cool the miniature pulsed coil and an independent helium flow cryostat allowing sample temperatures from 4 up to 250 K. The high duty cycle miniature pulsed coils can generate up to 38 T. During experiments at 30 T a repetition rate of 6 pulses/min was routinely reached. Using a 4 kJ power supply, the pulse duration was between 500 {mu}s and 1 ms. The setup was used for nuclear forward scattering measurements on {sup 57}Fe up to 25 T on the ESRF beamline ID18. In another experiment, x-ray magnetic circular dichroism was measured up to 30 T on the ESRF energy dispersive beamline ID24.

  9. Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing

    SciTech Connect

    Liu, Chian; Ice, Gene E; Liu, Wenjun; Assoufid, Lahsen; Qian, J; Shi, B.; Khachatryan, Ruben; Wieczorek, M.; Zschack, P.; Tischler, Jonathan Zachary

    2012-01-01

    This paper describes fabrication methods used to demonstrate the advantages of nested or Montel optics for micro/nanofocusing of synchrotron X-ray beams. A standard Kirkpatrick-Baez (KB) mirror system uses two separated elliptical mirrors at glancing angles to the X-ray beam and sequentially arranged at 90{sup o} to each other to focus X-rays successively in the vertical and horizontal directions. A nested KB mirror system has the two mirrors positioned perpendicular and side-by-side to each other. Compared to a standard KB mirror system, Montel optics can focus a larger divergence and the mirrors can have a shorter focal length. As a result, nested mirrors can be fabricated with improved demagnification factor and ultimately smaller focal spot, than with a standard KB arrangement. The nested system is also more compact with an increased working distance, and is more stable, with reduced complexity of mirror stages. However, although Montel optics is commercially available for laboratory X-ray sources, due to technical difficulties they have not been used to microfocus synchrotron radiation X-rays, where ultra-precise mirror surfaces are essential. The main challenge in adapting nested optics for synchrotron microfocusing is to fabricate mirrors with a precise elliptical surface profile at the very edge where the two mirrors meet and where X-rays scatter. For example, in our application to achieve a sub-micron focus with high efficiency, a surface figure root-mean-square (rms) error on the order of 1 nm is required in the useable area along the X-ray footprint with a {approx} 0.1 mm-diameter cross section. In this paper we describe promising ways to fabricate precise nested KB mirrors using our profile coating technique and inexpensive flat Si substrates.

  10. Contrasting of biological samples for X-ray synchrotron microtomography.

    PubMed

    Efimova, O I; Khlebnikov, A S; Senin, R A; Voronin, P A; Anokhin, K V

    2013-08-01

    The method of contrasting with iodine ions was developed to obtain high-resolution 3D images of large biological specimens using a synchrotron X-ray microtomography unit. It was shown that the samples (late mouse embryos) treated with 50% Lugol solution with addition of 25% ethanol for 48 h followed by a 48-h washout in phosphate buffered saline had maximum contrast and lowest compression artifacts. Processing of samples by this protocol allowed detecting zones of active proliferation. Incubation of brain samples for 120 h in 7.6% meglumine/sodium diatrizoate without washout ensured the best contrast during myelin identification. PMID:24143358

  11. Synchrotron Area X-ray Detectors, Present and Future

    SciTech Connect

    Gruner, Sol M.

    2010-06-23

    X-ray experiments are very frequently detector limited at today's storage ring synchrotron radiation (SR) sources, and will be even more so at future Energy Recovery Linac and X-ray Free Electron Laser sources. Image plate and phosphor-coupled CCD detectors that predominate at present-day sources were outgrowths of technologies initially developed for the medical and astronomical communities, respectively, with resultant limitations for SR. These limitations are enumerated. The growth of commercial silicon foundries and design tools enabling the production of large, customized integrated circuits is beginning to have a profound impact on SR detectors and is ushering in the age of 'designer detectors'. Novel area Pixel Array Detectors (PADs) are starting to appear in which each pixel has dedicated, complex circuitry capable of high speed and, in some cases, significant data processing power for specific applications. PADs now at, or near the horizon will be described. Integrated circuit methods continue to develop at a rapid pace. Implications for future x-ray detectors will be discussed.

  12. On-Line Mirror Surfacing Monitored by X-ray Shearing Interferometry and X-ray Scattering

    SciTech Connect

    Ziegler, E.; Peverini, L.; Kozhevnikov, I. V.; Weitkamp, T.; David, C.

    2007-01-19

    We propose a novel fabrication scheme combining a mirror surfacing tool and an on-line metrology instrument, the latter capable of controlling both figure and finish of an X-ray mirror with an accuracy matching the challenging specifications of nanofocusing reflective optics for synchrotron and FEL X-ray beams. This approach will be complementary to the present technologies. The paper reviews some recent achievements and presents pertinent examples of on-line diagnostics performed at the ESRF BM05 beamline for which X-rays prove to be a unique probe.

  13. Synchrotron x-ray photoemission study of soft x-ray processed ultrathin glycine-water ice films

    SciTech Connect

    Tzvetkov, George; Netzer, Falko P.

    2011-05-28

    Ultrathin glycine-water ice films have been prepared in ultrahigh vacuum by condensation of H{sub 2}O and glycine at 90 K on single crystalline alumina surfaces and processed by soft x-ray (610 eV) exposure for up to 60 min. The physicochemical changes in the films were monitored using synchrotron x-ray photoemission spectroscopy. Two films with different amounts of H{sub 2}O have been considered in order to evaluate the influence of the water ice content on the radiation-induced effects. The analysis of C1s, N1s, and O1s spectral regions together with the changes in the valence band spectra indicates that amino acid degradation occurs fast mainly via decarboxylation and deamination of pristine molecules. Enrichment of the x-ray exposed surfaces with fragments with carbon atoms without strong electronegative substituents (C-C and C-H) is documented as well. In the thinner glycine-water ice film (six layers of glycine + six layers of water) the 3D ice suffers strongly from the x-rays and is largely removed from the sample. The rate of photodecomposition of glycine in this film is about 30% higher than for glycine in the thicker film (6 layers of glycine + 60 layers of water). The photoemission results suggest that the destruction of amino acid molecules is caused by the direct interaction with the radiation and that no chemical attack of glycine by the species released by water radiolysis is detected.

  14. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy.

    PubMed

    Serrano, A; Rodríguez de la Fuente, O; Collado, V; Rubio-Zuazo, J; Monton, C; Castro, G R; García, M A

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10(-3) to 10(-5), depending on the particular experiment. PMID:22938268

  15. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  16. Anomalous X-ray diffraction with soft X-ray synchrotron radiation.

    PubMed

    Carpentier, P; Berthet-Colominas, C; Capitan, M; Chesne, M L; Fanchon, E; Lequien, S; Stuhrmann, H; Thiaudière, D; Vicat, J; Zielinski, P; Kahn, R

    2000-07-01

    Anomalous diffraction with soft X-ray synchrotron radiation opens new possibilities in protein crystallography and materials science. Low-Z elements like silicon, phosphorus, sulfur and chlorine become accessible as new labels in structural studies. Some of the heavy elements like uranium exhibit an unusually strong dispersion at their M(V) absorption edge (lambdaMV = 3.497 A, E(MV) = 3545 eV) and so does thorium. Two different test experiments are reported here showing the feasibility of anomalous X-ray diffraction at long wavelengths with a protein containing uranium and with a salt containing chlorine atoms. With 110 electrons the anomalous scattering amplitude of uranium exceeds by a factor of 4 the resonance scattering of other strong anomalous scatterers like that of the lanthanides at their L(III) edge. The resulting exceptional phasing power of uranium is most attractive in protein crystallography using the multi-wavelength anomalous diffraction (MAD) method. The anomalous dispersion of an uranium derivative of asparaginyl-tRNA synthetase (hexagonal unit cell; a = 123.4 A, c = 124.4 A) has been measured for the first time at 4 wavelengths near the M(V) edge using the beamline ID1 of ESRF (Grenoble, France). The present set up allowed to measure only 30% of the possible reflections at a resolution of 4 A, mainly because of the low sensitivity of the CCD detector. In the second experiment, the dispersion of the intensity of 5 X-ray diffraction peaks from pentakismethylammonium undecachlorodibismuthate (PMACB, orthorhombic unit cell; a = 13.003 A, b = 14.038 A, c = 15.450 A) has been measured at 30 wavelengths near the K absorption edge of chlorine (lambdaK = 4.397 A, EK= 2819.6 eV). All reflections within the resolution range from 6.4 A to 3.4 A expected in the 20 degree scan were observed. The chemical state varies between different chlorine atoms of PMACB, and so does the dispersion of different Bragg peaks near the K-edge of chlorine. The results reflect

  17. Synchrotron X-ray diffraction characterization of healthy and fluorotic human dental enamel

    NASA Astrophysics Data System (ADS)

    Colaço, M. V.; Barroso, R. C.; Porto, I. M.; Gerlach, R. F.; Costa, F. N.; Braz, D.; Droppa, R.; de Sousa, F. B.

    2012-10-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basic physical-chemistry reactions of demineralization and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using Synchrotron X-ray diffraction. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the Brazilian Synchrotron Light Laboratory—LNLS, Campinas, Brazil. X-ray diffraction experiments were performed both in powder samples and polished surfaces. The powder samples were analyzed to obtain the characterization of a typical healthy enamel pattern. The polished surfaces were analyzed in specific areas that have been identified as fluorotic ones. X-ray diffraction data were obtained for all samples and these data were compared with the control samples and also with the literature data.

  18. The first microbeam synchrotron X-ray fluorescence beamline at the Siam Photon Laboratory.

    PubMed

    Tancharakorn, Somchai; Tanthanuch, Waraporn; Kamonsutthipaijit, Nuntaporn; Wongprachanukul, Narupon; Sophon, Methee; Chaichuay, Sarunyu; Uthaisar, Chunmanus; Yimnirun, Rattikorn

    2012-07-01

    The first microbeam synchrotron X-ray fluorescence (µ-SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X-ray capillary half-lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters-sized beam to a micrometer-sized beam. This beamline was originally designed for deep X-ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ-SXRF and synchrotron X-ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X-ray beam (for SXPD), a fixed aperture and three gate valves. Two end-stations incorporating optics and detectors for µ-SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ-SXRF station utilizes a polycapillary half-lens for X-ray focusing. This optic focuses X-ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end-station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single-element Si (PIN) solid-state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in-house to generate a series of single-column data which are compatible with available XRF data-processing software. Finally, to test the performance of the µ-SXRF beamline, an elemental surface profile has been obtained for

  19. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    SciTech Connect

    Schulze, D. ); Anderson, S. ); Mattigod, S. )

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  20. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part I. Morphology.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece. PMID:27359150

  1. High pressure x-ray diffraction techniques with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  2. Surface-Enhanced X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2010-01-01

    Surface-enhanced x-ray fluorescence (SEn-XRF) spectroscopy is a form of surface- enhanced spectroscopy that was conceived as a means of obtaining greater sensitivity in x-ray fluorescence (XRF) spectroscopy. As such, SEn-XRF spectroscopy joins the ranks of such other, longer-wavelength surface-enhanced spectroscopies as those based on surface-enhanced Raman scattering (SERS), surface-enhanced resonance Raman scattering (SERRS), and surfaceenhanced infrared Raman absorption (SEIRA), which have been described in previous NASA Tech Briefs articles. XRF spectroscopy has been used in analytical chemistry for determining the elemental compositions of small samples. XRF spectroscopy is rapid and quantitative and has been applied to a variety of metal and mineralogical samples. The main drawback of XRF spectroscopy as practiced heretofore is that sensitivity has not been as high as required for some applications. In SEn-XRF as in the other surface-enhanced spectroscopies, one exploits several interacting near-field phenomena, occurring on nanotextured surfaces, that give rise to local concentrations of incident far-field illumination. In this case, the far-field illumination comes from an x-ray source. Depending on the chemical composition and the geometry of a given nanotextured surface, these phenomena could include the lightning-rod effect (concentration of electric fields at the sharpest points on needlelike surface features), surface plasmon resonances, and grazing incidence geometric effects. In the far field, the observable effect of these phenomena is an increase in the intensity of the spectrum of interest - in this case, the x-ray fluorescence spectrum of chemical elements of interest that may be present within a surface layer at distances no more than a few nanometers from the surface.

  3. Synchrotron X-ray microtomographic study of tablet swelling.

    PubMed

    Laity, P R; Cameron, R E

    2010-06-01

    Tablet swelling behaviour was investigated by following the movements of embedded glass microsphere tracers, using X-ray microtomography (XmicroT) with intense illumination from a synchrotron. Specimens were prepared using combinations of hydroxypropyl-methyl-cellulose (HPMC) and microcrystalline cellulose (MCC) or pre-gelatinised starch (PGS), three materials commonly used as excipients for compacted tablets. The results revealed significant differences in swelling behaviour due to excipient type and compaction conditions. In particular, a sudden change was observed from gel-forming behaviour of formulations containing PGS or high HPMC content, to more rapid expansion and disintegration for formulations above 70% MCC. Although some radial expansion was observable with the higher PGS formulations and during later stages of swelling, axial expansion (i.e. the reverse of the compaction process) appeared to dominate in most cases. This was most pronounced for the 10/90 HPMC/MCC specimens, which rapidly increased in thickness, while the diameter remained almost unchanged. The expansion appeared to be initiated by hydration and may be due to the relaxation of residual compaction stress. This occurred within 'expansion zones', which initially appeared as thin bands close to the compacted (upper and lower) faces, but gradually advanced towards the centre and spread around the sides of the tablets. These zones exhibited lower X-ray absorbance, probably because they contained significant amounts of bubbles, which were formed by air released from the swelling excipients. Although, in most cases, these bubbles were too small to be resolved (<60 microm), larger bubbles (diameter up to 1mm) were clearly evident in the rapidly swelling 10/90 HPMC/MCC specimens. It is suggested that the presence of these bubbles may affect subsequent water ingress, by increasing the tortuosity and occluding part of the gel, which may affect the apparent diffusion kinetics (i.e. Fickian or Case II

  4. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of

  5. K-Edge Subtraction Angiography with Synchrotron X-Rays

    SciTech Connect

    Giacomini, John C.

    1996-12-31

    The purpose of this project was to utilize dual energy, monochromatic X-rays produced from synchrotrons radiation in order to obtain noninvasive medical imaging. The application of synchrotrons radiation to medical imaging is based on the principle of iodine dichromography, first described by Bertil Jacobson of the Karolinska Institute in 1953. Medical imaging using synchrotrons radiation and K-edge dichromography was pioneered at Stanford University under the leadership of Dr. Ed Rubenstein, and the late Nobel Laureate in Physics, Dr. Robert Hofstadter. With progressive refinements in hardware, clinical-quality images were obtained of human coronary arteries utilizing peripheral injections of iodinated contrast agent. These images even now are far superior to those being presented by investigators using MRI as an imaging tool for coronary arteries. However, new supplies and instruments in the cardiac catheterization laboratory have served to transform coronary angiography into an outpatient procedure, with relatively little morbidity. We extended the principles learned with coronary angiography to noninvasive imaging of the human bronchial tree. For these images, we utilized xenon as the contrast agent, as it has a K-edge very similar to that of iodine. In this case, there is no true competing diagnostic test, and pulmonary neoplasm is an enormous public health concern. In early experiments, we demonstrated remarkably clear images of the human bronchial tree. These images have been shown internationally; however, funding difficulties primarily with the Department of Energy have not allowed for progression of this promising avenue of research. One potential criticism of the project is that in order to obtain these images, we utilized national laboratories. Some have questioned whether this would lead to a practical imaging modality. However, we have shown that the technology exists to allow for construction of a miniature storage ring, with a superconducting

  6. CH 3Cl adsorption on a Si(100)2 × 1 surface modified by alkali metal overlayer studied by soft X-ray photoemission using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Gentle, T. M.; Soukiassian, P.; Schuette, K. P.; Bakshi, M. H.; Hurych, Z.

    1988-08-01

    We present the first study of the effect of an alkali metal overlayer on the adsorption of an organic molecule, methylchloride, on a Si(100)2 × 1 surface. In strong contrast to the behavior of molecular oxygen or nitrogen which were found to react with the silicon substrate, there was no significant interaction between methylchloride and silicon, rather, the formation of alkali-chlorine bonds was observed. Core level and valence band spectroscopies using synchrotron radiation were used to study these systems. Sodium was found to exhibit the strongest interaction with mehtylchloride which was dissociated, while the effects produced by K and Cs were weaker.

  7. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    PubMed

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase. PMID:18855420

  8. Microbial biofilm study by synchrotron X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Pennafirme, S.; Lima, I.; Bitencourt, J. A.; Crapez, M. A. C.; Lopes, R. T.

    2015-11-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove's sediment resistant to Zn (II) and Cu (II) at 50 mg L-1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm2 and a 2D map was generated (pixel size 20×20 μm2, counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml-1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL-1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs.

  9. Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2006-01-01

    The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.

  10. X-ray absorption spectroscopy of liquid surface

    NASA Astrophysics Data System (ADS)

    Watanabe, Iwao; Tanida, Hajime; Kawauchi, Sigehiro; Harada, Makoto; Nomura, Masaharu

    1997-09-01

    An apparatus has been constructed for x-ray absorption spectroscopy of elements at air/aqueous solution interface. Its surface sensitivity is gained from glancing incidence of synchrotron radiation under total reflection condition. The absorption is detected by total conversion He ion-yield method. This apparatus was operated at the beam line 7C of Photon Factory, where the incident photon beam comes from a sagittal focus double-crystal monochromator via a 70-cm-long bent mirror. The mirror focuses the beam vertically and changes the beam direction downward by 1 mrad to irradiate solution surface. The essential requirement of this technique, ripple-free liquid surface at accurate position, was attained by introducing a trough on a floating boat, continuous surface level monitoring, and an automatic Z-stage control. The x-ray absorption edge jump demonstrated that surface concentration of bromide ion follows the Langmuir type adsorption for tetraalkylammonuim bromide solution. By comparing the jump values for surface-active and -inactive bromide salt solutions, the detecting depth of the present technique was determined to be 8.8 nm. An extended x-ray absorption fine structure analysis of bromide ion segregated to the surface by stearyltrimethylammonium cation indicated that its solvation structure is different from that of bulk.

  11. Fast synchrotron X-ray tomography study of the rod packing structures

    SciTech Connect

    Zhang Xiaodan; Xia Chengjie; Sun Haohua; Wang Yujie

    2013-06-18

    We present a fast synchrotron X-ray tomography study of the packing structures of rods under tapping. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a tomography scan within several seconds, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. Due to the high-energy nature of the X-ray beam, special image processing steps including image phase-retrieval has been implemented. Overall, this study suggests the possibility of acquiring statistically significant static packing structures within a reasonable time scale using high-intensity X-ray sources.

  12. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil

    SciTech Connect

    Kappen, P.; Arhatari, B. D.; Luu, M. B.; Balaur, E.; Caradoc-Davies, T.

    2013-06-15

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography/diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  13. Time-resolved materials science opportunities using synchrotron x-ray sources

    SciTech Connect

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by {approximately}tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities.

  14. Optoelectronic measurement of x-ray synchrotron pulses: A proof of concept demonstration

    SciTech Connect

    Durbin, Stephen M.; Caffee, Marc; Savikhin, Sergei; Mahmood, Aamer; Dufresne, Eric M.; Wen, Haidan; Li, Yuelin

    2013-02-04

    Optoelectronic detection using photoconductive coplanar stripline devices has been applied to measuring the time profile of x-ray synchrotron pulses, a proof of concept demonstration that may lead to improved time-resolved x-ray studies. Laser sampling of current vs time delay between 12 keV x-ray and 800 nm laser pulses reveal the {approx}50 ps x-ray pulse width convoluted with the {approx}200 ps lifetime of the conduction band carriers. For GaAs implanted with 8 MeV protons, a time profile closer to the x-ray pulse width is observed. The protons create defects over the entire depth sampled by the x-rays, trapping the x-ray excited conduction electrons and minimizing lifetime broadening of the electrical excitation.

  15. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  16. Recent advances in X-ray nanolithography using synchrotron radiation at Super-ACO

    NASA Astrophysics Data System (ADS)

    Rousseaux, F.; Chen, Y.; Haghiri-Gosnet, A. M.; Launois, H.

    1995-02-01

    This paper describes our recent advances in high resolution synchrotron radiation lithography. Fabrication processes of high resolution X-ray masks based on our current {SiC}/{W} technology have been optimized to be compatible with a commercial Karl Süss stepper. As a result, well defined 50 nm wide isolated lines and small gratings of period down to 100 nm have been fabricated and tested in proximity X-ray lithography with the stepper. Replication tests were done with a minimum gap setting down to 5 μm. Results show that proximity X-ray lithography using synchrotron radiation is a viable technology for printing 50 nm linewidth features.

  17. X-ray phase-contrast tomography with a compact laser-driven synchrotron source

    PubMed Central

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D.; Pfeiffer, Franz

    2015-01-01

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced––and more challenging––X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches. PMID:25902493

  18. X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

    PubMed

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

    2015-05-01

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced--and more challenging--X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches. PMID:25902493

  19. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    SciTech Connect

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  20. Development and applications of an epifluorescence module for synchrotron x-ray fluorescence microprobe imaging

    SciTech Connect

    Miller, Lisa M.; Smith, Randy J.; Ruppel, Meghan E.; Ott, Cassandra H.; Lanzirotti, Antonio

    2005-06-15

    Synchrotron x-ray fluorescence (XRF) microprobe is a valuable analysis tool for imaging trace element composition in situ at a resolution of a few microns. Frequently, epifluorescence microscopy is beneficial for identifying the region of interest. To date, combining epifluorescence microscopy with x-ray microprobe has involved analyses with two different microscopes. We report the development of an epifluorescence module that is integrated into a synchrotron XRF microprobe beamline, such that visible fluorescence from a sample can be viewed while collecting x-ray microprobe images simultaneously. This unique combination has been used to identify metal accumulation in Alzheimer's disease plaques and the mineral distribution in geological samples. The flexibility of this accessory permits its use on almost any synchrotron x-ray fluorescence microprobe beamline and applications in many fields of science can benefit from this technology.

  1. X-ray assisted chemical modification of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Pinhero, Patrick Joseph

    Interest in surface photochemistry induced by x-irradiation has received a renaissance with the construction of new synchrotron radiation facilities worldwide. There are three general pathways that a x-ray excited gas-surface system can follow that will lead to reaction. These are: (1) direct excitation, (2) excitation by emitted secondary electrons, and (3) reactions induced by hot electrons at the surface. Two chemical systems are studied in a modified x-ray photoelectron spectrometer (XPS) that allows for reactions to be studied in situ. The systems studied were (1) Nsb2/Si(100) and (2) the SFsb6/Si system. The motivation for studying these two compounds is: they are both relatively inert, i.e. no spontaneous reactions; they both are technologically interesting, possible silicon nitride formation in the case of Nsb2, and SFsb6 is a popular etchant gas in the semiconductor industry; and these two compounds have the potential to exhibit contrasting behavior. Besides its etching qualities, SFsb6 possesses a large x-ray absorption cross section and it has a large electron capture cross section. Both systems are primarily studied by XPS. XPS has the quality of providing quantifiable information about the composition of the surface and details about the chemical environment of each constituent element present. Atomic force microscopy (AFM) is used with the SFsb6 system to observe any structural changes that may occur after reaction. In the Nsb2/Si(100) system, a silicon nitride is formed at very long exposures. This is first observed after 24 hours of simultaneous exposure to Nsb2 and x-irradiation. In the SFsb6 experiments, several subsystems are examined: (1) simultaneous exposure of a Si(100) surface to SFsb6 and x-irradiation at 298K; (2) x-irradiation of a SFsb6 film adsorbed on Si(100) at 100K; (3) simultaneous exposure of a natively oxidized Si surface to SFsb6 and x-rays at 298K; and (4) x-irradiation of a SFsb6 film adsorbed on natively oxidized Si at 100K

  2. Interactions between synchrotron radiation X-ray and biological tissues — theoretical and clinical significance

    PubMed Central

    Chen, Heyu; He, Xin; Sheng, Caibin; Ma, Yingxin; Nie, Hui; Xia, Weiliang; Ying, Weihai

    2011-01-01

    Synchrotron radiation (SR) X-ray has great potential for its applications in both diagnosis and treatment of diseases, due to its characteristic properties including coherence, collimation, monochromaticity, and exceptional brightness. Great advances have been made regarding potential medical applications of SR X-ray in recent years, particularly with the development of the third generation of SR light sources. However, multiple studies have also suggested damaging effects of SR X-ray on biological samples ranging from protein crystals to cells and biological tissues. It has become increasingly important to conduct comprehensive studies on two closely related topics regarding SR X-ray in medical applications: The safety issues regarding the medical applications of SR X-ray and the fundamental mechanisms underlying the interactions between SR X-ray and biological tissues. In this article, we attempted to provide an overview of the literatures regarding these two increasingly significant topics. We also proposed our hypothesis that there are significant differences between the biological tissue-damaging mechanisms of SR X-ray and those of normal X-ray, due to the characteristic properties of SR X-ray such as high dose rate. Future studies are warranted to test this hypothesis, which may profoundly improve our understanding regarding the fundamental mechanisms underlying the interactions between light and matter. These studies would also constitute an essential basis for establishing the safety standard for the medical applications of SR X-ray. PMID:22162780

  3. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Schumann, F.O.

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  4. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients.

    PubMed

    Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2013-08-01

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings. PMID:24007076

  5. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    SciTech Connect

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Raghavan, Seetha; Meid, Carla; Wischek, Janine; Bartsch, Marion; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.

    2013-08-15

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  6. Synchrotron X-ray and optical studies of the DNA-mediated growth of plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wang, Geng; Zhang, Xiaonan; Geng, Heping; Xu, Lifeng; Li, Wenqin; Liu, Xin

    2015-03-01

    Reproducible and controllable growth of nanostructures with well-defined physical and chemical properties is a longstanding problem in nanoscience. A key step to address this issue is to understand their underlying growth mechanism, which is often entangled in the complexity of growth environments and obscured by rapid reaction speeds. Synchrotron x-rays, because of their specific wavelengths (nanometers) and advantages of large flux, high penetration and adjustable photon energy, have a particularly important position in structural and electronic characterizations of nanomaterials. Herein, we demonstrate that the evolution of size, surface morphology, and the optical properties of plasmonic nanostructures could be quantitatively intercepted by dynamic and stoichiometric control of the DNA-mediated growth. By combining synchrotron-based small-angle X-ray scattering with transmission electron microscopy, we reliably obtained quantitative structural parameters for these fine nanostructures that correlate well with their optical properties as identified by UV/Vis absorption and dark-field scattering spectroscopy. We report growth mechanisms for SERS active plasmonic nanostructures, and the remarkable interplay between their morphology and plasmonic properties. Work supported by NNSF of China (11375256) and Sci. and Tech. Commission of Shanghai Municipality (14JC1493300).

  7. Neutron and Synchrotron X-Ray Scattering Studies of Superconductors

    SciTech Connect

    Tranquada,J.M.

    2008-09-01

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented.

  8. 3D-analysis of plant microstructures: advantages and limitations of synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.

    2013-01-01

    Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials

  9. X-ray Synchrotron Radiation in a Plasma Wiggler

    SciTech Connect

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  10. Synthesis of metallic nanoparticles through X-ray radiolysis using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akinobu; Okada, Ikuo; Fukuoka, Takao; Sakurai, Ikuya; Utsumi, Yuichi

    2016-05-01

    The potential to fabricate metallic nanoparticles directly on silicon substrates from liquid solutions is ideal for three-dimensional lithography systems, drug delivery materials, and sensing applications. Here, we report the successful synthesis of Au, Cu, and Fe nanoparticles from the corresponding liquid solutions [gold(I) trisodium disulphite, copper(II) sulfate, and potassium ferricyanide] by synchrotron (SR) X-ray irradiation. The deposition of gold nanoparticles in the gold(I) trisodium disulphite solution was performed by monochromatic X-ray exposure from synchrotron radiation. The use of ethanol as an additive enabled the nucleation and growth of Cu particles, while no Cu particles were produced in the copper sulfate solution without ethanol with polychromatic SR X-ray irradiation. Fe particles were generated by direct polychromatic SR X-ray irradiation. These results demonstrate the behavior of three-dimensional printers, enabling us to build composite material structures with metallic and plastic materials.

  11. International Conference on Surface X-ray and Neutron Scattering (SXNS-11)

    SciTech Connect

    Michael J. Bedzyk

    2011-06-17

    The 11th International Surface X-ray and Neutron Scattering (SXNS) Conference was held on July 13-17, 2010, on the Northwestern University (NU) campus, in Evanston Illinois and hosted by the NU Materials Research Science and Engineering Center. This biennial conference brought together a community of 164 attendees from 16 countries. The field now makes use of a broad range of new experimental capabilities that have been made possible through the development of increasingly brilliant X-ray and neutron sources around the world, including third generation synchrotron sources, neutron reactor and spallation sources, as well as the recent development of X-ray lasers.

  12. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    SciTech Connect

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  13. Fluctuation x-ray scattering from biological particles in frozen solution by using synchrotron radiation.

    PubMed Central

    Kam, Z; Koch, M H; Bordas, J

    1981-01-01

    Determination of the structure of biological particles, randomly oriented in solution, from spatial correlation analysis of fluctuations in x-ray scattering has recently been proposed. The feasibility of scattering fluctuation measurements was evaluated by using an x-ray synchrotron radiation camera to obtain the spatial correlation for a solution of tobacco mosaic virus along a line. The experimental system, analysis of data, and requirements for the determination of structures in solution are discussed using this example. PMID:6943555

  14. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Hao; Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Rosenmann, Daniel; Preissner, Curt; Freeland, John W.; Kersell, Heath; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  15. Comparison of Synchrotron X-Ray Fluorescence Mapping and Micro-XANES to Bulk X-Ray Absorption Spectra in Metal-Contaminated Sediments

    SciTech Connect

    O'Day, P; Carroll, S A; Bajt, S

    2003-01-16

    Synchrotron X-ray absorption spectroscopy (XAS) is one of the few techniques that can supply molecular-scale information for a variety of elements at concentrations relevant to natural systems in non-vacuum conditions. Bulk XAS analysis supplies the dominant chemical bonding mode(s) for a specific element. In complex materials such as natural soils and sediments, however, the dominant mode may not necessarily be the most reactive because changes in speciation at surfaces may results in changes in reactivity. Our previous work at Naval Air Station (NAS) Alameda (CA) focused on in situ metal chemistry in surface and deep sediments, and the impact of metal mobility by sediment oxidation. Estuary sediments at the Alameda Naval Station Air in California have elevated metal concentrations that increase with increasing depth. The metal concentrations in these sediments are: Cd (10-350 ppm), Cr (200-1000 ppm), Cu (100-230 ppm), Pb (200-1200 ppm) and Zn (250-600 ppm). We have extensively characterized these sediments using bulk XAS and other non-synchrotron supporting methods [ 1]. In this experiment, we collected fluorescence element maps using synchrotron X-ray microprobe of unreacted and seawater-oxidized sediment samples from Alameda NAS to determine the spatial distribution and correlation of lead, zinc, and iron. We then compared micro-XANES spectra for lead and zinc collected with the X-ray microprobe to previously collected bulk XANES spectra. The results from our bulk XAS characterization of the sediments showed both oxide and sulfide components for the trace metals. However, the bulk XAS data were not able to identify the composition of the oxide component (i.e. carbonate or hydroxide), nor could absorbed species or solid solutions be definitively identified. Our objective in using micro-XANES and fluorescence element maps was to attempt a more precise identification of metal speciation in or on individual particles.

  16. Report of the second workshop on synchrotron radiation sources for x-ray lithography

    SciTech Connect

    Barton, M.Q.; Craft, B.; Williams, G.P.

    1986-01-01

    The reported workshop is part of an effort to implement a US-based x-ray lithography program. Presentations include designs for three storage rings (one superconducting and two conventional) and an overview of a complete lithography program. The background of the effort described, the need for synchrotron radiation, and the international competition in the area are discussed briefly. The technical feasibility of x-ray lithography is discussed, and synchrotron performance specifications and construction options are given, as well as a near-term plan. It is recommended that a prototype synchrotron source be built as soon as possible, and that a research and development plan on critical technologies which could improve cost effectiveness of the synchrotron source be established. It is further recommended that a small number of second generation prototype synchrotrons be distributed to IC manufacturing centers to expedite commercialization. (LEW)

  17. Microbeam, timing and signal-resolved studies of nuclear materials with synchrotron X-ray sources

    SciTech Connect

    Ice, Gene E; Specht, Eliot D

    2012-01-01

    The development of ultra-brilliant synchrotron X-ray sources enables characterization methods that are particularly important for nuclear materials. Here we discuss emerging synchrotron methods with unprecedented signal-to-noise, spatial and time resolution. Microprobe methods are discussed that extend virtually any X-ray characterization measurement to ultra-small sample volumes. This ability is critical to resolve heterogeneities in nuclear materials and for studies on volumes with vastly lower activity than are needed for traditional X-ray characterization. Specific methods discussed include microdiffraction for the characterization of local crystal structure and micro-spectroscopy techniques that allow for characterization of elemental distributions with sensitivity for daughter products, oxidation states and diffusion through buffer layers. Opportunities are also discussed that exploit the high brilliance and pulsed nature of synchrotron radiation to reduce backgrounds from sample radiation and to study materials dynamics.

  18. Nitride-MBE system for in situ synchrotron X-ray measurements

    NASA Astrophysics Data System (ADS)

    Sasaki, Takuo; Ishikawa, Fumitaro; Yamaguchi, Tomohiro; Takahasi, Masamitu

    2016-05-01

    A molecular beam epitaxy (MBE) chamber dedicated to nitride growth was developed at the synchrotron radiation facility SPring-8. This chamber has two beryllium windows for incident and outgoing X-rays, and is directly connected to an X-ray diffractometer, enabling in situ synchrotron X-ray measurements during the nitride growth. Experimental results on initial growth dynamics in GaN/SiC, AlN/SiC, and InN/GaN heteroepitaxy were presented. We achieved high-speed and high-sensitivity reciprocal space mapping with a thickness resolution of atomic-layer scale. This in situ measurement using the high-brilliance synchrotron light source will be useful for evaluating structural variations in the initial growth stage of nitride semiconductors.

  19. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  20. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K; Weber, F; Dewald, E; Glenzer, S; Landen, O; Turner, R; Waide, P

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  1. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K.M.; Weber, F.A.; Dewald, E.L.; Glenzer, S.H.; Landen, O.L.; Turner, R.E.; Waide, P.A.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  2. X-ray microtomography with monochromatic synchrotron radiation

    SciTech Connect

    D'Amico, K. L.; Deckman, H. W.; Dunsmuir, J. H.; Flannery, B. P.; Roberge, W. G.

    1989-07-01

    We review results obtained with the Exxon Microtomography apparatus. The technique is based on tomographic methods widely used in medicine and nondestructive evaluation. When used with a tunable x-ray source, it is a powerful diagnostic and research tool for a wide variety of materials problems. It is capable of producing maps of the interior structure and chemical composition of samples approximately 0.5--1.0 mm in size, with spatial resolution in the map of the density variations approaching 10.0 /mu/m.

  3. Cell for simultaneous synchrotron radiation X-ray and electrochemical corrosion measurements on cultural heritage metals and other materials.

    PubMed

    Dowsett, Mark G; Adriaens, Annemie

    2006-05-15

    We describe the construction of an electrochemical cell of the Bragg type suitable for in situ synchrotron X-ray measurements on rough, heterogeneous metals such as cultural heritage alloys and simulants with corroding or passivated surfaces. The cell features a working electrode, which may be moved under remote control from a position close to an X-ray window to full immersion in the electrolyte. A pocket of electrolyte in contact with the bulk can be maintained on the working electrode surface at all times. Its thickness (typically 100-200 microm) can be controlled by adjusting the working electrode position and, independently, altering the conformation of the X-ray window with hydrostatic pressure. Alternatively, the electrode may be lowered into the bulk of the electrolyte. Early results from the cell showing a time-resolved study of the reduction of nantokite to cuprite in sodium sesquicarbonate, accompanied by corrosion potential measurements obtained in parallel, are presented here. PMID:16689538

  4. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.

    PubMed

    Zhong, Jun; Zhang, Hui; Sun, Xuhui; Lee, Shuit-Tong

    2014-12-10

    Carbon and silicon materials are two of the most important materials involved in the history of the science and technology development. In the last two decades, C and Si nanoscale materials, e.g., carbon nanotubes, graphene, and silicon nanowires, and quantum dots, have also emerged as the most interesting nanomaterials in nanoscience and nanotechnology for their myriad promising applications such as for electronics, sensors, biotechnology, etc. In particular, carbon and silicon nanostructures are being utilized in energy-related applications such as catalysis, batteries, solar cells, etc., with significant advances. Understanding of the nature of surface and electronic structures of nanostructures plays a key role in the development and improvement of energy conversion and storage nanosystems. Synchrotron soft X-ray absorption spectroscopy (XAS) and related techniques, such as X-ray emission spectroscopy (XES) and scanning transmission X-ray microscopy (STXM), show unique capability in revealing the surface and electronic structures of C and Si nanomaterials. In this review, XAS is demonstrated as a powerful technique for probing chemical bonding, the electronic structure, and the surface chemistry of carbon and silicon nanomaterials, which can greatly enhance the fundamental understanding and also applicability of these nanomaterials in energy applications. The focus is on the unique advantages of XAS as a complementary tool to conventional microscopy and spectroscopy for effectively providing chemical and structural information about carbon and silicon nanostructures. The employment of XAS for in situ, real-time study of property evolution of C and Si nanostructures to elucidate the mechanisms in energy conversion or storage processes is also discussed. PMID:25204894

  5. Evaluation of different synchrotron beamline configurations for X-ray fluorescence analysis of environmental samples.

    PubMed

    Barberie, Sean R; Iceman, Christopher R; Cahill, Catherine F; Cahill, Thomas M

    2014-08-19

    Synchrotron radiation X-ray fluorescence (SR-XRF) is a powerful elemental analysis tool, yet synchrotrons are large, multiuser facilities that are generally not amenable to modification. However, the X-ray beamlines from synchrotrons can be modified by simply including X-ray filters or removing monochromators to improve the SR-XRF analysis. In this study, we evaluated four easily applied beamline configurations for the analysis of three representative environmental samples, namely a thin aerosol sample, an intermediate thickness biological sample, and a thick rare earth mineral specimen. The results showed that the "white beam" configuration, which was simply the full, polychromatic output of the synchrotron, was the optimal configuration for the analysis of thin samples with little mass. The "filtered white beam" configuration removed the lower energy X-rays from the excitation beam so it gave better sensitivity for elements emitting more energetic X-rays. The "filtered white beam-filtered detector" configuration sacrifices the lower energy part of the spectrum (<15 keV) for improved sensitivity in the higher end (∼26 to 48 keV range). The use of a monochromatic beam, which tends to be the standard mode of operation for most SR-XRF analyses reported in the literature, gave the least sensitive analysis. PMID:25025342

  6. Micro-structural characterization of materials using synchrotron hard X-ray imaging techniques

    SciTech Connect

    Agrawal, Ashish Singh, Balwant; Kashyap, Yogesh; Sarkar, P. S.; Shukla, Mayank; Sinha, Amar

    2015-06-24

    X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility.

  7. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter

    SciTech Connect

    Harty, P. D. Ramanathan, G.; Butler, D. J.; Johnston, P. N.; Lye, J. E.; Hall, C. J.; Stevenson, A. W.

    2014-05-15

    Purpose: The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. Methods: The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Results: Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3

  8. Soft X-Ray Spectrometer Using 100-Pixel STJ Detectors for Synchrotron Radiation

    SciTech Connect

    Shiki, Shigetomo; Zen, Nobuyuki; Ukibe, Masahiro; Ohkubo, Masataka

    2009-12-16

    Fluorescent X-ray absorption fine structure (XAFS) is an important tool for material analysis, especially for the measurement of chemical states or local structures of elements. Semiconductor detectors are usually used for separating the fluorescent of elements in question from background fluorescence. However, the semiconductor detectors cannot always discriminate K-lines of light elements and L-lines of various elements as different X-ray peaks at an energy range below about 3 keV. Superconducting tunnel junction (STJ) detectors are promising device for the soft X-ray at synchrotron radiation beam lines because of excellent energy resolution, high detection efficiency, and high counting rate. We are constructing a fluorescent X-ray spectrometer having 100-pixel array of STJs with 200 {mu}m square. The array detector is mounted on a liquid cryogen-free {sup 3}He cryostat. The sensitive area is the largest among the superconducting X-ray spectrometers operating at synchrotron beam lines. Each pixel is connected to a room temperature readout circuit that consists of a charge sensitive amplifier and a pulse height analyzer. The spectrometer will achieve a total solid angle of {approx}0.01 sr and a maximum counting rate of more than 1 M count per second. The present status of developments of our fluorescent X-ray spectrometer was reported.

  9. Diamond for high-heat-load synchrotron x-ray applications

    SciTech Connect

    Lee, Wah-Keat

    1994-12-31

    Synchrotron facilities worldwide provide scientists with useful radiation in the ultraviolet to the x-ray regime. Third-generation synchrotron sources win deliver photon fluxes in the 10{sup 15} photons/s/0.1%BW range, with brilliance on the order of 10{sup 18} photons/s/0.1%BW/mrad{sup 2}/mm{sup 2}. Along with the increase in flux and brilliance is an increase in the power and power densities of the x-ray beam. Depending on the particular insertion device, the x-ray beam can have total power in excess of 10 kW and peak power, density of more than 400 W/mm{sup 2}. Such high heat loads are a major challenge in the design and fabrication of x-ray beamline components. The superior thermal and mechanical properties of diamond make it a good candidate as material in these components. Single crystal diamonds can be used as x-ray monochromators, while polycrystalline or CVD diamonds can be used in a variety of ways on the front-end beamline components. This paper discusses the issues regarding the feasibility of using diamond in third-generation synchrotron beamline components.

  10. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries.

    PubMed

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  11. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    PubMed Central

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  12. Contemporary X-ray electron-density studies using synchrotron radiation

    PubMed Central

    Jørgensen, Mads R. V.; Hathwar, Venkatesha R.; Bindzus, Niels; Wahlberg, Nanna; Chen, Yu-Sheng; Overgaard, Jacob; Iversen, Bo B.

    2014-01-01

    Synchrotron radiation has many compelling advantages over conventional radiation sources in the measurement of accurate Bragg diffraction data. The variable photon energy and much higher flux may help to minimize critical systematic effects such as absorption, extinction and anomalous scattering. Based on a survey of selected published results from the last decade, the benefits of using synchrotron radiation in the determination of X-ray electron densities are discussed, and possible future directions of this field are examined. PMID:25295169

  13. In situ synchrotron X-ray diffraction investigation of the evolution of a PbO₂/PbSO₄ surface layer on a copper electrowinning Pb anode in a novel electrochemical flow cell.

    PubMed

    Clancy, Marie; Styles, Mark J; Bettles, Colleen J; Birbilis, Nick; Chen, Miao; Zhang, Yansheng; Gu, Qinfen; Kimpton, Justin A; Webster, Nathan A S

    2015-03-01

    This paper describes the quantitative measurement, by in situ synchrotron X-ray diffraction (S-XRD) and subsequent Rietveld-based quantitative phase analysis and thickness calculations, of the evolution of the PbO2 and PbSO4 surface layers formed on a pure lead anode under simulated copper electrowinning conditions in a 1.6 M H2SO4 electrolyte at 318 K. This is the first report of a truly in situ S-XRD study of the surface layer evolution on a Pb substrate under cycles of galvanostatic and power interruption conditions, of key interest to the mining, solvent extraction and lead acid battery communities. The design of a novel reflection geometry electrochemical flow cell is also described. The in situ S-XRD results show that β-PbO2 forms immediately on the anode under galvanostatic conditions, and undergoes continued growth until power interruption where it transforms to PbSO4. The kinetics of the β-PbO2 to PbSO4 conversion decrease as the number of cycles increases, whilst the amount of residual PbO2 increases with the number of cycles due to incomplete conversion to PbSO4. Conversely, complete transformation of PbSO4 to β-PbO2 was observed in each cycle. The results of layer thickness calculations demonstrate a significant volume change upon PbSO4 to β-PbO2 transformation. PMID:25723938

  14. Soft X-ray synchrotron radiation investigations of actinidematerials systems utilizing X-ray emission spectroscopy and resonantinelastic X-ray scattering

    SciTech Connect

    Shuh, D.K.; Butorin, S.M.; Guo, J.-H.; Nordgren, J.

    2004-01-03

    Synchrotron radiation (SR) methods have been utilized with increasing frequency over the past several years to study topics in actinide science, ranging from those of a fundamental nature to those that address a specifically-targeted technical need. In particular, the emergence of microspectroscopic and fluorescence-based techniques have permitted investigations of actinide materials at sources of soft x-ray SR. Spectroscopic techniques with fluorescence-based detection are useful for actinide investigations since they are sensitive to small amounts of material and the information sampling depth may be varied. These characteristics also serve to simplify both sample preparation and safety considerations. Examples of investigations using these fluorescence techniques will be described along with their results, as well as the prospects for future investigations utilizing these methodologies.

  15. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    SciTech Connect

    Janssens, K.; Adams, F.; Rivers, M.L.; Jones, K.W.

    1992-10-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ({mu}-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  16. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy

    SciTech Connect

    Janssens, K.; Adams, F. . Dept. of Chemistry); Rivers, M.L.; Jones, K.W. )

    1992-01-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ([mu]-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  17. Biomedical elemental analysis and imaging using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Schidlovsky, G.; Spanne, P.; Dejun, Xue ); Bockman, R.S. ); Saubermann, A.J. . Health Science Center)

    1990-01-01

    The application of synchrotron x-ray microscopy to biomedical research is currently in progress at the Brookhaven National Synchrotron Light Source (NSLS). The current status of the x-ray microscope (XRM) is reviewed from a technical standpoint. Some of the items considered are photon flux, spatial resolution, quantitation, minimum detection limits, and beam-induced specimen damage. Images can be produced by measurement of fluorescent x rays or of the attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation coefficients can be made by scanning the specimen past the beam. Computed microtomography (CMT) can be used for non- destructive images through the specimen in either the emission or absorption mode. Examples of measurements made with the XRM are given.

  18. Initial feasibility study of a dedicated synchrotron radiation light source for ultrafast X-ray science

    SciTech Connect

    Corlett, John N.; DeSantis, S.; Hartman, N.; Heimann, P.; LaFever, R.; Li, D.; Padmore, H.; Rimmer, R.; Robinson, K.; Schoenlein, R.; Tanabe, J.; Wang, S.; Zholents, A.; Kairan, D.

    2001-10-26

    We present an initial feasibility summary of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of < 100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  19. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C.; Vis, R.D.; Sutton, S.R.; Rivers, M.L.; Jones, K.W.; Bowen, D.K.

    1991-12-31

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  20. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C. ); Vis, R.D. ); Sutton, S.R.; Rivers, M.L. ); Jones, K.W. ); Bowen, D.K. )

    1991-01-01

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  1. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  2. CCD (charge-coupled device) sensors in synchrotron x-ray detectors

    SciTech Connect

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.; Zaluzec, N.J.

    1987-01-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron x-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm/sup 2/ can be imaged on a 2 cm/sup 2/ CCD. With a conversion efficiency of approx.1 CCD electron/x-ray photon, a peak saturation capacity of >10/sup 6/ x rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 x 10/sup 6/ pixels/s and the shift rate in the parallel registers is 10/sup 6/ lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode x-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at the rate of approx.1 frame/s or a complete 3-dimensional data set from a single crystal in approx.2 min. 16 refs., 16 figs., 2 tabs.

  3. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    PubMed

    Withers, P J

    2015-03-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  4. Multiple powder diffraction data for an accurate charge density study using synchrotron radiation x-ray

    NASA Astrophysics Data System (ADS)

    Kasai, Hidetaka; Nishibori, Eiji

    2016-04-01

    In recent years multiple synchrotron radiation (SR) powder x-ray diffraction profiles have been successfully applied to advanced structural studies such as an accurate charge density study and a structure determination from powder diffraction. The results have been presented with several examples. Abilities and future prospects have been discussed using state of the art powder diffraction data.

  5. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  6. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGESBeta

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  7. X-ray photonic microsystems for the manipulation of synchrotron light

    SciTech Connect

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.

  8. Phase-contrast X-ray imaging with synchrotron radiation for materials science applications

    NASA Astrophysics Data System (ADS)

    Stevenson, A. W.; Gureyev, T. E.; Paganin, D.; Wilkins, S. W.; Weitkamp, T.; Snigirev, A.; Rau, C.; Snigireva, I.; Youn, H. S.; Dolbnya, I. P.; Yun, W.; Lai, B.; Garrett, R. F.; Cookson, D. J.; Hyodo, K.; Ando, M.

    2003-01-01

    Since Röntgen's discovery of X-rays just over a century ago the vast majority of radiographs have been collected and interpreted on the basis of absorption contrast and geometrical (ray) optics. Recently the possibility of obtaining new and complementary information in X-ray images by utilizing phase-contrast effects has received considerable attention, both in the laboratory context and at synchrotron sources (where much of this activity is a consequence of the highly coherent X-ray beams which can be produced). Phase-contrast X-ray imaging is capable of providing improved information from weakly absorbing features in a sample, together with improved edge definition. Four different experimental arrangements for achieving phase contrast in the hard X-ray regime, for the purpose of non-destructive characterization of materials, will be described. Two of these, demonstrated at ESRF in France and AR in Japan, are based on parallel-beam geometry; the other two, demonstrated at PLS in Korea and APS in USA, are based on spherical-beam geometry. In each case quite different X-ray optical arrangements were used. Some image simulations will be employed to demonstrate salient features of hard X-ray phase-contrast imaging and examples of results from each of the experiments will be shown.

  9. X-ray photonic microsystems for the manipulation of synchrotron light

    DOE PAGESBeta

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractivemore » optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.« less

  10. X-ray photonic microsystems for the manipulation of synchrotron light

    PubMed Central

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-01-01

    Photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing. PMID:25940542

  11. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  12. Real world issues for the new soft x-ray synchrotron sources

    SciTech Connect

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs.

  13. Real time synchrotron x-ray diffraction measurements to determine material strength of shocked single crystals following compression and release

    SciTech Connect

    Turneaure, Stefan J.; Gupta, Y.M.

    2009-09-15

    We present a method to use real time, synchrotron x-ray diffraction measurements to determine the strength of shocked single crystals following compression and release during uniaxial strain loading. Aluminum and copper single crystals shocked along [111] were examined to peak stresses ranging from 2 to 6 GPa. Synchrotron x rays were used to probe the longitudinal lattice strains near the rear free surface (16 and 5 {micro}m depths for Al and Cu, respectively) of the metal crystals following shock compression and release. The 111 diffraction peaks showed broadening indicating a heterogeneous microstructure in the released state. The diffraction peaks also shifted to lower Bragg angles relative to the ambient Bragg angle; the magnitude of the shift increased with increasing impact stress. The Bragg angle shifts and appropriate averaging procedures were used to determine the macroscopic or continuum strength following compression and release. For both crystals, the strengths upon release increased with increasing impact stress and provide a quantitative measure of the strain hardening that occurs in Al(111) and Cu(111) during the shock and release process. Our results for Al(111) are in reasonable agreement with a previous determination based solely on continuum measurements. Two points are noteworthy about the developments presented here: Synchrotron x rays are needed because they provide the resolution required for analyzing the data in the released state; the method presented here can be extended to the shocked state but will require additional measurements.

  14. Synchrotron-based Scattered Radiation from Phantom Materials used in X-ray CT

    SciTech Connect

    Rao, D.; Swapna, M; Cesareo, R; Brunetti, A; Akatsuka, T; Yuasa, T; Takeda, T; Gigante, G

    2010-01-01

    Synchrotron-based scattered radiation form low-contrast phantom materials prepared from polyethylene, polystyrene, nylon, and Plexiglas is used as test objects in X-ray CT was examined with 8, 10 and 12 keV X-rays. These phantom materials of medical interest will contains varying proportions of low atomic number elements. The assessment will allowed us to estimate the fluorescence to total scattered radiation. Detected the fluorescence spectra and the associated scattered radiation from calcium hydroxyapatite phantom with 8, 10 and 12 keV synchrotron X-rays. Samples with Bonefil (60% and 70% of calcium hydroxyapatite) and Bone cream (35-45% of calcium hydroxyapatite), were used. Utilized the X-ray micro-spectroscopy beamline facility, X27A, available at NSLS, BNL, USA. The primary beam with a spot size of the order of {approx}10 {micro}m, has been used for focusing. With this spatial resolution and high flux throuput, the synchrotron-based scattered radiation from the phantom materials were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector.

  15. New possibilities in nanoscale surface structure diagnostics using X-ray standing waves under conditions of continuous resonant X-ray Raman scattering

    NASA Astrophysics Data System (ADS)

    Zel'Tser, I. A.; Kukushkin, S. A.; Moos, E. N.

    2008-07-01

    The main principles, new possibilities, and instrumental implementations of a structure-sensitive spectroscopy of the surface of condensed media probed by X-ray standing waves (XSWs) are considered in the case of electron emission under the action of continuous resonant X-ray Raman scattering. It is shown that prospects for the development and use of the new possibilities offered by the XSW method for surface investigations are related to the creation of a set of specific experimental equipment and special sources of synchrotron radiation.

  16. Dosimetry of Microdistributed Dose-Enhancing Agents in X-ray Synchrotron Binary Therapy

    NASA Astrophysics Data System (ADS)

    Hugtenburg, Richard P.

    2010-07-01

    Monte Carlo based modelling of the dose distribution in the vicinity of concentrates of iodine (I) and gold (Au) binary radiotherapy agents has been performed for monochromatised synchrotron X-rays. While the KERMA approximation, which ignores electron transport, is often acceptable for kilovoltage X-ray dosimetry in X-ray binary therapy, the range of photoelectrons and Auger electrons may be significant when compared to the microdostributed structure of the binary compound in which case corrections to the approximation may be necessary. Dose is calculated using EGSnrc for microdistributions associated with X-ray radiation synovecotomy, where iodine is taken up in the synovial lining. Dose as a function of the volume of aggregation for an Au-based contrast agent such as Au nanoparticles, ranging in diameter from 5 micron to 100 micron, were calculated using EGSnrc and Penelope, showing that the dose varies slowly for 90 keV X-rays, where much of the dose delivered by short range photoelectrons while 80 keV X-rays, just below the K-edge of Au (80.729 keV) increases linearly with diameter. In general the dose varies slowly as a function of volume suggesting that only small corrections will be needed to account for effects due to the failure of electronic equilibrium.

  17. Dosimetry of Microdistributed Dose-Enhancing Agents in X-ray Synchrotron Binary Therapy

    SciTech Connect

    Hugtenburg, Richard P.

    2010-07-23

    Monte Carlo based modelling of the dose distribution in the vicinity of concentrates of iodine (I) and gold (Au) binary radiotherapy agents has been performed for monochromatised synchrotron X-rays. While the KERMA approximation, which ignores electron transport, is often acceptable for kilovoltage X-ray dosimetry in X-ray binary therapy, the range of photoelectrons and Auger electrons may be significant when compared to the microdostributed structure of the binary compound in which case corrections to the approximation may be necessary. Dose is calculated using EGSnrc for microdistributions associated with X-ray radiation synovecotomy, where iodine is taken up in the synovial lining. Dose as a function of the volume of aggregation for an Au-based contrast agent such as Au nanoparticles, ranging in diameter from 5 micron to 100 micron, were calculated using EGSnrc and Penelope, showing that the dose varies slowly for 90 keV X-rays, where much of the dose delivered by short range photoelectrons while 80 keV X-rays, just below the K-edge of Au (80.729 keV) increases linearly with diameter. In general the dose varies slowly as a function of volume suggesting that only small corrections will be needed to account for effects due to the failure of electronic equilibrium.

  18. Dynamics of barite growth in porous media quantified by in situ synchrotron X-ray tomography

    NASA Astrophysics Data System (ADS)

    Godinho, jose; Gerke, kirill

    2016-04-01

    Current models used to formulate mineral sequestration strategies of dissolved contaminants in the bedrock often neglect the effect of confinement and the variation of reactive surface area with time. In this work, in situ synchrotron X-ray micro-tomography is used to quantify barite growth rates in a micro-porous structure as a function of time during 13.5 hours with a resolution of 1 μm. Additionally, the 3D porous network at different time frames are used to simulate the flow velocities and calculate the permeability evolution during the experiment. The kinetics of barite growth under porous confinement is compared with the kinetics of barite growth on free surfaces in the same fluid composition. Results are discussed in terms of surface area normalization and the evolution of flow velocities as crystals fill the porous structure. During the initial hours the growth rate measured in porous media is similar to the growth rate on free surfaces. However, as the thinner flow paths clog the growth rate progressively decreases, which is correlated to a decrease of local flow velocity. The largest pores remain open, enabling growth to continue throughout the structure. Quantifying the dynamics of mineral precipitation kinetics in situ in 4D, has revealed the importance of using a time dependent reactive surface area and accounting for the local properties of the porous network, when formulating predictive models of mineral precipitation in porous media.

  19. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Sun, Haohua; Kou, Bingquan; Xi, Yan; Qi, Juncheng; Sun, Jianqi; Mohr, Jürgen; Börner, Martin; Zhao, Jun; Xu, Lisa X.; Xiao, Tiqiao; Wang, Yujie

    2012-07-01

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  20. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    DOE PAGESBeta

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  1. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    SciTech Connect

    Sun Haohua; Kou Bingquan; Xi Yan; Qi Juncheng; Sun Jianqi; Mohr, Juergen; Boerner, Martin; Zhao Jun; Xu, Lisa X.; Xiao Tiqiao; Wang Yujie

    2012-07-31

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  2. Synchrotron-based X-ray computed tomography during compression loading of cellular materials

    SciTech Connect

    Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; Williams, Jason J.; Xiao, Xianghui; Robinson, Mathew W. C.; Schaedler, Tobias A.; Chawla, Nikhilesh; Patterson, Brian M.

    2015-04-29

    Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.

  3. X-Ray Synchrotron-emitting Fe-rich Ejecta in Supernova Remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Dyer, Kristy K.; Borkowski, Kazimierz J.; Reynolds, Stephen P.

    2002-12-01

    Supernova remnants may exhibit both thermal and nonthermal X-ray emission. In a previous study with ASCA data, we found that the middle-aged supernova remnant RCW 86 showed evidence for both processes, and we predicted that observations with much higher spatial resolution would distinguish harder X-rays, which we proposed were primarily synchrotron emission, from softer, thermal X-rays. Here we describe Chandra observations that amply confirm our predictions. Striking differences in the morphology of X-rays below 1 keV and above 2 keV point to a different physical origin. Hard X-ray emission is correlated fairly well with the edges of regions of radio emission, suggesting that these are the locations of shock waves at which both short-lived X-ray-emitting electrons and longer lived radio-emitting electrons are accelerated. Soft X-rays are spatially well correlated with optical emission from nonradiative shocks, which are almost certainly portions of the outer blast wave. These soft X-rays are well fitted with simple thermal plane-shock models. Harder X-rays show Fe Kα emission and are well described with a similar soft thermal component, but a much stronger synchrotron continuum dominating above 2 keV, and a strong Fe Kα line. Quantitative analysis of this line and the surrounding continuum shows that it cannot be produced by thermal emission from a cosmic-abundance plasma; the ionization time is too short, as shown by both the low centroid energy (6.4 keV) and the absence of oxygen lines below 1 keV. Instead, a model of a plane shock in Fe-rich ejecta, with a synchrotron continuum, provides a natural explanation. This requires that reverse shocks in ejecta be accelerating electrons to energies of order 50 TeV. We show that maximum energies of this order can be produced by radiation-limited diffusive shock acceleration at the reverse shocks. In the Appendix, we demonstrate that an explanation of the continuum as being due to nonthermal bremsstrahlung is unlikely.

  4. Hard-X-ray magnetic microscopy and local magnetization analysis using synchrotron radiation.

    PubMed

    Suzuki, Motohiro

    2014-11-01

    X-ray measurement offers several useful features that are unavailable from other microscopic means including electron-based techniques. By using X-rays, one can observe the internal parts of a thick sample. This technique basically requires no high vacuum environment such that measurements are feasible for wet specimens as well as under strong electric and magnetic fields and even at a high pressure. X-ray spectroscopy using core excitation provides element-selectivity with significant sensitivities to the chemical states and atomic magnetic moments in the matter. Synchrotron radiation sources produce a small and low-divergent X-ray beam, which can be converged to a spot with the size of a micrometer or less using X-ray focusing optics. The recent development in the focusing optics has been driving X-ray microscopy, which has already gone into the era of X-ray nanoscopy. With the use of the most sophisticated focusing devices, an X-ray beam of 7-nm size has successfully been achieved [1]. X-ray microscopy maintains above-mentioned unique features of X-ray technique, being a perfect complement to electron microscopy.In this paper, we present recent studies on magnetic microscopy and local magnetic analysis using hard X-rays. The relevant instrumentation developments are also described. The X-ray nanospectroscopy station of BL39XU at SPring-8 is equipped with a focusing optics consisting of two elliptic mirrors, and a focused X-ray beam with the size of 100 × 100 nm(2) is available [2]. Researchers can perform X-ray absorption spectroscopy: nano-XAFS (X-ray absorption fine structure) using the X-ray beam as small as 100 nm. The available X-ray energy is from 5 to 16 keV, which allows nano-XAFS study at the K edges of 3d transition metals, L edges of rare-earth elements and 5d noble metals. Another useful capability of the nanoprobe is X-ray polarization tunability, enabling magnetic circular dichroism (XMCD) spectroscopy with a sub-micrometer resolution. Scanning

  5. Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption

    PubMed Central

    Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang

    2015-01-01

    Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412

  6. Energy dispersive X-ray diffraction in the diamond anvil, high-pressure apparatus - Comparison of synchrotron and conventional X-ray sources

    NASA Technical Reports Server (NTRS)

    Spain, I. L.; Black, D. R.

    1985-01-01

    The use of both conventional fixed-anode X-ray sources and synchrotron radiation to carry out energy-dispersive X-ray diffraction experiments at high pressure in a diamond anvil cell, is discussed. The photon flux at the sample and at the detector for the two cases are compared and the results are presented in graphs. It is shown that synchrotron radiation experiments can be performed with nearly two orders of magnitude increase in data rate if superior detectors and detector electronics are available.

  7. Inclined-incidence quasi-Fresnel lens for prefocusing of synchrotron radiation x-ray beams

    SciTech Connect

    Kagoshima, Yasushi; Takano, Hidekazu; Takeda, Shingo

    2012-10-15

    An inclined-incidence quasi-Fresnel lens made of acrylic resin has been developed for prefocusing in synchrotron radiation x-ray beamlines. By inclining the lens, the grating aspect ratio is large enough for x-ray use. As it operates in transmission mode with negligible beam deflection and offset, little additional equipment is needed to introduce it into existing beamlines. It is fabricated by sheet-press forming, enabling inexpensive mass production. The prototype was able to focus a 730-{mu}m-wide beam to a width of 80 {mu}m with a photon flux density gain of 5.6 at an x-ray energy of 10 keV.

  8. Inclined-incidence quasi-Fresnel lens for prefocusing of synchrotron radiation x-ray beams

    NASA Astrophysics Data System (ADS)

    Kagoshima, Yasushi; Takano, Hidekazu; Takeda, Shingo

    2012-10-01

    An inclined-incidence quasi-Fresnel lens made of acrylic resin has been developed for prefocusing in synchrotron radiation x-ray beamlines. By inclining the lens, the grating aspect ratio is large enough for x-ray use. As it operates in transmission mode with negligible beam deflection and offset, little additional equipment is needed to introduce it into existing beamlines. It is fabricated by sheet-press forming, enabling inexpensive mass production. The prototype was able to focus a 730-μm-wide beam to a width of 80 μm with a photon flux density gain of 5.6 at an x-ray energy of 10 keV.

  9. Concentration of synchrotron beams by means of monolithic polycapillary x-ray optics

    SciTech Connect

    Ullrich, J.B.; Klotzko, I.L. |; Huang, K.G.; Owens, S.M.; Aloisi, D.C.; Hofmann, F.A.; Gao, N.; Gibson, W.M.

    1995-08-01

    Capillary Optics have proven to be a valuable tool for concentrating synchrotron radiation. Single tapered capillaries are used at several facilities. However, most of these optics collect only over a small area. this can be overcome by using larger capillary structures. Polycapillary optics can deflect x-rays by larger angles than other x-ray optics that use only one or two reflections. Conventional x-ray optics that achieve similar deflections, are much more energy selective than capillaries. Therefore, capillaries achieve very short focal distances for a wide range of energies. The measurements shown here represent first tests performed with polycapillaries of large input diameter. The performance with respect to transmission efficiency and spot size was evaluated for a set of four very different prototypes. It is shown that a significant gain may be achieved if a spot size of the order of 0.1 mm is required. Further, some characteristics of the different optics are discussed.

  10. Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications

    SciTech Connect

    Bilderback, Donald H.; Kazimirov, Alexander; Gillilan, Richard; Cornaby, Sterling; Woll, Arthur; Zha, Chang-Sheng; Huang Rong

    2007-01-19

    A number of synchrotron x-ray applications such as powder diffraction in diamond anvil cells, microbeam protein crystallography, x-ray fluorescence imaging, etc. can benefit from using hollow glass monocapillary optics to improve the flux per square micron on a sample. We currently draw glass tubing into the desired elliptical shape so that only one-bounce under total reflection conditions is needed to bring the x-ray beam to a focus at a 25 to 50 mm distance beyond the capillary tip. For modest focal spot sizes of 10 to 20 microns, we can increase the intensity per square micron by factors of 10 to 1000. We show some of the results obtained at CHESS and Hasylab with capillaries focusing 5 to 40 keV radiation, their properties, and how even better the experimental results could be if more ideal capillaries were fabricated in the future.

  11. Diamond monochromator for high heat flux synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1993-01-28

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond monochromator system. In this paper, we consider various aspects, advantages and disadvantages, and promises and pitfalls of such a system and evaluate the comparative performance of a diamond monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of a diamond-based monochromator is within present technical means.

  12. Diamond monochromator for high heat flux synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1992-12-01

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond mollochromator system. In this Paper, we consider various aspects, advantage and disadvantages, and promises and pitfalls of such a system and evaluate the comparative an monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of diamond-based monochromator is within present technical means.

  13. Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications

    NASA Astrophysics Data System (ADS)

    Bilderback, Donald H.; Kazimirov, Alexander; Gillilan, Richard; Cornaby, Sterling; Woll, Arthur; Zha, Chang-Sheng; Huang, Rong

    2007-01-01

    A number of synchrotron x-ray applications such as powder diffraction in diamond anvil cells, microbeam protein crystallography, x-ray fluorescence imaging, etc. can benefit from using hollow glass monocapillary optics to improve the flux per square micron on a sample. We currently draw glass tubing into the desired elliptical shape so that only one-bounce under total reflection conditions is needed to bring the x-ray beam to a focus at a 25 to 50 mm distance beyond the capillary tip. For modest focal spot sizes of 10 to 20 microns, we can increase the intensity per square micron by factors of 10 to 1000. We show some of the results obtained at CHESS and Hasylab with capillaries focusing 5 to 40 keV radiation, their properties, and how even better the experimental results could be if more ideal capillaries were fabricated in the future.

  14. Nanoscale chemical imaging using synchrotron x-ray enhanced scanning tunneling microscopy

    SciTech Connect

    Rose, Volker; Freeland, John W.

    2010-06-23

    The combination of synchrotron radiation with scanning tunneling microscopy provides a promising new concept for chemical imaging of nanoscale structures. It employs detection of local x-ray absorption, which directly yields chemical, electronic, and magnetic sensitivity. The study of the tip current in the far field (800 nm tip/sample separation) shows that insulator-coated tips have to be considered in order to reduce the background from stray photoelectron. A picture of the different channels contributing to the x-ray enhanced STM process is proposed. If during electron tunneling the sample is illuminated with monochromatic x-rays, characteristic absorption will arise, and core electrons are excited, which might modulate the conventional tunnel current and facilitate chemical imaging at the nanoscale.

  15. In-situ observations of catalytic surface reactions with soft x-rays under working conditions

    NASA Astrophysics Data System (ADS)

    Toyoshima, Ryo; Kondoh, Hiroshi

    2015-03-01

    Catalytic chemical reactions proceeding on solid surfaces are an important topic in fundamental science and industrial technologies such as energy conversion, pollution control and chemical synthesis. Complete understanding of the heterogeneous catalysis and improving its efficiency to an ultimate level are the eventual goals for many surface scientists. Soft x-ray is one of the prime probes to observe electronic and structural information of the target materials. Most studies in surface science using soft x-rays have been performed under ultra-high vacuum conditions due to the technical limitation, though the practical catalytic reactions proceed under ambient pressure conditions. However, recent developments of soft x-ray based techniques operating under ambient pressure conditions have opened a door to the in-situ observation of materials under realistic environments. The near-ambient-pressure x-ray photoelectron spectroscopy (NAP-XPS) using synchrotron radiation enables us to observe the chemical states of surfaces of condensed matters under the presence of gas(es) at elevated pressures, which has been hardly conducted with the conventional XPS technique. Furthermore, not only the NAP-XPS but also ambient-pressure compatible soft x-ray core-level spectroscopies, such as near-edge absorption fine structure (NEXAFS) and x-ray emission spectroscopy (XES), have been significantly contributing to the in-situ observations. In this review, first we introduce recent developments of in-situ observations using soft x-ray techniques and current status. Then we present recent new findings on catalytically active surfaces using soft x-ray techniques, particularly focusing on the NAP-XPS technique. Finally we give a perspective on the future direction of this emerging technique.

  16. Fast response amplitude scintillation detector for X-ray synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Dementyev, E. N.; Sheromov, M. A.; Sokolov, A. S.

    1986-05-01

    The present paper describes a scintillation detector for X-ray synchrotron radiation. This detector has been created on the basis of a scintillator and a photoelectron multiplier (FEU-130) and its construction allows one to use the specific features of the time characteristics of synchrotron radiation from the electron storage ring. In a given range of amplitudes, the detector electronics makes a 64-channel amplitude analysis of the FEU-130 signal strobed by the revolution frequency of an electron bunch in the storage ring ( f0 = 818 kHz). There is the possibility of operating the detector at high intensities of the monochromatic radiation incident on the scintillator. Such a possibility is directly provided by the time structure of SR and is not realizable with the use of other X-ray sources. The detector will find wide application in studies on X-ray structural analysis, transmission and fluorescent EXAFS- and XANES-spectroscopy, transmission scanning microscopy and microtomography, calibration of X-ray detectors and as a monitor on SR beams from the storage ring VEPP-4.

  17. Image Alignment for Tomography Reconstruction from Synchrotron X-Ray Microscopic Images

    PubMed Central

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the “projected feature points” in the sequence of images. The matched projected feature points in the - plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx. PMID:24416264

  18. High resolution hard x-ray microscope on a second generation synchrotron source

    SciTech Connect

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-10-15

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  19. High resolution hard x-ray microscope on a second generation synchrotron source.

    PubMed

    Tian, Yangchao; Li, Wenjie; Chen, Jie; Liu, Longhua; Liu, Gang; Tkachuk, Andrei; Tian, Jinping; Xiong, Ying; Gelb, Jeff; Hsu, George; Yun, Wenbing

    2008-10-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed. PMID:19044720

  20. High resolution hard x-ray microscope on a second generation synchrotron source

    NASA Astrophysics Data System (ADS)

    Tian, Yangchao; Li, Wenjie; Chen, Jie; Liu, Longhua; Liu, Gang; Tkachuk, Andrei; Tian, Jinping; Xiong, Ying; Gelb, Jeff; Hsu, George; Yun, Wenbing

    2008-10-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  1. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    SciTech Connect

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Astolfo, Alberto; Menk, Ralf-Hendrik; Juurlink, Bernhard H. J.

    2010-07-23

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  2. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Menk, Ralf-Hendrik; Astolfo, Alberto; Juurlink, Bernhard H. J.

    2010-07-01

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  3. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    PubMed

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx. PMID:24416264

  4. Apparatus and Techniques for Time-resolved Synchrotron X-ray Diffraction using Diamond Anvil Cells

    NASA Astrophysics Data System (ADS)

    Smith, J.; Sinogeikin, S. V.; Lin, C.; Rod, E.; Bai, L.; Shen, G.

    2015-12-01

    Complementary advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have recently made possible many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. Herein we present key aspects of the synchrotron beamline and ancillary equipment, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

  5. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  6. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  7. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  8. Tracing X-rays through an L-shaped laterally graded multilayer mirror: a synchrotron application.

    PubMed

    Honnicke, Marcelo Goncalves; Huang, Xianrong; Keister, Jeffrey W; Kodituwakku, Chaminda Nalaka; Cai, Yong Q

    2010-05-01

    A theoretical model to trace X-rays through an L-shaped (nested or Montel Kirkpatrick-Baez mirrors) laterally graded multilayer mirror to be used in a synchrotron application is presented. The model includes source parameters (size and divergence), mirror figure (parabolic and elliptic), multilayer parameters (reflectivity, which depends on layer material, thickness and number of layers) and figure errors (slope error, roughness, layer thickness fluctuation Deltad/d and imperfection in the corners). The model was implemented through MATLAB/OCTAVE scripts, and was employed to study the performance of a multilayer mirror designed for the analyzer system of an ultrahigh-resolution inelastic X-ray scattering spectrometer at National Synchrotron Light Source II. The results are presented and discussed. PMID:20400833

  9. Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions

    SciTech Connect

    Kemner, Kenneth M.; O'Loughlin, Edward J.; Kelly, Shelly D.; Boyanov, Maxim I.

    2008-06-06

    Interactions between microbes and minerals can play an important role in metal transformations (i.e. changes to an element's valence state, coordination chemistry, or both), which can ultimately affect that element's mobility. Mineralogy affects microbial metabolism and ecology in a system; microbes, in turn, can affect the system's mineralogy. Increasingly, synchrotron-based X-ray experiments are in routine use for determining an element's valence state and coordination chemistry, as well as for examining the role of microbes in metal transformations.

  10. Synchrotron X-ray and ab initio studies of beta-Si3N4.

    PubMed

    du Boulay, D; Ishizawa, N; Atake, T; Streltsov, V; Furuya, K; Munakata, F

    2004-08-01

    Almost absorption- and extinction-free single-crystal synchrotron X-ray diffraction data were measured at 150, 200 and 295 K for beta-Si3N4, silicon nitride, at a wavelength of 0.7 A. The true symmetry of this material has been the subject of minor controversy for several decades. No compelling evidence favouring the low-symmetry P6(3) model was identified in this study. PMID:15258397

  11. Applications of synchrotron x-ray fluorescence microprobe techniques to photochromic materials

    SciTech Connect

    Perry, D.L.

    1996-12-31

    Applications of synchrotron x-ray fluorescence microprobe techniques to photochromic materials are presented regarding dopant metal ions in the crystal matrices. Types of samples that are amenable to the technique will be discussed, along with sample format and experimental conditions. The chemical information that one can obtain from samples will be presented, and examples of copant contaminant studies in crystals will be given. New types of samples that are possible to study using this technique will be presented.

  12. A tunable wedge-shaped absorber for hard X-ray synchrotron applications.

    PubMed

    Krywka, C; Brix, M; Müller, M

    2014-07-01

    The concept of a concave aluminium wedge-shaped absorber for hard X-ray synchrotron beamlines is presented. Unlike the commonly used absorber types (fixed-thickness absorber sheets or binary exchangers of individual fixed absorbers), this concept allows a compact system, controlled with a single linear positioner, and provides a wide attenuation range as well as a precise tunability over a large energy range. Data were recorded at the Nanofocus Endstation of the MINAXS beamline, PETRA III, Hamburg, Germany. PMID:24971979

  13. Characterization of Nano and Mesoscale Deformation Structures with Intense X-ray Synchrotron Sources

    SciTech Connect

    Ice, G.E.; Barabash, R.I.; Walker, F.J.

    2010-07-19

    Advanced polychromatic microdiffraction is sensitive to the organization of dislocations and other defects that rotate the lattice planes. Using ultra-brilliant third-generation synchrotron sources and non-dispersive X-ray focusing optics, it is now possible to analyze individual dislocation cells and walls at a submicron scale that cannot be probed by traditional methods. The method is applied to an Ir weld sample to illustrate how microdiffraction can be used to determine the locally active dislocation system.

  14. Formation of secondary porosity in 4D Synchrotron X-ray tomography experiments

    NASA Astrophysics Data System (ADS)

    Fusseis, Florian; Liu, Jie; de Carlo, Francesco; Regenauer-Lieb, Klaus; Schrank, Christoph; Hough, Robert; Gessner, Klaus; Llana-Fúnez, Sergio; Faulkner, Dan; Wheeler, John

    2010-05-01

    Synchrotron X-ray tomography at the Advanced Photon Source (APS) allows to investigate secondary porosity in three dimensions on the nano- to microscale. We utilised the key advantage of the technique, the rapid data acquisition time (seconds to about half an hour/data set), to study the formation of porosity in natural rock samples in real time (4D). The spacious instrument setup in the experimental hutch allowed us to install an X-ray transparent furnace to heat millimetre-sized samples up to 230 °C (>400 °C in the next generation) in the X-ray beam. We focused on two porosity-generating mechanisms: thermal expansion cracking in Westerly granite and dehydration (volume loss/hydraulic fracturing) of Volterra gypsum. The spatial resolution was 1.3 micron in both experiments. We heated a 2mm diameter cylinder of Westerly Granite stepwise from 50 °C to 230 °C and then quenched it to investigate the effects of thermal expansion cracking on the three-dimensional porosity architecture. The sample was scanned after increasing the temperature in 10 °C steps to record the cracks formed during each heating interval. Preliminary analysis of the heterogeneous 4D displacement fields proved that the approach works well. We documented the opening and closing as well as interconnection of grain boundary- and intragranular cracks. A full quantification is currently under way. This experiment also serves to benchmark numerical simulations of thermal cracking that will be used to upscale the permeability evolution during heating (see abstract of Schrank et al.). A second heating experiment aimed at documenting the fluid escape pathways during the dehydration of gypsum to bassanite. We heated a gypsum sample to 115 °C for increasing periods of time. The reaction progress was directly observed in two-dimensional tomographic projections, 3D tomographic datasets were collected during cooling at 50 °C in between the heating intervals. The experiment demonstrated how a permeable

  15. Tracking picosecond molecular dynamics in solution using a suite of synchrotron-x-ray spectroscopic tools

    NASA Astrophysics Data System (ADS)

    March, Anne Marie; Doumy, Gilles; Kanter, Elliot P.; Lehmann, Stefan; Moonshiram, Dooshaye; Southworth, Stephen H.; Young, Linda; Assefa, Tadesse A.; Bressler, Christian; Gawelda, Wojciech; Németh, Zoltán; Vankó, György

    2015-03-01

    Laser-pump, X-ray-probe techniques are powerful tools for exploring molecular structural changes that occur in complex environments such as solutions, during a photo-initiated reaction. We are developing such methods using hard x-rays from the Advanced Photon Source, combining x-ray emission spectroscopy and x-ray absorption spectroscopy as probes of electronic and geometric structure and using high-power, MHz lasers as pumps. The high-duty-cycle pump-probe measurements efficiently utilize the synchrotron x-ray flux and enable high-fidelity measurements of the structures of transient intermediates. We present measurements on the model system [Fe(II)(CN)6]4- (ferrocyanide) in an aqueous solution after excitation with 355 nm and 266 nm laser light. The system undergoes two wavelength dependent reactions: photooxidation and photoaquation. Iron K-edge absorption spectra were obtained along with iron emission spectra. Our data support the presence of a previously unobserved pentacoordinated intermediate species in the photoaquation reaction. Its lifetime has been measured to be 4.6 ns and details of its structure will be discussed. The work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.

  16. Synchrotron X-ray muprobe and its application to human hair analysis

    NASA Astrophysics Data System (ADS)

    Iida, Atsuo; Noma, Takashi

    1993-07-01

    A synchrotron X-ray muprobe system based on Kirkpatrick-Baez optics has been developed. Double-crystal and synthetic multilayer monochromators are used for high energy resolution experiments and for highly sensitive X-ray fluorescence analysis, respectively. The characteristics of the X-ray muprobe were experimentally examined. A beam size of around 5 μm was obtained; the X-ray photon flux at the storage ring current of 300 mA is of the order of 10 7-8 photons/s and 10 9-10 photons/s for the double-crystal and multilayer monochromators, respectively. The concentration distributions of trace elements in cross sections of human hair were measured using an X-ray mubeam with the multilayer monochromator. Inhomogeneous distributions of trace elements in thin cross-section samples show that two-dimensional imaging is effective and indispensable both for the determination of the elemental concentration in hair and for investigating the incorporation mechanism of trace elements into hair from the body.

  17. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Spanne, P. ); Rivers, M.L.; Sutton, S.R. )

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs.

  18. Synchrotron based X-ray fluorescence activities at Indus-2: An overview

    SciTech Connect

    Tiwari, M. K.

    2014-04-24

    X-Ray fluorescence (XRF) spectrometry is a powerful non-destructive technique for elemental analysis of materials at bulk and trace concentration levels. Taking into consideration several advantages of the synchrotron based XRF technique and to fulfill the requirements of Indian universities users we have setup a microfocus XRF beamline (BL-16) on Indus-2 synchrotron light source. The beamline offers a wide range of usages – both from research laboratories and industries; and for researchers working in diverse fields. A brief overview of the measured performance of the beamline, design specifications including various attractive features and recent research activities carried out on the BL-16 beamline are presented.

  19. POLARIZATION STUDIES OF CdZnTe DETECTORS USING SYNCHROTRON X-RAY RADIATION.

    SciTech Connect

    CAMARDA,G.S.; BOLOTNIKOV, A.E.; CUI, Y.; HOSSAIN, A.; JAMES, R.B.

    2007-07-01

    New results on the effects of small-scale defects on the charge-carrier transport in single-crystal CdZnTe (CZT) material were produced. We conducted detailed studies of the role of Te inclusions in CZT by employing a highly collimated synchrotron x-ray radiation source available at Brookhaven's National Synchrotron Light Source (NSLS). We were able to induce polarization effects by irradiating specific areas with the detector. These measurements allowed the first quantitative comparison between areas that are free of Te inclusions and those with a relatively high concentration of inclusions. The results of these polaration studies will be reported.

  20. A setup for synchrotron-radiation-induced total reflection X-ray fluorescence and X-ray absorption near-edge structure recently commissioned at BESSY II BAMline.

    PubMed

    Fittschen, U; Guilherme, A; Böttger, S; Rosenberg, D; Menzel, M; Jansen, W; Busker, M; Gotlib, Z P; Radtke, M; Riesemeier, H; Wobrauschek, P; Streli, C

    2016-05-01

    An automatic sample changer chamber for total reflection X-ray fluorescence (TXRF) and X-ray absorption near-edge structure (XANES) analysis in TXRF geometry was successfully set up at the BAMline at BESSY II. TXRF and TXRF-XANES are valuable tools for elemental determination and speciation, especially where sample amounts are limited (<1 mg) and concentrations are low (ng ml(-1) to µg ml(-1)). TXRF requires a well defined geometry regarding the reflecting surface of a sample carrier and the synchrotron beam. The newly installed chamber allows for reliable sample positioning, remote sample changing and evacuation of the fluorescence beam path. The chamber was successfully used showing accurate determination of elemental amounts in the certified reference material NIST water 1640. Low limits of detection of less than 100 fg absolute (10 pg ml(-1)) for Ni were found. TXRF-XANES on different Re species was applied. An unknown species of Re was found to be Re in the +7 oxidation state. PMID:27140163

  1. Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials.

    PubMed

    Liu, Xiaosong; Yang, Wanli; Liu, Zhi

    2014-12-10

    Soft X-ray spectroscopy (SXS) techniques such as photoelectron spectroscopy, soft X-ray absorption spectroscopy and X-ray emission spectroscopy are efficient and direct tools to probe electronic structures of materials. Traditionally, these surface sensitive soft X-ray techniques that detect electrons or photons require high vacuum to operate. Many recent in situ instrument developments of these techniques have overcome this vacuum barrier. One can now study many materials and model devices under near ambient, semi-realistic, and operando conditions. Further developments of integrating the realistic sample environments with efficient and high resolution detection methods, particularly at the high brightness synchrotron light sources, are making SXS an important tool for the energy research community. In this progress report, we briefly describe the basic concept of several SXS techniques and discuss recent development of SXS instruments. We then present several recent studies, mostly in situ SXS experiments, on energy materials and devices. Using these studies, we would like to highlight that the integration of SXS and in situ environments can provide in-depth insight of material's functionality and help researchers in new energy material developments. The remaining challenges and critical research directions are discussed at the end. PMID:24799004

  2. Tetrameric assembly of full-sequence protein zero myelin glycoprotein by synchrotron x-ray scattering.

    PubMed Central

    Inouye, H; Tsuruta, H; Sedzik, J; Uyemura, K; Kirschner, D A

    1999-01-01

    Highly purified myelin P0 glycoprotein was solubilized to 1-8 mg/ml in 0.1% sodium dodecyl sulfate (SDS), and the solution structure of the P0 assembly was studied using synchrotron x-ray scattering. The full-length P0, which was isolated from bovine intradural roots, included both the extracellular and cytoplasmic domains of the molecule. At the higher concentrations (4, 6, and 8 mg/ml, respectively), an x-ray intensity maximum was observed at 316 A, 245 A, and 240 A Bragg spacing. Because the position of this intensity depended on P0 concentration, it is most likely due to interparticle interference. By contrast, the position of a second intensity maximum, which was at approximately 40 A Bragg spacing, was invariant with P0 concentration. This latter intensity was accounted for by monodispersed, 80 A-diameter particles that are composed of eight, approximately 30 A-diameter spheres. Chemical parameters suggest that the 80 A particles correspond to the size of a tetramer of P0 molecules. Therefore, the approximately 30 A spheres would correspond to the sizes of the extracellular and cytoplasmic domains for each of the P0 monomers. The invariance of the second intensity maximum with P0 concentration indicates that the structure of the 80 A-diameter, tetrameric particles is unaltered. According to the liquid model for interparticle interference from charged spheres, the 80 A-diameter particle has 10 negative surface charges which likely arise from negatively charged SDS molecules bound to the transmembrane domain of P0. This binding, however, apparently does not alter the tetrameric assembly of P0, suggesting that intermolecular interactions involving extracellular domains and cytoplasmic domains likely stabilize this assembly. Some of our results have been published in abstract form (Inouye, H., H. Tsuruta, D. A. Kirschner, J. Sedzik, and K. Uyemura. Abstracts of the 4th International School and Symposium on Synchrotron Radiation in Natural Science, June 15

  3. Taking X-ray Diffraction to the Limit: Macromolecular Structures from Femtosecond X-ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation

    SciTech Connect

    Chapman, H N; Miao, J; Kirz, J; Sayre, D; Hodgson, K O

    2003-10-01

    The methodology of X-ray crystallography has recently been successfully extended to the structure determination of non-crystalline specimens. The phase problem was solved by using the oversampling method, which takes advantage of ''continuous'' diffraction pattern from non-crystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging non-periodic objects, like cells and cellular structures using coherent and bright X-rays from the 3rd generation synchrotron radiation. In the longer run, the technique may be applied to image single biomolecules by using the anticipated X-ray free electron lasers. Computer simulations have so far demonstrated two important steps: (1) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself, and (2) the phase information can be ab initio retrieved from a set of calculated noisy diffraction patterns of single protein molecules.

  4. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    NASA Astrophysics Data System (ADS)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  5. A modular reactor design for in situ synchrotron X-ray investigation of atomic layer deposition processes

    SciTech Connect

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sonke; Schleputz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present \\textit{in situ} results for 1.) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, 2.) grazing-incidence small angle scattering of MnO nucleation on silicon, and 3.) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  6. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    SciTech Connect

    Klug, Jeffrey A. Emery, Jonathan D.; Martinson, Alex B. F.; Proslier, Thomas; Weimer, Matthew S.; Yanguas-Gil, Angel; Elam, Jeffrey W.; Seifert, Sönke; Schlepütz, Christian M.; Hock, Adam S.

    2015-11-15

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er{sub 2}O{sub 3} ALD on amorphous ALD alumina and single crystalline sapphire.

  7. On the surface shape of an X-ray monochromator

    SciTech Connect

    Pleshakov, V. F.

    2008-07-15

    It is established that the surface of a monochromator for a point X-ray source in diffractometers is the surface of revolution of a circle arc around the straight line connecting the X-ray source and detector. It is shown that scattering occurs at the points of intersection of the monochromator surface with the set of ellipsoids of revolution, in whose focuses the X-ray source and detector are located. A formula is obtained for calculating the misorientation angle of mosaic blocks. The limits of variation in the angle for FeK{sub {alpha}} {sub 1}, CuK{sub {alpha}} {sub 1} and MoK{sub {alpha}} {sub 1} radiations are determined. It is shown that there is no unified continuous reflecting monochromator surface, and the true reflecting surface is fractal.

  8. DIFFUSE HARD X-RAY EMISSION IN STARBURST GALAXIES AS SYNCHROTRON FROM VERY HIGH ENERGY ELECTRONS

    SciTech Connect

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e {sup {+-}}) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e {sup {+-}} at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e {sup {+-}} created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e {sup {+-}} produced between the interactions between 10 and 100 TeV {gamma}-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R {<=} 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e {sup {+-}}. We compare these models to extant radio and GeV and TeV {gamma}-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to {approx}PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts

  9. Diffuse Hard X-Ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e ±) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e ± at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e ± created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e ± produced between the interactions between 10 and 100 TeV γ-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R <= 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e ±. We compare these models to extant radio and GeV and TeV γ-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to ~PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including

  10. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  11. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT.

    SciTech Connect

    BUTLER,L.G.

    1999-07-22

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 {micro}m; a search with EPMA for vesicles in the range of 1-20 {micro}m proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from {sup 29}Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, {sup 2}H NMR of d{sub 8}-toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste).

  12. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels.

    PubMed

    Gorodzha, Svetlana; Douglas, Timothy E L; Samal, Sangram K; Detsch, Rainer; Cholewa-Kowalska, Katarzyna; Braeckmans, Kevin; Boccaccini, Aldo R; Skirtach, Andre G; Weinhardt, Venera; Baumbach, Tilo; Surmeneva, Maria A; Surmenev, Roman A

    2016-05-01

    Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization. PMID:26749323

  13. X-Tream quality assurance in synchrotron X-ray microbeam radiation therapy.

    PubMed

    Fournier, Pauline; Cornelius, Iwan; Donzelli, Mattia; Requardt, Herwig; Nemoz, Christian; Petasecca, Marco; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2016-09-01

    Microbeam radiation therapy (MRT) is a novel irradiation technique for brain tumours treatment currently under development at the European Synchrotron Radiation Facility in Grenoble, France. The technique is based on the spatial fractionation of a highly brilliant synchrotron X-ray beam into an array of microbeams using a multi-slit collimator (MSC). After promising pre-clinical results, veterinary trials have recently commenced requiring the need for dedicated quality assurance (QA) procedures. The quality of MRT treatment demands reproducible and precise spatial fractionation of the incoming synchrotron beam. The intensity profile of the microbeams must also be quickly and quantitatively characterized prior to each treatment for comparison with that used for input to the dose-planning calculations. The Centre for Medical Radiation Physics (University of Wollongong, Australia) has developed an X-ray treatment monitoring system (X-Tream) which incorporates a high-spatial-resolution silicon strip detector (SSD) specifically designed for MRT. In-air measurements of the horizontal profile of the intrinsic microbeam X-ray field in order to determine the relative intensity of each microbeam are presented, and the alignment of the MSC is also assessed. The results show that the SSD is able to resolve individual microbeams which therefore provides invaluable QA of the horizontal field size and microbeam number and shape. They also demonstrate that the SSD used in the X-Tream system is very sensitive to any small misalignment of the MSC. In order to allow as rapid QA as possible, a fast alignment procedure of the SSD based on X-ray imaging with a low-intensity low-energy beam has been developed and is presented in this publication. PMID:27577773

  14. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  15. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  16. Microstructural Characterization and Corrosion Behavior of Al 7075 Alloys Using X-ray Synchrotron Tomography

    NASA Astrophysics Data System (ADS)

    Singh, Sudhanshu Shekhar

    Al 7075 alloys are used in a variety of structural applications, such as aircraft wings, automotive components, fuselage, spacecraft, missiles, etc. The mechanical and corrosion behavior of these alloys are dependent on their microstructure and the environment. Therefore, a comprehensive study on microstructural characterization and stress-environment interaction is necessary. Traditionally, 2D techniques have been used to characterize microstructure, which are inaccurate and inadequate since the research has shown that the results obtained in the bulk are different from those obtained on the surface. There now exist several techniques in 3D, which can be used to characterize the microstructure. Al 7075 alloys contain second phase particles which can be classified as Fe-bearing inclusions, Si-bearing inclusions and precipitates. The variation in mechanical and corrosion properties of aluminum alloys has been attributed to the size, shape, distribution, corrosion properties and mechanical behavior of these precipitates and constituent particles. Therefore, in order to understand the performance of Al 7075 alloys, it is critical to investigate the size and distribution of inclusions and precipitates in the alloys along with their mechanical properties, such as Young's modulus, hardness and stress-strain behavior. X-ray tomography and FIB tomography were used to visualize and quantify the microstructure of constituent particles (inclusions) and precipitates, respectively. Microscale mechanical characterization techniques, such as nanoindentation and micropillar compression, were used to obtain mechanical properties of inclusions. Over the years, studies have used surface measurements to understand corrosion behavior of materials. More recently, in situ mechanical testing has become more attractive and advantageous, as it enables visualization and quantification of microstructural changes as a function of time (4D). In this study, in situ X-ray synchrotron tomography

  17. Synchrotron Small-Angle X-ray Scattering Study of Cross-Linked Polymeric Micelles.

    PubMed

    Kim, Hyun-Chul; Jin, Kyeong Sik; Lee, Se Guen; Kim, Eunjoo; Lee, Sung Jun; Jeong, Sang Won; Lee, Seung Woo; Kim, Kwang-Woo

    2016-06-01

    Polymeric micelles of methoxypoly(ethylene glycol)-b-poly(lactide) containing lysine units (mPEG-PLA-Lys4) were cross-linked by reacting of lysine moieties with a bifunctional bis(N-hydroxy-succinimide ester). The micelles were characterized in aqueous solution using dynamic light scattering, transmission electron microscopy, and synchrotron small-angle X-ray scattering. The mPEG-PLA-Lys4 was synthesized through the ring-opening polymerization of N6-carbobenzyloxy-L-lysine N-carboxyanhydride with amine-terminated mPEG-PLA and subsequent deprotection. The polymeric micelles showed enhanced micelle stability after cross-linking, which was confirmed by adding sodium dodecyl sulfate as a destabilizing agent. The average diameters measured via dynamic light scattering were 19.1 nm and 29.2 nm for non-cross-linked polymeric micelles (NCPMs) and cross-linked polymeric micelles (CPMs), respectively. The transmission electron microscopy images showed that the size of the polymeric micelles increased slightly due to cross-linking, which was in good agreement with the DLS measurements. The overall structures and internal structural changes of NCPMs and CPMs in aqueous solution were studied in detail using synchrotron X-ray scattering method. According to the structural parameters of X-ray scattering analysis, CPMs with a more densely packed core structure were formed by reacting bifunctional cross-linking agents with lysine amino groups located in the innermost core of the polymeric micelles. PMID:27427731

  18. Heat transfer issues in high-heat-load synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements.

  19. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  20. Conical geometry for sagittal focusing as applied to X rays from synchrotrons

    SciTech Connect

    Ice, G.E.; Sparks, C.J.

    1993-06-01

    The authors describe a method for simultaneously focusing and monochromatization of X rays from a fan of radiation having up to 15 mrad divergence in one dimension. This geometry is well suited to synchrotron radiation sources at magnifications of one-fifth to two and is efficient for X-ray energies between 3 and 40 keV (0.48 and 6.4 fJ). The method uses crystals bent to part of a cone for sagittal focusing and allows for the collection of a larger divergence with less mixing of the horizontal into the vertical divergence than is possible with X-ray mirrors. They describe the geometry required to achieve the highest efficiency when a conical crystal follows a flat crystal in a nondispersive two-crystal monochromator. At a magnification of one-third, the geometry is identical to a cylindrical focusing design described previously. A simple theoretical calculation is shown to agree well with ray-tracing results. Minimum aberrations are observed at magnifications near one. Applications of the conical focusing geometry to existing and future synchrotron radiation facilities are discussed.

  1. Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation.

    PubMed

    Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru

    2013-03-10

    Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. PMID:23376507

  2. Workshops on Science Enabled by a Coherent, CW, Synchrotron X-ray Source, June 2011

    SciTech Connect

    Brock, Joel

    2012-01-03

    In June of 2011 we held six two-day workshops called "XDL-2011: Science at the Hard X-ray Diffraction Limit". The six workshops covered (1) Diffraction-based imaging techniques, (2) Biomolecular structure from non-crystalline materials, (3) Ultra-fast science, (4) High-pressure science, (5) Materials research with nano-beams and (6) X-ray photon correlation spectroscopy (XPCS), In each workshop, invited speaker from around the world presented examples of novel experiments that require a CW, diffraction-limited source. During the workshop, each invited speaker provided a one-page description of the experiment and an illustrative graphic. The experiments identified by the workshops demonstrate the broad and deep scientific case for a CW coherent synchrotron x-ray source. The next step is to perform detailed simulations of the best of these ideas to test them quantitatively and to guide detailed x-ray beam-line designs. These designs are the first step toward developing detailed facility designs and cost estimates.

  3. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments.

    PubMed

    Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A

    2016-01-19

    The reactivity and mobility of natural particles in aquatic systems have wide ranging implications for the functioning of Earth surface systems. Particles in the ocean are biologically and chemically reactive, mobile, and complex in composition. The chemical composition of marine particles is thought to be central to understanding processes that convert globally relevant elements, such as C and Fe, among forms with varying bioavailability and mobility in the ocean. The analytical tools needed to measure the complex chemistry of natural particles are the subject of this Account. We describe how a suite of complementary synchrotron radiation instruments with nano- and micrometer focusing, and X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) capabilities are changing our understanding of deep-ocean chemistry and life. Submarine venting along mid-ocean ridges creates hydrothermal plumes where dynamic particle-forming reactions occur as vent fluids mix with deep-ocean waters. Whether plumes are net sources or sinks of elements in ocean budgets depends in large part on particle formation, reactivity, and transport properties. Hydrothermal plume particles have been shown to host microbial communities and exhibit complex size distributions, aggregation behavior, and composition. X-ray microscope and microprobe instruments can address particle size and aggregation, but their true strength is in measuring chemical composition. Plume particles comprise a stunning array of inorganic and organic phases, from single-crystal sulfides to poorly ordered nanophases and polymeric organic matrices to microbial cells. X-ray microscopes and X-ray microprobes with elemental imaging, XAS, and XRD capabilities are ideal for investigating these complex materials because they can (1) measure the chemistry of organic and inorganic constituents in complex matrices, usually within the same particle or aggregate, (2) provide strong signal-to-noise data with exceedingly small

  4. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading.

    PubMed

    Fan, D; Huang, J W; Zeng, X L; Li, Y; E, J C; Huang, J Y; Sun, T; Fezzaa, K; Wang, Z; Luo, S N

    2016-05-01

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera's capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantify lattice deformation and fracture; fracture is dominated by splitting cracks followed by wing cracks, and diffraction peaks are broadened likely due to mosaic spread. Our results demonstrate the potential of such multiscale measurements for studying high strain-rate phenomena at dynamic extremes. PMID:27250438

  5. Synchrotron hard X-ray imaging of shock-compressed metal powders

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This poster will present the application of a new, high-energy (50 to 250 keV) synchrotron X-ray radiography technique to the study of shock-compressed granular materials. Following plate-impact loading, transmission radiography was used to quantitatively observe the compaction and release processes in a range of high-Z metal powders (e.g. Fe, Ni, Cu). By comparing the predictions of 3D numerical models initialized from X-ray tomograms-captured prior to loading-with experimental results, this research represents a new approach to refining mesoscopic compaction models. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  6. Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source

    SciTech Connect

    Phase, D. M. Gupta, Mukul Potdar, S. Behera, L. Sah, R. Gupta, Ajay

    2014-04-24

    This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ∼ 10{sup −10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

  7. Small-angle scattering studies of meso-scopic structures with synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Dore, J. C.; North, A. N.; Rigden, J. S.

    1995-03-01

    The use of small-angle X-ray scattering techniques for the study of spatial inhomogeneities over the range 20 Å to 2 μm is reviewed. The basic formalism for scattering by an inhomogeneous medium is developed with particular reference to liquid suspensions, porous solids and solid aggregates. The instrumentation available on the Synchrotron Radiation Source at the Daresbury Laboratory is briefly presented and the use of the Bonse-Hart method for studies at ultra-low scattering angles described. The extraction of structural information for a range of natural and synthetic materials is presented with particular reference to microemulsions, porous silicas, clays and composites. The complementarity of X-ray and neutron techniques is critically reviewed and prospects for future developments, particularly for the study of anisotropic systems, are discussed.

  8. Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators

    DOE PAGESBeta

    Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; Deryabin, Alexander N.; Kanevsky, Vladimir M.; Prokhorov, Igor A.; Roshchin, Boris S.; Volkov, Yuri O.; Zolotov, Dennis A.; Jafari, Atefeh; et al

    2016-03-22

    We report on the growth and characterization of several sapphire single crystals for the purpose of x-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique with a dislocation density of 102-103 cm-2 and a small area with approximately 2*2 mm2 did not show dislocation contrast in many reflections and has suitable quality for application as a backscattering monochromator. As a result, a clear correlation between growth rate and dislocation densitymore » is observed, though growth rate is not the only parameter impacting the quality.« less

  9. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors

    PubMed Central

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors. PMID:27577767

  10. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors.

    PubMed

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors. PMID:27577767

  11. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  12. Synchrotron-based small-angle X-ray scattering (SAXS) of proteins in solution

    PubMed Central

    Skou, Soren; Gillilan, Richard E

    2015-01-01

    Summary With recent advances in data analysis algorithms, X-ray detectors, and synchrotron sources, small-angle X-ray scattering (SAXS) has become much more accessible to the structural biology community than ever before. Although limited to ~10 Å resolution, SAXS can provide a wealth of structural information on biomolecules in solution and is compatible with a wide range of experimental conditions. SAXS is thus an attractive alternative when crystallography is not possible. Moreover, advanced usage of SAXS can provide unique insight into biomolecular behavior that can only be observed in solution, such as large conformational changes and transient protein-protein interactions. Unlike crystal diffraction data, however, solution scattering data are subtle in appearance, highly sensitive to sample quality and experimental errors, and easily misinterpreted. In addition, synchrotron beamlines that are dedicated to SAXS are often unfamiliar to the non-specialist. Here, we present a series of procedures that can be used for SAXS data collection and basic cross-checks designed to detect and avoid aggregation, concentration effects, radiation damage, buffer mismatch, and other common problems. The protein, human serum albumin (HSA), serves as a convenient and easily replicated example of just how subtle these problems can sometimes be, but also of how proper technique can yield pristine data even in problematic cases. Because typical data collection times at a synchrotron are only one to several days, we recommend that the sample purity, homogeneity, and solubility be extensively optimized prior to the experiment. PMID:24967622

  13. Experimental comparison between speckle and grating-based imaging technique using synchrotron radiation X-rays.

    PubMed

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-08-01

    X-ray phase contrast and dark-field imaging techniques provide important and complementary information that is inaccessible to the conventional absorption contrast imaging. Both grating-based imaging (GBI) and speckle-based imaging (SBI) are able to retrieve multi-modal images using synchrotron as well as lab-based sources. However, no systematic comparison has been made between the two techniques so far. We present an experimental comparison between GBI and SBI techniques with synchrotron radiation X-ray source. Apart from the simple experimental setup, we find SBI does not suffer from the issue of phase unwrapping, which can often be problematic for GBI. In addition, SBI is also superior to GBI since two orthogonal differential phase gradients can be simultaneously extracted by one dimensional scan. The GBI has less stringent requirements for detector pixel size and transverse coherence length when a second or third grating can be used. This study provides the reference for choosing the most suitable technique for diverse imaging applications at synchrotron facility. PMID:27505829

  14. Synchrotron x-ray fluorescence analyses of stratospheric cosmic dust: New results for chondritic and nickel-depleted particles

    SciTech Connect

    Flynn, G.J.; Sutton, S.R.

    1989-06-01

    Trace element abundance determinations were performed using synchrotron x-ray fluorescence on nine particles collected from the stratosphere and classified as ''cosmic''. Improvements to the Synchrotron Light Source allowed the detection of all elements between Cr and Mo, with the exceptions of Co and As, in our largest particle. The minor and trace element abundance patterns of three Ni-depleted particles were remarkably similar to those of extraterrestrial igneous rocks. Fe/Ni and Fe/Mn ratios suggest that one of these may be of lunar origin. All nine particles exhibited an enrichment in Br, ranging form 1.3 to 38 times the Cl concentration. Br concentrations were uncorrelated with particle size, as would be expected for a surface correlated component acquires from the stratosphere. 27 refs., 4 figs., 2 tabs.

  15. Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline.

    PubMed

    Jones, Michael W M; Phillips, Nicholas W; van Riessen, Grant A; Abbey, Brian; Vine, David J; Nashed, Youssef S G; Mudie, Stephen T; Afshar, Nader; Kirkham, Robin; Chen, Bo; Balaur, Eugeniu; de Jonge, Martin D

    2016-09-01

    Owing to its extreme sensitivity, quantitative mapping of elemental distributions via X-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated. PMID:27577770

  16. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques.

    PubMed

    Mihucz, Victor G; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-04-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge structure (TXRF-XANES), and micro-X-ray fluorescence imaging to obtain information on the intracellular storage of overloaded iron (Fe). The determined TfR1 mRNA expression for the investigated cells correlated with their proliferation rate. In all cases, the Fe XANES of cells overloaded with inorganic Fe was found to be similar to that of deliquescent Fe(III) sulfate characterized by a distorted octahedral geometry. A fitting model using a linear combination of the XANES of Tf and deliquescent Fe(III) sulfate allowed to explain the near edge structure recorded for HT-29 cells indicating that cellular overload with inorganic Fe results in a non-ferritin-like fast Fe storage. Hierarchical cluster analysis of XANES spectra recorded for Fe overloaded HT-29 and HCA-7 cells was able to distinguish between Fe treatments performed with different Fe species with a 95 % hit rate, indicating clear differences in the Fe storage system. Micro-X-ray fluorescence imaging of Fe overloaded HT-29 cells revealed that Fe is primarily located in the cytosol of the cells. By characterizing the cellular Fe uptake, Fe/S content ratios were calculated based on the X-ray fluorescence signals of the analytes. These Fe/S ratios were dramatically lower for HCA-7 treated with organic Fe(III) treatments suggesting dissimilarities from the Tf-like Fe uptake. PMID:26759251

  17. Shedding new light on historical metal samples using micro-focused synchrotron X-ray fluorescence and spectroscopy

    NASA Astrophysics Data System (ADS)

    Grolimund, D.; Senn, M.; Trottmann, M.; Janousch, M.; Bonhoure, I.; Scheidegger, A. M.; Marcus, M.

    2004-10-01

    Synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-X-ray absorption spectroscopy (micro-XAS) were used in the present study to obtain spatially resolved micro-scale information on elemental composition, trace element distribution, chemical speciation and oxidation state and/or mineral phase distribution within historical iron artefacts dating from the Iron Age to early Medieval Times. Large area two-dimensional trace element distribution maps and oxidation state maps with micrometer spatial resolution were required to answer open archaeological questions in the context of ancient metal processing. The first set of examples was focusing on historical weapons and included two ancient iron sword blades. The micro-XRF maps revealed a distinct, highly correlated distribution pattern of trace elements such as As, Ni, Cu and Zn. Accordingly, the number of used raw materials could be determined unambiguously and key information concerning the used ancient smithing technique were gained. Further, the ability to record—in a fast manner—large area maps with high spatial resolution ('elemental screening') led to the discovery of a hitherto unknown enhanced occurrence of selected trace elements (Cu, Zn, and Au) at the blade surface. Complementary investigations by high resolution scanning electron microscopy were able to localize these trace metals within a carbon-rich matrix may be pointing towards an artifact induced during preservation. A second set of investigated artefacts is dealing with smithing waste products and related historical processing techniques and conditions. Synchrotron-based micro-XRF and micro-XAS were used to determine the structural composition as well as the spatial variation of the predominant Fe oxidation state and corresponding crystallographic phases. The study revealed the presence of distinct domains of Fe 0, Fe IIO (wustite), and α-Fe IIIOOH (goethite), separated by sharp domain boundaries. These findings help to gain new

  18. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    PubMed

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data. PMID

  19. A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions.

    PubMed

    Fusseis, Florian; Steeb, Holger; Xiao, Xianghui; Zhu, Wen-lu; Butler, Ian B; Elphick, Stephen; Mäder, Urs

    2014-01-01

    A new modular X-ray-transparent experimental cell enables tomographic investigations of fluid rock interaction under natural reservoir conditions (confining pressure up to 20 MPa, pore fluid pressure up to 15 MPa, temperature ranging from 296 to 473 K). The portable cell can be used at synchrotron radiation sources that deliver a minimum X-ray flux density of 10(9) photons mm(-2) s(-1) in the energy range 30-100 keV to acquire tomographic datasets in less than 60 s. It has been successfully used in three experiments at the bending-magnet beamline 2BM at the Advanced Photon Source. The cell can be easily machined and assembled from off-the-shelf components at relatively low costs, and its modular design allows it to be adapted to a wide range of experiments and lower-energy X-ray sources. PMID:24365944

  20. Role of the Template in Model Biomineralization: Synchrotron X-ray Scattering Experiments

    NASA Astrophysics Data System (ADS)

    Uysal, Ahmet

    Synthesis of functional nanoparticles in cheap and environment friendly ways is one of the big challenges we face today. Interestingly, many biological systems are already expert at this task. Living organisms can grow nanocrystals of inorganic minerals with certain orientations and shapes and use them together with organic material to build structures with properties superior to the sum of their components. This process is called biomineralization. It has been previously shown that floating monolayers of amphiphilic molecules (Langmuir monolayers) can be used to simulate this process. This project covers the study of three different minerals, calcium oxalate, hydroxyapatite and gold, in an attempt to understand the role of the organic template in the model biomineralization experiments. We used in situ synchrotron x-ray scattering techniques to monitor the organic-inorganic interface during nucleation and growth of inorganic crystals. We also used scanning and transmission electron microscopy to study the structure of mature crystals ex situ . Although kidney stones (mostly calcium oxalate) are pathological in humans and animals, their microscopic structures exhibit considerable orientation and order, probably caused by organic molecules. Our x-ray scattering experiments revealed, first time, that in the early stages of the crystallization calcium oxalate crystals adapt a structure different from their known bulk structures. In the later stages, the crystals relax back to the bulk structure while changing the organization of the organic molecules next to them. We developed a model that explains these interactions in terms of the organic-inorganic interface potential energy. Hydroxyapatite is the main inorganic constituent of the vertebrate bone. In spite of the vast literature about bone mineralization, there is little known about the organic-inorganic interactions at the molecular level. In this thesis, we report the first in situ x-ray scattering experiments

  1. The live lattices become visible in coherent synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Kohn, V.; Rau, C.; Sergienko, P. M.; Snigireva, I.; Snigirev, A.; Vazina, A.

    2005-05-01

    We demonstrate a great potential of the method of phase contrast imaging for a study of muscles and animal organism in normal and pathological states. The method is applied to image biological tissues that have the unique feature of structure-translation symmetry of 0.1-10 μm periodicity. The cross-striated muscle is the most interesting example of such objects. The experiment was done using high-brilliant coherent X-rays, delivered by synchrotron radiation source of third generation (ESRF, Grenoble), and high-resolution 2D-detector.

  2. Synchrotron total reflection X-ray fluorescence at BL-16 microfocus beamline of Indus-2

    NASA Astrophysics Data System (ADS)

    Tiwari, M. K.; Singh, A. K.; Das, Gangadhar; Chowdhury, Anupam; Lodha, G. S.

    2014-04-01

    Determination of ultra trace elements is important in many disciplines both in basic and applied sciences. Numerous applications show their importance in medical science, environmental science, materials science, food processing and semiconductor industries and in maintaining the quality control of ultra pure chemicals and reagents. We report commissioning of a synchrotron based total reflection x-ray fluorescence (TXRF) facility on the BL-16 microfocus beamline of Indus-2. This paper describes the performance of the BL-16 TXRF spectrometer and the detailed description of its capabilities through examples of measured results.

  3. Microscopy and elemental analysis in tissue samples using computed microtomography with synchrotron x-rays

    SciTech Connect

    Spanne, P.; Rivers, M.L.

    1988-01-01

    The initial development shows that CMT using synchrotron x-rays can be developed to ..mu..m spatial resolution and perhaps even better. This creates a new microscopy technique which is of special interest in morphological studies of tissues, since no chemical preparation or slicing of the sample is necessary. The combination of CMT with spatial resolution in the ..mu..m range and elemental mapping with sensitivity in the ppM range results in a new tool for elemental mapping at the cellular level. 7 refs., 1 fig.

  4. An x-ray fluorescence study of lake sediments from ancient Turkey using synchrotron radiation.

    SciTech Connect

    Alatas, A.; Alp, E. E.; Friedman, E. S.; Jennings, G.; Johnson, C. E.; Lai, B.; Mini, S. M.; Sato, Y.; Wilkinson, T. J.; Yener, K. A.

    1999-03-10

    Sediments from relic Lake Golbasi were analyzed by X-ray fluorescence with synchrotrons radiation to determine changes in element concentrations over time with selected elements serving as proxies for environmental change. Increases in Ca and Sr suggest soil formation during a dry period, from ca. 4500 BC to ca. 200 AD at which point K, Rb, Zr, Ti, and Y increase, indicating the return of a wet environment. Soil erosion, represented by Cr and Ni, increases ca. 7000 BC, probably as a consequence of environmental change, prior to suggested exploitation of natural resources by the newly urbanized society of the third millennium BC.

  5. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.

    2016-03-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.

  6. Load transfer in bovine plexiform bone determined by synchrotron x-ray diffraction.

    SciTech Connect

    Akhtar, R.; Daymond, M.; Almer, J.; Mummery, P.; The Univ. of Manchester; Queen's Univ.

    2008-02-01

    High-energy synchrotron x-ray diffraction (XRD) has been used to quantify load transfer in bovine plexiform bone. By using both wide-angle and small-angle XRD, strains in the mineral as well as the collagen phase of bone were measured as a function of applied compressive stress. We suggest that a greater proportion of the load is borne by the more mineralized woven bone than the lamellar bone as the applied stress increases. With a further increase in stress, load is shed back to the lamellar regions until macroscopic failure occurs. The reported data fit well with reported mechanisms of microdamage accumulation in bovine plexiform bone.

  7. Poly (methyl methacrylate) Formation and Patterning Initiated by Synchrotron X-ray Illumination

    SciTech Connect

    Xiao, J.; Je, J. H.; Wang, C. H.; Yang, T. Y.; Hwu, Y.

    2007-01-19

    A facile radiation method was developed to obtain micro-sized poly (methyl methacrylate) (PMMA) particles and create patterned coating on different substrates by a synchrotron x-ray induced dispersion polymerization. The polymerization of MMA monomer and well defined patterning was successfully realized. The produced PMMA particles and patterning were characterized by Fourier transformation infrared (FTIR), 1H-Nuclear Magnetic Resonance (NMR), and Scanning Electron Microscope (SEM). The observed patterning contrast essentially derived from a variation of size, density and morphology of particles and the type of substrate materials used.

  8. Compressible cake filtration: monitoring cake formation and shrinkage using synchrotron X-rays

    SciTech Connect

    Bierck, B.R.; Wells, S.A.; Dick, R.I.

    1988-05-01

    High energy, highly collimated X-rays produced at the Cornell High Energy Synchrotron Sources (CHESS) enabled real-time suspended solids concentration measurements each second with 0.5 mm vertical separation in a kaolin filter cake. Suspended solids concentration profiles reflected expected effects of cumulative fluid drag forces. Shrinkage caused a significant increase in average cake suspended solids concentration after expiration of the slurry, and the saturated cake ultimately formed was virtually homogeneous. Shrinkage is consolidation under compressive forces created when capillary menisci form at air/liquid interfaces, and has a significant effect on cake structure in latter stages of compressible cake filtration.

  9. Synchrotron x-ray nano-tomography characterization of the sintering of multilayered systems

    NASA Astrophysics Data System (ADS)

    Yan, Zilin; Guillon, Olivier; Wang, Steve; Martin, Christophe L.; Lee, Chul-Seung; Bouvard, Didier

    2012-06-01

    Synchrotron x-ray nano-tomography was used to characterize the microstructures of multi-layer ceramic capacitors before and after sintering. 3D microstructures of the same sample were reconstructed and quantitatively analyzed. The discontinuities observed in inner electrodes were found to originate from initial heterogeneities of nickel powders in the electrodes. They are supposed to grow due to the constraint of adjacent dielectric layers. Dielectric layers show anisotropic shrinkage with a decrease in density as function of layer position in the multilayer.

  10. In-situ synchrotron x-ray transmission microscopy of the sintering of multilayers

    NASA Astrophysics Data System (ADS)

    Yan, Zilin; Guillon, Olivier; Martin, Christophe L.; Wang, Steve; Lee, Chul-Seung; Bouvard, Didier

    2013-06-01

    This letter reports on in-situ characterization of the high temperature sintering of multilayer ceramic capacitors by high-resolution synchrotron x-ray imaging. Microstructural evolution was obtained in real time by a continuous recording of 2-dimensional radiographs. Anisotropic strains were measured for different layers. Quantification of defects was conducted with 3-dimensional nano-computed tomography. These in-situ observations prove that electrode discontinuities occur at the early stage of sintering and originate from initial heterogeneities linked to the particulate nature of the starting powders.

  11. Synchrotron total reflection X-ray fluorescence at BL-16 microfocus beamline of Indus-2

    SciTech Connect

    Tiwari, M. K. Singh, A. K. Das, Gangadhar Chowdhury, Anupam Lodha, G. S.

    2014-04-24

    Determination of ultra trace elements is important in many disciplines both in basic and applied sciences. Numerous applications show their importance in medical science, environmental science, materials science, food processing and semiconductor industries and in maintaining the quality control of ultra pure chemicals and reagents. We report commissioning of a synchrotron based total reflection x-ray fluorescence (TXRF) facility on the BL-16 microfocus beamline of Indus-2. This paper describes the performance of the BL-16 TXRF spectrometer and the detailed description of its capabilities through examples of measured results.

  12. A Optical Synchrotron Nebula around the X-Ray Pulsar 0540-693

    NASA Astrophysics Data System (ADS)

    Chanan, G.; Helfand, D.; Reynolds, S.

    The authors report the discovery of extended optical continuum emission around the recently discovered 50 ms X-ray pulsar in the supernova remnant 0540-693. Exposures in blue and red broadband filters made with the CTIO 4 m telescope and prime focus CCD show a center-brightened but clearly extended nebula about 4arcsec in diameter (FWHM), while an image in an [O III] filter shows an 8arcsec diameter shell (as reported earlier) which encloses the continuum source. 0540-693 is a system very similar to the Crab nebula and represents the second detection of optical synchrotron radiation in a supernova remnant.

  13. Synchrotron X-ray imaging of nanomagnetism in meteoritic metal (Invited)

    NASA Astrophysics Data System (ADS)

    Bryson, J. F.; Herrero Albillos, J.; Kronast, F.; Tyliszczak, T.; Redfern, S. A.; van der Laan, G.; Harrison, R. J.

    2013-12-01

    It is becoming increasingly apparent that a wealth of paleomagnetic information is stored at the nanoscale within natural samples. To date, this nanopaleomagetism has been investigated using high resolution magnetic microscopies, such as electron holography. Although unparalleled in its spatial resolution, electron holography produces images that are indirectly related to the magnetisation state of the sample, introducing ambiguity when interpreting magnetisation information. Holography also requires extensive off-line processing, making it unsuitable for studying dynamic processes, and the sample preparation negates the study of natural remanences. Here we demonstrate the capabilities of a new generation of nanomagnetic imaging methods using synchrotron X-ray radiation. X-rays tuned to an elemental absorption edge can display differing excitation probabilities depending on the orientation of an electron's magnetic moment relative to that of the X-ray beam. This is achieved by introducing an angular momentum to the photon through circular polarisation, resulting in an absorption signal that is proportional to the projection of the magnetic moment on to the X-ray beam direction. We introduce and compare two experimental set-ups capable of spatially resolving these signals to form a high-resolution magnetisation map: photoemission electron microscopy and scanning transmission electron microscopy. Both techniques provide measurements of magnetisation with 30-50nm resolution and elemental specificity. Photoemission electron microscopy can be used also to create maps of all three of the spatial components of magnetisation and investigate dynamic magnetic switching processes. The full capabilities of X-ray imaging are demonstrated through the application of both of these techniques to meteoritic metal. We show that the 'cloudy zone' within iron meteorites contains nanoscale islands of tetrataenite (FeNi) that are populated equally by all three possible magnetic easy axes

  14. Multilayer-based soft X-ray polarimeter at the Beijing Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Sun, Li-Juan; Cui, Ming-Qi; Zhu, Jie; Zhao, Yi-Dong; Zheng, Lei; Wang, Zhan-Shan; Zhu, Jing-Tao

    2013-07-01

    A compact high precision eight-axis automatism and two-axis manual soft-ray polarimeter with a multilayer has been designed, constructed, and installed in 3W1B at the Beijing Synchrotron Radiation Facility (BSRF). Four operational modes in the same device, which are double-reflection, double-transmission, front-reflection-behind-transmission and front-transmission-behind-reflection, have been realized. It can be used for the polarization analysis of synchrotron radiation. It also can be used to characterize the polarization properties of the optical elements in the soft X-ray energy range. Some experiments with Mo/Si and Cr/C multilayers have been performed by using this polarimeter with good results obtained.

  15. The rf system of the Synchrotron X-ray Source at Argonne

    SciTech Connect

    Kustom, R.L.; Mavrogenes, G.; Nicholls, G.

    1987-01-01

    A Positron Storage Ring for the Synchrotron X-ray Source at Argonne is under design. The rf system is described. The rf system is divided into four stations, each using a one-megawatt klystron to excite four single-cell spherical cavities to a gap voltage of 761 kV at the operating frequency of 350.8 MHz. The same klystron also provides the beam power for synchrotron radiation losses of the position beam of up to 300 mA, the higher-order-mode power losses, the power losses in the beam due to the insertion devices, and the rf power transmission losses. The transmission waveguide system includes magic tees for splitting the power of each klystron to four cavities, isolators to protect the klystrons, harmonic and higher-order-mode absorbers, and mechanical phase shifters for fine phase tuning.

  16. Synchrotron X-ray CT characterization of titanium parts fabricated by additive manufacturing. Part II. Defects.

    PubMed

    Scarlett, Nicola Vivienne Yorke; Tyson, Peter; Fraser, Darren; Mayo, Sheridan; Maksimenko, Anton

    2016-07-01

    Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts. PMID:27359151

  17. High Resolution X-Ray Microangiography of 4T1 Tumor in Mouse Using Synchrotron Radiation

    SciTech Connect

    Sun Jianqi; Liu Ping; Gu Xiang; Liu Xiaoxia; Zhao Jun; Xiao Tiqiao; Xu, Lisa X.

    2010-07-23

    Angiogenesis is very important in tumor growth and metastasis. But in clinic, only vessels lager than 200 {mu}m in diameter, can be observed using conventional medical imaging. Synchrotron radiation (SR) phase contrast imaging, whose spatial resolution can reach as high as 1 {mu}m, has great advantages in imaging soft tissue structures, such as blood vessels and tumor tissues. In this paper, the morphology of newly formed micro-vessels in the mouse 4T1 tumor samples was firstly studied with contrast agent. Then, the angiogenesis in nude mice tumor window model was observed without contrast agent using the SR phase contrast imaging at the beamline for X-ray imaging and biomedical applications, Shanghai Synchrotron Radiation Facility (SSRF). The images of tumors showed dense, irregular and tortuous tumor micro-vessels with the smallest size of 20-30 {mu}m in diameter.

  18. Steady X-Ray Synchrotron Emission in the Northeastern Limb of SN 1006

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Petre, Robert; Mori, Koji; Reynolds, Stephen; Long, Knox; Winkler, P.; Tsunemi, Hiroshi

    2010-01-01

    We investigate time variations and detailed spatial structures of X-ray synchrotron emission in the northeastern limb of SN 1006, using two Chandra observations taken in 2000 and 2008. We extract spectra from a number of small ([approx]10'') regions. After taking account of proper motion and isolating the synchrotron from the thermal emission, we study time variations in the synchrotron emission in the small regions. We find that there are no regions showing strong flux variations. Our analysis shows an apparent flux decline in the overall synchrotron flux of [approx]4% at high energies, but we suspect that this is mostly a calibration effect, and that flux is actually constant to [approx]1%. This is much less than the variation found in other remnants where it was used to infer magnetic-field strengths up to 1 mG. We attribute the lack of variability to the smoothness of the synchrotron morphology, in contrast to the small-scale knots found to be variable in other remnants. The smoothness is to be expected for a Type Ia remnant encountering uniform material. Finally, we find a spatial correlation between the flux and the cutoff frequency in synchrotron emission. The simplest interpretation is that the cutoff frequency depends on the magnetic-field strength. This would require that the maximum energy of accelerated electrons is not limited by synchrotron losses, but by some other effect. Alternatively, the rate of particle injection and acceleration may vary due to some effect not yet accounted for, such as a dependence on shock obliquity.

  19. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources.

    PubMed

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mírian L A F; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (μCT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray μCT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumbá (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based μCT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies. PMID:26306692

  20. Synchrotron x-ray study of the smectic layer directional instability

    PubMed

    Dierking; Glusen; Lagerwall; Ober

    2000-02-01

    We have investigated the phenomenon of field-induced smectic layer instability, as monitored by synchrotron x-ray scattering. This instability means that, upon application of time-asymmetric electric fields to chiral smectics, the layer direction seems to "rotate" locally around an axis given by the direction of the applied field. For moderate values of field amplitude and asymmetry, domains with a favored layer inclination grow at the expense of unfavored ones, while larger fields and asymmetries generally lead to a chaotic flow behavior. At moderate amplitudes, we have followed the process of the horizontal layer folding (or horizontal chevron domain formation) and the smectic C* layer reorientation of ferroelectric liquid crystals by applying symmetric and asymmetric wave forms, respectively, and performing time resolved x-ray measurements. The studies unambiguously show the formation of a horizontal (in-plane, i.e., in a plane parallel to the cell substrates) chevron domain structure from a nonoriented sample by application of a symmetric electric field of sufficient amplitude. It is then demonstrated that a transition from the horizontal chevron domain structure to an in-plane uniform smectic layer direction takes place on application of asymmetric electric wave forms. Reversal of the field asymmetry reverses the inclination direction and selects the other layer normal direction as the uniform end state. The in-plane smectic layer reorientation process is followed here as it evolves, and analyzed directly by means of x-ray scattering. PMID:11046442

  1. X-ray optics developments at the APS for third-generation synchrotron radiation sources

    SciTech Connect

    Mills, D.M.

    1996-09-01

    High brilliance third-generation synchrotron radiation sources simultaneously provide both a need and an opportunity for the development of new x-ray optical components. The high power and power densities of the x-ray beams produced by insertion devices have forced researchers to consider novel, and what may seem like exotic, approaches to the mitigation of thermal distortions that can dilute the beam brilliance delivered to the experiment or next optical component. Once the power has been filtered by such high heat load optical elements, specialized components can be employed that take advantage of the high degree of brilliance. This presentation reviews the performance of optical components that have been designed, fabricated, and tested at the Advanced Photon Source, starting with high heat load components and followed by examples of several specialized devices such as a milli-eV resolution (in-line) monochromator, a high energy x-ray phase retarder, and a phase zone plate with submicron focusing capability.

  2. Spatially confined low-power optically pumped ultrafast synchrotron x-ray nanodiffraction

    SciTech Connect

    Park, Joonkyu; Zhang, Qingteng; Chen, Pice; Cosgriff, Margaret P.; Tilka, Jack A.; Evans, Paul G.; Adamo, Carolina; Schlom, Darrell G.; Wen, Haidan; Zhu, Yi

    2015-08-15

    The combination of ultrafast optical excitation and time-resolved synchrotron x-ray nanodiffraction provides unique insight into the photoinduced dynamics of materials, with the spatial resolution required to probe individual nanostructures or small volumes within heterogeneous materials. Optically excited x-ray nanobeam experiments are challenging because the high total optical power required for experimentally relevant optical fluences leads to mechanical instability due to heating. For a given fluence, tightly focusing the optical excitation reduces the average optical power by more than three orders of magnitude and thus ensures sufficient thermal stability for x-ray nanobeam studies. Delivering optical pulses via a scannable fiber-coupled optical objective provides a well-defined excitation geometry during rotation and translation of the sample and allows the selective excitation of isolated areas within the sample. Experimental studies of the photoinduced lattice dynamics of a 35 nm BiFeO{sub 3} thin film on a SrTiO{sub 3} substrate demonstrate the potential to excite and probe nanoscale volumes.

  3. CMOS Imaging Detectors as X-ray Detectors for Synchrotron Radiation Experiments

    SciTech Connect

    Yagi, Naoto; Uesugi, Kentaro; Inoue, Katsuaki

    2004-05-12

    CMOS imagers are matrix-addressed photodiode arrays, which have been utilized in devices such as commercially available digital cameras. The pixel size of CMOS imagers is usually larger than that of CCD and smaller than that of TFT, giving them a unique position. Although CMOS x-ray imaging devices have already become commercially available, they have not been used as an x-ray area detector in synchrotron radiation experiments. We tested performance of a CMOS detector from Rad-icon (Shad-o-Box1024) in medical imaging, small-angle scattering, and protein crystallography experiments. It has pixels of 0.048 mm square, read-out time of 0.45 sec, 12-bit ADC, and requires a frame grabber for image acquisition. The detection area is 5-cm square. It uses a Kodak Min-R scintillator screen as a phosphor. The sensitivity to x-rays with an energy less than 15 keV was low because of the thick window materials. Since the readout noise is high, the dynamic range is limited to 2000. The biggest advantages of this detector are cost-effectiveness (about 10,000 US dollars) and compactness (thickness < 3 cm, weight < 2 kg)

  4. Spatially confined low-power optically pumped ultrafast synchrotron x-ray nanodiffraction.

    PubMed

    Park, Joonkyu; Zhang, Qingteng; Chen, Pice; Cosgriff, Margaret P; Tilka, Jack A; Adamo, Carolina; Schlom, Darrell G; Wen, Haidan; Zhu, Yi; Evans, Paul G

    2015-08-01

    The combination of ultrafast optical excitation and time-resolved synchrotron x-ray nanodiffraction provides unique insight into the photoinduced dynamics of materials, with the spatial resolution required to probe individual nanostructures or small volumes within heterogeneous materials. Optically excited x-ray nanobeam experiments are challenging because the high total optical power required for experimentally relevant optical fluences leads to mechanical instability due to heating. For a given fluence, tightly focusing the optical excitation reduces the average optical power by more than three orders of magnitude and thus ensures sufficient thermal stability for x-ray nanobeam studies. Delivering optical pulses via a scannable fiber-coupled optical objective provides a well-defined excitation geometry during rotation and translation of the sample and allows the selective excitation of isolated areas within the sample. Experimental studies of the photoinduced lattice dynamics of a 35 nm BiFeO3 thin film on a SrTiO3 substrate demonstrate the potential to excite and probe nanoscale volumes. PMID:26329208

  5. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    SciTech Connect

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  6. Ice Recrystallization in a Solution of a Cryoprotector and Its Inhibition by a Protein: Synchrotron X-Ray Diffraction Study.

    PubMed

    Zakharov, Boris; Fisyuk, Alexander; Fitch, Andy; Watier, Yves; Kostyuchenko, Anastasia; Varshney, Dushyant; Sztucki, Michael; Boldyreva, Elena; Shalaev, Evgenyi

    2016-07-01

    Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions. Warming the sorbitol-water mixtures from 100 to 228 K resulted in partial ice melting, with simultaneous reduction in the microstrain and increase in crystallite size, that is, recrystallization. In contrast to sorbitol solutions, ice crystals in the BSA solutions preserved both the microstrain and smaller crystallite size on partial melting, demonstrating that BSA inhibits ice recrystallization. The results are consistent with BSA partitioning into quasi-liquid layer on ice crystals but not with a direct protein-ice interaction and protein sorption on ice surface. The study shows for the first time that a common (i.e., not-antifreeze) protein can have a major impact on ice recrystallization and also presents synchrotron X-ray diffraction as a unique tool for quantification of crystallinity and disorder in frozen aqueous systems. PMID:27287516

  7. Defect characterization and stress analysis by white beam synchrotron X-ray topography in single crystal semiconducting materials

    NASA Astrophysics Data System (ADS)

    Sarkar, Vishwanath

    Semiconductor devices are becoming increasingly more complex as the number of transistors increases in the same Integrated Circuit (IC) area. Due to the complexity in design; processing and packaging of the device plays a crucial role in the IC fabrication. Package induced residual stress are not only detrimental to device performance but can also lead to device failure. We propose a non-destructive method to determine the complete stress state at each point on a packaged Silicon device. Surface and edge defect created as a result of various manufacturing steps were characterized using different techniques, primarily X-ray diffraction topography, optical microscopy, SEM and TEM. Residual stress plays an important role in the performance and lifetime of single crystal device material. Here we present a novel technique using white beam synchrotron X-ray diffraction reticulography, Stress Mapping and Analysis via Ray Tracing (SMART) in order to determine residual stress level at an array of points over the entire crystal area. This method has a unique advantage compared with other stress measurement technique in that it can evaluate all six components of the stress tensor. The underlying experimental technique is based on white beam synchrotron X-ray diffraction topography and ray tracing. An array of X-ray micro-beam is illuminated on the single crystal sample and multiple reflections (reticulographs) are recorded simultaneously on a photographic film. Crystallographic plane normal vector at the location of each micro-beam in the crystal is calculated. The variation of the plane normal vector direction is due to residual strain (both sheer and dilatational) present in the crystal. By considering three different diffracting planes and corresponding reticulograph a complete state of stress is calculated. Principle, applications and limitations are discussed. White beam synchrotron reticulography is used in reflection geometry to evaluate complete residual stress tensor

  8. Melting curve of NaCl determined using synchrotron x-ray radiography

    NASA Astrophysics Data System (ADS)

    Chen, J.; Yu, T.; Long, H.; Wang, L.; Garai, J.

    2009-12-01

    NaCl has been widely used as a pressure calibrant in in-situ high pressure synchrotron x-ray study. The applicable pressure and temperature range of this calibrant is from ambient condition up to B1-B2 transition in pressure and to melting in temperature. Melting data of NaCl at high pressures are still very limited. We have conducted comparative experiments to study melting of NaCl using energy dispersive x-ray diffraction and radiographic imaging at high pressure up to 8.8GPa. The experiments were carried out using the cubic-type multi-anvil pressure (SAM85) at the X17B2 beamline of the National Synchrotron Light Source (NSLS). In the x-ray diffraction experiments, melting is inferred when disappearance of diffraction peak of NaCl from a mixture of NaCl+BN (to reduce possible grain growth) is observed. In the x-ray radiography experiment, a WC sphere is place in the top portion of pure NaCl sample; melting is inferred when the WC sphere start to drop in the sample. The experimental result indicates that the melting temperatures determined from the two types of observations may differ by 60°C at 5 GPa. Due to unavoidable grain growth near melting, x-ray diffraction signals may disappear from the point solid state detector even though the melting is not achieved. Therefore the radiography method may reflect more accurate measurement of melting temperature. Melting curve of NaCl was measured up to 1.8 GPa by Clark et al (1), and between 2 and 4 GPa by Pistorius (2). The new melting data are consistent with the previous results. All the experimental are in good agreement with theoretical prediction using Simon fusion equation (2) and the relation between melting temperature and Debye temperature (3). References: (1) Clark, Jr. Effect of Pressure on the Melting Points of Eight Alkali Halides, Journal of Chemical Physics 31 (6) 1526-1531 (1959). (2) Kraut and Kennedy, New Melting Law at High Pressures, Physical Review 151 (2) 668-675 (1966) (3) J. Garai, and J. Chen

  9. Structural characterization of sol-gel derived oxide nanostuctures using synchrotron x-ray techniques

    NASA Astrophysics Data System (ADS)

    Sun, Tao

    Ceramic oxides possess extraordinarily rich functionalities. With the advent of nanofabrication techniques, it is now possible to grow nanostructured oxides with precise control of composition, morphology, and microstructure, which has re-vitalized the research in the field of traditional ceramics. The unexpected behavior and enhanced properties of oxide nanostructures have been extensively reported. However, knowledge about the underlying mechanisms as well as structural implications is still quite limited. Therefore, it is imperative to develop and employ sophisticated characterization tools for unraveling the structure-property relationships for oxide nanostructures. The present thesis work aims at addressing the critical issues associated with fabrication, and more importantly, structural characterization of functional oxide nanostructures. The dissertation starts with introducing the strategy for synthesizing phase-pure and highly controlled oxide nanostructures using sol-gel deposition and an innovative approach called "soft" electron beam lithography. Some specific oxides are chosen for the present study, such as BiFeO3, CoFe2O4, and SnO2, because of their scientific and technological significance. Subsequent to fabrication of tailored oxide nanostructures, advanced synchrotron x-ray scattering techniques have been applied for structural characterization. The nucleation and growth behavior of BiFeO3 thin film was investigated using in situ grazing-incidence small-angle x-ray scattering (GISAXS) technique. The results reveal that the kinetics for early-stage nuclei growth are governed by the oriented-attachment model. Moreover, the porous structures of undoped and Pd-doped semiconducting SnOx thin films were quantitatively characterized using GISAXS. By correlating the structural parameters with H2 sensitivity of SnOx films, it is found out that the microstructure of doped film is favorable for gas sensing, but it is not the major reason for the overall

  10. Ptychographic coherent x-ray surface scattering imaging

    NASA Astrophysics Data System (ADS)

    Kim, Jong Woo; Jiang, Zhang; Sun, Tao; Wang, Jin

    Lensless x-ray coherent diffraction imaging enables the determination of nano-scaled structures in physical and biological sciences. Several coherent diffractive imaging (CDI) methods have been developed in both transmission and reflection modes such as Bragg CDI, plane-wave CDI, Fresnel CDI, coherent surface scattering imaging (CSSI) and so on. The grazing-incidence coherent surface scattering (CSSI) technique, which is recently developed by T. Sun et al., takes advantage of enhanced x-ray surface scattering and interference near total external reflection, and thereby overcomes some limitations that the transmission mode have. However, the sample size can be investigated is limited by x-ray beam size because the sample is supposed to be isolated. We incorporated ptychographic algorithm with coherent surface scattering imaging to overcome this limitation and make it more useful and applicable. The ptychographic coherent surface scattering imaging technique enables us to measure 2D roughness of the flat surface such as thin film and silicon wafer regardless of the surface area. LDRD.