Science.gov

Sample records for suzaku broadband x-ray

  1. Broadband X-ray Spectroscopy of the ADC Source 4U 1822-37 with Suzaku

    NASA Technical Reports Server (NTRS)

    Cottam, J.; White, N.

    2006-01-01

    We will present the broadband spectra of the low mass x-ray binary 4U 1822-37, recently observed with Suzaku. 4U 1822-37 is the canonical accretion disk corona (ADC) source where the compact object is obscured by an extended corona that intercepts and scatters the central continuum emission, some of which is then reprocessed in the outer regions of the accretion disk. 4U 1822-37 therefore serves as an important link between x-ray binaries and AGN. The broadband x-ray spectra from the Suzaku XIS and HXD provide a unique opportunity to probe the physical conditions in the corona and the accretion disk for this important accretion geometry.

  2. SUZAKU OBSERVATIONS OF γ-RAY BRIGHT RADIO GALAXIES: ORIGIN OF THE X-RAY EMISSION AND BROADBAND MODELING

    SciTech Connect

    Fukazawa, Yasushi; Itoh, Ryosuke; Tokuda, Shin'ya; Finke, Justin; Stawarz, Łukasz; Tanaka, Yasuyuki

    2015-01-10

    We performed a systematic X-ray study of eight nearby γ-ray bright radio galaxies with Suzaku in order to understand the origins of their X-ray emissions. The Suzaku spectra for five of those have been presented previously, while the remaining three (M87, PKS 0625–354, and 3C 78) are presented here for the first time. Based on the Fe-K line strength, X-ray variability, and X-ray power-law photon indices, and using additional information on the [O III] line emission, we argue for a jet origin of the observed X-ray emission in these three sources. We also analyzed five years of Fermi Large Area Telescope (LAT) GeV gamma-ray data on PKS 0625–354 and 3C 78 to understand these sources within the blazar paradigm. We found significant γ-ray variability in the former object. Overall, we note that the Suzaku spectra for both PKS 0625–354 and 3C 78 are rather soft, while the LAT spectra are unusually hard when compared with other γ-ray detected low-power (FR I) radio galaxies. We demonstrate that the constructed broadband spectral energy distributions of PKS 0625–354 and 3C 78 are well described by a one-zone synchrotron/synchrotron self-Compton model. The results of the modeling indicate lower bulk Lorentz factors compared to those typically found in other BL Lacertae (BL Lac) objects, but consistent with the values inferred from modeling other LAT-detected FR I radio galaxies. Interestingly, the modeling also implies very high peak (∼10{sup 16} Hz) synchrotron frequencies in the two analyzed sources, contrary to previously suggested scenarios for Fanaroff-Riley (FR) type I/BL Lac unification. We discuss the implications of our findings in the context of the FR I/BL Lac unification schemes.

  3. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    SciTech Connect

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.; Fuerst, F.; Madsen, K. K.; Rana, V.; Stern, D.; Miller, J. M.; Bachetti, M.; Barret, D.; Webb, N.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Fabian, A. C.; Parker, M. L.; Hailey, C. J.; Ptak, A.; Zhang, W. W.

    2014-09-20

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L {sub X} = (1.90 ± 0.03) × 10{sup 40} erg s{sup –1} to L {sub X} = (3.35 ± 0.03) × 10{sup 40} erg s{sup –1}. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.

  4. The broad-band X-ray spectrum of IC 4329A from a joint NuSTAR/Suzaku observation

    SciTech Connect

    Brenneman, L. W.; Elvis, M.; Madejski, G.; Fuerst, F.; Harrison, F. A.; Grefenstette, B. W.; Madsen, K. K.; Rivers, E.; Walton, D. J.; Matt, G.; Marinucci, A.; Ballantyne, D. R.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Hailey, C. J.; Stern, D.; Zhang, W. W.

    2014-06-10

    We have obtained a deep, simultaneous observation of the bright, nearby Seyfert galaxy IC 4329A with Suzaku and NuSTAR. Through a detailed spectral analysis, we are able to robustly separate the continuum, absorption, and distant reflection components in the spectrum. The absorbing column is found to be modest (∼6×10{sup 21} cm{sup −2} ), and does not introduce any significant curvature in the Fe K band. We are able to place a strong constraint on the presence of a broadened Fe Kα line (E{sub rest}=6.46{sub −0.07}{sup +0.08} keV with σ=0.33{sub −0.07}{sup +0.08} keV and EW=34{sub −7}{sup +8} eV), though we are not able to constrain any of the parameters of a relativistic reflection model. These results highlight the range in broad Fe K line strengths observed in nearby, bright, active galactic nuclei (roughly an order of magnitude), and imply a corresponding range in the physical properties of the inner accretion disk in these sources. We have also updated our previously reported measurement of the high-energy cutoff of the hard X-ray emission using both observatories rather than just NuSTAR alone: E {sub cut} = 186 ± 14 keV. This high-energy cutoff acts as a proxy for the temperature of the coronal electron plasma, enabling us to further separate this parameter from the plasma's optical depth and to update our results for these parameters as well. We derive kT=50{sub −3}{sup +6} keV with τ=2.34{sub −0.11}{sup +0.16} using a spherical geometry, kT = 61 ± 1 keV with τ = 0.68 ± 0.02 for a slab geometry, with both having an equivalent goodness-of-fit.

  5. BROADBAND X-RAY SPECTRA OF TWO LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI NGC 1566 AND NGC 4941 OBSERVED WITH SUZAKU

    SciTech Connect

    Kawamuro, Taiki; Ueda, Yoshihiro; Tazaki, Fumie; Terashima, Yuichi

    2013-06-20

    We report the first broadband X-ray spectra of the low-luminosity active galactic nuclei (LLAGNs), NGC 1566 (type 1.5) and NGC 4941 (type 2), observed with Suzaku and Swift/BAT covering the 0.5-195 keV band. Both targets have hard X-ray luminosities of {approx}10{sup 41-42} erg s{sup -1} in the 15-55 keV band. The spectra of the nucleus are well reproduced by a sum of partially or fully covered transmitted emission and its reflection from the accretion disk, reprocessed emission from the torus accompanied by a strong narrow iron-K{alpha} line, and a scattered component (for NGC 4941). We do not significantly detect a broad iron-K{alpha} line from the inner accretion disk in both targets, and obtain an upper limit on the corresponding solid angle of {Omega}/2{pi} < 0.3 in NGC 1566. The reflection strength from the torus is moderate, {Omega}/2{pi}=0.45{sup +0.13}{sub -0.10} in NGC 1566 and {Omega}/2{pi}=0.64{sup +0.69}{sub -0.27} in NGC 4941. Comparison of the equivalent width of the narrow iron-K{alpha} line with a model prediction based on a simple torus geometry constrains its half-opening angle to be {theta}{sub oa} {approx_equal} 60 Degree-Sign -70 Degree-Sign in NGC 4941. These results agree with the obscured AGN fraction obtained from hard X-ray and mid-infrared selected samples at similar luminosities. Our results support the implication that the averaged covering fraction of AGN tori is peaked at L {approx} 10{sup 42-43} erg s{sup -1} but decreases toward lower luminosities.

  6. Broadband X-ray study of the galactic black hole binary 4U 1630-47 with Suzaku

    NASA Astrophysics Data System (ADS)

    Hori, T.; Ueda, Y.; Done, C.; Shidatsu, M.; Kawamuro, T.; Kubota, A.; Nakahira, S.

    2016-05-01

    We present the results from our Suzaku observations of the Galactic black hole binary 4U 1630-47. 4U 1630-47 was observed in the very high state (VHS) during the 2012 September-October outburst. The inner disk appears slightly truncated by comparison with a previous high/soft state (HSS) of this source, even by taking into account energetic coupling between the disk and corona. The spectra do not show the Doppler-shifted emission lines indicating baryonic jets that were seen four days previously in an XMM-Newton observation, despite the source being in a similar state. There are no significant absorption lines from highly ionized iron ions. We also observed 4U 1630-47 in the HSS simultaneously with Suzaku and NuSTAR in an early epoch of the 2015 outburst. All Suzaku spectra in the HSS show variable iron-K absorption line features. We find that the ionization state of the disk wind rapidly increased when the continuum showed significant spectral hardening. This behavior is consistent with that expected from a thermally driven wind.

  7. Supergiant X-Ray Binaries Observed by Suzaku

    NASA Technical Reports Server (NTRS)

    Bodaghee, A.; Tomsick, J. A.; Rodriquez, J.; Chaty, S.; Pottschmidt, K.; Walter, R.; Romano, P.

    2011-01-01

    Suzaku observations are presented for the high-mass X-ray binaries IGR 116207-5129 and IGR 117391-3021. For IGR 116207-5129, we provide the first X-ray broadband (0.5-60 keV) spectrum from which we confirm a large intrinsic column density (N(sub H) = 1.6 x 10(exp 23)/sq cm), and we constrain the cutoff energy for the first time (E(sub cut) = 19 keV). A prolonged (> 30 ks) attenuation of the X-ray flux was observed which we tentatively attribute to an eclipse of the probable neutron star by its massive companion, in a binary system with an orbital period between 4 and 9 days, and inclination angles> 50 degrees. For IGRJ17391-3021, we witnessed a transition from quiescence to a low-activity phase punctuated by weak flares whose peak luminosities in the 0.5-10keV band are only a factor of 5 times that of the pre-flare emission. These micro flares are accompanied by an increase in NH which suggests the accretion of obscuring clumps of wind. We now recognize that these low-activity epochs constitute the most common emission phase for this system, and perhaps in other supergiant fast X-ray transients (SFXTs) as well. We close with an overview of our upcoming program in which Suzaku will provide the first ever observation of an SFXT (IGRJ16479-4514) during a binary orbit enabling us to probe the accretion wind at every phase.

  8. Symbiotic Stars in X-Rays. III. Suzaku Observations

    NASA Astrophysics Data System (ADS)

    Nuñez, N. E.; Nelson, T.; Mukai, K.; Sokoloski, J. L.; Luna, G. J. M.

    2016-06-01

    We describe the X-ray emission as observed by Suzaku from five symbiotic stars that we selected for deep Suzaku observations after their initial detection with ROSAT, ASCA, and Swift. We find that the X-ray spectra of all five sources can be adequately fit with absorbed optically thin thermal plasma models, with either single- or multi-temperature plasmas. These models are compatible with the X-ray emission originating in the boundary layer between an accretion disk and a white dwarf. The high plasma temperatures of kT > 3 keV for all five targets were greater than expected for colliding winds. Based on these high temperatures as well as previous measurements of UV variability and UV luminosity and the large amplitude of X-ray flickering in 4 Dra, we conclude that all five sources are accretion-powered through predominantly optically thick boundary layers. Our X-ray data allow us to observe a small optically thin portion of the emission from these boundary layers. Given the time between previous observations and these observations, we find that the intrinsic X-ray flux and the intervening absorbing column can vary by factors of three or more on a timescale of years. However, the location of the absorber and the relationship between changes in accretion rate and absorption are still elusive.

  9. Detecting X-ray Emission from Cometary Atmospheres Using the Suzaku X-ray Imaging Spectrometer

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Bodewits, D; Porter, F S; Ezoe, Y; Hamaguchi, K; Hanya, M; Itoh, M; Kilbourne, C A; Kohmura, T; Maeda, Y; Negoro, H; Tsuboi, Y; Tsunemi, H; Urata, Y

    2009-11-16

    The Suzaku X-ray imaging spectrometer has been used to observe the X-ray emission from comets 73P/Schwassmann-Wachmann 3C and 8P/Tuttle. Comet 73P/Schwassmann-Wachmann 3C was observed during May and June of 2006, while it was near perihelion and passed within 0.1 AU of the Earth. Comet 8P/Tuttle was observed during January of 2008 when it was at its closest approach to the Earth at 0.25 AU, and again near perihelion at a distance of 0.5 Au from Earth. In the case of comet 73P/Schwassmann Wachmann 3C, the XIS spectra show line emission from highly charged oxygen and carbon ions as well as emission from what is most likely L-shell transitions from Mg, Si, and S ions. This line emission is caused by charge exchange recombination between solar wind ions and cometary neutrals, and can be used as a diagnostic of the solar wind. Here we present some of the results of the observation of the comet 73P/Schwassmann-Wachmann 3C.

  10. Suzaku observations of the diffuse X-ray emission across the Fermi bubbles' edges

    SciTech Connect

    Kataoka, J.; Tahara, M.; Takahashi, Y.; Takeuchi, Y.; Totani, T.; Sofue, Y.; Stawarz, Ł.; Kimura, M.; Takei, Y.; Tsunemi, H.; Cheung, C. C.; Inoue, Y.; Nakamori, T.

    2013-12-10

    We present Suzaku X-ray observations along two edge regions of the Fermi Bubbles, with eight ≅ 20 ks pointings across the northern part of the North Polar Spur (NPS) surrounding the north bubble and six across the southernmost edge of the south bubble. After removing compact X-ray features, diffuse X-ray emission is clearly detected and is well reproduced by a three-component spectral model consisting of unabsorbed thermal emission (temperature kT ≅ 0.1 keV) from the Local Bubble, absorbed kT ≅ 0.3 keV thermal emission related to the NPS and/or Galactic halo (GH), and a power-law component at a level consistent with the cosmic X-ray background. The emission measure (EM) of the 0.3 keV plasma decreases by ≅ 50% toward the inner regions of the northeast bubble, with no accompanying temperature change. However, such a jump in the EM is not clearly seen in the south bubble data. While it is unclear whether the NPS originates from a nearby supernova remnant or is related to previous activity within or around the Galactic center, our Suzaku observations provide evidence that suggests the latter scenario. In the latter framework, the presence of a large amount of neutral matter absorbing the X-ray emission as well as the existence of the kT ≅ 0.3 keV gas can be naturally interpreted as a weak shock driven by the bubbles' expansion in the surrounding medium, with velocity v {sub exp} ∼ 300 km s{sup –1} (corresponding to shock Mach number M≃1.5), compressing the GH gas to form the NPS feature. We also derived an upper limit for any non-thermal X-ray emission component associated with the bubbles and demonstrate that, in agreement with the aforementioned findings, the non-thermal pressure and energy estimated from a one-zone leptonic model of its broadband spectrum, are in rough equilibrium with that of the surrounding thermal plasma.

  11. Contemporaneous Chandra HETG and Suzaku X-ray observations of NGC 4051

    NASA Astrophysics Data System (ADS)

    Lobban, A. P.; Reeves, J. N.; Miller, L.; Turner, T. J.; Braito, V.; Kraemer, S. B.; Crenshaw, D. M.

    2011-07-01

    We present the results of a deep 300 ks Chandra High Energy Transmission Grating (HETG) observation of the highly variable narrow-line Seyfert Type 1 galaxy NGC 4051. The HETG spectrum reveals 28 significant soft X-ray ionized lines in either emission or absorption; primarily originating from H-like and He-like K-shell transitions of O, Ne, Mg and Si (including higher order lines and strong forbidden emission lines from O VII and Ne IX) plus high-ionization L-shell transitions from Fe XVII to Fe XXII and lower ionization inner-shell lines (e.g. O VI). Modelling the data with XSTAR requires four distinct ionization zones for the gas, all outflowing with velocities <1000 km s-1. A selection of the strongest emission/absorption lines appear to be resolved with full width at half-maximum (FWHM) of ˜600 km s-1. We also present the results from a quasi-simultaneous 350 ks Suzaku observation of NGC 4051 where the X-ray Imaging Spectrometer (XIS) spectrum reveals strong evidence for blueshifted absorption lines at ˜6.8 and ˜7.1 keV, consistent with previous findings. Modelling with XSTAR suggests that this is the signature of a highly ionized, high-velocity outflow (log ξ= 4.1+0.2-0.1; vout˜-0.02c) which potentially may have a significant effect on the host galaxy environment via feedback. Finally, we also simultaneously model the broad-band 2008 XIS+HXD (Hard X-ray Detector) Suzaku data with archival Suzaku data from 2005 when the source was observed to have entered an extended period of low flux in an attempt to analyse the cause of the long-term spectral variability. We find that we can account for this by allowing for large variations in the normalization of the intrinsic power-law component which may be interpreted as being due to significant changes in the covering fraction of a Compton-thick partial-coverer obscuring the central continuum emission.

  12. Suzaku X-ray observation of the GK Persei dwarf nova outburst in 2015

    NASA Astrophysics Data System (ADS)

    Yuasa, Takayuki; Hayashi, Takayuki; Ishida, Manabu

    2016-06-01

    The intermediate polar GK Per exhibited a dwarf nova outburst in 2015 March-April. Suzaku X-ray telescope serendipitously captured the onset of the outburst during its pre-scheduled pointing observation spanning four days. In this paper, we present temporal and spectral analysis results of this outburst, together with those from archival data of quiescent obtained in 2009 and 2014. Our temporal analysis confirmed previously reported spin modulation of X-ray count rates in outburst with a white dwarf (WD) spin period of PWD = 351.4 ± 0.5 s. The modulation is also detected in the hard X-ray band (16-60 keV), and spectral modelling of the absorption suggests obscuration by a dense absorption with a line-of-sight column density of NH > 1023 cm-2. A complex time evolution of spin modulation profiles is seen; the spin minimum phase shifts from phase ˜0.25 in the first half of the observation to ˜0.65 in the second one, and the pulse shape significantly changes epoch by epoch. Spectral fitting in the Fe K α band revealed an increase of the fluorescent line equivalent width, from ˜80 eV (quiescent) to ˜140 eV (outburst). The equivalent widths of He-like and H-like Fe K α are consistent with being constant at ˜40 eV in the two states. Broad-band spectral fitting in the 2-60 keV band resulted in a sub-solar Fe abundance of ˜0.1 Z⊙ and the maximum plasma temperature kTmax ˜ 50-60 keV when the isobaric cooling-flow model was applied. Based on the very small temperature change against a 6-7 times increased accretion rate, the accretion geometry in early outburst is discussed.

  13. A Comprehensive Spectral Analysis of the X-Ray Pulsar 4U 1907+09 from Two Observations with the Suzaku X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Rivers, Elizabeth; Markowitz, Alex; Pottschmidt, Katja; Roth, Stefanie; Barragan, Laura; Furst, Felix; Suchy, Slawomir; Kreykenbohm, Ingo; Wilms, Jorn; Rothschild, Richard

    2009-01-01

    We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory, The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx. 19 keV. Additionally, using the narrow CCD response of Suzaku near 6 ke V allows us to study in detail the Fe K bandpass and to quantify the Fe Kp line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of N(sub H) approx. 2 x 10(exp 22)/sq cm, consistent with a wind accreting geometry, and a high Fe abundance (approx. 3 - 4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind

  14. A COMPREHENSIVE SPECTRAL ANALYSIS OF THE X-RAY PULSAR 4U 1907+09 FROM TWO OBSERVATIONS WITH THE SUZAKU X-RAY OBSERVATORY

    SciTech Connect

    Rivers, Elizabeth; Markowitz, Alex; Suchy, Slawomir; Rothschild, Richard; Pottschmidt, Katja; Roth, Stefanie; Barragan, Laura; Fuerst, Felix; Kreykenbohm, Ingo; Wilms, Joern

    2010-01-20

    We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku Observatory. The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx19 keV. Additionally, using the narrow CCD response of Suzaku near 6 keV allows us to study in detail the Fe K bandpass and to quantify the Fe Kbeta line for this source for the first time. The source is absorbed by fully covering material along the line of sight with a column density of N{sub H} approx 2 x 10{sup 22} cm{sup -2}, consistent with a wind-accreting geometry, and a high Fe abundance (approx3-4 times solar). Time- and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in N{sub H} along the line of sight, perhaps indicating clumpiness in the stellar wind.

  15. An X-Ray Counterpart of HESS J1427-608 Discovered with Suzaku

    NASA Astrophysics Data System (ADS)

    Fujinaga, Takahisa; Mori, Koji; Bamba, Aya; Kimura, Shoichi; Dotani, Tadayasu; Ozaki, Masanobu; Matsuta, Keiko; Pülhofer, Gerd; Uchiyama, Hideki; Hiraga, Junko S.; Matsumoto, Hironori; Terada, Yukikatsu

    2013-06-01

    We report on the discovery of an X-ray counterpart of the unidentified very high-energy gamma-ray source HESS J1427-608. In the sky field coincident with HESS J1427-608, an extended source was found in the 2-8 keV band, and was designated as Suzaku J1427-6051. Its X-ray radial profile has an extension of σ = 0.'9 ± 0.'1 if approximated by a Gaussian. The spectrum was well fitted by an absorbed power-law with NH = (1.1 ± 0.3) × 1023 cm-2, Γ = 3.1+0.6-0.5, and the unabsorbed flux FX = (9+4-2) × 10-13 erg s-1 cm-2 in the 2-10 keV band. Using XMM-Newton archive data, we found seven point sources in the Suzaku source region. However, because their total flux and absorbing column densities are more than an order of magnitude lower than those of Suzaku J1427-6051, we consider that they are unrelated to the Suzaku source. Thus, Suzaku J1427-6051 is considered to be a truly diffuse source and an X-ray counterpart of HESS J1427-608. The possible nature of HESS J1427-608 is discussed based on the observational properties.

  16. Measurements of reflectivity of x-ray mirror for Suzaku satellite

    NASA Astrophysics Data System (ADS)

    Tamura, Keisuke; Ogasaka, Yasushi; Naitou, Masataka; Maeda, Yoshitomo; Ebara, Masatoshi; Itoh, Akiharu; Iizuka, Ryo; Yokoyama, Yushi

    2006-06-01

    Detailed measurements of reflectivity of gold, which is used for X-ray mirror for X-ray telescope onboard "Suzaku" satellite was performed in the synchrotron radiation facility SPring-8 BL15XU. We measured reflectivity of the mirror, which uses total reflection of gold thin layer. Grazing incidence angle is 0.5 degree and incident X-ray monochromatized in the energy range from 2.2 keV to 3.5 keV, where M-edge structure of gold appears. We used double crystal monochrometer using Si(111) crystal, (ΔE/E ~ 10 -4) to monochromatize the incident X-ray. Energy calibration was performed using L-edge of molybdenum (2530.2 eV) and K-edge of argon (3205.9 eV). From the results, that the energy of M-V and M-IV edge of gold is different from optical constant table, and almost same as the value reported by Graessle et al.(1992).1 It is important to study the optical constants of gold or other mirror material for X-ray astronomy. This results will be feed back to the response function of the X-ray telescope of Suzaku satellite. It is very important for X-ray spectroscopy in X-ray astronomy.

  17. Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie

    2011-01-01

    Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  18. Suzaku observations of cyclotron resonances in binary X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Terada, Y.; Mihara, T.; Nagase, F.; Angelini, L.; Dotani, T.; Enoto, T.; Kitamoto, S.; Kohmura, T.; Kokubun, M.; Kotani, T.; Makishima, K.; Naik, S.; Nakajima, M.; Sugita, S.; Sudoh, K.; Suzuki, M.; Takahashi, H.; Yonetoku, D.; Yoshida, A.

    Since the typical magnetic field strengths of neutron stars reach 10 12 Gauss, the cyclotron resonance produced by a transition between Landau levels appears in the X-ray band. Systematic measurements of cyclotron absorption features in bright sources have been carried out extensively with Ginga, RXTE, BeppoSAX, and INTEGRAL. The cyclotron resonance phenomena can now be studied with a higher sensitivity over a wider hard X-ray band than before, thanks to the Hard X-ray Detector onboard the fifth Japanese X-ray satellite, Suzaku, launched in July, 2005. Suzaku observed Hercules X-1 mainly for calibration purposes, and successfully confirmed its well-known cyclotron absorption feature. Furthermore, the transient pulsar A0535+262 was observed with Suzaku on 14 September, 2005, in the decay phase of its minor outburst (Finger, M.F. Renewed Activity from A0535+26. The Astronomer's Telegram, vol. 595, 2005). The cyclotron resonance of A0535+262 was successfully detected in absorption at about 45 keV (Inoue, H., Kunieda, H., White, N., Kelley, R., Mihara, T., Terada, Y., Takahashi, H., Kokubun, M., Makishima, K. Suzaku detection of cyclotron line near 50 keV for A0535+26. The Astronomer's Telegram vol. 595, 2005; Terada, Y., Mihara, T., Nakajima, M., et al. Cyclotron resonance energies at a low X-ray luminosity: A0535+262 observed with Suzaku. ApJL 648, L139-L142, 2006), even though the object was as dim as 30 mCrab at 20 keV. Compared with previous measurements of the same feature achieved at much brighter phases (e.g., Kretschmar, P., Kreykenbohm, I., Pottschmidt, et al. Integral observes possible cyclotron line at 47 keV for 1A0535+262. The Astronomer's Telegram, vol. 601, 2005; Wilson, C.A., Finger, M.H. RXTE confirms cyclotron line near 50 keV for A0535+26. The Astronomer's Telegram 605, 2005), the Suzaku results give a new constraint to luminosity-related changes in the resonance energy that are observed in other binary pulsars (Nakajima, M., Mihara, T., Makishima

  19. BROADBAND SPECTRAL ANALYSIS OF THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect

    Yuasa, Takayuki; Makishima, Kazuo; Nakazawa, Kazuhiro

    2012-07-10

    Detailed spectral analysis of the Galactic X-ray background emission, or the Galactic Ridge X-ray Emission (GRXE), is presented. To study the origin of the emission, broadband and high-quality GRXE spectra were produced from 18 pointing observations with Suzaku in the Galactic bulge region, with a total exposure of 1 Ms. The spectra were successfully fitted by a sum of two major spectral components: a spectral model of magnetic accreting white dwarfs with a mass of 0.66{sup +0.09}{sub -0.07} M{sub Sun} and a softer optically thin thermal emission with a plasma temperature of 1.2-1.5 keV that is attributable to coronal X-ray sources. When combined with previous studies that employed high spatial resolution of the Chandra satellite, the present spectroscopic result gives stronger support to the scenario that the GRXE is essentially an assembly of numerous discrete faint X-ray stars. The detected GRXE flux in the hard X-ray band was used to estimate the number density of the unresolved hard X-ray sources. When integrated over a luminosity range of {approx}10{sup 30}-10{sup 34} erg s{sup -1}, the result is consistent with a value that was reported previously by directly resolving faint point sources.

  20. X-Ray Spectra of the High-mass X-Ray Binary 4U 1700-37 Using BeppoSAX, Suzaku, and RXTE Observations

    NASA Astrophysics Data System (ADS)

    Seifina, Elena; Titarchuk, Lev; Shaposhnikov, Nikolai

    2016-04-01

    We present an X-ray spectral analysis of the high-mass binary 4U 1700-37 during its hard-soft state evolution. We use BeppoSAX, Suzaku, and Rossi X-ray Timing Explorer observations for this investigation. We argue that the X-ray broadband spectra during all of the spectral states can be adequately reproduced by a model consisting of a low-temperature blackbody component, two Comptonized components which are both due to the presence of a Compton cloud (CC) that up-scatters seed photons of Ts1 ≲ 1.4 keV and Ts2 < 1 keV, and an iron-line component. Using this model, we find that the photon power-law index is almost constant, Γ1 ∼ 2 for all spectral states. However, Γ2 shows behavior that is dependent on the spectral state. Namely, Γ2 is quasi-constant at the level of Γ2 ∼ 2 while the CC plasma temperature {{kT}}e(2) is less than 40 keV; on the other hand, Γ2 is in the range of 1.3 < Γ2 < 2 when {{kT}}e(2) is greater than 40 keV. We explain this quasi-stability of Γ during most of the hard-soft transitions of 4U 1700-37 in the framework of a model in which the resulting spectrum is described by two Comptonized components. We find that these Comptonized spectral components of the high-mass X-ray binaries 4U 1700-37 are similar to those previously found in neutron star (NS) sources. This index dependence versus both the mass accretion rate and kTe revealed in 4U 1700-37 is universal observational evidence for the presence of an NS in 4U 1700-37.

  1. Suzaku view of the Be/X-ray binary pulsar GX 304-1 during Type I X-ray outbursts

    NASA Astrophysics Data System (ADS)

    Jaisawal, Gaurava K.; Naik, Sachindra; Epili, Prahlad

    2016-04-01

    We report the timing and spectral properties of the Be/X-ray binary pulsar GX 304-1 using two Suzaku observations during its 2010 August and 2012 January X-ray outbursts. Pulsations at ˜275 s were clearly detected in the light curves from both observations. Pulse profiles were found to be strongly energy-dependent. During the 2010 observation, the prominent dips seen in soft X-ray (≤10 keV) pulse profiles were found to be absent at higher energies. However, during the 2012 observation, the pulse profiles were complex as a result of the presence of several dips. Significant changes in the shape of the pulse profiles were detected at high energies (>35 keV). A phase shift of ˜0.3 was detected while comparing the phase of the main dip in the pulse profiles below and above ˜35 keV. The broad-band energy spectrum of the pulsar was well described by a partially absorbed negative and positive power law with exponential cut-off (NPEX) model with 6.4-keV iron line and a cyclotron absorption feature. The energy of the cyclotron absorption line was found to be ˜53 and 50 keV for the 2010 and 2012 observations, respectively, indicating a marginal positive dependence on source luminosity. Based on the results obtained from phase-resolved spectroscopy, the absorption dips in the pulse profiles can be interpreted as due to the presence of additional matter at same phases. Observed positive correlation between the cyclotron line energy and luminosity, and the significant pulse-phase variation of cyclotron parameters are discussed from the perspective of theoretical models on the cyclotron absorption line in X-ray pulsars.

  2. Suzaku Observation of Diffuse X-ray Emission from the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Petre, Robert; Matsumoti, Hironori; Tsujimoto, Masahiro; Holt, Stephan S.; Ezoe, Yuichiro; Ozawa, Hideki; Tsuboi, Yohko; Soong, Yang; Kitamoto, Shunji; Sekiguchi, Akiko; Kokubun, Motohide

    2007-01-01

    We studied extended X-ray emission from the Carina Nebula taken with the Suzaku CCD camera XIS on 2005 Aug. 29. The X-ray morphology, plasma temperature and absorption to the plasma are consistent with the earlier Einstein results. The Suzaku spectra newly revealed emission lines from various spices including oxygen, but not from nitrogen. This result restricts the N/O ratio significantly low, compared with evolved massive stellar winds, suggesting that the diffuse emission is originated in an old supernova remnant or a super shell produced by multiple supernova remnants. The X-ray spectra from the north and south of eta Car showed distinct differences between 0.3-2 keV. The south spectrum shows strong L-shell lines of iron ions and K-shell lines of silicon ions, while the north spectrum shows them weak in intensity. This means that silicon and iron abundances are a factor of 2-4 higher in the south region than in the north region. The abundance variation may be produced by an SNR ejecta, or relate to the dust formation around the star forming core.

  3. X-Ray Emitting Ejecta in Puppis A Observed with Suzaku

    NASA Technical Reports Server (NTRS)

    Hwang, U.; Petre, R.; Flanagan, K.

    2008-01-01

    We report the detection and localization of X-ray emitting ejecta in the middle-aged Galactic supernova remnant Puppis A using five observations with the Suzaku X-ray Imaging Spectrometer to survey the eastern and middle portions of the remnant. A roughly 3' x 5', double-peaked region in the north center is found to be highly enriched in Si and other elements relative to the rest of the remnant. The X-ray fitted abundances are otherwise well below the solar values. While the ejecta-enhanced regions show some variation of relative element abundances, there is little evidence for a very strong enhancement of one element over the others in the imaged portion of the remnant, except possibly for a region of 0 and Ne enhancement in the remnant's south center. There is no spatial correlation between the compact [0 1111 emitting ejecta knots seen optically and the abundance enhancements seen in X-rays, although they are located in the same vicinity. The map of fitted column density shows strong variations across the remnant that echo earlier X-ray spectral hardness maps. The ionization age (as fitted for single temperature models) is sharply higher in a ridge behind the northeast-east boundary of the remnant, and is probably related to the strong molecular cloud interaction along that boundary. The temperature map, by comparison, shows relatively weak variations.

  4. In-Orbit Performance of the Hard X-Ray Detector on Borad Suzaku

    SciTech Connect

    Kokubun, Motohide; Makishima, Kazuo; Takahashi, Tadayuki; Murakami, Toshio; Tashiro, Makoto; Fukazawa, Yasushi; Kamae, Tuneyoshi; M.Madejski, Greg; Nakazawa, Kazuhiro; Yamaoka, Kazutaka; Terada, Yukikatsu; Yonetoku, Daisuke; Watanabe, Shin; Tamagawa, Toru; Mizuno, Tsunefumi; Kubota, Aya; Isobe, Naoki; Takahashi, Isao; Sato, Goro; Takahashi, Hiromitsu; Hong, Soojing; /Tokyo U. /Wako, RIKEN /JAXA, Sagamihara /Kanazawa U. /Saitama U. /Hiroshima U. /Aoyama Gakuin U. /Nihon U., Narashino /SLAC

    2007-10-26

    The in-orbit performance and calibration of the Hard X-ray Detector (HXD) on board the X-ray astronomy satellite Suzaku are described. Its basic performances, including a wide energy bandpass of 10-600 keV, energy resolutions of {approx}4 keV (FWHM) at 40 keV and {approx}11% at 511 keV, and a high background rejection efficiency, have been confirmed by extensive in-orbit calibrations. The long-term gains of PIN-Si diodes have been stable within 1% for half a year, and those of scintillators have decreased by 5-20%. The residual non-X-ray background of the HXD is the lowest among past non-imaging hard X-ray instruments in energy ranges of 15-70 and 150-500 keV. We provide accurate calibrations of energy responses, angular responses, timing accuracy of the HXD, and relative normalizations to the X-ray CCD cameras using multiple observations of the Crab Nebula.

  5. DISCOVERY OF DIFFUSE HARD X-RAY EMISSION AROUND JUPITER WITH SUZAKU

    SciTech Connect

    Ezoe, Y.; Ishikawa, K.; Ohashi, T.; Miyoshi, Y.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2010-02-01

    We report the discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter in a deep 160 ks Suzaku X-ray Imaging Spectrometer data. The emission is distributed over {approx}16 x 8 Jovian radius and spatially associated with the radiation belts and the Io Plasma Torus (IPT). It shows a flat power-law spectrum with a photon index of 1.4 {+-} 0.2 with the 1-5 keV X-ray luminosity of (3.3 {+-} 0.5)x10{sup 15} erg s{sup -1}. We discussed its origin and concluded that it seems to be truly diffuse, although a possibility of multiple background point sources cannot be completely rejected with a limited angular resolution. If it is diffuse, the flat continuum indicates that X-rays arise by the nonthermal electrons in the radiation belts and/or the IPT. The synchrotron and bremsstrahlung models can be rejected from the necessary electron energy and X-ray spectral shape, respectively. The inverse-Compton scattering off solar photons by ultra-relativistic (several tens MeV) electrons can explain the energy and the spectrum but the necessary electron density is {approx}>10 times larger than the value estimated from the empirical model of Jovian charge particles.

  6. PROPERTIES OF THE DIFFUSE X-RAY BACKGROUND TOWARD MBM20 WITH SUZAKU

    SciTech Connect

    Gupta, A.; Galeazzi, M.; Koutroumpa, D.; Lallement, R.

    2009-12-10

    We used Suzaku observations of the molecular cloud MBM20 and a low neutral hydrogen column density region nearby to separate and characterize the foreground and background diffuse X-ray emission. A comparison with a previous observation of the same regions with XMM-Newton indicates a significant change in the foreground flux which is attributed to Solar Wind Charge eXchange (SWCX). The data have also been compared with previous results from similar 'shadow' experiments and with a SWCX model to characterize its O VII and O VIII emission.

  7. Properties of the Diffuse X-ray Background toward MBM20 with Suzaku

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Galeazzi, M.; Koutroumpa, D.; Smith, R.; Lallement, R.

    2009-12-01

    We used Suzaku observations of the molecular cloud MBM20 and a low neutral hydrogen column density region nearby to separate and characterize the foreground and background diffuse X-ray emission. A comparison with a previous observation of the same regions with XMM-Newton indicates a significant change in the foreground flux which is attributed to Solar Wind Charge eXchange (SWCX). The data have also been compared with previous results from similar "shadow" experiments and with a SWCX model to characterize its O VII and O VIII emission.

  8. Systematic X-Ray Analysis of Radio Relic Clusters with Suzaku

    NASA Astrophysics Data System (ADS)

    Akamatsu, Hiroki; Kawahara, Hajime

    2013-02-01

    We undertook a systematic X-ray analysis of six giant radio relics in four clusters of galaxies using the Suzaku satellite. The sample included CIZA 2242.8+5301, Zwcl 2341.1-0000, the South-East part of A 3667 and previously published results of the North-West part of A 3667 and A 3376. Especially, we first observed the narrow (50 kpc) relic of CIZA 2242.8+5301 by the Suzaku satellite, which enabled us to reduce the projection effect. We report on X-ray detections of shocks at the positions of the relics in CIZA 2242.8+5301 and A 3667 SE. At the positions of the two relics in ZWCL 2341.1-0000, we did not detect shocks. From spectroscopic temperature profiles across the relic, we found that the temperature profiles exhibit significant jumps across the relics for CIZA 2242.8+5301, A 3376, A 3667 NW, and A 3667 SE. We estimated the Mach number from the X-ray temperature or pressure profile using the Rankine-Hugoniot jump condition, and compared it with the Mach number derived from the radio spectral index. The resulting Mach numbers (M = 1.5-3) are almost consistent with each other, while the Mach number of CIZA 2242.8+5301, derived from the X-ray data, tends to be lower than that of the radio observation. These results indicate that the giant radio relics in merging clusters are related to the shock structure, as suggested by previous studies of individual clusters.

  9. Suzaku observations of the hard X-ray spectrum of Vela Jr. (SNR RX J0852.0-4622)

    NASA Astrophysics Data System (ADS)

    Takeda, Sawako; Bamba, Aya; Terada, Yukikatsu; Tashiro, Makoto S.; Katsuda, Satoru; Yamazaki, Ryo; Ohira, Yutaka; Iwakiri, Wataru

    2016-06-01

    We report the results of Suzaku observations of the young supernova remnant, Vela Jr. (RX J0852.0-4622), which is known to emit synchrotron X-rays, as well as TeV gamma-rays. Utilizing 39 Suzaku mapping observation data from Vela Jr., a significant hard X-ray emission is detected with the hard X-ray detector (HXD) from the northwest TeV-emitting region. The X-ray spectrum is reproduced well by a single power-law model with a photon index of 3.15^{+1.18}_{-1.14} in the 12-22 keV band. Compiling this hard X-ray spectrum with the soft X-ray spectrum simultaneously observed with the X-ray imaging spectrometer (XIS) onboard Suzaku, we find that the wide-band X-ray spectrum in the 2-22 keV band is reproduced with a single power-law or concave broken power-law model, which are statistically consistent with each other. Whichever of the two models, single or broken power-law, is appropriate, clearly the spectrum has no roll-off structure. Applying this result to the method introduced in Yamazaki et al. (2014, Res. Astron. Astrophys., 14, 165), we find that a one-zone synchrotron model with electron spectrum having a power-law plus exponential cut-off may not be applicable to Vela Jr.

  10. Shadowing Observations of the Soft X-ray Background with XMM-Newton and Suzaku

    NASA Astrophysics Data System (ADS)

    Henley, David; Shelton, Robin L.; Cumbee, Renata; Stancil, Phillip C.

    2014-08-01

    Shadows in the soft X-ray background allow one to separate the Galactic halo's X-ray emission from the local foreground emission due to the Local Bubble and/or solar wind charge exchange. Accurate measurements of the foreground emission and of the halo emission are needed to test models of solar wind charge exchange and of the origin of the hot halo gas, respectively.We present results from XMM-Newton and Suzaku observations of six shadowing interstellar clouds. While results for some of these shadows have previously been published, this is the first uniform analysis of a sample of CCD-resolution shadowing observations. Our sample includes two shadows in the northern Galactic hemisphere, for which there are no published CCD-resolution shadowing observations, and a compact shadowing cloud that fits into a single XMM-Newton field.For each shadow, we fit spectral models to the on- and off-shadow spectra in order to separate the Galactic halo emission from the foreground emission. For this purpose, we explore different foreground spectral models, including a thermal plasma (Local Bubble) model, and solar wind charge exchange models. We can therefore examine the sensitivity of the inferred halo parameters to the assumed foreground model. In addition, two of our shadows have been observed with both XMM-Newton and Suzaku - we can use these shadows to test whether or not a given foreground model yields consistent halo measurements from two observations separated in time.

  11. Suzaku Observations of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-ray Eclipse

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Zietsman, E.; Still, M.

    2009-12-01

    V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an Rossi X-Ray Timing Explorer all-sky slew survey (XSS) source. Here, we report on the pointed X-ray observations of this object using Suzaku. V893 Sco was in quiescence at the time, as indicated by the coordinated optical photometry we obtained at the South African Astronomical Observatory. Our Suzaku data show V893 Sco to be X-ray bright, with a highly absorbed spectrum. Most importantly, we have discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in X-ray light curves of a dwarf nova. Our preliminary simulations demonstrate that the partial X-ray eclipse can be in principle reproduced if the white dwarf in V893 Sco is partially eclipsed. Higher quality observations of this object have the potential to place significant constraints on the latitudinal extent of the X-ray emission region and thereby discriminating between an equatorial boundary layer and a spherical corona. The partial X-ray eclipse therefore makes V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.

  12. SUZAKU OBSERVATIONS OF THE DWARF NOVA V893 SCORPII: THE DISCOVERY OF A PARTIAL X-RAY ECLIPSE

    SciTech Connect

    Mukai, K.; Still, M.

    2009-12-10

    V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an Rossi X-Ray Timing Explorer all-sky slew survey (XSS) source. Here, we report on the pointed X-ray observations of this object using Suzaku. V893 Sco was in quiescence at the time, as indicated by the coordinated optical photometry we obtained at the South African Astronomical Observatory. Our Suzaku data show V893 Sco to be X-ray bright, with a highly absorbed spectrum. Most importantly, we have discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in X-ray light curves of a dwarf nova. Our preliminary simulations demonstrate that the partial X-ray eclipse can be in principle reproduced if the white dwarf in V893 Sco is partially eclipsed. Higher quality observations of this object have the potential to place significant constraints on the latitudinal extent of the X-ray emission region and thereby discriminating between an equatorial boundary layer and a spherical corona. The partial X-ray eclipse therefore makes V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.

  13. TWO RAPIDLY VARIABLE GALACTIC X-RAY TRANSIENTS OBSERVED WITH CHANDRA, XMM-NEWTON, AND SUZAKU

    SciTech Connect

    Heinke, C. O.; Tomsick, J. A.; Yusef-Zadeh, F.; Grindlay, J. E.

    2009-08-20

    We have identified two moderately bright, rapidly variable transients in new and archival X-ray data near the Galactic center. Both objects show strong, flaring variability on timescales of tens to thousands of seconds, evidence of N{sub H} variability, and hard spectra. XMMU J174445.5-295044 is seen at 2-10 keV fluxes of 3 x 10{sup -11} to <10{sup -12} erg cm{sup -2} s{sup -1}, with N{sub H} at or above 5 x 10{sup 22} cm{sup -2}, by XMM-Newton, Chandra, and Suzaku. A likely Two Micron All Sky Survey (2MASS) counterpart with K{sub S} = 10.2 shows colors indicative of a late-type star. CXOU J174042.0-280724 is a likely counterpart to the fast hard transient IGR J17407-2808. Chandra observations find F{sub X} (2-10 keV) {approx}10{sup -12} erg cm{sup -2} s{sup -1}, with large N{sub H} variations (from 2 x 10{sup 22} to >2 x 10{sup 23} cm{sup -2}). No 2MASS counterpart is visible, to K{sub S} >13. XMMU J174445.5-295044 seems likely to be a new symbiotic star or symbiotic X-ray binary, while CXOU J174042.0-280724 is more mysterious, likely an unusual low-mass X-ray binary.

  14. X-ray Weekly Monitoring of the Galactic Center Sgr A* with Suzaku

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Nobukawa, Masayoshi; Hayashi, Takayuki; Iizuka, Ryo; Saitoh, Takayuki; Murakami, Hiroshi

    A small gas cloud, G2, is on an orbit almost straight into the supermassive blackhole Sgr A* by spring 2014. This event gives us a rare opportunity to test the mass feeding onto the blackhole by a gas. To catch a possible rise of the mass accretion from the cloud, we have been performing the bi-week monitoring of Sgr A* in autumn and spring in the 2013 fiscal year. The key feature of Suzaku is the high-sensitivity wide-band X-ray spectroscopy all in one observatory. It is characterized by a large effective area combined with low background and good energy resolution, in particular a good line spread function in the low-energy range. Since the desired flare events associated with the G2 approach is a transient event, the large effective area is critical and powerful tools to hunt them. The first monitoring in 2013 autumn was successfully made. The X-rays from Sgr A* and its nearby emission were clearly resolved from the bright transient source AX J1745.6-2901. No very large flare from Sgr A*was found during the monitoring. We also may report the X-ray properties of two serendipitous sources, the neutron star binary AX J1745.6-2901 and a magnetar SGR J1745-29.

  15. Suzaku Observation of Two Ultraluminous X-ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Mushotzky, R.F.; Petre, R.

    2007-01-01

    TA study was made of two ultraluminous X-ray sources (ULXs) in the nearby faceon, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The o.4-10keV X-ray luminosity was measured. For X-1, the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.00 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. The spectrum of X-2 in fainter phase is presented by a multicolor disk blackbody model.

  16. Soft X-ray study of solar wind charge exchange from the Earth's magnetosphere : Suzaku observations and a future X-ray imaging mission concept

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Ishisaki, Y.; Ohashi, T.; Ishikawa, K.; Miyoshi, Y.; Fujimoto, R.; Terada, N.; Kasahara, S.; Fujimoto, M.; Mitsuda, K.; Nishijo, K.; Noda, A.

    2013-12-01

    Soft X-ray observations of solar wind charge exchange (SWCX) emission from the Earth's magnetosphere using the Japanese X-ray astronomy satellite Suzaku are shown, together with our X-ray imaging mission concept to characterize the solar wind interaction with the magnetosphere. In recent years, the SWCX emission from the Earth's magnetosphere, originally discovered as unexplained noise during the soft X-ray all sky survey (Snowden et al. 1994), is receiving increased attention on studying geospace. The SWCX is a reaction between neutrals in exosphere and highly charged ions in the magnetosphere originated from solar wind. Robertson et al. (2005) modeled the SWCX emission as seen from an observation point 50 Re from Earth. In the resulting X-ray intensities, the magnetopause, bow shock and cusp were clearly visible. High sensitivity soft X-ray observation with CCDs onboard recent X-ray astronomy satellites enables us to resolve SWCX emission lines and investigate time correlation with solar wind as observed with ACE and WIND more accurately. Suzaku is the 5th Japanese X-ray astronomy satellite launched in 2005. The line of sight direction through cusp is observable, while constraints on Earth limb avoidance angle of other satellites often limits observable regions. Suzaku firstly detected the SWCX emission while pointing in the direction of the north ecliptic pole (Fujimoto et al. 2007). Using the Tsyganenko 1996 magnetic field model, the distance to the nearest SWCX region was estimated as 2-8 Re, implying that the line of sight direction can be through magnetospheric cusp. Ezoe et al. (2010) reported SWCX events toward the sub-solar side of the magnetosheath. These cusp and sub-solar side magnetosheath regions are predicted to show high SWCX fluxes by Robertson et al. (2005). On the other hand, Ishikawa et al. (2013) discovered a similarly strong SWCX event when the line of sight direction did not transverse these two regions. Motivated by these detections

  17. Possible Charge-Exchange X-Ray Emission in the Cygnus Loop Detected with Suzaku

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Nakajima, Hiroshi; Takakura, Satoru; Petre, Robert; Hewitt. John W.; Yamaguchi, Hiroya

    2011-01-01

    X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnant s rim are depleted to approx.0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously "enhanced" abundances (up to approx. 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the "enhanced" abundance regions commonly show a strong emission feature at approx.0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O K(alpha) appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently "enhanced" metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question. Subject headings: ISM: abundances ISM: individual objects (Cygnus Loop) ISM: supernova remnants X-rays: ISM atomic processes

  18. Broadband study of X-Per using Suzaku observations

    NASA Astrophysics Data System (ADS)

    Maitra, Chandreyee; Paul, Biswajit; Pragati Pradhan, MISS.; Raichur, Harsha

    2016-07-01

    We present detailed broadband timing and spectral analysis of the persistent, low luminosity and slowly spinning pulsar 'X-per' using a Suzaku observation of the source. We have found for the first time, evidence for different intensity states with signatures of changes in the accretion geometry of the source. In addition, we confirm the presence of the cyclotron resonance at 30 keV which varies with the intensity states providing very crucial inputs on the accretion geometry.

  19. Possible Charge Exchange X-Ray Emission from the Cygnus Loop detected with Suzaku

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Petre, Robert; Hwang, Una; Hewitt, John

    We present results of a spatially-resolved X-ray spectral analysis of nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that some of the spectra show a bump at ˜0.7 keV as a "shoulder" of the lines at ˜0.66 keV which is a combination of O H Lyα and O Heβ. The regions showing the "shoulder" is confined within narrow (< a few arcmin) regions behind the shock at position angles of 0-40, 110-160, and 270-330 degrees measured from north over east. Around the rim, the position angles where the X-ray excess is present correspond to relatively weak radio emission as well as optical emission from non-radiative Hα filaments. While other possibilities (e.g., Fe L emission) cannot be fully excluded, these correlations lead us to consider that the "shoulder" may be O Heγ + δ + etc lines produced by charge exchange between H-like O ions and neutral H. Whatever its origin, the "shoulder" significantly affects the spectral analysis; the best-fit parameters strongly depend on whether or not we include the "shoulder" in the spectral fitting. We will discuss this issue in terms of our previous results of our spectral analysis for the rim regions.

  20. SUZAKU OBSERVATIONS OF THE X-RAY BRIGHTEST FOSSIL GROUP ESO 3060170

    SciTech Connect

    Su, Yuanyuan; White, Raymond E. III; Miller, Eric D.

    2013-10-01

    'Fossil' galaxy groups, each dominated by a relatively isolated giant elliptical galaxy, have many properties intermediate between groups and clusters of galaxies. We used the Suzaku X-ray observatory to observe the X-ray brightest fossil group, ESO 3060170, out to R{sub 200}, in order to better elucidate the relation between fossil groups, normal groups, and clusters. We determined the intragroup gas temperature, density, and metal abundance distributions and derived the entropy, pressure, and mass profiles for this group. The entropy and pressure profiles in the outer regions are flatter than in simulated clusters, similar to what is seen in observations of massive clusters. This may indicate that the gas is clumpy and/or the gas has been redistributed. Assuming hydrostatic equilibrium, the total mass is estimated to be ∼1.7 × 10{sup 14} M{sub ☉} within a radius R{sub 200} of ∼1.15 Mpc, with an enclosed baryon mass fraction of 0.13. The integrated iron mass-to-light ratio of this fossil group is larger than in most groups and comparable to those of clusters, indicating that this fossil group has retained the bulk of its metals. A galaxy luminosity density map on a scale of 25 Mpc shows that this fossil group resides in a relatively isolated environment, unlike the filamentary structures in which typical groups and clusters are embedded.

  1. Suzaku Observation of Two Ultraluminous X-Ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Done, C.; Griffiths, R. E.; Haba, Y.; Kokubun, M.; Kotoku J.; Makishima, K.; Matsushita, K.; Mushotzky, R. F.; Namiki, M.; Petre, R.; Takahashi, H.; Tamagaw, T.; Terashima, Y.

    2001-01-01

    A study was made of two ultraluminous X-ray soures (ULXs) in the nearby face-on, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The 0.4-10 keV X-ray luminosity was measured to be 2.5 x 10(exp 40) erg per second and 5.8 x 10 erg per second for X-1 and X-2, respectively, requiring a black hole of 50-200 solar mass in order not to exceed the Eddingtion limit. For X-1: the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.0 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. Oxygen abundance of the NGC 1313 circumstellar matter toward X-1 was found to be subsolar, viz. O/H = (5.0 plus or minus 1.0) x 10(exp -4). The spectrum of X-2 in fainter phase is best represented by a multicolor disk blackbody model with T (sub in) = 1.2-1.3 keV and becomes flatter as the flux increases; the source is interpreted to be in a slim disk state.

  2. Discovery of Diffuse Hard X-Ray Emission from the Vicinity of PSR J1648-4611 with Suzaku

    NASA Astrophysics Data System (ADS)

    Sakai, Michito; Matsumoto, Hironori; Haba, Yoshito; Kanou, Yasufumi; Miyamoto, Youhei

    2013-06-01

    We observed the pulsar PSR J1648-4611 with Suzaku. Two X-ray sources, Suzaku J1648-4610 (Src A) and Suzaku J1648-4615 (Src B), were found in the field of view. Src A is coincident with the pulsar PSR J1648-4611, which was also detected by the Fermi Gamma-ray Space Telescope. A hard-band image indicates that Src A is spatially extended. We found point sources in the vicinity of Src A by using a Chandra image of the same region, but the point sources have soft X-ray emission, and cannot explain the hard X-ray emission of Src A. The hard-band spectrum of Src A can be reproduced by a power-law model with a photon index of 2.0+0.9-0.7. The X-ray flux in the 2-10 keV band is 1.4 × 10-13 erg cm-2 s-1. The diffuse emission suggests a pulsar wind nebula around PSR J1648&"8211;4611, but the luminosity of Src A is much larger than that expected from the spin-down luminosity of the pulsar. Parts of the very-high-energy γ-ray emission of HESS J1646-458 may be powered by this pulsar wind nebula driven by PSR J1648-4611. Src B has soft emission, and its X-ray spectrum can be described by a power-law model with a photon index of 3.0+1.4-0.8. The X-ray flux in the 0.4-10 keV band is 6.4 × 10-14 erg s-1 cm-2. No counterpart for Src B has been found in the literature.

  3. Suzaku Observation of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-Ray Eclipse

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Zietsman, E.; Still, M.

    2008-01-01

    V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an RXTE all-sky slew survey (XSS) source. Here we report on the po inted X-ray observations of this object using Suzaku. We confirm V893 Sco to be X-ray bright, whose spectrum is highly absorbed for a dwar f nova. We have also discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in Xray light c urves of a dwarf nova. We have successfully modeled the gross features of the optical and X-ray eclipse light curves using a boundary layer geometry of the X-ray emission region. Future observations may lead to confirmation of this basic picture, and allow us to place tight co nstraints on the size of the X-ray emission region. The partial X-ray eclipse therefore should make V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.

  4. A Suzaku search for dark matter emission lines in the X-ray brightest galaxy clusters

    NASA Astrophysics Data System (ADS)

    Urban, O.; Werner, N.; Allen, S. W.; Simionescu, A.; Kaastra, J. S.; Strigari, L. E.

    2015-08-01

    We present the results of a search for unidentified emission lines in deep Suzaku X-ray spectra of the central regions of the X-ray brightest galaxy clusters: Perseus, Coma, Virgo and Ophiuchus. We analyse an optimized energy range (3.2-5.3 keV) that is relatively free of instrumental features, and a plasma emission model incorporating the abundances of elements with the strongest expected emission lines at these energies (S, Ar, Ca) as free parameters. For the Perseus Cluster core, employing this model, we find evidence for an additional emission feature at an energy E=3.51^{+0.02}_{-0.01} keV with a flux of 2.87_{-0.38}^{+0.33}× 10^{-7} photons s^{-1} cm^{-2} arcmin^{-2}. At slightly larger radii, we detect an emission line at 3.59 ± 0.02 keV with a flux of 4.8_{-1.4}^{+1.7}× 10^{-8} photons s^{-1} cm^{-2} arcmin^{-2}. The properties of these features are broadly consistent with previous claims, although the radial variation of the line strength appears in tension with dark matter (DM) decay model predictions. Assuming a decaying DM origin for these features allows us to predict the energies and detected line fluxes for the other clusters. We do not detect an emission feature at the predicted energy and line flux in the Coma, Virgo and Ophiuchus clusters. The formal 99.5 per cent upper limits on the line strengths in each cluster are well below the decaying DM model predictions, disfavouring a decaying DM interpretation. The results of further analysis suggest that systematic effects associated with modelling the spectra for the Perseus Cluster, details of the assumed ionization balance and errors in the predicted spectral line emissivities may be largely responsible for the ˜3.55 keV feature.

  5. SUZAKU BROADBAND SPECTROSCOPY OF SWIFT J1753.5-0127 IN THE LOW-HARD STATE

    SciTech Connect

    Reynolds, Mark T.; Miller, Jon M.; Homan, Jeroen; Miniutti, Giovanni

    2010-01-20

    We present Suzaku observations of the Galactic black hole candidate Swift J1753.5-0127 in the low-hard state (LHS). The broadband coverage of Suzaku enables us to detect the source over the energy range 0.6-250 keV. The broadband spectrum (2-250 keV) is found to be consistent with a simple power-law (GAMMA approx 1.63). In agreement with previous observations of this system, a significant excess of soft X-ray flux is detected consistent with the presence of a cool accretion disk. Estimates of the disk inner radius infer a value consistent with the innermost stable circular orbit (ISCO; R{sub in} approx< 6R{sub g} , for certain values of, e.g., N{sub H}, i), although we cannot conclusively rule out the presence of an accretion disk truncated at larger radii (R{sub in} approx 10-50R{sub g} ). A weak, relativistically broadened iron line is also detected, in addition to disk reflection at higher energy. However, the iron-K line profile favors an inner radius larger than the ISCO (R{sub in} approx 10-20R{sub g} ). The implications of these observations for models of the accretion flow in the LHS are discussed.

  6. X-ray Studies of the Black Hole Binary Cygnus X-1 with Suzaku

    NASA Astrophysics Data System (ADS)

    Yamada, Shin'ya

    2011-03-01

    In order to study X-ray properties of black hole binaries in so-called Low/Hard state, we analyzed 0.5--300 keV data of Cyg X-1, taken with the X-ray Imaging Spectrometer and the Hard X-ray Detector onboard the X-ray satellite Suzaku. The data were acquired on 25 occasions from 2005 to 2009, with a total exposure of ~450 ks. The source was in the Low/Hard state throughout, and the 0.5-300 keV luminosity changed by a factor of 4, corresponding to 2-10% of the Eddington limit for a 10 Mo black hole. Among the 25 data sets, the first one was already analyzed by Makishima et al. (2008), who successfully reproduced the wide-band spectrum by a linear combination of an emission from a standard accretion disk, soft and hard Comptonization continua, and reprocessed features. Given this, we analyzed the 25 data sets for intensity-related spectral changes, on three different time scales using different analysis methods. One is the source behavior on time scales of days to months, studied via direct comparison among the 25 spectra which are averaged over individual observations. Another is spectral changes on time scales of 1-2 seconds, revealed through ``intensity-sorted spectroscopy''. The other is spectral changes on time scales down to ~0.1 seconds, conducted using ``shot analysis" technique which was originally developed by Negoro et al. (1997) with Ginga. These studies partially incorporated spectral fitting in terms of a thermal Comptonization model. We payed great attention to instrumental problems caused by the source brightness, and occasional ``dipping" episodes which affects the Cyg X-1 spectrum at low energies. The shot analysis incorporated a small fraction of XIS data that were taken in the P-sum mode with a time resolution of 7.8 msec. Through these consistent analyses of all the 25 data sets, we found that a significant soft X-ray excess develops as the source gets brighter. Comparing results from the different time scales, the soft excess was further

  7. Suzaku Observation of the Anomalous X-Ray Pulsar 1E 1841-045

    NASA Astrophysics Data System (ADS)

    Morii, Mikio; Kitamoto, Shunji; Shibazaki, Noriaki; Kawai, Nobuyuki; Arimoto, Makoto; Ueno, Masaru; Kohmura, Takayoshi; Terada, Yukikatsu; Yamauchi, Shigeo; Takahashi, Hiromitsu

    2010-10-01

    We report on the results of a Suzaku observation of the anomalous X-ray pulsar (AXP) 1E 1841-045 at the center of the supernova remnant Kes 73. We confirmed that the energy-dependent spectral models obtained by previous separate observations were also satisfied over a wide energy range from 0.4 to ˜70 keV, simultaneously. Here, the models below ˜10 keV were a combination of blackbody (BB) and power-law (PL) functions, or of two BBs with different temperatures at 0.6-7.0 keV (Morii et al. 2003, PASJ, 55, L45), and that above ˜20 keV was a PL function (Kuiper et al. 2004, ApJ, 613, 1173). The combination BB + PL + PL was found to best represent the phase-averaged spectrum. Phase-resolved spectroscopy indicated the existence of two emission regions, one with a thermal and the other with a non-thermal nature. The combination BB + BB + PL was also found to represent the phase-averaged spectrum well. However, we found that this model is physically unacceptable due to an excessively large area of the emission region of the blackbody. Nonetheless, we found that the temperatures and radii of the two blackbody components showed moderate correlations in the phase-resolved spectra. The fact that the same correlations have been observed between the phase-averaged spectra of various magnetars (Nakagawa et al. 2009, PASJ, 61, 109) suggests that a self-similar function can approximate the intrinsic energy spectra of magnetars below ˜10keV.

  8. A Suzaku X-ray Observation of One Orbit of the Supergiant Fast X-ray Transient IGR J16479-4514

    NASA Technical Reports Server (NTRS)

    Sidoli, L.; Esposito, P.; Sguera, V.; Bodaghee, A.; Tomsick, J. A.; Pottschmidt, K.; Rodriguez, J.; Ramano, P.; Wilms, J.

    2013-01-01

    We report on a 250 ks long X-ray observation of the supergiant fast X-ray transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. During this observation, about 80% of the short orbital period (P(sub orb) approximates 3.32 days) was covered as continuously as possible for the first time. The source light curve displays variability of more than two orders of magnitude, starting with a very low emission state (10(exp -13) erg / sq cm/s; 1-10 keV) lasting the first 46 ks, consistent with being due to the X-ray eclipse by the supergiant companion. The transition to the uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source spends most of the time at a level of 6-7X10)(exp-12) erg/sq. cm/s) punctuated by two structured faint flares with a duration of about 10 and 15 ks, respectively, reaching a peak flux of 3-4X10(exp -11) erg/sq. cm./S, separated by about 0.2 in orbital phase. Remarkably, the first faint flare occurs at a similar orbital phase of the bright flares previously observed in the system. This indicates the presence of a phase-locked large scale structure in the supergiant wind, driving a higher accretion rate onto the compact object. The average X-ray spectrum is hard and highly absorbed, with a column density, NH, of 10*exp 23)/sq cm, clearly in excess of the interstellar absorption. There is no evidence for variability of the absorbing column density, except that during the eclipse, where a less absorbed X-ray spectrum is observed. A narrow Fe K-alpha emission line at 6.4 keV is viewed along the whole orbit, with an intensity which correlates with the continuum emission above 7 keV. The scattered component visible during the X-ray eclipse allowed us to directly probe the wind density at the orbital separation, resulting in rho(sub w)=7X10(exp -14) g/cubic cm. Assuming a spherical geometry for the supergiant wind, the derived wind density translates into a ratio M(sub w)/v(sub infinity) = 7X10(exp -17) Solar M

  9. Discovery of X-Ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku

    NASA Astrophysics Data System (ADS)

    Bamba, Aya; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella; Safi-Harb, Samar; Zhou, Ping; Bocchino, Fabrizio; Sawada, Makoto

    2016-02-01

    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ˜ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high-temperature (kT ˜ 3.4 keV) component with a very low ionization timescale (˜2.7 × 109 cm-3 s), or a hard nonthermal component with a photon index Γ ˜ 2.3. The average density of the low-temperature plasma is rather low, of the order of 10-3-10-2 cm-3, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.

  10. Suzaku spectra of the neutron-star low-mass X-ray binary 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Lei, Yajuan; Zhang, Haotong; zhang, Yanxia

    2015-08-01

    We present the spectral analysis of the neutron-star low-mass X-ray binary 4U 1608-52 using data from four Suzaku observations in 2010 March. 4U 1608-52 is a transient atoll source, and the analyzed observations contain the “island” and “banana” states, corresponding transitional, and soft states. The spectra are fitted with the hybrid model for the soft states, which consists of two thermal components (a multicolor accretion disk and a single-temperature blackbody) plus a broken power law. The fitting results show that the continuum spectra evolve during the different states. Fe emission line is often detected in low-mass X-ray binary, however, no obviously Fe line is detected in the four observations of 4U 1608-52.

  11. Suzaku observations of Fe Kalpha line in some hard X-ray emitting symbiotic stars and magnetic cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Eze, R. N. C.

    We present the Suzaku observations of Fe Kalpha for four Hard X-ray emitting symbiotic stars (hSSs) and 19 magnetic cataclysmic variables (mCVs). The 6.7 and 7.0 keV emission lines are typically created by collisional excitation in the vicinity of the white dwarf arising from the shock front. The 6.4 keV iron emission line in contrast is formed in equilibrium by irradiation of the neutral (or low ionized) iron by a hard X-ray source, as a collisional origin would lead to rapid ionization. We have surveyed the emission using a collection of Suzaku observations of hSSs and mCVs to better understand the geometry of these systems. We find that they do not seem to have a single geometry, and that while absorption-induced fluorescence leads to some emission in three hSSs and 12 mCVS, there are strong hints that significant 6.4 keV emission arises in the accretion disk irradiated by the hard X-rays from the boundary layer between the accretion disk and hot white dwarf, in the case of hSSs (SS73 17). For mCVs, the 6.4 keV line emission arises from the reflection of hard X-rays from the white dwarf surfaces in 5 mCVs. This suggests there could be relevant information about the geometry of the WD in the system encoded in the Fe Kalpha line.

  12. Suzaku Observations of Moderately Obscured (Compton-thin) Active Galactic Nuclei Selected by Swift/BAT Hard X-ray Survey

    NASA Astrophysics Data System (ADS)

    Kawamuro, Taiki; Ueda, Yoshihiro; Tazaki, Fumie; Ricci, Claudio; Terashima, Yuichi

    2016-07-01

    We report the results obtained by a systematic, broadband (0.5–150 keV) X-ray spectral analysis of moderately obscured (Compton-thin, 22≤slant {log}{N}{{H}}\\lt 24) active galactic nuclei (AGNs) observed with Suzaku and Swift/Burst Alert Telescope (BAT). Our sample consists of 45 local AGNs at z\\lt 0.1 with {log}{L}14-195{keV}\\gt 42 detected in the Swift/BAT 70-month survey, whose Suzaku archival data are available as of 2015 December. All spectra are uniformly fit with a baseline model composed of an absorbed cutoff power-law component, reflected emission accompanied by a narrow fluorescent iron-Kα line from cold matter (torus), and scattered emission. The main results based on the above analysis are as follows. (1) The photon index is correlated with Eddington ratio, but not with luminosity or black hole mass. (2) The ratio of the luminosity of the iron-Kα line to the X-ray luminosity an indicator of the covering fraction of the torus, shows significant anticorrelation with luminosity. (3) The averaged reflection strength derived from stacked spectra above 14 keV is larger in less luminous ({log}{L}10-50{keV}≤slant 43.3, R={1.04}-0.19+0.17) or highly obscured ({log}{N}{{H}}\\gt 23, R={1.03}-0.17+0.15) AGNs than in more luminous ({log}{L}10-50{keV}\\gt 43.3, R={0.46}-0.09+0.08) or lightly obscured ({log}{N}{{H}}≤slant 23, R={0.59}-0.10+0.09) objects. (4) The ratio of the luminosity of the [{{O}} {{IV}}] 25.89 μm line to the X-ray luminosity is significantly smaller in AGNs with lower soft X-ray scattering fractions, suggesting that the former luminosity underestimates the intrinsic power of an AGN buried in a torus of small opening angle.

  13. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  14. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  15. A Suzaku observation of the low-mass X-ray binary GS 1826-238 in the hard state

    NASA Astrophysics Data System (ADS)

    Ono, Ko; Sakurai, Soki; Zhang, Zhongli; Nakazawa, Kazuhiro; Makishima, Kazuo

    2016-06-01

    The neutron star low-mass X-ray binary GS 1826-238 was observed with Suzaku on 2009 October 21, for a total exposure of 1030 ks. Except for the type I bursts, the source intensity was constant within ˜10%. Combining the Suzaku XIS, HXD-PIN, and HXD-GSO data, burst-removed persistent emission was detected over the 0.8-100 keV range, at an unabsorbed flux of 2.6 × 10-9 erg s-1 cm-2. Although the implied 0.8-100 keV luminosity, 1.5 × 1037 erg s-1 (assuming a distance of 7 kpc), is relatively high, the observed hard spectrum confirms that the source was in the hard state. The spectrum was successfully explained by an emission from a soft standard accretion disk partially Comptonized by a hot electron cloud, and a blackbody emission Comptonized by another hotter electron cloud. These results are compared with those from previous studies, including those on the same source by Thompson et al. (2005, ApJ, 634, 1261) and Cocchi, Farinelli, and Paizis (2011, A&A, 529, A155), as well as that of Aql X-1 in the hard state obtained with Suzaku (Sakurai et al. 2014, PASJ, 66, 10).

  16. BROADBAND SUZAKU OBSERVATIONS OF IGR J16207-5129

    SciTech Connect

    Bodaghee, A.; Tomsick, J. A.; Rodriguez, J.; Chaty, S.; Walter, R.

    2010-08-10

    An analysis of IGR J16207-5129 is presented based on observations taken with Suzaku. The data set represents {approx}80 ks of effective exposure time in a broad energy range between 0.5 and 60 keV, including unprecedented spectral sensitivity above 15 keV. The average source spectrum is well described by an absorbed power law in which we measured a large intrinsic absorption of N {sub H} =(16.2{sup +0.9} {sub -1.1}) x 10{sup 22} cm{sup -2}. This confirms that IGR J16207-5129 belongs to the class of absorbed high-mass X-ray binaries. We were able to constrain the cutoff energy at 19{sup +8} {sub -4} keV, which argues in favor of a neutron star as the primary. Our observation includes an epoch in which the source count rate is compatible with no flux suggesting a possible eclipse. We discuss the nature of this source in light of these and of other recent results.

  17. Suzaku Animation

    NASA Video Gallery

    This animation depicts the Suzaku spacecraft. Suzaku (originally known as Astro-E2) was launched July 10, 2005, and maintains a low-Earth orbit while it observes X-rays from the universe. The satel...

  18. Broadband high-resolution X-ray frequency combs

    NASA Astrophysics Data System (ADS)

    Cavaletto, Stefano M.; Harman, Zoltán; Ott, Christian; Buth, Christian; Pfeifer, Thomas; Keitel, Christoph H.

    2014-07-01

    Optical frequency combs have had a remarkable impact on precision spectroscopy. Enabling this technology in the X-ray domain is expected to result in wide-ranging applications, such as stringent tests of astrophysical models and quantum electrodynamics, a more sensitive search for the variability of fundamental constants, and precision studies of nuclear structure. Ultraprecise X-ray atomic clocks may also be envisaged. In this work, an X-ray pulse-shaping method is proposed to generate a comb in the absorption spectrum of an ultrashort high-frequency pulse. The method employs an optical-frequency-comb laser, manipulating the system's dipole response to imprint a comb on an excited transition with a high photon energy. The described scheme provides higher comb frequencies and requires lower optical-comb peak intensities than currently explored methods, preserves the overall width of the optical comb, and may be implemented using currently available X-ray technology.

  19. SXP523 = Suzaku J0102-7204 = 2XMM J010247.4-720449, a Be/X-ray binary pulsar in the SMC

    NASA Astrophysics Data System (ADS)

    Haberl, F.; Sturm, R.; Tsujimoto, M.; Wada, Q.; Ebisawa, K.; Miller, E.; Coe, M. J.; Klus, H.; Beardmore, A. P.

    2012-12-01

    After application of an attitude correction to the Suzaku observation of the supernova remnant 1E 0102.2-7219 described in ATel #4628, we derive an improved position for the X-ray pulsar Suzaku J0102-7204 of R.A. = 01:02:46.8, and Dec. = -72:04:56 (J2000, 1 sigma uncertainty of 20 arcsec). The new position is consistent with that of the Be/X-ray binary 2XMM J010247.4-720449 in the Small Magellanic Cloud seen by XMM-Newton, Swift and Chandra (ATel #3761) and most likely all detections are from the same source.

  20. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment.

    PubMed

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; Xu, Ruqing; Fuoss, Paul H; Hruszkewycz, Stephan O

    2016-09-01

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load. PMID:27577782

  1. The Swift Burst Alert Telescope Detected Seyfert 1 Galaxies: X-Ray Broadband Properties and Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T.

    2012-01-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I K[alpha] emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with Nwarm [approx] 1021 cm-2, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat [Gamma] [approx] 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  2. The orbital phase resolved spectroscopy of X-ray binary 4U 1822‑371 with Suzaku

    NASA Astrophysics Data System (ADS)

    Niu, Shu; Yan, Shu-Ping; Lei, Shi-Jun; Nowak, Michael A.; Schulz, Norbert S.; Ji, Li

    2016-04-01

    4U 1822‑371 is a typical edge-on eclipsing low mass X-ray binary and the prototype of accretion disk coronal sources. We report on the results of a spectral analysis over the energy range 0.5–45 keV observed by Suzaku in 2006. We extract spectra from five orbital phases. The spectra can be equally well described by various previously proposed models: an optically thick model described by a partially covered cutoff power law and an optically thin model described by a blackbody plus a cutoff power law. The optically thick model requires a covering fraction of about 55%, while the optically thin model requires a temperature of the central source of about 0.16 keV. The spectrum in the optically thick model also shows the previously detected cyclotron line feature at ∼30 keV with the same Suzaku observation. This feature confirms the presence of a strong magnetic field. The Fe Kα fluorescent line strengths as well as the detected Fe XXVI strengths are similar to previous Chandra and XMM-Newton detections in our phased spectral analysis; however, we also observe strong Fe XXVI during the eclipse, which indicates a slightly larger central corona.

  3. MODELING BROADBAND X-RAY ABSORPTION OF MASSIVE STAR WINDS

    SciTech Connect

    Leutenegger, Maurice A.; Zsargo, Janos; Martell, Erin M.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-08-20

    We present a method for computing the net transmission of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming that the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes that all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength-dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral interstellar medium (ISM) tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype can largely be understood as a wind absorption effect.

  4. Modeling Broadband X-Ray Absorption of Massive Star Winds

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen,David H.; Zsargo, Janos; Martell, Erin M.; MacArthur, James P.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-01-01

    We present a method for computing the net transition of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral ISM tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype cars largely be understood as a wind absorption effect.

  5. Search for X-Ray Emission Associated with the Shapley Supercluster with Suzaku

    NASA Technical Reports Server (NTRS)

    Mitsuishi, Ikuyuki; Gupta, Anjali; Yamasaki, Noriko Y.; Takei, Yoh; Ohashi, Takaya; Sato, Kosuke; Galeazzi, Massimiliano; Henry, J. Patrick; Kelley, Richard L.

    2012-01-01

    Suzaku performed observations of 3 regions in and around the Shapley supercluster: a region located between A3558 and A3556, at approx 0.9 times the virial radii of both clusters, and two other regions at 1 deg and 4 away from the first pointing. The 4 deg -otfset observation was used to evaluate the Galactic foreground emission. We did not detect significant redshifted Oxygen emission lines (O VII and O VIII) in the spectra of all three pointings, after subtracting the contribution of foreground and background emission. An upper limit for the redshifted O VIII Ka line intensity of the warm-hot intergalactic medium (WHIM) is 1.5 x 10(exp -7) photons / s / sq cm / sq arcmin, which corresponds to an overdensity of approx 380 (Z/0.1 Solar Z)(exp -1/2)(L/3 Mpc)(exp -1/2), assuming T = 3 x 10(exp 6) K. We found excess continuum emission in the 1 deg-offset and on-filament regions, represented by thermal models with kT approximates 1 keV and approximates 2 keV, respectively. The redshifts of both 0 and that of the supercluster (0.048) are consistent with the observed spectra. The approx 1 keV emission can be also fitted with Ne-rich Galactic (zero redshift) thin thermal emission. Radial intensity profile of 2 keV component suggests contribution from A3558 and A3556, but with significant steepening of the intensity slope in the outer region of A3558. Finally, we summarized the previous Suzaku search for the WHIM and discussed the feasibility of constraining the WHIM. An overdensity of <400 can be detectable using O VII and O VIII emission lines in a range of 1.4 x 10(exp 6) K < T < 5 x 10(exp 6) K or a continuum emission in a relatively high temperature range T > 5 x 10 (exp 6) K with the Suzaku XIS. The non detection with Suzaku suggests that typical line-of-sight average overdensity is < 400.

  6. NUSTAR and SUZAKU X-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    DOE PAGESBeta

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; et al

    2015-06-15

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. As a result, we discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less

  7. Discovery of non-thermal X-ray emission from Vela shrapnel E with Suzaku and XMM-Newton

    NASA Astrophysics Data System (ADS)

    Yoshii, Rie; Yamaguchi, Hiroya; Katsuda, Satoru; Tamagawa, Toru; Hiraga, Junko

    We report the discovery of non-thermal X-rays from the ejecta fragment associated with the Vela supernova remnant (SNR). The ROSAT observation of the Vela SNR revealed six isolated fragment-like features, named shrapnels A to F, which have overrun the primary blast wave of the SNR. Given that the symmetry axis of each shrapnel's bow-shock front traces back to the SNR center, the shrapnels are suggested to be associated with the fossil material of the supernova explosion. In fact, the chemical compositions of shrapnels A, B, and D have been found to be abundant in heavy elements by recent observations. Using Suzaku and XMM-Newton, we have investigated the nature of another candidate of the ejecta fragment, shrapnel E. The bow-shock structure of the emission is clearly confirmed. We find that the trailing region of the shrapnel exhibits a thermal X-ray spectrum as that observed in the other fragments. On the other hand, the shrapnel's head is found to exhibit a featureless spectrum in the hard X-ray band of 2-8 keV. This spectrum is well represented by a power-law model with a photon index of 2-3, suggesting its synchrotron origin. Fluxes of point sources detected in the shrapnel's head are carefully estimated and are found to be less than 10% of the total flux in the 2-8 keV band. This is the first discovery of diffuse non-thermal emission from an ejecta fragment of the Vela SNR. Since the age of the Vela SNR is estimated to be more than ten thousand years, our observation demonstrates that even an old system, compared to typical young SNRs, can be a site of efficient cosmic-ray acceleration.

  8. Universal profiles of the intracluster medium from Suzaku X-ray and Subaru weak-lensing observations*

    NASA Astrophysics Data System (ADS)

    Okabe, Nobuhiro; Umetsu, Keiichi; Tamura, Takayuki; Fujita, Yutaka; Takizawa, Motokazu; Zhang, Yu-Ying; Matsushita, Kyoko; Hamana, Takashi; Fukazawa, Yasushi; Futamase, Tasushi; Kawaharada, Madoka; Miyazaki, Satoshi; Mochizuki, Yukiko; Nakazawa, Kazuhiro; Ohashi, Takaya; Ota, Naomi; Sasaki, Toru; Sato, Kosuke; Tam, Sutieng

    2014-10-01

    We conduct a joint X-ray and weak-lensing study of four relaxed galaxy clusters (Hydra A, A 478, A 1689, and A 1835) observed by both Suzaku and Subaru out to virial radii, with the aim of understanding recently discovered unexpected features of the intracluster medium (ICM) in cluster outskirts. We show that the average hydrostatic-to-lensing total mass ratio for the four clusters decreases from ˜ 70% to ˜ 40% as the overdensity contrast decreases from 500 to the virial value. The average gas mass fraction from lensing total mass estimates increases with cluster radius and agrees with the cosmic mean baryon fraction within the virial radius, whereas the X-ray-based gas fraction considerably exceeds the cosmic values due to underestimation of the hydrostatic mass. We also develop a new advanced method for determining normalized cluster radial profiles for multiple X-ray observables by simultaneously taking into account both their radial dependence and multivariate scaling relations with weak-lensing masses. Although the four clusters span a range of halo mass, concentration, X-ray luminosity, and redshift, we find that the gas entropy, pressure, temperature, and density profiles are all remarkably self-similar when scaled with the weak-lensing M200 mass and r200 radius. The entropy monotonically increases out to ˜ 0.5 r200 ˜ r1000 following the accretion shock heating model K(r) ∝ r1.1, and flattens at ≳ 0.5 r200. The universality of the scaled entropy profiles indicates that the thermalization mechanism over the entire cluster region (> 0.1 r200) is controlled by gravitation in a common way for all clusters, although the heating efficiency in the outskirts needs to be modified from the standard r1.1 law. The bivariate scaling functions of the gas density and temperature reveal that the flattening of the outskirts entropy profile is caused by the steepening of the temperature, rather than the flattening of the gas density.

  9. X-ray analysis of the galaxy group UGC 03957 beyond R200 with Suzaku

    NASA Astrophysics Data System (ADS)

    Thölken, Sophia; Lovisari, Lorenzo; Reiprich, Thomas H.; Hasenbusch, Jan

    2016-07-01

    Context. In the last few years, the outskirts of galaxy clusters have been studied in detail and the analyses have brought up interesting results such as indications of possible gas clumping and the breakdown of hydrostatic, thermal, and ionization equilibrium. These phenomena affect the entropy profiles of clusters, which often show deviations from the self-similar prediction around R200. However, significant uncertainties remain for groups of galaxies. In particular the question, of whether entropy profiles are similar to those of galaxy clusters. Aims: We investigated the gas properties of the galaxy group UGC 03957 up to 1.4 R200 ≈ 1.4 Mpc in four azimuthal directions with the Suzaku satellite. We checked for azimuthal symmetry and obtained temperature, entropy, density, and gas mass profiles. Previous studies point to deviations from equilibrium states at the outskirts of groups and clusters and so we studied the hydrodynamical status of the gas at these large radii. Methods: We performed a spectral analysis of five Suzaku observations of UGC 03957 with ~138 ks good exposure time in total and five Chandra snapshot observations for point source detection. We investigated systematic effects such as point spread function and uncertainties in the different background components, and performed a deprojection of the density and temperature profile. Results: We found a temperature drop of a factor of ~3 from the center to the outskirts that is consistent with previous results for galaxy clusters. The metal abundance profile shows a flat behavior towards large radii, which is a hint for galactic winds as the primary ICM enrichment process. The entropy profile is consistent with numerical simulations after applying a gas mass fraction correction. Feedback processes and AGN activity might be one explanation for entropy modification, imprinting out to larger radii in galaxy groups than in galaxy clusters. Previous analyses for clusters and groups often showed an

  10. Moduli Dark Matter and the Search for Its Decay Line using Suzaku X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Kusenko, Alexander; Loewenstein, Michael; Yanagida, Tsutomu T.

    2013-01-01

    Light scalar fields called moduli arise from a variety of different models involving supersymmetry and/or string theory; thus their existence is a generic prediction of leading theories for physics beyond the standard model. They also present a formidable, long-standing problem for cosmology. We argue that an anthropic solution to the moduli problem exists in the case of small moduli masses and that it automatically leads to dark matter in the form of moduli. The recent discovery of the 125 GeV Higgs boson implies a lower bound on the moduli mass of about a keV. This form of dark matter is consistent with the observed properties of structure formation, and it is amenable to detection with the help of x-ray telescopes. We present the results of a search for such dark matter particles using spectra extracted from the first deep x-ray observations of the Draco and Ursa Minor dwarf spheroidal galaxies, which are darkmatter- dominated systems with extreme mass-to-light ratios and low intrinsic backgrounds. No emission line is positively detected, and we set new constraints on the relevant new physics.

  11. X-ray View of Four High-Luminosity Swift-BAT AGN: Unveiling Obscuration and Reflection with Suzaku

    NASA Technical Reports Server (NTRS)

    Fiorettil, V.; Angelini, L.; Mushotzky, R. F.; Koss, M.; Malaguti, G.

    2013-01-01

    Aims. A complete census of obscured Active Galactic Nuclei (AGN) is necessary to reveal the history of the super massive black hole (SMBH) growth and galaxy evolution in the Universe given the complex feedback processes and the fact that much of this growth occurs in an obscured phase. In this context, hard X-ray surveys and dedicated follow-up observations represent a unique tool for selecting highly absorbed AGN and for characterizing the obscuring matter surrounding the SMBH. Here we focus on the absorption and reflection occurring in highly luminous, quasar-like AGN, to study the relation between the geometry of the absorbing matter and the AGN nature (e.g. X-ray, optical, and radio properties), and to help to determine the column density dependency on the AGN luminosity. Methods. The Swift/BAT nine-month survey observed 153 AGN, all with ultra-hard X-ray BAT fluxes in excess of 10(exp -11) erg per square centimeter and an average redshift of 0.03. Among them, four of the most luminous BAT AGN (44.73 less than LogLBAT less than 45.31) were selected as targets of Suzaku follow-up observations: J2246.0+3941 (3C 452), J0407.4+0339 (3C 105), J0318.7+6828, and J0918.5+0425. The column density, scattered/reflected emission, the properties of the Fe K line, and a possible variability are fully analyzed. For the latter, the spectral properties from Chandra, XMM-Newton and Swift/XRT public observations were compared with the present Suzaku analysis, adding an original spectral analysis when non was available from the literature. Results. Of our sample, 3C 452 is the only certain Compton-thick AGN candidate because of i) the high absorption (N(sub H) approximately 4 × 10(exp 23) per square centimeter) and strong Compton reflection; ii) the lack of variability; iii) the "buried" nature, i.e. the low scattering fraction (less than 0.5%) and the extremely low relative [OIII] luminosity. In contrast 3C 105 is not reflection-dominated, despite the comparable column density

  12. Suzaku monitoring of hard X-ray emission from η Carinae over a single binary orbital cycle

    SciTech Connect

    Hamaguchi, Kenji; Corcoran, Michael F.; Yuasa, Takayuki; Ishida, Manabu; Pittard, Julian M.; Russell, Christopher M. P.

    2014-11-10

    The Suzaku X-ray observatory monitored the supermassive binary system η Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ∼ 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ∼3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the γ-ray source detected in this field. The helium-like Fe Kα line complex at ∼6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with τ ∼ 10{sup 11} cm{sup –3} s{sup –1}. The NEI plasma increases in importance toward periastron.

  13. XMM-Newton and Suzaku spectroscopic studies of unidentified X-ray sources towards the Galactic bulge: 1RXS J180556.1-343818 and 1RXS J173905.2-392615

    NASA Astrophysics Data System (ADS)

    Mori, Hideyuki; Maeda, Yoshitomo; Ueda, Yoshihiro

    2016-06-01

    With XMM-Newton and Suzaku observations, for the first time, we acquired broad-band spectra of two unidentified X-ray sources towards the Galactic bulge: 1RXS J180556.1-343818 and 1RXS J173905.2-392615. The 1RXS J180556.1-343818 spectrum in the 0.3-7 keV band was explained by X-ray emission that originated from an optically-thin thermal plasma with temperatures of 0.5 and 1.8 keV. The estimated absorption column density of NH ˜ 4 × 1020 cm-2 was significantly smaller than the Galactic H I column density towards the source. A candidate for its optical counterpart, HD 321269, was found within 4″. In terms of the X-ray properties and the positional coincidence, it is quite conceivable that 1RXS J180556.1-343818 is an active G giant. We also found a dim X-ray source that was positionally consistent with 1RXS J173905.2-392615. Assuming that the X-ray spectrum can be reproduced with an absorbed, optically-thin thermal plasma model with kT = 1.6 keV, the X-ray flux in the 0.5-8 keV band was 8.7 × 10-14 erg s-1 cm-2, fainter by a factor of ˜7 than that of 1RXS J173905.2-392615 during the ROSAT observation. The follow-up observations we conducted revealed that these two sources would belong to the Galactic disk, rather than the Galactic bulge.

  14. Broad-band X-ray emission and the reality of the broad iron line from the neutron star-white dwarf X-ray binary 4U 1820-30

    NASA Astrophysics Data System (ADS)

    Mondal, Aditya S.; Dewangan, G. C.; Pahari, M.; Misra, R.; Kembhavi, A. K.; Raychaudhuri, B.

    2016-09-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disc. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here, we investigate the reality of the broad iron line detected earlier from the neutron-star low-mass X-ray binary 4U 1820-30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broad-band spectral study of the atoll source using Suzaku and simultaneous NuSTAR and Swift observations. We have used different continuum models involving accretion disc emission, thermal blackbody and thermal Comptonization of either disc or blackbody photons. The Suzaku data show positive and negative residuals in the region of Fe K band. These features are well described by two absorption edges at 7.67 ± 0.14 keV and 6.93 ± 0.07 keV or partial covering photoionized absorption or by blurred reflection. Though, the simultaneous Swift and NuSTAR data do not clearly reveal the emission or absorption features, the data are consistent with the presence of either absorption or emission features. Thus, the absorption based models provide an alternative to the broad iron line or reflection model. The absorption features may arise in winds from the inner accretion disc. The broad-band spectra appear to disfavour continuum models in which the blackbody emission from the neutron-star surface provides the seed photons for thermal Comptonization. Our results suggest emission from a thin accretion disc (kTdisc ˜ 1 keV), Comptonization of disc photons in a boundary layer most likely covering a large fraction of the neutron-star surface and innermost parts of the accretion disc, and blackbody emission (kTbb ˜ 2 keV) from the polar regions.

  15. Observation of the Talbot effect using broadband hard x-ray beam

    SciTech Connect

    Kim, J.M.; Conley, R.; Cho, I. H.; Lee, S. Y.; Kang, H. C.; Liu, C.; Macrander, A. T.; Noh, D. Y.

    2010-11-15

    We demonstrated the Talbot effect using a broadband hard x-ray beam ({Delta}{lambda}/{lambda} {approx}1). The exit wave-field of the x-ray beam passing through a grating with a sub micro-meter scale period was successfully replicated and recorded at effective Talbot distance, Z{sub T}. The period was reduced to half at Z{sub T}/4 and 3/4Z{sub T}, and the phase reversal was observed at Z{sub T}/2. The propagating wave-field recorded on photoresists was consistent with a simulated result.

  16. Electron density characterization by use of a broadband x-ray-compatible wave-front sensor.

    PubMed

    Baker, K L; Brase, J; Kartz, M; Olivier, S S; Sawvel, B; Tucker, J

    2003-02-01

    The use of a Hartmann wave-front sensor to accurately measure the line-integrated electron density gradients formed in laser-produced and z-pinch plasma experiments is examined. This wave-front sensor may be used with a soft-x-ray laser as well as with incoherent line emission at multikilovolt x-ray energies. This diagnostic is significantly easier to use than interferometery and moiré deflectometry, both of which have been demonstrated with soft-x-ray lasers. This scheme is experimentally demonstrated in the visible region by use of a Shack-Hartmann wave-front sensor and a liquid-crystal spatial light modulator to simulate a phase profile that could occur when an x-ray probe passes through a plasma. The merits of using a Hartmann sensor include a wide dynamic range, broadband or low-coherence-length light capability, high x-ray efficiency, two-dimensional gradient determination, multiplexing capability, and experimental simplicity. Hartmann sensors could also be utilized for wavelength testing of extreme-ultraviolet lithography components and x-ray phase imaging of biological specimens. PMID:12656314

  17. THE SWIFT BURST ALERT TELESCOPE DETECTED SEYFERT 1 GALAXIES: X-RAY BROADBAND PROPERTIES AND WARM ABSORBERS

    SciTech Connect

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T. R.

    2012-02-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I K{alpha} emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with N{sub warm} {approx} 10{sup 21} cm{sup -2}, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat {Gamma} {approx} 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  18. Broad-band spectroscopy of the transient X-ray binary pulsar KS 1947+300 during 2013 giant outburst: Detection of pulsating soft X-ray excess component

    NASA Astrophysics Data System (ADS)

    Epili, Prahlad; Naik, Sachindra; Jaisawal, Gaurava K.

    2016-05-01

    We present the results obtained from detailed timing and spectral studies of the Be/X-ray binary pulsar KS 1947+300 during its 2013 giant outburst. We used data from Suzaku observations of the pulsar at two epochs, i.e. on 2013 October 22 (close to the peak of the outburst) and 2013 November 22. X-ray pulsations at ∼18.81 s were clearly detected in the light curves obtained from both observations. Pulse periods estimated during the outburst showed that the pulsar was spinning up. The pulse profile was found to be single-peaked up to ∼10 keV beyond which a sharp peak followed by a dip-like feature appeared at hard X-rays. The dip-like feature has been observed up to ∼70 keV. The 1–110 keV broad-band spectroscopy of both observations revealed that the best-fit model was comprised of a partially absorbed Negative and Positive power law with EXponential cutoff (NPEX) continuum model along with a blackbody component for the soft X-ray excess and two Gaussian functions at 6.4 and 6.7 keV for emission lines. Both the lines were identified as emission from neutral and He-like iron atoms. To fit the spectra, we included the previously reported cyclotron absorption line at 12.2 keV. From the spin-up rate, the magnetic field of the pulsar was estimated to be ∼1.2×1012 G and found to be comparable to that obtained from the detection of the cyclotron absorption feature. Pulse-phase resolved spectroscopy revealed the pulsating nature of the soft X-ray excess component in phase with the continuum flux. This confirms that the accretion column and/or accretion stream are the most probable regions of the soft X-ray excess emission in KS1947+300. The presence of the pulsating soft X-ray excess in phase with continuum emission may be the possible reason for not observing the dip at soft X-rays.

  19. Broadband short term X-ray variability of the quasar PDS 456

    NASA Astrophysics Data System (ADS)

    Matzeu, G. A.; Reeves, J. N.; Nardini, E.; Braito, V.; Costa, M. T.; Tombesi, F.; Gofford, J.

    2016-05-01

    We present a detailed analysis of a recent 500 ks net exposure Suzaku observation, carried out in 2013, of the nearby (z=0.184) luminous (L_bol˜1047 erg s-1) quasar PDS 456 in which the X-ray flux was unusually low. The short term X-ray spectral variability has been interpreted in terms of variable absorption and/or intrinsic continuum changes. In the former scenario, the spectral variability is due to variable covering factors of two regions of partially covering absorbers. We find that these absorbers are characterised by an outflow velocity comparable to that of the highly ionised wind, i.e. ˜ 0.25 c, at the 99.9% (3.26σ) confidence level. This suggests that the partially absorbing clouds may be the denser clumpy part of the inhomogeneous wind. Following an obscuration event we obtained a direct estimate of the size of the X-ray emitting region, to be not larger than 20 R_g in PDS 456.

  20. Detecting electronic coherence by multidimensional broadband stimulated x-ray Raman signals

    NASA Astrophysics Data System (ADS)

    Dorfman, Konstantin E.; Bennett, Kochise; Mukamel, Shaul

    2015-08-01

    Nonstationary molecular states which contain electronic coherences can be impulsively created and manipulated by using recently developed ultrashort optical and x-ray pulses via photoexcitation, photoionization, and Auger processes. We propose several stimulated-Raman detection schemes that can monitor the subsequent phase-sensitive electronic and nuclear dynamics. Three detection protocols of an x-ray broadband probe are compared: frequency-dispersed transmission, integrated photon number change, and total pulse energy change. In addition, each can be either linear or quadratic in the x-ray probe intensity. These various signals offer different gating windows into the molecular response, which is described by correlation functions of electronic polarizabilities. Off-resonant and resonant signals are compared.

  1. Peculiar lapse of periodic eclipsing event at low-mass X-ray binary GRS 1747-312 during Suzaku observation in 2009

    NASA Astrophysics Data System (ADS)

    Saji, Shigetaka; Mori, Hideyuki; Matsumoto, Hironori; Dotani, Tadayasu; Iwai, Masachika; Maeda, Yoshitomo; Mitsuishi, Ikuyuki; Ozaki, Masanobu; Tawara, Yuzuru

    2016-03-01

    GRS 1747-312 is a neutron star low-mass X-ray binary in the globular cluster Terzan 6, located at a distance of 9.5 kpc from the Earth. During its outbursts, periodic eclipses were known to occur. Observations for the outbursts were performed with Chandra in 2004 and Swift in 2013. XMM-Newton observed its quiescent state in 2004. In addition, when Suzaku observed it in 2009 as a part of Galactic center mapping observations, GRS 1747-312 was found to be in a low-luminosity state with Lx ˜ 1.2 × 1035 erg s-1. All of the observations except for XMM-Newton included the time of the eclipses predicted. We analyzed archival data of these observations. During the Chandra and Swift observations, we found clear flux decreases at the expected time of the eclipses. During the Suzaku observation, however, there were no clear signs for the predicted eclipses. The lapse of the predicted eclipses during the Suzaku observation can be explained by a contaminant source quite close to GRS 1747-312. When GRS 1747-312 is in the quiescent state, we observe X-rays from the contaminant source rather than from GRS 1747-312. However, we have no clear evidence for the contaminant source in our data. The lapse might also be explained by thick material (NH > 1024 cm-2) between the neutron star and the companion star, though the origin of the thick material is not clear.

  2. Peculiar lapse of periodic eclipsing event at low-mass X-ray binary GRS 1747-312 during Suzaku observation in 2009

    NASA Astrophysics Data System (ADS)

    Saji, Shigetaka; Mori, Hideyuki; Matsumoto, Hironori; Dotani, Tadayasu; Iwai, Masachika; Maeda, Yoshitomo; Mitsuishi, Ikuyuki; Ozaki, Masanobu; Tawara, Yuzuru

    2016-06-01

    GRS 1747-312 is a neutron star low-mass X-ray binary in the globular cluster Terzan 6, located at a distance of 9.5 kpc from the Earth. During its outbursts, periodic eclipses were known to occur. Observations for the outbursts were performed with Chandra in 2004 and Swift in 2013. XMM-Newton observed its quiescent state in 2004. In addition, when Suzaku observed it in 2009 as a part of Galactic center mapping observations, GRS 1747-312 was found to be in a low-luminosity state with Lx ˜ 1.2 × 1035 erg s-1. All of the observations except for XMM-Newton included the time of the eclipses predicted. We analyzed archival data of these observations. During the Chandra and Swift observations, we found clear flux decreases at the expected time of the eclipses. During the Suzaku observation, however, there were no clear signs for the predicted eclipses. The lapse of the predicted eclipses during the Suzaku observation can be explained by a contaminant source quite close to GRS 1747-312. When GRS 1747-312 is in the quiescent state, we observe X-rays from the contaminant source rather than from GRS 1747-312. However, we have no clear evidence for the contaminant source in our data. The lapse might also be explained by thick material (NH > 1024 cm-2) between the neutron star and the companion star, though the origin of the thick material is not clear.

  3. X-Ray and Optical Correlation of Type I Seyfert NGC 3516 Studied with Suzaku and Japanese Ground-based Telescopes

    NASA Astrophysics Data System (ADS)

    Noda, Hirofumi; Minezaki, Takeo; Watanabe, Makoto; Kokubo, Mitsuru; Kawaguchi, Kenji; Itoh, Ryosuke; Morihana, Kumiko; Saito, Yoshihiko; Nakao, Hikaru; Imai, Masataka; Moritani, Yuki; Takaki, Katsutoshi; Kawabata, Miho; Nakaoka, Tatsuya; Uemura, Makoto; Kawabata, Koji; Yoshida, Michitoshi; Arai, Akira; Takagi, Yuhei; Morokuma, Tomoki; Doi, Mamoru; Itoh, Yoichi; Yamada, Shin’ya; Nakazawa, Kazuhiro; Fukazawa, Yasushi; Makishima, Kazuo

    2016-09-01

    From 2013 April to 2014 April, we performed X-ray and optical simultaneous monitoring of the type 1.5 Seyfert galaxy NGC 3516. We employed Suzaku and five Japanese ground-based telescopes—the Pirka, Kiso Schmidt, Nayuta, MITSuME, and the Kanata telescopes. The Suzaku observations were conducted seven times with various intervals ranging from days or weeks to months, with an exposure of ∼50 ks each. The optical B-band observations not only covered those of Suzaku almost simultaneously, but also followed the source as frequently as possible. As a result, NGC 3516 was found in its faint phase with a 2–10 keV flux of 0.21–2.70 × 10‑11 erg s‑1 cm‑2. The 2–45 keV X-ray spectra were composed of a dominant variable hard power-law (PL) continuum with a photon index of ∼1.7 and a non-relativistic reflection component with a prominent Fe–Kα emission line. Producing the B-band light curve by differential image photometry, we found that the B-band flux changed by ∼2.7 × 10‑11 erg s‑1 cm‑2, which is comparable to the X-ray variation, and we detected a significant flux correlation between the hard PL component in X-rays and the B-band radiation, for the first time in NGC 3516. By examining their correlation, we found that the X-ray flux preceded that in the B band by {2.0}-0.6+0.7 days (1σ error). Although this result supports the X-ray reprocessing model, the derived lag is too large to be explained by the standard view, which assumes a “lamppost”-type X-ray illuminator located near a standard accretion disk. Our results are better explained by assuming a hot accretion flow and a truncated disk.

  4. A clumpy stellar wind and luminosity-dependent cyclotron line revealed by the first Suzaku observation of the high-mass X-ray binary 4U 1538–522

    SciTech Connect

    Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex; Fürst, Felix; Pottschmidt, Katja; Wilms, Jörn

    2014-09-01

    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538–522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 ± 0.4 keV and the iron Kα line at 6.426 ± 0.008 keV, as well as placing limits on the strengths of the iron Kβ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curve is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron Kα line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.

  5. Broad-band soft x-ray diagnostic instruments at the LLNL Novette laser facility

    SciTech Connect

    Tirsell, K.G.; Lee, P.H.Y.; Nilson, D.G.; Medecki, H.

    1983-09-15

    Complementary broad-band instruments have been developed to measure time dependent, absolute soft x-ray spectra at the Lawrence Livermore National Laboratory (LLNL) Nd glass laser irradiation facilities. Absolute flux measurements of x rays emitted from laser-produced plasmas are important for understanding laser absorption and energy transport. We will describe two new 10-channel XRD systems that have been installed at the LLNL Novette facility for use in the 0.15- to 1.5-keV range. Since XRD channel time response is limited by available oscilloscope performance to 120 ps, a soft x-ray streak camera has been developed for better time resolution (20 ps) and greater dynamic range (approx.10/sup 3/) in the same x-ray energy region. Using suitable filters, grazing incidence mirrors, and a gold or cesium-iodide transmission cathode, this streak camera instrument has been installed at Novette to provide one broad and four relatively narrow channels. It can also be used in a single channel, spatially discriminating mode by means of pinhole imaging. The complementary nature of these instruments has been enhanced by locating them in close proximity and matching their channel energy responses. As an example of the use of these instruments, we present results from Novette 2..omega..(0.53 ..mu..m) gold disk irradiations at 1 ns and 10/sup 14/ to 10/sup 15/ W/cm/sup 2/.

  6. A Peculiar Lapse of Periodic Eclipsing Event at Low Mass X-ray Binary GRS 1747-312 during Suzaku Observation in 2009

    NASA Astrophysics Data System (ADS)

    Saji, Shigetaka; Mori, Hideyuki; Matsumoto, Hironori; Dotani, Tadayasu; Iwai, Masachika; Maeda, Yoshitomo

    2015-08-01

    The Low Mass X-ray Binary (LMXB) GRS 1747-312 is a part of the globular cluster Terzan 6, located at a distance of 9.5 kpc from the Earth. Based on previous observations performed with BeppoSAX and RXTE, recurrent outbursts are known to occur with an interval of about 130-142 days. During the outbursts, periodic eclipses were discovered. During an eclipsing event, its flux declined precipitously by two orders of magnitude compared to its pre-eclipsing state. The periodic nature and its characteristic decline imply that this is likely a bona fide eclipsing event by an orbiting star. The duration (d) and orbital period (P) were estimated to be d = 2596 sec and P = 0.514980303 days.To investigate further, observations for outbursts were performed with Chandra (2004) and Swift (2013). In addition, XMM-Newton (2004) and Suzaku (2009) caught it at the quiescent state. All of the observations except for XMM-Newton included the time of the eclipses predicted. We analyzed archival data of these observations. The measured 0.5-10 keV flux were 5.7 × 10-10 erg cm-2 s-1 (Chandra), 2.0 × 10-13 (XMM), 1.1 × 10-11 (Suzaku) and 4.4 × 10-10 (Swift). During the Chandra and Swift observations, we found a sudden declining in the observed flux at the expected time of the eclipses. During the Suzaku observation, however, there were no signs for the predicted eclipses.Except for the Suzaku observation, the spectra were well described with a combination of blackbody and Comptonized emission models, commonly used for fitting on the spectra of LMXBs. The Suzaku spectrum, on the other hand, could be described with a Comptonized component covered partially by an absorber with NH ˜ 1023 cm-2 and covering fraction of ˜ 0.9. The spectrum had been becoming softer during the Suzaku observation. The softening may be explained by gradual decrease in the column density and covering fraction of the absorber. The spectral interpretation was consistent with the vanishing of the eclipses: the heavy

  7. A SUZAKU DISCOVERY OF A SLOWLY VARYING HARD X-RAY CONTINUUM FROM THE TYPE I SEYFERT GALAXY NGC 3516

    SciTech Connect

    Noda, Hirofumi; Makishima, Kazuo; Nakazawa, Kazuhiro; Yamada, Shin'ya

    2013-07-10

    The bright type I Seyfert galaxy NGC 3516 was observed by Suzaku twice, in 2005 October 12-15 and 2009 October 28-November 2, for a gross time coverage of 242 and 544 ks and a net exposure of 134 and 255 ks, respectively. The 2-10 keV luminosity was 2.8 Multiplication-Sign 10{sup 41} erg s{sup -1} in 2005 and 1.6 Multiplication-Sign 10{sup 41} erg s{sup -1} in 2009. The 1.4-1.7 keV and 1.7-10 keV count rates both exhibited peak-to-peak variations of a factor of {approx}2 in 2005 and {approx}4 in 2009. In both observations, the 15-45 keV count rate was less variable. The 2-10 keV spectrum in 2005 was significantly more convex than that in 2009. Through a count-count plot technique, the 2-45 keV signals in both sets of data were successfully decomposed in a model-independent way into two distinct broadband components. One is a variable emission with a featureless spectral shape, and the other is a non-varying hard component accompanied by a prominent Fe-K emission line at 6.33 keV (6.40 keV in the rest frame). The former was successfully fitted by an absorbed power-law model, while the latter requires a new hard continuum in addition to a reflection component from distant materials. The spectral and variability differences between the two observations are mainly attributed to long-term changes of this new hard continuum, which was stable on timescales of several hundreds of kiloseconds.

  8. IGR J17544-2619 IN DEPTH WITH SUZAKU: DIRECT EVIDENCE FOR CLUMPY WINDS IN A SUPERGIANT FAST X-RAY TRANSIENT

    SciTech Connect

    Rampy, Rachel A.; Smith, David M.; Negueruela, Ignacio

    2009-12-10

    We present direct evidence for dense clumps of matter in the companion wind in a Supergiant Fast X-ray Transient (SFXT) binary. This is seen as a brief period of enhanced absorption during one of the bright, fast flares that distinguish these systems. The object under study was IGR J17544-2619, and a total of 236 ks of data were accumulated with the Japanese satellite Suzaku. The activity in this period spans a dynamic range of almost 10{sup 4} in luminosity and gives a detailed look at SFXT behavior.

  9. IGR J17544-2619 in Depth With Suzaku: Direct Evidence for Clumpy Winds in a Supergiant Fast X-ray Transient

    NASA Astrophysics Data System (ADS)

    Rampy, Rachel A.; Smith, David M.; Negueruela, Ignacio

    2009-12-01

    We present direct evidence for dense clumps of matter in the companion wind in a Supergiant Fast X-ray Transient (SFXT) binary. This is seen as a brief period of enhanced absorption during one of the bright, fast flares that distinguish these systems. The object under study was IGR J17544-2619, and a total of 236 ks of data were accumulated with the Japanese satellite Suzaku. The activity in this period spans a dynamic range of almost 104 in luminosity and gives a detailed look at SFXT behavior.

  10. Conception of broadband stigmatic high-resolution spectrometers for the soft X-ray range

    NASA Astrophysics Data System (ADS)

    Vishnyakov, E. A.; Shatokhin, A. N.; Ragozin, E. N.

    2015-04-01

    We formulate an approach to the development of stigmatic high-resolution spectral instruments for the soft X-ray range (λ <= 300 Å), which is based on the combined operation of normalincidence multilayer mirrors (including broadband aperiodic ones) and grazing-incidence reflection gratings with nonequidistant grooves (so-called VLS gratings). A concave multilayer mirror serves to produce a slightly astigmatic image of the radiation source (for instance, an entrance slit), and the diffraction grating produces a set of its dispersed stigmatic spectral images. The width of the operating spectral region is determined by the aperiodic structure of the multilayer mirror and may range up to an octave in wavelength.

  11. Probing the Mysteries of the X-Ray Binary 4U 1210-64 with ASM, PCA, MAXI, BAT, and Suzaku

    NASA Astrophysics Data System (ADS)

    Coley, Joel B.; Corbet, Robin H. D.; Mukai, Koji; Pottschmidt, Katja

    2014-10-01

    4U 1210-64 has been postulated to be a high-mass X-ray binary powered by the Be mechanism. X-ray observations with Suzaku, the ISS Monitor of All-sky X-ray Image (MAXI), and the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) and All Sky Monitor (ASM) provide detailed temporal and spectral information on this poorly understood source. Long-term ASM and MAXI observations show distinct high and low states and the presence of a 6.7101 ± 0.0005 day modulation, interpreted as the orbital period. Folded light curves reveal a sharp dip, interpreted as an eclipse. To determine the nature of the mass donor, the predicted eclipse half-angle was calculated as a function of inclination angle for several stellar spectral types. The eclipse half-angle is not consistent with a mass donor of spectral type B5 V however, stars with spectral types B0 V or B0-5 III are possible. The best-fit spectral model consists of a power law with index Γ = 1.85^{+0.04}_{-0.05} and a high-energy cutoff at 5.5 ± 0.2 keV modified by an absorber that fully covers the source as well as partially covering absorption. Emission lines from S XVI Kα, Fe Kα, Fe XXV Kα, and Fe XXVI Kα were observed in the Suzaku spectra. Out of eclipse, the Fe Kα line flux was strongly correlated with unabsorbed continuum flux, indicating that the Fe I emission is the result of fluorescence of cold dense material near the compact object. The Fe I feature is not detected during eclipse, further supporting an origin close to the compact object.

  12. Probing the mysteries of the X-ray binary 4U 1210-64 with ASM, PCA, MAXI, BAT, and Suzaku

    SciTech Connect

    Coley, Joel B.; Corbet, Robin H. D.; Mukai, Koji; Pottschmidt, Katja

    2014-10-01

    4U 1210-64 has been postulated to be a high-mass X-ray binary powered by the Be mechanism. X-ray observations with Suzaku, the ISS Monitor of All-sky X-ray Image (MAXI), and the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) and All Sky Monitor (ASM) provide detailed temporal and spectral information on this poorly understood source. Long-term ASM and MAXI observations show distinct high and low states and the presence of a 6.7101 ± 0.0005 day modulation, interpreted as the orbital period. Folded light curves reveal a sharp dip, interpreted as an eclipse. To determine the nature of the mass donor, the predicted eclipse half-angle was calculated as a function of inclination angle for several stellar spectral types. The eclipse half-angle is not consistent with a mass donor of spectral type B5 V; however, stars with spectral types B0 V or B0-5 III are possible. The best-fit spectral model consists of a power law with index Γ = 1.85{sub −0.05}{sup +0.04} and a high-energy cutoff at 5.5 ± 0.2 keV modified by an absorber that fully covers the source as well as partially covering absorption. Emission lines from S XVI Kα, Fe Kα, Fe XXV Kα, and Fe XXVI Kα were observed in the Suzaku spectra. Out of eclipse, the Fe Kα line flux was strongly correlated with unabsorbed continuum flux, indicating that the Fe I emission is the result of fluorescence of cold dense material near the compact object. The Fe I feature is not detected during eclipse, further supporting an origin close to the compact object.

  13. Broad-Band Spectroscopy of Hercules X-1 with Suzaku

    NASA Technical Reports Server (NTRS)

    Asami, Fumi; Enoto, Teruaki; Iwakiri, Wataru; Yamada, Shin'ya; Tamagawa, Toru; Mihara, Tatehiro; Nagase, Fumiaki

    2014-01-01

    Hercules X-1 was observed with Suzaku in the main-on state from 2005 to 2010. The 0.4- 100 keV wide-band spectra obtained in four observations showed a broad hump around 4-9 keV in addition to narrow Fe lines at 6.4 and 6.7 keV. The hump was seen in all the four observations regardless of the selection of the continuum models. Thus it is considered a stable and intrinsic spectral feature in Her X-1. The broad hump lacked a sharp structure like an absorption edge. Thus it was represented by two different spectral models: an ionized partial covering or an additional broad line at 6.5 keV. The former required a persistently existing ionized absorber, whose origin was unclear. In the latter case, the Gaussian fitting of the 6.5-keV line needs a large width of sigma = 1.0-1.5 keV and a large equivalent width of 400-900 eV. If the broad line originates from Fe fluorescence of accreting matter, its large width may be explained by the Doppler broadening in the accretion flow. However, the large equivalent width may be inconsistent with a simple accretion geometry.

  14. Broadband Suzaku Observations of IGR J16207-5129

    NASA Technical Reports Server (NTRS)

    Bodaghee, A.; Tomsick, J. A.; Rodriguez, J.; Chaty, S.; Pottschmidt, K.; Walter, R.

    2010-01-01

    An analysis of IGRJ16207-5129 is presented based on observations taken with Suzaku. The data set represents approximately 80 ks of effective exposure time in a broad energy range between 0.5 and 60 keV, including unprecedented spectral sensitivity above 15 keV. The average source spectrum is well described by an absorbed power law in which we measured a large intrinsic absorption of N(sub H) = (16.2 (sup +0.9)(sub -1.1) x 10(sup 22) per square centimeter. This confirms that IGRJ16207-5129 belongs to the class of absorbed HMXBs. We were able to constrain the cutoff energy at 19(sup +8)(sub -4)keV which argues in favor of a neutron star as the primary. Our observation includes an epoch in which the source count rate is compatible with no flux suggesting a possible eclipse. We discuss the nature of this source in light of these and of other recent results.

  15. A Suzaku Study of Ejecta Structure and Origin of Hard X-ray Emission in the Supernova Remnant G156.2+5.7

    NASA Technical Reports Server (NTRS)

    Uchida, Hiroyuki; Tsunemi, Hiroshi; Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya

    2012-01-01

    We report an X-ray study of the evolved Galactic supernova remnant (SNR) G1S6.2+S.7 based on six pointing observations with Suzaku. The remnant's large extent (100' in diameter) allows us to investigate its radial structure in the northwestern and eastern directions from the apparent center. The X-ray spectra. were well fit with a two-component non-equilibrium ionization model representing the swept-up interstellar medium (ISM) and the metal-rich ejecta. We found prominent central concentrations of Si, S and Fe from the ejecta component; the lighter elements of O, Ne and Mg were distributed more uniformly. The temperature of the ISM component suggests a slow shock (610-960 km/s), hence the remnant's age is estimated to be 7,000-15,000 yr, assuming its distance to be approx. 1.1 kpc. G1S6.2+5.7 has also been thought to emit hard, non-thermal X-rays, despite being considerably older than any other such remnant. In response to a recent discovery of a background cluster of galaxies (2XMM J045637.2+522411), we carefully excluded its contribution, and reexamined the origin of the hard X-ray emission. We found that the residual hard X-ray emission is consistent with the expected level of the cosmic X-ray background. Thus, no robust evidence for the non-thermal emission was obtained from G156.2+5.7. These results are consistent with the picture of an evolved SNR.

  16. Toward broad-band x-ray detected ferromagnetic resonance in longitudinal geometry

    SciTech Connect

    Ollefs, K.; Meckenstock, R.; Spoddig, D.; Römer, F. M.; Hassel, Ch.; Schöppner, Ch.; Farle, M.; Ney, V.; Ney, A.

    2015-06-14

    An ultrahigh-vacuum-compatible setup for broad-band X-ray detected ferromagnetic resonance (XFMR) in longitudinal geometry is introduced which relies on a low-power, continuous-wave excitation of the ferromagnetic sample. A simultaneous detection of the conventional ferromagnetic resonance via measuring the reflected microwave power and the XFMR signal of the X-ray absorption is possible. First experiments on the Fe and Co L{sub 3}-edges of a permalloy film covered with Co nanostripes as well as the Fe and Ni K-edges of a permalloy film are presented and discussed. Two different XFMR signals are found, one of which is independent of the photon energy and therefore does not provide element-selective information. The other much weaker signal is element-selective, and the dynamic magnetic properties could be detected for Fe and Co separately. The dependence of the latter XFMR signal on the photon helicity of the synchrotron light is found to be distinct from the usual x-ray magnetic circular dichroism effect.

  17. The Broadband XMM-Newton and NuSTAR X-Ray Spectra of Two Ultraluminous X-Ray Sources in the Galaxy IC 342

    NASA Astrophysics Data System (ADS)

    Rana, Vikram; Harrison, Fiona A.; Bachetti, Matteo; Walton, Dominic J.; Furst, Felix; Barret, Didier; Miller, Jon M.; Fabian, Andrew C.; Boggs, Steven E.; Christensen, Finn C.; Craig, William W.; Grefenstette, Brian W.; Hailey, Charles J.; Madsen, Kristin K.; Ptak, Andrew F.; Stern, Daniel; Webb, Natalie A.; Zhang, William W.

    2015-02-01

    We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ~7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04+0.08-0.06 × 1040 erg s-1 for IC 342 X-1 and 7.40 ± 0.20 × 1039 erg s-1 for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.

  18. A Broadband X-Ray Study of Supernova Remnant 3C 397

    NASA Astrophysics Data System (ADS)

    Safi-Harb, S.; Petre, R.; Arnaud, K. A.; Keohane, J. W.; Borkowski, K. J.; Dyer, K. K.; Reynolds, S. P.; Hughes, J. P.

    2000-12-01

    We present a broadband imaging and spectral study of the radio-bright supernova remnant (SNR) 3C 397 with ROSAT, ASCA, and RXTE. A bright X-ray spot seen in the HRI image hints at the presence of a pulsar-powered component and gives this SNR a composite X-ray morphology. Combined ROSAT and ASCA imaging shows that the remnant is highly asymmetric, with its X-ray emission peaking at the western lobe. The hard-band images obtained with the ASCA Gas Imaging Spectrometer show that much of the hard X-ray emission arises from the western lobe, associated with the SNR shell, with little hard X-ray emission associated with the central hot spot. The spectrum from 3C 397 is heavily absorbed and dominated by thermal emission with emission lines evident from Mg, Si, S, Ar and Fe. Single-component models fail to describe the X-ray spectrum, and at least two components are required: a soft component characterized by a low temperature and a large ionization timescale, and a hard component required to account for the Fe-K emission line and characterized by a much lower ionization timescale. We use a set of nonequilibrium ionization (NEI) models (Borkowski et al., in preparation), and find that the fitted parameters are robust. The temperatures from the soft and hard components are ~0.2 keV and ~1.6 keV respectively. The corresponding ionization timescales n0t (n0 being the preshock hydrogen density) are ~6×1012 cm-3 s and ~6×1010 cm-3 s, respectively. The large n0t of the soft component suggests it is approaching ionization equilibrium; thus it can be fit equally well with a collisional equilibrium ionization model. The spectrum obtained with the Proportional Counter Array (PCA) of RXTE is contaminated by emission from the Galactic ridge, with only ~15% of the count rate originating from 3C 397 in the 5-15 keV range. The PCA spectrum allowed us to confirm the thermal nature of the hard X-ray emission. A third component originating from a pulsar-driven component is possible, but

  19. A search for a keV signature of radiatively decaying dark matter with Suzaku XIS observations of the X-ray diffuse background

    NASA Astrophysics Data System (ADS)

    Sekiya, Norio; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa

    2016-06-01

    We performed the deepest search for an X-ray emission line at between 0.5 and 7 keV from non-baryonic dark matter by the Suzaku XIS. Dark matter associated with the Milky Way was selected as the target to obtain the best signal-to-noise ratio. From the Suzaku archive, we selected 187 data sets of blank-sky regions that were dominated by the X-ray diffuse background. The data sets were from 2005 to 2013. The instrumental responses were adjusted by multiple calibration data sets of the Crab Nebula. We also improved the technique of subtracting lines of instrumental origin. These energy spectra were well described by X-ray emission due to charge exchange around the Solar System, hot plasma in and around the Milky Way, and the superposition of extra-galactic point sources. A signal of a narrow emission-line was searched for, and the significance of detection was evaluated in consideration of the blind search method (the Look-elsewhere Effect). Our results exhibited no significant detection of an emission line feature from dark matter. The 3 σ upper limit for the emission line intensity between 1 and 7 keV was ˜ 10-2 photons cm-2 s-1 sr-1, or ˜ 5 × 10-4 photons cm-2 s-1 sr-1 per M⊙ pc-2, assuming a dark matter distribution with the Galactic rotation curve. The parameters of sterile neutrinos as candidates of dark-matter were also constrained.

  20. Suzaku Observation of Strong Fluorescent Iron Line Emission from the Young Stellar Object V1647 Ori during Its New X-ray Outburst

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael

    2009-01-01

    The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.

  1. A broad spectral feature detected during the cooling phase of a thermonuclear X-ray burst from GRS 1747-312 with Suzaku

    NASA Astrophysics Data System (ADS)

    Iwai, Masachika; Dotani, Tadayasu; Ozaki, Masanobu; Maeda, Yoshitomo; Mori, Hideyuki; Saji, Shigetaka

    2015-08-01

    Precise measurement of the mass-radius relation of a Neutron Star (NS) is crucial to determine the equation of state of the ultra dense matter. Instead of directly measuring the mass and radius, it is often measured the mass-radius ratio, i.e. gravitational redshift at the NS surface, as it is free from the uncertainty to the source distance. If we can detect spectral features in the emission from the NS photosphere, which may be observable during the thermonuclear X-ray bursts, we can directly measure the gravitational redshift. Thus, we are systematically analyzing the Suzaku archival data looking for the thermonuclear X-ray bursts.GRS 1747-312 is a type I X-ray burst source located in the globular cluster Terzan 6. It was observed with Suzaku as a part of Galactic bulge mapping observations in September, 2009, for a total exposure of 45.3 ks. An exceptionally large X-ray burst with photospheric radius expansion was detected during the observation. The burst duration exceeded an hour. Unfortunately, most of the decay of the burst was not observed due to the satellite passage through the South Atlantic Anomaly.We detected a broad feature in the energy spectrum of the burst above 7 keV in its cooling phase. The feature resembled that of an absorption edge, but was significantly smeared. We found that it was best reproduced by a rotation-broadened absorption edge, where the photo-electric absorption edge was smeared by the rapid spin of the NS. The smeared edge may be produced by the dominant products of the X-ray burst, i.e. hydrogen-like Fe (9.28 keV) or Ni (10.78 keV). If this identification is correct, the gravitational red shift would be 1.30+-0.02 or 1.51+-0.02, respectively, corresponding to the NS radius of 10.1+-0.3 or 7.4+-0.1 km, for an assumed NS mass of 1.4 solar mass. Because the absorption edge is not completely smeared out even with the rapid spin of the NS, this can be a powerful tool to measure the gravitational redshift of the NSs.

  2. OTELO SURVEY: DEEP BVRI BROADBAND PHOTOMETRY OF THE GROTH STRIP. II. OPTICAL PROPERTIES OF X-RAY EMITTERS

    SciTech Connect

    Povic, M.; Perez GarcIa, A. M.; Bongiovanni, A.; Castaneda, H.; Lorenzo, M. Fernandez; Lara-Lopez, M. A.; Sanchez-Portal, M.; Alfaro, E.; Gallego, J.; Gonzalez-Serrano, J. I.; Gonzalez, J. J. E-mail: miguel.sanchez@sciops.esa.in

    2009-11-20

    The Groth field is one of the sky regions that will be targeted by the OSIRIS Tunable Filter Emission Line Object survey in the optical 820 nm and 920 nm atmospheric windows. In the present paper, public Chandra X-ray data with total exposure time of 200 ks are analyzed and combined with optical broadband data of the Groth field, in order to study a set of optical structural parameters of the X-ray emitters and its relation with X-ray properties. To this aim, we processed the raw, public X-ray data using the Chandra Interactive Analysis of Observations, and determined and analyzed different structural parameters, in order to produce a morphological classification of X-ray sources. We present the morphology of 340 X-ray emitters with optical counterpart detected. Objects have been classified by X-ray type using a diagnostic diagram relating X-ray-to-optical ratio (X/O) to hardness ratio. We did not find any clear correlation between X-ray and morphological types. We analyzed the angular clustering of X-ray sources with optical counterpart using two-point correlation functions. A significant positive angular clustering was obtained from a preliminary analysis of four subsamples of the X-ray sources catalog. The clustering signal of the optically extended counterparts is similar to that of strongly clustered populations like red and very red galaxies, suggesting that the environment plays an important role in active galactic nuclei phenomena. Finally, we combined optical structural parameters with other X-ray and optical properties, and we confirmed an anticorrelation between the X/O ratio and the Abraham concentration index, which might suggest that early-type galaxies have lower Eddington rates than those of late-type galaxies.

  3. Spectral and timing properties of the black hole X-ray binary H1743–322 in the low/hard state studied with Suzaku

    SciTech Connect

    Shidatsu, M.; Ueda, Y.; Hori, T.; Yamada, S.; Done, C.; Yamaoka, K.; Kubota, A.; Nagayama, T.; Moritani, Y.

    2014-07-10

    We report on the results from Suzaku observations of the Galactic black hole X-ray binary H1743–322 in the low/hard state during its outburst in 2012 October. We appropriately take into account the effects of dust scattering to accurately analyze the X-ray spectra. The time-averaged spectra in the 1-200 keV band are dominated by a hard power-law component of a photon index of ≈1.6 with a high-energy cutoff at ≈60 keV, which is well described with the Comptonization of the disk emission by the hot corona. We estimate the inner disk radius from the multi-color disk component, and find that it is 1.3-2.3 times larger than the radius in the high/soft state. This suggests that the standard disk was not extended to the innermost stable circular orbit. A reflection component from the disk is detected with R = Ω/2π ≈ 0.6 (Ω is the solid angle). We also successfully estimate the stable disk component independent of the time-averaged spectral modeling by analyzing short-term spectral variability on a ∼1 s timescale. A weak low-frequency quasi-periodic oscillation at 0.1-0.2 Hz is detected, whose frequency is found to correlate with the X-ray luminosity and photon index. This result may be explained by the evolution of the disk truncation radius.

  4. Spectral and Timing Properties of the Black Hole X-Ray Binary H1743-322 in the Low/Hard State Studied with Suzaku

    NASA Astrophysics Data System (ADS)

    Shidatsu, M.; Ueda, Y.; Yamada, S.; Done, C.; Hori, T.; Yamaoka, K.; Kubota, A.; Nagayama, T.; Moritani, Y.

    2014-07-01

    We report on the results from Suzaku observations of the Galactic black hole X-ray binary H1743-322 in the low/hard state during its outburst in 2012 October. We appropriately take into account the effects of dust scattering to accurately analyze the X-ray spectra. The time-averaged spectra in the 1-200 keV band are dominated by a hard power-law component of a photon index of ≈1.6 with a high-energy cutoff at ≈60 keV, which is well described with the Comptonization of the disk emission by the hot corona. We estimate the inner disk radius from the multi-color disk component, and find that it is 1.3-2.3 times larger than the radius in the high/soft state. This suggests that the standard disk was not extended to the innermost stable circular orbit. A reflection component from the disk is detected with R = Ω/2π ≈ 0.6 (Ω is the solid angle). We also successfully estimate the stable disk component independent of the time-averaged spectral modeling by analyzing short-term spectral variability on a ~1 s timescale. A weak low-frequency quasi-periodic oscillation at 0.1-0.2 Hz is detected, whose frequency is found to correlate with the X-ray luminosity and photon index. This result may be explained by the evolution of the disk truncation radius.

  5. X-ray follow-ups of TeV unID sources using Suzaku--HESS J1745--303--

    SciTech Connect

    Bamba, Aya; Kohri, Kazunori; Matsumoto, Hironori; Wagner, Stefan; Puehlhofer, Gerd; Kosack, Karl

    2008-12-24

    H.E.S.S. TeV gamma-ray telescope discovered many new sources on the Galactic plane. They should be Galactic particle accelerators but their nature is still unknown since they have few information in other wavelength. Jp-US X-ray telescope Suzaku has made follow-up observations for several TeV unID sources, using the low and stable background and the large effective area. The results are full of varieties; compact counterparts (HESS J1804-216, HESS J1837-609) and diffuse counterparts (HESS J1614-518, CTB 37B). Most interesting results are no-detection even with long exposure (HESS J1616-508, HESS J1745-303). In this talk, we present one of the most interesting result, HESS J1745-303, which is located on near the Galactic center.

  6. THE BROADBAND XMM-NEWTON AND NuSTAR X-RAY SPECTRA OF TWO ULTRALUMINOUS X-RAY SOURCES IN THE GALAXY IC 342

    SciTech Connect

    Rana, Vikram; Harrison, Fiona A.; Walton, Dominic J.; Furst, Felix; Grefenstette, Brian W.; Madsen, Kristin K.; Bachetti, Matteo; Barret, Didier; Webb, Natalie A.; Miller, Jon M.; Fabian, Andrew C.; Boggs, Steven E.; Craig, William W.; Christensen, Finn C.; Hailey, Charles J.; Ptak, Andrew F.; Zhang, William W.; Stern, Daniel

    2015-02-01

    We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ∼7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04{sub −0.06}{sup +0.08}×10{sup 40} erg s{sup –1} for IC 342 X-1 and 7.40 ± 0.20 × 10{sup 39} erg s{sup –1} for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.

  7. NUSTAR and SUZAKU X-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    SciTech Connect

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.

    2015-06-15

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin $a\\gt 0.9$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. As a result, we discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.

  8. Relativistically broadened iron line in the Suzaku observation of the neutron star X-ray binary 4U 1705-44

    NASA Astrophysics Data System (ADS)

    Reis, R. C.; Fabian, A. C.; Young, A. J.

    2009-10-01

    The X-ray spectra of accreting compact objects often exhibit discrete emission features associated with fluorescent emission in the accretion disc, the strongest of which is the Fe Kα fluorescence line at 6.4-6.97keV. These reflection features are amongst the best tools in the study of the inner region of accretion flow around a compact object. Here, we report on three Suzaku observations of the neutron star X-ray binary 4U 1705-44 where a broad, skewed Fe Kα emission line is clearly visible above the continuum. By using a relativistically blurred reflection model, we find that in 4U 1705-44 the inner disc radius extends down to rin = 10.5+1.0-1.7GM/c2 and is at an angle of 29.8+1.1-1.0 deg to the line of sight. Furthermore, we find that the level of ionization in the surface layers of the accretion disc changes by two orders of magnitude between the three observations, however the inner radius obtained from the line profile remains stable.

  9. Suzaku Observations of Thermal and Non-Thermal X-Ray Emission from the Middle-Aged Supernova Remnant G156.2+5.7

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Petre, Robert; Hwang, Una; Yamaguchi, Hiroya; Mori, Koji; Tsunemi, Hiroshi

    2008-01-01

    We present results from X-ray analysis of a Galactic middle-aged supernova remnant (SNR) G156.2+5.7 which is bright and largely extended in X-ray wavelengths, showing a clear circular shape (radius approx.50'). Using the Suzaku satellite, we observed this SNR in three pointings; partially covering the northwestern (NW) rim, the eastern (E) rim, and the central portion of this SNR. In the NW rim and the central portion, we confirm that the X-ray spectra consist of soft and hard-tail emission, while in the E rim we find no significant hard-tail emission. The soft emission is well fitted by either a one-component or two-component non-equilibrium ionization (NEI) model. In the NW and E rims, a one-component (the swept-up interstellar medium) NEI model well represents the soft emission. On the other hand, in the central portion, a two-component (the interstellar medium and the metal-rich ejecta) NEI model fits the soft emission better than the one-component NEI model from a statistical point of view. The relative abundances in the ejecta component suggest that G156.2+5.7 is a remnant from a core-collapse SN explosion whose progenitor mass is less than 15 Solar Mass. The origin of the hard-tail emission detected in the NW rim and the central portion of the SNR is highly likely non-thermal synchrotron emission from relativistic electrons. In the NW rim, the relativistic electrons seems to be accelerated by a forward shock with a slow velocity of APPROX.500 km/sec.

  10. X-ray nova MAXI J1828-249. Evolution of the broadband spectrum during its 2013-2014 outburst

    NASA Astrophysics Data System (ADS)

    Grebenev, S. A.; Prosvetov, A. V.; Burenin, R. A.; Krivonos, R. A.; Mescheryakov, A. V.

    2016-02-01

    Based on data from the SWIFT, INTEGRAL, MAXI/ISS orbital observatories, and the ground-based RTT-150 telescope, we have investigated the broadband (from the optical to the hard X-ray bands) spectrum of the X-ray nova MAXI J1828-249 and its evolution during the outburst of the source in 2013-2014. The optical and infrared emissions from the nova are shown to be largely determined by the extension of the power-law component responsible for the hard X-ray emission. The contribution from the outer cold regions of the accretion disk, even if the X-ray heating of its surface is taken into account, turns out to be moderate during the source's "high" state (when a soft blackbody emission component is observed in the X-ray spectrum) and is virtually absent during its "low" ("hard") state. This result suggests that much of the optical and infrared emissions from such systems originates in the same region of main energy release where their hard X-ray emission is formed. This can be the Compton or synchro-Compton radiation from a high-temperature plasma in the central accretion disk region puffed up by instabilities, the synchrotron radiation from a hot corona above the disk, or the synchrotron radiation from its relativistic jets.

  11. Ultra-bright, ultra-broadband hard x-ray driven by laser-produced energetic electron beams

    SciTech Connect

    Shi, Yin; Shen, Baifei; Zhang, Xiaomei; Wang, Wenpeng; Ji, Liangliang; Zhang, Lingang; Xu, Jiancai; Yu, Yahong; Zhao, Xueyan; Wang, Xiaofeng; Yi, Longqing; Xu, Tongjun; Xu, Zhizhan

    2013-09-15

    We propose a new method of obtaining a compact ultra-bright, ultra-broadband hard X-ray source. This X-ray source has a high peak brightness in the order of 10{sup 22} photons/(s mm{sup 2} mrad{sup 2} 0.1\\%BW), an ultrashort duration (10 fs), and a broadband spectrum (flat distribution from 0.1 MeV to 4 MeV), and thus has wide-ranging potential applications, such as in ultrafast Laue diffraction experiments. In our scheme, laser-plasma accelerators (LPAs) provide driven electron beams. A foil target is placed oblique to the beam direction so that the target normal sheath field (TNSF) is used to provide a bending force. Using this TNSF-kick scheme, we can fully utilize the advantages of current LPAs, including their high charge, high energy, and low emittance.

  12. Suzaku observations of two diffuse hard X-ray source regions, G22.0+0.0 and G23.5+0.1

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Sumita, Mayu; Bamba, Aya

    2016-06-01

    G22.0+0.0 and G23.5+0.1 are diffuse hard X-ray sources discovered in the ASCA Galactic Plane Survey. We present Suzaku results of spectral analysis for these sources. G22.0+0.0 is confirmed to be a largely extended emission. Its spectra were represented by a highly absorbed power-law model with a photon index of 1.7 ± 0.3 and a moderately absorbed thermal emission with a temperature of 0.34^{+0.11}_{-0.08}keV. The difference in the NH values between the two components suggests that the thermal component is unrelated to the power-law component and is a foreground emission located in the same line of sight. G23.5+0.1 is an extended source with a size of ˜3{^'.}5. Its spectra were fitted with an absorbed power-law model with a photon index of 2.4^{+0.5}_{-0.4}. The spatial and spectral properties show that both sources are candidates for old pulsar wind nebulae (PWNe). In addition to the extended sources, we analyzed spectra of three point sources found in the observed fields. Based on the spectral features, we discuss the origin of the sources.

  13. XMM-Newton and Suzaku X-Ray Shadowing Measurements of the Solar Wind Charge Exchange, Local Bubble, and Galactic Halo Emission

    NASA Astrophysics Data System (ADS)

    Henley, David B.; Shelton, Robin L.

    2015-07-01

    We present results from a sample of XMM-Newton and Suzaku observations of interstellar clouds that cast shadows in the soft X-ray background (SXRB)—the first uniform analysis of such a sample from these missions. By fitting to the on- and off-shadow spectra, we separated the foreground and Galactic halo components of the SXRB. We tested different foreground models—two solar wind charge exchange (SWCX) models and a Local Bubble (LB) model. We also examined different abundance tables. We found that Anders & Grevesse abundances, commonly used in previous SXRB studies, may result in overestimated foreground brightnesses and halo temperatures. We also found that assuming a single solar wind ionization temperature for a SWCX model can lead to unreliable results. We compared our measurements of the foreground emission with predictions of the SWCX emission from a smooth solar wind, finding only partial agreement. Using available observation-specific SWCX predictions and various plausible assumptions, we placed an upper limit on the LB's O vii intensity of ˜0.8 {{photons}} {{{cm}}}-2 {{{s}}}-1 {{{sr}}}-1 (90% confidence). Comparing the halo results obtained with SWCX and LB foreground models implies that, if the foreground is dominated by SWCX and is brighter than ˜1.5× {10}-12 {{erg}} {{{cm}}}-2 {{{s}}}-1 {{{deg}}}-2 (0.4-1.0 {{keV}}), then using an LB foreground model may bias the halo temperature upward and the 0.5-2.0 {{keV}} surface brightness downward by ˜(0.2-0.3)× {10}6 {{K}} and ˜(1-2)× {10}-12 {{erg}} {{{cm}}}-2 {{{s}}}-1 {{{deg}}}-2, respectively. Similarly, comparing results from different observatories implies that there may be uncertainties in the halo temperature and surface brightness of up to ˜0.2× {10}6 {{K}} and ˜25%, respectively, in addition to the statistical uncertainties. These uncertainties or biases may limit the ability of X-ray measurements to discriminate between Galactic halo models.

  14. XMM-Newton and Suzaku X-Ray Shadowing Measurements of the Solar Wind Charge Exchange, Local Bubble, and Galactic Halo Emission

    NASA Astrophysics Data System (ADS)

    Henley, David B.; Shelton, Robin L.

    2015-07-01

    We present results from a sample of XMM-Newton and Suzaku observations of interstellar clouds that cast shadows in the soft X-ray background (SXRB)—the first uniform analysis of such a sample from these missions. By fitting to the on- and off-shadow spectra, we separated the foreground and Galactic halo components of the SXRB. We tested different foreground models—two solar wind charge exchange (SWCX) models and a Local Bubble (LB) model. We also examined different abundance tables. We found that Anders & Grevesse abundances, commonly used in previous SXRB studies, may result in overestimated foreground brightnesses and halo temperatures. We also found that assuming a single solar wind ionization temperature for a SWCX model can lead to unreliable results. We compared our measurements of the foreground emission with predictions of the SWCX emission from a smooth solar wind, finding only partial agreement. Using available observation-specific SWCX predictions and various plausible assumptions, we placed an upper limit on the LB's O vii intensity of ∼0.8 {{photons}} {{{cm}}}-2 {{{s}}}-1 {{{sr}}}-1 (90% confidence). Comparing the halo results obtained with SWCX and LB foreground models implies that, if the foreground is dominated by SWCX and is brighter than ∼1.5× {10}-12 {{erg}} {{{cm}}}-2 {{{s}}}-1 {{{deg}}}-2 (0.4–1.0 {{keV}}), then using an LB foreground model may bias the halo temperature upward and the 0.5–2.0 {{keV}} surface brightness downward by ∼(0.2-0.3)× {10}6 {{K}} and ∼(1-2)× {10}-12 {{erg}} {{{cm}}}-2 {{{s}}}-1 {{{deg}}}-2, respectively. Similarly, comparing results from different observatories implies that there may be uncertainties in the halo temperature and surface brightness of up to ∼0.2× {10}6 {{K}} and ∼25%, respectively, in addition to the statistical uncertainties. These uncertainties or biases may limit the ability of X-ray measurements to discriminate between Galactic halo models.

  15. Suzaku Studies of the Central Engine in the Typical Type I Seyfert NGC 3227: Detection of Multiple Primary X-Ray Continua with Distinct Properties

    NASA Astrophysics Data System (ADS)

    Noda, Hirofumi; Makishima, Kazuo; Yamada, Shin'ya; Nakazawa, Kazuhiro; Sakurai, Soki; Miyake, Katsuma

    2014-10-01

    The type I Seyfert galaxy NGC 3227 was observed by Suzaku six times in 2008, with intervals of ~1 week and net exposures of ~50 ks each. Among the six observations, the source varied by nearly an order of magnitude; it was brightest in the first observation with a 2-10 keV luminosity of 1.2 × 1042 erg s-1, while faintest in the fourth observation with 2.9 × 1041 erg s-1. As it became fainter, the continuum in the 2-45 keV band became harder, while the narrow Fe-Kα emission line, detected on all occasions at 6.4 keV of the source rest frame, remained approximately constant in the photon flux. Through a method of variability-assisted broadband spectroscopy, the 2-45 keV spectrum of NGC 3227 was decomposed into three distinct components. One is a relatively soft power-law continuum with a photon index of ~2.3, weakly absorbed and highly variable on timescales of ~5 ks it was observed only when the source was above a threshold luminosity of ~6.6 × 1041 erg s-1 (in 2-10 keV), and was responsible for further source brightening beyond. Another is a harder and more absorbed continuum with a photon index of ~1.6, which persisted through the six observations and varied slowly on timescales of a few weeks by a factor of ~2. This component, carrying a major fraction of the broadband emission when the source is below the threshold luminosity, is considered as an additional primary emission. The last one is a reflection component with the narrow iron line, produced at large distances from the central black hole.

  16. Suzaku studies of the central engine in the typical type I Seyfert NGC 3227: detection of multiple primary X-ray continua with distinct properties

    SciTech Connect

    Noda, Hirofumi; Makishima, Kazuo; Nakazawa, Kazuhiro; Sakurai, Soki; Miyake, Katsuma; Yamada, Shin'ya

    2014-10-10

    The type I Seyfert galaxy NGC 3227 was observed by Suzaku six times in 2008, with intervals of ∼1 week and net exposures of ∼50 ks each. Among the six observations, the source varied by nearly an order of magnitude; it was brightest in the first observation with a 2-10 keV luminosity of 1.2 × 10{sup 42} erg s{sup –1}, while faintest in the fourth observation with 2.9 × 10{sup 41} erg s{sup –1}. As it became fainter, the continuum in the 2-45 keV band became harder, while the narrow Fe-Kα emission line, detected on all occasions at 6.4 keV of the source rest frame, remained approximately constant in the photon flux. Through a method of variability-assisted broadband spectroscopy, the 2-45 keV spectrum of NGC 3227 was decomposed into three distinct components. One is a relatively soft power-law continuum with a photon index of ∼2.3, weakly absorbed and highly variable on timescales of ∼5 ks; it was observed only when the source was above a threshold luminosity of ∼6.6 × 10{sup 41} erg s{sup –1} (in 2-10 keV), and was responsible for further source brightening beyond. Another is a harder and more absorbed continuum with a photon index of ∼1.6, which persisted through the six observations and varied slowly on timescales of a few weeks by a factor of ∼2. This component, carrying a major fraction of the broadband emission when the source is below the threshold luminosity, is considered as an additional primary emission. The last one is a reflection component with the narrow iron line, produced at large distances from the central black hole.

  17. A Broad-Band X-Ray Study of the Geminga Pulsar

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Wang, F. Y.-H.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We present a comprehensive study of the Geminga pulsar at energies 0.1-10 keV using data from the ASCA, ROSAT, and EUVE satellites. The bulk of the soft X-ray flux can be parameterized as a blackbody of T = (5.6 +/- 0.6) x 10(exp 5) K, occupying a fraction 0. 10 - 0.64 of the surface area of the neutron star at the parallax distance of 160 pc. The ASCA detection of Geminga resolves the nature of the harder X-ray component previously discovered by ROSAT in favor of nonthermal emission, rather than thermal emission from a heated polar cap. The hard X-ray spectrum can be fitted by a power-law of energy index 1.0 +/- 0.5. The hard X-ray light curve has a strong main peak and a weak secondary peak; its total pulsed fraction is = 55%. Three ROSAT PSPC observations show significant variability of Geminga's light curve. In particular, a peculiar energy dependence of the modulation in the soft X-ray component, dubbed the "Geminga effect" in the original PSPC data, is not present in later observations. In addition, fine structure in the soft X-ray light curve, interpreted as eclipses due to cyclotron resonance scattering by a plasma screen on the closed magnetic field lines, almost disappeared in the most recent observations. All of the variable properties of Geminga can probably be associated with the nonthermal process that supplies e(sup +, sup -) pairs to its inner magnetosphere.

  18. Two-dimensional stimulated resonance Raman spectroscopy of molecules with broadband x-ray pulses

    PubMed Central

    Biggs, Jason D.; Zhang, Yu; Healion, Daniel; Mukamel, Shaul

    2012-01-01

    Expressions for the two-dimensional stimulated x-ray Raman spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (181 as, 14.2 eV FWHM) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core-hole. PMID:22583220

  19. Broadband Ultrahigh-Resolution Spectroscopy of Particle-Induced X Rays: Extending the Limits of Nondestructive Analysis

    NASA Astrophysics Data System (ADS)

    Palosaari, M. R. J.; Käyhkö, M.; Kinnunen, K. M.; Laitinen, M.; Julin, J.; Malm, J.; Sajavaara, T.; Doriese, W. B.; Fowler, J.; Reintsema, C.; Swetz, D.; Schmidt, D.; Ullom, J. N.; Maasilta, I. J.

    2016-08-01

    Nondestructive analysis (NDA) based on x-ray emission is widely used, for example, in the semiconductor and concrete industries. Here, we demonstrate significant quantitative and qualitative improvements in broadband x-ray NDA by combining particle-induced emission with detection based on superconducting microcalorimeter arrays. We show that the technique offers great promise in the elemental analysis of thin-film and bulk samples, especially in the difficult cases where tens of different elements with nearly overlapping emission lines have to be identified down to trace concentrations. We demonstrate the efficiency and resolving capabilities by spectroscopy of several complex multielement samples in the energy range 1-10 keV, some of which have a trace amount of impurities not detectable with standard silicon drift detectors. The ability to distinguish the chemical environment of an element is also demonstrated by measuring the intensity differences and chemical shifts of the characteristics x-ray peaks of titanium compounds. In particular, we report measurements of the K α /K β intensity ratio of thin films of TiN and measurements of Ti K α satellite peak intensities in various Ti thin-film compounds. We also assess the detection limits of the technique, comment on detection limits possible in the future, and discuss possible applications.

  20. Broadband ESO/VISIR-Spitzer Infrared Spectroscopy of the Obscured Supergiant X-Ray Binary IGR J16318-4848

    NASA Astrophysics Data System (ADS)

    Chaty, S.; Rahoui, F.

    2012-06-01

    A new class of X-ray binaries has recently been discovered by the high-energy observatory INTEGRAL. It is composed of intrinsically obscured supergiant high-mass X-ray binaries, unveiled by means of multi-wavelength X-ray, optical, near- and mid-infrared observations, in particular, photometric and spectroscopic observations using ESO facilities. However, the fundamental questions about these intriguing sources, namely, their formation, evolution, and the nature of their environment, are still unsolved. Among them, IGR J16318-4848, a compact object orbiting around a supergiant B[e] star, seems to be one of the most extraordinary celestial sources of our Galaxy. We present here new ESO/Very Large Telescope (VLT) VISIR mid-infrared (MIR) spectroscopic observations of this source. First, line diagnostics allow us to confirm the presence of absorbing material (dust and cold gas) enshrouding the whole binary system, and to characterize the nature of this material. Second, by fitting broadband near- to mid-infrared spectral energy distribution, including ESO NTT/SofI, VLT/VISIR, and Spitzer data, with a phenomenological model for sgB[e] stars, we show that the star is surrounded by an irradiated rim heated to a temperature of ~3800-5500 K, along with a viscous disk component at an inner temperature of ~750 K. VISIR data allow us to exclude the spherical geometry for the dust component. This detailed study will allow us in the future to get better constraints on the formation and evolution of such rare and short-living high-mass X-ray binary systems in our Galaxy.

  1. X-Ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    SciTech Connect

    Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.; /Heidelberg Observ.

    2010-06-07

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N{sub H}) and radio (N{sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  2. X-RAY-EMITTING GHz-PEAKED-SPECTRUM GALAXIES: TESTING A DYNAMICAL-RADIATIVE MODEL WITH BROADBAND SPECTRA

    SciTech Connect

    Ostorero, L.; Diaferio, A.; Moderski, R.; Stawarz, L.; Kowalska, I.; Cheung, C. C.; Kataoka, J.; Begelman, M. C.; Wagner, S. J.

    2010-06-01

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-peaked-spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the spectral energy distribution (SED) of GPS sources with their expansion, predicting significant and complex high-energy emission, from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broadband SEDs of a sample of 11 X-ray-emitting GPS galaxies with compact-symmetric-object morphology, and show that (1) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism and (2) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk-dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N {sub H}) and radio (N {sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  3. Development of broadband X-ray interference lithography large area exposure system

    NASA Astrophysics Data System (ADS)

    Xue, Chaofan; Wu, Yanqing; Zhu, Fangyuan; Yang, Shumin; Liu, Haigang; Zhao, Jun; Wang, Liansheng; Tai, Renzhong

    2016-04-01

    The single-exposure patterned area is about several 102 × 102 μm2 which is mainly decided by the mask area in multi-beam X-ray interference lithography (XIL). The exposure area is difficult to stitch to a larger one because the patterned area is surrounded by 0th diffraction exposure areas. To block the 0th diffraction beams precisely and effectively, a new large area exposure technology is developed in the Shanghai Synchrotron Radiation Facility by applying an order-sorting aperture with a new in situ monitoring scheme in the XIL system. The patterned area could be stitched readily up to several square centimeters and even bigger by this technology.

  4. Suzaku and BeppoSAX X-ray Spectra of the Persistently Accreting Neutron-star Binary 4U 1705-44

    NASA Astrophysics Data System (ADS)

    Lin, Dacheng; Remillard, Ronald A.; Homan, Jeroen

    2010-08-01

    We present an analysis of the broadband spectra of 4U 1705-44 obtained with Suzaku in 2006-2008 and by BeppoSAX in 2000. The source exhibits two distinct states: the hard state shows emission from 1 to 150 keV, while the soft state is mostly confined to be <40 keV. We model soft-state continuum spectra with two thermal components, one of which is a multicolor accretion disk and the other is a single-temperature blackbody (BB) to describe the boundary layer, with additional weak Comptonization represented by either a simple power law or the SIMPL model by Steiner et al. The hard-state continuum spectra are modeled by a single-temperature BB for the boundary layer plus strong Comptonization, modeled by a cutoff power law. While we are unable to draw firm conclusions about the physical properties of the disk in the hard state, the accretion disk in the soft state appears to approximately follow L vprop T 3.2. The deviation from L vprop T 4, as expected from a constant inner disk radius, might be caused by a luminosity-dependent spectral hardening factor and/or real changes of the inner disk radius in some part of the soft state. The boundary layer apparent emission area is roughly constant from the hard to the soft states, with a value of about 1/11 of the neutron star surface. The magnetic field on the surface of the neutron star in 4U 1705-44 is estimated to be less than about 1.9 × 108 G, assuming that the disk is truncated by the innermost stable circular orbit or by the neutron star surface. Broad relativistic Fe lines are detected in most spectra and are modeled with the diskline model. The strength of the Fe lines is found to correlate well with the boundary layer emission in the soft state. In the hard state, the Fe lines are probably due to illumination of the accretion disk by the strong Comptonization emission.

  5. SUZAKU AND BeppoSAX X-RAY SPECTRA OF THE PERSISTENTLY ACCRETING NEUTRON-STAR BINARY 4U 1705-44

    SciTech Connect

    Lin Dacheng; Remillard, Ronald A.; Homan, Jeroen

    2010-08-20

    We present an analysis of the broadband spectra of 4U 1705-44 obtained with Suzaku in 2006-2008 and by BeppoSAX in 2000. The source exhibits two distinct states: the hard state shows emission from 1 to 150 keV, while the soft state is mostly confined to be <40 keV. We model soft-state continuum spectra with two thermal components, one of which is a multicolor accretion disk and the other is a single-temperature blackbody (BB) to describe the boundary layer, with additional weak Comptonization represented by either a simple power law or the SIMPL model by Steiner et al. The hard-state continuum spectra are modeled by a single-temperature BB for the boundary layer plus strong Comptonization, modeled by a cutoff power law. While we are unable to draw firm conclusions about the physical properties of the disk in the hard state, the accretion disk in the soft state appears to approximately follow L {proportional_to} T {sup 3.2}. The deviation from L {proportional_to} T{sup 4}, as expected from a constant inner disk radius, might be caused by a luminosity-dependent spectral hardening factor and/or real changes of the inner disk radius in some part of the soft state. The boundary layer apparent emission area is roughly constant from the hard to the soft states, with a value of about 1/11 of the neutron star surface. The magnetic field on the surface of the neutron star in 4U 1705-44 is estimated to be less than about 1.9 x 10{sup 8} G, assuming that the disk is truncated by the innermost stable circular orbit or by the neutron star surface. Broad relativistic Fe lines are detected in most spectra and are modeled with the diskline model. The strength of the Fe lines is found to correlate well with the boundary layer emission in the soft state. In the hard state, the Fe lines are probably due to illumination of the accretion disk by the strong Comptonization emission.

  6. Investigating Dueling Scenarios in NGC 7582 with Broadband X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rivers, E.

    2015-09-01

    NGC 7582 is a well-studied X-ray bright Seyfert 2 with moderately heavy (NH = 10^{23} - 10^{24} cm^{-2}), highly variable absorption and unusually strong reflection spectral features. The spectral shape changed around the year 2000, dropping in observed flux and becoming much more highly absorbed. Two scenarios have been put forth to explain this spectral change: 1) the source "shut off" around this time, decreasing in intrinsic luminosity, with a delayed decrease in reflection features due to the light crossing time of the Compton-thick material or 2) the source is a "hidden nucleus" which has recently become more heavily obscured, with only a portion of the power law continuum leaking through. NuSTAR observed NGC 7582 twice in 2012 two weeks apart in order to quantify the reflection using high-quality data above 10 keV. We analyze both NuSTAR observations placing them in the context of historical X-ray, infrared and optical observations, including re-analysis of RXTE data from 2003-2005. We find that the most plausible scenario is that NGC 7582 has a hidden nucleus which has recently become more heavily absorbed by a patchy torus with a covering fraction of 80-90% and a column density of 3.6 x 10^{24} cm^{-2}. We find the need for an additional highly variable full-covering absorber with NH= 4-6 x 10^{23} cm^{-2}, possibly associated with a hidden broad line region or a dust lane in the host galaxy.

  7. A broadband X-ray study of the Geminga pulsar with NuSTAR And XMM-Newton

    SciTech Connect

    Mori, Kaya; Gotthelf, Eric V.; Halpern, Jules P.; Beloborodov, Andrei M.; Hailey, Charles J.; Dufour, Francois; Kaspi, Victoria M.; An, Hongjun; Bachetti, Matteo; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Harrison, Fiona A.; Kouveliotou, Chryssa; Pivovaroff, Michael J.; Stern, Daniel; Zhang, William W.

    2014-10-01

    We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband phase-integrated spectra over the 0.2-20 keV band with NuSTAR and archival XMM-Newton data do not fit to a conventional two-component model of a blackbody plus power law, but instead exhibit spectral hardening above ∼5 keV. We find that two spectral models fit the data well: (1) a blackbody (kT {sub 1} ∼ 42 eV) with a broken power law (Γ{sub 1} ∼ 2.0, Γ{sub 2} ∼ 1.4 and E {sub break} ∼ 3.4 keV) and (2) two blackbody components (kT {sub 1} ∼ 44 eV and kT {sub 2} ∼ 195 eV) with a power-law component (Γ ∼ 1.7). In both cases, the extrapolation of the Rayleigh-Jeans tail of the thermal component is consistent with the UV data, while the non-thermal component overpredicts the near-infrared data, requiring a spectral flattening at E ∼ 0.05-0.5 keV. While strong phase variation of the power-law index is present below ∼5 keV, our phase-resolved spectroscopy with NuSTAR indicates that another hard non-thermal component with Γ ∼ 1.3 emerges above ∼5 keV. The spectral hardening in non-thermal X-ray emission as well as spectral flattening between the optical and X-ray bands argue against the conjecture that a single power law may account for multi-wavelength non-thermal spectra of middle-aged pulsars.

  8. A statistical analysis of the broadband 0.1 to 3.5 keV spectral properties of X-ray-selected active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Thompson, R. J.; Cordova, F. A.

    1994-01-01

    We survey the broadband spectral properties of approximately 500 X-ray-selected active galactic nuclei (AGNs) observed with the Einstein Observatory. Included in this survey are the approximately 450 AGNs in the Extended Medium Sensitivity Survey (EMSS) of Gioia et al. (1990) and the approximately 50 AGNs in the Ultrasoft Survey of Cordova et al. (1992). We present a revised version of the latter sample, based on the post publication discovery of a software error in the Einstein Rev-1b processing. We find that the mean spectral index of the AGNs between 0.1 and 0.6 keV is softer, and the distribution of indices wider, than previous estimates based on analyses of the X-ray spectra of optically selected AGNs. A subset of these AGNs exhibit flux variabiulity, some on timescales as short as 0.05 days. A correlation between radio and hard X-ray luminosity is confirmed, but the data do not support a correlation between the radio and soft X-ray luminosities, or between radio loudness and soft X-ray spectral slope. Evidence for physically distinct soft and hard X-ray components is found, along with the possibility of a bias in previous optically selected samples toward selection of AGNs with flatter X-ray spectra.

  9. Broad-band monitoring tracing the evolution of the jet and disc in the black hole candidate X-ray binary MAXI J1659-152

    NASA Astrophysics Data System (ADS)

    van der Horst, A. J.; Curran, P. A.; Miller-Jones, J. C. A.; Linford, J. D.; Gorosabel, J.; Russell, D. M.; de Ugarte Postigo, A.; Lundgren, A. A.; Taylor, G. B.; Maitra, D.; Guziy, S.; Belloni, T. M.; Kouveliotou, C.; Jonker, P. G.; Kamble, A.; Paragi, Z.; Homan, J.; Kuulkers, E.; Granot, J.; Altamirano, D.; Buxton, M. M.; Castro-Tirado, A.; Fender, R. P.; Garrett, M. A.; Gehrels, N.; Hartmann, D. H.; Kennea, J. A.; Krimm, H. A.; Mangano, V.; Ramirez-Ruiz, E.; Romano, P.; Wijers, R. A. M. J.; Wijnands, R.; Yang, Y. J.

    2013-12-01

    MAXI J1659-152 was discovered on 2010 September 25 as a new X-ray transient, initially identified as a gamma-ray burst, but was later shown to be a new X-ray binary with a black hole as the most likely compact object. Dips in the X-ray light curves have revealed that MAXI J1659-152 is the shortest period black hole candidate identified to date. Here we present the results of a large observing campaign at radio, submillimetre, near-infrared (nIR), optical and ultraviolet (UV) wavelengths. We have combined this very rich data set with the available X-ray observations to compile a broad-band picture of the evolution of this outburst. We have performed broad-band spectral modelling, demonstrating the presence of a spectral break at radio frequencies and a relationship between the radio spectrum and X-ray states. Also, we have determined physical parameters of the accretion disc and put them into context with respect to the other parameters of the binary system. Finally, we have investigated the radio-X-ray and nIR/optical/UV-X-ray correlations up to ˜3 yr after the outburst onset to examine the link between the jet and the accretion disc, and found that there is no significant jet contribution to the nIR emission when the source is in the soft or intermediate X-ray spectral state, consistent with our detection of the jet break at radio frequencies during these states.

  10. Broadband observations of the X-ray burster 4U1705-44 with BeppoSAX

    NASA Astrophysics Data System (ADS)

    Piraino, S.; Santangelo, A.; Mück, B.; Kaaret, P.; Di Salvo, T.; D'Aì, A.; Iaria, R.; Egron, E.

    2016-06-01

    Context. 4U1705-44 is one of the most-studied type I X-ray burster and Atoll sources. This source represents a perfect candidate to test different models proposed to self-consistently track the physical changes occurring between different spectral states because it shows clear spectral state transitions. Aims: The broadband coverage, the sensitivity and energy resolution of the BeppoSAX satellite offers the opportunity to disentangle the components that form the total X-ray spectrum and to study their changes according to the spectral state. Methods: Using two BeppoSAX observations carried out in August and October 2000, respectively, for a total effective exposure time of ~100 ks, we study the spectral evolution of the source from a soft to hard state. Energy spectra are selected according to the source position in the color-color diagram (CCD). Results: We succeeded in modeling the spectra of the source using a physical self-consistent scenario for both the island and banana branches (the double Comptonization scenario). The components observed are the soft Comptonization and hard Comptonization, the blackbody, and a reflection component with a broad iron line. When the source moves from the banana state to the island state, the parameters of the two Comptonization components change significantly and the blackbody component becomes too weak to be detected. Conclusions: We interpret the soft Comptonization component as emission from the hot plasma surrounding the neutron star, hard Comptonization as emission from the disk region, and the blackbody component as emission from the inner accretion disk. The broad feature in the iron line region is compatible with reflection from the inner accretion disk.

  11. Suzaku broad-band spectroscopy of RX J1347.5-1145: constraints on the extremely hot gas and non-thermal emission

    NASA Astrophysics Data System (ADS)

    Ota, N.; Murase, K.; Kitayama, T.; Komatsu, E.; Hattori, M.; Matsuo, H.; Oshima, T.; Suto, Y.; Yoshikawa, K.

    2008-11-01

    Context: We present the results of our analysis of long Suzaku observations (149 ks and 122 ks for XIS and HXD, respectively) of the most X-ray luminous galaxy cluster, RX J1347.5-1145, at z=0.451. Aims: To understand the gas physics of a violent, cluster merger, we study physical properties of the hot ( 20 keV) gas clump in the south-east (SE) region discovered previously by Sunyaev-Zel'dovich (SZ) effect observations. Using hard X-ray data, a signature of non-thermal emission is also explored. Methods: We perform single as well as multi-temperature fits to the Suzaku XIS spectra. The Suzaku XIS and HXD, and the Chandra ACIS-I data are then combined to examine the properties of the hot gas component in the SE region. We finally look for non-thermal emission in the Suzaku HXD data. Results: The single-temperature model fails to reproduce the 0.5-10 keV continuum emission and Fe-K lines measured by XIS simultaneously. A two-temperature model with a very hot component improves the fit, although the XIS data can only provide a lower limit to the temperature of the hot component. In the Suzaku HXD data, we detect hard X-ray emission above the background in the 12-40 keV band at the 9σ level; however, the significance becomes marginal when the systematic error in the background estimation is included. With the joint analysis of the Suzaku and Chandra data, we determine the temperature of the hot gas in the SE region to be 25.3+6.1-4.5 (statistical; 90% confidence level) +6.9-9.5 (systematic; 90% confidence level) keV, which is in an excellent agreement with the previous joint analysis of the SZ effect in radio and the Chandra X-ray data. This is the first time that the X-ray analysis alone provides a good measurement of the hot component temperature in the SE region, which is possible because of Suzaku's unprecedented sensitivity over the wide X-ray band. These results indicate strongly that RX J1347.5-1145 has undergone a recent, violent merger. The spectral analysis

  12. Recent and Future Observations in the X-ray and Gamma-ray Bands: Chandra, Suzaku, GLAST, and NuSTAR

    SciTech Connect

    Madejski, Greg; /SLAC /KIPAC, Menlo Park

    2005-12-02

    This paper presents a brief overview of the accomplishments of the Chandra satellite that are shedding light on the origin of high energy particles in astrophysical sources, with the emphasis on clusters of galaxies. It also discusses the prospects for the new data to be collected with instruments recently launched--such as Suzaku--or those to be deployed in the near future, and this includes GLAST and NuSTAR.

  13. Suzaku broad-band spectrum of 4U 1705-44: probing the reflection component in the hard state

    NASA Astrophysics Data System (ADS)

    Di Salvo, T.; Iaria, R.; Matranga, M.; Burderi, L.; D'Aí, A.; Egron, E.; Papitto, A.; Riggio, A.; Robba, N. R.; Ueda, Y.

    2015-05-01

    Iron emission lines at 6.4-6.97 keV, identified with Kα radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper, we present a recent Suzaku observation, 100-ks effective exposure, of the atoll source and X-ray burster 4U 1705-44, where we clearly detect signatures of a reflection component which is distorted by the high-velocity motion in the accretion disc. The reflection component consists of a broad iron line at about 6.4 keV and a Compton bump at high X-ray energies, around 20 keV. All these features are consistently fitted with a reflection model, and we find that in the hard state the smearing parameters are remarkably similar to those found in a previous XMM-Newton observation performed in the soft state. In particular, we find that the inner disc radius is Rin = 17 ± 5Rg (where Rg is the gravitational radius, GM/c2), the emissivity dependence from the disc radius is r-2.5 ± 0.5, the inclination angle with respect to the line of sight is i = 43° ± 5°, and the outer radius of the emitting region in the disc is Rout > 200Rg. We note that the accretion disc does not appear to be truncated at large radii, although the source is in a hard state at ˜3 per cent of the Eddington luminosity for a neutron star. We also find evidence of a broad emission line at low energies, at 3.03 ± 0.03 keV, compatible with emission from mildly ionized argon (Ar XVI-XVII). Argon transitions are not included in the self-consistent reflection models that we used and we therefore added an extra component to our model to fit this feature. The low-energy line appears compatible with being smeared by the same inner disc parameters found for the reflection component.

  14. BROADBAND SPECTROSCOPY USING TWO SUZAKU OBSERVATIONS OF THE HMXB GX 301-2

    SciTech Connect

    Suchy, Slawomir; Markowitz, Alex; Rothschild, Richard E.; Fuerst, Felix; Kreykenbohm, Ingo; Wilms, Joern; Pottschmidt, Katja; Caballero, Isabel

    2012-02-01

    We present the analysis of two Suzaku observations of GX 301-2 at two orbital phases after the periastron passage. Variations in the column density of the line-of-sight absorber are observed, consistent with accretion from a clumpy wind. In addition to a cyclotron resonance scattering feature (CRSF), multiple fluorescence emission lines were detected in both observations. The variations in the pulse profiles and the CRSF throughout the pulse phase have a signature of a magnetic dipole field. Using a simple dipole model we calculated the expected magnetic field values for different pulse phases and were able to extract a set of geometrical angles, loosely constraining the dipole geometry in the neutron star. From the variation of the CRSF width and energy, we found a geometrical solution for the dipole, making the inclination consistent with previously published values.

  15. Broadband Spectroscopy Using Two Suzaku Observations of the HMXB GX 301-2

    NASA Technical Reports Server (NTRS)

    Suchy, Slawomir; Fuerst, Felix; Pottschmidt, Katja; Caballero, Isabel; Kreykenbohm, Ingo; Wilms, Joern; Markowitz, Alex; Rothschild, Richard E.

    2012-01-01

    We present the analysis of two Suzaku observations of GX 301-2 at two orbital phases after the periastron passage. Variations in the column density of the line-of-sight absorber are observed, consistent with accretion from a clumpy wind. In addition to a CRSF, multiple fluorescence emission lines were detected in both observations. The variations in the pulse profiles and the CRSF throughout the pulse phase have a signature of a magnetic dipole field. Using a simple dipole model we calculated the expected magnetic field values for different pulse phases and were able to extract a set of geometrical angles, loosely constraining the dipole geometry in the neutron star. From the variation of the CRSF width and energy, we found a geometrical solution for the dipole, making the inclination consistent with previously published values.

  16. OZSPEC-2: An improved broadband high-resolution elliptical crystal x-ray spectrometer for high-energy density physics experiments (invited)

    SciTech Connect

    Heeter, R. F.; Anderson, S. G.; Booth, R.; Brown, G. V.; Emig, J.; Fulkerson, S.; McCarville, T.; Norman, D.; Schneider, M. B.; Young, B. K. F.

    2008-10-15

    A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 {mu}m resolution over a 1500 {mu}m field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/{delta}E>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments.

  17. Modelling the variable broad-band optical/UV/X-ray spectrum of PG1211+143: implications for the ionized outflow

    NASA Astrophysics Data System (ADS)

    Papadakis, I. E.; Nicastro, F.; Panagiotou, C.

    2016-06-01

    Context. We present the results from a detailed analysis of the 2007 Swift monitoring campaign of the quasar PG1211+143. Aims: We study its broad-band optical/UV-X-ray spectral energy distribution and its variations, with the use of physically motivated models. Methods: We constructed broad-band, optical/UV-X-ray spectral energy distributions over three X-ray flux intervals, and we fitted them with a model which accounts for the disc and the X-ray coronal emission. We also added a spectral model component to account for the presence of the warm absorber which has been well established from past observations of the source. Results: We detected no optical/UV variations over the two-month period of the monitoring campaign. On the other hand, the X-rays are highly variable in a correlated way in the soft and hard X-ray bands with an amplitude larger than has been commonly observed in nearby Seyferts, even on longer time scales. The three flux spectra are well fitted by the model we considered. The disc inner temperature remains constant at ~2 eV, while X-rays are variable in slope and normalization. The absorber covers almost 90% of the central source. It is outflowing with a velocity less than 2.3 × 104 km s-1 (3σ upper limit), and has a column density of log NH ~ 23.2. Its ionization parameter varies by a factor of 1.6, and it is in photo-ionizing equilibrium with the ionizing flux. It is located at a distance of less than 0.35 pc from the central source, and its relative thickness, ΔR/R, is less than 0.1. The absorber's ionization parameter variations can explain the larger than average amplitude of the X-ray variations. Conclusions: The absence of optical/UV variations are consistent with the high black hole mass estimate of ~108M⊙ for this object, which implies variability time scales longer than the period of the Swift observations. It argues against the presence of inward propagating fluctuations in the disc as the reason for the flux variability in this

  18. The Effect of Broadband Soft X-Rays in SO2-Containing Ices: Implications on the Photochemistry of Ices toward Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Bergantini, A.

    2015-10-01

    We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (˜keV) photoelectrons and low-energy (˜eV) induced secondary electrons) in the ice mixtures containing H2O:CO2:NH3:SO2 (10:1:1:1) at two different temperatures (50 and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO2-containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high-vacuum portable chamber from the Laboratório de Astroquímica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In situ analyses were performed by a Fourier transform infrared spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles, acids, and other compounds such as H2O2, H3O+, SO3, CO, and OCN-. The dissociation cross section of parental species was on the order of (2-7) × 10-18 cm2. The ice temperature does not seem to affect the stability of SO2 in the presence of X-rays. Formation cross sections of new species produced were also determined. Molecular half-lives at ices toward YSOs due to the presence of incoming soft X-rays were estimated. The low values obtained employing two different models of the radiation field of YSOs (TW Hydra and typical T-Tauri star) reinforce that soft X-rays are indeed a very efficient source of molecular dissociation in such environments.

  19. THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs

    SciTech Connect

    Trichas, Markos; Green, Paul J.; Aldcroft, Tom; Kim, Dong-Woo; Mossman, Amy; Silverman, John D.; Barkhouse, Wayne; Cameron, Robert A.; Constantin, Anca; Ellison, Sara L.; Foltz, Craig; Haggard, Daryl; Jannuzi, Buell T.; Marshall, Herman L.; Perez, Laura M.; Romero-Colmenero, Encarni; Ruiz, Angel; Smith, Malcolm G.; and others

    2012-06-01

    From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z {approx} 5.5 and galaxies out to z {approx} 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While {approx}58% of X-ray Seyferts (10{sup 42} erg s{sup -1} < L{sub 2-10keV} <10{sup 44} erg s{sup -1}) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L{sub 2-10keV} >10{sup 44} erg s{sup -1}) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO

  20. X-RAY SPECTRAL CUTOFF AND THE LACK OF HARD X-RAY EMISSION FROM TWO ULTRALUMINOUS X-RAY SOURCES M81 X-6 AND HOLMBERG IX X-1

    SciTech Connect

    Dewangan, G. C.; Misra, R.; Jithesh, V.; Ravikumar, C. D.

    2013-07-10

    We present broadband X-ray spectral study of two ultraluminous X-ray sources (ULXs), M81 X-6 and Holmberg IX X-1, based on Suzaku and XMM-Newton observations. We perform joint broadband spectral analysis of the brightest sources in the field, i.e., the two ULXs and the active galactic nucleus (AGN) in M81, and demonstrate that the X-ray spectra of the ULXs cut off at energies {approx}> 3 keV with negligible contribution at high energies in the Suzaku HXD/PIN band. The 90% upper limit on the 10-30 keV band luminosity of an underlying broadband power-law component is 3.5 Multiplication-Sign 10{sup 38} erg s{sup -1} for M81 X-6 and 1.2 Multiplication-Sign 10{sup 39} erg s{sup -1} for Holmberg IX X-1. These limits are more than an order of magnitude lower than the bolometric (0.1-30 keV) luminosity of 6.8 Multiplication-Sign 10{sup 39} erg s{sup -1} for M81 X-6 and 1.9 Multiplication-Sign 10{sup 40} erg s{sup -1} for Holmberg IX X-1. Our results confirm earlier indications of spectral cutoffs inferred from the XMM-Newton observations of bright ULXs and show that there is not an additional high-energy power-law component contributing significantly to the X-ray emission. The spectral form of the two ULXs are very different from those of Galactic black hole X-ray binaries (BHBs) or AGNs. This implies that the ULXs are neither simply scaled-up versions of stellar-mass BHBs nor scaled-down versions of AGNs.

  1. A broadband high-resolution elliptical crystal x-ray spectrometer for high energy density physics experiments

    SciTech Connect

    Anderson, S G; Heeter, R F; Booth, R; Emig, J; Fulkerson, S; McCarville, T; Norman, D; Young, B F

    2006-03-31

    Spectroscopic investigation of high temperature laser produced plasmas in general, and x-ray opacity experiments in particular, often requires instruments with both a broad coverage of x-ray energies and high spectral, spatial, and temporal resolution. We analyze the design, model the response, and report the commissioning of a spectrometer using elliptical crystals in conjunction with a large format, gated microchannel plate detector. Measurements taken with this instrument at the JANUS laser facilities demonstrate the designed spectral range of 0.24 to 5.8 keV, and spectral resolution E/{Delta}E > 500, resulting in 2 to 3 times more spectral data than achieved by previous spectrometer designs. The observed 100 picosecond temporal resolution and 35 {micro}m spatial resolution are consistent with the requirements of high energy density opacity experiments.

  2. Broadband time-resolved elliptical crystal spectrometer for X-ray spectroscopic measurements in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Rong; Jia, Guo; Fang, Zhi-Heng; Wang, Wei; Meng, Xiang-Fu; Xie, Zhi-Yong; Zhang, Fan

    2014-11-01

    The X-ray spectrometer used in high-energy-density plasma experiments generally requires both broad X-ray energy coverage and high temporal, spatial, and spectral resolutions for overcoming the difficulties imposed by the X-ray background, debris, and mechanical shocks. By using an elliptical crystal together with a streak camera, we resolve this issue at the SG-II laser facility. The carefully designed elliptical crystal has a broad spectral coverage with high resolution, strong rejection of the diffuse and/or fluorescent background radiation, and negligible source broadening for extended sources. The spectra that are Bragg reflected (23° < θ < 38°) from the crystal are focused onto a streak camera slit 18 mm long and about 80 μm wide, to obtain a time-resolved spectrum. With experimental measurements, we demonstrate that the quartz(1011) elliptical analyzer at the SG-II laser facility has a single-shot spectral range of (4.64-6.45) keV, a typical spectral resolution of E/ΔE = 560, and an enhanced focusing power in the spectral dimension. For titanium (Ti) data, the lines of interest show a distribution as a function of time and the temporal variations of the He-α and Li-like Ti satellite lines and their spatial profiles show intensity peak red shifts. The spectrometer sensitivity is illustrated with a temporal resolution of better than 25 ps, which satisfies the near-term requirements of high-energy-density physics experiments.

  3. The 5 Hour Pulse Period and Broadband Spectrum of the Symbiotic X-Ray Binary 3A 1954+319

    NASA Technical Reports Server (NTRS)

    Marcu, Diana M.; Fuerst, Felix; Pottschmidt, Katja; Grinberg, Victoria; Miller, Sebstian; Wilms, Joern; Postnov, Konstantin A.; Corbet, Robin H. D.; Markwardt, Craig B.; Cadolle Bel, Marion

    2011-01-01

    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries, Le" systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of approximately 5.3 h is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and not significantly energy dependent. During the outburst a strong spin-up of -1.8 x 10(exp -4) h h(exp -1) occurred. Between 2005 and 2008 a long term spin-down trend of 2.1 x 10(exp -5) h h(exp -1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for symbiotic X-ray binaries.

  4. Suzaku Observations of Charge Exchange Emission from Solar System Objects

    NASA Technical Reports Server (NTRS)

    Ezoe, Y.; Fujimoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Ohashi, T.; Ishikawa, K.; Oishi, S.; Miyoshi, Y; Terada, N.; Futaana, Y.; Porter, F. S.; Brown, G. V.

    2012-01-01

    Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed.

  5. A Broad-band Spectral and Timing Study of the X-Ray Binary System Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Audley, Michael Damian

    1998-01-01

    This dissertation describes a multi-mission investigation of the high mass X-ray binary pulsar Centaurus X-3. Cen X-3 was observed with the Broad Band X-Ray Telescope (BBXRT) in December 1990. This was the first high-resolution solid state X-ray spectrometer to cover the iron K fluorescence region. The Fe K emission feature was resolved into two components for the first time. A broad 6.7 keV feature was found to be a blend of lines from Fe XXI-Fe XXVI with energies ranging from 6.6 to 6.9 keV due to photoionization of the companion's stellar wind. A narrow line at 6.4 keV due to fluorescence of iron in relatively low ionization states was also found. The quasi-periodic oscillations (QPO) at about 40 mHz were used to estimate the surface magnetic field of Cen X-3 as approx. 2.6 x 10(exp 12) G and to predict that there should be a cyclotron scattering resonance absorption feature (CSRF) near 30 keV. In order to further resolve the iron line complex and to investigate the pulse-phase dependence of the iron line intensities, Cen X-3 was observed with the Advanced Satellite for Cosmology and Astrophysics (ASCA). Using ASCA's state-of-the-art non-dispersive X-ray spectrometers the 6.4 keV fluorescent iron line was found to be pulsing while the intensities of the 6.7 and 6.9 keV recombination lines do not vary with pulse phase. This confirms that the 6.4 keV line is due to reflection by relatively neutral matter close to the neutron star while the recombination lines originate in the extended stellar wind. The continuum spectrum was found to be modified by reflection from matter close to the neutron star. Observations with the EXOSAT GSPC were used to search for a CSRF. The EXOSAT spectra were consistent with the presence of a CSRF but an unambiguous detection was not possible because of a lack of sensitivity at energies higher than the cyclotron energy. Cen X-3 was then observed with the Rossi X-Ray Timing Explorer (RXTE) and evidence for a CSRF at 25.1 +/- 0.3 keV was

  6. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Sanna, A.; Di Salvo, T.; Del Santo, M.; Riggio, A.; D'Aì, A.; Burderi, L.; Scarano, F.; Iaria, R.

    2016-04-01

    We analysed a 115-ks XMM-Newton observation and the stacking of 8 d of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (˜2 keV) and an additional hard X-ray emission described by a power law (Γ ˜ 2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high-energy tail is still under debate. In addition, a number of broad (σ = 0.1-0.4 keV) emission features likely associated with reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity of the source is ˜5 × 1037 erg s-1, about 25 per cent of the Eddington limit assuming a 1.4 M⊙ NS. We suggest that the spectral properties of SAX J1748.9-2021 are consistent with a soft state, differently from many other accreting X-ray millisecond pulsars which are usually found in the hard state. Moreover, none of the observed type-I burst reached the Eddington luminosity. Assuming that the burst ignition and emission are produced above the whole NS surface, we estimate an NS radius of ˜7-8 km, consistent with previous results.

  7. GLAST and Suzaku

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita

    2007-01-01

    The upcoming years will see a formidable synergy of high-energy observatories for the study of extragalactic objects, especially AGN. In particular, the launch of GLAST will allow us coordinated monitoring of sources with Suzaku over a very large energy band, from medium X-rays to GeV energies. In this talk I will review the science issues that such a remarkable coverage will enable us to address.

  8. Broadband X-Ray Spectral Investigations of Magnetars, 4U 0142+61, 1E 1841-045,1E 2259+586, AND 1E 1048.1-5937

    NASA Astrophysics Data System (ADS)

    Weng, Shan-Shan; Göğüş, Ersin

    2015-12-01

    We have generated an extended version of a rather simplified but physically oriented three-dimensional magnetar emission model, STEMS3D, to allow spectral investigations up to 100 keV. We then applied our model to the broadband spectra of four magnetars: 4U 0142+61, 1E 1841-045, 1E 2259+586, and 1E 1048.1-5937, using data collected with Swift/XRT or XMM-Newton in soft X-rays, and the Nuclear Spectroscopic Telescope Array in the hard X-ray band. We found that the hard X-ray emission of 4U 0142+61 was spectrally hard compared to earlier detections, indicating that the source was likely in a transition to or from a harder state. We find that the surface properties of the four magnetars are consistent with what we have obtained using only the soft X-ray data with STEMS3D, implying that our physically motivated magnetar emission model is a robust tool. Based on our broadband spectral investigations, we conclude that resonant scattering of the surface photons in the magnetosphere alone cannot account for the hard X-ray emission in magnetars; therefore, an additional non-thermal process, or a population of relativistic electrons is required. We also discuss the implication of the non-detection of persistent hard X-ray emission in 1E 1048.1-5937.

  9. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response

    SciTech Connect

    Troussel, Ph.; Villette, B.; Oudot, G.; Tassin, V.; Bridou, F.; Delmotte, F.; Krumrey, M.

    2014-01-15

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  10. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    PubMed

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods. PMID:24517761

  11. Chest x-ray

    MedlinePlus

    ... Images Aortic rupture, chest x-ray Lung cancer, frontal chest x-ray Adenocarcinoma - chest x-ray Coal ... cancer - chest x-ray Lung nodule, right middle lobe - chest x-ray Lung mass, right upper lung - ...

  12. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  13. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  14. The Astro-H X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; International Astro-H Team

    2011-09-01

    The Japan Aerospace Exploration Agency's Institute of Space and Aeronautical Science (JAXA/ISAS) is developing a major new high-energy astrophysics observatory. Astro-H will provide broadband, high-resolution spectroscopy and imaging over the 0.3-600 keV band using four co-aligned instruments operated simultaneously. The mission will have major US participation supported by NASA as well as contributions from Europe and Canada. For high-resolution x-ray spectroscopy, the soft x-ray spectrometer (SXS) will feature an x-ray calorimeter spectrometer and x-ray mirror. The instrument will cover the energy range 0.3-12 keV and is expected to have an energy resolution better than 5 eV (FWHM) with a collecting area of over 200 cm2 at 6 keV. The cooling system will have both cryogenic and mechanical coolers for up to five years of operation. The SXS is a joint collaboration between NASA/GSFC, ISAS/JAXA and SRON. As part of this investigation, a fully supported US guest observer program is planned. Other instruments on Astro-H include a soft x-ray imager (SXI) consisting of a large area CCD camera with 35 arcmin field-of-view and a hard x-ray imager (HXI) that uses focusing x-ray optics combined with both double-sided silicon strip detectors and CdTe array. The 12-m focal length optical system will provide an effective area of ˜ 300 cm2 at 30 keV, and high sensitivity from 10-80 keV using multilayer x-ray mirrors with 2-4 arcmin imaging. The soft gamma detector (SGD) is a non-focusing instrument based on a new, narrow-field-of-view Compton telescope with an energy range of 10-600 keV and sensitivity at 300 keV that is more than 10 times higher than Suzaku. Astro-H is planned for launch in 2014 aboard a JAXA HII-A rocket.

  15. CORE-COLLAPSE MODEL OF BROADBAND EMISSION FROM SNR RX J1713.7-3946 WITH THERMAL X-RAYS AND GAMMA RAYS FROM ESCAPING COSMIC RAYS

    SciTech Connect

    Ellison, Donald C.; Slane, Patrick; Patnaude, Daniel J.; Bykov, Andrei M. E-mail: byk@astro.ioffe.ru

    2012-01-01

    We present a spherically symmetric, core-collapse model of SNR RX J1713.7-3946 that includes a hydrodynamic simulation of the remnant evolution coupled to the efficient production of cosmic rays (CRs) by nonlinear diffusive shock acceleration. High-energy CRs that escape from the forward shock (FS) are propagated in surrounding dense material that simulates either a swept-up, pre-supernova shell or a nearby molecular cloud. The continuum emission from trapped and escaping CRs, along with the thermal X-ray emission from the shocked heated interstellar medium behind the FS, integrated over the remnant, is compared against broadband observations. Our results show conclusively that, overall, the GeV-TeV emission is dominated by inverse-Compton from CR electrons if the supernova is isolated regardless of its type, i.e., not interacting with a >>100 M{sub Sun} shell or cloud. If the supernova remnant is interacting with a much larger mass {approx}> 10{sup 4} M{sub Sun }, pion decay from the escaping CRs may dominate the TeV emission, although a precise fit at high energy will depend on the still uncertain details of how the highest energy CRs are accelerated by, and escape from, the FS. Based on morphological and other constraints, we consider the 10{sup 4} M{sub Sun} pion-decay scenario highly unlikely for SNR RX J1713.7-3946 regardless of the details of CR escape. Importantly, even though CR electrons dominate the GeV-TeV emission, the efficient production of CR ions is an essential part of our leptonic model.

  16. Deriving an X-ray luminosity function of dwarf novae

    SciTech Connect

    Byckling, Kristiina; Osborne, Julian; Mukai, Koji

    2010-07-15

    Current measurements of X-ray luminosity functions of dwarf novae contain biases due to high X-ray flux sources. We have obtained Suzaku, XMM-Newton and ASCA observations of nearby DNe which have parallax-based distance measurements, and carried out X-ray spectral analysis for these sources. Our primary goal is to derive a reliable X-ray luminosity function for this sample, and to compare it with existing X-ray luminosity functions. We briefly introduce the source sample and preliminary results.

  17. The Lunar X-ray Observatory (LXO)

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray emission from charge exchange recombination between the highly ionized solar wind and neutral material i n Earth's magnetosheath has complicated x-ray observations of celestial objects with x-ray observatories including ROSAT, Chandra, XMM-Newton, and Suzaku. However, the charge-exchange emission can also be used as an important diagnostic of the solar-wind interacting with the magnetosheath. Soft x-ray observations from low-earth orbit or even the highly eccentric orbits of Chandra and XMM-Newton are likely superpositions of the celestial object of interest, the true extra-solar soft x-ray background, geospheric charge exchange, and heliospheric charge exchange. We show that with a small x-ray telescope placed either on the moon, in a similar vein as the Apollo ALSOP instruments, or at a stable orbit near L1, we can begin t o disentangle the complicated emission structure in the soft x-ray band. Here we present initial results of a feasibility study recently funded by NASA t o place a small x-ray telescope on the lunar surface. The telescope operates during lunar night to observe charge exchange interactions between the solar wind and magnetospheric neutrals, between the solar wind and the lunar atmosphere, and an unobstructed view of the soft x-ray background without the geospheric component.

  18. Fermi-LAT and Suzaku Observations of the Radio Galaxy Centaurus B

    SciTech Connect

    Katsuta, Junichiro; Tanaka, Y.T.; Stawarz, L.; O'Sullivan, S.P.; Cheung, C.C.; Kataoka, J.; Funk, S.; Yuasa, T.; Odaka, H.; Takahashi, T.; Svoboda, J.; /European Space Agency

    2012-08-17

    CentaurusB is a nearby radio galaxy positioned in the Southern hemisphere close to the Galactic plane. Here we present a detailed analysis of about 43 months accumulation of Fermi-LAT data and of newly acquired Suzaku X-ray data for Centaurus B. The source is detected at GeV photon energies, although we cannot completely exclude the possibility that it is an artifact due to incorrect modeling of the bright Galactic diffuse emission in the region. The LAT image provides a weak hint of a spatial extension of the {gamma} rays along the radio lobes, which is consistent with the lack of source variability in the GeV range. We note that the extension cannot be established statistically due to the low number of the photons. Surprisingly, we do not detect any diffuse emission of the lobes at X-ray frequencies, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. The broad-band modeling shows that the observed {gamma}-ray flux of the source may be produced within the lobes, if the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. This association would imply that efficient in-situ acceleration of the ultrarelativistic particles is occurring and that the lobes are dominated by the pressure from the relativistic particles. However, if the diffuse X-ray emission is much below the Suzaku upper limits, the observed {gamma}-ray flux is not likely to be produced within the lobes, but instead within the unresolved core of Centaurus B. In this case, the extended lobes could be dominated by the pressure of the magnetic field.

  19. The variable hard X-ray emission of NGC 4945 as observed by NuSTAR

    SciTech Connect

    Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio; Arévalo, Patricia; Bauer, Franz E.; Risaliti, Guido; Brandt, William N.; Luo, Bin; Stern, Daniel; Harrison, Fiona A.; Alexander, David M.; Gandhi, Poshak; Lansbury, George B.; Boggs, Steve E.; Craig, William W.; Christensen, Finn E.; Hailey, Charles J.; Koss, Michael J.; Madejski, Greg M.; Matt, Giorgio; and others

    2014-09-20

    We present a broadband (∼0.5-79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC 4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (>10 keV) flux and spectral variability, with flux variations of a factor of two on timescales of 20 ks. A variable primary continuum dominates the high-energy spectrum (>10 keV) in all states, while the reflected/scattered flux that dominates at E <10 keV stays approximately constant. From modeling the complex reflection/transmission spectrum, we derive a Compton depth along the line of sight of τ{sub Thomson} ∼ 2.9, and a global covering factor for the circumnuclear gas of ∼0.15. This agrees with the constraints derived from the high-energy variability, which implies that most of the high-energy flux is transmitted rather than Compton-scattered. This demonstrates the effectiveness of spectral analysis at constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick active galactic nuclei (AGNs). The lower limits on the e-folding energy are between 200 and 300 keV, consistent with previous BeppoSAX, Suzaku, and Swift Burst Alert Telescope observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range ∼0.1-0.3 λ{sub Edd} depending on the flux state. The substantial observed X-ray luminosity variability of NGC 4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L {sub Edd} values for obscured AGNs.

  20. The Variable Hard X-Ray Emission of NGC4945 as Observed by NuSTAR

    NASA Technical Reports Server (NTRS)

    Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio; Arevalo, Patricia; Risaliti, Guido; Bauer, Franz E.; Brandt, William N.; Stern, Daniel; Harrison, Fiona A.; Alexander, David M.; Boggs, Steve E.; Christensen, Finn E.; Craig, William W.; Gandhi, Poshak; Hailey, Charles J.; Koss, Michael R.; Lansbury, George B.; Luo, Bin; Madejski, Greg M.; Matt, Giorgio; Walton, Dominic J.; Zhang, Will

    2014-01-01

    We present a broadband (approx. 0.5 - 79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (> 10 keV) flux and spectral variability, with flux variations of a factor 2 on timescales of 20 ksec. A variable primary continuum dominates the high energy spectrum (> 10 keV) in all the states, while the reflected/scattered flux which dominates at E< 10 keV stays approximately constant. From modelling the complex reflection/transmission spectrum we derive a Compton depth along the line of sight of Thomson approx.2.9, and a global covering factor for the circumnuclear gas of approx. 0.15. This agrees with the constraints derived from the high energy variability, which implies that most of the high energy flux is transmitted, rather that Compton-scattered. This demonstrates the effectiveness of spectral analysis in constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick AGN. The lower limits on the e-folding energy are between 200 - 300 keV, consistent with previous BeppoSAX, Suzaku and Swift BAT observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range approx. 0.1 - 0.3 lambda(sub Edd) depending on the flux state. The substantial observed X-ray luminosity variability of NGC4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L(sub Edd) values for obscured AGNs.

  1. A new model for the X-ray continuum of the magnetized accreting pulsars

    NASA Astrophysics Data System (ADS)

    Farinelli, Ruben; Ferrigno, Carlo; Bozzo, Enrico; Becker, Peter A.

    2016-06-01

    Context. Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high-quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models rather than models linked to the physics of accretion. Aims: In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku +NuStar data, together with an advanced version of the compmag model, which provides a physical description of the high-energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. Methods: The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been improved and consolidated during the preparation of this paper. Results: Our analysis shows that the broad-band X-ray continuum of all considered sources can be self-consistently described by the compmag model. The cyclotron absorption features (not included in the model) can be accounted for by using Gaussian components. From the fits of the compmag model to the data we inferred the physical properties of the accretion columns in all sources, finding values reasonably close to those theoretically expected according to our current understanding of accretion in highly magnetized neutron stars. Conclusions: The updated version of the compmag model has been tailored to the physical processes that are known to occur in the columns of highly magnetized accreting neutron stars and it can thus provide a better understanding of the high-energy radiation from these sources. The availability of broad-band high-quality X-ray data, such as those provided by BeppoSAX in

  2. Application of a physical continuum model to recent X-ray observations of accreting pulsars

    NASA Astrophysics Data System (ADS)

    Marcu-Cheatham, Diana Monica; Pottschmidt, Katja; Wolff, Michael Thomas; Becker, Peter A.; Wood, Kent S.; Wilms, Joern; Britton Hemphill, Paul; Gottlieb, Amy; Fuerst, Felix; Schwarm, Fritz-Walter; Ballhausen, Ralf

    2016-04-01

    We present a uniform spectral analysis in the 0.5-50 keV energy range of a sample of accreting pulsars by applying an empirical broad-band continuum cut-off power-law model. We also apply the newly implemented physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435) to a number of high-luminosity sources. The X-ray spectral formation process in this model consists of the Comptonization of bremsstrahlung, cyclotron, and black body photons emitted by the hot, magnetically channeled, accreting plasma near the neutron star surface. This model describes the spectral formation in high-luminosity accreting pulsars, where the dominant deceleration mechanism is via a radiation-dominated radiative shock. The resulting spectra depend on five physical parameters: the mass accretion rate, the radius of the accretion column, the electron temperature and electron scattering cross-sections inside the column, and the magnetic field strength. The empirical model is fitted to Suzaku data of a sample of high-mass X-ray binaries covering a broad luminosity range (0.3-5 x 10 37 erg/s). The physical model is fitted to Suzaku data from luminous sources: LMC X-4, Cen X-3, GX 304-1. We compare the results of the two types of modeling and summarize how they can provide new insight into the process of accretion onto magnetized neutron stars.

  3. Flaring X-ray state observed in M87

    NASA Astrophysics Data System (ADS)

    De Jong, Sandra

    M87 is one of the 15 radio galaxies that have been detected with Fermi/LAT, and has also been observed in the VHE band. However, until now a significant detection in the hard X-ray band (>10 keV) had not been available. Due to the large angle of the jet and the line of sight radio galaxies were not postulated to be bright in gamma-rays and VHE, and the mechanism driving this emission is still unclear. We have detected M 87 using Suzaku/PIN data taken in late November 2006 with a flux of f(20 - 60 keV) = 1E-11 erg/cm**2/s. The long-term, average hard X-ray emission over almost 10 years of INTEGRAL observations is below the sensitivity limit of IBIS/ISGRI and an upper limit to the 20-60 keV band is set to f < 3E-12 erg/cm**2/s. We present a summary of the techniques used and the results yielded. We collected historical radio/IR/optical and VHE data and combined them with the X-ray and gamma-ray data, to create broad-band spectral energy distributions for the average low-flux state and the flaring state. We also show that modelling the core emission of M87 using a single-zone synchrotron self-Compton model does represent the SED, suggesting that the core emission is dominated by a BL Lac type AGN core.

  4. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  5. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  6. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  7. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  8. Soft x-ray polarimeter laboratory tests

    NASA Astrophysics Data System (ADS)

    Murphy, Kendrah D.; Marshall, Herman L.; Schulz, Norbert S.; Jenks, Kevin; Sommer, Sophie J. B.; Marshall, Eric A.

    2010-07-01

    Multilayer-coated optics can strongly polarize X-rays and are central to a new design of a broad-band, soft X-ray polarimeter. We have begun laboratory work to verify the performance of components that could be used in future soft X-ray polarimetric instrumentation. We have reconfigured a 17 meter beamline facility, originally developed for testing transmission gratings for Chandra, to include a polarized X-ray source, an X-ray-dispersing transmission grating, and a multilayer-coated optic that illuminates a CCD detector. The X-rays produced from a Manson Model 5, multi-anode source are polarized by a multilayer-coated flat mirror. The current configuration allows for a 180 degree rotation of the source in order to rotate the direction of polarization. We will present progress in source characterization and system modulation measurements as well as null and robustness tests.

  9. Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility

    SciTech Connect

    Barrios, M. A.; Suter, L. J.; Glenn, S.; Benedetti, L. R.; Bradley, D. K.; Collins, G. W.; Hammel, B. A.; Izumi, N.; Ma, T.; Scott, H.; Smalyuk, V. A.; Regan, S. P.; Epstein, R.; Kyrala, G. A.

    2013-07-15

    Bright spots in the hot spot intensity profile of gated x-ray images of ignition-scale implosions at the National Ignition Facility [G. H. Miller et al., Opt. Eng. 443, (2004)] are observed. X-ray images of cryogenically layered deuterium-tritium (DT) and tritium-hydrogen-deuterium (THD) ice capsules, and gas filled plastic shell capsules (Symcap) were recorded along the hohlraum symmetry axis. Heterogeneous mixing of ablator material and fuel into the hot spot (i.e., hot-spot mix) by hydrodynamic instabilities causes the bright spots. Hot-spot mix increases the radiative cooling of the hot spot. Fourier analysis of the x-ray images is used to quantify the evolution of bright spots in both x- and k-space. Bright spot images were azimuthally binned to characterize bright spot location relative to known isolated defects on the capsule surface. A strong correlation is observed between bright spot location and the fill tube for both Symcap and cryogenically layered DT and THD ice targets, indicating the fill tube is a significant seed for the ablation front instability causing hot-spot mix. The fill tube is the predominant seed for Symcaps, while other capsule non-uniformities are dominant seeds for the cryogenically layered DT and THD ice targets. A comparison of the bright spot power observed for Si- and Ge-doped ablator targets shows heterogeneous mix in Symcap targets is mostly material from the doped ablator layer.

  10. Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.; Regan, S. P.; Suter, L. J.; Glenn, S.; Benedetti, L. R.; Bradley, D. K.; Collins, G. W.; Epstein, R.; Hammel, B. A.; Kyrala, G. A.; Izumi, N.; Ma, T.; Scott, H.; Smalyuk, V. A.

    2013-07-01

    Bright spots in the hot spot intensity profile of gated x-ray images of ignition-scale implosions at the National Ignition Facility [G. H. Miller et al., Opt. Eng. 443, (2004)] are observed. X-ray images of cryogenically layered deuterium-tritium (DT) and tritium-hydrogen-deuterium (THD) ice capsules, and gas filled plastic shell capsules (Symcap) were recorded along the hohlraum symmetry axis. Heterogeneous mixing of ablator material and fuel into the hot spot (i.e., hot-spot mix) by hydrodynamic instabilities causes the bright spots. Hot-spot mix increases the radiative cooling of the hot spot. Fourier analysis of the x-ray images is used to quantify the evolution of bright spots in both x- and k-space. Bright spot images were azimuthally binned to characterize bright spot location relative to known isolated defects on the capsule surface. A strong correlation is observed between bright spot location and the fill tube for both Symcap and cryogenically layered DT and THD ice targets, indicating the fill tube is a significant seed for the ablation front instability causing hot-spot mix. The fill tube is the predominant seed for Symcaps, while other capsule non-uniformities are dominant seeds for the cryogenically layered DT and THD ice targets. A comparison of the bright spot power observed for Si- and Ge-doped ablator targets shows heterogeneous mix in Symcap targets is mostly material from the doped ablator layer.

  11. A hard X-ray view on two distant TeV-blazars

    SciTech Connect

    Reimer, A.; Costamante, L.; Reimer, O.

    2008-12-24

    We present a data set derived from {approx}50 ksec continuous Suzaku observations and covered with quasi-simultaneous TeV-observations (HESS, MAGIC) of two of the more distant TeV-blazars detected to date: 1ES 1101-232 and 1ES 1553+113. Both sources are found in a non-variable state with combined XIS-PIN spectra indicating downward curvature up to several tens of keV. 1ES 101-232 was found in a quiet state with the lowest X-ray flux ever measured. We discuss the contemporaneous broadband spectral energy distribution (SED) of both sources and implications from absorption in the EBL for the redshift of 1ES 1553+113.

  12. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  13. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains. PMID:26967404

  14. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  15. High Mass X-ray Binary Pulsars

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2016-07-01

    High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. Most of the transient HMXBs are found to Be/X-ray binaries (~67%), consisting of a compact object (neutron star) in orbit around the companion Be star. The orbit of the compact object around the Be star is wide and highly eccentric. Be/X-ray binaries are generally quiescent in X-ray emission. The transient X-ray outbursts seen in these objects are known to be due to interaction between the compact object and the circumstellar disk surrounding the Be star. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter X-ray outbursts. X-ray, infrared and optical observations of these HMXBs provide vital information regarding these systems. The timing and broad-band X-ray spectral properties of a few HMXB pulsars, mainly Be/X-ray binary pulsars during regular X-ray outbursts will be discussed.

  16. The Contribution of Compton-Thick AGN/ULIRGs to the X-Ray Background

    NASA Astrophysics Data System (ADS)

    Nardini, Emanuele

    fraction of the obscured AGN population. Their broadband spectral energy distribution can then be used to calibrate new photometric diagnostics based on mid-IR colors and bolometric corrections, capable of selecting their faint counterparts within the IR deep fields. The wealth of data in the WISE and Spitzer archives will allow a complete census of this AGN subclass. The reflection efficiency inferred from our new Suzaku observations will make it possible to address from a quantitative point of view the issue of the Compton-thick AGN/ULIRG contributon to the X-ray background.

  17. Ultra-broadband Femtosecond Measurements of the Photo-inducedPhase transition in VO2: from the mid-IR to the hard X-rays

    SciTech Connect

    Cavalleri, A.; Rini, M.; Schoenlein, R.W.

    2005-09-06

    We review our work on the photo-induced insulator-metaltransition in the strongly correlated, spin-Peierls compound VO2. Ourpump-probe experiments exploit the full spectral range of modernfemtosecond science, combining time-resolved mid-IR and visibletechniques with ultrafast soft x-ray absorption and hard x-raydiffraction. We also report on the switching behavior of VO2nanoparticles embedded in Silica or in optical fibers, a new route toincorporate complex, photo-active materials into technologically viableenvironments.

  18. The ultraluminous X-ray sources NGC 1313 X-1 and X-2: A broadband study with NuSTAR and XMM-Newton

    SciTech Connect

    Bachetti, Matteo; Barret, Didier; Webb, Natalie A.; Rana, Vikram; Walton, Dominic J.; Harrison, Fiona A.; Fürst, Felix; Grefenstette, Brian W.; Madsen, Kristin K.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Fabian, Andrew C.; Hailey, Charles J.; Hornschemeier, Ann; Ptak, Andrew F.; Zhang, William W.; Miller, Jon M.; Stern, Daniel

    2013-12-01

    We present the results of NuSTAR and XMM-Newton observations of the two ultraluminous X-ray sources: NGC 1313 X-1 and X-2. The combined spectral bandpass of the two satellites enables us to produce the first spectrum of X-1 between 0.3 and 30 keV, while X-2 is not significantly detected by NuSTAR above 10 keV. The NuSTAR data demonstrate that X-1 has a clear cutoff above 10 keV, whose presence was only marginally detectable with previous X-ray observations. This cutoff rules out the interpretation of X-1 as a black hole in a standard low/hard state, and it is deeper than predicted for the downturn of a broadened iron line in a reflection-dominated regime. The cutoff differs from the prediction of a single-temperature Comptonization model. Further, a cold disk-like blackbody component at ∼0.3 keV is required by the data, confirming previous measurements by XMM-Newton only. We observe a spectral transition in X-2, from a state with high luminosity and strong variability to a lower-luminosity state with no detectable variability, and we link this behavior to a transition from a super-Eddington to a sub-Eddington regime.

  19. EFFICIENT COSMIC RAY ACCELERATION, HYDRODYNAMICS, AND SELF-CONSISTENT THERMAL X-RAY EMISSION APPLIED TO SUPERNOVA REMNANT RX J1713.7-3946

    SciTech Connect

    Ellison, Donald C.; Patnaude, Daniel J.; Slane, Patrick; Raymond, John

    2010-03-20

    We model the broadband emission from supernova remnant (SNR) RX J1713.7-3946 including, for the first time, a consistent calculation of thermal X-ray emission together with non-thermal emission in a nonlinear diffusive shock acceleration model. Our model tracks the evolution of the SNR including the plasma ionization state between the forward shock and the contact discontinuity. We use a plasma emissivity code to predict the thermal X-ray emission spectrum assuming the initially cold electrons are heated either by Coulomb collisions with the shock-heated protons (the slowest possible heating), or come into instant equilibration with the protons. For either electron heating model, electrons reach {approx}>10{sup 7} K rapidly and the X-ray line emission near 1 keV is more than 10 times as luminous as the underlying thermal bremsstrahlung continuum. Since recent Suzaku observations show no detectable line emission, this places strong constraints on the unshocked ambient medium density and on the relativistic electron-to-proton ratio. For the uniform circumstellar medium (CSM) models that we consider, the low densities and high relativistic electron-to-proton ratios required to match the Suzaku X-ray observations definitively rule out pion decay as the emission process producing GeV-TeV photons. We show that leptonic models, where inverse-Compton scattering against the cosmic background radiation dominates the GeV-TeV emission, produce better fits to the broadband thermal and non-thermal observations in a uniform CSM.

  20. Extremity x-ray

    MedlinePlus

    ... degenerative) Bone tumor Broken bone (fracture) Dislocated bone Osteomyelitis (infection) Other conditions for which the test may ... Bone tumor Bone x-ray Broken bone Clubfoot Osteomyelitis X-ray Update Date 10/22/2014 Updated ...

  1. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  2. X Ray Topography

    ERIC Educational Resources Information Center

    Balchin, A. A.

    1974-01-01

    Discusses some aspects in X-ray topography, including formation of dislocations, characteristics of stacking faults, x-ray contrast in defect inspection, Berg-Barrett technique, and Lang traversing crystal and Borrmann's methods. (CC)

  3. Dental x-rays

    MedlinePlus

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  4. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  5. The Astro-H Mission and High Resolution X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Mitsuda, K.; Awaki, H.; Fujimoto, R.; den Herder, J. W.; Ishida, M.; Kilbourne, C. A.; Kunieda, H.; Maeda, Y.; McCammon, D.; Ohashi, T.; Okajima, T.; Porter, F.; Serlemitsos, P.; Soong, Y.; Szymkowiak, A. E.; Takahashi, T.; Takei, Y.; Tashiro, M.; Tawara, Y.; Yamasaki, N. Y.; Astro-H Collaboration

    2010-03-01

    The Japan Aerospace Exploration Agency's Institute of Space and Aeronautical Science (JAXA/ISAS) is developing a major new high-energy astrophysics observatory. Astro-H will provide broadband, high-resolution spectroscopy and imaging over the 0.3-600 keV band using four co-aligned instruments operated simultaneously. The mission will have major US participation supported by NASA as well as contributions from Europe and Canada. For high-resolution x-ray spectroscopy, the soft x-ray spectrometer (SXS) will feature an x-ray calorimeter spectrometer and x-ray mirror. The instrument will cover the energy range 0.3-12 keV and is expected to have an energy resolution better than 5 eV (FWHM) with a collecting area of over 200 cm2 at 6 keV. The cooling system will have both cryogenic and mechanical coolers for up to five years of operation. The SXS is a joint collaboration between NASA/GSFC, ISAS/JAXA and SRON, and the NASA participation was selected as an Explorers Mission of Opportunity in June 2008. As part of this investigation, a fully supported US guest observer program was also proposed and is under review by NASA. Other instruments on Astro-H include a soft x-ray imager (SXI) consisting of a large area CCD camera with 35 arcmin field-of-view and a hard x-ray imager (HXI) that uses focusing x-ray optics combined with both double-sided silicon strip detectors and CdTe array. The 12-m focal length optical system will provide an effective area of 300 cm2 at 30 keV, and high sensitivity from 10-80 keV using multilayer x-ray mirrors with 2-4 arcmin imaging. The soft gamma detector (SGD) is a non-focusing instrument based on a new, narrow-field-of-view Compton telescope with an energy range of 10-600 keV and sensitivity at 300 keV that is more than 10 times higher than Suzaku. Astro-H is planned for launch in 2014 aboard a JAXA HII-A rocket.

  6. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  7. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  8. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  9. X-Ray Imaging

    MedlinePlus

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  10. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  11. Broadband X-Ray Spectra of GX 339-4 and the Geometry of Accreting Black Holes in the Hard State

    NASA Technical Reports Server (NTRS)

    Tomsick; Kalemci; Kaaret; Markoff; Corbel; Migliari; Fender; Bailyn; Buxton

    2008-01-01

    A major question in the study of black hole binaries involves our understanding of the accretion geometry when the sources are in the "hard" state. In this state, the X-ray energy spectrum is dominated by a hard power-law component and radio observations indicate the presence of a steady and powerful "compact" jet. Although the common hard state picture is that the accretion disk is truncated, perhaps at hundreds of gravitational radii (R(sub g)) from the black hole, recent results for the recurrent transient GX 339-4 by Miller and co-workers show evidence for optically thick material very close to the black hole's innermost stable circular orbit. That work focused on an observation of GX 339-4 at a luminosity of about 5% of the Eddington limit (L(sub Edd)) and used parameters from a relativistic reflection model and the presence of a soft, thermal component as diagnostics. In this work, we use similar diagnostics, but extend the study to lower luminosities (2.3% and 0.8% L(sub Edd)) using Swift and RXTE observations of GX 339-4. We detect a thermal component with an inner disk temperature of approx.0.2 keV at 2.3% L(sub Edd). At 0.8% L(sub Edd), the spectrum is consistent with the presence of such a component, but the component is not required with high confidence. At both luminosities, we detect broad features due to iron Ka that are likely related to reflection of hard X-rays off the optically thick material. If these features are broadened by relativistic effects, they indicate that optically thick material resides within 10 R(sub g) down to 0.8% L(sub Edd), and the measurements are consistent with the inner radius of the disk remaining at approx.4 R(sub g) down to this level. However, we also discuss an alternative model for the broadening, and we note that the evolution of the thermal component is not entirely consistent with the constant inner radius interpretation. Finally, we discuss the results in terms of recent theoretical work by Liu and co-workers on

  12. Broadband X-Ray Spectra of GX 339-4 and the Geometry of Accreting Black Holes in the Hard State

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Kalemci, Emrah; Kaaret, Philip; Markoff, Sera; Corbel, Stephane; Migliari, Simone; Fender, Rob; Bailyn, Charles D.; Buxton, Michelle M.

    2008-01-01

    A major question in the study of black hole binaries involves our understanding of the accretion geometry when the sources are in the "hard" state, with an X-ray energy spectrum dominated by a hard power-law component and radio emission coming from a steady "compact" jet. Although the common hard state picture is that the accretion disk is truncated, perhaps at hundreds of gravitational radii (Rg) from the black hole, recent results for the recurrent transient GX 339-4 by Miller and coworkers show evidence for disk material very close to the black hole's innermost stable circular orbit. That work studied GX 339-4 at a luminosity of approximately 5% of the Eddington limit (L(sub Edd) and used parameters from a relativistic reflection model and the presence of a thermal component as diagnostics. Here we use similar diagnostics but extend the study to lower luminosities (2.3% and 0.8% L(sub Edd)) using Swift and RXTE observations of GX 339-4. We detect a thermal component with an inner disk temperature of approximately 0.2 keV at 2.3% L (sub Edd). At both luminosities, we detect broad features due to iron K-alpha that are likely related to reflection of hard X-rays off disk material. If these features are broadened by relativistic effects, they indicate that the material resides within 10 Rg, and the measurements are consistent with the disk's inner radius remaining at approximately 4 Rg down to 0.8% L(sub Edd). However, we also discuss an alternative model for the broadening, and we note that the evolution of the thermal component is not entirely consistent with the constant inner radius interpretation. Finally, we discuss the results in terms of recent theoretical work by Liu and co-workers on the possibility that material may condense out of an Advection-Dominated Accretion Flow to maintain an inner optically thick disk.

  13. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  14. Suzaku Observations of AGN and Synergy with GLAST

    SciTech Connect

    Kataoka, Jun; Takahashi, Tad; Madejski, Greg; /KIPAC, Menlo Park

    2007-10-29

    In next five years, dramatic progress is anticipated for the AGN studies, as we have two important missions to observe celestial sources in the high energy regime: GLAST and Suzaku. Suzaku is the 5th Japanese X-ray astronomy satellite which was successfully launched in July 2005. It carries four X-ray sensitive imaging CCD cameras (0.2-12 keV) located in the focal planes of X-ray telescope, and a non-imaging, collimated hard X-ray detector, which extends the bandpass of the observatory to include the 10-600 keV range. Simultaneous monitoring observations by the two instruments (GLAST and Suzaku) will be particularly valuable for variable radio-loud AGN, allowing the cross-correlations of time series as well as detailed modeling of the spectral evolution between the X-ray and gamma-ray energy bands. In this paper, we show early highlights from Suzaku observations of radio-loud AGNs, and discuss what we can do with GLAST in forthcoming years.

  15. Dante Soft X-ray Power Diagnostic for NIF

    SciTech Connect

    Dewald, E; Campbell, K; Turner, R; Holder, J; Landen, O; Glenzer, S; Kauffman, R; Suter, L; Landon, M; Rhodes, M; Lee, D

    2004-04-15

    Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.

  16. Calculated performance of broadband secondary x-ray imaging (SXI) based on fourth generation sources and optics and its potential application to human angiography

    NASA Astrophysics Data System (ADS)

    Csonka, Paul L.

    2005-08-01

    A calculation was carried out to evaluate the capabilities of Secondary X-ray Imaging (SXI), applied to human angiography. A primary photon pencil beam is rastered through the human heart, in two directions perpendicular to the primary photon beam. The signal is generated by fluorescent photons from a contrast agent, registered by a wide angle detector. One result is clearer images and a reduction of shadowing by obstructions inside the body. Sharp imaging is compatible with locally quantitative measurements, and also with pixel by pixel elemental analysis. The detector need not be position sensitive. Most of the primary beam will be scattered before they reach the target, but unscattered primary beam remains well focused. To discriminate against scattered background, the photons have to pass through a position/momentum selector, a W - Hf absorber shield, and a time window. The calcualation gives the approximate energy spectrum for the scattered photons, for the photons passing through the position/momentum selector, and for those at thefar side of the absorber shield. The last two are evaluated for time windows between 1000 and 167 ps. The surviving background causes relative image intensity fluctuations of the order of a percent. The primary beam intensity required for SXI is comparable or less than the intensity needed for Iodine K-edge subtraction (KES) imaging, but for SXI the primary photon energy spread may be one or two orders higher than what is needed for KES. Therefore, the requirements on the primary photon source an be relaxed. With an undulator as source, monochromatization may not be needed. That would further reduce the cost of the photon source, which may be a small low energy electron ring.

  17. Panoramic Dental X-Ray

    MedlinePlus

    ... X-ray? What is Panoramic X-ray? Panoramic radiography , also called panoramic x-ray , is a two- ... Exams Dental Cone Beam CT X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety About this Site ...

  18. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  19. The AGN Corona and Supermassive Black Hole of NGC 4151 as Revealed by NuSTAR and Suzaku

    NASA Astrophysics Data System (ADS)

    Keck, Mason; Brenneman, Laura; Elvis, Martin; Fuerst, Felix; Madejski, Grzegorz Maria; Matt, Giorgio; Harrison, Fiona; Stern, Daniel; McDowell, Jonathan C.; Risaliti, Guido

    2014-06-01

    Through timing and spectral analyses of simultaneous, 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151, we disentangle the continuum, reflection, and absorption properties of the innermost regions of the active galactic nucleus (AGN). Utilizing NuSTAR's broadband (3-79 keV) X-ray sensitivity and Suzaku's CCD energy resolution from 0.7-10 keV, we robustly determine properties of the AGN corona and supermassive black hole (SMBH). We constrain the coronal temperature and optical depth to be kTe = 44-29+9 keV and τ=1.4-0.3+2.0, respectively, assuming a coronal slab geometry. Additionally, we determine the dimensionless spin, a≥0.99, of the SMBH in NGC 4151 for the first time through a spectral analysis. Finally, we show evidence that the coronal flux varies on time-scales as short as four hours. We discuss constraints our results put on the coronal geometry. To robustly test for the presence of relativistic reflection from the inner accretion disks of Seyfert 1 AGNs, we develop a library of time-dependent spectra and light curves from simulated eclipses of an accretion disk by clumpy, absorbing material covering a large range of disk, black hole, and absorber parameters. When applied to a high signal-to-noise observation of a Compton-thick eclipse of the accretion disk, these simulations will enable observational tests for the presence of inner accretion disk reflection in Seyfert 1 AGN emission using current X-ray observatories and standard X-ray data analysis software.

  20. X-ray Observations of Shocked Nova Ejecta

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Nelson, T.; Chomiuk, L.; Mioduszewski, A.; Rupen, M. P.; Sokoloski, J. L.; Weston, J. H. S.; Bode, M. F.; Eyres, S. P. S.; O'Brien, T. J.

    2014-12-01

    We present X-ray observations of novae, obtained in conjunction with radio observations. The 1-10 keV X-rays are optically thin thermal emission from the ejecta shock-heated to >10 million degrees, while the radio emission is often dominated by Bremsstrahlung emission from ˜10,000 K gas, perhaps with additional contributions from shocks. The very presence of hard X-ray emission requires faster ejecta to catch up with a slower material ejected earlier. The X-ray temperatures allow us to estimate the velocity differential between the two systems. Non-ionization-equilibrium signatures, when present, allow us to constrain the density of the shocked plasma. The absorbing columns, usually observed to decrease as the ejecta expand, constrain the amount of the slower, earlier ejecta that still remain unshocked. Specifically, we will present our analysis of the Swift and Suzaku observations of T Pyx and Nova Mon 2012 and discuss implications.

  1. X-ray - skeleton

    MedlinePlus

    A skeletal x-ray is an imaging test used to look at the bones. It is used to detect fractures , tumors, or ... in the health care provider's office by an x-ray technologist. You will lie on a table or ...

  2. Extremity x-ray

    MedlinePlus

    An extremity x-ray is an image of the hands, wrist, feet, ankle, leg, thigh, forearm humerus or upper arm, hip, shoulder ... term "extremity" often refers to a human limb. X-rays are a form of radiation that passes through ...

  3. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  4. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  5. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  6. X-ray monochromator

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    An x-ray monochromator is described, wherin a housing supports a plurality of mirrors forming a plurality of opposed mirror faces in parallel with each other and having thereon multilayer coatings, with each of said pairs of mirror faces being provided with identical coatings which are different from the coatings on the other pairs of mirror faces such that each pair of mirror faces has a peak x-ray reflection at a different wavelength regime. The housing is moveable to bring into a polychromatic x-ray beam that pair of mirror faces having the best x-ray reflection for the desired wavelength, with the mirrors being pivotable to move the mirror faces to that angle of incidence at which the peak reflectivity of the desired wavelength x-rays occurs.

  7. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  8. WIDE-BAND SUZAKU ANALYSIS OF THE PERSISTENT EMISSION FROM SGR 0501+4516 DURING THE 2008 OUTBURST

    SciTech Connect

    Enoto, T.; Makishima, K.; Nakazawa, K.; Yamada, S.; Rea, N.; Nakagawa, Y. E.; Sakamoto, T.; Esposito, P.; Mereghetti, S.; Tiengo, A.; Goetz, D.; Israel, G. L.; Stella, L.; Kokubun, M.; Murakami, H.; Turolla, R.; Yamaoka, K.; Yoshida, A.; Zane, S.

    2010-05-20

    We observed the soft gamma repeater SGR 0501+4516 with Suzaku for {approx}51 ks on 2008 August 26-27, about 4 days after its discovery. Following the first paper, which reported on the persistent soft X-ray emission and the wide-band spectrum of an intense short burst, this paper presents an analysis of the persistent broadband (1-70 keV) spectra of this source in outburst, taken with the X-ray Imaging Spectrometer (XIS) and the Hard X-ray Detector (HXD). Pulse-phase folding in the 12-35 keV HXD-PIN data on an ephemeris based on multi-satellite timing measurements at soft X-rays revealed the pulsed signals at {approx_gt}99% confidence in the hard X-ray band. The wide-band spectrum clearly consists of a soft component and a separate hard component, crossing over at {approx}7 keV. When the soft component is modeled by a blackbody plus a Comptonized blackbody, the hard component exhibits a 20-100 keV flux of 4.8{sup +0.8}{sub -0.6}(stat.){sup +0.8}{sub -0.4}(sys.) x 10{sup -11} erg s{sup -1} cm{sup -2} and a photon index of {Gamma} = 0.79{sup +0.20}{sub -0.18}(stat.){sup +0.01}{sub -0.06}(sys.). The hard X-ray data are compared with those obtained by INTEGRAL about 1 day later. Combining the present results with those on other magnetars, we discuss a possible correlation between the spectral hardness of magnetars and their characteristic age and magnetic field strengths.

  9. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  10. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  11. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  12. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  13. Short-term X-ray spectral variability of the quasar PDS 456 observed in a low-flux state

    NASA Astrophysics Data System (ADS)

    Matzeu, G. A.; Reeves, J. N.; Nardini, E.; Braito, V.; Costa, M. T.; Tombesi, F.; Gofford, J.

    2016-05-01

    We present a detailed analysis of a recent, 2013 Suzaku campaign on the nearby (z = 0.184) luminous (Lbol ˜ 1047 erg s-1) quasar PDS 456. This consisted of three observations, covering a total duration of ˜1 Ms and a net exposure of 455 ks. During these observations, the X-ray flux was unusually low, suppressed by a factor of >10 in the soft X-ray band when compared to previous observations. We investigated the broad-band continuum by constructing a spectral energy distribution (SED), making use of the optical/UV photometry and hard X-ray spectra from the later simultaneous XMM-Newton and NuSTAR campaign in 2014. The high-energy part of this low-flux SED cannot be accounted for by physically self-consistent accretion disc and corona models without attenuation by absorbing gas, which partially covers a substantial fraction of the line of sight towards the X-ray continuum. At least two layers of absorbing gas are required, of column density log (NH,low/cm-2) = 22.3 ± 0.1 and log (NH,high/cm-2) = 23.2 ± 0.1, with average line-of-sight covering factors of ˜80 per cent (with typical ˜5 per cent variations) and 60 per cent (±10-15 per cent), respectively. During these observations PDS 456 displays significant short-term X-ray spectral variability, on time-scales of ˜100 ks, which can be accounted for by variable covering of the absorbing gas along the line of sight. The partial covering absorber prefers an outflow velocity of v_pc = 0.25^{+0.01}_{-0.05} c at the >99.9 per cent confidence level over the case where vpc = 0. This is consistent with the velocity of the highly ionized outflow responsible for the blueshifted iron K absorption profile. We therefore suggest that the partial covering clouds could be the denser, or clumpy part of an inhomogeneous accretion disc wind. Finally estimates are placed upon the size-scale of the X-ray emission region from the source variability. The radial extent of the X-ray emitter is found to be of the order ˜15-20Rg

  14. THE SUZAKU VIEW OF 3C 382

    SciTech Connect

    Sambruna, R. M.; Gliozzi, M.; Tombesi, F.; Braito, V.; Ballo, L.; Reynolds, C. S.

    2011-06-20

    We present a long (116 ks) Suzaku observation of the broad-line radio galaxy (BLRG) 3C 382 acquired in 2007 April. A Swift BAT spectrum in 15-200 keV from the 58 month survey is also analyzed, together with an archival XMM-Newton EPIC exposure of 20 ks obtained one year after Suzaku. Our main result is the finding with Suzaku of a broad Fe K line with a relativistic profile consistent with emission from an accretion disk at tens of gravitational radii from the central black hole. The XIS data indicate emission from highly ionized iron and allow us to set tight, albeit model-dependent, constraints on the inner and outer radii of the disk reflecting region, r{sub in} {approx_equal} 10 r{sub g} and r{sub out} {approx_equal} 20 r{sub g} , respectively, and on the disk inclination, i {approx_equal} 30{sup 0}. Two ionized reflection components are possibly observed, with similar contributions of {approx}10% to the total continuum-a highly ionized one, with log{xi} {approx_equal} 3 erg s{sup -1} cm, which successfully models the relativistic line, and a mildly ionized one, with log{xi} {approx_equal} 1.5 erg s{sup -1} cm, which models the narrow Fe K{alpha} and high energy hump. When both these components are included, there is no further requirement for an additional blackbody soft excess below 2 keV. The Suzaku data confirm the presence of a warm absorber previously known from grating studies. After accounting for all the spectral features, the intrinsic photon index of the X-ray continuum is {Gamma}{sub x} {approx_equal} 1.8 with a cutoff energy at {approx}200 keV, consistent with Comptonization models and excluding jet-related emission up to these energies. Comparison of the X-ray properties of 3C 382 and other BLRGs to Seyferts recently observed with Suzaku and BAT confirms the idea that the distinction between radio-loud and radio-quiet active galactic nucleus at X-rays is blurred. The two classes form a continuum distribution in terms of X-ray photon index

  15. Exploring hot gas at junctions of galaxy filaments with Suzaku

    SciTech Connect

    Mitsuishi, I.; Sasaki, S.; Kawahara, H.; Sekiya, N.; Yamasaki, N. Y; Sousbie, T.

    2014-03-10

    We performed five pointing observations with Suzaku to search for hot gases associated with the junctions of galaxy filaments where no significant diffuse X-ray sources were previously detected. We discovered X-ray sources successfully in all five regions including merging groups of galaxies, Suzaku J0957+2610 and Suzaku J1134+2105, and analyzed two bright sources in each field. Spectral analysis indicates that three sources originate from X-ray diffuse halos associated with optically bright galaxies or groups of galaxies with kT ∼ 0.6-0.8 keV. The three other sources are possibly group- and cluster-scale X-ray halos with temperatures of ∼1 keV and ∼4 keV, respectively while the others are compact object origins such as active galactic nuclei. All of the three observed intracluster media within the junctions of the galaxy filaments previously found are involved in ongoing mergers. Thus, we demonstrate that deep X-ray observations at the filament junctions identified by galaxy surveys are a powerful means to explore previously undetected growing halos in a hierarchical structure.

  16. X-Ray Spectrometry.

    ERIC Educational Resources Information Center

    Macdonald, G. L.

    1980-01-01

    Reviews instrumental developments and technique improvements in X-ray spectrometry, grouped into major topic areas of excitation, dispersion and detection, instrumentation and techniques, and quantitative analyses. Cites 162 references. (CS)

  17. Bone x-ray

    MedlinePlus

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  18. Medical X-Rays

    MedlinePlus

    ... Diagnostic X-Ray Equipment Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ... and Exporting Electronic Products Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ...

  19. Abdominal x-ray

    MedlinePlus

    An abdominal x-ray is an imaging test to look at organs and structures in the abdomen. Organs include the spleen, stomach, and intestines. When the test is done to look at the bladder and kidney structures, ...

  20. X-ray - skeleton

    MedlinePlus

    ... is used to look for: Fractures or broken bone Cancer that has spread to other areas of the ... 2014:chap 8. Read More Bone tumor Broken bone Cancer Metastasis Osteomyelitis X-ray Update Date 5/9/ ...

  1. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  2. Dental x-rays

    MedlinePlus

    ... or impacted teeth The presence and extent of dental caries (cavities) Bone damage (such as from periodontitis ) Abscessed ... Dental x-rays can reveal dental cavities (tooth decay) before they ... take yearly bitewings for the early development of cavities.

  3. SUZAKU OBSERVATIONS OF THE HMXB 1A 1118-61

    SciTech Connect

    Suchy, Slawomir; Rothschild, Richard E.; Pottschmidt, Katja; Wilms, Joern; Fuerst, Felix; Barragan, Laura; Grinberg, Victoria; Kreykenbohm, Ingo; Caballero, Isabel; Terada, Yukikatsu; Iwakari, Wataru; Makishima, Kazuo

    2011-05-20

    We present broadband analysis of the Be/X-ray transient 1A 1118-61 by Suzaku at the peak of its third observed outburst in 2009 January and two weeks later when the source flux had decayed by an order of magnitude. The continuum was modeled with a cutoffpl model as well as a compTT model, with both cases requiring an additional blackbody component at lower energies. We confirm the detection of a cyclotron line at {approx}55 keV and discuss the possibility of a first harmonic at {approx}110 keV. Pulse profile comparisons show a change in the profile structure at lower energies, an indication for possible changes in the accretion geometry. Phase-resolved spectroscopy in the outburst data shows a change in the continuum throughout the pulse period. The decrease in the cyclotron resonance scattering feature centroid energy also indicates that the viewing angle on the accretion column is changing throughout the pulse period.

  4. A comprehensive analysis of the hard X-ray spectra of bright Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Lubiński, P.; Beckmann, V.; Gibaud, L.; Paltani, S.; Papadakis, I. E.; Ricci, C.; Soldi, S.; Türler, M.; Walter, R.; Zdziarski, A. A.

    2016-05-01

    Hard X-ray spectra of 28 bright Seyfert galaxies observed with INTEGRAL were analysed together with the X-ray spectra from XMM-Newton, Suzaku and RXTE. These broad-band data were fitted with a model assuming a thermal Comptonization as a primary continuum component. We tested several model options through a fitting of the Comptonized continuum accompanied by a complex absorption and a Compton reflection. Both the large data set used and the model space explored allowed us to accurately determine a mean temperature kTe of the electron plasma, the Compton parameter y and the Compton reflection strength R for the majority of objects in the sample. Our main finding is that a vast majority of the sample (20 objects) is characterized by kTe < 100 keV, and only for two objects we found kTe > 200 keV. The median kTe for entire sample is 48_{-14}^{+57} keV. The distribution of the y parameter is bimodal, with a broad component centred at ≈0.8 and a narrow peak at ≈1.1. A complex, dual absorber model improved the fit for all data sets, compared to a simple absorption model, reducing the fitted strength of Compton reflection by a factor of about 2. Modest reflection (median R ≈ 0.32) together with a high ratio of Comptonized to seed photon fluxes point towards a geometry with a compact hard X-ray emitting region well separated from the accretion disc. Our results imply that the template Seyferts spectra used in the population synthesis models of active galactic nuclei (AGN) should be revised.

  5. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  6. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... Gillard JH, Schaefer-Prokop CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. New ...

  7. Explorer Program: X-ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This booklet describes the X-ray Timing Explorer (XTE), one in a series of Explorer missions administered by the National Aeronautics and Space Administration's (NASA) Office of Space Science and managed by the NASA Goddard Space Flight Center (GSFC). The X-ray astronomy observatory is scheduled for launch into low-Earth orbit by Delta 2 expendable launch vehicle in late summer of 1995. The mission is expected to operate for at least 2 years and will carry out in-depth timing and spectral studies of the X-ray sources in the 2 to 200 kilo-electron Volt (keV) range. XTE is intended to study the temporal and broad-band spectral phenomena associated with stellar and galactic systems containing compact objects, including neutron stars, white dwarfs, and black holes.

  8. X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2004-10-01

    A compact laboratory x-ray "nano-CT" scanner has been created for 3D non-invasive imaging with 150-200 nanometers 3D spatial resolution, using advanced x-ray technologies and specific physical phenomena for signal detection. This spatial resolution in volume terms is 3 orders better than can be achieved in synchrotron tomography, 5 orders better then in existing laboratory micro-CT instruments and 10-12 orders better in comparison to clinical CT. The instrument employs an x-ray source with a 300-400nm x-ray spot size and uses small-angle scattering to attain a detail detectability of 150-200nm. An object manipulator allows positioning and rotation with an accuracy of 150nm. The x-ray detector is based on an intensified CCD with single-photon sensitivity. A typical acquisition cycle for 3D reconstruction of the full object volume takes from 10 to 60 minutes, with the collection of several hundred angular views. Subsequent volumetric reconstruction produces results as a set of cross sections with isotropic voxel size down to 140 x 140 x 140nm, or as a 3D-model, which can be virtually manipulated and measured. This unique spatial resolution in non-invasive investigations gives previously unattainable 3D images in several application areas, such as composite materials, paper and wood microstructure, biomedical applications and others.

  9. Extreme blazars studied with Fermi-lat and Suzaku: 1ES 0347–121 and blazar candidate HESS J1943+213

    SciTech Connect

    Tanaka, Y. T.; Stawarz, Ł.; Finke, J.; Cheung, C. C.; Dermer, C. D.; Kataoka, J.; Bamba, A.; Dubus, G.; Fukazawa, Y.; Thompson, D. J.

    2014-06-01

    We report on our study of high-energy properties of two peculiar TeV emitters: the 'extreme blazar' 1ES 0347–121 and the 'extreme blazar candidate' HESS J1943+213 located near the Galactic plane. Both objects are characterized by quiescent synchrotron emission with flat spectra extending up to the hard X-ray range, and both were reported to be missing GeV counterparts in the Fermi Large Area Telescope (LAT) two-year Source Catalog. We analyze a 4.5 yr accumulation of the Fermi-LAT data, resulting in the detection of 1ES 0347–121 in the GeV band, as well as in improved upper limits for HESS J1943+213. We also present the analysis results of newly acquired Suzaku data for HESS J1943+213. The X-ray spectrum is well represented by a single power law extending up to 25 keV with photon index 2.00 ± 0.02 and a moderate absorption in excess of the Galactic value, which is in agreement with previous X-ray observations. No short-term X-ray variability was found over the 80 ks duration of the Suzaku exposure. Under the blazar hypothesis, we modeled the spectral energy distributions of 1ES 0347–121 and HESS J1943+213, and we derived constraints on the intergalactic magnetic field strength and source energetics. We conclude that although the classification of HESS J1943+213 has not yet been determined, the blazar hypothesis remains the most plausible option since, in particular, the broadband spectra of the two analyzed sources along with the source model parameters closely resemble each other, and the newly available Wide-field Infrared Survey Explorer and UKIRT Infrared Deep Sky Survey data for HESS J1943+213 are consistent with the presence of an elliptical host at the distance of approximately ∼600 Mpc.

  10. Extreme Blazars Studied with Fermi-LAT and Suzaku: 1ES 0347-121 and Blazar Candidate HESS J1943+213

    NASA Astrophysics Data System (ADS)

    Tanaka, Y. T.; Stawarz, Ł.; Finke, J.; Cheung, C. C.; Dermer, C. D.; Kataoka, J.; Bamba, A.; Dubus, G.; De Naurois, M.; Wagner, S. J.; Fukazawa, Y.; Thompson, D. J.

    2014-06-01

    We report on our study of high-energy properties of two peculiar TeV emitters: the "extreme blazar" 1ES 0347-121 and the "extreme blazar candidate" HESS J1943+213 located near the Galactic plane. Both objects are characterized by quiescent synchrotron emission with flat spectra extending up to the hard X-ray range, and both were reported to be missing GeV counterparts in the Fermi Large Area Telescope (LAT) two-year Source Catalog. We analyze a 4.5 yr accumulation of the Fermi-LAT data, resulting in the detection of 1ES 0347-121 in the GeV band, as well as in improved upper limits for HESS J1943+213. We also present the analysis results of newly acquired Suzaku data for HESS J1943+213. The X-ray spectrum is well represented by a single power law extending up to 25 keV with photon index 2.00 ± 0.02 and a moderate absorption in excess of the Galactic value, which is in agreement with previous X-ray observations. No short-term X-ray variability was found over the 80 ks duration of the Suzaku exposure. Under the blazar hypothesis, we modeled the spectral energy distributions of 1ES 0347-121 and HESS J1943+213, and we derived constraints on the intergalactic magnetic field strength and source energetics. We conclude that although the classification of HESS J1943+213 has not yet been determined, the blazar hypothesis remains the most plausible option since, in particular, the broadband spectra of the two analyzed sources along with the source model parameters closely resemble each other, and the newly available Wide-field Infrared Survey Explorer and UKIRT Infrared Deep Sky Survey data for HESS J1943+213 are consistent with the presence of an elliptical host at the distance of approximately ~600 Mpc.

  11. X-RAY EVOLUTION OF PULSAR WIND NEBULAE

    SciTech Connect

    Bamba, Aya; Anada, Takayasu; Dotani, Tadayasu; Ebisawa, Ken; Yamazaki, Ryo; Vink, Jacco

    2010-08-20

    During the search for counterparts of very high energy gamma-ray sources, we serendipitously discovered large, extended, low surface brightness emission from pulsar wind nebulae (PWNe) around pulsars with the ages up to {approx}100 kyr, a discovery made possible by the low and stable background of the Suzaku X-ray satellite. A systematic study of a sample of eight of these PWNe, together with Chandra data sets, has revealed that the nebulae keep expanding up to {approx}100 kyr, although the timescale of the synchrotron X-ray emission is only {approx}60 yr for typical magnetic fields of 100 {mu}G. Our result suggests that the accelerated electrons up to {approx}80 TeV can escape from the PWNe without losing most energies. Moreover, in order to explain the observed correlation between the X-ray size and the pulsar spin-down age, the magnetic field strength in the PWNe must decrease with time.

  12. The Effects of Orbital Environment on X-ray CCD Performance

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; LaMarr, Beverly; Miller, Eric D.; Bautz, Mark W.

    2014-06-01

    X-ray telescopes, such as NASA's Chandra X-ray Observatory and Japan's Suzaku, have flown in space for several decades, however the effects of this hostile environment on sensitive astrophysics instruments are still not completely documented. Both observatories use CCD cameras for imaging spectroscopy of the X-ray sky. The CCDs themselves are similar in design, being fabricated at MIT's Lincoln Laboratory. We compare the on-orbit performance evolution of the Chandra ACIS and Suzaku XIS, to better understand the effect of the radiation environment in low- and high-Earth orbit. After more than a combined twenty years in space, both instruments have suffered performance degradation due to radiation damage, but comparison must take into consideration the operational differences, such as the presence of charge injection and the warmer focal plane temperature of the XIS. The low-Earth orbit of Suzaku has the advantage of a lower and stable particle background during observations, while the Chandra particle background during observations is higher and subject to variations due to the solar cycle and solar storms. This is in contrast to the rate of radiation damage accumulation, which is about four times higher for Suzaku, even after correcting for operational differences. We present models of the particle environments for both Suzaku and Chandra which can explain the apparent discrepancy. While the choice of orbit for future missions is obviously dependent on many factors beyond radiation environment, we hope this study will be useful for better informing that choice.

  13. The Effects of Orbital Environment on X-ray CCD Performance

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; LaMarr, Beverly; Miller, Eric D.; Bautz, Mark W.

    2014-08-01

    X-ray telescopes, such as NASA's Chandra X-ray Observatory and Japan's Suzaku, have flown in space for several decades, however the effects of this hostile environment on sensitive astrophysics instruments are still not completely documented. Both observatories use CCD cameras for imaging spectroscopy of the X-ray sky. The CCDs themselves are similar in design, being fabricated at MIT's Lincoln Laboratory. We compare the on-orbit performance evolution of the Chandra ACIS and Suzaku XIS, to better understand the effect of the radiation environment in low- and high-Earth orbit. After more than a combined twenty years in space, both instruments have suffered performance degradation due to radiation damage, but comparison must take into consideration the operational differences, such as the presence of charge injection and the warmer focal plane temperature of the XIS. The low-Earth orbit of Suzaku has the advantage of a lower and stable particle background during observations, while the Chandra particle background during observations is higher and subject to variations due to the solar cycle and solar storms. This is in contrast to the rate of radiation damage accumulation, which is about four times higher for Suzaku, even after correcting for operational differences. We present models of the particle environments for both Suzaku and Chandra which can explain the apparent discrepancy. While the choice of orbit for future missions is obviously dependent on many factors beyond radiation environment, we hope this study will be useful for better informing that choice.

  14. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  15. Suzaku confirms NGC 3660 is an unabsorbed Seyfert 2

    NASA Astrophysics Data System (ADS)

    Rivers, Elizabeth; Brightman, Murray; Bianchi, Stefano; Matt, Giorgio; Nandra, Kirpal; Ueda, Yoshihiro

    2016-06-01

    An enigmatic group of objects, unabsorbed Seyfert 2s may have intrinsically weak broad line regions, obscuration in the line of sight to the BLR but not to the X-ray corona, or so much obscuration that the X-ray continuum is completely suppressed and the observed spectrum is actually scattered into the line of sight from nearby material. NGC 3660 has been shown to have weak broad optical/near-infrared lines, no obscuration in the soft X-ray band, and no indication of "changing look" behavior. The only previous hard X-ray detection of this source by Beppo-SAX seemed to indicate that the source might harbor a heavily obscured nucleus. However, our analysis of a long-look Suzaku observation of this source shows that this is not the case, and that this source has a typical power-law X-ray continuum with normal reflection and no obscuration. We conclude that NGC 3660 is confirmed to have no unidentified obscuration and that the anomolously high Beppo-SAX measurement must be due to source confusion or similar, being inconsistent with our Suzaku measurements as well as non-detections from Swift-Burst Alert Telescope (BAT) and Rossi X-ray Timing Explorer (RXTE).

  16. Suzaku confirms NGC 3660 is an unabsorbed Seyfert 2

    NASA Astrophysics Data System (ADS)

    Rivers, Elizabeth; Brightman, Murray; Bianchi, Stefano; Matt, Giorgio; Nandra, Kirpal; Ueda, Yoshihiro

    2016-02-01

    An enigmatic group of objects, unabsorbed Seyfert 2s may have intrinsically weak broad line regions, obscuration in the line of sight to the BLR but not to the X-ray corona, or so much obscuration that the X-ray continuum is completely suppressed and the observed spectrum is actually scattered into the line of sight from nearby material. NGC 3660 has been shown to have weak broad optical/near-infrared lines, no obscuration in the soft X-ray band, and no indication of "changing look" behavior. The only previous hard X-ray detection of this source by Beppo-SAX seemed to indicate that the source might harbor a heavily obscured nucleus. However, our analysis of a long-look Suzaku observation of this source shows that this is not the case, and that this source has a typical power-law X-ray continuum with normal reflection and no obscuration. We conclude that NGC 3660 is confirmed to have no unidentified obscuration and that the anomolously high Beppo-SAX measurement must be due to source confusion or similar, being inconsistent with our Suzaku measurements as well as non-detections from Swift-Burst Alert Telescope (BAT) and Rossi X-ray Timing Explorer (RXTE).

  17. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  18. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  19. X-ray emission mechanism for the gamma-ray binary LS 5039

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masaki

    2012-07-01

    We address an unsolved issue in the model of the gamma-ray binary LS 5039, which consists of an O star and a compact object not yet identified. In previous studies, the X-ray emission observed with Suzaku has been assumed to be due to the synchrotron emission from high energy electrons, and the inverse Compton (IC) emission from low energy electrons has been neglected. However, this IC emission can affect the X-ray emission. In this study, we calculate the IC emission from low energy electrons (γ < 10^4) accelerated near the compact object, including those created by the radiative cooling. We find that the IC emission of the low energy electrons can be responsible for the Suzaku band if the minimum Lorentz factor of injected electrons γ_{min} is around 10^3. In addition, we show that the Suzaku light curve is well reproduced if γ_{min} varies in proportion to the Fermi flux.

  20. X-ray

    MedlinePlus

    ... Most experts feel that the benefits of appropriate x-ray imaging greatly outweigh any risks. Young children and babies ... be pregnant. Alternative Names ... CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2014: ...

  1. Pump-probe spectrometer for measuring x-ray induced strain.

    PubMed

    Loether, A; Adams, B W; DiCharia, A; Gao, Y; Henning, R; Walko, D A; DeCamp, M F

    2016-05-01

    A hard x-ray pump-probe spectrometer using a multi-crystal Bragg reflector is demonstrated at a third generation synchrotron source. This device derives both broadband pump and monochromatic probe pulses directly from a single intense, broadband x-ray pulse centered at 8.767 keV. We present a proof-of-concept experiment which directly measures x-ray induced crystalline lattice strain. PMID:27128053

  2. A Hard X-ray View on Two Distant VHE Blazars: 1ES 1101-232 and 1ES 1553+113

    SciTech Connect

    Reimer, A.; Costamente, L.; Madejski, G.; Reimer, O.; Dorner, D.; /Wurzburg U.

    2008-05-02

    TeV-blazars are known as prominent non-thermal emitters across the entire electromagnetic spectrum with their photon power peaking in the X-ray and TeV-band. If distant, absorption of -ray photons by the extragalactic background light (EBL) alters the intrinsic TeV spectral shape, thereby affecting the overall interpretation. Suzaku observations for two of the more distant TeV-blazars known to date, 1ES 1101-232 and 1ES 1553+113, were carried out in May and July 2006, respectively, including a quasi-simultaneous coverage with the state of the art Cherenkov telescope facilities. We report on the resulting data sets with emphasis on the X-ray band, and set into context to their historical behavior. During our campaign, we did not detect any significant X-ray or {gamma}-ray variability. 1ES 1101-232 was found in a quiescent state with the lowest X-ray flux ever measured. The combined XIS and HXD PIN data for 1ES 1101-232 and 1ES 1553+113 clearly indicate spectral curvature up to the highest hard X-ray data point ({approx} 30 keV), manifesting as softening with increasing energy. We describe this spectral shape by either a broken power law or a log-parabolic fit with equal statistical goodness of fits. The combined 1ES 1553+113 very high energy spectrum (90-500 GeV) did not show any significant changes with respect to earlier observations. The resulting contemporaneous broadband spectral energy distributions of both TeV-blazars are discussed in view of implications for intrinsic blazar parameter values, taking into account the {gamma}-ray absorption in the EBL.

  3. Characterization of an indirect X-ray imaging detector by simulation and experiment.

    PubMed

    Doshi, C; van Riessen, G; Balaur, E; de Jonge, M D; Peele, A G

    2015-01-01

    We describe a comprehensive model of a commercial indirect X-ray imaging detector that accurately predicts the detector point spread function and its dependence on X-ray energy. The model was validated by measurements using monochromatic synchrotron radiation and extended to polychromatic X-ray sources. Our approach can be used to predict the performance of an imaging detector and can be used to optimize imaging experiments with broad-band X-ray sources. PMID:25203971

  4. Hard X-ray Pump, X-ray Probe Spectroscopy of Single Crystals

    NASA Astrophysics Data System (ADS)

    Loether, Aaron; Decamp, Matt; Walko, Donald

    Recent advancements in intense x-ray pulses have made it possible to perform hard x-ray pump probe spectroscopy. Inspired by optical pump probe, we've built a retroreflector for use with synchrotron based x-rays, using Germanium crystals at Bragg condition in place of mirrors, to control relative timing of x-ray pulses and perform time resolved measurements. Testing of multiple versions of the retroreflector was done both experimentally and via simulation; the comparison allows us to show efficiencies achievable theoretically and realistically. A proof of concept time resolved diffraction experiment on a Germanium 111 crystal was performed utilizing high intensity broadband x-ray pulses and the resulting heating and propagated strains were measured by low intensity monochromatic x-ray pulses. This work was supported from the DOE-EPSCoR Grant No. DE-FG02-11ER46816. Use of the 178 Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, 179 Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  5. The ASTRO-H X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki

    2016-04-01

    ASTRO-H, the new Japanese X-ray Astronomy Satellite following Suzaku, is an international X-ray mission, planed for launch in Feb, 2016. ASTRO-H is a combination of high energy-resolution soft X-ray spectroscopy (0.3 - 10 keV) provided by thin-foil X-ray optics and a micro-calorimeter array, and wide band X-ray spectroscopy (3 - 80 keV) provided by focusing hard X-ray mirrors and hard X-ray imaging detectors. Imaging spectroscopy of extended sources by the micro-calorimeter with spectral resolution of <7 eV can reveal line broadening and Doppler shifts due to turbulent or bulk velocities. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope and a non-focusing soft gamma-ray detector based on a narrow-FOV semiconductor Compton Camera. With these instruments, ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. The simultaneous broad band pass, coupled with high spectral resolution by the micro-calorimeter will enable a wide variety of important science themes to be pursued.The ASTRO-H mission objectives are to study the evolution of yet-unknown obscured super massive Black Holes in Active Galactic Nuclei; trace the growth history of the largest structures in the Universe; provide insights into the behavior of material in extreme gravitational fields; trace particle acceleration structures in clusters of galaxies and SNRs; and investigate the detailed physics of jets.ASTRO-H will be launched into a circular orbit with altitude of about 575 km, and inclination of 31 degrees.ASTRO-H is in many ways similar to Suzaku in terms of orbit, pointing, and tracking capabilities. After we launch the satellite, the current plan is to use the first three months for check-out and start the PV phase with observations proprietary to the ASTRO-H team. Guest observing time will start from about 10 months after the launch. About 75 % of the satellite time will be devoted to GO observations after the PV phase is completed.In this

  6. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  7. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  8. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  9. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1998-01-01

    The goal of this investigation was to use the All-Sky Monitor on the Rossi X-Ray Timing Explorer (RXTE) in combination with the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to simultaneously measure the x-ray (2-12 keV) and hard x-ray (20-100 keV) emission from x-ray bursters. The investigation was successful. We made the first simultaneous measurement of hard and soft x-ray emission and found a strong anticorrelation of hard and soft x-ray emission from the X-Ray Burster 4U 0614+091. The monitoring performed under this investigation was also important in triggering target of opportunity observations of x-ray bursters made under the investigation hard x-ray emission of x-ray bursters approved for RXTE cycles 1 and 2. These observations lead to a number of papers on high-frequency quasi-periodic oscillations and on hard x-ray emission from the x-ray bursters 4U 0614+091 and 4U 1705-44.

  10. EXTENDED HARD X-RAY EMISSION FROM THE VELA PULSAR WIND NEBULA

    SciTech Connect

    Mattana, F.; Terrier, R.; Zurita Heras, J. A.; Goetz, D.; Caballero, I.; Soldi, S.; Schanne, S.; Ponti, G.; Falanga, M.; Renaud, M.

    2011-12-10

    The nebula powered by the Vela pulsar is one of the best examples of an evolved pulsar wind nebula, allowing access to the particle injection history and the interaction with the supernova ejecta. We report on the INTEGRAL discovery of extended emission above 18 keV from the Vela nebula. The northern side has no known counterparts and it appears larger and more significant than the southern one, which is in turn partially coincident with the cocoon, the soft X-ray, and TeV filament toward the center of the remnant. We also present the spectrum of the Vela nebula in the 18-400 keV energy range as measured by IBIS/ISGRI and SPI on board the INTEGRAL satellite. The apparent discrepancy between IBIS/ISGRI, SPI, and previous measurements is understood in terms of the point-spread function, supporting the hypothesis of a nebula more diffuse than previously thought. A break at {approx}25 keV is found in the spectrum within 6' from the pulsar after including the Suzaku XIS data. Interpreted as a cooling break, this points out that the inner nebula is composed of electrons injected in the last {approx}2000 years. Broadband modeling also implies a magnetic field higher than 10 {mu}G in this region. Finally, we discuss the nature of the northern emission, which might be due to fresh particles injected after the passage of the reverse shock.