Science.gov

Sample records for swc technology transfer

  1. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  2. Technology transfer

    NASA Technical Reports Server (NTRS)

    Penaranda, Frank E.

    1992-01-01

    The topics are presented in viewgraph form and include the following: international comparison of R&D expenditures in 1989; NASA Technology Transfer Program; NASA Technology Utilization Program thrusts for FY 1992 and FY 1993; National Technology Transfer Network; and NTTC roles.

  3. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  4. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Bullock, Kimberly R.

    1995-01-01

    The development and application of new technologies in the United States has always been important to the economic well being of the country. The National Aeronautics and Space Administration (NASA) has been an important source of these new technologies for almost four decades. Recently, increasing global competition has emphasized the importance of fully utilizing federally funded technologies. Today NASA must meet its mission goals while at the same time, conduct research and development that contributes to securing US economic growth. NASA technologies must be quickly and effectively transferred into commercial products. In order to accomplish this task, NASA has formulated a new way of doing business with the private sector. Emphasis is placed on forming mutually beneficial partnerships between NASA and US industry. New standards have been set in response to the process that increase effectiveness, efficiency, and timely customer response. This summer I have identified potential markets for two NASA inventions: including the Radially Focused Eddy Current Sensor for Characterization of Flaws in Metallic Tubing and the Radiographic Moire. I have also worked to establish a cooperative program with TAG, private industry, and a university known as the TAG/Industry/Academia Program.

  5. [Technology Transfer.

    ERIC Educational Resources Information Center

    Latker, Norman J.

    Some authorities on technolgoy transfer feel that industry is not fully capitalizing on the inventive output of universities and nonprofit organizations. From the point of view of the government, the stakes are high. The magnitude of federal support of research and development in these organizations demands evidence of useful results if it is to…

  6. Trends in Technology Transfer.

    ERIC Educational Resources Information Center

    Starnick, Jurgen

    1988-01-01

    Various forms of technology transfer in Europe and North America are discussed including research contracts, cooperative research centers, and personnel transfer. Examples of approaches to technology transfer are given and the establishment of personnel transfer is discussed. Preconditions for successful technology transfer in the future are…

  7. The Apollo SWC Experiment: Results, Conclusions, Consequences

    NASA Astrophysics Data System (ADS)

    Geiss, J.; Bühler, F.; Cerutti, H.; Eberhardt, P.; Filleux, Ch.; Meister, J.; Signer, P.

    2004-01-01

    The Apollo Solar Wind Composition (SWC) experiment was designed to measure elemental and isotopic abundances of the light noble gases in the solar wind, and to investigate time variations in the solar-wind composition. The experiment was deployed on the first five Apollo lunar landing missions. The crews exposed a foil at each of the five landing sites, and solar wind particles were collected for time periods ranging from 77 minutes in July 1969 (Apollo 11) to 45:05 hours in April 1972 (Apollo 16). The foils were returned to Earth, where the collected noble gas particles were analysed in ultra-high vacuum mass spectrometer systems. We briefly describe here the flight hardware, and the technical tests and calibrations. The experimental results were published in various scientific journals, PhD theses and NASA science reports, some of them not readily accessible after three decades. In this paper, therefore, the results obtained by the five experiments on the fluxes of the isotopes of He, Ne and Ar are summarized and discussed, so that averages and variations in solar wind composition can be more easily compared with more recent data, particularly those to be obtained by the Genesis mission. The helium flux determined for the five exposure periods varied by a factor of four, with a time-weighted average of 1.2 × 107 cm-2 s-1. Although the composition varied much less than the He-flux, definite variations were found for the 4He/3He and He/Ne ratios. The weighted average solar wind abundance ratios obtained were 4He/3He = 2350 ± 120, 4He/20Ne = 570 ± 70, 20Ne/22Ne = 13.7 ± 0.3, 22Ne/21Ne = 30 ± 3, 20Ne/36Ar = 49 ± 7 and 36Ar/38Ar =5.4 ± 0.3 (errors correspond to the 2σ level). We also measured the flow directions of individual isotopic species. We found that the lunar environment did not significantly affect the solar wind composition measured at the lunar surface, and we conclude that the SWC results are representative of the solar wind prevailing in

  8. Technology transfer methodology

    NASA Technical Reports Server (NTRS)

    Labotz, Rich

    1991-01-01

    Information on technology transfer methodology is given in viewgraph form. Topics covered include problems in economics, technology drivers, inhibitors to using improved technology in development, technology application opportunities, and co-sponsorship of technology.

  9. National Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Rivers, Lee W.

    1992-01-01

    Viewgraphs on the National Technology Transfer Center (NTTC) are provided. The NTTC mission is to serve as a hub for the nationwide technology-transfer network to expedite the movement of federally developed technology into the stream of commerce. A description of the Center is provided.

  10. Technology transfer for adaptation

    NASA Astrophysics Data System (ADS)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  11. Technology Transfer and Technology Transfer Intermediaries

    ERIC Educational Resources Information Center

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  12. Technology transfer 1994

    SciTech Connect

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  13. Technology Transfer Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  14. Making behavioral technology transferable

    PubMed Central

    Pennypacker, H. S.; Hench, Larry L.

    1997-01-01

    The paucity of transferred behavioral technologies is traced to the absence of strategies for developing technology that is transferable, as distinct from strategies for conducting research, whether basic or applied. In the field of engineering, the results of basic research are transformed to candidate technologies that meet standardized criteria with respect to three properties: quantification, repetition, and verification. The technology of vitrification and storage of nuclear waste is used to illustrate the application of these criteria. Examples from behavior analysis are provided, together with suggestions regarding changes in practice that will accelerate the development and application of behavioral technologies. PMID:22478284

  15. Transferring Technology to Industry

    NASA Technical Reports Server (NTRS)

    Wolfenbarger, J. Ken

    2006-01-01

    This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.

  16. Technology Transfer: Marketing Tomorrow's Technology

    NASA Technical Reports Server (NTRS)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers

  17. Technology Transfer Issues and a New Technology Transfer Model

    ERIC Educational Resources Information Center

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  18. Technology transfer issue

    SciTech Connect

    Jacobson, C.

    1982-05-31

    Testimony by Lawrence J. Brady, Commerce Assistant Secretary for Trade Administration, at Congressional hearings on the national security issues of technology transfers to the Soviet Union identified steps the US needs to take to deal effectively with the problem. These steps include an understanding of how the Soviet Union has and will benefit militarily by acquiring Western technology and efforts to work with other countries, counterintelligence agencies, and industries to stem the flow of technological information. Brady outlined changes in technology development that complicate the enforcement of transfer rules, and emphasized the importance of a close relationship between the business community and the Commerce Department. (DCK)

  19. NASP technology transfer

    NASA Technical Reports Server (NTRS)

    Morris, Charles

    1992-01-01

    It is the stated goal of this program, the National AeroSpace Plane (NASP) program, to develop and then demonstrate the technologies for single-stage-to-orbit flight and hypersonic cruise with airbreathing primary propulsion and horizontal takeoff and landing. This presentation is concerned with technology transfer in the context of the NASP program.

  20. Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  1. Robotic technology evolution and transfer

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  2. Departmental technology transfer update

    NASA Technical Reports Server (NTRS)

    Lewis, Roger A.

    1992-01-01

    The objective is the following: to provide the perspective of the Department of Energy (DOE); emphasize new and emerging initiatives; and address unresolved issues that might impact successful program implementation. The approach is the following: to provide a brief overview of DOE, its R&D, and its technology transfer assets; to briefly describe the evolution of DOE's enhanced technology transfer program; to report on specific progress and achievements over the past year--as the spring board for our current and future plans; to present our near and longer term plans; and to survey the remaining issues and the resolution process.

  3. Enabling cleanup technology transfer.

    SciTech Connect

    Ditmars, J. D.

    2002-08-12

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites.

  4. Technology transfer initiatives

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Ziemke, M. Carl

    1994-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer activities with the Marshall Space Flight Center (MSFC) for the period of April 1993 through December 1993. Early in 1993, the MSFC/TUO and UAH conceived of the concept of developing stand-alone, integrated data packages on MSFC technology that would serve industrial needs previously determined to be critical. Furthermore, after reviewing over 500 problem statements received by MSFC, it became obvious that many of these requests could be satisfied by a standard type of response. As a result, UAH has developed two critical area response (CAR) packages: CFC (chlorofluorocarbon) replacements and modular manufacturing and simulation. Publicity included news releases, seminars, articles and conference papers. The Huntsville Chamber of Commerce established the Technology Transfer Subcommittee with the charge to identify approaches for the Chamber to assist its members, as well as non-members, access to the technologies at the federal laboratories in North Alabama. The Birmingham Chamber of Commerce has expressed interest in establishing a similar technology transfer program. This report concludes with a section containing a tabulation of the problem statements, including CAR packages, submitted to MSFC from January 1992 through December 1993.

  5. Ames Lab 101: Technology Transfer

    SciTech Connect

    Covey, Debra

    2010-01-01

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  6. Ames Lab 101: Technology Transfer

    ScienceCinema

    Covey, Debra

    2012-08-29

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  7. Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The NASA Technology Transfer Partnership program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  8. Technology transfer program: Perspective

    NASA Technical Reports Server (NTRS)

    Toyshov, A. J.

    1981-01-01

    Most of NASA's technology transfer activities are in the area of land use (development, suitability, and planning); forestry (including wildlife and range and vegetation inventories) agriculture related activities; and water resources. The technology dissemination function is exercised through three regional applications centers which are involved in 91 applications projects within 22 states. In addition there are approximately eight application system verification transfer (ASVT) projects, 21 university applications branches, institutionalized liason activities with public interest groups, and user requirements activities. As the result of budget cuts, the ASVT and user requirements and awareness programs are to be phased out at the end of FY81. The university applications programs are to be phased down and terminated by 1985. NASA will continue to work with the user more in an R & D and an applications development capacity, and not in a national scale or administrative way.

  9. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Christensen, Carissa Bryce

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The suggested subtopics for the panel were as follows: (1) transfer from non-NASA U.S. government technology developers to NASA space missions/programs; and (2) transfer from NASA to other U.S. government civil space mission programs. Two presentations were made to the panel: Roles/Value of Early Strategic Planning Within the Space Exploration Initiative (SEI) to Facilitate Later Technology Transfer To and From Industry; and NOAA Satellite Programs and Technology Requirements. The panel discussion addresses the following major issues: DOD/NASA cooperation; alternative mechanisms for interagency communication and interactions; current technology transfer relationships among federal research agencies, and strategies for improving this transfer; technology transfer mechanisms appropriate to intragovernment transfer; the importance of industry as a technology transfer conduit; and measures of merit.

  10. Technology transfer 1995

    SciTech Connect

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  11. Dual Space Technology Transfer

    NASA Astrophysics Data System (ADS)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  12. Technology transfer of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Smith, A. D.

    1980-01-01

    The basic philosophy and some current activities of MSFC Technology Transfer with regard to remote sensing technology are briefly reviewed. Among the problems that may be alleviated through such technology transfer are the scarcity of energy and mineral resources, the alteration of the environment by man, unpredictable natural disasters, and the effect of unanticipated climatic change on agricultural productivity.

  13. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Russell, John

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The presentation is made in vugraph form. The assigned subtopic for this panel are as follows: (1) transfer from non-NASA US government technology developers to NASA space missions/programs; and (2) transfer from NASA to other US government space mission programs. A specific area of inquiry was Technology Maturation Milestones. Three areas were investigated: technology development; advanced development; and flight hardware development.

  14. Technology transfer and Rockwell International

    NASA Technical Reports Server (NTRS)

    Gernand, Joseph

    1992-01-01

    Two technology partnership models are presented for consideration. The first model posits a government buyer of technology, and the second model posits that the customer is the consumer of the technology. These two models are concerned with methods of and impediments to technology transfer and information dissemination in government/contractor relationships.

  15. Strategic Planning of Technology Transfer.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    Using the Ohio Technology Transfer Organization (OTTO) as its primary example, this paper offers a strategic planning perspective on technology transfer and human resources development. First, a brief overview is provided of the maturation of mission priorities and planning processes in higher education in the United States, followed by a…

  16. Technology utilization. [aerospace technology transfer

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1978-01-01

    NASA developed technologies were used to tackle problems associated with safety, transportation, industry, manufacturing, construction and state and local governments. Aerospace programs were responsible for more innovations for the benefit of mankind than those brought about by either major wars, or peacetime programs. Briefly outlined are some innovations for manned space flight, satellite surveillance applications, and pollution monitoring techniques.

  17. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  18. Options for Technology Transfer.

    ERIC Educational Resources Information Center

    Anderson, Richard E.; Sugarman, Barry

    1989-01-01

    Structural means by which institutions of higher education can tap technology are explored with an examination of the licensing of technological discoveries as well as the creation of start-up companies based upon university-developed technology. Additionally, the corporate structures that are being formed so that institutions can more easily hold…

  19. The challenges of technology transfer

    NASA Technical Reports Server (NTRS)

    Hazelwood, J. N.

    1974-01-01

    Observations of challenges of technology transfer are presented with emphasis placed on the position of industry seeking technology through the media of technology searches. Factors considered are: (1) not-invented-here syndrome; (2) penetration of technological literature; (3) gap between origin and industry use; (4) large aerospace manufacturer vs. the small manufacturer; (5) link between the technology disseminator and the potential user; (6) feasibility of substitutions in terms of production costs; and (7) role of patents. It is shown that industry, government agencies, and others having technology to disseminate or use, must mutually understand the technology tools and translate to one another's capabilities, in order to profit from this national resource.

  20. Technology transfer: Transportation

    NASA Technical Reports Server (NTRS)

    Anyos, T.; Brown, I.; Lizak, R.; Loomis, A.; Wilhelm, J.

    1977-01-01

    The application of NASA derived technology in solving problems related to highways, railroads, and other rapid systems is described. Additional areas/are identified where space technology may be utilized to meet requirements related to waterways, law enforcement agencies, and the trucking and recreational vehicle industries.

  1. "S" Glass Manufacturing Technology Transfer

    SciTech Connect

    Buckner, Dean, A.; McCollister, Howard, L.

    1988-06-01

    A glass-ceramic-to metal sealing technology patented by Sandia National Laboratories, Albuquerque (SNLA) was developed by MRC-Mound for use in the manufacture of weapon components. Successful implementation attracted increasingly widespread weapon use of this technology. "S-glass" manufacturing technology was transferred to commercial vendors to ensure that weapons production schedules would be met in the coming years. Such transfer also provided sources of this fledgling technology for the Department of Defense (DOD), aerospace and other commercial uses. The steps involved in the technology transfer are described, from the initial cooperative development work of Sandia and Mound scientists and technologists to the final phase of qualifying commercial vendors for component manufacture.

  2. Technology transfer: Transportation

    NASA Technical Reports Server (NTRS)

    Anyos, T.; Christy, L.; Lizak, R.; Wilhelm, J.

    1978-01-01

    The successful application of aerospace technology to problems related to highways and rail and rapid transit systems is described with emphasis on the use of corrosion resistant paints, fire retardant materials, and law enforcement. Possible areas for the use of spinoff from NASA technology by the California State Department of Corrections are identified. These include drug detection, security and warning systems, and the transportation and storage of food. A communication system for emergency services is also described.

  3. Ethical Considerations in Technology Transfer.

    ERIC Educational Resources Information Center

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  4. Entrepreneurial separation to transfer technology.

    SciTech Connect

    Fairbanks, Richard R.

    2010-09-01

    Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

  5. Technology transfer-transportation

    NASA Technical Reports Server (NTRS)

    Anyos, T.; Lizak, R.; Wilhelm, J.; Hirschberg, K.

    1974-01-01

    The application of aerospace technology to the solution of urban public transportation problems is considered. Data are given on highway and railway systems with particular attention given to safety devices, fuel economy, and measures for profiling railways and highways. The development of streamlined truck bodies, to reduce air drag, and efficient brake systems for light trucks and other vehicles was also dealt with.

  6. Technology transfer-transportation

    NASA Technical Reports Server (NTRS)

    Anyos, T.; Lizak, R.; Wilhelm, J.

    1974-01-01

    Problems in the public transportation industry and refining methods for decreasing the time gap between the development and the marketing of new technology are considered. Eight NASA innovations are either being adapted for use on highways, railways, or rapid transit, or are already entering the marketplace. Chronologies for three of these programs are provided.

  7. Understanding University Technology Transfer

    ERIC Educational Resources Information Center

    Association of American Universities, 2011

    2011-01-01

    Federal government agencies provide about $33 billion a year to universities to conduct scientific research. That continuing investment expands human knowledge and helps educate the next generation of science and technology leaders. New discoveries from university research also form the basis for many new products and processes that benefit the…

  8. Technology transfer: Transportation

    NASA Technical Reports Server (NTRS)

    Anyos, T.; Lizak, R.; Merrifield, D.

    1973-01-01

    Standard Research Institute (SRI) has operated a NASA-sponsored team for four years. The SRI Team is concentrating on solving problems in the public transportation area and on developing methods for decreasing the time gap between the development and the marketing of new technology and for aiding the movement of knowledge across industrial, disciplinary, and regional boundaries. The SRI TAT has developed a methodology that includes adaptive engineering of the aerospace technology and commercialization when a market is indicated. The SRI Team has handled highway problems on a regional rather than a state basis, because many states in similar climatic or geologic regions have similar problems. Program exposure has been increased to encompass almost all of the fifty states.

  9. Lake restoration technology transfer assessment

    SciTech Connect

    Daschbach, M.H.; Roe, E.M.; Sharpe, W.E.

    1982-06-01

    Based upon a review of the eutrophication problem and its impact on lake restoration (LR) programs, treatment of the relatively new problem of acid deposition and its impact on LR activities, consideration of the LR programs of the Environmental Protection Agency and several states, and a review of individual LR technology transfer publications, it is recommended that new LR technology transfer programs be given a low priority until more new information is available on the restoration of acidified lakes. Both primary and secondary users of LR research, technology transfer documents, and public awareness documents were considered in this assessment. Primary users included the general public and recreationists, lakeshore property owners, lake/homeowner associations, lake/sanitary districts, and research and environmental organizations; secondary users included state/county/local officials who administer/manage water-related regulations/activities. 4 tables.

  10. Technology Transfer Plan

    SciTech Connect

    1998-12-31

    BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

  11. Innovative Technology Transfer Partnerships

    NASA Technical Reports Server (NTRS)

    Kohler, Jeff

    2004-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Advanced Tire and Strut Pressure Monitor (TSPM) technology. The TSPM is a handheld system to accurately measure tire and strut pressure and temperature over a wide temperature range (20 to 120 OF), as well as improve personnel safety. Sensor accuracy, electronics design, and a simple user interface allow operators quick, easy access to required measurements. The handheld electronics, powered by 12-VAC or by 9-VDC batteries, provide the user with an easy-to-read visual display of pressure/temperature or the streaming of pressure/temperature data via an RS-232 interface. When connected to a laptop computer, this new measurement system can provide users with automated data recording and trending, eliminating the chance for data hand-recording errors. In addition, calibration software allows for calibration data to be automatically utilized for the generation of new data conversion equations, simplifying the calibration processes that are so critical to reliable measurements. The design places a high-accuracy pressure sensor (also used as a temperature sensor) as close to the tire or strut measurement location as possible, allowing the user to make accurate measurements rapidly, minimizing the amount of high-pressure volumes, and allowing reasonable distance between the tire or strut and the operator. The pressure sensor attaches directly to the pressure supply/relief valve on the tire and/or strut, with necessary electronics contained in the handheld enclosure. A software algorithm ensures high accuracy of the device over the wide temperature range. Using the pressure sensor as a temperature sensor permits measurement of the actual temperature of the pressurized gas. This device can be adapted to create a portable calibration standard that does not require thermal conditioning. This allows accurate pressure measurements without disturbing the gas temperature. In-place calibration can save

  12. Software engineering technology transfer: Understanding the process

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  13. Using bibliographic databases in technology transfer

    NASA Technical Reports Server (NTRS)

    Huffman, G. David

    1987-01-01

    When technology developed for a specific purpose is used in another application, the process is called technology transfer--the application of an existing technology to a new use or user for purposes other than those for which the technology was originally intended. Using Bibliographical Databases in Technology Transfer deals with demand-pull transfer, technology transfer that arises from need recognition, and is a guide for conducting demand-pull technology transfer studies. It can be used by a researcher as a self-teaching manual or by an instructor as a classroom text. A major problem of technology transfer is finding applicable technology to transfer. Described in detail is the solution to this problem, the use of computerized, bibliographic databases, which currently contain virtually all documented technology of the past 15 years. A general framework for locating technology is described. NASA technology organizations and private technology transfer firms are listed for consultation.

  14. Technology transfer and space science missions

    NASA Technical Reports Server (NTRS)

    Acuna, Mario

    1992-01-01

    Viewgraphs on technology transfer and space science missions are provided. Topics covered include: project scientist role within NASA; role of universities in technology transfer; role of government laboratories in research; and technology issues associated with science.

  15. Technology Transfer: A Contact Sport

    NASA Technical Reports Server (NTRS)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  16. ICAT and the NASA technology transfer process

    NASA Technical Reports Server (NTRS)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  17. The human element in technology transfer

    NASA Technical Reports Server (NTRS)

    Peake, H. J.

    1978-01-01

    A transfer model composed of three roles and their linkages was considered. This model and a growing body of experience was analyzed to provide guidance in the human elements of technology transfer. For example, criteria for selection of technology transfer agents was described, and some needed working climate factors were known. These concepts were successfully applied to transfer activities.

  18. Strategic directions and mechanisms in technology transfer

    NASA Technical Reports Server (NTRS)

    Mackin, Robert

    1992-01-01

    An outline summarizing the Working Panel discussion related to strategic directions for technology transfer is presented. Specific topics addressed include measuring success, management of technology, innovation and experimentation in the tech transfer process, integration of tech transfer into R&D planning, institutionalization of tech transfer, and policy/legislative resources.

  19. Existing technology transfer reports. Summary

    SciTech Connect

    Schweighardt, F.K.

    1984-06-01

    From 1974 to 1980, Air Products and Chemicals, Inc. (APCI) conducted a broad spectrum of internal research projects on coal, coal liquefaction processing, and coal liquids analysis. The sum of all of these projects is reported to the United States Department of Energy (DOE) by a set of five Existing Technology Transfer Reports under the following titles: (1) Liquefaction Process and Product Studies, DOE/OR/03054-109; (2) Filtration and Deashing Technology, DOE/OR/03054-118; (3) Dissolver Cold-Flow Modelling, DOE/OR/03054-108; (4) Second-Stage Support, DOE/OR/03054-117; and (5) Analytical Capabilities, DOE/OR/03054-116. This summary report provides an overview of the five Existing Technology Transfer Reports by highlighting the program objectives/results and listing the documents in which the original experimental data are contained. These documents are presented as either an attached appendix or as a file of raw data maintained by the US DOE and the International Coal Refining Company (ICRC).

  20. Geo energy research and development: technology transfer

    SciTech Connect

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  1. Embedded information transfer technology assessment

    NASA Astrophysics Data System (ADS)

    Huff, L. A.; Moreland, J.; Allison, R.; Elia, J.; Jerdee, B.

    1984-04-01

    The objective of this study is to develop approaches for improved Line Replaceable Unit (LRU) internal communications, utilizing state-of-the-art techniques and technology, in order to reduce the growing number of interconnects with LRU's. Worst-case LRU data transfer requirements were established by analyzing internal signal routing, data rates, and duty cycles of the F-16 Fire Control Computer (FCC) and the Programmable Signal Processor (PSP). It was determined that 25/Mword/second is adequate for card-to-backplane (serial) transfers. Candidate designs for meeting these requirements were developed and then subjected to an extensive trade-off analysis. This analysis ultimately yielded the selection of Switched Network Electro-Optical (serial) and Electro-Optical Air-Gap (parallel) as the preferred approaches. The interface pin-count per module of the recommended designs has been reduced to approximately 40. This is substantially lower that the average of 250 connections per module in most conventional approaches and fulfills the primary objective of this program. Further, the zero insertion-force air-gap interfaces directly support modular architectures and enhance the prospects of making two-level maintenance concepts a practical reality.

  2. Colorado Technology Transfer Plan for Economic Development.

    ERIC Educational Resources Information Center

    Colorado Advanced Tech. Inst., Denver.

    Recognizing the importance of technology transfer to economic growth, the U.S. Economic Development Administration (EDA) provided the Colorado Advanced Technology Institute (CATI) with a grant to coordinate the development of a plan for using technology transfer in Colorado's economic development. The plan, outlined in this report, describes the…

  3. FY 2004 Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The NASA Innovative Partnerships Program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  4. Technology Transfer: Programs, Procedures, and Personnel.

    ERIC Educational Resources Information Center

    Parsons, Michael H.

    A view of the appropriate role of community colleges in the transfer of technology to business and industry is presented in this paper. Introductory material defines technology transfer as a strategy integrating knowledge of the latest technological practices, procedures for their implementation, tactics for their integration into existing…

  5. Nuclear technology transfer to China

    SciTech Connect

    Crane, A.T.

    1987-01-01

    China has severe power shortages and considerable nuclear expertise available from its military programs. These factors led to great expectations of how fast its nuclear power program might expand. The U.S. recently implemented a controversial nuclear cooperation agreement with China, permitting U.S. companies to compete if this market reopens. The major concern over the agreement was that in the past China apparently showed an alarming disregard for the dangers of nuclear proliferation. It is unlikely that China would use nuclear power equipment to further its nuclear weapons program, but the effectiveness of the U.S. nonproliferation stance has been in part dependent on other countries viewing our position as uncompromising. The vagueness of certain provisions in the agreement with China may have weakened this stance. Another concern is that access to U.S. pressurized water reactor technology could improve their submarine reactors, which could be detrimental to U.S. security interests if relations with China deteriorate. However, it appears that the only significant advantage that would accrue would be a general upgrading of management practices and quality control, which would be available from any other nuclear supplier. If the opportunity for the sale of nuclear equipment to China emerges, the nuclear technology transfer that would be involved, if carefully managed, should contribute to the national interest.

  6. SWAMI II technology transfer plan

    SciTech Connect

    Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

    1995-12-31

    Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

  7. Communicating success: Writing about technology transfer

    SciTech Connect

    Liebetrau, S.F.

    1991-05-01

    A writer of technology transfer communications is on the exciting leading edge'' of research and development. However, this form of technical communication utilizes a special and demanding style. To be a technology transfer writer is to attract but not confuse, to be exciting but accurate, to reveal enough but not too much. This paper provides some valuable guidelines for those who practice the growing and important art of communication in technology transfer.

  8. Join TTC! | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NCI Technology Transfer Center (TTC) offers a unique opportunity for training through the NCI TTC Fellowship program. TTC also has a unit dedicated to marketing these research opportunities and their underlying technologies to potential collaborators and licensees.

  9. Technology Transfer/Commercialization Report

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Contents include the following: (1) Who we are. (2) Technology opportunities and successes in 2002: Hilbert-Huang transform; new sensors via sol-gel-filled fiber optics; hierarchical segmentation software. (3) Activities in 2002: encouraging researcher involvement; inventorying new technologies; patenting Goddard technologies; promoting Goddard technologies; establishing new agreements;seeking and bestowing awards. (4) How to reach Goddard's: technology commercialization office.

  10. Technology transfer to a developing nation, Korea

    NASA Technical Reports Server (NTRS)

    Stone, C. A.; Uccetta, S. J.

    1973-01-01

    An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.

  11. Technology transfer to the broader economy

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon; Clark, Robert

    1992-01-01

    Approaches to the transfer of government-funded civil space technology to the broader commercial economy were addressed by Working Panel no. 4. Some of the problems related to current strategies for technology transfer and recommendations for new approaches are described in outline form.

  12. Excellence Center for High Technology Transfer.

    ERIC Educational Resources Information Center

    Ismail, M. I.; Al-Turkait, A. A.

    Centers for technology transfer are available almost everywhere based on the availability of interested experts and funding. The objective of this monograph is to introduce the assured system that results in excellence in services and expectations from technology transfer. The focus is on simple techniques of potential interest for community and…

  13. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer....

  14. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer....

  15. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer....

  16. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer....

  17. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer....

  18. Technology Transfer/Commercialization Report 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Contents include the following: 1. Technology opportunities and successes in 2002: Hilbert-Huang transform. New sensors via sol-gel-filled fiber optics. Hierarchical segmentation software. 2. Activity in 2002: encouraging researcher involvment. 10th annual new technology reporting award program. Commercial technology development program. 3. Inventorying new technologies: Sensors and detectors. Environmental systems. Information systems. Guidance, navigation, and control. Thermal and cryogenics. Optics. Patenting Goddard technologies. Striking gold with NASA technology transfer.

  19. Technology transfer at Lawrence Berkeley Laboratory

    SciTech Connect

    Johnson, D.

    1992-09-01

    Lawrence Berkeley Laboratory (LBL) is dedicated to commercializing new technology in such fields as advanced materials, biotechnology, and electronics. Technology transfer between national laboratories and the industrial community is important in maintaining America's competitive edge. This document examines opportunities to establish working relationships with LBL. Streamlined methods for technology transfer are available with the aid of the Technology Transfer Department and the Patent Department at LBL. Research activities at LBL are concentrated in three major program areas: Energy Sciences, General Sciences, and Biosciences. Each program area consists of three research divisions. LBL welcomes both requests for information and proposals to conduct research.

  20. Technology transfer at Lawrence Berkeley Laboratory

    SciTech Connect

    Johnson, D.

    1992-09-01

    Lawrence Berkeley Laboratory (LBL) is dedicated to commercializing new technology in such fields as advanced materials, biotechnology, and electronics. Technology transfer between national laboratories and the industrial community is important in maintaining America`s competitive edge. This document examines opportunities to establish working relationships with LBL. Streamlined methods for technology transfer are available with the aid of the Technology Transfer Department and the Patent Department at LBL. Research activities at LBL are concentrated in three major program areas: Energy Sciences, General Sciences, and Biosciences. Each program area consists of three research divisions. LBL welcomes both requests for information and proposals to conduct research.

  1. Petroleum Technology Transfer Council boosts North Mid-continent technology

    SciTech Connect

    Lyle, D.

    1995-10-01

    The Kansas Tertiary Oil Recovery Project served as one of the primary models for the Petroleum Technology Transfer Council, so it`s fitting this series on regional applications should start with the North Mid-Continent organization. The technology transfer program is described.

  2. Maximizing profits in international technology transfer

    NASA Technical Reports Server (NTRS)

    Straube, W.

    1974-01-01

    Maximum profit can be introduced into international technology transfer by observing the following: (1) ethical and open dealing between the parties; (2) maximum knowledge of all facts concerning the technology, the use of the technology, the market, competition, prices, and alternatives; (3) ability to coordinate exports, service, support activities, licensing and cross licensing; and (4) knowledgeable people which put these factors together.

  3. Biomedical technology transfer applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The identification and solution of research and clinical problems in cardiovascular medicine which were investigated by means of biomedical data transfer are reported. The following are sample areas that were focused upon by the Stanford University Biomedical Technology Transfer Team: electrodes for hemiplegia research; vectorcardiogram computer analysis; respiration and phonation electrodes; radiotelemetry of intracranial pressure; and audiotransformation of the electrocardiographic signal. It is concluded that this biomedical technology transfer is significantly aiding present research in cardiovascular medicine.

  4. A case history of technology transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  5. Reciprocal Technology Transfer: Changing Partnerships.

    ERIC Educational Resources Information Center

    Barton, Lyle; Cartwright, G. Phillip

    1997-01-01

    Partnerships between businesses and higher education institutions can help meet the training and information-technology needs of businesses and simultaneously increase the expertise and technology base of the institutions. Challenges include obtaining venture capital, personnel, cultural differences, and legal issues. A Kent State University…

  6. A Board's Primer on Technology Transfer.

    ERIC Educational Resources Information Center

    Remington, Michael J.

    2002-01-01

    Provides an overview of technology transfer issues and discusses ways in which trustees can help ensure that academic mission is balanced with valuable opportunities for taking campus research to the marketplace. (EV)

  7. [Technology transfer of building materials by ECOMAT

    SciTech Connect

    1996-01-01

    This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

  8. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  9. A rationale for technology transfer

    NASA Technical Reports Server (NTRS)

    Gray, E. Z.

    1978-01-01

    Specific contributions of the NASA Technology Utilization Program are outlined, including: improved firefighting equipment, electrical implants for medical purposes, and improved methods of weather forecasting. Cooperation between NASA and other organizations in both the public and private sectors is stressed.

  10. Technology transfer from the viewpoint of a NASA prime contractor

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon

    1992-01-01

    Viewgraphs on technology transfer from the viewpoint of a NASA prime contractor are provided. Technology Transfer Program for Manned Space Systems and the Technology Transfer Program status are addressed.

  11. The process for technology transfer in Baltimore

    NASA Technical Reports Server (NTRS)

    Golden, T. S.

    1978-01-01

    Ingredients essential for a successful decision process relative to proper technological choices for a large city were determined during four years of experience in the NASA/Baltimore Applications Project. The general approach, rationale, and process of technology transfer are discussed.

  12. Mission & Role | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry.

  13. Technology Transfer: A Third World Perspective.

    ERIC Educational Resources Information Center

    Akubue, Anthony I.

    2002-01-01

    Technology transfer models are based on assumptions that do not reflect Third-World realities. Obstacles to building indigenous technology capacity include multinational corporations' control of innovations, strings attached to foreign aid, and indigenous reluctance to undertake research. Four areas of development include foreign direct…

  14. Transfer of space technology to industry

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.

    1974-01-01

    Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.

  15. EPA's Technology Transfer: Now Geared to Industry

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1973

    1973-01-01

    Through capsule reports, seminars, and design manuals, Environmental Protection Agency has activated its industrial technology transfer program for marketing the products of federal research, development, and demonstration activities. Its purpose is to disseminate information to industry on available technology for control and treatment of air,…

  16. NASA partnership with industry: Enhancing technology transfer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Recognizing the need to accelerate and expand the application of NASA-derived technology for other civil uses in the United States, potential opportunities were assessed; the range of benefits to NASA, industry and the nations were explored; public policy implications were assessed; and this new range of opportunities were related to current technology transfer programs of NASA.

  17. Development of Technology Transfer Economic Growth Metrics

    NASA Technical Reports Server (NTRS)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  18. Targeted Technology Transfer to US Independents

    SciTech Connect

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  19. A regional technology transfer program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The final report is presented for the North Carolina Science and Technology Research Center's 14th consecutive contract period as a NASA Industrial Applications Center, serving the information needs of nine Southeastern states. Included in the report are figures for and analysis of marketing efforts, file usage, search delivered, and other services performed for clients; and information on staff changes, workshops, and special projects in 1978. An appendix contains copies of NC/STRC magazine advertisements, letters from clients, and supplementary information on NC/STRC staff and services.

  20. Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) Technology Transfer Model Report.

    ERIC Educational Resources Information Center

    Sandia National Labs., Albuquerque, NM.

    The Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) is a cooperative effort among education and research institutions in New Mexico to analyze problems in transferring environmental technologies from Department of Energy laboratories to small and medium enterprises (SME's). The goal of the ECMT3I is to…

  1. Technology Transfer and Commercialization Annual Report 2008

    SciTech Connect

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  2. Formal methods technology transfer: Some lessons learned

    NASA Technical Reports Server (NTRS)

    Hamilton, David

    1992-01-01

    IBM has a long history in the application of formal methods to software development and verification. There have been many successes in the development of methods, tools and training to support formal methods. And formal methods have been very successful on several projects. However, the use of formal methods has not been as widespread as hoped. This presentation summarizes several approaches that have been taken to encourage more widespread use of formal methods, and discusses the results so far. The basic problem is one of technology transfer, which is a very difficult problem. It is even more difficult for formal methods. General problems of technology transfer, especially the transfer of formal methods technology, are also discussed. Finally, some prospects for the future are mentioned.

  3. Clean Cast Steel Technology - Machinability and Technology Transfer

    SciTech Connect

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  4. Transferring technology to the public sector.

    NASA Technical Reports Server (NTRS)

    Alper, M. E.

    1972-01-01

    Approximately four years ago the Jet Propulsion Laboratory, under NASA sponsorship, began to devote some of its resources to examining ways to transfer space technology to the civil sector. As experience accumulated under this program, certain principles basic to success in technology transfer became apparent. An adequate definition of each problem must be developed before any substantial effort is expended on a solution. In most instances, a source of funds other than the potential user is required to support the problem definition phase of the work. Sensitivity to the user's concerns and effective interpersonal communications between the user and technical personnel are essential to success.

  5. Technology transfer at Sandia National Laboratories

    SciTech Connect

    Allen, M.S.; Arvizu, D.E.

    1993-10-01

    Transferring technology to the private sector to help improve the competitiveness of key US industries is now an official mission of the US Department of Energy`s (DOE) defense program national laboratories. We believe that national laboratories can play an important role in addressing US industrial competitiveness. Sandia is seeking to match laboratory strengths with industry-defined market needs in targeted industrial sectors. Sandia, like other national and federal laboratories, is developing an aggressive technology transfer program. This paper provides a brief review of our program and provides a snap-shot of where we are at today.

  6. NASA's southeast technology transfer alliance: A cooperative technology assistance initiative

    NASA Astrophysics Data System (ADS)

    Craft, Harry G.; Sheehan, William; Johnson, Anne

    1996-03-01

    Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.

  7. PNNL wins Four Technology Transfer Awards

    SciTech Connect

    Fisher, Julie A.; McMakin, Andrea H.

    2006-06-01

    PNNL wins 4 Technology Transfer Awards Pacific Northwest National Laboratory has received four 2006 Excellence in Technology Transfer Awards from the Federal Laboratory Consortium - a nationwide network of more than 700 major federal laboratories and centers as well as their parent departments and agencies that provides a forum to develop strategies and opportunities for linking technology with the mission and the marketplace. The FLC presents its Awards for Excellence in Technology Transfer to federal laboratory employees who have done outstanding work in transferring U.S. government-sponsored technologies to the public and private sectors. Since 1984, when the awards program was established, Pacific Northwest has earned 62 of these awards, far more than any other national laboratory. This year, PNNL won all four of the nominations that were submitted--the most that any laboratory can submit. PNNL was recognized for transferring technologies that treat and cure cancer, uniquely analyze massive sets of data, increase surgical implant success rates, and neutralize toxic chemicals from the environment. Through collaboration with PNNL researchers and access to facilities at PNNL, IsoRay Medical, Inc. (http://www.isoray.com), expanded its brachytherapy technology for treating prostate and other cancers. The medical isotope ?seed? products are available at more than 17 implant centers nationwide. More than 40 organizations, including Fortune 500 companies, are using the Starlight information visualization software to mine and interpret massive amounts of data. Bacterin International licensed bioactive thin-film coatings which reduce infection rates associated with surgical implants. Self-Assembled Monolayers on Mesoporous Silica (SAMMS), a process for removing mercury and other toxic chemicals from the environment, was licensed to Steward Advanced Materials for use in coal-fired power plants, municipal incinerators, and other plants.

  8. Technology transfer trends in Indian space programme

    NASA Astrophysics Data System (ADS)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  9. Technology Transfer Annual Report Fiscal Year 2015

    SciTech Connect

    Skinner, Wendy Lee

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  10. Technology Transfer in Research and Development.

    ERIC Educational Resources Information Center

    Creighton, J. W., Ed.; Jolly, J. A., Ed.

    If a secondary use of research and development output is possible and feasible, then the original cost of the research can be viewed as providing a substantial contribution over and above its initial purpose and ends. This "technology transfer" from primary to secondary purposes is becoming increasingly important, if for no other reason than that…

  11. License Agreements | NCI Technology Transfer Center | TTC

    Cancer.gov

    Since the government cannot engage in the development, manufacture, and sale of products, the NCI Technology Transfer Center (TTC) makes its discoveries (and discoveries from nine other NIH Institutes) available to organizations that can assist in the further development and commercialization of these basic science discoveries, to convert them into public health benefits.

  12. About TTC | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners, and helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class facilities, resources, and discoveries. Contact us to learn more.

  13. A New Strategic Approach to Technology Transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  14. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  15. Welding technology. [technology transfer of NASA developments to commercial organizations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Welding processes which have been developed during NASA space program activities are discussed. The subjects considered are: (1) welding with an electron gun, (2) technology of welding special alloys, and (3) welding shop techniques and equipment. The material presented is part of the combined efforts of NASA and the Small Business Administration to provide technology transfer of space-related developments to the benefit of commercial organizations.

  16. Technology transfer in the national laboratories

    SciTech Connect

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  17. Aerospace technology transfer to breast cancer imaging.

    PubMed

    Winfield, D L

    1997-01-01

    In the United States in 1996, an estimated 44,560 women died of breast cancer, and 184,300 new cases were diagnosed. Advances in space technology are now making significant improvements in the imaging technologies used in managing this important foe. The first of these spinoffs, a digital spot mammography system used to perform stereotactic fine-needle breast biopsy, uses a backside-thinned CCD developed originally for the Space Telescope Imaging Spectrometer. This paper describes several successful biomedical applications which have resulted from collaborative technology transfer programs between the National Aeronautics and Space Administration (NASA), the National Cancer Institute (NCI), and the U.S. Dept. of Health and Human Services Office on Women's Health (OWH). These programs have accelerated the introduction of direct digital mammography by two years. In follow-on work, RTI is now assisting the HHS Office on Women's Health to identify additional opportunities for transfer of aerospace, defense, and intelligence technologies to image-guided detection, diagnosis, and treatment of breast cancer. The technology identification and evaluation effort culminated in a May 1997 workshop, and the formative technology development partnerships are discussed. PMID:11541150

  18. MHD technology transfer, integration, and review committee

    NASA Astrophysics Data System (ADS)

    1990-05-01

    As part of Task 8 of the magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The TTIRC consists of an Executive Committee (EC) which acts as the governing body, and a General Committee (GC), also referred to as the main or full committee, consisting of representatives from the various POC contractors, participating universities and national laboratories, utilities, equipment suppliers, and other potential MHD users or investors. The purpose of the TTIRC is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the U.S. MHD Program. There are seven sections: introduction; Executive Committee and General Committee activity; Committee activities related to technology transfer; ongoing POC integration activities being performed under the auspices of the Executive Committee; recommendations passed on to the DOE by the Executive Committee; Planned activities for the next six months.

  19. MHD Technology Transfer, Integration and Review Committee

    SciTech Connect

    Not Available

    1989-10-01

    As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

  20. Communication and Cultural Change in University Technology Transfer

    ERIC Educational Resources Information Center

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  1. Technology Transfer and the Community College: A New Model.

    ERIC Educational Resources Information Center

    Sugarman, Barry

    1992-01-01

    Examines the present state of community college-based technology transfer. Offers a brief history of corporate-university relationships and analyzes worker training as technology transfer. Describes the activities of the Pennsylvania College of Technology (PCT). Offers a general paradigm of technology transfer for community colleges based on the…

  2. Urban development applications project. Urban technology transfer study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.

  3. Using the MCPLXS Generator for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Moore, Arlene A.; Dean, Edwin B.

    1987-01-01

    The objective of this paper is to acquaint you with some of the approaches we are taking at Langley to incorporate escalations (or de-escalations) of technology when modeling futuristic systems. Since we have a short turnaround between the time we receive enough descriptive information to start estimating the project and when the estimate is needed (the "we-want-it-yesterday syndrome"), creativity is often necessary. There is not much time available for tool development. It is expedient to use existing tools in an adaptive manner to model the situation at hand. Specifically, this paper describes the use of the RCA PRICE MCPLXS Generator to incorporate technology transfer and technology escalation in estimates for advanced space systems such as Shuttle II and NASA advanced technology vehicles. It is assumed that the reader is familiar with the RCA PRICE family of models as well as the RCA PRICE utility programs such as SCPLX, PARAM, PARASYN, and the MCPLXS Generator.

  4. Cooperative water resource technology transfer program

    SciTech Connect

    D'itri, F.M.

    1982-06-01

    This cooperative water resource technology transfer program sought to develop/present educational programs (conferences/seminars/workshops) and technology transfer brochures to enhance public awareness/appreciation of state water quality problems and to stress economic tradeoffs needed to resolve given problems. Accomplishments of this program for the different conferences held 1979-1981 are described (inland lake eutrophication: causes, effects, and remedies; contamination of groundwater supplies by toxic chemicals: causes, effects, and prevention; supplemental irrigation; stormwater management; cooperative research needs for renovation and reuse of municipal water in agriculture; selection and management of vegetation for slow rate and overland flow land application systems to treat municipal wastewater; effects of acid precipitation on ecological systems: Great Lakes region; water competition in Michigan; Michigan natural resources outlook.

  5. Tropical medicine: Telecommunications and technology transfer

    NASA Technical Reports Server (NTRS)

    Legters, Llewellyn J.

    1991-01-01

    The potential for global outbreaks of tropical infectious diseases, and our ability to identify and respond to such outbreaks is a major concern. Rapid, efficient telecommunications is viewed as part of the solution to this set of problems - the means to link a network of epidemiological field stations via satellite with U.S. academic institutions and government agencies, for purposes of research, training in tropical medicine, and observation of and response to epidemic emergencies. At a workshop, telecommunications and technology transfer were addressed and applications of telecommunications technology in long-distance consultation, teaching and disaster relief were demonstrated. Applications in teaching and consultation in tropical infectious diseases is discussed.

  6. FY86 Technology Transfer Program Morgantown Energy Technology Center

    SciTech Connect

    Not Available

    1986-10-01

    The actual technology transfer was accomplished by several integrated activities during fiscal year (FY) 1986: R and D contracts with industry and academia, including cost-shared contracts; technical information exchange for scientist-to-scientist communication through conferences, visitors to the Center, and federal personnel visits with US industry; technical documents for information dissemination; patents to advance technology adoption and use in US industry; on-site training activities as personnel exchange; and technical assistance through the use of fossil energy technology data bases.

  7. The Picatinny Technology Transfer Innovation Center: A business incubator concept adapted to federal laboratory technology transfer

    SciTech Connect

    Wittig, T.; Greenfield, J.

    1996-10-01

    In recent years, the US defense industrial base spawned the aerospace industry, among other successes, and served as the nation`s technology seed bed. However, as the defense industrial base shrinks and public and private resources become scarcer, the merging of the commercial and defense communities becomes necessary to maintain national technological competencies. Cooperative efforts such as technology transfer provide an attractive, cost-effective, well-leveraged alternative to independently funded research and development (R and D). The sharing of knowledge, resources, and innovation among defense contractors and other public sector firms, academia, and other organizations has become exceedingly attractive. Recent legislation involving technology transfer provides for the sharing of federal laboratory resources with the private sector. The Army Research, Development and Engineering Center (ARDEC), Picatinny Arsenal, NJ, a designer of weapons systems, is one of the nation`s major laboratories with this requirement. To achieve its important technology transfer mission, ARDEC reviewed its capabilities, resources, intellectual property, and products with commercial potential. The purpose of the review was to develop a viable plan for effecting a technology transfer cultural change within the ARDEC, Picatinny Arsenal and with the private sector. This report highlights the issues identified, discussed, and resolved prior to the transformation of a temporarily vacant federal building on the Picatinny installation into a business incubator. ARDEC`s discussions and rationale for the decisions and actions that led to the implementation of the Picatinny Technology Transfer Innovation Center are discussed.

  8. MHD Technology Transfer, Integration and Review Committee

    SciTech Connect

    Not Available

    1992-01-01

    This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

  9. (abstract) Formal Inspection Technology Transfer Program

    NASA Technical Reports Server (NTRS)

    Welz, Linda A.; Kelly, John C.

    1993-01-01

    A Formal Inspection Technology Transfer Program, based on the inspection process developed by Michael Fagan at IBM, has been developed at JPL. The goal of this program is to support organizations wishing to use Formal Inspections to improve the quality of software and system level engineering products. The Technology Transfer Program provides start-up materials and assistance to help organizations establish their own Formal Inspection program. The course materials and certified instructors associated with the Technology Transfer Program have proven to be effective in classes taught at other NASA centers as well as at JPL. Formal Inspections (NASA tailored Fagan Inspections) are a set of technical reviews whose objective is to increase quality and reduce the cost of software development by detecting and correcting errors early. A primary feature of inspections is the removal of engineering errors before they amplify into larger and more costly problems downstream in the development process. Note that the word 'inspection' is used differently in software than in a manufacturing context. A Formal Inspection is a front-end quality enhancement technique, rather than a task conducted just prior to product shipment for the purpose of sorting defective systems (manufacturing usage). Formal Inspections are supporting and in agreement with the 'total quality' approach being adopted by many NASA centers.

  10. Transfusion medicine technology transfer: traps to avoid.

    PubMed

    Mendes, Philip

    2002-01-01

    Technology transfer is the process of commercializing technology and taking it from the laboratory to the marketplace. At some stage in the technology transfer process, a due diligence will be undertaken. A due diligence is an enquiry into the technology and, in particular, its ownership. Research organizations including hospitals, universities, and blood banks need to own the intellectual property that they seek to commercialize. They own the intellectual property created by their staff in the course of employment. But volunteers, students, and collaborators, not being members of staff, will own the intellectual property that they create. This gives rise to due diligence and ownership defects, when intellectual property may in fact be owned by someone other than the research organization that seeks to commercialize it. Joint ownership can sometimes prevent commercialization. An assignment of intellectual property from a volunteer or student may sometimes be required. Such an assignment, if it inadequately deals with all relevant issues, may be void pursuant to laws throughout the world. A void deed of assignment may expose the research organization to legal liabilities. The categories of technology transfer traps to be explored are (1) ownership issues arising from the participation of students and volunteers in research, (2) ownership issues arising from collaborative research relationships, (3) ownership issues arising from the participation in research of visitors from another research organization, and (4) ownership issues arising from inventions made by employees. Each of these is considered in the context of the legal and regulatory framework in Australia, Canada, the United States of America, and the United Kingdom. PMID:11788927

  11. Technology Transfer and the Product Development Process

    SciTech Connect

    Mock, John E.

    1989-03-21

    It is my pleasure this morning to address a topic that is much talked about in passing but rarely examined from a first person point of view. That topic is Technology Transfer. Over the next 30 minutes I'd like to approach Technology Transfer within the context of the Product Development Process looking at it from the perspectives of the federal government researcher and the industry manufacturer/user. Fist let us recognize that we are living in an ''Information Age'', where global economic and military competition is determined as much by technology as it is by natural resource assets. It is estimated that technical/scientific information is presently growing at a rate of l3 percent per year; this is expected to increase to 30 percent per year by the turn of the century. In fact, something like 90 percent of all scientific knowledge has been generated in the last 30 years; this pool will double again in the next 10-15 years (Exhibit 1). Of all the scientists and engineers throughout history, 90% live and work in the present time. Successfully managing this technical information/knowledge--i.e., transforming the results of R&D to practical applications--will be an important measure of national strength. A little over a dozen years ago, the United States with only 5 percent of the world's population was generating approximately 75 percent of the world's technology. The US. share is now 50 percent and may decline to 30 percent by the turn of the century. This decline won't be because of downturn in U.S. technological advances but because the other 95 percent of the world's population will be increasing its contribution. Economic and military strength then, will be determined by how quickly and successfully companies, industries, and nations can apply new technological information to practical applications--i.e., how they manage technology transfer within the context of the product development process. Much discussion and pronouncements are ongoing in public forums

  12. The flight telerobotic servicer and technology transfer

    NASA Technical Reports Server (NTRS)

    Andary, James F.; Bradford, Kayland Z.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability in the early phases of the SSF program and will be employed for assembly, maintenance, and inspection applications. The current state of space technology and the general nature of the FTS tasks dictate that the FTS be designed with sophisticated teleoperational capabilities for its internal primary operating mode. However, technologies such as advanced computer vision and autonomous planning techniques would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Another objective of the FTS program is to accelerate technology transfer from research to U.S. industry.

  13. Space Biosensor Systems: Implications for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  14. New Ways in Technology Transfer from University Towards Industry.

    ERIC Educational Resources Information Center

    van den Kroonenberg, H.H.

    1983-01-01

    Three approaches to technology transfer are described: passive, stimulative, and active. A condition for successful technology transfer to small- and medium-sized industry is the availability of "receivers" in the industries. Stimulating young engineers to start their own small company can affect technology transfer positively. (MSE)

  15. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    SciTech Connect

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities

  16. Biomedical technology transfer: A manufacturer's viewpoint

    NASA Technical Reports Server (NTRS)

    Morton, D. O.

    1976-01-01

    Transfer of technology from non-commercial institutions to industry has played an important role in the development of medical electronics. It is a difficult process, but if the ideas are sound, if clear medical benefits exist and if there is good fit with business plans and the strengths and goals of both parties are complementary, it can work well. In the evaluation process it is considered whether the device meets general tests for suitability for the company, whether there are opportunities for proprietary or patent protection, and whether the medical benefits are self evident or the acceptance period is apt to be long.

  17. NASA Orbit Transfer Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.

  18. Aeroassisted orbital transfer vehicle control technology

    NASA Technical Reports Server (NTRS)

    Langehough, M. A.

    1988-01-01

    The focus of this control has been to develop the control technology required to identify the sophistication required for the Aeroassisted Orbital Transfer Vehicle (AOTV) control system. An angle of attack, bank angle command control technique has been developed which uses either on-off thruster or proportional thruster. An angle of attack adaptive controller was included to minimize the reactor control system (RCS) usage due to payload center of gravity uncertainties. The guidance and control techniques were verified using a detail six degrees-of-freedom simulation. Mission sensitivity was developed for uncertainties in the entry state, mass properties, atmosphere, aerodynamic, and sensor.

  19. Targeted Technology Transfer to US Independents

    SciTech Connect

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the period was approximately

  20. Technology transfer from the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Buden, David

    1992-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper.

  1. Technology transfer from the space exploration initiative

    SciTech Connect

    Buden, D.

    1991-06-14

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper.

  2. Technology transfer from the space exploration initiative

    SciTech Connect

    Buden, D.

    1991-06-14

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America`s competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper.

  3. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Gustafson, N. B.; Harmon, T. J.

    1993-01-01

    An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and

  4. Composite fabrication via resin transfer molding technology

    SciTech Connect

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  5. NASA Northeast Regional Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Dunn, James P.

    2001-01-01

    This report is a summary of the primary activities and metrics for the NASA Northeast Regional Technology Transfer Center, operated by the Center for Technology Commercialization, Inc. (CTC). This report covers the contract period January 1, 2000 - March 31, 2001. This report includes a summary of the overall CTC Metrics, a summary of the Major Outreach Events, an overview of the NASA Business Outreach Program, a summary of the Activities and Results of the Technology into the Zone program, and a Summary of the Major Activities and Initiatives performed by CTC in supporting this contract. Between January 1, 2000 and March 31, 2001, CTC has facilitated 10 license agreements, established 35 partnerships, provided assistance 517 times to companies, and performed 593 outreach activities including participation in 57 outreach events. CTC also assisted Goddard in executing a successful 'Technology into the Zone' program.' CTC is pleased to have performed this contract, and looks forward to continue providing their specialized services in support of the new 5 year RTTC Contract for the Northeast region.

  6. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    SciTech Connect

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  7. A partnership in upstream HSE technology transfer

    SciTech Connect

    Olszewski, R.E. Wahjosoedibjo, A.S.; Hunley, M.; Peargin, J.C.

    1996-11-01

    The oil and gas industry was for nearly two decades the dominant force in the Indonesian economy and the single largest contributor to the nation`s development. Because of the success of Indonesia`s long-term development and diversification program, this once-dominant sector today occupies a more equal but still vital position in a better-balanced economy. The Indonesian government understands the danger to the environment posed by rapid industrial expansion and has enacted laws and regulations to ensure the sustainable development of its resources while protecting its rain forest environment. In 1992, the government oil company approached Chevron and Texaco for assistance in training its Health, Safety, and Environment (HSE) professionals. The upstream environment, health and safety training program was developed to transfer HSE knowledge and technology to PERTAMINA, PT Caltex Pacific Indonesia, a C&T affiliate, and indirectly, to the entire Indonesian oil and gas industry and government ministries. The four companies have demonstrated the effectiveness of a partnership approach in developing and carrying out HSE training. During 1994 and 1995, four groups, each consisting of about twenty representatives from PERTAMINA, the Directorate of Oil and Gas (MIGAS), the Indonesian Environmental Impact Management Agency (BAPEDAL), CPI, and Chevron and Texaco worldwide subsidiaries, traveled to the United States for an intensive four-month program of study in HSE best practices and technology conducted by Chevron and Texaco experts. This paper describes the development and realization of The PERTAMINA/CPI Health, Safety and Environment Training Program, outlines subjects covered and explains the methodology used to ensure the effective transfer of HSE knowledge and technology. The paper also offers an evaluation of the sessions and presents the plans developed by participant-teams for follow up on their return to Indonesia.

  8. Successful Technology Transfer in Colorado: A Portfolio of Technology Transfer "Success Stories."

    ERIC Educational Resources Information Center

    Colorado Advanced Tech. Inst., Denver.

    The examples in this portfolio demonstrate how technology transfer among universities, businesses, and federal laboratories solve real-world problems, and create new goods and services. They reveal how, through strengthening the infrastructure joining private and public sectors, Colorado can better compete in the global marketplace. All of the…

  9. The Technology Transfer Process: Concepts, Framework and Methodology.

    ERIC Educational Resources Information Center

    Jolly, James A.

    This paper discusses the conceptual framework and methodology of the technology transfer process and develops a model of the transfer mechanism. This model is then transformed into a predictive model of technology transfer incorporating nine factors that contribute to the movement of knowledge from source to user. Each of these factors is examined…

  10. Technology transfer -- protecting technologies during the transfer cycle (intellectual property issues)

    SciTech Connect

    Graham, G.G.

    1993-12-31

    The success of technology transfer agreements depends not just on the technical work, but on how well the arrangements to protect and dispose of the intellectual properties that make up the technologies are handled. Pertinent issues that impact the protection and disposition of intellectual properties during the technology transfer process at Sandia National Laboratories, a multiprogram laboratory operated for the Department of Energy by the Martin Marietta Corporation, are discussed. Subjects addressed include the contracting mechanisms (including the Cooperative Research and Development Agreement [CRADA] and the Work-for-Others agreement), proprietary information, The Freedom of Information Act, patents and copyrights, the statement of work, Protected CRADA Information, licensing considerations, title to intellectual properties, march-in rights, and nondisclosure agreements.

  11. Technology transfer and the NASA Technology Utilization Program - An overview

    NASA Technical Reports Server (NTRS)

    Clarks, Henry J.; Rose, James T.; Mangum, Stephen D.

    1989-01-01

    The goal of the NASA Technology Utilization (TU) Program is to broaden and accelerate the transfer of aerospace technology and to develop new commercial products and processes that represent additional return on the national investment in the U.S. space programs. The mechanisms established by the TU Program includes TU offices, publications, the information retrieval, software dissemination, and the NASA Applications Engineering Program. These mechanisms are implemented through a nationwide NASA TU Network, working closely with industry and public sector organizations to encourage and facilitate their access and utilization of the results of the U.S space programs. Examples of TU are described, including a method for the reduction of metal fatigue in textile equipment and a method for the management of wandering behavior in Alzheimer's patients.

  12. OCT Technology Transfer and the OCT Market

    NASA Astrophysics Data System (ADS)

    Swanson, Eric A.

    The field of optical coherence tomography (OCT) has blossomed dramatically since the first studies by various researchers around the world began in the late 1980s and early 1990s. Since then cumulatively, there have been dozens of companies created, over a hundred research groups working on or with OCT, over a thousand OCT patents issued, over 10,000 research articles published, tens of millions of patients scanned with OCT, hundreds of millions of venture capital and corporate R&D dollars invested, hundreds of millions of dollars in company acquisitions, and over a billion of dollars of OCT system revenue. This chapter will describe some of the history and factors involved in OCT technology transfer and commercialization, give a snapshot of the current OCT market, and speculate on some future OCT issues.

  13. Transfer of terrestrial technology for lunar mining

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Green, Patricia A.

    1992-01-01

    The functions, operational procedures, and major items of equipment that comprise the terrestrial mining process are characterized. These data are used to synthesize a similar activity on the lunar surface. Functions, operations, and types of equipment that can be suitably transferred to lunar operation are identified. Shortfalls, enhancements, and technology development needs are described. The lunar mining process and what is required to adapt terrestrial equipment are highlighted. It is concluded that translation of terrestrial mining equipment and operational processes to perform similar functions on the lunar surface is practical. Adequate attention must be given to the harsh environment and logistical constraints of the lunar setting. By using earth-based equipment as a forcing function, near- and long-term benefits are derived (i.e., improved terrestrial mining in the near term vis-a-vis commercial production of helium-3 in the long term.

  14. Technology transfer at NASA - A librarian's view

    NASA Technical Reports Server (NTRS)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  15. Low-G fluid transfer technology study

    NASA Technical Reports Server (NTRS)

    Stark, J. A.

    1976-01-01

    Technology gaps and system characteristics critical to cryogenic and noncryogenic in-orbit fluid transfer were identified. Four different supply systems were conceptually designed as space shuttle payloads. These were; (1) space tug supply - LH2, LO2, N2H4, He - linear acceleration for liquid acquisition with supply module and tug separated from shuttle, (2) tug supply using orbiter drag, (3) orbiter supply - N2O4,MMH,He, H2,O2 - surface tension screens, (4) multiple receivers supply 0 solar electric propulsion stage, Hg, diaphragm - HEAO B, HEe, paddle fluid rotation-satellite control section, N2H4, screens. It was found that screens had the best overall potential for low weight and simplicity, however, thermal problems with cryogenics still need final resolution.

  16. Systematic technology transfer from biology to engineering.

    PubMed

    Vincent, Julian F V; Mann, Darrell L

    2002-02-15

    Solutions to problems move only very slowly between different disciplines. Transfer can be greatly speeded up with suitable abstraction and classification of problems. Russian researchers working on the TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch) method for inventive problem solving have identified systematic means of transferring knowledge between different scientific and engineering disciplines. With over 1500 person years of effort behind it, TRIZ represents the biggest study of human creativity ever conducted, whose aim has been to establish a system into which all known solutions can be placed, classified in terms of function. At present, the functional classification structure covers nearly 3 000 000 of the world's successful patents and large proportions of the known physical, chemical and mathematical knowledge-base. Additional tools are the identification of factors which prevent the attainment of new technology, leading directly to a system of inventive principles which will resolve the impasse, a series of evolutionary trends of development, and to a system of methods for effecting change in a system (Su-fields). As yet, the database contains little biological knowledge despite early recognition by the instigator of TRIZ (Genrich Altshuller) that one day it should. This is illustrated by natural systems evolved for thermal stability and the maintenance of cleanliness. PMID:16210175

  17. Medical technology transfer: the inventor's perspective.

    PubMed

    Marks, L A

    1991-01-01

    Technology transfer can be a difficult and frustrating experience for an inventor, one with a questionable outcome despite tremendous effort. A university-based inventor may find that there is a "technology transfer office" at his or her institution, but that it is poorly equipped to patent and license inventions. In such a case, the inventor may have to play a particularly active role in the patenting process and, especially, the marketing process. Furthermore, university-based inventors may find themselves caught up in issues of academic freedom and potential conflicts of interests. There are often no role models for entrepreneurial activity at a university, and as a result many inventors have had to leave their university positions to pursue financial gain from their inventions. When licensing inventions to companies, the "NIH syndrome" can be extremely frustrating. It is often difficult for the inventor to communicate his or her certain knowledge that the invention solves a specific problem perfectly. Also, an inventor may find that even if a company is interested and wishes to license the invention it may ultimately have little or no competence in the subject area and, as a result, the invention never finds its way to commercial production. Nonetheless, the rewards can be well worth the effort. If a successful license is reached and the device goes into production, there may be substantial personal financial reward for the inventor. If the university's patent policy is enlightened, a portion of the royalty income may support ongoing and future activities in the inventor's research laboratory.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2004192

  18. A planning framework for transferring building energy technologies: Executive Summary

    SciTech Connect

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-08-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

  19. A planning framework for transferring building energy technologies

    SciTech Connect

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  20. Technology Transfer through the Pipeline and Other Channels: Preprint

    SciTech Connect

    Benner, J.; Hulstrom, R.; Sheldon, P.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Examines some success stories of tech transfer and lessons learned from these experiences that point to possible improvements to expedite transfer to future technologies.

  1. Technology Transfer through Training: Emerging Roles for the University.

    ERIC Educational Resources Information Center

    Bergsma, Harold M.

    The importance of training in the technology transfer process is discussed, with special consideration to conditions in developing countries. Also considered is the role universities can play in training to promote technology transfer. Advisors on training and curriculum development are needed to introduce a new technology. Training farmers to…

  2. Benchmarking Best Practices in Technology Transfer. Final Report.

    ERIC Educational Resources Information Center

    Anderson, Lawrence K.; Gurney, Brian D.

    Effective technology transfer requires addressing several complexities that arise repeatedly in the vast majority of technology transfer projects. One of the objectives of this study was to define common issues/pitfalls/concerns among the various entities in the technology community and to allow them to express their views and opinions on how best…

  3. Geo energy research and development: technology transfer update

    SciTech Connect

    Traeger, R.K.; Dugan, V.L.

    1983-01-01

    Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

  4. 76 FR 71562 - Emergint Technologies, Inc.; Transfer of Data

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... AGENCY Emergint Technologies, Inc.; Transfer of Data AGENCY: Environmental Protection Agency (EPA... Technologies, Inc. in accordance with 40 CFR 2.307(h)(3) and 2.308(i)(2). Emergint Technologies, Inc. has been... Technologies, Inc. to fulfill the obligations of the contract. DATES: Emergint Technologies, Inc. will be...

  5. Targeted Technology Transfer to US Independents

    SciTech Connect

    Schatzinger, Viola; Chapman, Kathy; Lovendahl, Kristi

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  6. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    ERIC Educational Resources Information Center

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  7. How technology transfer issues are managed

    SciTech Connect

    Sink, C.H.; Easley, K.R.

    1991-12-31

    In 1989, Secretary of Energy James Watkins made a commitment to accelerate DOE compliance with all applicable laws and standards aimed at protecting human health and the environment. At a minimum, this pledge requires the remediation of the 1989 inventory of chemical, radioactive, and mixed wastes at DOE production sites by 2019. The 1989 Complex inventory consisted of more than 3,700 sites, encompassing more than 26,000 acres contaminated with radioactive, hazardous, and mixed wastes. In addition, over 500 surplus sites are awaiting decontamination and decommissioning (D and D), and approximately 5,000 peripheral properties have contaminated soils (e.g., uranium tailings). Moreover, these problems exist at both inactive sites, where the primary focus is on environmental restoration, and at active sites, where the major emphasis is on improved waste management techniques. Although some of DOE`s problems are considered unique due to radioactivity, most forms of contamination resident in the Complex are not; rather, contaminants such as waste chemicals (e.g., inorganics), organics (e.g., fuels and solvents), halogenated organics (e.g., PCBs) and heavy metals commonly result in conventional industrial processes. Although certain other forms of contamination are more unique to DOE operations (e.g., radioactive materials, explosives, and pyrophorics), they are not exclusive to DOE. As DOE develops innovative solutions to these and related waste problems, it is imperative that technology systems and lessons learned be transferred from DOE sites and its R and D laboratories to private industry to maximize the nation`s return on environmental management technology investments.

  8. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    SciTech Connect

    Not Available

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  9. Auto-disable syringes for immunization: issues in technology transfer.

    PubMed Central

    Lloyd, J. S.; Milstien, J. B.

    1999-01-01

    WHO and its partners recommend the use of auto-disable syringes, "bundled" with the supply of vaccines when donor dollars are used, in all mass immunization campaigns, and also strongly advocate their use in routine immunization programmes. Because of the relatively high price of auto-disable syringes, WHO's Technical Network for Logistics in Health recommends that activities be initiated to encourage the transfer of production technology for these syringes as a means of promoting their use and enhancing access to the technology. The present article examines factors influencing technology transfer, including feasibility, corporate interest, cost, quality assurance, intellectual property considerations, and probable time frames for implementation. Technology transfer activities are likely to be complex and difficult, and may not result in lower prices for syringes. Guidelines are offered on technology transfer initiatives for auto-disable syringes to ensure the quality of the product, the reliability of the supply, and the feasibility of the technology transfer activity itself. PMID:10680248

  10. Electrodialysis recovery of boric acid and potassium hydroxide from eluates of SWC facilities at NPP with VVER

    SciTech Connect

    Dudnik, S.N.; Virich, P.M.; Kramskikh, E.Y.; Masanov, O.L.; Turovsky, I.P.

    1993-12-31

    To extract boric acid and potassium hydroxide from regenerates of SWC-2-46 facilities, an electrodialysis-sorption process has been devised consisting of the following operations: separation of boron-alkaline regenerate solution into desorbate and wash water; filling of desalination and concentration chambers, respectively, with desorbate and was water of electrodialysis equipment; production of boric acid and potassium hydroxide from desorbate by electrodialysis; removal of chloride-ion from boric acid solution on ion-exchange filter AB-17-18. The flow-sheet was tested and boron containing alkaline regeneration solutions were recovered from Novovoronezh NPP.

  11. A continuing program for technology transfer to the apparel industry

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1971-01-01

    A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.

  12. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    ERIC Educational Resources Information Center

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  13. Determining the Limits of English and Technology Transfer.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    A study investigated the role of language in facilitating technology transfer, particularly across international borders. It examined whether language has an effect on the technology transfer process or the politics associated with it when participating countries lack a common language, and whether the English language plays a special role in…

  14. A model technology transfer program for independent operators

    SciTech Connect

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  15. Toward equality of biodiversity knowledge through technology transfer.

    PubMed

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  16. NASA'S Changing Role in Technology Development and Transfer

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.; Craft, Harry G., Jr.

    1997-01-01

    National Aeronautics and Space Administration NASA has historically had to develop new technology to meet its mission objectives. The newly developed technologies have then been transferred to the private sector to assist US industry's worldwide competitiveness and thereby spur the US economy. The renewed emphasis by the US Government on a proactive technology transfer approach has produced a number of contractual vehicles that assist technology transfer to industrial, aerospace and research firms. NASA's focus has also been on leveraging the shrinking space budget to accomplish "more with less." NASA's cooperative agreements and resource sharing agreements are measures taken to achieve this goal, and typify the changing role of government technology development and transfer with industry. Large commercial partnerships with aerospace firms, as typified by the X-33 and X-34 Programs, are evolving. A new emphasis on commercialization in the Small Business Innovative Research and Dual Use programs paves the way for more rapid commercial application of new technologies developed for NASA.

  17. Transfer of space technologies past and present: the Russian case.

    PubMed

    Pankova, Lyudmila

    2002-12-01

    Since the end of the 1980's transfer of government sponsored high technology space goods and services to other sectors, industry, and eventually non-government use has been a growing concern of the Russian policy makers. Today the real and functional transformation of this field is on the agenda. The paper is organized as follows. The first section analyzes the evolution of the common approach to technology transfer, looks at the main obstacles to this processes as a whole, and in the space sector in particular. The second section examines the Russian space R&D sector from the point of view of its role and place in the Russian scientific and technological base. New mechanisms of technology transfer are then considered. Here, problems of conversion, commercialization, dual-use, and internationalization are examined in the context of space technology transfer. Furthermore, issues of innovation in technology transfer are discussed. The new networks that are forming through which technologies diffuse is considered. The paper then turns to legislative and regulatory problems, including the discussion of the main principles of the Russian space transfer code, which is now being drafted. It is necessary to underline, that in the Russian case, official statistics still do not help analyze the question of technology transfer. PMID:14983845

  18. Techonology transfer and technology assessmentAn approach to the age of technology management

    NASA Astrophysics Data System (ADS)

    Hyoki, Yasuyoshi

    How small and middle size corporations should be armed technologically is the important strategy under the era of technology management such as today. However, it seems difficult that small companies promote technology or new product development by their own technology and human resources. Thus they are likely to expect technology transfer much more than ever. It is pointed out that if we proceed into technology transfer, we need to have such systems that technological information is available any time, and technology transfer is assessed whether or not it is preferable. Nikkan Kogyo Industrial Research Institute has developed general-purposed technology assessment system of which major aim is to promote technology transfer, and has carried on the business of it. This paper describes thinking about technology assessment, and outlines the technology assessment system.

  19. Computers and terminals as an aid to international technology transfer

    NASA Technical Reports Server (NTRS)

    Sweeney, W. T.

    1974-01-01

    As technology transfer becomes more popular and proves to be an economical method for companies of all sizes to take advantage of a tremendous amount of new and available technology from sources all over the world, the introduction of computers and terminals into the international technology transfer process is proving to be a successful method for companies to take part in this beneficial approach to new business opportunities.

  20. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  1. [Los Alamos National Laboratory industrial applications and technology transfer

    SciTech Connect

    Not Available

    1991-10-31

    This report summarizes the accomplishments of the Los Alamos Economic Development Corporation (LAEDC) under its contract with the Industrial Applications Office (IAO). The LAEDC has: provided business planning assistance to potential entrepreneurs, assisted IAO in preparing and distributing informational materials on technology, organized and managed meetings and seminars on technology transfer and entrepreneurship, identified new opportunities for technology transfer, and identified and implemented programs for the recognition of Laboratory entrepreneurs.

  2. [Technology transfer to the facility for production of medicines].

    PubMed

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area. PMID:24741943

  3. HPCC technology awareness program: Improved economic competitiveness through technology awareness, transfer and application. Final report

    SciTech Connect

    Not Available

    1994-04-01

    A need has been defined by Congress for the DOE National Laboratories to participate in various dual use and technology transfer programs. This requirement has spawned several technology transfer approaches at the DOE laboratories. These programs are designed to encourage large and small business to bring their problems and needs forward, and to allow the labs to transfer effective high performance computing technology to the commercial marketplace. This IG Technologies grant from the DOE was undertaken to address the issues and problems associated with technology transfer between the DOE National Laboratories and commercial industry. The key focus is to gain an understanding of how DOE and industry independently and collectively view the requirements and the missing elements that could allow DOE to facilitate HPCC technology transfer. At issue is HPCC Technology Transfer for the High Performance Computing industry and its relationship to the DOE National Laboratories. Several observations on this are addressed. The issue of a ``Technology Utilization Gap`` between the National Laboratories and Independent Software Vendors is discussed. This study addressed the HPCC Technology Transfer plans of all six DOE National Labs. Study team members briefed numerous industrial users of HPCC technology as to the feasibility of technology transfer for various applications. Significant findings of the effort are that the resistance to technology transfer is much higher than anticipated for both the National Labs and industry. Also, HPCC Technology Transfer is observed to be a large company`s dominion. Small businesses have a difficult time in addressing the requirements of technology transfer using Cooperative Research and Development Agreements (CRADA`s). Large businesses and the DOE National Labs however, often have requirements and objectives which are at cross purposes, making effective technology transfer difficult.

  4. Technology Transfer: Three Ways to Make It Happen.

    ERIC Educational Resources Information Center

    Blanton, William

    1987-01-01

    Firms in the private sector utilize the resources of educational institutions to keep abreast of new technologies and to update employee training in those technologies, allowing them to remain competitive. Projects in Tennessee, New York and Ohio are examined, and methods of transferring appropriate technology to different communities are…

  5. Double-layered cell transfer technology for bone regeneration.

    PubMed

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called "cell transfer technology", enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  6. Orbit transfer rocket engine technology program enhanced heat transfer combustor technology

    NASA Technical Reports Server (NTRS)

    Brown, William S.

    1991-01-01

    In order to increase the performance of a high performance, advanced expander-cycle engine combustor, higher chamber pressures are required. In order to increase chamber pressure, more heat energy is required to be transferred to the combustor coolant circuit fluid which drives the turbomachinery. This requirement was fulfilled by increasing the area exposed to the hot-gas by using combustor ribs. A previous technology task conducted 2-d hot air and cold flow tests to determine an optimum rib height and configuration. In task C.5 a combustor calorimeter was fabricated with the optimum rib configuration, 0.040 in. high ribs, in order to determine their enhancing capability. A secondary objective was to determine the effects of mixture ratio changers on the enhancement during hot-fire testing. The program used the Rocketdyne Integrated Component Evaluator (ICE) reconfigured into a thrust chamber only mode. The test results were extrapolated to give a projected enhancement from the ribs for a 16 in. long cylindrical combustor at 15 Klb nominal thrust level. The hot-gas wall ribs resulted in a 58 percent increase in heat transfer. When projected to a full size 15K combustor, it becomes a 46 percent increase. The results of those tests, a comparison with previous 2-d results, the effects of mixture ratio and combustion gas flow on the ribs and the potential ramifications for expander cycle combustors are detailed.

  7. Information Dissemination and Technology Transfer in Telecommunications.

    ERIC Educational Resources Information Center

    Roderer, Nancy K.; King, Donald W.

    Using a model of scientific and technical information transfer as a framework, this document focuses on four types of activities: the generation or authorship of telecommunications information and its publication, distribution, and use. Different forms of publication are considered in each functional area, though primary emphasis is on the…

  8. The challenge of technology transfer: Buying in without selling out

    PubMed Central

    Pennypacker, H. S.

    1986-01-01

    Highly effective technologies flowing from the discipline of behavior analysis have not been widely adopted, thus threatening the survival of the discipline itself. An analysis of the contingencies underlying successful technology transfer suggests the need for direct, empirical involvement in the marketplace in order to insure that the maximum demonstrable benefits reach the ultimate users. A successful example of this strategy of technology transfer is provided. Three areas of intense national concern—urban violence, illiteracy, and declining industrial productivity—provide immediate opportunities for the technologies of behavior analysis to secure the place of the discipline in the intellectual mosaic of the 21st century. PMID:22478656

  9. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  10. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  11. Technology Transfer and the Job Skills Education Program: Preliminary Results.

    ERIC Educational Resources Information Center

    Branson, Robert K.

    Technology transfer, for purposes of this paper, refers specifically to the importing of a methodology from one setting to another in order to meet previously unmet needs. The Job Skills Education Program (JSEP), a computer-based functional basic skills curriculum originally developed for the U.S. Army, has been "transferred" to the civilian…

  12. Technology transfer from NASA to targeted industries, volume 1

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer to three target industries with focus on the apparel manufacturing industry in Alabama. Also included in this report are an analysis of the 1992 problem statements submitted by Alabama firms, the results of the survey of 1987-88 NASA Tech Brief requests, the results of the followup to Alabama submitted problem statements, and the development of the model describing the MSFC technology transfer process.

  13. Societal and economic valuation of technology-transfer deals

    NASA Astrophysics Data System (ADS)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  14. Technology Transfer--Bridging Space and Society. The Students of the Technology Transfer Design Project Team (ISU Summer Session 1997).

    PubMed

    1997-01-01

    Strategies, policies and methods by which technologies can he cross-fertilized between the space and non-space sectors were examined by students of the design project "Technology Transfer--Bridging Space and Society". This project was undertaken by students attending the 1997 10th Anniversary Summer Session Program of the International Space University. General issues relating to transfer of technology were discussed including definitions and mechanisms (push, pull, interactive and pro-active). As well as looking at case studies and the impact of national policies on space agencies, the design project also sought to look at technology transfer on a country-by-country basis, selecting various countries for scrutiny and reporting on their technology transfer status. The project report shows how transfer of technology varies between nations and when analyzed with the case studies identifies the general strategies, policies and methods in use and how they can he improved. Finally, the report seeks to recommend certain issues to governments, space agencies and industrial organizations to facilitate the transfer of technology. These include the development of a generic metrics system and the implementation of better appropriate procedures and mechanisms for a positive diffusion process between space and non-space sectors. PMID:11541148

  15. Technology transfer and evaluation for Space Station telerobotics

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Stokes, Lebarian; Diftler, Myron A.

    1994-01-01

    The international space station (SS) must take advantage of advanced telerobotics in order to maximize productivity and safety and to reduce maintenance costs. The Automation and Robotics Division at the NASA Lyndon B. Johnson Space Center (JSC) has designed, developed, and constructed the Automated Robotics Maintenance of Space Station (ARMSS) facility for the purpose of transferring and evaluating robotic technology that will reduce SS operation costs. Additionally, JSC had developed a process for expediting the transfer of technology from NASA research centers and evaluating these technologies in SS applications. Software and hardware system developed at the research centers and NASA sponsored universities are currently being transferred to JSC and integrated into the ARMSS for flight crew personnel testing. These technologies will be assessed relative to the SS baseline, and, after refinements, those technologies that provide significant performance improvements will be recommended as upgrades to the SS. Proximity sensors, vision algorithms, and manipulator controllers are among the systems scheduled for evaluation.

  16. Wind power in Russia Today: Development, resources, and technology transfer

    SciTech Connect

    Martinot, E.; Perminov, E.M.

    1995-12-31

    Wind power development in Russia and technology transfer from the West are discussed from an integrated perspective, including institutional and economic conditions, technologies, geography, and technology transfer experience. Commercialization has only begun in the last few years. Domestic technology development programs for 100-kW to 1000-kW turbines and wind farm projects are described. Good wind resources exist in at least 17 regions (out of 89) in the Far East, Far North, Northwest, North Caucasus, and Lower Volga. To Russians, wind power means jobs and autonomy. Joint ventures are an important form of technology transfer because of existing idle industrial capacity with skilled workers. Equipment imports to-date have been minimal. The only example of a production joint venture so far is Windenergo in Ukraine, which has begun to produce 110-kW turbines under a Kenetech Windpower license. Barriers to technology transfer are described and appear formidable. Russia remains a combination of technology transfer perspectives for developed, developing, and former Communist countries

  17. Technology transfer in pharmaceuticals. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-10-01

    The bibliography contains citations concerning technology transfer in pharmaceuticals. Topics include technology transfer in pharmaceutical research, production, and manufacture. Technology transfer using genetic engineering to develop pharmaceuticals and vaccines is described. University-to-industry technology transfer and transfer to developing nations are also discussed. (Contains a minimum of 53 citations and includes a subject term index and title list.)

  18. OAST space research and technology applications: Technology transfer successes

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1992-01-01

    The ultimate measure of success in the Space Research and Technology Program is the incorporation of a technology into an operational mission. Charts are presented that describe technology products which OAST has helped support that (1) have been used in a space mission, (2) have been incorporated into the baseline design of a flight system in the development phase, or (3) have been picked up by a commercial or other non-NASA user. We hope that these examples will demonstrate the value of investment in technology. Pictured on the charts are illustrations of the technology product, the mission or user which has incorporated the technology, and where appropriate, results from the mission itself.

  19. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    ERIC Educational Resources Information Center

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  20. The Technology Transfer of the ICT Curriculum in Taiwan

    ERIC Educational Resources Information Center

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  1. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR... from disclosure under the Freedom of Information Act as provided in the Stevenson-Wydler Technology... prescribed in 48 CFR 970.2770-4(b), add the following definition under paragraph (b) and the following...

  2. Technology Transfer in Canada: Research Parks and Centres of Excellence.

    ERIC Educational Resources Information Center

    Bell, Stephen; Sadlak, Jan

    1992-01-01

    Two types of Canadian institutions (university-related research parks and Ontario's "centers of excellence") charged with fostering technology innovation and facilitating technology transfer between university and industry are described and compared. It is concluded that despite limitations, both play a positive role in enhancing technology…

  3. Techno-Nationalism and the Construction of University Technology Transfer

    ERIC Educational Resources Information Center

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived…

  4. Sharp Technologies as Applied to a Crew Transfer Vehicle (CTV)

    NASA Technical Reports Server (NTRS)

    Cappuccio, Gelsomina; Kinney, David; Reuther, James; Saunders, David

    2003-01-01

    This viewgraph presentation reviews the efforts of Ames Research Center to develop Slender Hypersonic Aerothermodynamic Research Probes (SHARP) technologies as applied to the new Crew Transfer Vehicle (CTV). Amongst these technologies are ultra high temperature ceramics (UHTC). The results of Computational Fluid Dynamic simulations on prospective designs of the CTV are shown as well as wind tunnel test results.

  5. Technology transfer and international development: Materials and manufacturing technology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  6. Technology Transfer and Economic Development in Arizona.

    ERIC Educational Resources Information Center

    Brophy, James

    The status of Arizona's effort to encourage the creation and expansion of high technology based on the discoveries and new knowledge developed at its research universities is discussed. The study of the University of Arizona and Arizona State University was recommended by the Arizona Board of Regents' Task Force on Excellence, Efficiency and…

  7. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  8. Applications of aerospace technology in industry, a technology transfer profile: Lubrication

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    Technology transfer in the lubrication field is discussed in terms of the movement of NASA-generated lubrication technology into the private sector as affected by evolving industrial requirements. An overview of the field is presented, and NASA technical contributions to lubrication technology are described. Specific examples in which these technologies have been used in the private sector are summarized.

  9. Development of a nationwide network for technology transfer

    NASA Technical Reports Server (NTRS)

    Fong, Louis B. C.; Brockman, Paul R.

    1987-01-01

    The winter and spring of 1987 saw the cooperative nationwide network for technology transfer translated from concept to reality. The most obvious of the network relationships which were developed or which are anticipated are summarized. The objective was to help assure that every U.S. business which has the capacity to exploit, or the need to obtain new technology in any form, has access to the technology it needs or can use.

  10. A framework for evaluation of technology transfer programs. Volume 2

    SciTech Connect

    Not Available

    1993-07-01

    The objective of this volume is to describe a framework with which DOE can develop a program specific methodology to evaluate it`s technology transfer efforts. This approach could also be applied to an integrated private sector technology transfer organization. Several benefits will be realized from the application of this work. While the immediate effect will be to assist program managers in evaluating and improving program performance, the ultimate benefits will accrue to the producing industry, the states, and the nation in the form of sustained or increased domestic oil production. This benefit depends also, of course, on the effectiveness of the technology being transferred. The managers of the Technology Transfer program, and the larger federal oil and gas R&D programs, will be provided with a means to design and assess the effectiveness of program efforts as they are developed, tested and performed. The framework allows deficiencies in critical aspects of the program to be quickly identified, allowing for timely corrections and improvements. The actual process of developing the evaluation also gives the staff of the Oil R&D Program or Technology Transfer subprogram the opportunity to become oriented to the overall program goals. The structure and focus imposed by the evaluation paradigm will guide program staff in selecting activities which are consistent with achieving the goals of the overall R&D program.

  11. Building technology transfer meetings: A collaborative model for transferring DOE research results to potential users

    SciTech Connect

    Shankle, D.L.; Hawkins, D.M.; Love, P.M.; Wilde, G.M.

    1994-08-01

    Transferring the technology and results from U.S. Department of Energy (DOE)-sponsored building energy research to potential users is a critical part of DOE`s successful research programs. To assist in this transfer of information and technologies, the DOE Office of Building Technologies (OBT) has established Building Technology Transfer Meetings that are held twice each year at one of the 10 DOE Regional Support Offices. Meeting participants include DOE personnel and representatives from each of the national laboratories involved in OBT buildings energy research as well as representatives from the DOE Regional Support Offices and other agencies involved in the buildings sector. Since 1991, OBT has held five meetings: Washington D.C., San Francisco, Denver, Oak Ridge, and Seattle. The purpose of these meetings is twofold: (1) for DOE to share information about such topics as new research results, new technologies, and new ways to collaborate with industry and universities to leverage resources; and (2) for the participants to use this information within their region to accelerate the transfer and deployment of new energy-efficient building technologies. The meetings include presentations, demonstrations, and tours. The meetings have provided an excellent opportunity for staff from the Regional Support Offices to learn about new technologies through their interactions with OBT and national laboratory program managers. Meeting tours and demonstrations have provided beneficial opportunities to get hands-on experience with new technologies and to see them in practice.

  12. Precise time transfer using MKIII VLBI technology

    NASA Technical Reports Server (NTRS)

    Johnston, K. J.; Buisson, J. A.; Lister, M. J.; Oaks, O. J.; Spencer, J. H.; Waltman, W. B.; Elgered, G.; Lundqvist, G.; Rogers, A. E. E.; Clark, T. A.

    1984-01-01

    It is well known that Very Long Baseline Interferometry (VLBI) is capable of precise time synchronization at subnanosecond levels. This paper deals with a demonstration of clock synchronization using the MKIII VBLI system. The results are compared with clock synchronization by traveling cesium clocks and GPS. The comparison agrees within the errors of the portable clocks (+ 5 ns) and GPS(+ or - 30 ns) systems. The MKIII technology appears to be capable of clock synchronization at subnanosecond levels and appears to be very good benchmark system against which future time synchronization systems can be evaluated.

  13. A case study of technology transfer: Cardiology

    NASA Technical Reports Server (NTRS)

    Schafer, G.

    1974-01-01

    Research advancements in cardiology instrumentation and techniques are summarized. Emphasis is placed upon the following techniques: (1) development of electrodes which show good skin compatibility and wearer comfort; (2) contourography - a real time display system for showing the results of EKGs; (3) detection of arteriosclerosis by digital computer processing of X-ray photos; (4) automated, noninvasive systems for blood pressure measurement; (5) ultrasonoscope - a noninvasive device for use in diagnosis of aortic, mitral, and tricuspid valve disease; and (6) rechargable cardiac pacemakers. The formation of a biomedical applications team which is an interdisciplinary team to bridge the gap between the developers and users of technology is described.

  14. Control of Technology Transfer at JPL

    NASA Technical Reports Server (NTRS)

    Oliver, Ronald

    2006-01-01

    Controlled Technology: 1) Design: preliminary or critical design data, schematics, technical flow charts, SNV code/diagnostics, logic flow diagrams, wirelist, ICDs, detailed specifications or requirements. 2) Development: constraints, computations, configurations, technical analyses, acceptance criteria, anomaly resolution, detailed test plans, detailed technical proposals. 3) Production: process or how-to: assemble, operated, repair, maintain, modify. 4) Manufacturing: technical instructions, specific parts, specific materials, specific qualities, specific processes, specific flow. 5) Operations: how-to operate, contingency or standard operating plans, Ops handbooks. 6) Repair: repair instructions, troubleshooting schemes, detailed schematics. 7) Test: specific procedures, data, analysis, detailed test plan and retest plans, detailed anomaly resolutions, detailed failure causes and corrective actions, troubleshooting, trended test data, flight readiness data. 8) Maintenance: maintenance schedules and plans, methods for regular upkeep, overhaul instructions. 9) Modification: modification instructions, upgrades kit parts, including software

  15. Technology transfer into the solid propulsion industry

    NASA Technical Reports Server (NTRS)

    Campbell, Ralph L.; Thomson, Lawrence J.

    1995-01-01

    This paper is a survey of the waste minimization efforts of industries outside of aerospace for possible applications in the manufacture of solid rocket motors (SRM) for NASA. The Redesigned Solid Rocket Motor (RSRM) manufacturing plan was used as the model for processes involved in the production of an SRM. A literature search was conducted to determine the recycling, waste minimization, and waste treatment methods used in the commercial sector that might find application in SRM production. Manufacturers, trade organizations, and professional associations were also contacted. Waste minimization efforts for current processes and replacement technologies, which might reduce the amount or severity of the wastes generated in SRM production, were investigated. An overview of the results of this effort are presented in this paper.

  16. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    PubMed

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1. PMID:25061505

  17. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER

    PubMed Central

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F.; Sanberg, Paul R.

    2014-01-01

    Academic technology transfer in its current form began with the passage of the Bayh–Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh–Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1. PMID:25061505

  18. Transfer of security technology from Sandia to industry

    SciTech Connect

    Williams, J.D.; Matter, J.C.

    1991-01-01

    The National Competitiveness Technology Transfer Act of 1989 made technology transfer a mission for the national laboratories. The intent is to maximize the benefit from public monies and to improve the economic position of US industry in the world marketplace. A key instrument created by this legislation is the Cooperative Research and Development Agreement (CRADA) between a private company and a government-owned contractor-operated R D lab. Under these provisions, the national laboratories can negotiate directly with industry, grant title to intellectual property developed in a CRADA, and withhold publication of commercially-valuable information developed in a CRADA for up to five years. Sandia National Laboratories is very proactive in the transfer of technology developed as the DOE lead laboratory for physical security R D and from work for other government agencies. Specific security-related products have frequently evolved from government user needs into initial concepts followed by research and development into field prototypes which finally have a system design package appropriate for transfer to industry. In the past year several meetings announced in the Commerce Business Daily (CBD) were held with industry to present specific systems and to initiate discussions toward establishing a GRADA and/or granting a product license. Several examples and updates will be presented to illustrate this new process for security technology transfer from Sandia to industry. 2 refs.

  19. NASA technology utilization applications. [transfer of medical sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  20. THE FEDERAL TECHNOLOGY TRANSFER ACT - ENVIRONMENTAL MONITORING TECHNOLOGIES OPPORTUNITIES

    EPA Science Inventory

    To enhance and maintain a clean environment while imporiving the nation's productivity, the U.S. EPA is joining with private industry and academia to seek new, cost-effective technologies to prevent and control environmental pollution. Both the U.S. government and the private sec...

  1. Technology transfer of NASA microwave remote sensing system

    NASA Technical Reports Server (NTRS)

    Akey, N. D.

    1981-01-01

    Viable techniques for effecting the transfer from NASA to a user agency of state-of-the-art airborne microwave remote sensing technology for oceanographic applications were studied. A detailed analysis of potential users, their needs and priorities; platform options; airborne microwave instrument candidates; ancillary instrumentation; and other, less obvious factors that must be considered were studied. Conclusions and recommendations for the development of an orderly and effective technology transfer of an airborne microwave system that could meet the specific needs of the selected user agencies are reported.

  2. Technology transfer: Imaging tracker to robotic controller

    NASA Technical Reports Server (NTRS)

    Otaguro, M. S.; Kesler, L. O.; Land, Ken; Erwin, Harry; Rhoades, Don

    1988-01-01

    The transformation of an imaging tracker to a robotic controller is described. A multimode tracker was developed for fire and forget missile systems. The tracker locks on to target images within an acquisition window using multiple image tracking algorithms to provide guidance commands to missile control systems. This basic tracker technology is used with the addition of a ranging algorithm based on sizing a cooperative target to perform autonomous guidance and control of a platform for an Advanced Development Project on automation and robotics. A ranging tracker is required to provide the positioning necessary for robotic control. A simple functional demonstration of the feasibility of this approach was performed and described. More realistic demonstrations are under way at NASA-JSC. In particular, this modified tracker, or robotic controller, will be used to autonomously guide the Man Maneuvering Unit (MMU) to targets such as disabled astronauts or tools as part of the EVA Retriever efforts. It will also be used to control the orbiter's Remote Manipulator Systems (RMS) in autonomous approach and positioning demonstrations. These efforts will also be discussed.

  3. Space technology transfer to developing countries: opportunities and difficulties

    NASA Astrophysics Data System (ADS)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  4. neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on the SWC Format 123

    PubMed Central

    Feng, Linqing

    2015-01-01

    Abstract Brain circuit mapping requires digital reconstruction of neuronal morphologies in complicated networks. Despite recent advances in automatic algorithms, reconstruction of neuronal structures is still a bottleneck in circuit mapping due to a lack of appropriate software for both efficient reconstruction and user-friendly editing. Here we present a new software design based on the SWC format, a standardized neuromorphometric format that has been widely used for analyzing neuronal morphologies or sharing neuron reconstructions via online archives such as NeuroMorpho.org. We have also implemented the design in our open-source software called neuTube 1.0. As specified by the design, the software is equipped with parallel 2D and 3D visualization and intuitive neuron tracing/editing functions, allowing the user to efficiently reconstruct neurons from fluorescence image data and edit standard neuron structure files produced by any other reconstruction software. We show the advantages of neuTube 1.0 by comparing it to two other software tools, namely Neuromantic and Neurostudio. The software is available for free at http://www.neutracing.com, which also hosts complete software documentation and video tutorials. PMID:26464967

  5. neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on the SWC Format.

    PubMed

    Feng, Linqing; Zhao, Ting; Kim, Jinhyun

    2015-01-01

    Brain circuit mapping requires digital reconstruction of neuronal morphologies in complicated networks. Despite recent advances in automatic algorithms, reconstruction of neuronal structures is still a bottleneck in circuit mapping due to a lack of appropriate software for both efficient reconstruction and user-friendly editing. Here we present a new software design based on the SWC format, a standardized neuromorphometric format that has been widely used for analyzing neuronal morphologies or sharing neuron reconstructions via online archives such as NeuroMorpho.org. We have also implemented the design in our open-source software called neuTube 1.0. As specified by the design, the software is equipped with parallel 2D and 3D visualization and intuitive neuron tracing/editing functions, allowing the user to efficiently reconstruct neurons from fluorescence image data and edit standard neuron structure files produced by any other reconstruction software. We show the advantages of neuTube 1.0 by comparing it to two other software tools, namely Neuromantic and Neurostudio. The software is available for free at http://www.neutracing.com, which also hosts complete software documentation and video tutorials. PMID:26464967

  6. [Los Alamos National Laboratory industrial applications and technology transfer

    SciTech Connect

    Not Available

    1992-09-30

    In October 1989, the Los Alamos Economic Development Corporation (LAEDC) entered into a contract with the Industrial Applications office (IAO) of Los Alamos National Laboratory (LANL) whereby the LAEDC was to provide support services to IAO. More specifically, according to the Statement of Work in this contract The Los Alamos Economic Development Corporation shall assist the Los Alamos National Laboratory Industrial Applications Office in establishing and strengthening connections between potential entrepreneurs at the Laboratory and the business assistance community throughout New Mexico, directed toward enhancing the number, of successful start up businesses spinning off the Laboratory's technology base.'' As part of this contract and subsequent modifications thereof, the LAEDC was to perform seven tasks: 1. Provide business planning assistance to potential entrepreneurs. 2. (Assist IAO in preparing and distributing) informational materials on technology transfer. 3. (Organize and manage) meetings and seminars on technology transfer and entrepreneurship. 4. Identify new opportunities for technology transfer. 5. (Identify and implement programs for the) recognition of Laboratory Entrepreneurs. 6. Training Lab personnel, in the area of technology transfer and Laboratory industrial interactions. 7. Review and summarize prior New Mexico economic development studies. The purpose of this report, is to summarize the accomplishments of the LAEDC under its contract with IAO, and to fulfill its reporting requirements. This report covers the period from October 1989 to September 1992.

  7. Benchmarking the Economic Impact and Effectiveness of University Technology Transfer in Maryland.

    ERIC Educational Resources Information Center

    Clinch, Richard

    This study examined university technology transfer in Maryland in terms of three issues: (1) the economic impact of university technology transfer; (2) a comparison of the technology transfer effort of University of Maryland System (UMS) institutions with other regional and "best practice" institutions; and (3) the technology transfer policies and…

  8. Biomedical technology transfer. Applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    Harrison, D. C.

    1980-01-01

    Ongoing projects described address: (1) intracranial pressure monitoring; (2) versatile portable speech prosthesis; (3) cardiovascular magnetic measurements; (4) improved EMG biotelemetry for pediatrics; (5) ultrasonic kidney stone disintegration; (6) pediatric roentgen densitometry; (7) X-ray spatial frequency multiplexing; (8) mechanical impedance determination of bone strength; (9) visual-to-tactile mobility aid for the blind; (10) Purkinje image eyetracker and stabilized photocoalqulator; (11) neurological applications of NASA-SRI eyetracker; (12) ICU synthesized speech alarm; (13) NANOPHOR: microelectrophoresis instrument; (14) WRISTCOM: tactile communication system for the deaf-blind; (15) medical applications of NASA liquid-circulating garments; and (16) hip prosthesis with biotelemetry. Potential transfer projects include a person-portable versatile speech prosthesis, a critical care transport sytem, a clinical information system for cardiology, a programmable biofeedback orthosis for scoliosis a pediatric long-bone reconstruction, and spinal immobilization apparatus.

  9. Technology transfer from NASA to targeted industries, volume 2

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  10. DEVELOPMENT OF TECHNOLOGY TRANSFER PRODUCTS FOR THE EPA EMPACT PROGRAM

    EPA Science Inventory

    A presentation was given for a National Satellite Broadcast on the development of technology transfer handbooks for the EMPACT program. These handbooks help spread the knowledge and experience developed from the EMPACT projects. Handbooks are being prepared for every fully implem...

  11. Of Science and Virtue: University Research and Technology Transfer.

    ERIC Educational Resources Information Center

    Chafin, Scott

    1988-01-01

    Suggestions of how a university should go about the task of technology transfer are presented. Two important lessons to relate include: the imperative of a decision-making infrastructure and maintaining perspective. Experiences at the University of Houston when a professor made some discoveries in high-temperature semiconductivity are described.…

  12. Institutionalization of Technology Transfer Organizations in Chinese Universities

    ERIC Educational Resources Information Center

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  13. University-Industry Technology Transfer in Hong Kong

    ERIC Educational Resources Information Center

    Poon, Patrick S.; Chan, Kan S.

    2007-01-01

    In the modern knowledge economy, higher educational institutions are being required to deal with commercialising the results of their research, spinning out knowledge-based enterprises and facilitating technology transfer between their research centres and industrial firms. The universities are undergoing changes in institutional and…

  14. Organizational Learning, Knowledge and Technology Transfer: A Case Study

    ERIC Educational Resources Information Center

    Daghfous, Abdelkader

    2004-01-01

    Knowledge-based competition has magnified the importance of learning alliances as a fast and effective mechanism of capability development. This case presents a technology transfer project from a university's engineering research center to a private firm to illuminate learning and knowledge-based determinants of the outcomes of such projects. In…

  15. The Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Cancer.gov

    After making such a discovery, NCI researchers should immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention and consult with your NCI TTC Technology Transfer Specialist about submitting an Employee Invention Report (EIR) Form.

  16. Remote sensing education in NASA's technology transfer program

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  17. Rocket engine heat transfer and material technology for commercial applications

    NASA Technical Reports Server (NTRS)

    Hiltabiddle, J.; Campbell, J.

    1974-01-01

    Liquid fueled rocket engine combustion, heat transfer, and material technology have been utilized in the design and development of compact combustion and heat exchange equipment intended for application in the commercial field. An initial application of the concepts to the design of a compact steam generator to be utilized by electrical utilities for the production of peaking power is described.

  18. Technology transfer to the Third World: a critical assessment

    SciTech Connect

    Bouguetta, F.

    1985-01-01

    In the last decade, the debate about technology transfer to the Third World has become one of the main issues on the agenda of almost every international meeting. The present structural crisis of the world economy has made the issue a particularly important one. The process of technology transfer is a contradictory one: it constitutes in the immediate a counteracting factor to the tendency of the rate of profit to fall, yet it can also be a barrier to growth in the center. It accelerates the process of growth in the periphery, yet it also increases. Third World dependency on the center. The class relations and ideology of technology transfer are affected by the interrelated dialectical processes that characterize the process of capital accumulation on a world scale. Specific contradictions in the world system create objective necessities and specific strategies to resolve them. Class alliances are formed, strategies of development adopted, and ideological discourses formulated. In addition to exploring the nature of the relationship of these different elements, a central concern of this study is the analysis of the contradictory unity of the ideological discourses that accompany the process of technology transfer and the implications for the people of the Third World. This study attempts to demystify these ideologies and show how in fact their unity constitutes the real dominant ideology.

  19. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR... prescribed in 48 CFR 970.2770-4(b), add the following definition under paragraph (b) and the following new... 2000). As prescribed in 48 CFR 970.2770-4(c), the contracting officer shall substitute the...

  20. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    ERIC Educational Resources Information Center

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  1. Technology transfer between the government and the aerospace industry

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert; Dunbar, Dennis

    1992-01-01

    The object of this working group panel was to review questions and issues pertaining to technology transfer between the government and the aerospace industry for use on both government and commercial space customer applications. The results of this review are presented in vugraph form.

  2. Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis

    ERIC Educational Resources Information Center

    Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar

    2016-01-01

    University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…

  3. Information Systems and Networks for Technology Transfer. Final Report.

    ERIC Educational Resources Information Center

    Page, John; Szentivanyi, Tibor

    Results of a survey of the information resources available in industrialized countries which might be used in a United Nations technology transfer program for developing countries are presented. Information systems and networks, organized information collections of a scientific and technical character, and the machinery used to disseminate this…

  4. Teacher Linguistic, Cultural, and Technological Awareness Development and Transfer

    ERIC Educational Resources Information Center

    Wang, Congcong

    2012-01-01

    This dissertation includes two studies: a pilot study on native-English-speaking preservice teachers' perceptions of learning a foreign language online and a follow-up study on inservice teachers' perceptions of transferring teacher linguistic, cultural and technological awareness into teaching practice. Conducted in 2010, the pilot…

  5. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR... modification. If the net amounts of such royalties and income received from patent licensing after payment of... prescribed in 48 CFR 970.2770-4(b), add the following definition under paragraph (b) and the following...

  6. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    ERIC Educational Resources Information Center

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  7. Thermal Transfer Compared To The Fourteen Other Imaging Technologies

    NASA Astrophysics Data System (ADS)

    O'Leary, John W.

    1989-07-01

    A quiet revolution in the world of imaging has been underway for the past few years. The older technologies of dot matrix, daisy wheel, thermal paper and pen plotters have been increasingly displaced by laser, ink jet and thermal transfer. The net result of this revolution is improved technologies that afford superior imaging, quiet operation, plain paper usage, instant operation, and solid state components. Thermal transfer is one of the processes that incorporates these benefits. Among the imaging application for thermal transfer are: 1. Bar code labeling and scanning. 2. New systems for airline ticketing, boarding passes, reservations, etc. 3. Color computer graphics and imaging. 4. Copying machines that copy in color. 5. Fast growing communications media such as facsimile. 6. Low cost word processors and computer printers. 7. New devices that print pictures from video cameras or television sets. 8. Cameras utilizing computer chips in place of film.

  8. A Wafer Transfer Technology for MEMS Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean V.

    2001-01-01

    Adaptive optics systems require the combination of several advanced technologies such as precision optics, wavefront sensors, deformable mirrors, and lasers with high-speed control systems. The deformable mirror with a continuous membrane is a key component of these systems. This paper describes a new technique for transferring an entire wafer-level silicon membrane from one substrate to another. This technology is developed for the fabrication of a compact deformable mirror with a continuous facet. A 1 (mu)m thick silicon membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers (i.e. wax, epoxy, or photoresist). Smaller or larger diameter membranes can also be transferred using this technique. The fabricated actuator membrane with an electrode gap of 1.5 (mu)m shows a vertical deflection of 0.37 (mu)m at 55 V.

  9. Biomedical technology transfer: Applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.

  10. Research in space commercialization, technology transfer, and communications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.