Sample records for sweat chloride concentration

  1. Sweat chloride concentrations in children with Idiopathic Nephrotic Syndrome.

    PubMed

    Guglani, Lokesh; Moir, Devin; Jain, Amrish

    2016-01-01

    Idiopathic Nephrotic Syndrome (INS) has been believed to cause a false positive elevation of sweat chloride concentrations, as measured by the sweat test. Sweat tests were done for 11 children with acute onset INS at admission and again while they were in remission, with results being compared to normal historical controls. The initial sweat chloride concentration for 10 patients was normal (mean16.7 ± 11.02 mmol/L) and 1 patient had inadequate collection. This latter patient and two others were excluded during follow-up because of diagnoses other than INS. Sweat test results for the eight INS patients during follow up remained unchanged when they were in remission (16.94 ± 7.88 mmol/L; P = 0.98; Wilcoxon Matched-Pairs Signed Rank Test). In comparing sweat chloride concentrations from INS patients to those from 20 historical control subjects, we found no significant differences (Mann-Whitney Test; initial vs. control P = 0.643; follow up vs. control P = 0.806). INS does not cause a false positive sweat test. Further studies should be done to objectively assess the conditions that have been reported to affect sweat chloride concentrations. © 2015 Wiley Periodicals, Inc.

  2. Sweating the small stuff: adequacy and accuracy in sweat chloride determination.

    PubMed

    DeMarco, Mari L; Dietzen, Dennis J; Brown, Sarah M

    2015-04-01

    Sweat chloride testing is the gold standard for diagnosis of cystic fibrosis (CF). Our objectives were to: 1) describe variables that determine sweat rate; 2) determine the analytic and diagnostic capacity of sweat chloride analysis across the range of observed sweat rates; and 3) determine the biologic variability of sweat chloride concentration. A retrospective analysis was performed using data from all sweat chloride tests performed at St. Louis Children's Hospital over a 21-month period. A total of 1397 sweat chloride tests (1155 sufficient [≥75 mg], 242 insufficient [<75 mg]), were performed on 904 individuals. The sweat weight collected from forearms was statistically greater than that collected from legs. There was a negligible correlation between sweat weight and chloride concentration (r=-0.06). The mean individual biologic CV calculated from individuals with two or more sweat collections ≥75 mg was 13.1% (95% CI: 11.3-14.9%; range 0-88%) yielding a reference change value of 36%. Using 60 mmol/L as the diagnostic chloride cutoff, 100% of CF cases were detected whether a minimum sweat weight of 75, 40, or 20 mg was required. 1) Collection of sweat from forearms is preferable to upper legs, particularly in very young infants; 2) sweat chloride concentrations are not highly dependent upon sweat rate; 3) a change in sweat chloride concentration exceeding 36% may be considered a clinically significant response to cystic fibrosis transmembrane receptor targeted therapy, and 4) sweat collections of less than 75 mg provide clinically accurate information. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Chloride and sodium ion concentrations in saliva and sweat as a method to diagnose cystic fibrosis.

    PubMed

    Gonçalves, Aline Cristina; Marson, Fernando Augusto Lima; Mendonça, Regina Maria Holanda; Bertuzzo, Carmen Sílvia; Paschoal, Ilma Aparecida; Ribeiro, José Dirceu; Ribeiro, Antônio Fernando; Levy, Carlos Emílio

    2018-05-19

    Cystic fibrosis diagnosis is dependent on the chloride ion concentration in the sweat test (≥60mEq/mL - recognized as the gold standard indicator for cystic fibrosis diagnosis). Moreover, the salivary glands express the CFTR protein in the same manner as sweat glands. Given this context, the objective was to verify the correlation of saliva chloride concentration and sweat chloride concentration, and between saliva sodium concentration and sweat sodium concentration, in patients with cystic fibrosis and healthy control subjects, as a tool for cystic fibrosis diagnosis. There were 160 subjects enrolled: 57/160 (35.70%) patients with cystic fibrosis and two known CFTR mutations and 103/160 (64.40%) healthy controls subjects. Saliva ion concentration was analyzed by ABL 835 Radiometer ® equipment and, sweat chloride concentration and sweat sodium concentration, respectively, by manual titration using the mercurimetric procedure of Schales & Schales and flame photometry. Statistical analysis was performed by the chi-squared test, the Mann-Whitney test, and Spearman's correlation. Alpha=0.05. Patients with cystic fibrosis showed higher values of sweat chloride concentration, sweat sodium concentration, saliva chloride concentration, and saliva sodium concentration than healthy controls subjects (p-value<0.001). The correlation between saliva chloride concentration and sweat chloride concentration showed a positive Spearman's Rho (correlation coefficient)=0.475 (95% CI=0.346 to 0.587). Also, the correlation between saliva sodium concentration and sweat sodium concentration showed a positive Spearman's Rho=0.306 (95% CI=0.158 to 0.440). Saliva chloride concentration and saliva sodium concentration are candidates to be used in cystic fibrosis diagnosis, mainly in cases where it is difficult to achieve the correct sweat amount, and/or CFTR mutation screening is difficult, and/or reference methods for sweat test are unavailable to implement or are not easily accessible by

  4. Association of sweat chloride concentration at time of diagnosis and CFTR genotype with mortality and cystic fibrosis phenotype.

    PubMed

    McKone, Edward F; Velentgas, Priscilla; Swenson, Anna J; Goss, Christopher H

    2015-09-01

    The extent to which sweat chloride concentration predicts survival and clinical phenotype independently of CFTR genotype in cystic fibrosis is not well understood. We analyzed the US Cystic Fibrosis Foundation Patient Registry data using Cox regression to examine the relationship between sweat chloride concentration (<60, 60-<80, ≥80mmol/L), CFTR genotype (high and lower risk for lung function decline), and survival and mixed linear regression to examine the relationship between sweat chloride, CFTR genotype, and measures of lung function and growth. When included in the same model, CFTR genotype, but not sweat chloride, was independently associated with survival and with lung function, height, and BMI. Among patients with unclassified CFTR genotype, sweat chloride was an independent predictor of survival (<60 HR 0.53 [0.37, 0.77], 60-<80 0.51 [0.42, 0.63]). Sweat chloride concentration may be a useful predictor of mortality and clinical phenotype when CFTR genotype functional class is unclassified. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  5. Variability of sweat chloride concentration in subjects with cystic fibrosis and G551D mutations.

    PubMed

    Vermeulen, F; Le Camus, C; Davies, J C; Bilton, D; Milenković, D; De Boeck, K

    2017-01-01

    Sweat chloride concentration, a biomarker of CFTR function, is an appropriate outcome parameter in clinical trials aimed at correcting the basic CF defect. Although there is consensus on a cut-off value to diagnose CF, we have only limited information on the within subject variability of sweat chloride over time. Such information would be useful for sample size calculations in clinical trials. Therefore, we retrospectively analyzed repeated sweat chloride values obtained in patients with G551D mutation(s) assigned to placebo in an ivacaftor interventional trial. In subjects with G551D at least 12years of age, a pilocarpine sweat test using Macroduct collector was taken on both arms at 8 time points over 48weeks. We explored 1062 pilocarpine sweat test values obtained in 78 placebo patients of the VX08-770-102 trial. Mean overall sweat chloride value (all patients, all tests, n=1062) was 100.8mmol/L (SD 12.7mmol/L). Using a multilevel mixed model, the between-subject standard deviation (SD) for sweat chloride was 8.9mmol/L (95% CI 7.4-10.6) and within-subject SD was 8.1mmol/L (95% CI 7.5-8.7). Limits of repeatability for repeat measurements were -19.7 to +21.6mmol/L using values from one arm, and -13.3 to 11.8mmol/L using mean of values obtained at 4 test occasions. Sample size calculations showed that the minimal treatment effect on sweat chloride concentration that can be demonstrated for a group of 5 patients is around 15mmol/L, using a cross-over design and combinations of 4 tests for each phase of the trial. Although the sweat test is considered a robust measure, sweat chloride measurements in patients with CF and a G551D mutation had an inherent biological variability that is higher than commonly considered. Further analyses of placebo group data are crucial to learn more about the natural variability of this outcome parameter. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  6. Effect of chloride ion concentration on the galvanic corrosion of α phase brass by eccrine sweat.

    PubMed

    Meekins, Andrew; Bond, John W; Chaloner, Penelope

    2012-07-01

    Inductively coupled plasma mass spectrometry measurement of the relative concentration of sodium, chloride, calcium, and potassium ions in eccrine sweat deposits from 40 donors revealed positive correlations between chloride and sodium (ρ = 0.684, p < 0.01) and chloride and calcium ions (ρ = 0.91, p < 0.01). Correlations between ion concentration and the corrosion of α phase brass by the donated sweat were investigated by visual grading of the degree of corrosion, by measuring the copper/zinc ratio using energy-dispersive X-ray spectroscopy, and from a measurement of the potential difference between corroded and uncorroded brass when a large potential was applied to the uncorroded brass. An increasing copper/zinc ratio (indicative of dezincification) was found to correlate positively to both chloride ion concentration and visual grading of corrosion, while visual grading gave correlations with potential difference measurements that were indicative of the preferential surface oxidation of zinc rather than copper. © 2012 American Academy of Forensic Sciences.

  7. Biological Variation of Chloride and Sodium in Sweat Obtained by Pilocarpine Iontophoresis in Adults: How Sure are You About Sweat Test Results?

    PubMed

    Willems, Philippe; Weekx, Steven; Meskal, Anissa; Schouwers, Sofie

    2017-04-01

    The measurement of chloride and sodium concentrations in sweat is an important test for the diagnosis of cystic fibrosis (CF). The aim of this study was to assess the analytical variation (CV A ) and within-subject (CV I ) and between-subject (CV G ) biological variation of chloride and sodium concentrations in sweat, collected by pilocarpine iontophoresis and to determine their effect on the clinical interpretation of sweat test results. Twelve Caucasian adults (six male and six female) without symptoms suggestive for CF and with a mean age of 41 years (range 28-59) were included in the study. At least eight samples of sweat were collected from each individual by pilocarpine iontophoresis. Chloride and sodium concentrations were measured in duplicate for each sample using ion selective electrodes. After the removal of outliers, the CV A , CV I , and CV G of chloride and sodium were determined, and their impact on measurement uncertainty and reference change value were calculated. The CV A , CV I , and CV G of chloride in sweat samples were 6.5, 17.7, and 47.2%, respectively. The CV A , CV I , and CV G of sodium sweat samples were 6.0, 17.5, and 42.6%, respectively. Our study indicates that sweat chloride and sodium concentration results must be interpreted with great care. Different components of variation, particularly the biological variations, have a considerable impact on the interpretation of these results. If no pre-analytical, analytical, or post-analytical errors are suspected, repeated sweat testing to confirm first-measurement results might not be desirable.

  8. Sources of Variation in Sweat Chloride Measurements in Cystic Fibrosis.

    PubMed

    Collaco, Joseph M; Blackman, Scott M; Raraigh, Karen S; Corvol, Harriet; Rommens, Johanna M; Pace, Rhonda G; Boelle, Pierre-Yves; McGready, John; Sosnay, Patrick R; Strug, Lisa J; Knowles, Michael R; Cutting, Garry R

    2016-12-01

    Expanding the use of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors for the treatment of cystic fibrosis (CF) requires precise and accurate biomarkers. Sweat chloride concentration provides an in vivo assessment of CFTR function, but it is unknown the degree to which CFTR mutations account for sweat chloride variation. To estimate potential sources of variation for sweat chloride measurements, including demographic factors, testing variability, recording biases, and CFTR genotype itself. A total of 2,639 sweat chloride measurements were obtained in 1,761 twins/siblings from the CF Twin-Sibling Study, French CF Modifier Gene Study, and Canadian Consortium for Genetic Studies. Variance component estimation was performed by nested mixed modeling. Across the tested CF population as a whole, CFTR gene mutations were found to be the primary determinant of sweat chloride variability (56.1% of variation) with contributions from variation over time (e.g., factors related to testing on different days; 13.8%), environmental factors (e.g., climate, family diet; 13.5%), other residual factors (e.g., test variability; 9.9%), and unique individual factors (e.g., modifier genes, unique exposures; 6.8%) (likelihood ratio test, P < 0.001). Twin analysis suggested that modifier genes did not play a significant role because the heritability estimate was negligible (H 2  = 0; 95% confidence interval, 0.0-0.35). For an individual with CF, variation in sweat chloride was primarily caused by variation over time (58.1%) with the remainder attributable to residual/random factors (41.9%). Variation in the CFTR gene is the predominant cause of sweat chloride variation; most of the non-CFTR variation is caused by testing variability and unique environmental factors. If test precision and accuracy can be improved, sweat chloride measurement could be a valuable biomarker for assessing response to therapies directed at mutant CFTR.

  9. Sweat Chlorides in Salt-Deprived Cystic Fibrosis Heterozygotes

    PubMed Central

    Myers, Michael F.

    1965-01-01

    Sweat chlorides of 10 sets of parents of children with cystic fibrosis and 11 controls were studied in an attempt to develop a test for the diagnosis of cystic fibrosis heterozygotes by subjecting both the parents and controls to a low sodium diet and comparing sweat chloride values as the diet progressed. It was hoped that the sweat chloride levels of the parents, the heterozygotes, would remain stationary throughout the diet, since their children, the homozygotes, reveal this finding under similar conditions of salt deprivation. The sweat chloride levels of the controls, because of effects of aldosterone, were expected to decrease steadily from the commencement of the diet to its termination. A decrease in sweat chloride values of similar magnitude was found in both parents and controls as the diet continued. It is concluded that the study of sweat electrolyte levels in salt-deprived subjects is of no value in the diagnosis of cystic fibrosis heterozygotes. PMID:14289142

  10. Sources of Variation in Sweat Chloride Measurements in Cystic Fibrosis

    PubMed Central

    Blackman, Scott M.; Raraigh, Karen S.; Corvol, Harriet; Rommens, Johanna M.; Pace, Rhonda G.; Boelle, Pierre-Yves; McGready, John; Sosnay, Patrick R.; Strug, Lisa J.; Knowles, Michael R.; Cutting, Garry R.

    2016-01-01

    Rationale: Expanding the use of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors for the treatment of cystic fibrosis (CF) requires precise and accurate biomarkers. Sweat chloride concentration provides an in vivo assessment of CFTR function, but it is unknown the degree to which CFTR mutations account for sweat chloride variation. Objectives: To estimate potential sources of variation for sweat chloride measurements, including demographic factors, testing variability, recording biases, and CFTR genotype itself. Methods: A total of 2,639 sweat chloride measurements were obtained in 1,761 twins/siblings from the CF Twin-Sibling Study, French CF Modifier Gene Study, and Canadian Consortium for Genetic Studies. Variance component estimation was performed by nested mixed modeling. Measurements and Main Results: Across the tested CF population as a whole, CFTR gene mutations were found to be the primary determinant of sweat chloride variability (56.1% of variation) with contributions from variation over time (e.g., factors related to testing on different days; 13.8%), environmental factors (e.g., climate, family diet; 13.5%), other residual factors (e.g., test variability; 9.9%), and unique individual factors (e.g., modifier genes, unique exposures; 6.8%) (likelihood ratio test, P < 0.001). Twin analysis suggested that modifier genes did not play a significant role because the heritability estimate was negligible (H2 = 0; 95% confidence interval, 0.0–0.35). For an individual with CF, variation in sweat chloride was primarily caused by variation over time (58.1%) with the remainder attributable to residual/random factors (41.9%). Conclusions: Variation in the CFTR gene is the predominant cause of sweat chloride variation; most of the non-CFTR variation is caused by testing variability and unique environmental factors. If test precision and accuracy can be improved, sweat chloride measurement could be a valuable biomarker

  11. Loss of carbonic anhydrase XII function in individuals with elevated sweat chloride concentration and pulmonary airway disease.

    PubMed

    Lee, Melissa; Vecchio-Pagán, Briana; Sharma, Neeraj; Waheed, Abdul; Li, Xiaopeng; Raraigh, Karen S; Robbins, Sarah; Han, Sangwoo T; Franca, Arianna L; Pellicore, Matthew J; Evans, Taylor A; Arcara, Kristin M; Nguyen, Hien; Luan, Shan; Belchis, Deborah; Hertecant, Jozef; Zabner, Joseph; Sly, William S; Cutting, Garry R

    2016-05-15

    Elevated sweat chloride levels, failure to thrive (FTT), and lung disease are characteristic features of cystic fibrosis (CF, OMIM #219700). Here we describe variants in CA12 encoding carbonic anhydrase XII in two pedigrees exhibiting CF-like phenotypes. Exome sequencing of a white American adult diagnosed with CF due to elevated sweat chloride, recurrent hyponatremia, infantile FTT and lung disease identified deleterious variants in each CA12 gene: c.908-1 G>A in a splice acceptor and a novel frameshift insertion c.859_860insACCT. In an unrelated consanguineous Omani family, two children with elevated sweat chloride, infantile FTT, and recurrent hyponatremia were homozygous for a novel missense variant (p.His121Gln). Deleterious CFTR variants were absent in both pedigrees. CA XII protein was localized apically in human bronchiolar epithelia and basolaterally in the reabsorptive duct of human sweat glands. Respiratory epithelial cell RNA from the adult proband revealed only aberrant CA12 transcripts and in vitro analysis showed greatly reduced CA XII protein. Studies of ion transport across respiratory epithelial cells in vivo and in culture revealed intact CFTR-mediated chloride transport in the adult proband. CA XII protein bearing either p.His121Gln or a previously identified p.Glu143Lys missense variant localized to the basolateral membranes of polarized Madin-Darby canine kidney (MDCK) cells, but enzyme activity was severely diminished when assayed at physiologic concentrations of extracellular chloride. Our findings indicate that loss of CA XII function should be considered in individuals without CFTR mutations who exhibit CF-like features in the sweat gland and lung. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Revisiting sweat chloride test results based on recent guidelines for diagnosis of cystic fibrosis.

    PubMed

    Pagaduan, Jayson V; Ali, Mahesheema; Dowlin, Michael; Suo, Liye; Ward, Tabitha; Ruiz, Fadel; Devaraj, Sridevi

    2018-03-01

    Recent sweat chloride guidelines published by the Cystic Fibrosis Foundation changed the intermediate sweat chloride concentration range from 40-59 mmol/L to 30-59 mmol/L for age > 6 months. We wanted to know how this new guideline would impact detection of cystic fibrosis among patients who previously had sweat tests done at Texas Children's Hospital. We revisited sweat chloride test results (n = 3012) in the last 5 years at Texas Children's Hospital based on the new guidelines on diagnosis of cystic fibrosis from the Cystic Fibrosis Foundation. We identified 125 patients that would be reclassified in the intermediate sweat chloride value with the new guidelines that were classified as "unlikely to have CF" in the previous guidelines. 8 (32%) patients with CFTR gene testing were positive for CFTR gene mutation(s). 4 (50%) of these patients were identified to have 2 CFTR mutations. One had variant combination that was reported to cause CF but all were diagnosed with CFTR-related metabolic syndrome. Our findings concur with the new CF diagnosis guidelines that changing the intermediate cut-off to 30-59 mmol/L sweat chloride concentration in combination with CFTR genetic analysis enhances the probability of identifying individuals that have risk of developing CF or have CF and enables for earlier therapeutic intervention.

  13. Biological variability of the sweat chloride in diagnostic sweat tests: A retrospective analysis.

    PubMed

    Vermeulen, F; Lebecque, P; De Boeck, K; Leal, T

    2017-01-01

    The sweat test is the current gold standard for the diagnosis of cystic fibrosis (CF). CF is unlikely when sweat chloride (Cl sw ) is lower than 30mmol/L, Cl sw >60 is suggestive of CF, with intermediate values between 30 and 60mmol/L. To correctly interpret a sweat chloride value, the biological variability of the sweat chloride has to be known. Sweat tests performed in two centers using the classic Gibson and Cooke method were retrospectively reviewed (n=5904). Within test variability of Cl sw was measured by comparing results from right and left arm collected on the same day. Between test variability was calculated from subjects with sweat tests performed on more than one occasion. Within test variability of Cl sw calculated in 1022 subjects was low with differences between -3.2 (p5) and +3.6mmol/L (p95). Results from left and right arm were classified differently in only 3 subjects. Between test variability of Cl sw in 197 subjects was larger, with differences between -18.2mmol/L (p5) and +14.1mmol/L (p95) between repeat tests. Changes in diagnostic conclusion were seen in 55/197 subjects, the most frequent being changing from indeterminate to 'CF unlikely' range (48/102). Variability of sweat chloride is substantial, with frequent changes in diagnostic conclusion, especially in the intermediate range. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  14. Relationship between sweat chloride, sodium, and age in clinically obtained samples.

    PubMed

    Traeger, Nadav; Shi, Qiuhu; Dozor, Allen J

    2014-01-01

    The relationship between sweat electrolytes and age is uncertain, as is the value of measuring sodium or the chloride:sodium ratio. 13,785 sweat tests performed over 23 years at one center through the Macroduct collection in clinically obtained samples were analyzed. Sweat chloride tended to decrease over the first year of life, slowly increase until the fourth decade, then either level off or slightly decrease. In children, sweat sodium overlapped between those with positive and negative sweat tests, but not in adults. If the sweat test was positive, there was a higher likelihood of having a chloride:sodium ratio >1, but most subjects with a ratio >1 did not have CF. Sweat chloride and sodium vary with age. Measurement of sweat sodium did not add discriminatory value. The proportion of subjects with a chloride:sodium ratio >1, with or without CF, varied greatly between age ranges. © 2013. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. All rights reserved.

  15. Diagnosis of cystic fibrosis with chloride meter (Sherwood M926S chloride analyzer®) and sweat test analysis system (CFΔ collection system®) compared to the Gibson Cooke method.

    PubMed

    Emiralioğlu, Nagehan; Özçelik, Uğur; Yalçın, Ebru; Doğru, Deniz; Kiper, Nural

    2016-01-01

    Sweat test with Gibson Cooke (GC) method is the diagnostic gold standard for cystic fibrosis (CF). Recently, alternative methods have been introduced to simplify both the collection and analysis of sweat samples. Our aim was to compare sweat chloride values obtained by GC method with other sweat test methods in patients diagnosed with CF and whose CF diagnosis had been ruled out. We wanted to determine if the other sweat test methods could reliably identify patients with CF and differentiate them from healthy subjects. Chloride concentration was measured with GC method, chloride meter and sweat test analysis system; also conductivity was determined with sweat test analysis system. Forty eight patients with CF and 82 patients without CF underwent the sweat test, showing median sweat chloride values 98.9 mEq/L with GC method, 101 mmol/L with chloride meter, 87.8 mmol/L with sweat test analysis system. In non-CF group, median sweat chloride values were 16.8 mEq/L with GC method, 10.5 mmol/L with chloride meter, and 15.6 mmol/L with sweat test analysis system. Median conductivity value was 107.3 mmol/L in CF group and 32.1 mmol/L in non CF group. There was a strong positive correlation between GC method and the other sweat test methods with a statistical significance (r=0.85) in all subjects. Sweat chloride concentration and conductivity by other sweat test methods highly correlate with the GC method. We think that the other sweat test equipments can be used as reliably as the classic GC method to diagnose or exclude CF.

  16. Quality of sweat test (ST) based on the proportion of sweat sodium (Na) and sweat chloride (Cl) as diagnostic parameter of cystic fibrosis: are we on the right way?

    PubMed

    Faria, Alethéa Guimarães; Marson, Fernando Augusto Lima; Gomez, Carla Cristina de Souza; Ribeiro, Maria Ângela Gonçalves de Oliveira; Morais, Lucas Brioschi; Servidoni, Maria de Fátima; Bertuzzo, Carmen Sílvia; Sakano, Eulália; Goto, Maura; Paschoal, Ilma Aparecida; Pereira, Mônica Corso; Hessel, Gabriel; Levy, Carlos Emílio; Toro, Adyléia Aparecida Dalbo Contrera; Peixoto, Andressa Oliveira; Simões, Maria Cristina Ribeiro; Lomazi, Elizete Aparecida; Nogueira, Roberto José Negrão; Ribeiro, Antônio Fernando; Ribeiro, José Dirceu

    2016-10-26

    To assess the quality of sweat test (ST) based on the proportion of sweat sodium and sweat chloride as diagnostic parameter of cystic fibrosis (CF). A retrospective study of 5,721 sweat samples and subsequent descriptive analysis were carried out. The test was considered "of good quality" (correct) when: (i) sweat chloride was lower than 60 mEq/L, and sweat sodium was higher than sweat chloride; (ii) sweat chloride was higher than 60 mEq/L, and sweat sodium was lower than sweat chloride. The study included 5,692/5,721 sweat samples of ST which had been requested due to clinical presentations compatible with CF and/or neonatal screenings with altered immunoreactive trypsinogen values. Considering the proportion of sweat sodium and sweat chloride as ST quality parameter, the test was performed correctly in 5,023/5,692 (88.2 %) sweat samples. The sweat chloride test results were grouped into four reference ranges for chloride (i) chloride < 30 mEq/L: 3,651/5,692 (64.1 %); (ii) chloride ≥ 30 mEq/L to < 40 mEq/L: 652/5,692 (11.5 %); (iii) ≥ 40 mEq/L to < 60 mEq/L: 673/5,692 (11.8 %); (iv) ≥ 60 mEq/L: 716/5,692 (12.6 %). In the comparative analysis, there was no association between ST quality and: (i) symptoms to indicate a ST [respiratory (p = 0.084), digestive (p = 0.753), nutritional (p = 0.824), and others (p = 0.136)], (ii) sweat weight (p = 0.416). However, there was a positive association with: (i) gender, (ii) results of ST (p < 0.001), (iii) chloride/sodium ratio (p < 0.001), (iv) subject's age at the time of ST [grouped according to category (p < 0.001) and numerical order (p < 0.001)]. For the subset of 169 patients with CF and two CFTR mutations Class I, II and/or III, in comparative analysis, there was a positive association with: (i) sweat chloride/sodium ratio (p < 0.001), (ii) sweat chloride values (p = 0.047), (iii) subject's age at the time of the ST grouped by

  17. Sweat test for cystic fibrosis: Wearable sweat sensor vs. standard laboratory test.

    PubMed

    Choi, Dong-Hoon; Thaxton, Abigail; Jeong, In Cheol; Kim, Kain; Sosnay, Patrick R; Cutting, Garry R; Searson, Peter C

    2018-03-23

    Sweat chloride testing for diagnosis of cystic fibrosis (CF) involves sweat induction, collection and handling, and measurement in an analytical lab. We have developed a wearable sensor with an integrated salt bridge for real-time measurement of sweat chloride concentration. Here, in a proof-of-concept study, we compare the performance of the sensor to current clinical practice in CF patients and healthy subjects. Sweat was induced on both forearms of 10 individuals with CF and 10 healthy subjects using pilocarpine iontophoresis. A Macroduct sweat collection device was attached to one arm and sweat was collected for 30 min and then sent for laboratory analysis. A sensor was attached to the other arm and the chloride ion concentration monitored in real time for 30 min using a Bluetooth transceiver and smart phone app. Stable sweat chloride measurements were obtained within 15 min following sweat induction using the wearable sensor. We define the detection time as the time at which the standard deviation of the real-time chloride ion concentration remained below 2 mEq/L for 5 min. The sweat volume for sensor measurements at the detection time was 13.1 ± 11.4 μL (SD), in many cases lower than the minimum sweat volume of 15 μL for conventional testing. The mean difference between sweat chloride concentrations measured by the sensor and the conventional laboratory practice was 6.2 ± 9.5 mEq/L (SD), close to the arm-to-arm variation of about 3 mEq/L. The Pearson correlation coefficient between the two measurements was 0.97 highlighting the excellent agreement between the two methods. A wearable sensor can be used to make real-time measurements of sweat chloride within 15 min following sweat induction, requiring a small sweat volume, and with excellent agreement to standard methods. Copyright © 2018 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  18. Higher sweat chloride levels in patients with asthma: a case-control study.

    PubMed

    Awasthi, Shally; Dixit, Pratibha; Maurya, Nutan

    2015-02-01

    To screen asthmatic patients by sweat chloride test to identify proportion with Cystic Fibrosis (CF); (Sweat chloride level >60 mmol/L). Also, to compare sweat chloride levels between cases of bronchial asthma and age and sex matched healthy children aged 5 mo-15 y. The present case-control study was conducted in a tertiary care hospital in India. Cases of bronchial asthma, diagnosed by GINA guideline 2008, and age matched healthy controls were included. Case to control ratio was 2:1. Sweat Chloride test was done by Pilocarpine Iontophoresis method. From April 2010 through May 2012, 216 asthmatics and 112 controls were recruited. Among asthmatics, there was no case of Cystic Fibrosis. Mean sweat chloride levels in asthmatics was 22.39 ± 8.45 mmol/L (inter-quartile range - 15-28 mmol/L) and in controls 19.55 ± 7.04 mmol/L (inter-quartile range - 15-23.5 mmol/L) (p value = 0.048). No Cystic Fibrosis case was identified among asthmatics. Mean sweat chloride levels were higher in asthmatics as compared to controls.

  19. Intra-individual biological variation in sweat chloride concentrations in CF, CFTR dysfunction, and healthy pediatric subjects.

    PubMed

    Cirilli, Natalia; Raia, Valeria; Rocco, Ilaria; De Gregorio, Fabiola; Tosco, Antonella; Salvadori, Laura; Sepe, Angela Ornella; Buzzetti, Roberto; Minicuci, Nadia; Castaldo, Giuseppe

    2018-04-02

    The sweat test is one of the main diagnostic tools used in newborn screening programs and as a confirmatory test, in case of suspect of Cystic Fibrosis (CF). Since sweat chloride (Cl) concentration is also considered an appropriate parameter to explore the efficacy of CFTR modulators in clinical trials, it is crucial to evaluate the biological variability of this test in healthy and pathological conditions. The aim of this pilot study was to determine the intra-individual biological variability of sweat Cl, both in healthy individuals and CF patients and to assess its correlation with diet, season, and menstrual cycle. Thirty-five out of 36 selected subjects (6-18 years) were enrolled by 2 CF care centers and assigned to 3 cohorts: CF, CFTR-related disorder (CFTR-RD) and healthy volunteers. Each participant was subjected to eight sweat tests in different conditions and time of the year. Data were analyzed using linear mixed effects models for repeated measures, taking also into account intra-individual correlations. We observed a high intra-individual variability of sweat Cl, with the lowest mean CV% values among CF patients (20.21 in CF, 29.74 in CFTR-RD, and 31.15 in healthy subjects). Gender and diet had no influence on sweat Cl variability, nor had pubertal age and menstrual phase. Results of this pilot study confirmed that sweat Cl variability is high in CF patients, although non-CF individuals displayed even higher mean CV% values. Season significantly influenced sweat test values only in CF patients, likely due to changes in their hydration status. © 2018 Wiley Periodicals, Inc.

  20. A modified ion-selective electrode method for measurement of chloride in sweat.

    PubMed

    Finley, P R; Dye, J A; Lichti, D A; Byers, J M; Williams, R J

    1978-06-01

    A modified method of analysis of sweat chloride concentration with an ion-selective electrode is presented. The original method of sweat chloride analysis proposed by the Orion Research Corporation (Cambridge, Massachusetts 02139) is inadequate because it produces erratic and misleading results. The modified method was compared with the reference quantitative method of Gibson and Cooke. In the modified method, individual electrode pads are cut and placed in the electrodes rather than using the pads supplied by the company; pilocarpine nitrate (2,000 mg/l) is used in place of pilocarpine HCl (640 mg/l); sodium bicarbonate as the weak electrolyte is used instead of K2SO4. A 10-minute period for sweat accumulation is employed rather than a zero-time collection as in the original Orion method. The modification has been studied for reproducibility in individuals, reproducibility between right and left arm in individuals; it has been compared extensively with the quantitative method of Gibson and Cooke, both in normal individuals and in patients with cystic fibrosis. There is excellent agreement between the modified method and the quantitative reference method. There appears to be a slight bias toward higher concentrations of chloride from the right arm compared with the left arm, but this difference is not medically significant.

  1. Sweat Chloride as A Biomarker of CFTR Activity: Proof of Concept and Ivacaftor Clinical Trial Data

    PubMed Central

    Accurso, Frank J.; Van Goor, Fredrick; Zha, Jiuhong; Stone, Anne J.; Dong, Qunming; Ordonez, Claudia L.; Rowe, Steven M.; Clancy, John Paul; Konstan, Michael W.; Hoch, Heather E.; Heltshe, Sonya L.; Ramsey, Bonnie W.; Campbell, Preston W.; Ashlock, Melissa A.

    2014-01-01

    Background We examined data from a Phase 2 trial {NCT00457821 } of ivacaftor, a CFTR potentiator, in cystic fibrosis (CF) patients with a G551D mutation to evaluate standardized approaches to sweat chloride measurement and to explore the use of sweat chloride and nasal potential difference (NPD) to estimate CFTR activity. Methods Sweat chloride and NPD were secondary endpoints in this placebo-controlled, multicenter trial. Standardization of sweat collection, processing, and analysis was employed for the first time.. Sweat chloride and chloride ion transport (NPD) were integrated into a model of CFTR activity. Results Within-patient sweat chloride determinations showed sufficient precision to detect differences between dose-groups and assess ivacaftor treatment effects. Analysis of changes in sweat chloride and NPD demonstrated that patients treated with ivacaftor achieved CFTR activity equivalent to approximately 35%–40% of normal. Conclusions Sweat chloride is useful in multicenter trials as a biomarker of CFTR activity and to test the effect of CFTR potentiators. PMID:24660233

  2. Sweat chloride as a biomarker of CFTR activity: proof of concept and ivacaftor clinical trial data.

    PubMed

    Accurso, Frank J; Van Goor, Fredrick; Zha, Jiuhong; Stone, Anne J; Dong, Qunming; Ordonez, Claudia L; Rowe, Steven M; Clancy, John Paul; Konstan, Michael W; Hoch, Heather E; Heltshe, Sonya L; Ramsey, Bonnie W; Campbell, Preston W; Ashlock, Melissa A

    2014-03-01

    We examined data from a Phase 2 trial {NCT00457821} of ivacaftor, a CFTR potentiator, in cystic fibrosis (CF) patients with aG551D mutation to evaluate standardized approaches to sweat chloride measurement and to explore the use of sweat chloride and nasal potential difference (NPD) to estimate CFTR activity. Sweat chloride and NPD were secondary endpoints in this placebo-controlled, multicenter trial. Standardization of sweat collection, processing,and analysis was employed for the first time. Sweat chloride and chloride ion transport (NPD) were integrated into a model of CFTR activity. Within-patient sweat chloride determinations showed sufficient precision to detect differences between dose-groups and assess ivacaftor treatment effects. Analysis of changes in sweat chloride and NPD demonstrated that patients treated with ivacaftor achieved CFTR activity equivalent to approximately 35%–40% of normal. Sweat chloride is useful in multicenter trials as a biomarker of CFTR activity and to test the effect of CFTR potentiators.

  3. The Sweat Metabolome of Screen-Positive Cystic Fibrosis Infants: Revealing Mechanisms beyond Impaired Chloride Transport

    PubMed Central

    2017-01-01

    The sweat chloride test remains the gold standard for confirmatory diagnosis of cystic fibrosis (CF) in support of universal newborn screening programs. However, it provides ambiguous results for intermediate sweat chloride cases while not reflecting disease progression when classifying the complex CF disease spectrum given the pleiotropic effects of gene modifiers and environment. Herein we report the first characterization of the sweat metabolome from screen-positive CF infants and identify metabolites associated with disease status that complement sweat chloride testing. Pilocarpine-stimulated sweat specimens were collected independently from two CF clinics, including 50 unaffected infants (e.g., carriers) and 18 confirmed CF cases. Nontargeted metabolite profiling was performed using multisegment injection–capillary electrophoresis–mass spectrometry as a high throughput platform for analysis of polar/ionic metabolites in volume-restricted sweat samples. Amino acids, organic acids, amino acid derivatives, dipeptides, purine derivatives, and unknown exogenous compounds were identified in sweat when using high resolution tandem mass spectrometry, including metabolites associated with affected yet asymptomatic CF infants, such as asparagine and glutamine. Unexpectedly, a metabolite of pilocarpine, used to stimulate sweat secretion, pilocarpic acid, and a plasticizer metabolite from environmental exposure, mono(2-ethylhexyl)phthalic acid, were secreted in the sweat of CF infants at significantly lower concentrations relative to unaffected CF screen-positive controls. These results indicated a deficiency in human paraoxonase, an enzyme unrelated to mutations to the cystic fibrosis transmembrane conductance regulator (CFTR) and impaired chloride transport, which is a nonspecific arylesterase/lactonase known to mediate inflammation, bacterial biofilm formation, and recurrent lung infections in affected CF children later in life. This work sheds new light into the

  4. The Sweat Metabolome of Screen-Positive Cystic Fibrosis Infants: Revealing Mechanisms beyond Impaired Chloride Transport.

    PubMed

    Macedo, Adriana N; Mathiaparanam, Stellena; Brick, Lauren; Keenan, Katherine; Gonska, Tanja; Pedder, Linda; Hill, Stephen; Britz-McKibbin, Philip

    2017-08-23

    The sweat chloride test remains the gold standard for confirmatory diagnosis of cystic fibrosis (CF) in support of universal newborn screening programs. However, it provides ambiguous results for intermediate sweat chloride cases while not reflecting disease progression when classifying the complex CF disease spectrum given the pleiotropic effects of gene modifiers and environment. Herein we report the first characterization of the sweat metabolome from screen-positive CF infants and identify metabolites associated with disease status that complement sweat chloride testing. Pilocarpine-stimulated sweat specimens were collected independently from two CF clinics, including 50 unaffected infants (e.g., carriers) and 18 confirmed CF cases. Nontargeted metabolite profiling was performed using multisegment injection-capillary electrophoresis-mass spectrometry as a high throughput platform for analysis of polar/ionic metabolites in volume-restricted sweat samples. Amino acids, organic acids, amino acid derivatives, dipeptides, purine derivatives, and unknown exogenous compounds were identified in sweat when using high resolution tandem mass spectrometry, including metabolites associated with affected yet asymptomatic CF infants, such as asparagine and glutamine. Unexpectedly, a metabolite of pilocarpine, used to stimulate sweat secretion, pilocarpic acid, and a plasticizer metabolite from environmental exposure, mono(2-ethylhexyl)phthalic acid, were secreted in the sweat of CF infants at significantly lower concentrations relative to unaffected CF screen-positive controls. These results indicated a deficiency in human paraoxonase, an enzyme unrelated to mutations to the cystic fibrosis transmembrane conductance regulator (CFTR) and impaired chloride transport, which is a nonspecific arylesterase/lactonase known to mediate inflammation, bacterial biofilm formation, and recurrent lung infections in affected CF children later in life. This work sheds new light into the

  5. Assessment of Correlation between Sweat Chloride Levels and Clinical Features of Cystic Fibrosis Patients.

    PubMed

    Raina, Manzoor A; Khan, Mosin S; Malik, Showkat A; Raina, Ab Hameed; Makhdoomi, Mudassir J; Bhat, Javed I; Mudassar, Syed

    2016-12-01

    Cystic Fibrosis (CF) is an autosomal recessive disorder and the incidence of this disease is undermined in Northern India. The distinguishable salty character of the sweat belonging to individuals suffering from CF makes sweat chloride estimation essential for diagnosis of CF disease. The aim of this prospective study was to elucidate the relationship of sweat chloride levels with clinical features and pattern of CF. A total of 182 patients, with clinical features of CF were included in this study for quantitative measurement of sweat chloride. Sweat stimulation and collection involved pilocarpine iontophoresis based on the Gibson and Cooks methodology. The quantitative estimation of chloride was done by Schales and Schales method with some modifications. Cystic Fibrosis Trans Membrane Conductance Regulator (CFTR) mutation status was recorded in case of patients with borderline sweat chloride levels to correlate the results and for follow-up. Out of 182 patients having clinical features consistent with CF, borderline and elevated sweat chloride levels were present in 9 (5%) and 41 (22.5%) subjects respectively. Elevated sweat chloride levels were significantly associated with wheeze, Failure To Thrive (FTT), history of CF in Siblings, product of Consanguineous Marriage (CM), digital clubbing and steatorrhoea on univariate analysis. On multivariate analysis only wheeze, FTT and steatorrhoea were found to be significantly associated with elevated sweat chloride levels (p<0.05). Among the nine borderline cases six cases were positive for at least two CFTR mutations and rest of the three cases were not having any mutation in CFTR gene. The diagnosis is often delayed and the disease is advanced in most patients at the time of diagnosis. Sweat testing is a gold standard for diagnosis of CF patients as genetic mutation profile being heterozygous and unlikely to become diagnostic test.

  6. Long-term outcomes of children with intermediate sweat chloride values in infancy.

    PubMed

    Groves, Tyler; Robinson, Paul; Wiley, Veronica; Fitzgerald, Dominic A

    2015-06-01

    To describe the clinical course of children who have intermediate sweat chloride values on initial screening for cystic fibrosis (CF). We performed a retrospective review of children with intermediate sweat chloride values (raised immunoreactive trypsinogen/1 copy of p.F508del CF mutation on newborn screening (NBS)/sweat chloride value of 30-59 mmol/L) presenting to The Children's Hospital at Westmead over 15 years. Patients with an intermediate sweat chloride evolving to a formal diagnosis of CF (termed "delayed CF") were matched (2:1) with NBS positive patients with CF (termed "NBS positive CF"). Clinical outcomes were compared. Fourteen of 29 (48%, 95% CI 0.3-0.66) patients with intermediate sweat chloride value evolved to a diagnosis of CF and were matched with 28 NBS positive patients with CF. Delayed CF had less pancreatic insufficiency (OR 0.06, 95% CI 0.01-0.44, P = .006), less colonization with nonmucoid Pseudomonas aeruginosa (OR 0.04, 95% CI 0.01-0.38, P = .005), milder obstructive lung disease (forced expiratory volume in 1 second/forced vital capacity ratio), and overall disease severity (Shwachman scores) at 10 years (mean difference 5.93, 95% CI 0.39-11.46, P = .04; mean difference 4.72, 95% CI 0.9-8.53, P = .015, respectively). Nutritional outcomes were better at 2 years for delayed CF but did not persist to later ages. In this cohort, approximately one-half of infants with intermediate sweat chloride value were later diagnosed with CF. The clinical course of delayed CF was milder in some aspects compared with NBS positive CF. These results emphasize the importance of ongoing follow-up of infants with intermediate sweat chloride values. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  7. Normal sweat chloride test does not rule out cystic fibrosis.

    PubMed

    Başaran, Abdurrahman Erdem; Karataş-Torun, Nimet; Maslak, İbrahim Cemal; Bingöl, Ayşen; Alper, Özgül M

    2017-01-01

    Başaran AE, Karataş-Torun N, Maslak İC, Bingöl A, Alper ÖM. Normal sweat chloride test does not rule out cystic fibrosis. Turk J Pediatr 2017; 59: 68-70. A 5-month-old patient presented with complaints of fever and cough. He was hospitalized with the diagnosis of bronchopneumonia and pseudo-Bartter's syndrome. Patient was further investigated for diagnosis of cystic fibrosis. The chloride (Cl) level in sweat was determined within the normal range (25.1 mmol/L, 20.3 mmol/L). CFTR (Cystic Fibrosis Transmembrane Regulator gene; NM_000492.2) genotyping results were positive for p.E92K; p.F1052V mutations. The patient was diagnosed with cystic fibrosis. In our patient, with features of CF and normal sweat test, mutation analysis was helpful for the diagnosis of cystic fibrosis.

  8. Correlation of sweat chloride and percent predicted FEV1 in cystic fibrosis patients treated with ivacaftor.

    PubMed

    Fidler, Meredith C; Beusmans, Jack; Panorchan, Paul; Van Goor, Fredrick

    2017-01-01

    Ivacaftor, a CFTR potentiator that enhances chloride transport by acting directly on CFTR to increase its channel gating activity, has been evaluated in patients with different CFTR mutations. Several previous analyses have reported no statistical correlation between change from baseline in ppFEV 1 and reduction in sweat chloride levels for individuals treated with ivacaftor. The objective of the post hoc analysis described here was to expand upon previous analyses and evaluate the correlation between sweat chloride levels and absolute ppFEV 1 changes across multiple cohorts of patients with different CF-causing mutations who were treated with ivacaftor. The goal of the analysis was to help define the potential value of sweat chloride as a pharmacodynamic biomarker for use in CFTR modulator trials. For any given study, reductions in sweat chloride levels and improvements in absolute ppFEV 1 were not correlated for individual patients. However, when the data from all studies were combined, a statistically significant correlation between sweat chloride levels and ppFEV 1 changes was observed (p<0.0001). Thus, sweat chloride level changes in response to potentiation of the CFTR protein by ivacaftor appear to be a predictive pharmacodynamic biomarker of lung function changes on a population basis but are unsuitable for the prediction of treatment benefits for individuals. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. A novel device for quantitative measurement of chloride concentration by fluorescence indicator

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Wu, Xudong; Chon, Chanhee; Gonska, Tanja; Li, Dongqing

    2012-02-01

    Cystic fibrosis (CF) is a life-threatening genetic disease. At present, the common method for diagnosis of CF is to detect the chloride concentration in sweat using ion-selective electrodes. However, the current sweat testing methods require a relatively large quantity of sweat sample, at least 25 µL, which is very difficult to obtain, especially for newborns. This paper presents a new method and a new device for rapid detection of the chloride concentration from a small volume of solution. In this method, the chloride concentration is determined quantitatively by the fluorescence intensity of MQAE, a chloride ion fluorescent indicator. In this device, the sample is carried by a small piece of filter paper on a cover glass exposed to an UV LED light source. The resulting fluorescent signals are detected by a Si photodiode. Data acquisition and processing are accomplished by LabVIEW software in a PDA. Based on the Stern-Volmer relationship, the effects of different parameters on the fluorescence intensity were analyzed. The observed significant difference between 40 and 60 mM (the borderline of chloride concentration for CF) is discussed in this paper. The results show that detection can be completed within 10 s. The minimum detectable volume of the chloride solution is 1 μL. The novel method and the device are of great potential for CF diagnosis.

  10. Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function.

    PubMed

    Concepcion, Axel R; Vaeth, Martin; Wagner, Larry E; Eckstein, Miriam; Hecht, Lee; Yang, Jun; Crottes, David; Seidl, Maximilian; Shin, Hyosup P; Weidinger, Carl; Cameron, Scott; Turvey, Stuart E; Issekutz, Thomas; Meyts, Isabelle; Lacruz, Rodrigo S; Cuk, Mario; Yule, David I; Feske, Stefan

    2016-11-01

    Eccrine sweat glands are essential for sweating and thermoregulation in humans. Loss-of-function mutations in the Ca2+ release-activated Ca2+ (CRAC) channel genes ORAI1 and STIM1 abolish store-operated Ca2+ entry (SOCE), and patients with these CRAC channel mutations suffer from anhidrosis and hyperthermia at high ambient temperatures. Here we have shown that CRAC channel-deficient patients and mice with ectodermal tissue-specific deletion of Orai1 (Orai1K14Cre) or Stim1 and Stim2 (Stim1/2K14Cre) failed to sweat despite normal sweat gland development. SOCE was absent in agonist-stimulated sweat glands from Orai1K14Cre and Stim1/2K14Cre mice and human sweat gland cells lacking ORAI1 or STIM1 expression. In Orai1K14Cre mice, abolishment of SOCE was associated with impaired chloride secretion by primary murine sweat glands. In human sweat gland cells, SOCE mediated by ORAI1 was necessary for agonist-induced chloride secretion and activation of the Ca2+-activated chloride channel (CaCC) anoctamin 1 (ANO1, also known as TMEM16A). By contrast, expression of TMEM16A, the water channel aquaporin 5 (AQP5), and other regulators of sweat gland function was normal in the absence of SOCE. Our findings demonstrate that Ca2+ influx via store-operated CRAC channels is essential for CaCC activation, chloride secretion, and sweat production in humans and mice.

  11. Sweat Sodium, Potassium, and Chloride Concentrations Analyzed Same Day as Collection Versus After 7 Days Storage in a Range of Temperatures.

    PubMed

    Baker, Lindsay B; Barnes, Kelly A; Sopeña, Bridget C; Nuccio, Ryan P; Reimel, Adam J; Ungaro, Corey T

    2018-05-22

    The purpose of this study was to determine the effect of storage temperature on sodium ([Na + ]), potassium ([K + ]), and chloride ([Cl - ]) concentrations of sweat samples analyzed 7 days after collection. Using the absorbent patch technique, 845 sweat samples were collected from 39 subjects (32 ± 7 years, 72.9 ± 10.5 kg) during exercise. On the same day as collection (PRESTORAGE), 609 samples were analyzed for [Na + ], [Cl - ], and [K + ] by ion chromatography (IC) and 236 samples were analyzed for [Na + ] using a compact ion-selective electrode (ISE). Samples were stored at one of the four conditions: -20 °C (IC, n = 138; ISE, n = 60), 8 °C (IC, n = 144; ISE, n = 59), 23 °C (IC, n = 159; ISE, n = 59), or alternating between 8 °C and 23 °C (IC, n = 168; ISE, n = 58). After 7 days in storage (POSTSTORAGE), samples were reanalyzed using the same technique as PRESTORAGE. PRESTORAGE sweat electrolyte concentrations were highly related to that of POSTSTORAGE (intraclass correlation coefficient: .945-.989, p < .001). Mean differences (95% confidence intervals) between PRESTORAGE and POSTSTORAGE were statistically, but not practically, significant for most comparisons: IC [Na + ]: -0.5(0.9) to -2.1(0.9) mmol/L; IC [K + ]: -0.1(0.1) to -0.2(0.1) mmol/L; IC [Cl - ]: -0.4(1.4) to -1.3(1.3) mmol/L; ISE [Na + ]: -2.0(1.1) to 1.3(1.1) mmol/L. Based on typical error of measurement results, 95% of the time PRESTORAGE and POSTSTORAGE sweat [Na + ], [K + ], and [Cl - ] by IC analysis fell within ±7-9, ±0.6-0.7, and ±9-13 mmol/L, respectively, while sweat [Na + ] by ISE was ±6 mmol/L. All conditions produced high reliability and acceptable levels of agreement in electrolyte concentrations of sweat samples analyzed on the day of collection versus after 7 days in storage.

  12. Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function

    PubMed Central

    Concepcion, Axel R.; Vaeth, Martin; Wagner, Larry E.; Eckstein, Miriam; Hecht, Lee; Yang, Jun; Crottes, David; Seidl, Maximilian; Shin, Hyosup P.; Weidinger, Carl; Cameron, Scott; Turvey, Stuart E.; Issekutz, Thomas; Meyts, Isabelle; Lacruz, Rodrigo S.; Cuk, Mario; Yule, David I.

    2016-01-01

    Eccrine sweat glands are essential for sweating and thermoregulation in humans. Loss-of-function mutations in the Ca2+ release–activated Ca2+ (CRAC) channel genes ORAI1 and STIM1 abolish store-operated Ca2+ entry (SOCE), and patients with these CRAC channel mutations suffer from anhidrosis and hyperthermia at high ambient temperatures. Here we have shown that CRAC channel–deficient patients and mice with ectodermal tissue–specific deletion of Orai1 (Orai1K14Cre) or Stim1 and Stim2 (Stim1/2K14Cre) failed to sweat despite normal sweat gland development. SOCE was absent in agonist-stimulated sweat glands from Orai1K14Cre and Stim1/2K14Cre mice and human sweat gland cells lacking ORAI1 or STIM1 expression. In Orai1K14Cre mice, abolishment of SOCE was associated with impaired chloride secretion by primary murine sweat glands. In human sweat gland cells, SOCE mediated by ORAI1 was necessary for agonist-induced chloride secretion and activation of the Ca2+-activated chloride channel (CaCC) anoctamin 1 (ANO1, also known as TMEM16A). By contrast, expression of TMEM16A, the water channel aquaporin 5 (AQP5), and other regulators of sweat gland function was normal in the absence of SOCE. Our findings demonstrate that Ca2+ influx via store-operated CRAC channels is essential for CaCC activation, chloride secretion, and sweat production in humans and mice. PMID:27721237

  13. Is sweat chloride predictive of severity of cystic fibrosis lung disease assessed by chest computed tomography?

    PubMed

    Caudri, Daan; Zitter, David; Bronsveld, Inez; Tiddens, Harm

    2017-09-01

    Cystic Fibrosis (CF) lung disease is characterized by a marked heterogeneity. Sweat chloride-level is a functional marker of the CF Transmembrane Regulator (CFTR) protein and could be an important predictor of later disease severity. In this retrospective analysis children from the Rotterdam CF clinic with available sweat chloride level at diagnosis and at least one routine spirometry-controlled volumetric chest CT scan in follow-up were included. CT scans were scored using the CF-CT scoring system (% of maximum). Associations between sweat chloride-levels and CF-CT scores were calculated using linear regression models, adjusting for age at sweat test and age at follow-up. Because structural lung damage develops over the course of many years, effect modification by the age at follow-up CT-scan was tested for by age-stratification. In 59 children (30 male) sweat chloride was measured at diagnosis (median age 0.5 years, range 0-13) and later chest CT performed (median age 14 years, range 6-18). Sweat chloride was associated with significantly higher CT-CT total score, bronchiectasis score, and mucus plugging score. Stratification for age at follow-up in tertiles showed this association remained only in the oldest age group (range 15-18 years). In that subgroup associations were found with all but one of the CF-CT subscores, as well as with all tested lung functions parameters. Sweat chloride-level is a significant predictor of CF lung disease severity as determined by chest CT and lung function. This association could only be demonstrated in children with follow-up to age 15 years and above. © 2017 Wiley Periodicals, Inc.

  14. Interindividual variability in sweat electrolyte concentration in marathoners.

    PubMed

    Lara, Beatriz; Gallo-Salazar, César; Puente, Carlos; Areces, Francisco; Salinero, Juan José; Del Coso, Juan

    2016-01-01

    Sodium (Na(+)) intake during exercise aims to replace the Na(+) lost by sweat to avoid electrolyte imbalances, especially in endurance disciplines. However, Na(+) needs can be very different among individuals because of the great inter-individual variability in sweat electrolyte concentration. The aim of this investigation was to determine sweat electrolyte concentration in a large group of marathoners. A total of 157 experienced runners (141 men and 16 women) completed a marathon race (24.4 ± 3.6 °C and 27.7 ± 4.8 % of humidity). During the race, sweat samples were collected by using sweat patches placed on the runners' forearms. Sweat electrolyte concentration was measured by using photoelectric flame photometry. As a group, sweat Na(+) concentration was 42.9 ± 18.7 mmol·L(-1) (minimal-maximal value = 7.0-95.5 mmol·L(-1)), sweat Cl(-) concentration was 32.2 ± 15.6 mmol·L(-1) (7.3-90.6 mmol·L(-1)) and sweat K(+) concentration was 6.0 ± 0.9 mmol·L(-1) (3.1-8.0 mmol·L(-1)). Women presented lower sweat Na(+) (33.9 ± 12.1 vs 44.0 ± 19.1 mmol·L(-1); P = 0.04) and sweat Cl(-) concentrations (22.9 ± 10.5 vs 33.2 ± 15.8 mmol·L(-1); P = 0.01) than men. A 20 % of individuals presented a sweat Na(+) concentration higher than 60 mmol·L(-1) while this threshold was not surpassed by any female marathoner. Sweat electrolyte concentration did not correlate to sweat rate, age, body characteristics, experience or training. Although there was a significant correlation between sweat Na(+) concentration and running pace (r = 0.18; P = 0.03), this association was weak to interpret that sweat Na(+) concentration increased with running pace. The inter-individual variability in sweat electrolyte concentration was not explained by any individual characteristics except for individual running pace and sex. An important portion (20 %) of marathoners might need special sodium intake recommendations due to

  15. Ion chromatography for the precise analysis of chloride and sodium in sweat for the diagnosis of cystic fibrosis.

    PubMed

    Doorn, J; Storteboom, T T R; Mulder, A M; de Jong, W H A; Rottier, B L; Kema, I P

    2015-07-01

    Measurement of chloride in sweat is an essential part of the diagnostic algorithm for cystic fibrosis. The lack in sensitivity and reproducibility of current methods led us to develop an ion chromatography/high-performance liquid chromatography (IC/HPLC) method, suitable for the analysis of both chloride and sodium in small volumes of sweat. Precision, linearity and limit of detection of an in-house developed IC/HPLC method were established. Method comparison between the newly developed IC/HPLC method and the traditional Chlorocounter was performed, and trueness was determined using Passing Bablok method comparison with external quality assurance material (Royal College of Pathologists of Australasia). Precision and linearity fulfill criteria as established by UK guidelines are comparable with inductively coupled plasma-mass spectrometry methods. Passing Bablok analysis demonstrated excellent correlation between IC/HPLC measurements and external quality assessment target values, for both chloride and sodium. With a limit of quantitation of 0.95 mmol/L, our method is suitable for the analysis of small amounts of sweat and can thus be used in combination with the Macroduct collection system. Although a chromatographic application results in a somewhat more expensive test compared to a Chlorocounter test, more accurate measurements are achieved. In addition, simultaneous measurements of sodium concentrations will result in better detection of false positives, less test repeating and thus faster and more accurate and effective diagnosis. The described IC/HPLC method, therefore, provides a precise, relatively cheap and easy-to-handle application for the analysis of both chloride and sodium in sweat. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Skin Tattoos Alter Sweat Rate and Na+ Concentration.

    PubMed

    Luetkemeier, Maurie Joe; Hanisko, Joseph Michael; Aho, Kyle Mathiew

    2017-07-01

    The popularity of tattoos has increased tremendously in the last 10 yr particularly among athletes and military personnel. The tattooing process involves permanently depositing ink under the skin at a similar depth as eccrine sweat glands (3-5 mm). The purpose of this study was to compare the sweat rate and sweat Na concentration of tattooed versus nontattooed skin. The participants were 10 healthy men (age = 21 ± 1 yr), all with a unilateral tattoo covering a circular area at least 5.2 cm. Sweat was stimulated by iontophoresis using agar gel disks impregnated with 0.5% pilocarpine nitrate. The nontattooed skin was located contralateral to the position of the tattooed skin. The disks used to collect sweat were composed of Tygon® tubing wound into a spiral so that the sweat was pulled into the tubing by capillary action. The sweat rate was determined by weighing the disk before and after sweat collection. The sweat Na concentration was determined by flame photometry. The mean sweat rate from tattooed skin was significantly less than nontattooed skin (0.18 ± 0.15 vs 0.35 ± 0.25 mg·cm·min; P = 0.001). All 10 participants generated less sweat from tattooed skin than nontattooed skin and the effect size was -0.79. The mean sweat Na concentration from tattooed skin was significantly higher than nontattooed skin (69.1 ± 28.9 vs 42.6 ± 15.2 mmol·L; P = 0.02). Nine of 10 participants had higher sweat Na concentration from tattooed skin than nontattooed skin, and the effect size was 1.01. Tattooed skin generated less sweat and a higher Na concentration than nontattooed skin when stimulated by pilocarpine iontophoresis.

  17. Diagnosis of cystic fibrosis in the kindred of an infant with CFTR-related metabolic syndrome: importance of follow-up that includes monitoring sweat chloride concentrations over time.

    PubMed

    Williams, Sophia N; Nussbaum, Eliezer; Chin, Terry W; Do, Paul C M; Singh, Kathryn E; Randhawa, Inderpal

    2014-03-01

    Newly implemented newborn screening (NBS) programs in California have resulted in a large subset of patients in whom at least two cystic fibrosis transmembrane conductance regulator (CFTR) mutations are identified, but subsequent sweat chloride analysis reveals normal or indeterminate values. These patients are diagnosed with CFTR-Related Metabolic Syndrome (CRMS). However, the natural progression and management of these patients are not clearly understood and frequently after the age of 1-year these patients are lost to follow-up with Cystic Fibrosis (CF) Centers. We present the first case of an infant who was referred to Miller Children's Hospital for a NBS positive for CF and subsequent discovery of identical mutations in six of his seven older brothers. Several siblings had positive sweat chloride results on repeat testing after the age of 3 years. We suggest the need for continued follow-up of CRMS in a CF center with diagnostic evaluation including repeat sweat chloride testing, beyond the currently recommended period. © 2013 Wiley Periodicals, Inc.

  18. A candidate reference method using ICP-MS for sweat chloride quantification.

    PubMed

    Collie, Jake T; Massie, R John; Jones, Oliver A H; Morrison, Paul D; Greaves, Ronda F

    2016-04-01

    The aim of the study was to develop a method for sweat chloride (Cl) quantification using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to present to the Joint Committee for Traceability in Laboratory Medicine (JCTLM) as a candidate reference method for the diagnosis of cystic fibrosis (CF). Calibration standards were prepared from sodium chloride (NaCl) to cover the expected range of sweat Cl values. Germanium (Ge) and scandium (Sc) were selected as on-line (instrument based) internal standards (IS) and gallium (Ga) as the off-line (sample based) IS. The method was validated through linearity, accuracy and imprecision studies as well as enrolment into the Royal College of Pathologists of Australasia Quality Assurance Program (RCPAQAP) for sweat electrolyte testing. Two variations of the ICP-MS method were developed, an on-line and off-line IS, and compared. Linearity was determined up to 225 mmol/L with a limit of quantitation of 7.4 mmol/L. The off-line IS demonstrated increased accuracy through the RCPAQAP performance assessment (CV of 1.9%, bias of 1.5 mmol/L) in comparison to the on-line IS (CV of 8.0%, bias of 3.8 mmol/L). Paired t-tests confirmed no significant differences between sample means of the two IS methods (p=0.53) or from each method against the RCPAQAP target values (p=0.08 and p=0.29). Both on and off-line IS methods generated highly reproducible results and excellent linear comparison to the RCPAQAP target results. ICP-MS is a highly accurate method with a low limit of quantitation for sweat Cl analysis and should be recognised as a candidate reference method for the monitoring and diagnosis of CF. Laboratories that currently practice sweat Cl analysis using ICP-MS should include an off-line IS to help negate any pre-analytical errors.

  19. Surface contamination artificially elevates initial sweat mineral concentrations

    USDA-ARS?s Scientific Manuscript database

    During exercise in the heat, sweat is initially concentrated in minerals, but serial sweat samples appear more dilute. Possible causes include reduced dermal mineral concentrations or flushing of surface contamination. PURPOSE: To simultaneously sample mineral concentrations in transdermal fluid (T...

  20. A NEW METHOD OF SWEAT TESTING: THE CF QUANTUM® SWEAT TEST

    PubMed Central

    Rock, Michael J.; Makholm, Linda; Eickhoff, Jens

    2015-01-01

    Background Conventional methods of sweat testing are time consuming and have many steps that can and do lead to errors. This study compares conventional sweat testing to a new quantitative method, the CF Quantum® (CFQT) sweat test. This study tests the diagnostic accuracy and analytic validity of the CFQT. Methods Previously diagnosed CF patients and patients who required a sweat test for clinical indications were invited to have the CFQT test performed. Both conventional sweat testing and the CFQT were performed bilaterally on the same day. Pairs of data from each test are plotted as a correlation graph and Bland Altman plot. Sensitivity and specificity were calculated as well as the means and coefficient of variation by test and by extremity. After completing the study, subjects or their parents were asked for their preference of the CFQT and conventional sweat testing. Results The correlation coefficient between the CFQT and conventional sweat testing was 0.98 (95% confidence interval: 0.97–0.99). The sensitivity and specificity of the CFQT in diagnosing CF was 100% (95% confidence interval: 94–100%) and 96% (95% confidence interval: 89–99%), respectively. In one center in this three center multicenter study, there were higher sweat chloride values in patients with CF and also more tests that were invalid due to discrepant values between the two extremities. The percentage of invalid tests was higher in the CFQT method (16.5%) compared to conventional sweat testing (3.8%)(p < 0.001). In the post-test questionnaire, 88% of subjects/parents preferred the CFQT test. Conclusions The CFQT is a fast and simple method of quantitative sweat chloride determination. This technology requires further refinement to improve the analytic accuracy at higher sweat chloride values and to decrease the number of invalid tests. PMID:24862724

  1. Effects of Immediate Telephone Follow-Up with Providers on Sweat Chloride Test Timing after Cystic Fibrosis Newborn Screening Identifies a Single Mutation

    PubMed Central

    La Pean, Alison; Farrell, Michael H.; Eskra, Kerry L.; Farrell, Philip M.

    2012-01-01

    Objectives To assess whether reporting “possible cystic fibrosis (CF)” newborn screening (NBS) results via fax plus simultaneous telephone contact with primary care providers (PCPs), versus fax alone, influenced three outcomes: getting a sweat chloride test, age at sweat chloride test, and sweat-testing before 8 weeks old. Study Design Retrospective cohort comparison of infants born in Wisconsin whose PCPs received telephone intervention (n=301), versus recent historical controls whose PCP did not (n=355). Intervention data were collected during a longitudinal research and quality improvement effort; de-identified comparison data were constructed from auxiliary NBS tracking information. Parametric and nonparametric statistical analyses tested for group differences. Results Most infants (92%) with “possible CF” NBS results whose PCPs lacked telephone intervention ultimately underwent sweat-testing, underlining efficacy for fax-only reporting. Telephone intervention was significantly associated with improvements in infants undergoing sweat-testing at both ≤6 and <8 weeks and a slight, but non-significant, 3.5-day reduction in infants’ age at sweat-testing. The effect of telephone intervention was greater for PCPs whose patients underwent sweat-testing at community-affiliated medical centers versus academic medical centers (p=0.008). Conclusion Reporting “possible CF” NBS results via fax plus simultaneous telephone follow-up with PCPs increases the number of infants who have sweat chloride tests before 8 weeks of age, when affected infants are more likely to receive full benefits of early diagnosis and treatment. PMID:23102590

  2. A new method of sweat testing: the CF Quantum®sweat test.

    PubMed

    Rock, Michael J; Makholm, Linda; Eickhoff, Jens

    2014-09-01

    Conventional methods of sweat testing are time consuming and have many steps that can and do lead to errors. This study compares conventional sweat testing to a new quantitative method, the CF Quantum® (CFQT) sweat test. This study tests the diagnostic accuracy and analytic validity of the CFQT. Previously diagnosed CF patients and patients who required a sweat test for clinical indications were invited to have the CFQT test performed. Both conventional sweat testing and the CFQT were performed bilaterally on the same day. Pairs of data from each test are plotted as a correlation graph and Bland-Altman plot. Sensitivity and specificity were calculated as well as the means and coefficient of variation by test and by extremity. After completing the study, subjects or their parents were asked for their preference of the CFQT and conventional sweat testing. The correlation coefficient between the CFQT and conventional sweat testing was 0.98 (95% confidence interval: 0.97-0.99). The sensitivity and specificity of the CFQT in diagnosing CF was 100% (95% confidence interval: 94-100%) and 96% (95% confidence interval: 89-99%), respectively. In one center in this three center multicenter study, there were higher sweat chloride values in patients with CF and also more tests that were invalid due to discrepant values between the two extremities. The percentage of invalid tests was higher in the CFQT method (16.5%) compared to conventional sweat testing (3.8%) (p < 0.001). In the post-test questionnaire, 88% of subjects/parents preferred the CFQT test. The CFQT is a fast and simple method of quantitative sweat chloride determination. This technology requires further refinement to improve the analytic accuracy at higher sweat chloride values and to decrease the number of invalid tests. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  3. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes.

    PubMed

    Baker, Lindsay B; Barnes, Kelly A; Anderson, Melissa L; Passe, Dennis H; Stofan, John R

    2016-01-01

    The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na+]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15-50 °C) during training or competition in the laboratory or field. A standardised regional absorbent patch technique was used to determine sweat [Na+] on the dorsal mid-forearm. Whole-body sweat [Na+] was predicted using a published regression equation (y = 0.57x+11.05). Whole-body sweating rate was calculated from pre- to post-exercise change in body mass, corrected for fluid/food intake (ad libitum) and urine output. Data are expressed as mean ± SD (range). Forearm sweat [Na+] and predicted whole-body sweat [Na+] were 43.6 ± 18.2 (12.6-104.8) mmol · L(-1) and 35.9 ± 10.4 (18.2-70.8) mmol · L(-1), respectively. Absolute and relative whole-body sweating rates were 1.21 ± 0.68 (0.26-5.73) L · h(-1) and 15.3 ± 6.8 (3.3-69.7) ml · kg(-1) · h(-1), respectively. This retrospective analysis provides normative data for athletes' forearm and predicted whole-body sweat [Na+] as well as absolute and relative whole-body sweating rate across a range of sports and environmental conditions.

  4. Sweat chloride and immunoreactive trypsinogen in infants carrying two CFTR mutations and not affected by cystic fibrosis.

    PubMed

    Castellani, Carlo; Tridello, Gloria; Tamanini, Anna; Assael, Baroukh M

    2017-07-01

    Newborns with raised immunotrypsinogen levels who have non-pathological sweat chloride values and carry two cystic fibrosis transmembrane regulator ( CFTR ) mutations of which at least one is not acknowledged to be cystic fibrosis (CF)-causing are at risk of developing clinical manifestations consistent with CFTR-related disorders or even CF. It is not known whether newborns with similar genotypes and normal immunoreactive trypsinogen (IRT) may share the same risk. This study found that newborns with these characteristics and normal IRT have lower sweat chloride values than those with raised IRT (p=0.007). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Sweating Rate and Sweat Sodium Concentration in Athletes: A Review of Methodology and Intra/Interindividual Variability.

    PubMed

    Baker, Lindsay B

    2017-03-01

    Athletes lose water and electrolytes as a consequence of thermoregulatory sweating during exercise and it is well known that the rate and composition of sweat loss can vary considerably within and among individuals. Many scientists and practitioners conduct sweat tests to determine sweat water and electrolyte losses of athletes during practice and competition. The information gleaned from sweat testing is often used to guide personalized fluid and electrolyte replacement recommendations for athletes; however, unstandardized methodological practices and challenging field conditions can produce inconsistent/inaccurate results. The primary objective of this paper is to provide a review of the literature regarding the effect of laboratory and field sweat-testing methodological variations on sweating rate (SR) and sweat composition (primarily sodium concentration [Na + ]). The simplest and most accurate method to assess whole-body SR is via changes in body mass during exercise; however, potential confounding factors to consider are non-sweat sources of mass change and trapped sweat in clothing. In addition, variability in sweat [Na + ] can result from differences in the type of collection system used (whole body or localized), the timing/duration of sweat collection, skin cleaning procedure, sample storage/handling, and analytical technique. Another aim of this paper is to briefly review factors that may impact intra/interindividual variability in SR and sweat [Na + ] during exercise, including exercise intensity, environmental conditions, heat acclimation, aerobic capacity, body size/composition, wearing of protective equipment, sex, maturation, aging, diet, and/or hydration status. In summary, sweat testing can be a useful tool to estimate athletes' SR and sweat Na + loss to help guide fluid/electrolyte replacement strategies, provided that data are collected, analyzed, and interpreted appropriately.

  6. Super-Absorbent Polymer Valves and Colorimetric Chemistries for Time-Sequenced Discrete Sampling and Chloride Analysis of Sweat via Skin-Mounted Soft Microfluidics.

    PubMed

    Kim, Sung Bong; Zhang, Yi; Won, Sang Min; Bandodkar, Amay J; Sekine, Yurina; Xue, Yeguang; Koo, Jahyun; Harshman, Sean W; Martin, Jennifer A; Park, Jeong Min; Ray, Tyler R; Crawford, Kaitlyn E; Lee, Kyu-Tae; Choi, Jungil; Pitsch, Rhonda L; Grigsby, Claude C; Strang, Adam J; Chen, Yu-Yu; Xu, Shuai; Kim, Jeonghyun; Koh, Ahyeon; Ha, Jeong Sook; Huang, Yonggang; Kim, Seung Wook; Rogers, John A

    2018-03-01

    This paper introduces super absorbent polymer valves and colorimetric sensing reagents as enabling components of soft, skin-mounted microfluidic devices designed to capture, store, and chemically analyze sweat released from eccrine glands. The valving technology enables robust means for guiding the flow of sweat from an inlet location into a collection of isolated reservoirs, in a well-defined sequence. Analysis in these reservoirs involves a color responsive indicator of chloride concentration with a formulation tailored to offer stable operation with sensitivity optimized for the relevant physiological range. Evaluations on human subjects with comparisons against ex situ analysis illustrate the practical utility of these advances. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sweat sodium loss influences serum sodium concentration in a marathon.

    PubMed

    Lara, B; Salinero, J J; Areces, F; Ruiz-Vicente, D; Gallo-Salazar, C; Abián-Vicén, J; Del Coso, J

    2017-02-01

    The aim of this investigation was to determine the influence of sweat electrolyte concentration on body water and electrolyte homeostasis during a marathon. Fifty-one runners completed a marathon race in a warm and dry environment (24.4 ± 3.6 °C). Runners were classified as low-salt sweaters (n = 21; <30 mmol/L of sweat Na + concentration), typical sweaters (n = 20; ≥30 and <60 mmol/L of sweat Na + concentration), and salty sweaters (n = 10; ≥60 mmol/L of sweat Na + concentration). Before and after the race, body mass and a sample of venous blood were obtained. During the race, sweat samples were collected by using sweat patches, and fluid and electrolyte intake were recorded by using self-reported questionnaires. Low-salt, typical and salty sweaters presented similar sweat rates (0.93 ± 0.2, 0.92 ± 0.29, 0.99 ± 0.21 L/h, respectively), body mass changes (-3.0 ± 1.0, -3.3 ± 1.0, -3.2 ± 0.8%), total Na + intake (12.7 ± 8.1, 11.5 ± 9.7, 14.5 ± 16.6 mmol), and fluid intake (1.3 ± 0.8, 1.2 ± 0.8, 1.2 ± 0.6 L) during the race. However, salty sweaters presented lower post-race serum Na + concentration (140.8 ± 1.3 vs 142.5 ± 1.1, 142.4 ± 1.4 mmol/L; P < 0.01) and serum osmolality (297 ± 6 vs 299 ± 5, 301 ± 6 mOsm/kg; P < 0.05) than low-salt and typical sweaters. Sweat electrolyte concentration could influence post-race serum electrolyte concentration in the marathon. However, even the saltiest sweaters did not develop exercise-associated hyponatremia or associated symptoms. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat.

    PubMed

    Cinti, Stefano; Fiore, Luca; Massoud, Renato; Cortese, Claudio; Moscone, Danila; Palleschi, Giuseppe; Arduini, Fabiana

    2018-03-01

    The recent goal of sustainability in analytical chemistry has boosted the development of eco-designed analytical tools to deliver fast and cost-effective analysis with low economic and environmental impact. Due to the recent focus in sustainability, we report the use of low-cost filter paper as a sustainable material to print silver electrodes and to load reagents for a reagent-free electrochemical detection of chloride in biological samples, namely serum and sweat. The electrochemical detection of chloride ions was carried out by exploiting the reaction of the analyte (i.e. chloride) with the silver working electrode. During the oxidation wave in cyclic voltammetry the silver ions are produced, thus they react with chloride ions to form AgCl, while in the reduction wave, the following reaction occurs: AgCl + e - -->Ag + Cl - . These reactions at the electrode surface resulted in anodic/cathodic peaks directly proportional to the chloride ions in solution. Chloride ions were detected with the addition of only 10μL of the sample on the paper-based electrochemical cell, obtaining linearity up to 200mM with a detection limit equal to 1mM and relative standard deviation lower than 10%. The accuracy of the sensor was evaluated in serum and sweat samples, with percentage recoveries between 93 ± 10 and 108 ± 8%. Moreover, the results achieved with the paper-based device were positively compared with those obtained by using the gold standard method (Ion Selective Electrode) adopted in routine clinical analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sweat conductivity: an accurate diagnostic test for cystic fibrosis?

    PubMed

    Mattar, Ana Claudia Veras; Leone, Claudio; Rodrigues, Joaquim Carlos; Adde, Fabíola Villac

    2014-09-01

    Sweat chloride test is the gold standard test for cystic fibrosis (CF) diagnosis. Sweat conductivity is widely used although still considered a screening test. This was a prospective, cross-sectional, diagnostic research conducted at the laboratory of the Instituto da Criança of the Hospital das Clínicas, São Paulo, Brazil. Sweat chloride (quantitative pilocarpine iontophoresis) and sweat conductivity tests were simultaneously performed in patients referred for a sweat test between March 2007 and October 2008. Conductivity and chloride cut-off values used to rule out or diagnose CF were <75 and ≥90 mmol/L and <60 and ≥60 mmol/L, respectively. The ROC curve method was used to calculate the sensitivity, specificity, positive (PPV) and negative predictive value (NPV), as well as the respective 95% confidence intervals and to calculate the area under the curve for both tests. The kappa coefficient was used to evaluate agreement between the tests. Both tests were performed in 738 children, and CF was ruled out in 714 subjects; the median sweat chloride and conductivity values were 11 and 25 mmol/L in these populations, respectively. Twenty-four patients who had received a diagnosis of CF presented median sweat chloride and conductivity values of 87 and 103 mmol/L, respectively. Conductivity values above 90 mmol/L had 83.3% sensitivity, 99.7% specificity, 90.9% PPV and 99.4% NPV to diagnose CF. The best conductivity cut-off value to exclude CF was <75 mmol/L. Good agreement was observed between the tests (kappa: 0.934). The sweat conductivity test yielded a high degree of diagnostic accuracy and it showed good agreement with sweat chloride. We suggest that it should play a role as a diagnostic test for CF in the near future. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  10. On sweat analysis for quantitative estimation of dehydration during physical exercise.

    PubMed

    Ring, Matthias; Lohmueller, Clemens; Rauh, Manfred; Eskofier, Bjoern M

    2015-08-01

    Quantitative estimation of water loss during physical exercise is of importance because dehydration can impair both muscular strength and aerobic endurance. A physiological indicator for deficit of total body water (TBW) might be the concentration of electrolytes in sweat. It has been shown that concentrations differ after physical exercise depending on whether water loss was replaced by fluid intake or not. However, to the best of our knowledge, this fact has not been examined for its potential to quantitatively estimate TBW loss. Therefore, we conducted a study in which sweat samples were collected continuously during two hours of physical exercise without fluid intake. A statistical analysis of these sweat samples revealed significant correlations between chloride concentration in sweat and TBW loss (r = 0.41, p <; 0.01), and between sweat osmolality and TBW loss (r = 0.43, p <; 0.01). A quantitative estimation of TBW loss resulted in a mean absolute error of 0.49 l per estimation. Although the precision has to be improved for practical applications, the present results suggest that TBW loss estimation could be realizable using sweat samples.

  11. Italian external quality assessment program for cystic fibrosis sweat chloride test: a 2015 and 2016 results comparison.

    PubMed

    Salvatore, Marco; Floridia, Giovanna; Amato, Annalisa; Censi, Federica; de Stefano, Maria Chiara; Ferrari, Gianluca; Tosto, Fabrizio; Taruscio, Domenica

    2017-01-01

    Diagnostic testing in cystic fibrosis (CF) is based on the sweat chloride test (SCT) in the context of appropriate signs and symptoms of disease and results of the gene mutation analysis. In 2014 the Istituto Superiore di Sanità (ISS) established a pilot Italian external quality assessment program for CF sweat chloride test (Italian EQA-SCT). In 2015 this activity was recognized as a third party service carried out by the ISS. The aim of the paper is to compare 2015 and 2016 results and experiences. The scheme is prospective; enrollment is voluntary and the payment of a fee is required. Participants are registered and identified by a specific Identification Number (ID) through a dedicated web-facility. Assessment covers analysis, interpretation and reporting of results. Thirteen and fifteen laboratories, participated in the 2015 and 2016 round respectively. Seven laboratories participated constantly from 2014, eleven participated both in 2015 and 2016 and four participated in 2016 for the first time. Variability in scores of chloride titration and heterogeneity in interpretation/reporting results were detected in both rounds. A total of 18 critical errors in chloride titration were made by eight different participants. Four laboratories made errors in chloride titration in 2015 but drastically improved their performance in 2016. In 2016 poor performance criteria were established and adopted. Even though results show variability in performance of laboratories, constant and mandatory participation may contribute to the improvement of performance and quality reached by laboratory.

  12. New approach for cystic fibrosis diagnosis based on chloride/potassium ratio analyzed in non-invasively obtained skin-wipe sweat samples by capillary electrophoresis with contactless conductometric detection.

    PubMed

    Ďurč, Pavol; Foret, František; Pokojová, Eva; Homola, Lukáš; Skřičková, Jana; Herout, Vladimír; Dastych, Milan; Vinohradská, Hana; Kubáň, Petr

    2017-05-01

    A new approach for sweat analysis used in cystic fibrosis (CF) diagnosis is proposed. It consists of a noninvasive skin-wipe sampling followed by analysis of target ions using capillary electrophoresis with contactless conductometric detection (C4D). The skin-wipe sampling consists of wiping a defined skin area with precleaned cotton swab moistened with 100 μL deionized water. The skin-wipe sample is then extracted for 3 min into 400 μL deionized water, and the extract is analyzed directly. The developed sampling method is cheap, simple, fast, and painless, and can replace the conventional pilocarpine-induced sweat chloride test commonly applied in CF diagnosis. The aqueous extract of the skin-wipe sample content is analyzed simultaneously by capillary electrophoresis with contactless conductometric detection using a double opposite end injection. A 20 mmol/L L-histidine/2-(N-morpholino)ethanesulfonic acid and 2 mmol/L 18-crown-6 at pH 6 electrolyte can separate all the major ions in less than 7 min. Skin-wipe sample extracts from 30 study participants-ten adult patients with CF (25-50 years old), ten pediatric patients with CF (1-15 years old), and ten healthy control individuals (1-18 years old)-were obtained and analyzed. From the analyzed ions in all samples, a significant difference between chloride and potassium concentrations was found in the CF patients and healthy controls. We propose the use of the Cl - /K + ratio rather than the absolute Cl - concentration and a cutoff value of 4 in skin-wipe sample extracts as an alternative to the conventional sweat chloride analysis. The proposed Cl - /K + ion ratio proved to be a more reliable indicator, is independent of the patient's age, and allows better differentiation between non-CF individuals and CF patients having intermediate values on the Cl - sweat test. Figure New approach for cystic fibrosis diagnosis based on skin-wipe sampling of forearm and analysis of ionic content (Cl - /K + ratio) in

  13. Lack of harmonization in sweat testing for cystic fibrosis - a national survey.

    PubMed

    Christiansen, Anne Lindegaard; Nybo, Mads

    2014-11-01

    Sweat testing is used in the diagnosis of cystic fibrosis. Interpretation of the sweat test depends, however, on the method performed since conductivity, osmolality and chloride concentration all can be measured as part of a sweat test. The aim of this study was to investigate how performance of the test is organized in Denmark. Departments conducting the sweat test were contacted and interviewed following a premade questionnaire. They were asked about methods performed, applied NPU (Nomenclature for Properties and Units) code, reference interval, recommended interpretation and referred literature. 14 departments performed the sweat test. One department measured chloride and sodium concentration, while 13 departments measured conductivity. One department used a non-existing NPU code, two departments applied NPU codes inconsistent with the method performed, four departments applied no NPU code and seven applied a correct NPU code. Ten of the departments measuring conductivity applied reference intervals. Nine departments measuring conductivity had recommendations of a normal area, a grey zone and a pathological value, while four departments only applied a normal and grey zone or a pathological value. Cut-off values for normal, grey and pathological areas were like the reference intervals inconsistent. There is inconsistent use of NPU codes, reference intervals and interpretation of sweat conductivity used in the process of diagnosing cystic fibrosis. Because diagnosing cystic fibrosis is a combined effort between local pediatric departments, biochemical and genetic departments and cystic fibrosis centers, a national harmonization is necessary to assure correct clinical use.

  14. Body map of regional vs. whole body sweating rate and sweat electrolyte concentrations in men and women during moderate exercise-heat stress.

    PubMed

    Baker, Lindsay B; Ungaro, Corey T; Sopeña, Bridget C; Nuccio, Ryan P; Reimel, Adam J; Carter, James M; Stofan, John R; Barnes, Kelly A

    2018-05-01

    This study determined the relations between regional (REG) and whole body (WB) sweating rate (RSR and WBSR, respectively) as well as REG and WB sweat Na + concentration ([Na + ]) during exercise. Twenty-six recreational athletes (17 men, 9 women) cycled for 90 min while WB sweat [Na + ] was measured using the washdown technique. RSR and REG sweat [Na + ] were measured from nine regions using absorbent patches. RSR and REG sweat [Na + ] from all regions were significantly ( P < 0.05) correlated with WBSR ( r = 0.58-0.83) and WB sweat [Na + ] ( r = 0.74-0.88), respectively. However, the slope and y-intercept of the regression lines for most models were significantly different than 1 and 0, respectively. The coefficients of determination ( r 2 ) were 0.44-0.69 for RSR predicting WBSR [best predictors: dorsal forearm ( r 2  = 0.62) and triceps ( r 2  = 0.69)] and 0.55-0.77 for REG predicting WB sweat [Na + ] [best predictors: ventral forearm ( r 2  = 0.73) and thigh ( r 2  = 0.77)]. There was a significant ( P < 0.05) effect of day-to-day variability on the regression model predicting WBSR from RSR at most regions but no effect on predictions of WB sweat [Na + ] from REG. Results suggest that REG cannot be used as a direct surrogate for WB sweating responses. Nonetheless, the use of regression equations to predict WB sweat [Na + ] from REG can provide an estimation of WB sweat [Na + ] with an acceptable level of accuracy, especially using the forearm or thigh. However, the best practice for measuring WBSR remains conventional WB mass balance calculations since prediction of WBSR from RSR using absorbent patches does not meet the accuracy or reliability required to inform fluid intake recommendations. NEW & NOTEWORTHY This study developed a body map of regional sweating rate and regional (REG) sweat electrolyte concentrations and determined the effect of within-subject (bilateral and day-to-day) and between-subject (sex) factors on the relations

  15. Effects of high and low blood lactate concentrations on sweat lactate response.

    PubMed

    Green, J M; Bishop, P A; Muir, I H; McLester, J R; Heath, H E

    2000-11-01

    Sweat lactate results from eccrine gland metabolism, however, the possible clearance of blood lactate through sweat has not been resolved. On separate days in an environmental chamber (32 +/- 1 C) 12 subjects completed a constant load (CON) (30 min at 40% VO2 max) and an interval cycling trial (INT) (15 one-min intervals at 80% VO2 max, each separated by one min rest) each designed to elicit different blood lactate responses. Each 30 min cycling trial was preceded by 15 min warm-up (30 watts) and followed by 15 min passive rest. Sweat and blood were analyzed for lactate concentration at 15, 25, 35, 45, and 60 min during CON and INT. Total body water loss was used to calculate sweat rate (ml/hr). Blood lactate was significantly greater (p < or = 0.05) at 25, 35, 45, and 60 min during INT compared to CON (approximately 5 mmol/L vs 1.5 mmol/L). Sweat lactate was not significantly different (p>0.05) between trials at any time (approximately 10 mmol/L). Sweat rates (approximately 600ml/hr) and estimated total lactate secretion were not significantly different (CON vs. INT) (p > 0.05). Elevated blood lactate was not associated with changes in sweat lactate concentration. Sweat lactate seems to originate in eccrine glands independent of blood lactate.

  16. A Soft, Wearable Microfluidic Device for the Capture, Storage, and Colorimetric Sensing of Sweat

    PubMed Central

    Koh, Ahyeon; Kang, Daeshik; Xue, Yeguang; Lee, Seungmin; Pielak, Rafal M.; Kim, Jeonghyun; Hwang, Taehwan; Min, Seunghwan; Banks, Anthony; Bastien, Philippe; Manco, Megan C.; Wang, Liang; Ammann, Kaitlyn R.; Jang, Kyung-In; Won, Phillip; Han, Seungyong; Ghaffari, Roozbeh; Paik, Ungyu; Slepian, Marvin J.; Balooch, Guive; Huang, Yonggang; Rogers, John A.

    2017-01-01

    Capabilities in health monitoring via capture and quantitative chemical analysis of sweat could complement, or potentially obviate the need for, approaches based on sporadic assessment of blood samples. Established sweat monitoring technologies use simple fabric swatches and are limited to basic analysis in controlled laboratory or hospital settings. We present a collection of materials and device designs for soft, flexible and stretchable microfluidic systems, including embodiments that integrate wireless communication electronics, which can intimately and robustly bond to the surface of skin without chemical and mechanical irritation. This integration defines access points for a small set of sweat glands such that perspiration spontaneously initiates routing of sweat through a microfluidic network and set of reservoirs. Embedded chemical analyses respond in colorimetric fashion to markers such as chloride and hydronium ions, glucose and lactate. Wireless interfaces to digital image capture hardware serve as a means for quantitation. Human studies demonstrated the functionality of this microfluidic device during fitness cycling in a controlled environment and during long-distance bicycle racing in arid, outdoor conditions. The results include quantitative values for sweat rate, total sweat loss, pH and concentration of both chloride and lactate. PMID:27881826

  17. Normative data on regional sweat-sodium concentrations of professional male team-sport athletes.

    PubMed

    Ranchordas, Mayur K; Tiller, Nicholas B; Ramchandani, Girish; Jutley, Raj; Blow, Andrew; Tye, Jonny; Drury, Ben

    2017-01-01

    The purpose of this paper was to report normative data on regional sweat sweat-sodium concentrations of various professional male team-sport athletes, and to compare sweat-sodium concentrations among sports. Data to this effect would inform our understanding of athlete sodium requirements, thus allowing for the individualisation of sodium replacement strategies. Accordingly, data from 696 athletes (Soccer, n = 270; Rugby, n = 181; Baseball, n = 133; American Football, n = 60; Basketball, n = 52) were compiled for a retrospective analysis. Regional sweat-sodium concentrations were collected using the pilocarpine iontophoresis method, and compared to self-reported measures collected via questionnaire. Sweat-sodium concentrations were significantly higher ( p < 0.05) in American football (50.4 ± 15.3 mmol·L -1 ), baseball (54.0 ± 14.0 mmol·L -1 ), and basketball (48.3 ± 14.0 mmol·L -1 ) than either soccer (43.2 ± 12.0 mmol·L -1 ) or rugby (44.0 ± 12.1 mmol·L -1 ), but with no differences among the N.American or British sports. There were strong positive correlations between sweat-sodium concentrations and self-reported sodium losses in American football ( r s = 0.962, p < 0.001), basketball ( r s = 0.953, p < 0.001), rugby ( r s = 0.813, p < 0.001), and soccer ( r s = 0.748, p < 0.001). The normative data provided on sweat-sodium concentrations might assist sports science/medicine practitioners in generating bespoke hydration and electrolyte-replacement strategies to meet the sodium demands of professional team-sport athletes. Moreover, these novel data suggest that self-reported measures of sodium loss might serve as an effective surrogate in the absence of direct measures; i.e., those which are more expensive or non-readily available.

  18. Noninvasive monitoring of plasma L-dopa concentrations using sweat samples in Parkinson's disease.

    PubMed

    Tsunoda, Makoto; Hirayama, Masaaki; Tsuda, Takao; Ohno, Kinji

    2015-03-10

    L-dopa (l-3,4-dihydroxyphenylalanine) is commonly used for treating Parkinson's disease (PD). However, regardless of its prominent effect, therapeutic range of L-dopa narrows down with disease progression, which leads to development of motor complications including wearing off and dyskinesias. In addition, intestinal absorption of L-dopa is inversely correlated with the amount of oral protein intake, and shows intra- and inter-day variability. Hence, frequent monitoring of plasma L-dopa concentrations is beneficial, but frequent venipuncture imposes physical and psychological burdens on patients with PD. We investigated the usefulness of sweat samples instead of plasma samples for monitoring L-dopa concentrations. With a monolithic silica disk-packed spin column and the high-performance liquid chromatography-electrochemical detection system, L-dopa in sweat samples was successfully quantified and analyzed in 23 PD patients. We found that the Pearson's correlation coefficient of the plasma and sweat l-dopa concentrations was 0.678. Although the disease durations and severities were not correlated with the deviation of the actual sweat L-dopa concentrations from the fitted line, acquisition of the sweat samples under a stable condition was technically difficult in severely affected patients. The deviations may also be partly accounted for by skin permeability of L-dopa. Measuring L-dopa concentrations in sweat is suitable to get further insights into the L-dopa metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Sweat electrolytes test

    MedlinePlus

    ... test is used to confirm these results. Normal Results Normal results include: A sweat chloride test result ... edema) can affect the test results. What Abnormal Results Mean An abnormal test may mean that the ...

  20. Laboratory performance of sweat conductivity for the screening of cystic fibrosis.

    PubMed

    Greaves, Ronda F; Jolly, Lisa; Massie, John; Scott, Sue; Wiley, Veronica C; Metz, Michael P; Mackay, Richard J

    2018-03-28

    There are several complementary English-language guidelines for the performance of the sweat chloride test. These guidelines also incorporate information for the collection of conductivity samples. However, recommendations for the measurement and reporting of sweat conductivity are less clear than for sweat chloride. The aim of the study was to develop an understanding of the testing and reporting practices of sweat conductivity in Australasian laboratories. A survey specifically directed at conductivity testing was sent to the 12 laboratories registered with the Royal College of Pathologists of Australasia Quality Assurance Programs. Nine (75%) laboratories participated in the survey, seven of whom used Wescor Macroduct® for collecting sweat and the Wescor SWEAT·CHEK™ for conductivity testing, and the remaining two used the Wescor Nanoduct®. There was considerable variation in frequency and staffing for this test. Likewise, criteria about which patients it was inappropriate to test, definitions of adequate collection sweat rate, cutoffs and actions recommended on the basis of the result showed variations between laboratories. Variations in sweat conductivity testing and reporting reflect many of the same issues that were revealed in sweat chloride test audits and have the potential to lead to uncertainty about the result and the proper action in response to the result. We recommend that sweat testing guidelines should include clearer statements about the use of sweat conductivity.

  1. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat.

    PubMed

    Koh, Ahyeon; Kang, Daeshik; Xue, Yeguang; Lee, Seungmin; Pielak, Rafal M; Kim, Jeonghyun; Hwang, Taehwan; Min, Seunghwan; Banks, Anthony; Bastien, Philippe; Manco, Megan C; Wang, Liang; Ammann, Kaitlyn R; Jang, Kyung-In; Won, Phillip; Han, Seungyong; Ghaffari, Roozbeh; Paik, Ungyu; Slepian, Marvin J; Balooch, Guive; Huang, Yonggang; Rogers, John A

    2016-11-23

    Capabilities in health monitoring enabled by capture and quantitative chemical analysis of sweat could complement, or potentially obviate the need for, approaches based on sporadic assessment of blood samples. Established sweat monitoring technologies use simple fabric swatches and are limited to basic analysis in controlled laboratory or hospital settings. We present a collection of materials and device designs for soft, flexible, and stretchable microfluidic systems, including embodiments that integrate wireless communication electronics, which can intimately and robustly bond to the surface of the skin without chemical and mechanical irritation. This integration defines access points for a small set of sweat glands such that perspiration spontaneously initiates routing of sweat through a microfluidic network and set of reservoirs. Embedded chemical analyses respond in colorimetric fashion to markers such as chloride and hydronium ions, glucose, and lactate. Wireless interfaces to digital image capture hardware serve as a means for quantitation. Human studies demonstrated the functionality of this microfluidic device during fitness cycling in a controlled environment and during long-distance bicycle racing in arid, outdoor conditions. The results include quantitative values for sweat rate, total sweat loss, pH, and concentration of chloride and lactate. Copyright © 2016, American Association for the Advancement of Science.

  2. Evaluating performance in sweat testing in medical biochemistry laboratories in Croatia.

    PubMed

    Aralica, Merica; Krleza, Jasna Lenicek

    2017-02-15

    Sweat test has a diagnostic role in evaluation of cystic fibrosis. Its performance includes sweat stimulation, collection and analysis. All listed may be sources of inconsistencies in everyday practice. The aim of this study was an evaluation of external quality assessment (EQA) of sweat chloride measurement including sweat test performance in medical biochemistry laboratories in Croatia. EQA for sweat chloride measurement was provided by Croatian Centre for Quality Assessment in Laboratory Medicine (CROQALM) in five consecutive exercises to medical biochemistry laboratories (MBL) that offered sweat testing. A questionnaire regarding all phases of testing was mailed to involved MBL (N = 10). Survey results were compared to current guidelines for sweat test performance. Reported results of EQA in 2015 exercises showed coefficients of variation (CV) from 28.9%, 29.0% to 35.3%, respectively. An introduction of uniform sweat chloride measurement protocol resulted in CV of 15.5% and 14.7% reported in following two exercises in 2016. All MBL included in this study replied to the questionnaire. Results reported by MBL indicated: lack of patient information policy (7/10), use of unacceptable electrodes (6/9), misuse of minimum of acceptable sweat weight (6/9), lack of internal quality assessment (5/9) and recommended reference ranges (5/9 and 4/9). Agreements to guidelines were found in approach to unsuitable patients (9/10) and sweat collection (8/9). Presented results indicate major weak points of current practice in sweat test performance in Croatian MBL and stress the need for its standardization on a national level.

  3. Evaluating performance in sweat testing in medical biochemistry laboratories in Croatia

    PubMed Central

    Aralica, Merica; Krleza, Jasna Lenicek

    2017-01-01

    Introduction Sweat test has a diagnostic role in evaluation of cystic fibrosis. Its performance includes sweat stimulation, collection and analysis. All listed may be sources of inconsistencies in everyday practice. The aim of this study was an evaluation of external quality assessment (EQA) of sweat chloride measurement including sweat test performance in medical biochemistry laboratories in Croatia. Materials and methods EQA for sweat chloride measurement was provided by Croatian Centre for Quality Assessment in Laboratory Medicine (CROQALM) in five consecutive exercises to medical biochemistry laboratories (MBL) that offered sweat testing. A questionnaire regarding all phases of testing was mailed to involved MBL (N = 10). Survey results were compared to current guidelines for sweat test performance. Results Reported results of EQA in 2015 exercises showed coefficients of variation (CV) from 28.9%, 29.0% to 35.3%, respectively. An introduction of uniform sweat chloride measurement protocol resulted in CV of 15.5% and 14.7% reported in following two exercises in 2016. All MBL included in this study replied to the questionnaire. Results reported by MBL indicated: lack of patient information policy (7/10), use of unacceptable electrodes (6/9), misuse of minimum of acceptable sweat weight (6/9), lack of internal quality assessment (5/9) and recommended reference ranges (5/9 and 4/9). Agreements to guidelines were found in approach to unsuitable patients (9/10) and sweat collection (8/9). Conclusion Presented results indicate major weak points of current practice in sweat test performance in Croatian MBL and stress the need for its standardization on a national level. PMID:28392735

  4. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Kirby, C. R.; Convertino, V. A.

    1986-01-01

    The relationship between plasma aldosterone levels and sweat sodium excretion after chronic exercise and heat acclimation was investigated, using subjects exercised, at 40 C and 45 percent humidity, for 2 h/day on ten consecutive days at 45 percent of their maximal oxygen uptake. The data indicate that, following heat acclimation, plasma aldosterone concentrations decrease, and that the eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augmented through exercise and heat acclimation.

  5. The Italian pilot external quality assessment program for cystic fibrosis sweat test.

    PubMed

    Salvatore, Marco; Floridia, Giovanna; Amato, Annalisa; Censi, Federica; Carta, Claudio; de Stefano, Maria Chiara; Ferrari, Gianluca; Tosto, Fabrizio; Capoluongo, Ettore; Caruso, Ubaldo; Castaldo, Giuseppe; Cirilli, Natalia; Corbetta, Carlo; Padoan, Rita; Raia, Valeria; Taruscio, Domenica

    2016-05-01

    Sweat chloride test is the gold standard test for cystic fibrosis (CF) diagnosis. In 2014 the Istituto Superiore di Sanità established the Italian pilot external quality assessment program for CF sweat test (IEQA-ST). Ten laboratories, included among the 33 Italian CF Referral Centers, were selected and enrolled on the basis of their attitude to perform sweat test (ST) analysis by using methods recommended by the Italian Guidelines. They received three different sweat-like samples (normal, borderline and pathologic chloride concentration), with mock clinical indications, for analysis according to routine procedures. Assessment, performed by a panel of experts, covered analytical performance, interpretation and reporting of results; categories of "poor" and "satisfactory" performance were not defined. All data were managed through a web utility. The program identified important areas of interest and, in some case, of concern. It is important to underline that results are referred to a small proportion, i.e. about 30%, of Italian laboratories performing CF ST in the context of the Referral Centers. Data collected highlight the importance of participation in EQA programs as it may improve laboratory/clinical performance; our study represents a model for the setting up of a large-scale EQA scheme for ST. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Exercise-induced trace mineral element concentration in regional versus whole-body wash-down sweat.

    PubMed

    Baker, Lindsay B; Stofan, John R; Lukaski, Henry C; Horswill, Craig A

    2011-06-01

    Simultaneous whole-body wash-down (WBW) and regional skin surface sweat collections were completed to compare regional patch and WBW sweat calcium (Ca), magnesium (Mg), copper (Cu), manganese (Mn), iron (Fe), and zinc (Zn) concentrations. Athletes (4 men, 4 women) cycled in a plastic open-air chamber for 90 min in the heat. Before exercise, the subjects and cycle ergometer (covered in plastic) were washed with deionized water. After the onset of sweating, sterile patches were attached to the forearm, back, chest, forehead, and thigh and removed on saturation. After exercise, the subjects and cycle ergometer were washed with 5 L of 15-mM ammonium sulfate solution to collect all sweat minerals and determine the volume of unevaporated sweat. Control trials were performed to measure mineral contamination in regional and WBW methods. Because background contamination in the collection system was high for WBW Mn, Fe, and Zn, method comparisons were not made for these minerals. After correction for minimal background contamination, WBW sweat [Ca], [Mg], and [Cu] were 44.6 ± 20.0, 9.8 ± 4.8, and 0.125 ± 0.069 mg/L, respectively, and 5-site regional (weighted for local sweat rate and body surface area) sweat [Ca], [Mg], and [Cu] were 59.0 ± 15.9, 14.5 ± 4.8, and 0.166 ± 0.031 mg/L, respectively. Five-site regional [Ca], [Mg], and [Cu] overestimated WBW by 32%, 48%, and 33%, respectively. No individual regional patch site or 5-site regional was significantly correlated with WBW sweat [Ca] (r = -.21, p = .65), [Mg] (r = .49, p = .33), or [Cu] (r = .17, p = .74). In conclusion, regional sweat [Ca], [Mg], and [Cu] are not accurate surrogates for or significantly correlated with WBW sweat composition.

  7. Sweat-inducing physiological challenges do not result in acute changes in hair cortisol concentrations.

    PubMed

    Grass, Juliane; Kirschbaum, Clemens; Miller, Robert; Gao, Wei; Steudte-Schmiedgen, Susann; Stalder, Tobias

    2015-03-01

    Hair cortisol concentrations (HCC) are assumed to provide a stable, integrative marker of long-term systemic cortisol secretion. However, contrary to this assumption, some recent observations have raised the possibility that HCC may be subject to acute influences, potentially related to cortisol incorporation from sweat. Here, we provide a first detailed in vivo investigation of this possibility comprising two independent experimental studies: study I (N=42) used a treadmill challenge to induce sweating together with systemic cortisol reactivity while in study II (N=52) a sauna bathing challenge induced sweating without systemic cortisol changes. In both studies, repeated assessments of HCC, salivary cortisol, cortisol in sweat and individuals' sweating rate (single assessment) were conducted on the experimental day and at a next-day follow-up. Results across the two studies consistently revealed that HCC were not altered by the acute interventions. Further, HCC were found to be unrelated to acute salivary cortisol reactivity, sweat cortisol levels, sweating rate or the time of examination. In line with previous data, cortisol levels in sweat were strongly related to total salivary cortisol output across the examined periods. The present results oppose recent case report data by showing that single sweat-inducing interventions do not result in acute changes in HCC. Our data also tentatively speak against the notion that cortisol in sweat may be a dominant source of HCC. Further, our findings also indicate that HCC are not subject to diurnal variation. This research provides further support for hair cortisol analysis as a marker of integrated long-term systemic cortisol secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. CFTR-dependent chloride efflux in cystic fibrosis mononuclear cells is increased by ivacaftor therapy.

    PubMed

    Guerra, Lorenzo; D'Oria, Susanna; Favia, Maria; Castellani, Stefano; Santostasi, Teresa; Polizzi, Angela M; Mariggiò, Maria A; Gallo, Crescenzio; Casavola, Valeria; Montemurro, Pasqualina; Leonetti, Giuseppina; Manca, Antonio; Conese, Massimo

    2017-07-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) potentiator ivacaftor (Kalydeco®) improves clinical outcome in G551D cystic fibrosis (CF) patients. Here, we have investigated whether ivacaftor has a clinical impact on non-G551D gating mutations and function of circulating leukocytes as well. Seven patients were treated with ivacaftor and evaluated at baseline, and at 1-3 and 6 months. Besides clinical and systemic inflammatory parameters, circulating mononuclear cells (MNC) were evaluated for CFTR-dependent chloride efflux by spectrofluorimetry, neutrophils for oxidative burst by cytofluorimetry and HVCN1 mRNA expression by real time PCR. Ivacaftor determined a significant decrease in sweat chloride concentrations at all time points during treatment. Body mass index (BMI), FEV 1 , and FVC showed an increasing trend. While C-reactive protein decreased significantly at 2 months, the opposite behavior was noticed for circulating monocytes. CFTR activity in MNC was found to increase significantly at 3 and 6 months. Neutrophil oxidative burst peaked at 2 months and then decreased to baseline. HVCN1 mRNA expression was significantly higher than baseline at 1-3 months and decreased after 6 months of treatment. The chloride efflux in MNC correlated positively with both FEV 1 and FVC. On the other hand, sweat chloride correlated positively with CRP and WBC, and negatively with both respiratory function tests. A cluster analysis confirmed that sweat chloride, FEV 1 , FVC, BMI, and MNC chloride efflux behaved as a single entity over time. In patients with non-G551D mutations, ivacaftor improved both chloride transport in sweat ducts and chloride efflux in MNC, that is, functions directly imputed to CFTR. © 2017 Wiley Periodicals, Inc.

  9. 'Rusters'. The corrosive action of palmar sweat: II. Physical and chemical factors in palmar hyperhidrosis.

    PubMed

    Jensen, O; Nielsen, E

    1979-01-01

    When measuring sweating rates, close correspondence was found with the clinical estimation of hyperhidrosis. Corrosion was seen to increase with increasing sweat rates, reaching its maximum after an assumed rise in the actual sodium chloride concentration on the skin surface due to evaporation of water. The findings confirm that hyperhidrosis is of primary importance in the constitution of a 'ruster', and are also in good agreement with experimental reports. The small variations in palmar skin pH had no influence on the degree of corrosion; nor had the character of the metal surface. Of the two types of metal studied. corrosion was much more severe on the type having the lowest concentration of copper, thus confirming that increasing copper concentrations have a positive effect in reducing corrosion rates. At 50--60% relative humidity (RH) corrosion increased as time elapsed, whereas at 40% RH no corrosion developed on a sweat-contaminated plate. When exposed to 75% RH, metal samples became severely corroded in the course of a few days. Protective methods for the avoidance of rust are mentioned, with special emphasis on frequent handwashing.

  10. Pulsed direct and constant direct currents in the pilocarpine iontophoresis sweat chloride test.

    PubMed

    Gomez, Carla Cristina Souza; Servidoni, Maria de Fatima; Marson, Fernando Augusto de Lima; Canavezi, Paulo Jose Coelho; Vinagre, Adriana Mendes; Costa, Eduardo Tavares; Ribeiro, Antonio Fernando; Ribeiro, Maria Angela Gonçalves de Oliveira; Toro, Adyleia Aparecida Dalbo Contrera; Pavan, Celia Regina; Rondon, Michelle Vivine Sá Dos Santos; Lorena, Sonia Leticia Silva; Vieria, Francisco Ubaldi; Ribeiro, Jose Dirceu

    2014-12-13

    The classic sweat test (CST) is the golden standard for cystic fibrosis (CF) diagnosis. Then, our aim was compare the production and volume of sweat, and side effects caused by pulsed direct current (PDC) and constant direct current (CDC). To determine the optimal stimulation time (ST) for the sweat collection. To verify the PDC as CF diagnosis option. Prospective study with cross-sectional experimental intervention. Experiment 1 (right arm): PDC and CDC. ST at 10 min and sweat collected at 30 min. Currents of 0.5; 0.75; 1.0 and 1.5 mA and frequencies of 0, 200, 1,000 and 5,000 Hz applied. Experiment 2 (left arm): current of 1.0 mA, ST at 5 and 10 min and sweat collected at 15 and 30 min with frequencies of 0; 200; 1,000 and 5,000 Hz applied Experiments 1 and 2 were performed with current density (CD) from 0.07 to 0.21 mA/cm2. Experiment 3: PDC was used in typical CF patients with two CFTR mutations screened and or with CF diagnosis by rectal biopsy and patients with atypical CF. 48 subjects (79.16% female) with average of 29.54 ± 8.87 years old were enrolled. There was no statistical difference between the interaction of frequency and current in the sweat weight (p = 0.7488). Individually, positive association was achieved between weight sweat and stimulation frequency (p = 0.0088); and current (p = 0.0025). The sweat production was higher for 10 min of stimulation (p = 0.0023). The sweat collection was better for 30 min (p = 0.0019). The skin impedance was not influenced by ST and sweat collection (p > 0.05). The current frequency was inversely associated with the skin impedance (p < 0.0001). The skin temperature measured before stimulation was higher than after (p < 0.0001). In Experiment 3 (29 subjects) the PDC showed better kappa index compared to CDC (0.9218 versus 0.5205, respectively). The performance of the CST with CDC and PDC with CD of 0.14 to 0.21 mA/cm2 showed efficacy in steps of stimulation and collection of sweat, without side effects. The optimal

  11. Biochemical changes in sweat following prolonged ischemia.

    PubMed

    Ferguson-Pell, M; Hagisawa, S

    1988-01-01

    Much emphasis has been placed on the measurement of physical parameters at the body support interface in order to detect and moderate conditions which could result in pressure damage to soft tissues. Major difficulties are encountered both in the design of instrumentation and interpretation of the data collected. Metabolic processes in sweat glands that control sweat secretion have been shown to be sensitive to applied pressure, producing sweating rate suppression and changes in sweat NaCl concentration. In this study, we have demonstrated the feasibility of measuring lactate concentration in sweat collected locally using an electrochemical stimulation technique (iontophoresis of pilocarpine nitrate). Elevated levels of sweat lactate concentration during local tissue indentation were detected in a group of able-bodied subjects. Upon removal of the indentor, however, levels of sweat lactate returned to normal.

  12. Malnutrition causes a reduction in alveolar epithelial sodium and chloride transport which predisposes to death from lung injury.

    PubMed

    Eisenhut, Michael

    2007-01-01

    All forms of malnutrition have been associated with increased severity of pneumonia, an increased pneumonia associated mortality and an increased risk of pulmonary fluid overload. Malnutrition was found to be associated with increased sweat sodium and chloride concentrations. A reduction of systemic sodium and chloride transport reflected in sweat sodium and chloride levels has been linked to increased severity of pulmonary edema in children with septicemia. Malnutrition causes a reduction in alveolar epithelial sodium and chloride transport which predisposes to death from lung injury. SUPPORTING EVIDENCE FOR THE HYPOTHESIS: Malnutrition caused reduced pulmonary fluid clearance in the rat model. Amiloride insensitive pulmonary fluid clearance in malnourished rats was reduced. The reduction in fluid clearance was reversible by beta agonists which increases epithelial sodium and chloride transport. Reduction of alveolar ion and fluid transport capacity explains the predisposition to death from pulmonary edema associated with intravenous fluids and blood transfusions in inpatients with malnutrition. Reduced alveolar epithelial ion transport impairs absorption of intra-alveolar inflammatory exudate in pneumonia leading to a increased severity of respiratory compromise and increased mortality. MEANS TO TEST THE HYPOTHESIS: Nasal potential difference measurements could compare airway epithelial sodium and chloride transport in patients with and without malnutrition and malnutrition associated lung disease. Sweat sodium and chloride concentrations could be compared in patients with and without respiratory disease associated with malnutrition and correlated with the severity of respiratory compromise.

  13. Acquired defects in CFTR-dependent β-adrenergic sweat secretion in chronic obstructive pulmonary disease

    PubMed Central

    2014-01-01

    Rationale Smoking-induced chronic obstructive pulmonary disease (COPD) is associated with acquired systemic cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. Recently, sweat evaporimetry has been shown to efficiently measure β-adrenergic sweat rate and specifically quantify CFTR function in the secretory coil of the sweat gland. Objectives To evaluate the presence and severity of systemic CFTR dysfunction in smoking-related lung disease using sweat evaporimetry to determine CFTR-dependent sweat rate. Methods We recruited a cohort of patients consisting of healthy never smokers (N = 18), healthy smokers (12), COPD smokers (25), and COPD former smokers (12) and measured β-adrenergic sweat secretion rate with evaporative water loss, sweat chloride, and clinical data (spirometry and symptom questionnaires). Measurements and main results β-adrenergic sweat rate was reduced in COPD smokers (41.9 ± 3.4, P < 0.05, ± SEM) and COPD former smokers (39.0 ± 5.4, P < 0.05) compared to healthy controls (53.6 ± 3.4). Similarly, sweat chloride was significantly greater in COPD smokers (32.8 ± 3.3, P < 0.01) and COPD former smokers (37.8 ± 6.0, P < 0.01) vs. healthy controls (19.1 ± 2.5). Univariate analysis revealed a significant association between β-adrenergic sweat rate and female gender (β = 0.26), age (−0.28), FEV1% (0.35), dyspnea (−0.3), and history of smoking (−0.27; each P < 0.05). Stepwise multivariate regression included gender (0.39) and COPD (−0.43) in the final model (R2 = 0.266, P < 0.0001). Conclusions β-adrenergic sweat rate was significantly reduced in COPD patients, regardless of smoking status, reflecting acquired CFTR dysfunction and abnormal gland secretion in the skin that can persist despite smoking cessation. β-adrenergic sweat rate and sweat chloride are associated with COPD severity and clinical symptoms, supporting the hypothesis that CFTR decrements

  14. Sweat Sodium Concentration: Inter-Unit Variability of a Low Cost, Portable, and Battery Operated Sodium Analyzer.

    PubMed

    Goulet, Eric D B; Baker, Lindsay B

    2017-12-01

    The B-722 Laqua Twin is a low cost, portable, and battery operated sodium analyzer, which can be used for the assessment of sweat sodium concentration. The Laqua Twin is reliable and provides a degree of accuracy similar to more expensive analyzers; however, its interunit measurement error remains unknown. The purpose of this study was to compare the sodium concentration values of 70 sweat samples measured using three different Laqua Twin units. Mean absolute errors, random errors and constant errors among the different Laqua Twins ranged respectively between 1.7 mmol/L to 3.5 mmol/L, 2.5 mmol/L to 3.7 mmol/L and -0.6 mmol/L to 3.9 mmol/L. Proportional errors among Laqua Twins were all < 2%. Based on a within-subject biological variability in sweat sodium concentration of ± 12%, the maximal allowable imprecision among instruments was considered to be £ 6%. In that respect, the within (2.9%), between (4.5%), and total (5.4%) measurement error coefficient of variations were all < 6%. For a given sweat sodium concentration value, the largest observed difference in mean and lower and upper bound error of measurements among instruments were, respectively, 4.7 mmol/L, 2.3 mmol/L, and 7.0 mmol/L. In conclusion, our findings show that the interunit measurement error of the B-722 Laqua Twin is low and methodologically acceptable.

  15. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans

    PubMed Central

    2013-01-01

    Literature from the past 168 years has been filtered to provide a unified summary of the regional distribution of cutaneous water and electrolyte losses. The former occurs via transepidermal water vapour diffusion and secretion from the eccrine sweat glands. Daily insensible water losses for a standardised individual (surface area 1.8 m2) will be 0.6–2.3 L, with the hands (80–160 g.h−1) and feet (50–150 g.h−1) losing the most, the head and neck losing intermediate amounts (40–75 g.h−1) and all remaining sites losing 15–60 g.h−1. Whilst sweat gland densities vary widely across the skin surface, this same individual would possess some 2.03 million functional glands, with the highest density on the volar surfaces of the fingers (530 glands.cm−2) and the lowest on the upper lip (16 glands.cm−2). During passive heating that results in a resting whole-body sweat rate of approximately 0.4 L.min−1, the forehead (0.99 mg.cm−2.min−1), dorsal fingers (0.62 mg.cm−2.min−1) and upper back (0.59 mg.cm−2.min−1) would display the highest sweat flows, whilst the medial thighs and anterior legs will secrete the least (both 0.12 mg.cm−2.min−1). Since sweat glands selectively reabsorb electrolytes, the sodium and chloride composition of discharged sweat varies with secretion rate. Across whole-body sweat rates from 0.72 to 3.65 mg.cm−2.min−1, sodium losses of 26.5–49.7 mmol.L−1 could be expected, with the corresponding chloride loss being 26.8–36.7 mmol.L−1. Nevertheless, there can be threefold differences in electrolyte losses across skin regions. When exercising in the heat, local sweat rates increase dramatically, with regional glandular flows becoming more homogeneous. However, intra-regional evaporative potential remains proportional to each local surface area. Thus, there is little evidence that regional sudomotor variations reflect an hierarchical distribution of sweating either at rest or during exercise. PMID:23849497

  16. Pulmonary edema in meningococcal septicemia associated with reduced epithelial chloride transport.

    PubMed

    Eisenhut, Michael; Wallace, Helen; Barton, Paul; Gaillard, Erol; Newland, Paul; Diver, Michael; Southern, Kevin W

    2006-03-01

    To test the hypothesis that meningococcal septicemia-related pulmonary edema is associated with a systemic abnormality of epithelial sodium and chloride transport and to investigate an association with hormones regulating Na transport. Prospective observational study. The 24-bed pediatric intensive care unit and pediatric wards of Royal Liverpool Children's Hospital. Consecutive children admitted to the pediatric intensive care unit and pediatric wards with a diagnosis of meningococcal septicemia and children (controls) with noninfectious critical illness receiving ventilatory support in the pediatric intensive care unit. We measured sweat and saliva electrolytes, renal electrolyte excretion, nasal potential difference, and aldosterone, thyroxine, and cortisol levels. Pulmonary edema was diagnosed by chest radiography and its severity quantified by calculation of ventilation index at admission and duration of mechanical ventilation. We recruited 17 patients with severe meningococcal septicemia (nine patients with pulmonary edema), 14 patients with mild meningococcal septicemia, and 20 controls. Sweat and saliva Na and Cl concentrations and renal Na excretion were significantly (p < .05) higher in patients with pulmonary edema compared with controls. Nasal potential difference and amiloride response in patients with pulmonary edema were not significantly different to controls, but response to a low Cl solution was reduced in the nasal airway of patients with pulmonary edema (p < .05). Sweat and saliva chloride concentrations correlated significantly and better with ventilation index and duration of ventilation than sodium concentrations. Aldosterone, thyroxine, and cortisol levels were not significantly different between groups. We have confirmed that meningococcal septicemia-related pulmonary edema is associated with reduced systemic sodium and chloride transport. Features of reduced Cl transport were most closely associated with markers of respiratory compromise

  17. Hyperhidrosis plantaris - a randomized, half-side trial for efficacy and safety of an antiperspirant containing different concentrations of aluminium chloride.

    PubMed

    Streker, Meike; Reuther, Tilmann; Hagen, Linda; Kerscher, Martina

    2012-02-01

    Primary focal hyperhidrosis plantaris can cause impairment in social, physical, leisure and occupational activities. Topical treatment with aluminium chloride is the first-line treatment. The aim of this trial was to evaluate efficacy and safety of two different concentrations of aluminium chloride hexa-hydrate (12.5%, 30%) for 6 weeks. 20 volunteers with hyperhidrosis plantaris were included. Efficacy was evaluated using a clinical rating scale of the hyperhidrosis level and qualitative assessments including Minor's (iodine-starch) test and a standardized sniff test. Furthermore a patient questionnaire and measurements of skin surface pH were done to evaluate the subjective assessments and side effects. The hyperhidrosis level significantly decreased in both concentrations. There were no differences in tolerability regarding the skin surface pH and the patient questionnaires. In addition the hidrotic areas decreased after application of both products and the sniff test improved. Topical application of an antiperspirant containing aluminium chloride reduced sweat production in plantar hyperhidrosis significantly. As both 12.5% and 30% were efficacious and safe, we would recommend 12.5% for outpatient treatment. © The Author • Journal compilation © Blackwell Verlag GmbH, Berlin.

  18. The analysis of metabolites in human sweat: analytical methods and potential application to investigation of pressure ischaemia of soft tissues.

    PubMed

    Taylor, R P; Polliack, A A; Bader, D L

    1994-01-01

    A straightforward technique was developed for sweat collection applicable to tissues subjected to external load without introducing distortion of underlying tissues, and for analysis of six metabolites in the collected sweat. Chloride was measured colorimetrically and lactate, urea and urate by enzymatic methods on a centrifugal analyser. Sodium and potassium were measured by flame photometry. The methods showed good precision, recovery and linearity. To assess the technique sweat was collected: (i) from the sacrum, ischium, forearm and calf in healthy individuals at 32 degrees C for 1 h; (ii) from the sacrum of healthy subjects at ambient temperature for 9 h; (iii) at ambient temperature from the sacrum of a patient with a history of pressure sores. Sweat rates were greater at the sacrum and ischium than the calf or forearm. There were differences in the concentrations of lactate and urea between sites but these were smaller when expressed as amount secreted. Sweat rates were significantly lower in groups (ii) and (iii), but sweat could be collected reliably. This technique has potential clinical application to the investigation of susceptibility to pressure sores.

  19. In vivo and in vitro ivacaftor response in cystic fibrosis patients with residual CFTR function: N-of-1 studies.

    PubMed

    McGarry, Meghan E; Illek, Beate; Ly, Ngoc P; Zlock, Lorna; Olshansky, Sabrina; Moreno, Courtney; Finkbeiner, Walter E; Nielson, Dennis W

    2017-04-01

    Ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator, decreases sweat chloride concentration, and improves pulmonary function in 6% of cystic fibrosis (CF) patients with specific CFTR mutations. Ivacaftor increases chloride transport in many other CFTR mutations in non-human cells, if CFTR is in the epithelium. Some CF patients have CFTR in the epithelium with residual CFTR function. The effect of ivacaftor in these patients is unknown. This was a series of randomized, crossover N-of-1 trials of ivacaftor and placebo in CF patients ≥8 years old with potential residual CFTR function (intermediate sweat chloride concentration, pancreatic sufficient, or mild bronchiectasis on chest CT). Human nasal epithelium (HNE) was obtained via nasal brushing and cultured. Sweat chloride concentration change was the in vivo outcome. Chloride current change in HNE cultures with ivacaftor was the in vitro outcome. Three subjects had decreased sweat chloride concentration (-14.8 to -40.8 mmol/L, P < 0.01). Two subjects had unchanged sweat chloride concentration. Two subjects had increased sweat chloride concentration (+23.8 and +27.3 mmol/L, P < 0.001); both were heterozygous for A455E and pancreatic sufficient. Only subjects with decreased sweat chloride concentration had increased chloride current in HNE cultures. Some CF patients with residual CFTR function have decreased sweat chloride concentration with ivacaftor. Increased chloride current in HNE cultures among subjects with decreased sweat chloride concentrations may predict clinical response to ivacaftor. Ivacaftor can increase sweat chloride concentration in certain mutations with unclear clinical effect. Pediatr Pulmonol. 2017;52:472-479. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Real-time sweat analysis via alternating current conductivity of artificial and human sweat

    NASA Astrophysics Data System (ADS)

    Liu, Gengchen; Alomari, Mahmoud; Sahin, Bunyamin; Snelgrove, Samuel E.; Edwards, Jeffrey; Mellinger, Axel; Kaya, Tolga

    2015-03-01

    Dehydration is one of the most profound physiological challenges that significantly affects athletes and soldiers if not detected early. Recently, a few groups have focused on dehydration detection using sweat as the main biomarker. Although there are some proposed devices, the electrical and chemical characteristics of sweat have yet to be incorporated into the validations. In this work, we have developed a simple test setup to analyze artificial sweat that is comprised the main components of human sweat. We provide theoretical and experimental details on the electrical and chemical behavior of the artificial sweat for various concentration values within a temperature range of 5 °C to 50 °C. We have also developed an efficient sweat collecting and detection system based on 3D printing. Human studies were conducted and this particular protocol has shown that dehydration starts to take effect as early as 40 min into the physical activity if there is no fluid intake during the exercise. We believe that our device will lead to developing viable real-time sweat analysis systems.

  1. Integrated sudomotor axon reflex sweat stimulation for continuous sweat analyte analysis with individuals at rest.

    PubMed

    Sonner, Zachary; Wilder, Eliza; Gaillard, Trudy; Kasting, Gerald; Heikenfeld, Jason

    2017-07-25

    Eccrine sweat has rapidly emerged as a non-invasive, ergonomic, and rich source of chemical analytes with numerous technological demonstrations now showing the ability for continuous electrochemical sensing. However, beyond active perspirers (athletes, workers, etc.), continuous sweat access in individuals at rest has hindered the advancement of both sweat sensing science and technology. Reported here is integration of sudomotor axon reflex sweat stimulation for continuous wearable sweat analyte analysis, including the ability for side-by-side integration of chemical stimulants & sensors without cross-contamination. This integration approach is uniquely compatible with sensors which consume the analyte (enzymatic) or sensors which equilibrate with analyte concentrations. In vivo validation is performed using iontophoretic delivery of carbachol with ion-selective and impedance sensors for sweat analysis. Carbachol has shown prolonged sweat stimulation in directly stimulated regions for five hours or longer. This work represents a significant leap forward in sweat sensing technology, and may be of broader interest to those interested in on-skin sensing integrated with drug-delivery.

  2. Sweating

    MedlinePlus

    ... Home Body Looking and feeling your best Sweating Sweating You might think that you are only supposed to sweat when you are hot, but once you hit puberty, you will also sweat when you are nervous. Your sweat glands, which ...

  3. Quantitative comparison of topical aluminum salt solution efficacy for management of sweating: a randomized, controlled trial.

    PubMed

    Swary, Jillian H; West, Dennis P; Kakar, Rohit; Ortiz, Sara; Schaeffer, Matthew R; Veledar, Emir; Alam, Murad

    2015-12-01

    There is a lack of studies objectively comparing the efficacy of topical antiperspirants in reducing sweat. To objectively and quantitatively compare the efficacy of two aluminum salt solutions for the reduction of induced sweating. A subject, rater, and statistician-blinded, randomized, controlled trial. Nineteen subjects were exposed to a standardized heat challenge for 3 h. Topical agent A (20% aluminum chloride hexahydrate) was randomized to either axilla, and topical agent B (1% aluminum acetate) assigned to the contralateral side. A sauna suit induced sweating during three 30-min heat intervals: (1) with no study agents (pre); (2) with both study agents, one on each side; and (3) after the agents were washed off (post). Sweat levels were measured by securing Whatman(®) filter paper to each axilla and measuring the paper weight after each heat interval. The difference in paper weight following each heat interval between Study Agent A and Study Agent B was measured by a gravimetric scale. Topical agent A had a significantly greater effect at reducing axillary sweating than B (P = 0.0002). In a sweating simulation, 20% aluminum chloride hexahydrate quantitatively and objectively appeared to reduce sweat more effectively than 1% aluminum acetate. © 2015 Wiley Periodicals, Inc.

  4. 210Po secretion from sweat glands.

    PubMed

    Romańczyk, Grzegorz; Boryło, Alicja

    2017-02-01

    The results of the research indicated that the 210 Po activity concentration in sweat samples was between 0.22 ± 0.03 to 2.10 ± 0.15 mBq·g -1 d.w. The obtained results of the studies showed that smoking and eating fish led to higher activity concentrations of 210 Po in sweat in comparison to the control group. Statistical analysis of 210 Po activity concentrations in sweat samples showed significant differences between control, smoking, fish eating and age groups, while no significant differences was found for 210 Po between volunteers as far as gender is concerned. Copyright © 2016. Published by Elsevier Ltd.

  5. Sweat

    MedlinePlus

    Sweat is a clear, salty liquid produced by glands in your skin. Sweating is how your body cools itself. You sweat mainly under your arms and on your feet and palms. When sweat mixes with bacteria on your skin, it can ...

  6. Urea transporters and sweat response to uremia.

    PubMed

    Keller, Raymond W; Bailey, James L; Wang, Yanhua; Klein, Janet D; Sands, Jeff M

    2016-06-01

    In humans, urea is excreted in sweat, largely through the eccrine sweat gland. The urea concentration in human sweat is elevated when compared to blood urea nitrogen. The sweat urea nitrogen (UN) of patients with end-stage kidney disease (ESRD) is increased when compared with healthy humans. The ability to produce sweat is maintained in the overwhelming majority of ESRD patients. A comprehensive literature review found no reports of sweat UN neither in healthy rodents nor in rodent models of chronic kidney disease (CKD). Therefore, this study measured sweat UN concentrations in healthy and uremic rats. Uninephrectomy followed by renal artery ligation was used to remove 5/6 of renal function. Rats were then fed a high-protein diet to induce uremia. Pilocarpine was used to induce sweating. Sweat droplets were collected under oil. Sweat UN was measured with a urease assay. Serum UN was measured using a fluorescent ortho-pthalaldehyde reaction. Immunohistochemistry (IHC) was accomplished with a horseradish peroxidase and diaminobenzidine technique. Sweat UN in uremic rats was elevated greater than two times compared to healthy pair-fed controls (220 ± 17 and 91 ± 15 mmol/L, respectively). Post hoc analysis showed a significant difference between male and female uremic sweat UN (279 ± 38 and 177 ± 11 mmol/L, respectively.) IHC shows, for the first time, the presence of the urea transporters UT-B and UT-A2 in both healthy and uremic rat cutaneous structures. Future studies will use this model to elucidate how rat sweat UN and other solute excretion is altered by commonly prescribed diuretics. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Improved Devices for Collecting Sweat for Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Clarke, Mark S. F.

    2011-01-01

    Improved devices have been proposed for collecting sweat for biochemical analysis especially for determination of the concentration of Ca2+ ions in sweat as a measure of loss of Ca from bones. Unlike commercially available sweat-collection patches used previously in monitoring osteoporosis and in qualitative screening for some drugs, the proposed devices would not allow evaporation of the volatile chemical components (mostly water) of sweat. Moreover, the proposed devices would be designed to enable determination of the volumes of collected sweat. From these volumes and the quantities of Ca2+ and/or other analytes as determined by other means summarized below, one could determine the concentrations of the analytes in sweat. A device according to the proposal would be flexible and would be worn like a commercial sweat-collection patch. It would be made of molded polydimethylsiloxane (silicone rubber) or other suitable material having properties that, for the purpose of analyzing sweat, are similar to those of glass. The die for molding the silicone rubber would be fabricated by a combination of lithography and electroplating. The die would reproducibly form, in the silicone rubber, a precisely defined number of capillary channels per unit area, each channel having a precisely defined volume. Optionally, electrodes for measuring the Ca2+ content of the sweat could be incorporated into the device. The volume of sweat collected in the capillary channels of the device would be determined from (1) the amount of light or radio waves of a given wavelength absorbed by the device and (2) the known geometry of the array of capillary channels. Then, in one of two options, centrifugation would be performed to move the sweat from the capillary tubes to the region containing the electrodes, which would be used to measure the Ca2+ content by a standard technique. In the other option, centrifugation would be performed to remove the sweat from the device to make the sweat available

  8. Improved Devices for Collecting Sweat for Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Feedback, Daniel L.; Clarke, Mark S. F.

    2011-01-01

    Improved devices have been proposed for collecting sweat for biochemical analysis - especially for determination of the concentration of Ca2+ ions in sweat as a measure of loss of Ca from bones. Unlike commercially available sweat-collection patches used previously in monitoring osteoporosis and in qualitative screening for some drugs, the proposed devices would not allow evaporation of the volatile chemical components (mostly water) of sweat. Moreover, the proposed devices would be designed to enable determination of the volumes of collected sweat. From these volumes and the quantities of Ca(2+) and/or other analytes as determined by other means summarized below, one could determine the concentrations of the analytes in sweat. A device according to the proposal would be flexible and would be worn like a commercial sweat-collection patch. It would be made of molded polydimethylsiloxane (silicone rubber) or other suitable material having properties that, for the purpose of analyzing sweat, are similar to those of glass. The die for molding the silicone rubber would be fabricated by a combination of lithography and electroplating. The die would reproducibly form, in the silicone rubber, a precisely defined number of capillary channels per unit area, each channel having a precisely defined volume. Optionally, electrodes for measuring the Ca(2+) content of the sweat could be incorporated into the device. The volume of sweat collected in the capillary channels of the device would be determined from (1) the amount of light or radio waves of a given wavelength absorbed by the device and (2) the known geometry of the array of capillary channels. Then, in one of two options, centrifugation would be performed to move the sweat from the capillary tubes to the region containing the electrodes, which would be used to measure the Ca(2+) content by a standard technique. In the other option, centrifugation would be performed to remove the sweat from the device to make the sweat

  9. Measurement of sodium concentration in sweat samples: comparison of 5 analytical techniques.

    PubMed

    Goulet, Eric D B; Asselin, Audrey; Gosselin, Jonathan; Baker, Lindsay B

    2017-08-01

    Sweat sodium concentration (SSC) can be determined using different analytical techniques (ATs), which may have implications for athletes and scientists. This study compared the SSC measured with 5 ATs: ion chromatography (IChr), flame photometry (FP), direct (DISE) and indirect (IISE) ion-selective electrode, and ion conductivity (IC). Seventy sweat samples collected from 14 athletes were analyzed with 5 instruments: the 883 Basic IC Plus (IChr, reference instrument), AAnalyst 200 (FP), Cobas 6000 (IISE), Sweat-Chek (IC), and B-722 Laqua Twin (DISE). Instruments showed excellent relative (intraclass correlation coefficient (ICC) ≥ 0.999) and absolute (coefficient of variation (CV) ≤ 2.6%) reliability. Relative validity was also excellent between ATs (ICC ≥ 0.961). In regards to the inter-AT absolute validity, compared with IChr, standard error of the estimates were similar among ATs (2.8-3.8 mmol/L), but CV was lowest with DISE (3.9%), intermediate with IISE (7.6%), and FP (6.9%) and highest with IC (12.3%). In conclusion, SSC varies depending on the AT used to analyze samples. Therefore, results obtained from different ATs are scarcely comparable and should not be used interchangeably. Nevertheless, taking into account the normal variability in SSC (∼±12%), the imprecision of the recommendations deriving from FP, IISE, IC, and DISE should have trivial health and physiological consequences under most exercise circumstances.

  10. Electromagnetic-induction logging to monitor changing chloride concentrations

    USGS Publications Warehouse

    Metzger, Loren F.; Izbicki, John A.

    2013-01-01

    Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple-well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride-cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high-chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high-chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.

  11. Chloride concentration affects Kv channel voltage-gating kinetics: Importance of experimental anion concentrations.

    PubMed

    Bekar, L K; Loewen, M E; Forsyth, G W; Walz, W

    2005-09-30

    Chloride concentration has been shown to have a dramatic impact on protein folding and subsequent tertiary conformation [K.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods 34 (2004) 300-311; I. Jelesarov, E. Durr, R.M. Thomas, H.R. Bosshard, Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper), Biochemistry 37 (1998) 7539-7550]. As it is known that Kv channel gating is linked to the stability of the cytoplasmic T1 multimerization domain conformation [D.L. Minor, Y.F. Lin, B.C. Mobley, A. Avelar, Y.N. Jan, L.Y. Jan, J.M. Berger, The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel, Cell 102 (2000) 657-670; B.A. Yi, D.L. Minor Jr., Y.F. Lin, Y.N. Jan, L.Y. Jan, Controlling potassium channel activities: interplay between the membrane and intracellular factors, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 11016-11023] and that intracellular chloride concentration has been linked to Kv channel kinetics [L.K. Bekar, W. Walz, Intracellular chloride modulates A-type potassium currents in astrocytes, Glia 39 (2002) 207-216; W.B. Thoreson, S.L. Stella, Anion modulation of calcium current voltage dependence and amplitude in salamander rods, Biochim. Biophys. Acta 1464 (2000) 142-150], the objective of the present study was to address how chloride concentration changes affect Kv channel kinetics more closely in an isolated expression system. Initially, no significant chloride concentration-dependent effects on channel steady-state gating kinetics were observed. Only after disruption of the cytoskeleton with cytochalasin-D did we see significant chloride concentration-dependent shifts in gating kinetics. This suggests that the shift in gating kinetics is mediated through effects of intracellular chloride concentration on cytoplasmic domain tertiary

  12. Determination of selected fatty acids in dried sweat spot using gas chromatography with flame ionization detection.

    PubMed

    Kanďár, Roman; Drábková, Petra; Andrlová, Lenka; Kostelník, Adam; Čegan, Alexander

    2016-11-01

    A method is described for the determination of fatty acids in dried sweat spot and plasma samples using gas chromatography with flame ionization detection. Plasma and dried sweat spot samples were obtained from a group of blood donors. The sweat was collected from each volunteer during exercise. Sweat was spotted onto collection paper containing butylated hydroxytoluene. Fatty acids were derivatized with acetyl chloride in methanol to form methyl esters of fatty acids. The fatty acids in dried sweat spot samples treated with butylated hydroxytoluene and stored at -20°C were stable for 3 months. Our results indicate that sweat contains, among fatty acids with short chain, also fatty acids with long chain and unsaturated fatty acids. Linear relationships between percentage content of selected fatty acids in dried sweat spot and plasma were observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Measurement of nasal potential difference in young children with an equivocal sweat test following newborn screening for cystic fibrosis.

    PubMed

    Sermet-Gaudelus, Isabelle; Girodon, Emmanuelle; Roussel, Delphine; Deneuville, Eric; Bui, Stéphanie; Huet, Frédéric; Guillot, Marcel; Aboutaam, Rola; Renouil, Michel; Munck, Anne; des Georges, Marie; Iron, Albert; Thauvin-Robinet, Christel; Fajac, Isabelle; Lenoir, Gerard; Roussey, Michel; Edelman, Aleksander

    2010-06-01

    A challenging problem arising from cystic fibrosis (CF) newborn screening is the significant number of infants with hypertrypsinaemia (HIRT) with sweat chloride levels in the intermediate range and only one or no identified CF-causing mutations. To investigate the diagnostic value for CF of assessing CF transmembrane conductance regulator (CFTR) protein function by measuring nasal potential difference in children with HIRT. A specially designed protocol was used to assess nasal potential difference (NPD) in 23 young children with HIRT (3 months-4 years) with inconclusive neonatal screening. Results were analysed with a composite score including CFTR-dependent sodium and chloride secretion. Results were correlated with genotype after extensive genetic screening and with clinical phenotype at follow-up 3 years later. NPD was interpretable for 21 children with HIRT: 13 had NPD composite scores in the CF range. All 13 were finally found to carry two CFTR mutations. At follow-up, nine had developed a chronic pulmonary disease consistent with a CF diagnosis. The sweat test could be repeated in nine children, and six had sweat chloride values >or=60 mmol/l. Of the eight children with normal NPD scores, only two had two CFTR mutations, both wide-spectrum mutations. None had developed a CF-like lung disease at follow-up. The sweat test could be reassessed in five of these eight children and all had sweat chloride values <60 mmol/l. CF diagnosis was ruled out in six of these eight children. Evaluation of CFTR function in the nasal epithelium of young children with inconclusive results at CF newborn screening is a useful diagnostic tool for CF.

  14. What's Sweat?

    MedlinePlus

    ... Safe Videos for Educators Search English Español What's Sweat? KidsHealth / For Kids / What's Sweat? Print en español ¿ ... dehydrated (say: dee-HI-drayt-ed). Why Does Sweat Smell? Sweat isn't just wet — it can ...

  15. A novel organotypic 3D sweat gland model with physiological functionality

    PubMed Central

    Grüdl, Sabine; Banowski, Bernhard; Giesen, Melanie; Sättler, Andrea; Proksch, Peter; Welss, Thomas; Förster, Thomas

    2017-01-01

    Dysregulated human eccrine sweat glands can negatively impact the quality-of-life of people suffering from disorders like hyperhidrosis. Inability of sweating can even result in serious health effects in humans affected by anhidrosis. The underlying mechanisms must be elucidated and a reliable in vitro test system for drug screening must be developed. Here we describe a novel organotypic three-dimensional (3D) sweat gland model made of primary human eccrine sweat gland cells. Initial experiments revealed that eccrine sweat gland cells in a two-dimensional (2D) culture lose typical physiological markers. To resemble the in vivo situation as close as possible, we applied the hanging drop cultivation technology regaining most of the markers when cultured in its natural spherical environment. To compare the organotypic 3D sweat gland model versus human sweat glands in vivo, we compared markers relevant for the eccrine sweat gland using transcriptomic and proteomic analysis. Comparing the marker profile, a high in vitro-in vivo correlation was shown. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), muscarinic acetylcholine receptor M3 (CHRM3), Na+-K+-Cl- cotransporter 1 (NKCC1), calcium-activated chloride channel anoctamin-1 (ANO1/TMEM16A), and aquaporin-5 (AQP5) are found at significant expression levels in the 3D model. Moreover, cholinergic stimulation with acetylcholine or pilocarpine leads to calcium influx monitored in a calcium flux assay. Cholinergic stimulation cannot be achieved with the sweat gland cell line NCL-SG3 used as a sweat gland model system. Our results show clear benefits of the organotypic 3D sweat gland model versus 2D cultures in terms of the expression of essential eccrine sweat gland key regulators and in the physiological response to stimulation. Taken together, this novel organotypic 3D sweat gland model shows a good in vitro-in vivo correlation and is an appropriate alternative for screening of potential bioactives

  16. Audit of sweat testing: a first report from Italian Cystic Fibrosis Centres.

    PubMed

    Cirilli, Natalia; Padoan, Rita; Raia, Valeria

    2008-09-01

    Cystic Fibrosis diagnosis is confirmed using sweat test. The aim of our study was to evaluate current techniques and methodologies in use at Italian CF Care Centres. A series of questions related to the performance of the sweat test was collected by all CF Care Centres in Italy. Answers were compared with UK and NCCLS guidelines. 39/41 Centres replied to the questionnaire. A good adherence to guidelines was registered for storing samples before analysis in 90.9%, while performing CF diagnosis by at least two sweat tests, and chloride analysis were reported respectively in 100% and 75.7% of Centres. Some inconsistencies were registered for minimum acceptable sweat quantity and time to collect sweat inadequate in respectively 42.5% and 24.2% of Centres, while performing quality control procedures and referring to an external quality assessment scheme were found inadequate in respectively 54.6% and 100%. 57.6% didn't provide any appropriate analytical ranges and only 15.1% of Centres offered proper information to patients/parents. A report form, including sweat quantity, reference ranges and interpretation, was adequate only for 9.4 up to 41.4% of CF Centres. Our study showed areas of inconsistencies in sweat testing current practices in Italy and highlights the need for evidence based national guidelines to improve practice and management strategies.

  17. Endocrine concomitants of sweating and sweat depression.

    PubMed

    Candas, V; Brandenberger, G; Lutz-Bucher, B; Follenius, M; Libert, J P

    1984-01-01

    The effect of humid heat (Ta = 43 degrees C, Pa = 32 Torr) on sweat rate, plasma renin activity and plasma levels of aldosterone and antidiuretic hormone (ADH) was studied in four male subjects before and after repeated heat exposures. Over-sweating and sweat drippage followed by hidromeiosis were observed in three subjects during initial heat exposure. With repeated humid heat exposures increased sweat rates were accompanied by a more intense sweat depression (hidromeiosis) in all four subjects. In our conditions, no changes in plasma levels of aldosterone and ADH or plasma renin activity were observed with hidromeiosis. Plasma renin activity was slightly depressed by repeated exposures, whereas plasma volumes were enhanced, with no significant changes in plasma Na or K. The results suggest that neither ADH nor the components of the renin-angiotensin aldosterone system are involved in the hidromeiotic phenomenon.

  18. Clinical studies of sweat rate reduction by an over-the-counter soft-solid antiperspirant and comparison with a prescription antiperspirant product in male panelists.

    PubMed

    Swaile, D F; Elstun, L T; Benzing, K W

    2012-03-01

    Individuals with axillary hyperhidrosis have much higher than average sweat rates and are often prescribed anhydrous aluminum chloride (AlCl(3)) solutions. Topical application of these solutions can be irritating to the skin, resulting in poor compliance and lower than desired efficacy. Demonstrate the efficacy of an over the counter "clinical strength" soft-solid antiperspirant using a night time application regimen and compare to a prescription aluminum chloride (6.5%) antiperspirant using male panelists. Gravimetric hot room efficacy testing (100 F and 35% Humidity) was performed comparing an over the counter soft-solid antiperspirant to placebo in a single test. Two separate gravimetric tests were placed comparing a prescription aluminum chloride (6.5%) antiperspirant to the same soft solid product using an intent to treat model. Skin irritation was assessed daily by a trained grader. Placebo testing resulted in 85% of panelists having a reduction in sweating rate greater than 50%. Comparison testing showed the over the counter soft solid reduced sweat rate by an average of 34% better than the prescription product while resulting significantly less skin irritation. Over the counter "clinical strength" soft-solid antiperspirants can be considered as an alternative treatment to aluminum chloride antiperspirants for the treatment of heavy sweating. © 2012 The Author. BJD © 2012 British Association of Dermatologists.

  19. The effect of heat acclimation on sweat microminerals: Artifact of surface contamination

    USDA-ARS?s Scientific Manuscript database

    Heat acclimation (HA) reportedly conveys conservation in sweat micromineral concentrations when sampled from arm sweat, but time course is unknown. The observation that comprehensive cleaning of the skin surface negates sweat micromineral reductions during prolonged sweating raises the question of w...

  20. Sweating - absent

    MedlinePlus

    ... page, please enable JavaScript. An abnormal lack of sweat in response to heat may be harmful, because ... diseases or scarring of the skin that block sweat glands Trauma to sweat glands Use of certain ...

  1. Development of a screening system for cystic fibrosis.

    PubMed

    Coury, A J; Fogt, E J; Norenberg, M S; Untereker, D F

    1983-09-01

    We have developed a simple method for detecting high concentrations of chloride in sweat from ambulatory subjects, a measurement useful in the detection of cystic fibrosis. The method is based on the standard approach of stimulating sweat generation through iontophoresis of pilocarpine nitrate into the skin, followed by collection and analysis of the sweat for chloride concentration. The sweat-stimulating reagents are contained in polymeric gel pads, which are used in conjunction with a small battery-powered stimulator. The chloride analysis is subsequently done on the stimulated site by use of a thin test patch that picks up a fixed amount of sweat and changes color if the chloride concentration is higher than a predetermined value. The successful completion of a test is indicated by a fill tab, which changes color when the appropriate amount of sweat has been picked up by the chloride test patch.

  2. Night Sweats

    MedlinePlus

    Symptoms Night sweats By Mayo Clinic Staff Night sweats are repeated episodes of extreme perspiration that may soak your nightclothes or ... these episodes are usually not labeled as night sweats and typically aren't a sign of a ...

  3. Sweat Allergy.

    PubMed

    Hiragun, Takaaki; Hide, Michihiro

    2016-01-01

    For many years, sweat has been recognized as an exacerbation factor in all age groups of atopic dermatitis (AD) and a trigger of cholinergic urticaria (CholU). Recently, we reported the improvement of AD symptoms by spray with tannic acid, which suppresses basophil histamine release by semipurified sweat antigens in vitro, and showering that removes antigens in sweat from the skin surface. We finally identified MGL_1304 secreted by Malassezia globosa as a major histamine-releasing antigen in human sweat. MGL_1304 is detected as a 17-kDa protein in sweat and exhibits almost the highest histamine-release ability from basophils of patients with AD and CholU among antigens derived from Malassezia species. Moreover, serum levels of anti-MGL_1304 IgE of patients with AD and CholU were significantly higher than those of normal controls. Desensitization therapy using autologous sweat or MGL_1304 purified from culture of M. globosa or its cognates might be beneficial for patients with intractable CholU due to sweat allergy. © 2016 S. Karger AG, Basel.

  4. Low abundance of sweat duct Cl− channel CFTR in both healthy and cystic fibrosis athletes with exceptionally salty sweat during exercise

    PubMed Central

    Haack, Karla K. V.; Pollack, Brian P.; Millard-Stafford, Mindy; McCarty, Nael A.

    2011-01-01

    To understand potential mechanisms explaining interindividual variability observed in human sweat sodium concentration ([Na+]), we investigated the relationship among [Na+] of thermoregulatory sweat, plasma membrane expression of Na+ and Cl− transport proteins in biopsied human eccrine sweat ducts, and basal levels of vasopressin (AVP) and aldosterone. Lower ductal luminal membrane expression of the Cl− channel cystic fibrosis transmembrane conductance regulator (CFTR) was observed in immunofluorescent staining of sweat glands from healthy young adults identified as exceptionally “salty sweaters” (SS) (n = 6, P < 0.05) and from patients with cystic fibrosis (CF) (n = 6, P < 0.005) compared with ducts from healthy young adults with “typical” sweat [Na+] (control, n = 6). Genetic testing of healthy subjects did not reveal any heterozygotes (“carriers”) for any of the 39 most common disease-causing CFTR mutations in the United States. SS had higher baseline plasma [AVP] compared with control (P = 0.029). Immunostaining to investigate a potential relationship between higher plasma [AVP] (and sweat [Na+]) and ductal membrane aquaporin-5 revealed for all groups a relatively sparse and location-dependent ductal expression of the water channel with localization primarily to the secretory coil. Availability of CFTR for NaCl transport across the ductal membrane appears related to the significant physiological variability observed in sweat salt concentration in apparently healthy humans. At present, a heritable link between healthy salty sweaters and the most prevalent disease-causing CFTR mutations cannot be established. PMID:21228336

  5. A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis.

    PubMed

    Nyein, Hnin Yin Yin; Tai, Li-Chia; Ngo, Quynh Phuong; Chao, Minghan; Zhang, George B; Gao, Wei; Bariya, Mallika; Bullock, James; Kim, Hyungjin; Fahad, Hossain M; Javey, Ali

    2018-05-25

    Wearable sweat sensing is a rapidly rising research area driven by its promising potential in health, fitness, and diagnostic applications. Despite the growth in the field, major challenges in relation to sweat metrics remain to be addressed. These challenges include sweat rate monitoring for its complex relation with sweat compositions and sweat sampling for sweat dynamics studies. In this work, we present a flexible microfluidic sweat sensing patch that enhances real-time electrochemical sensing and sweat rate analysis via sweat sampling. The device contains a spiral-patterned microfluidic component that is embedded with ion-selective sensors and an electrical impedance-based sweat rate sensor on a flexible plastic substrate. The patch is enabled to autonomously perform sweat analysis by interfacing the sensing component with a printed circuit board that is capable of on-site signal conditioning, analysis, and transmission. Progressive sweat flow in the microfluidic device, governed by the pressure induced by the secreted sweat, enhances sweat sampling and electrochemical detection via a defined sweat collection chamber and a directed sweat route. The characteristic of the sweat rate sensor is validated through a theoretical simulation, and the precision and accuracy of the flow rate is verified with a commercial syringe pump and a Macroduct sweat collector. On-body simultaneous monitoring of ion (H + , Na + , K + , Cl - ) concentration and sweat rate is also demonstrated for sensor functionality. This sweat sensing patch provides an integrated platform for a comprehensive sweat secretion analysis and facilitates physiological and clinical investigations by closely monitoring interrelated sweat parameters.

  6. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics.

    PubMed

    Munje, Rujuta D; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-30

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  7. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics

    NASA Astrophysics Data System (ADS)

    Munje, Rujuta D.; Muthukumar, Sriram; Panneer Selvam, Anjan; Prasad, Shalini

    2015-09-01

    An ultra-sensitive and highly specific electrical double layer (EDL) modulated biosensor, using nanoporous flexible substrates for wearable diagnostics is demonstrated with the detection of the stress biomarker cortisol in synthetic and human sweat. Zinc oxide thin film was used as active region in contact with the liquid i.e. synthetic and human sweat containing the biomolecules. Cortisol detection in sweat was accomplished by measuring and quantifying impedance changes due to modulation of the double layer capacitance within the electrical double layer through the application of a low orthogonally directed alternating current (AC) electric field. The EDL formed at the liquid-semiconductor interface was amplified in the presence of the nanoporous flexible substrate allowing for measuring the changes in the alternating current impedance signal due to the antibody-hormone interactions at diagnostically relevant concentrations. High sensitivity of detection of 1 pg/mL or 2.75 pmol cortisol in synthetic sweat and 1 ng/mL in human sweat is demonstrated with these novel biosensors. Specificity in synthetic sweat was demonstrated using a cytokine IL-1β. Cortisol detection in human sweat was demonstrated over a concentration range from 10-200 ng/mL.

  8. Sweat Therapy.

    ERIC Educational Resources Information Center

    Colmant, Stephen A.; Merta, Rod J.

    2000-01-01

    A study combined group sweating and group counseling. Four adolescent boys with disruptive behavior disorders participated in 12 sweat therapy sessions. They reported the sessions useful for sharing personal concerns and receiving assistance with problem solving. Three boys showed improvement in self-esteem. Advantages of sweat therapy over other…

  9. Wetting properties and critical micellar concentration of benzalkonium chloride mixed in sodium hypochlorite.

    PubMed

    Bukiet, Frédéric; Couderc, Guillaume; Camps, Jean; Tassery, Hervé; Cuisinier, Frederic; About, Imad; Charrier, Anne; Candoni, Nadine

    2012-11-01

    The purposes of the present study were to (1) assess the effect of the addition of benzalkonium chloride to sodium hypochlorite on its wetting properties, contact angle, and surface energy; (2) determine the critical micellar concentration of benzalkonium chloride in sodium hypochlorite; and (3) investigate the influence of addition of benzalkonium chloride on the free chlorine level, cytotoxicity, and antiseptic properties of the mixture. Solutions of benzalkonium chloride, with concentrations ranging from 0%-1%, were mixed in 2.4% sodium hypochlorite and tested as follows. The wetting properties were investigated by measuring the contact angle of the solutions on a nondehydrated dentin surface by using the static sessile drop method. The pending drop technique was subsequently used to determine the surface energy of the solutions. The critical micellar concentration of benzalkonium chloride mixed in sodium hypochlorite was calculated from the data. When 2.4% NaOCl was mixed with benzalkonium chloride at the critical micellar concentration, 3 parameters were tested: free chloride content, cytotoxicity, and antibacterial effects against Enterococcus faecalis. The contact angle (P < .001) as well as the surface energy (P < .001) significantly decreased with increasing benzalkonium chloride concentrations. The critical micellar concentration of benzalkonium chloride in sodium hypochlorite was 0.008%. At this concentration, the addition of benzalkonium chloride had no effect on the free chlorine content, cytotoxicity, or antibacterial efficiency of the mixture. The addition of benzalkonium chloride to sodium hypochlorite at the critical micellar concentration reduced the contact angle by 51.2% and the surface energy by 53.4%, without affecting the free chloride content, cytotoxicity, or antibacterial properties of the mixture. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. The detection of cortisol in human sweat: implications for measurement of cortisol in hair.

    PubMed

    Russell, Evan; Koren, Gideon; Rieder, Michael; Van Uum, Stan H M

    2014-02-01

    Hair cortisol analysis has been shown to be an effective measure of chronic stress. Cortisol is assumed to incorporate into hair via serum, sebum, and sweat sources; however, the extent to which sweat contributes to hair cortisol content is unknown. Sweat and saliva samples were collected from 17 subjects after a period of intensive exercise and analyzed by salivary enzyme-linked immunosorbent assay (ELISA). Subsequently, an in vitro test on exposure of hair to hydrocortisone was conducted. Residual hair samples were immersed in a 50-ng/mL hydrocortisone solution for periods lasting 15 minutes to 24 hours, followed by a wash or no-wash condition. Hair cortisol content was determined using our modified protocol for a salivary ELISA. Postexercise control sweat cortisol concentrations ranged from 8.16 to 141.7 ng/mL and correlated significantly with the log-transformed time of day. Sweat cortisol levels significantly correlated with salivary cortisol concentrations. In vitro hair exposure to a 50-ng/mL hydrocortisone solution (mimicking sweat) for 60 minutes or more resulted in significantly increased hair cortisol concentrations. Washing with isopropanol did not affect immersion-increased hair cortisol concentrations. Human sweat contains cortisol in concentrations comparable with salivary cortisol levels. This study suggests that perfuse sweating after intense exercise may increase cortisol concentrations detected in hair. This increase likely cannot be effectively decreased with conventional washing procedures and should be considered carefully in studies using hair cortisol as a biomarker of chronic stress.

  11. Aluminium in human sweat.

    PubMed

    Minshall, Clare; Nadal, Jodie; Exley, Christopher

    2014-01-01

    It is of burgeoning importance that the human body burden of aluminium is understood and is measured. There are surprisingly few data to describe human excretion of systemic aluminium and almost no reliable data which relate to aluminium in sweat. We have measured the aluminium content of sweat in 20 healthy volunteers following mild exercise. The concentration of aluminium ranged from 329 to 5329μg/L. These data equate to a daily excretion of between 234 and 7192μg aluminium and they strongly suggest that perspiration is the major route of excretion of systemic aluminium in humans. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Eccrine sweat gland development and sweat secretion

    PubMed Central

    Cui, Chang-Yi; Schlessinger, David

    2017-01-01

    Eccrine sweat glands help to maintain homoeostasis, primarily by stabilizing body temperature. Derived from embryonic ectoderm, millions of eccrine glands are distributed across human skin and secrete litres of sweat per day. Their easy accessibility has facilitated the start of analyses of their development and function. Mouse genetic models find sweat gland development regulated sequentially by Wnt, Eda and Shh pathways, although precise subpathways and additional regulators require further elucidation. Mature glands have two secretory cell types, clear and dark cells, whose comparative development and functional interactions remain largely unknown. Clear cells have long been known as the major secretory cells, but recent studies suggest that dark cells are also indispensable for sweat secretion. Dark cell-specific Foxa1 expression was shown to regulate a Ca2+-dependent Best2 anion channel that is the candidate driver for the required ion currents. Overall, it was shown that cholinergic impulses trigger sweat secretion in mature glands through second messengers – for example InsP3 and Ca2+ – and downstream ion channels/transporters in the framework of a Na+-K+-Cl− cotransporter model. Notably, the microenvironment surrounding secretory cells, including acid–base balance, was implicated to be important for proper sweat secretion, which requires further clarification. Furthermore, multiple ion channels have been shown to be expressed in clear and dark cells, but the degree to which various ion channels function redundantly or indispensably also remains to be determined. PMID:26014472

  13. Sweat lipid mediator profiling: a noninvasive approach for cutaneous research.

    PubMed

    Agrawal, Karan; Hassoun, Lauren A; Foolad, Negar; Pedersen, Theresa L; Sivamani, Raja K; Newman, John W

    2017-01-01

    Recent advances in analytical and sweat collection techniques provide new opportunities to identify noninvasive biomarkers for the study of skin inflammation and repair. This study aims to characterize the lipid mediator profile including oxygenated lipids, endocannabinoids, and ceramides/sphingoid bases in sweat and identify differences in these profiles between sweat collected from nonlesional sites on the unflared volar forearm of subjects with and without atopic dermatitis (AD). Adapting routine procedures developed for plasma analysis, over 100 lipid mediators were profiled using LC-MS/MS and 58 lipid mediators were detected in sweat. Lipid mediator concentrations were not affected by sampling or storage conditions. Increases in concentrations of C30-C40 [NS] and [NdS] ceramides, and C18:1 sphingosine, were observed in the sweat of study participants with AD despite no differences being observed in transepidermal water loss between study groups, and this effect was strongest in men (P < 0.05, one-way ANOVA with Tukey's post hoc HSD). No differences in oxylipins and endocannabinoids were observed between study groups. Sweat mediator profiling may therefore provide a noninvasive diagnostic for AD prior to the presentation of clinical signs.

  14. Long-term chloride concentrations in North American and European freshwater lakes

    PubMed Central

    Dugan, Hilary A.; Summers, Jamie C.; Skaff, Nicholas K.; Krivak-Tetley, Flora E.; Doubek, Jonathan P.; Burke, Samantha M.; Bartlett, Sarah L.; Arvola, Lauri; Jarjanazi, Hamdi; Korponai, János; Kleeberg, Andreas; Monet, Ghislaine; Monteith, Don; Moore, Karen; Rogora, Michela; Hanson, Paul C.; Weathers, Kathleen C.

    2017-01-01

    Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500 m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future. PMID:28786983

  15. Long-term chloride concentrations in North American and European freshwater lakes.

    PubMed

    Dugan, Hilary A; Summers, Jamie C; Skaff, Nicholas K; Krivak-Tetley, Flora E; Doubek, Jonathan P; Burke, Samantha M; Bartlett, Sarah L; Arvola, Lauri; Jarjanazi, Hamdi; Korponai, János; Kleeberg, Andreas; Monet, Ghislaine; Monteith, Don; Moore, Karen; Rogora, Michela; Hanson, Paul C; Weathers, Kathleen C

    2017-08-08

    Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500 m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future.

  16. Eccrine sweat gland development and sweat secretion.

    PubMed

    Cui, Chang-Yi; Schlessinger, David

    2015-09-01

    Eccrine sweat glands help to maintain homoeostasis, primarily by stabilizing body temperature. Derived from embryonic ectoderm, millions of eccrine glands are distributed across human skin and secrete litres of sweat per day. Their easy accessibility has facilitated the start of analyses of their development and function. Mouse genetic models find sweat gland development regulated sequentially by Wnt, Eda and Shh pathways, although precise subpathways and additional regulators require further elucidation. Mature glands have two secretory cell types, clear and dark cells, whose comparative development and functional interactions remain largely unknown. Clear cells have long been known as the major secretory cells, but recent studies suggest that dark cells are also indispensable for sweat secretion. Dark cell-specific Foxa1 expression was shown to regulate a Ca(2+) -dependent Best2 anion channel that is the candidate driver for the required ion currents. Overall, it was shown that cholinergic impulses trigger sweat secretion in mature glands through second messengers - for example InsP3 and Ca(2+) - and downstream ion channels/transporters in the framework of a Na(+) -K(+) -Cl(-) cotransporter model. Notably, the microenvironment surrounding secretory cells, including acid-base balance, was implicated to be important for proper sweat secretion, which requires further clarification. Furthermore, multiple ion channels have been shown to be expressed in clear and dark cells, but the degree to which various ion channels function redundantly or indispensably also remains to be determined. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  17. Hyperhidrosis (Excessive Sweating)

    MedlinePlus

    ... your daily routine Sweating causes emotional distress or social withdrawal You suddenly begin to sweat more than usual ... can lead to heavy sweating, as can opioid ... infections. Social and emotional effects. Having clammy or dripping hands ...

  18. Deficient Vasoactive Intestinal Peptide Innervation in the Sweat Glands of Cystic Fibrosis Patients

    NASA Astrophysics Data System (ADS)

    Heinz-Erian, Peter; Dey, Richard D.; Flux, Marinus; Said, Sami I.

    1985-09-01

    The innervation of acini and ducts of eccrine sweat glands by immunoreactive, vasoactive intestinal peptide--containing nerve fibers was sharply reduced in seven patients with cystic fibrosis compared to eight normal subjects. The decrease in innervation by this neuropeptide, which has been shown to promote blood flow and the movement of water and chloride across epithelial surfaces in other systems, may be a basic mechanism for the decreased water content and relative impermeability of the epithelium to chloride and other ions that characterize cystic fibrosis.

  19. Sweating

    MedlinePlus Videos and Cool Tools

    ... half million eccrine sweat glands all over the body. They lie deep in the skin and are connected to the surface by coiled tubes called ducts. Sweat (perspiration) is a liquid mixture made up of 99% water and 1% salt and fat. Up to a quart of liquid a day ...

  20. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age

    PubMed Central

    Jahn, Stephan C.; Rowland-Faux, Laura; Stacpoole, Peter W.; James, Margaret O.

    2015-01-01

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7 – 365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9 – 22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. PMID:25748576

  1. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age.

    PubMed

    Jahn, Stephan C; Rowland-Faux, Laura; Stacpoole, Peter W; James, Margaret O

    2015-04-10

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7-365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9-22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Variability of measurements of sweat sodium using the regional absorbent-patch method.

    PubMed

    Dziedzic, Christine E; Ross, Megan L; Slater, Gary J; Burke, Louise M

    2014-09-01

    There is interest in including recommendations for the replacement of the sodium lost in sweat in individualized hydration plans for athletes. Although the regional absorbent-patch method provides a practical approach to measuring sweat sodium losses in field conditions, there is a need to understand the variability of estimates associated with this technique. Sweat samples were collected from the forearms, chest, scapula, and thigh of 12 cyclists during 2 standardized cycling time trials in the heat and 2 in temperate conditions. Single measure analysis of sodium concentration was conducted immediately by ion-selective electrodes (ISE). A subset of 30 samples was frozen for reanalysis of sodium concentration using ISE, flame photometry (FP), and conductivity (SC). Sweat samples collected in hot conditions produced higher sweat sodium concentrations than those from the temperate environment (P = .0032). A significant difference (P = .0048) in estimates of sweat sodium concentration was evident when calculated from the forearm average (mean ± 95% CL; 64 ± 12 mmol/L) compared with using a 4-site equation (70 ± 12 mmol/L). There was a high correlation between the values produced using different analytical techniques (r2 = .95), but mean values were different between treatments (frozen FP, frozen SC > immediate ISE > frozen ISE; P < .0001). Whole-body sweat sodium concentration estimates differed depending on the number of sites included in the calculation. Environmental testing conditions should be considered in the interpretation of results. The impact of sample freezing and subsequent analytical technique was small but statistically significant. Nevertheless, when undertaken using a standardized protocol, the regional absorbent-patch method appears to be a relatively robust field test.

  3. Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of Cystic Fibrosis.

    PubMed

    Kim, Jimin P; Xie, Zhiwei; Creer, Michael; Liu, Zhiwen; Yang, Jian

    2017-01-01

    Chloride is an essential electrolyte that maintains homeostasis within the body, where abnormal chloride levels in biological fluids may indicate various diseases such as Cystic Fibrosis. However, current analytical solutions for chloride detection fail to meet the clinical needs of both high performance and low material or labor costs, hindering translation into clinical settings. Here we present a new class of fluorescence chloride sensors derived from a facile citrate -based synthesis platform that utilize dynamic quenching mechanisms. Based on this low-cost platform, we demonstrate for the first time a selective sensing strategy that uses a single fluorophore to detect multiple halides simultaneously, promising both selectivity and automation to improve performance and reduce labor costs. We also demonstrate the clinical utility of citrate-based sensors as a new sweat chloride test method for the diagnosis of Cystic Fibrosis by performing analytical validation with sweat controls and clinical validation with sweat from individuals with or without Cystic Fibrosis. Lastly, molecular modeling studies reveal the structural mechanism behind chloride sensing, serving to expand this class of fluorescence sensors with improved chloride sensitivities. Thus citrate-based fluorescent materials may enable low-cost, automated multi-analysis systems for simpler, yet accurate, point-of-care diagnostics that can be readily translated into clinical settings. More broadly, a wide range of medical, industrial, and environmental applications can be achieved with such a facile synthesis platform, demonstrated in our citrate-based biodegradable polymers with intrinsic fluorescence sensing.

  4. Chloride impermeability in cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Quinton, Paul M.

    1983-02-01

    Cystic fibrosis is the most common fatal genetic disease affecting Caucasians and is perhaps best characterized as an exocrinopathy involving a disturbance in fluid and electrolyte transport1. A high NaCl concentration in the sweat is characteristic of patients with this disease; the basic physiological reason for this abnormality is unknown. We have microperfused isolated sweat ducts from control subjects and cystic fibrosis patients, and report here results which suggest that abnormally low Cl- permeability in cystic fibrosis leads to poor reabsorption of NaCl in the sweat duct, and hence to a high concentration of NaCl in the sweat.

  5. Sixty-five years since the New York heat wave: advances in sweat testing for cystic fibrosis.

    PubMed

    Collie, Jake T B; Massie, R John; Jones, Oliver A H; LeGrys, Vicky A; Greaves, Ronda F

    2014-02-01

    The sweat test remains important as a diagnostic test for cystic fibrosis (CF) and has contributed greatly to our understanding of CF as a disease of epithelial electrolyte transport. The standardization of the sweat test, by Gibson and Cooke [Gibson and Cooke (1959) Pediatrics 1959;23:5], followed observations of excessive dehydration amongst patients with CF and confirmed the utility as a diagnostic test. Quantitative pilocarpine iontophoresis remains the gold standard for sweat induction, but there are a number of collection and analytical methods. The pathophysiology of electrolyte transport in sweat was described by Quinton [Quinton (1983) Nature 1983;301:421-422], and this complemented the developments in genetics that discovered the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial-based electrolyte transport protein. Knowledge of CF has since increased rapidly and further developments in sweat testing include: new collection methods, further standardization of the technique with international recommendations and age related reference intervals. More recently, sweat chloride values have been used as proof of effect for the new drugs that activate CFTR. However, there remain issues with adherence to sweat test guidelines in many countries and there are gaps in our knowledge, including reference intervals for some age groups and stability of sweat samples in transport. Furthermore, modern methods of elemental quantification need to be explored as alternatives to the original analytical methods for sweat electrolyte measurement. The purpose of this review is therefore to describe the development of the sweat test and consider future directions. © 2013 Wiley Periodicals, Inc.

  6. Iron losses in sweat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, M.; Magnusson, B.; Persson, H.

    The losses of iron in whole body cell-free sweat were determined in eleven healthy men. A new experimental design was used with a very careful cleaning procedure of the skin and repeated consecutive sampling periods of sweat in a sauna. The purpose was to achieve a steady state of sweat iron losses with minimal influence from iron originating from desquamated cells and iron contaminating the skin. A steady state was reached in the third sauna period (second sweat sampling period). Iron loss was directly related to the volume of sweat lost and amounted to 22.5 micrograms iron/l sweat. The findingsmore » indicate that iron is a physiological constituent of sweat and derived not only from contamination. Present results imply that variations in the amount of sweat lost will have only a marginal effect on the variation in total body iron losses.« less

  7. Monitoring cocaine use in substance-abuse-treatment patients by sweat and urine testing.

    PubMed

    Preston, K L; Huestis, M A; Wong, C J; Umbricht, A; Goldberger, B A; Cone, E J

    1999-09-01

    Sweat and urine specimens were collected from 44 methadone-maintenance patients to evaluate the use of sweat testing to monitor cocaine use. Paired sweat patches that were applied and removed weekly (on Tuesdays) were compared with 3-5 consecutive urine specimens collected Mondays, Wednesdays, and Fridays. All patches (N = 930) were extracted in 2.5 mL of solvent and analyzed by ELISA immunoassay (cutoff concentration 10 ng/mL); a subset of patches (N = 591) was also analyzed by gas chromatography-mass spectrometry (GC-MS) for cocaine, benzoylecgonine (BZE), and ecgonine methyl ester (EME) (cutoff concentration 5 ng/mL). Urine specimens were subjected to qualitative analysis by EMIT (cutoff 300 ng/mL) and subsets were analyzed by TDx (semiquantitative, LOD 30 ng/mL) and by GC-MS for cocaine (LOD 5 ng/mL). Results were evaluated to (1) determine the relative amounts of cocaine and its metabolites in sweat; (2) assess replicability in duplicate patches; (3) compare ELISA and GC-MS results for cocaine in sweat; and (4) compare the detection of cocaine use by sweat and urine testing. Cocaine was detected by GC-MS in 99% of ELISA-positive sweat patches; median concentrations of cocaine, BZE, and EME were 378, 78.7, and 74 ng/mL, respectively. Agreement in duplicate patches was approximately 90% by ELISA analysis. The sensitivity, specificity, and efficiency of sweat ELISA cocaine results as compared with sweat GC-MS results were 93.6%, 91.3%, and 93.2%, respectively. The sensitivity, specificity, and efficiency between ELISA sweat patch and EMIT urine results were 97.6%, 60.5%, and 77.7%, respectively. These results support the use of sweat patches for monitoring cocaine use, though further evaluation is needed.

  8. Immediate Wheal Reactivity to Autologous Sweat in Atopic Dermatitis Is Associated with Clinical Severity, Serum Total and Specific IgE and Sweat Tryptase Activity.

    PubMed

    Ilves, Tiina; Virolainen, Anu; Harvima, Ilkka Tapani

    2016-01-01

    Sweating can worsen atopic dermatitis (AD). The purpose of this work was to study the associations between reactivity to autologous sweat and the clinical severity of AD as well as investigate the possible wheal-inducing factors of sweat. Intracutaneous skin tests with autologous sweat were performed on 50 AD patients and 24 control subjects. In skin biopsies, tryptase and PAR-2 were enzyme and immunohistochemically stained. The associations between skin test reactivity and sweat histamine concentration, tryptase or chymase activity levels, tryptase or PAR-2 expression and AD clinical severity or IgE levels were investigated. The wheal reactions in the intracutaneous tests with autologous sweat were positive, weakly positive and negative in 38, 34 and 28% of the AD patients, respectively, and in 4, 46 and 50% of the healthy controls, respectively (p = 0.008). In AD, the wheal reaction was associated significantly with clinical severity, serum total and specific IgE levels and sweat tryptase activity, but not with sweat histamine and chymase. In nonlesional AD skin, the percentage of PAR-2+ mast cells (MCs) or the number of tryptase+ MCs did not differ significantly between the intracutaneous test reactivity groups. Reactivity to autologous sweat correlates with the clinical severity of AD, and tryptase may be one of the factors involved in the sweat-induced wheal. © 2016 S. Karger AG, Basel.

  9. Diagnosing night sweats.

    PubMed

    Viera, Anthon J; Bond, Michael M; Yates, Scott W

    2003-03-01

    Night sweats are a common outpatient complaint, yet literature on the subject is scarce. Tuberculosis and lymphoma are diseases in which night sweats are a dominant symptom, but these are infrequently found to be the cause of night sweats in modern practice. While these diseases remain important diagnostic considerations in patients with night sweats, other diagnoses to consider include human immunodeficiency virus, gastroesophageal reflux disease, obstructive sleep apnea, hyperthyroidism, hypoglycemia, and several less common diseases. Antihypertensives, antipyretics, other medications, and drugs of abuse such as alcohol and heroin may cause night sweats. Serious causes of night sweats can be excluded with a thorough history, physical examination, and directed laboratory and radiographic studies. If a history and physical do not reveal a possible diagnosis, physicians should consider a purified protein derivative, complete blood count, human immunodeficiency virus test, thyroid-stimulating hormone test, erythrocyte sedimentation rate evaluation, chest radiograph, and possibly chest and abdominal computed tomographic scans and bone marrow biopsy.

  10. Sweat lipid mediator profiling: a noninvasive approach for cutaneous research[S

    PubMed Central

    Hassoun, Lauren A.; Foolad, Negar; Pedersen, Theresa L.; Sivamani, Raja K.; Newman, John W.

    2017-01-01

    Recent advances in analytical and sweat collection techniques provide new opportunities to identify noninvasive biomarkers for the study of skin inflammation and repair. This study aims to characterize the lipid mediator profile including oxygenated lipids, endocannabinoids, and ceramides/sphingoid bases in sweat and identify differences in these profiles between sweat collected from nonlesional sites on the unflared volar forearm of subjects with and without atopic dermatitis (AD). Adapting routine procedures developed for plasma analysis, over 100 lipid mediators were profiled using LC-MS/MS and 58 lipid mediators were detected in sweat. Lipid mediator concentrations were not affected by sampling or storage conditions. Increases in concentrations of C30–C40 [NS] and [NdS] ceramides, and C18:1 sphingosine, were observed in the sweat of study participants with AD despite no differences being observed in transepidermal water loss between study groups, and this effect was strongest in men (P < 0.05, one-way ANOVA with Tukey’s post hoc HSD). No differences in oxylipins and endocannabinoids were observed between study groups. Sweat mediator profiling may therefore provide a noninvasive diagnostic for AD prior to the presentation of clinical signs. PMID:27875258

  11. Working Up a Good Sweat – The Challenges of Standardising Sweat Collection for Metabolomics Analysis

    PubMed Central

    Hussain, Joy N; Mantri, Nitin; Cohen, Marc M

    2017-01-01

    Introduction Human sweat is a complex biofluid of interest to diverse scientific fields. Metabolomics analysis of sweat promises to improve screening, diagnosis and self-monitoring of numerous conditions through new applications and greater personalisation of medical interventions. Before these applications can be fully developed, existing methods for the collection, handling, processing and storage of human sweat need to be revised. This review presents a cross-disciplinary overview of the origins, composition, physical characteristics and functional roles of human sweat, and explores the factors involved in standardising sweat collection for metabolomics analysis. Methods A literature review of human sweat analysis over the past 10 years (2006–2016) was performed to identify studies with metabolomics or similarly applicable ‘omics’ analysis. These studies were reviewed with attention to sweat induction and sampling techniques, timing of sweat collection, sweat storage conditions, laboratory derivation, processing and analytical platforms. Results Comparative analysis of 20 studies revealed numerous factors that can significantly impact the validity, reliability and reproducibility of sweat analysis including: anatomical site of sweat sampling, skin integrity and preparation; temperature and humidity at the sweat collection sites; timing and nature of sweat collection; metabolic quenching; transport and storage; qualitative and quantitative measurements of the skin microbiota at sweat collection sites; and individual variables such as diet, emotional state, metabolic conditions, pharmaceutical, recreational drug and supplement use. Conclusion Further development of standard operating protocols for human sweat collection can open the way for sweat metabolomics to significantly add to our understanding of human physiology in health and disease. PMID:28798503

  12. Leaching from the stratum corneum does not explain the previously reported elevated potassium ion concentration in sweat.

    PubMed

    Buono, Michael J; Stone, Michael; Cannon, Daniel T

    2016-03-01

    The purpose of this study was to determine if K+ is leached from the stratum corneum when sweat is present on the skin's surface. The results will help address whether sweat [K+] previously reported in the literature are artifactually elevated as a result of K+ leaching. Twelve (six female, six male) healthy volunteers participated in this study. After thorough skin cleansing and preparation with isopropyl alcohol and high-performance liquid chromatography-grade distilled water, three sites were chosen and a 50 μL drop of artificial sweat was pipetted directly onto the skin. The artificial sweat had a [K+] of 4 mEq·L-1, an osmolality of 120 mosm·L-1, and a pH of 6.0. Immediately following, a clear plastic cover slip (~6 cm2) with a shallow 0.8 cm2 convex impression in the center was applied over each drop, preventing evaporation. Each sample was allowed to sit on the forearm, under the plastic cover slip, for 10 min. The mean (±SD) [K+] in 'artificial' sweat not exposed to the skin was measured to be 4.2±0.4 mEq·L-1. After 10 min of exposure to the stratum corneum of the forearm, the artificial sweat had a mean (±SD) [K+] of 3.9±0.3 mEq·L-1. There was no significant difference (p>0.05) in the [K+] between the control artificial sweat and the samples collected after 10 min of exposure to forearm skin. These results do not support the hypothesis that significant K+ leaching from the stratum corneum into standing sweat is the cause for the previously reported elevated sweat [K+].

  13. A Preliminary Study of Biomonitoring for Bisphenol-A in Human Sweat.

    PubMed

    Porucznik, Christina A; Cox, Kyley J; Wilkins, Diana G; Anderson, David J; Bailey, Nicole M; Szczotka, Kathryn M; Stanford, Joseph B

    2015-09-01

    Measurement of human exposure to the endocrine disruptor bisphenol-A (BPA) is hampered by the ubiquitous but transient exposure for most individuals, coupled with a short metabolic half-life which leads to high inter- and intra-individual variability. We investigated the possibility of measuring multiday exposure to BPA in human sweat among volunteer participants with the goal of identifying an exposure assessment method less affected by temporal variability. We recruited 50 participants to wear a sweat collection patch (PharmChek(®)) for 7 days with concurrent collection of daily first-morning urine. Urines and sweat patch extracts were analyzed with quantitative LC-MS-MS using a method we previously validated. In addition, a human volunteer consumed one can of commercially available soup (16 oz, 473 cm(3)) daily for 3 days and collected urine. Sweat patches (n = 2, 1 per arm) were worn for the 3 days of the study. BPA was detected in quality control specimens prepared by fortification of BPA to sweat patches, but was only detected at 5× above average background on three participant patches. Although the highest measured urine BPA concentration was 195 ng/mL for an individual with deliberate exposure, no BPA was detected above background in the corresponding sweat patches. In this preliminary investigation, the use of sweat patches primarily worn on the upper-outer arm did not detect BPA exposures that were documented by urine monitoring. The absence of BPA in sweat patches may be due to several factors, including insufficient quantity of specimen per patch, or extremely low concentrations of BPA in naturally occurring sweat, among others. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Dry skin (xerosis) in patients undergoing maintenance haemodialysis: the role of decreased sweating of the eccrine sweat gland.

    PubMed

    Park, T H; Park, C H; Ha, S K; Lee, S H; Song, K S; Lee, H Y; Han, D S

    1995-12-01

    The aetiology and the pathophysiological mechanisms underlying the development of dry skin in uraemia are still unclear, but the hydration status of stratum corneum clearly influences the appearance of skin. The xerotic skin texture is often referred to as 'dry skin' and has been suggested as a cause of uraemic pruritus. To understand the aetiology of dry skin in uraemia we measured the status of skin surface hydration of uraemic patients with the corneometer and skin surface hydrometer, the functional capacity and the urea concentration of stratum corneum and the response of eccrine sweat gland to sudorific agent (0.05% pilocarpine HCL) in 18 age-matched haemodialysis patients and 10 healthy volunteers. We also performed the water sorption-desorption test to uraemic and control subjects after application of urea in various concentrations. Uraemic patient's skin showed decreased water content compared to control subjects. However, we found no correlation between dry skin and pruritus. Although the urea concentration of the horny layer in uraemic patients was elevated compared to control subjects (28.2 microgram/cm2 vs 5.04 micrograms/cm2, P < 0.05), its moisturizing effect to relieve pruritus is questionable because its artificial application revealed no improvement of the functional capacity of horny layer in concentration 5 times higher than the physiological concentration. Uraemic patients showed decreased sweating response to sudorific agent. In conclusion, the functional abnormalities of eccrine sweat glands may be account for dry skin in uraemic patients at least in part, but there is no correlation between xerosis and pruritus.

  15. Usefulness of Sweat Management for Patients with Adult Atopic Dermatitis, regardless of Sweat Allergy: A Pilot Study.

    PubMed

    Kaneko, Sakae; Murota, Hiroyuki; Murata, Susumu; Katayama, Ichiro; Morita, Eishin

    2017-01-01

    Background . Sweat is an aggravating factor in atopic dermatitis (AD), regardless of age. Sweat allergy may be involved in AD aggravated by sweating. Objective. We investigated whether sweat exacerbates adult AD symptoms and examined the extent of sweat allergy's involvement. Method. We asked 34 AD patients (17 men, 17 women; mean age: 27.8 years) to record the extent to which sweat aggravated their symptoms on a 10-point numerical scale. Participant responses were compared with histamine release tests (HRT). Furthermore, 24 of the patients received instructions on methods of sweat management, and their outcomes were evaluated on a 10-point scale. Results. Sweat HRT results were class ≥ 2 in 13 patients, but HRT results were not correlated with the patients' self-assessments of symptom aggravation by sweat. One month after receiving sweat management instructions, a low mean score of 4.6 was obtained regarding whether active sweating was good, but a high mean score of 7.0 was obtained in response to whether the sweat management instructions had been helpful. Conclusion . Our investigation showed that patients' negative impressions of sweat might derive from crude personal experiences that are typically linked to sweating. Sweat management for patients with adult atopic dermatitis was extremely useful regardless of sweat allergy.

  16. [Determination of high concentrations of rubidium chloride by ICP-OES].

    PubMed

    Zhong, Yuan; Sun, Bai; Li, Hai-jun; Wang, Tao; Li, Wu; Song, Peng-sheng

    2015-01-01

    The method of ICP-OES for the direct determination of high content of rubidium in rubidium chloride solutions was studied through mass dilution method and optimizing parameters of the instrument in the present paper. It can reduce the times of dilution and the error introduced by the dilution, and improve the accuracy of determination results of rubidium. Through analyzing the sensitivity of the three detection spectral lines for rubidium ion, linearly dependent coefficient and the relative errors of the determination results, the spectral line of Rb 780. 023 nm was chosen as the most suitable wavelength to measure the high content of rubidium in the rubidium chloride solutions. It was found that the instrument parameters of ICP-OES such as the atomizer flow, the pump speed and the high-frequency power are the major factors for the determination of rubidium ion in the rubidium chloride solutions. As we know instrument parameters of ICP-OES have an important influence on the atomization efficiency as well as the emissive power of the spectral lines of rubidium, they are considered as the significant factors for the determination of rubidium. The optimization parameters of the instrument were obtained by orthogonal experiments and further single factor experiment, which are 0. 60 L . min-1 of atomizer flow, 60 r . min-1 of pump speed, and 1 150 W of high-frequency power. The same experiments were repeated a week later with the optimization parameters of the instrument, and the relative errors of the determination results are less than 0. 5% when the concentration of rubidium chloride ranged from 0. 09% to 0. 18%. As the concentration of rubidium chloride is 0. 06%, the relative errors of the determination results are -1. 7%. The determination of lithium chloride and potassium chloride in the high concentration of the aqueous solutions was studied under the condition of similar instrument parameters. It was found by comparison that the determination results of lithium

  17. The use of sweat to monitor lead absorption through the skin.

    PubMed

    Lilley, S G; Florence, T M; Stauber, J L

    1988-10-15

    It is usually assumed that lead can be absorbed through the skin only if it is present as an organolead compound such as tetraethyllead or lead naphthanate. It has been found, however, that finely-powdered lead metal or lead nitrate solution placed on the skin results in rapid absorption of lead, and transport of the metal around the body. The absorbed lead appears in sweat and saliva, but not in blood or urine. The application of 6 mg of lead as 0.5 M lead nitrate to the left arm resulted in an increase in lead concentration in pilocarpine-induced iontophoresis sweat samples taken from the right arm, from an initial value of 15-25 micrograms Pbl-1 to greater than 300 micrograms Pbl-1 after 2 days. Saliva lead increased from 2.5 to 15 micrograms Pbl-1 in the same period. The rate of lead absorption through the skin increases with increased sweating of the skin. Since no measurable increase in blood lead has been found, the lead must be transported in the plasma and rapidly concentrated into the extracellular fluid pool (sweat and saliva), without significant uptake by the erythrocytes, and with a very low transient concentration in the plasma. Workers occupationally exposed to lead have extremely high levels of lead in sweat even though their lead in blood is only moderately elevated. Lead absorbed through the skin may be eliminated via sweat and other extracellular fluids, and hence not be as great a health hazard as ingested lead, but this will need to be proved by further studies.

  18. A Real-Time Wireless Sweat Rate Measurement System for Physical Activity Monitoring

    PubMed Central

    Brueck, Andrew; Iftekhar, Tashfin; Stannard, Alicja B.; Kaya, Tolga

    2018-01-01

    There has been significant research on the physiology of sweat in the past decade, with one of the main interests being the development of a real-time hydration monitor that utilizes sweat. The contents of sweat have been known for decades; sweat provides significant information on the physiological condition of the human body. However, it is important to know the sweat rate as well, as sweat rate alters the concentration of the sweat constituents, and ultimately affects the accuracy of hydration detection. Towards this goal, a calorimetric based flow-rate detection system was built and tested to determine sweat rate in real time. The proposed sweat rate monitoring system has been validated through both controlled lab experiments (syringe pump) and human trials. An Internet of Things (IoT) platform was embedded, with the sensor using a Simblee board and Raspberry Pi. The overall prototype is capable of sending sweat rate information in real time to either a smartphone or directly to the cloud. Based on a proven theoretical concept, our overall system implementation features a pioneer device that can truly measure the rate of sweat in real time, which was tested and validated on human subjects. Our realization of the real-time sweat rate watch is capable of detecting sweat rates as low as 0.15 µL/min/cm2, with an average error in accuracy of 18% compared to manual sweat rate readings. PMID:29439398

  19. A Real-Time Wireless Sweat Rate Measurement System for Physical Activity Monitoring.

    PubMed

    Brueck, Andrew; Iftekhar, Tashfin; Stannard, Alicja B; Yelamarthi, Kumar; Kaya, Tolga

    2018-02-10

    There has been significant research on the physiology of sweat in the past decade, with one of the main interests being the development of a real-time hydration monitor that utilizes sweat. The contents of sweat have been known for decades; sweat provides significant information on the physiological condition of the human body. However, it is important to know the sweat rate as well, as sweat rate alters the concentration of the sweat constituents, and ultimately affects the accuracy of hydration detection. Towards this goal, a calorimetric based flow-rate detection system was built and tested to determine sweat rate in real time. The proposed sweat rate monitoring system has been validated through both controlled lab experiments (syringe pump) and human trials. An Internet of Things (IoT) platform was embedded, with the sensor using a Simblee board and Raspberry Pi. The overall prototype is capable of sending sweat rate information in real time to either a smartphone or directly to the cloud. Based on a proven theoretical concept, our overall system implementation features a pioneer device that can truly measure the rate of sweat in real time, which was tested and validated on human subjects. Our realization of the real-time sweat rate watch is capable of detecting sweat rates as low as 0.15 µL/min/cm², with an average error in accuracy of 18% compared to manual sweat rate readings.

  20. Diffusion vs. concentration of chloride ions in concrete.

    DOT National Transportation Integrated Search

    2014-06-01

    This investigation was performed to gain insight and assist in determining the long-term durability of : reinforced concrete structures where the external chloride concentrations are different than those typically : observed at the permanently immers...

  1. Glutamate transporter-associated anion channels adjust intracellular chloride concentrations during glial maturation.

    PubMed

    Untiet, Verena; Kovermann, Peter; Gerkau, Niklas J; Gensch, Thomas; Rose, Christine R; Fahlke, Christoph

    2017-02-01

    Astrocytic volume regulation and neurotransmitter uptake are critically dependent on the intracellular anion concentration, but little is known about the mechanisms controlling internal anion homeostasis in these cells. Here we used fluorescence lifetime imaging microscopy (FLIM) with the chloride-sensitive dye MQAE to measure intracellular chloride concentrations in murine Bergmann glial cells in acute cerebellar slices. We found Bergmann glial [Cl - ] int to be controlled by two opposing transport processes: chloride is actively accumulated by the Na + -K + -2Cl - cotransporter NKCC1, and chloride efflux through anion channels associated with excitatory amino acid transporters (EAATs) reduces [Cl - ] int to values that vary upon changes in expression levels or activity of these channels. EAATs transiently form anion-selective channels during glutamate transport, and thus represent a class of ligand-gated anion channels. Age-dependent upregulation of EAATs results in a developmental chloride switch from high internal chloride concentrations (51.6 ± 2.2 mM, mean ± 95% confidence interval) during early development to adult levels (35.3 ± 0.3 mM). Simultaneous blockade of EAAT1/GLAST and EAAT2/GLT-1 increased [Cl - ] int in adult glia to neonatal values. Moreover, EAAT activation by synaptic stimulations rapidly decreased [Cl - ] int . Other tested chloride channels or chloride transporters do not contribute to [Cl - ] int under our experimental conditions. Neither genetic removal of ClC-2 nor pharmacological block of K + -Cl - cotransporter change resting Bergmann glial [Cl - ] int in acute cerebellar slices. We conclude that EAAT anion channels play an important and unexpected role in adjusting glial intracellular anion concentration during maturation and in response to cerebellar activity. GLIA 2017;65:388-400. © 2016 Wiley Periodicals, Inc.

  2. Transition duration of ingested deuterium oxide to eccrine sweat during exercise in the heat.

    PubMed

    Church, Adam; Lee, Fanny; Buono, Michael J

    2017-01-01

    The time necessary for the initial appearance of ingested water as sweat during exercise in the heat remains unknown. Based on the current literature, we estimated fluid transition through the body, from ingestion to appearance as sweat, to have a minimum time duration of approximately three minutes. The purpose of this study was to test this prediction and identify the time necessary for the initial enrichment of deuterium oxide (D 2 O) in sweat following ingestion during exercise in the heat. Eight participants performed moderate intensity (40% of maximal oxygen uptake) treadmill exercise in an environmental chamber (40°C, 40% rH) to induce active sweating. After fifteen minutes, while continuing to walk, participants consumed D 2 O (0.15mlkg -1 ) in a final volume of 50ml water. Scapular sweat samples were collected one minute prior to and ten minutes post-ingestion. Samples were analyzed for sweat D 2 O concentration using isotope ratio mass spectrometry and compared to baseline. Mean±SD ∆ sweat D 2 O concentration at minutes one and two post-ingestion were not significantly higher than baseline (0min). Minutes three (9±3ppm) through ten (23±11ppm) post-ingestion had ∆ sweat D 2 O concentrations significantly (P<0.05) higher than baseline. Such results suggest that ingested water rapidly transports across the mucosal membrane of the alimentary canal into the vasculature space, enters the extravascular fluid, and is actively secreted by the eccrine sweat glands onto the surface of the skin for potential evaporation in as little as three minutes during exercise in the heat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The sweating foot: local differences in sweat secretion during exercise-induced hyperthermia.

    PubMed

    Taylor, Nigel A S; Caldwell, Joanne N; Mekjavic, Igor B

    2006-10-01

    Little is known regarding local differences in foot sweat secretion. Since such information is important to our understanding of sweat gland control for thermoregulatory modeling and for the design of footwear we explored this topic. Local sweat rates were investigated across core temperatures from 37-39 degrees C, achieved using endogenous (cycling) and exogenous heat (water-perfusion garment: 46 degrees C). Six healthy adults (three men, three women) performed one-legged, incremental cycling in a heated, climate-controlled chamber (36 degrees C, 60% relative humidity). Sweat rates were measured at the forehead and stationary (left) foot (capsules 3.16 cm2): three dorsal sites (base of toes, second metatarsal, and mid point), the lateral, and the central plantar surfaces. Terminal core temperatures ranged between 38.3-39.1 oC, with peak heart rates of 155-187 bpm. Most foot sweat rates were < 50% of that observed at the forehead: dorsal 1 (38%); dorsal 2 (54%); dorsal 3 (37%); lateral (24%); and plantar surfaces (18%). When averaged across the trial, local sweat rates were: 2.61 (forehead); 0.98 (dorsal 1); 1.39 (dorsal 2); 0.95 (dorsal 3); 0.62 (lateral); and 0.47 mg cm2 2 min-1 (plantar). Two key observations emerged. First, sweat secretion from the experimental foot averaged 30 ml x h(-1), peaking in the last 5 min at 50 ml x h(-1). Second, approximately 70% of the measured sweat flow emanated from the upper skin surfaces, with only 30% coming from the plantar surface.

  4. Thin, Soft, Skin-Mounted Microfluidic Networks with Capillary Bursting Valves for Chrono-Sampling of Sweat.

    PubMed

    Choi, Jungil; Kang, Daeshik; Han, Seungyong; Kim, Sung Bong; Rogers, John A

    2017-03-01

    Systems for time sequential capture of microliter volumes of sweat released from targeted regions of the skin offer the potential to enable analysis of temporal variations in electrolyte balance and biomarker concentration throughout a period of interest. Current methods that rely on absorbent pads taped to the skin do not offer the ease of use in sweat capture needed for quantitative tracking; emerging classes of electronic wearable sweat analysis systems do not directly manage sweat-induced fluid flows for sample isolation. Here, a thin, soft, "skin-like" microfluidic platform is introduced that bonds to the skin to allow for collection and storage of sweat in an interconnected set of microreservoirs. Pressure induced by the sweat glands drives flow through a network of microchannels that incorporates capillary bursting valves designed to open at different pressures, for the purpose of passively guiding sweat through the system in sequential fashion. A representative device recovers 1.8 µL volumes of sweat each from 0.8 min of sweating into a set of separate microreservoirs, collected from 0.03 cm 2 area of skin with approximately five glands, corresponding to a sweat rate of 0.60 µL min -1 per gland. Human studies demonstrate applications in the accurate chemical analysis of lactate, sodium, and potassium concentrations and their temporal variations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sweat glucose and GLUT2 expression in atopic dermatitis: Implication for clinical manifestation and treatment

    PubMed Central

    Ono, Emi; Mori, Yuki; Yoshioka, Yoshichika; Nomura, Yuko; Munetsugu, Takichi; Yokozeki, Hiroo; Katayama, Ichiro

    2018-01-01

    Sweat includes active components and metabolites, which are needed to maintain skin homeostasis. Component changes in sweat derived from atopic dermatitis (AD) have been reported. To investigate the influence of sweat components on the pathogenesis of AD, we performed a multifaceted assessment, including nuclear magnetic resonance spectroscopy-based metabolomic analysis, and linked these features to clinical features of AD. Distinctive properties of AD sweat are the quite-variation in protein, anti-microbial peptides and glucose concentrations. pH, sodium, and other salt levels in sweat of AD were comparable to that of healthy subjects. Sweat from AD patients with acute inflammation had a more prominent increase in glucose concentration than sweat from healthy individuals or those with AD with chronic inflammation. Topical glucose application delayed recovery of transepidermal water loss in barrier-disrupted mice. Furthermore, the glucose transporter GLUT2 was highly expressed in the lumen of sweat glands from AD patients. AD patients with chronic inflammation had significantly increased GLUT2 mRNA expression and near normal sweat glucose levels. Despite the small sample size in our study, we speculate that the increased glucose levels might be affected by AD severity and phenotype. We hope that this report will bring novel insight into the impact of sweat components on the clinical manifestation of AD. PMID:29677207

  6. Immunohistochemical sweat gland profiles.

    PubMed

    Noël, Fanchon; Piérard, Gérald E; Delvenne, Philippe; Quatresooz, Pascale; Humbert, Philippe; Piérard-Franchimont, Claudine

    2013-09-01

    Human sweat glands are heterogeneous in their structures and functions. Accordingly, eccrine, apocrine, and apoeccrine glands are distinguished. Some immunohistochemical markers are expected to distinguish the sweat gland types in their secretory and excretory parts. This study used two sets of antibodies. The first panel was composed of antibodies directed to well-defined sweat gland structures. The molecular targets included the low-molecular-weight cytokeratins CAM 5.2, the S100-B protein, the epithelial membrane antigen (EMA), the carcinoembryonic antigen (CEA), and the lectin Ulex europaeus agglutinin-1 (UEA-1). A second exploratory panel of antibodies targeted syndecan-1 (CD138), NKI-C3 (CD63), and CD68. They were used to disclose some undescribed antigen expressions in human sweat glands. The first set of antibodies confirmed previous findings. The immunoreactivities of the three sweat gland types were similar in the excretory ducts. By contrast, they were distinguished in the deeper coiled secretory portions of the glands. Clues supporting their distinction and probably their functional activity were obtained by immunohistochemistry using the S100-B protein, CEA and CD63 antibodies. The immunoreactivity to the S100-B protein, CEA and CD63 possibly help identifying apoeccrine sweat glands or a peculiar functional activity of eccrine sweat glands. © 2013 Wiley Periodicals, Inc.

  7. Development of a method for enhancing metabolomics coverage of human sweat by gas chromatography-mass spectrometry in high resolution mode.

    PubMed

    Delgado-Povedano, M M; Calderón-Santiago, M; Priego-Capote, F; Luque de Castro, M D

    2016-01-28

    Sweat has recently gained popularity as clinical sample in metabolomics analysis as it is a non-invasive biofluid the composition of which could be modified by certain pathologies, as is the case with cystic fibrosis that increases chloride levels in sweat. However, the whole composition of sweat is still unknown and there is a lack of analytical strategies for sweat analysis. The aim of the present study was to develop and validate a method for metabolomic analysis of human sweat by gas chromatography-time of flight/mass spectrometry (GC-TOF/MS) in high resolution mode. Thus, different sample preparation strategies were compared to check their effect on the profile of sweat metabolites. Sixty-six compounds were tentatively identified by the obtained MS information. Amino acids, dicarboxylic acids and other interesting metabolites such as myo-inositol and urocanic acid were identified. Among the tested protocols, methyoxiamination plus silylation after deproteinization was the most suited option to obtain a representative snapshot of sweat metabolome. The intra-day repeatability of the method ranged from 0.60 to 16.99% and the inter-day repeatability from 2.75 to 31.25%. As most of the identified metabolites are involved in key biochemical pathways, this study opens new possibilities to the use of sweat as a source of metabolite biomarkers of specific disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Sweat collection capsule

    NASA Technical Reports Server (NTRS)

    Delaplaine, R. W.; Greenleaf, J. E.

    1979-01-01

    Capsule, with filter paper insert, is used to collect sweat for rate monitoring, chromatographic analysis, or active sweat gland location within specified area. Construction of capsule allows change of inserts while device remains strapped in place.

  9. Effects of short-term exercise in the heat on thermoregulation, blood parameters, sweat secretion and sweat composition of tropic-dwelling subjects.

    PubMed

    Saat, Mohamed; Sirisinghe, Roland Gamini; Singh, Rabindarjeet; Tochihara, Yutaka

    2005-09-01

    This study investigates the effects of a short-term aerobic training program in a hot environment on thermoregulation, blood parameters, sweat secretion and composition in tropic-dwellers who have been exposed to passive heat. Sixteen healthy Malaysian-Malay male volunteers underwent heat acclimation (HA) by exercising on a bicycle ergometer at 60% of VO2max for 60 min each day in a hot environment (Ta: 31.1+/-0.1 degrees C, rh: 70.0+/-4.4%) for 14 days. All parameters mentioned above were recorded on Day 1 and at the end of HA (Day 16). On these two days, subjects rested for 10 min, then cycled at 60% of VO2max for 60 min and rested again for 20 min (recovery) in an improvised heat chamber. Rectal temperature (Tre), mean skin temperature (Tsk) heart rate (HR), ratings of perceived exertion (RPE), thermal sensation (TS), local sweat rate and percent dehydration were recorded during the test. Sweat concentration was analysed for sodium [Na+]sweat and potassium. Blood samples were analysed for biochemical changes, electrolytes and hematologic indices. Urine samples were collected before and after each test and analysed for electrolytes.After the period of acclimation the percent dehydration during exercise significantly increased from 1.77+/-0.09% (Day 1) to 2.14+/-0.07% (Day 16). Resting levels of hemoglobin, hematocrit and red blood cells decreased significantly while [Na+]sweat increased significantly. For Tre and Tsk there were no differences at rest. Tre, HR, RPE, TS, plasma lactate concentration, hemoglobin and hematocrit at the 40th min of exercise were significantly lower after the period of acclimation but mean corpuscular hemoglobin and serum osmolality were significantly higher while no difference was seen in [Na+]sweat and Tsk. It can be concluded that tropic-dwelling subjects, although exposed to prolonged passive heat exposure, were not fully heat acclimatized. To achieve further HA, they should gradually expose themselves to exercise-heat stress in a

  10. Efficient sweat reduction of three different antiperspirant application forms during stress-induced sweating.

    PubMed

    Schmidt-Rose, T; Lehmbeck, F; Bürger, A; Windisch, B; Keyhani, R; Max, H

    2013-12-01

    Stress sweating can occur in everyday situations independently of thermally-induced perspiration. It is triggered by emotionally challenging situations and leads to underarm wetness and a characteristic unpleasant malodor. In this study, we aimed to determine the long-term efficacy of three unperfumed antiperspirant (AP) formulas for different application forms (roll-on, stick, aerosol) against stress-induced sweating and malodor formation. We utilized the widely accepted Trier Social Stress Test (TSST) to induce psychosocial stress in female and male volunteers (18 - 40 years) and determined physiological stress parameters. To additionally assess the efficacy of the test AP roll-on against thermally-induced sweating, a hot room study was performed. Increasing heart rates and an augmentation of saliva cortisol levels during the TSST indicated a substantial stress reaction which was paralleled by a pronounced sweat production in the untreated axillae of both males and females. Forty-eight hours after application, all three test APs significantly decreased the amount of sweat in the treated axillae independent of gender. With respect to AP effects on malodor production, trained sniffers assessed sweat samples collected during the TSST from the untreated axillae as significantly more malodorous than comparable samples from the AP-treated axillae. Also, independent of gender the test AP roll-on significantly decreased the thermally-induced sweat in the AP-treated axilla. We show for the first time a highly effective reduction of emotionally-induced axillary sweating and malodor production for three different application forms 48 h after the last product use. The specially developed roll-on, stick, and aerosol AP provide long-term protection against stress-induced sweat which is of high relevance in everyday life. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion.

    PubMed

    Peterson, Robyn A; Gueniche, Audrey; Adam de Beaumais, Ségolène; Breton, Lionel; Dalko-Csiba, Maria; Packer, Nicolle H

    2016-03-01

    There is increasing evidence that secretory fluids such as tears, saliva and milk play an important role in protecting the human body from infection via a washing mechanism involving glycan-mediated adhesion of potential pathogens to secretory glycoproteins. Interaction of sweat with bacteria is well established as the cause of sweat-associated malodor. However, the role of sweat glycoproteins in microbial attachment has received little, if any, research interest in the past. In this review, we demonstrate how recent published studies involving high-throughput proteomic analysis have inadvertently, and fortuitously, exposed an abundance of glycoproteins in sweat, many of which have also been identified in other secretory fluids. We bring together research demonstrating microbial adhesion to these secretory glycoproteins in tears, saliva and milk and suggest a similar role of the sweat glycoproteins in mediating microbial attachment to sweat and/or skin. The contribution of glycan-mediated microbial adhesion to sweat glycoproteins, and the associated impact on sweat derived malodor and pathogenic skin infections are unchartered new research areas that we are beginning to explore. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Sweat allergy: Extrinsic or intrinsic?

    PubMed

    Hiragun, Takaaki; Hiragun, Makiko; Ishii, Kaori; Kan, Takanobu; Hide, Michihiro

    2017-07-01

    Sweat is an exacerbation factor in atopic dermatitis (AD) in all age groups. A body core temperature elevation with sweating triggers cholinergic urticaria (CholU). We recently reported that AD symptoms are improved by tannic acid-containing spray, which suppresses the basophil histamine release induced by semi-purified sweat antigen in vitro, and by showering, which removes antigens in sweat from the skin surface. Sweat contains small amount of proteins including proteases, protease inhibitors, and anti-microbial peptides. We finally identified MGL_1304 secreted by Malassezia (M.) globosa as a major histamine - releasing antigen in human sweat. MGL_1304 is a 17-kDa protein in sweat that elicits almost the highest histamine - release activity from basophils of patients with AD and CholU among antigens derived from Malassezia species. Moreover, serum levels of anti-MGL_1304 IgE were significantly higher in patients with AD and CholU than in normal controls. The recombinant protein produced by Pichia pastoris possessed comparable allergenicity to native MGL_1304. We found a monoclonal IgE antibody against MGL_1304 which did not elicit histamine release from sensitized mast cells. Desensitization therapy using autologous sweat, or MGL_1304 purified from culture of M. globosa or its cognates might be beneficial for patients with intractable CholU due to sweat allergy. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  13. Occurrence, Distribution, Sources, and Trends of Elevated Chloride Concentrations in the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    USGS Publications Warehouse

    Kresse, Timothy M.; Clark, Brian R.

    2008-01-01

    Water-quality data from approximately 2,500 sites were used to investigate the distribution of chloride concentrations in the Mississippi River Valley alluvial aquifer in southeastern Arkansas. The large volume and areal distribution of the data used for the investigation proved useful in delineating areas of elevated (greater than 100 milligrams per liter) chloride concentrations, assessing potential sources of saline water, and evaluating trends in chloride distribution and concentration over time. Irrigation water containing elevated chloride concentrations is associated with negative effects to rice and soybeans, two of the major crops in Arkansas, and a groundwater chloride concentration of 100 milligrams per liter is recommended as the upper limit for use on rice. As such, accurately delineating areas with high salinity ground water, defining potential sources of chloride, and documenting trends over time is important in assisting the agricultural community in water management. The distribution and range of chloride concentrations in the study area revealed distinct areas of elevated chloride concentrations. Area I includes an elongated, generally northwest-southeast trending band of moderately elevated chloride concentrations in the northern part of the study area. This band of elevated chloride concentrations is approximately 40 miles in length and varies from approximately 2 to 9 miles in width, with a maximum chloride concentration of 360 milligrams per liter. Area II is a narrow, north-south trending band of elevated chloride concentrations in the southern part of the study area, with a maximum chloride concentration of 1,639 milligrams per liter. A zone of chloride concentrations exceeding 200 milligrams per liter is approximately 25 miles in length and 5 to 6 miles in width. In Area I, low chloride concentrations in samples from wells completed in the alluvial aquifer next to the Arkansas River and in samples from the upper Claiborne aquifer, which

  14. Smartphone chloridometer for point-of-care applications

    NASA Astrophysics Data System (ADS)

    Zhang, Chenji; Kim, Jimin P.; Creer, Michael; Yang, Jian; Liu, Zhiwen

    2017-08-01

    Chloride level in sweat is a major diagnostic criterion for cystic fibrosis (CF) and many other health conditions. In an effort to develop a low cost, point-of-care sweat diagnostics system for chloride concentration measurement, we demonstrated a smartphone-based chloridometer to measure sweat chloride by using our recently developed fluorescence chloride sensor. We characterized the performance of our device to validate its clinical potential. The study indicates that our smartphone-based chloridometer may potentially advance the point-of-care diagnostic system by reducing cost and improving diagnostic accuracy.

  15. Optimization study for metabolomics analysis of human sweat by liquid chromatography-tandem mass spectrometry in high resolution mode.

    PubMed

    Calderón-Santiago, M; Priego-Capote, F; Jurado-Gámez, B; Luque de Castro, M D

    2014-03-14

    Sweat has recently gained popularity as a potential tool for diagnostics and biomarker monitoring as it is a non-invasive biofluid the composition of which could be modified by certain pathologies, as is the case with cystic fibrosis, which increases chloride levels in sweat. The aim of the present study was to develop an analytical method for analysis of human sweat by liquid chromatography-mass spectrometry (LC-Q-TOF MS/MS) in high resolution mode. Thus, different sample preparation strategies and different chromatographic modes (HILIC and C18 reverse modes) were compared to check their effect on the profile of sweat metabolites. Forty-one compounds were identified by the MS/MS information obtained with a mass tolerance window below 4 ppm. Amino acids, dicarboxylic acids and other interesting metabolites such as inosine, choline, uric acid and tyramine were identified. Among the tested protocols, direct analysis after dilution was a suited option to obtain a representative snapshot of sweat metabolome. In addition, sample clean up by C18 SpinColumn SPE cartridges improved the sensitivity of most identified compounds and reduced the number of interferents. As most of the identified metabolites are involved in key biochemical pathways, this study opens new possibilities to the use of sweat as a source of metabolite biomarkers of specific disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Human Excretion of Bisphenol A: Blood, Urine, and Sweat (BUS) Study

    PubMed Central

    Genuis, Stephen J.; Beesoon, Sanjay; Birkholz, Detlef; Lobo, Rebecca A.

    2012-01-01

    Background. Bisphenol A (BPA) is an ubiquitous chemical contaminant that has recently been associated with adverse effects on human health. There is incomplete understanding of BPA toxicokinetics, and there are no established interventions to eliminate this compound from the human body. Using 20 study participants, this study was designed to assess the relative concentration of BPA in three body fluids—blood, urine, and sweat—and to determine whether induced sweating may be a therapeutic intervention with potential to facilitate elimination of this compound. Methods. Blood, urine, and sweat were collected from 20 individuals (10 healthy participants and 10 participants with assorted health problems) and analyzed for various environmental toxicants including BPA. Results. BPA was found to differing degrees in each of blood, urine, and sweat. In 16 of 20 participants, BPA was identified in sweat, even in some individuals with no BPA detected in their serum or urine samples. Conclusions. Biomonitoring of BPA through blood and/or urine testing may underestimate the total body burden of this potential toxicant. Sweat analysis should be considered as an additional method for monitoring bioaccumulation of BPA in humans. Induced sweating appears to be a potential method for elimination of BPA. PMID:22253637

  17. Bromate peak distortion in ion chromatography in samples containing high chloride concentrations.

    PubMed

    Pappoe, Michael K; Naeeni, Mohammad Hosein; Lucy, Charles A

    2016-04-29

    In this study, the effect of column overload of the matrix ion, chloride, on the elution peak profiles of trace bromate is investigated. The resultant peak profiles of chloride and bromate are explained on the basis of competitive Langmuir isotherms. The Thermo IonPac AS9-HC, AS19 and AS23 columns are recommended by the manufacturer for bromate (a carcinogen) analysis. Under trace conditions, these columns provide baseline resolution of bromate from matrix ions such as chloride (Rs=2.9, 3.3 and 3.2, respectively for the three columns). Injection of 10-300 mM chloride with both hydroxide and carbonate eluents resulted in overload on these columns. On the basis of competitive Langmuir isotherms, a deficiency in the local concentration of the more retained eluent in addition to analyte overload leads to fronting of the overloaded analyte peak. The peak asymmetries (B/A10%) for chloride changed from 1.0 (Gaussian) under trace conditions to 0.7 (fronting) at 300 mM Cl(-) for IonPac AS9-HC, 0.9-0.6 for AS19 and 0.8-0.5, for AS23, respectively. The 10mM bromate peak is initially near Gaussian (B/A10%=0.9) but becomes increasingly distorted and pulled back into the chloride peak as the concentration of chloride increased. Increasing the eluent strength reduced the pull-back effect on bromate and fronting in chloride in all cases. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Dynamic analysis for mental sweating of a group of eccrin sweat glands on a human fingertip by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Tanigawa, Motomu; Wada, Yuki; Haruna, Masamitsu

    2011-05-01

    OCT is highly potential for in vivo observation of human sweating dynamics which affects activity of the sympathetic nerve. In this paper, we demonstrate dynamic OCT analysis of mental sweating of a group of eccrin sweat glands. The sweating dynamics is tracked simultaneously for nineteen sweat glands by time-sequential piled-up en-face OCT images with the frame spacing of 3.3 sec. Strong non-uniformity is observed in mental sweating where the amount of excess sweat is different for each sweat gland although the sweat glands are adjacent to each other. The non-uniformity should be necessary to adjust as precisely the total amount of excess sweat as possible through the sympathetic nerve in response to strength of the stress.

  19. Testing in artificial sweat - Is less more? Comparison of metal release in two different artificial sweat solutions.

    PubMed

    Midander, Klara; Julander, Anneli; Kettelarij, Jolinde; Lidén, Carola

    2016-11-01

    Metal release from materials immersed in artificial sweat can function as a measure of potential skin exposure. Several artificial sweat models exist that, to various degree, mimic realistic conditions. Study objective was to evaluate metal release from previously examined and well characterized materials in two different artificial sweat solutions; a comprehensive sweat model intended for use within research, based on the composition of human sweat; and the artificial sweat, EN1811, intended for testing compliance with the nickel restriction in REACH. The aim was to better understand whether there are advantages using either of the sweat solutions in bio-elution testing of materials. Metal release in two different artificial sweat solutions was compared for discs of a white gold alloy and two hard metals, and a rock drilling insert of tungsten carbide at 1 h, 24 h, 1 week and 1 month. The released amount of metal was analysed by means of inductively coupled plasma mass spectrometry. Similar levels of released metals were measured from test materials in the two different artificial sweat solutions. For purposes in relation to legislations, it was concluded that a metal release test using a simple artificial sweat composition may provide results that sufficiently indicate the degree of metal release at skin contact. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Simulation of specific conductance and chloride concentration in Abercorn Creek, Georgia, 2000-2009

    USGS Publications Warehouse

    Conrads, Paul; Roehl, Edwin A.; Davie, Steven R.

    2011-01-01

    The City of Savannah operates an industrial and domestic water-supply intake on Abercorn Creek approximately 2 miles from the confluence with the Savannah River upstream from the Interstate 95 bridge. Chloride concentrations are a major concern for the city because industrial customers require water with low chloride concentrations, and elevated chloride concentrations require additional water treatment in order to meet those needs. The proposed deepening of Savannah Harbor could increase chloride concentrations (the major ion in seawater) in the upper reaches of the lower Savannah River estuary, including Abercorn Creek. To address this concern, mechanistic and empirical modeling approaches were used to simulate chloride concentrations at the city's intake to evaluate potential effects from deepening the Savannah Harbor. The first approach modified the mechanistic Environmental Fluid Dynamics Code (EFDC) model developed by Tetra Tech and used for evaluating proposed harbor deepening effects for the Environmental Impact Statement. Chloride concentrations were modeled directly with the EFDC model as a conservative tracer. This effort was done by Tetra Tech under a separate funding agreement with the U.S. Army Corps of Engineers and documented in a separate report. The second approach, described in this report, was to simulate chloride concentrations by developing empirical models from the available data using artificial neural network (ANN) and linear regression models. The empirical models used daily streamflow, specific conductance (field measurement for salinity), water temperature, and water color time series for inputs. Because there are only a few data points that describe the relation between high specific conductance values at the Savannah River at Interstate 95 and the water plant intake, there was a concern that these few data points would determine the extrapolation of the empirical model and potentially underestimate the effect of deepening the harbor on

  1. Sweat test and cystic fibrosis: overview of test performance at public and private centers in the state of São Paulo, Brazil

    PubMed Central

    Servidoni, Maria Fátima; Gomez, Carla Cristina Souza; Marson, Fernando Augusto Lima; Toro, Adyléia Aparecida Dalbo Contrera; Ribeiro, Maria Ângela Gonçalves de Oliveira; Ribeiro, José Dirceu; Ribeiro, Antônio Fernando

    2017-01-01

    ABSTRACT Objective: The sweat test (ST) measures chloride levels in sweat and is considered the gold standard for the diagnosis of cystic fibrosis (CF). However, the reliability of a ST depends on their being performed by experienced technicians and in accordance with strict guidelines. Our aim was to evaluate how sweat stimulation, sweat collection, and chloride measurement are performed at 14 centers (9 public centers and 5 private centers) that routinely perform STs in the state of São Paulo, which has the highest frequency of CF in Brazil. Methods: This was a cross-sectional cohort study, using a standardized questionnaire administered in loco to the staff responsible for conducting STs. Results: No uniformity regarding the procedures was found among the centers. Most centers were noncompliant with the international guidelines, especially regarding the collection of sweat (the samples were insufficient in 10-50% of the subjects tested); availability of stimulation equipment (which was limited at 2 centers); modernity and certification of stimulation equipment (most of the equipment having been used for 3-23 years); and written protocols (which were lacking at 12 centers). Knowledge of ST guidelines was evaluated at only 1 center. Conclusions: Our results show that STs largely deviate from internationally accepted guidelines at the participating centers. Therefore, there is an urgent need for standardization of STs, training of qualified personnel, and acquisition/certification of suitable equipment. These are essential conditions for a reliable diagnosis of CF, especially with the increasing demand due to newborn screening nationwide, and for the assessment of a possible clinical benefit from the use of modulator drugs. PMID:28538779

  2. Sweat as an Efficient Natural Moisturizer.

    PubMed

    Shiohara, Tetsuo; Sato, Yohei; Komatsu, Yurie; Ushigome, Yukiko; Mizukawa, Yoshiko

    2016-01-01

    Although recent research on the pathogenesis of allergic skin diseases such as atopic dermatitis has focused on defects in skin genes important for maintaining skin barrier function, the fact that excreted sweat has an overwhelmingly great capacity to increase skin surface hydration and contains moisturizing factors has long been ignored: the increase in water loss induced by these gene defects could theoretically be compensated fully by a significant increase in sweating. In this review, the dogma postulating the detrimental role of sweat in these diseases has been challenged on the basis of recent findings on the physiological functions of sweat, newly recognized sweat gland-/duct-related skin diseases, and therapeutic approaches to the management of these diseases. We are now beginning to appreciate that sweat glands/ducts are a sophisticated regulatory system. Furthermore, depending on their anatomical location and the degree of the impairment, this system might have a different function: sweating responses in sweat glands/ducts located at the folds in hairy skin such as on the trunk and extremities could function as natural regulators that maintain skin hydration under quiescent basal conditions, in addition to the better-studied thermoregulatory functions, which can be mainly mediated by those at the ridges. The normal functioning of sweat could be disturbed in various inflammatory skin diseases. Thus, we should recognize sweating disturbance as an etiologic factor in the development of these diseases. © 2016 S. Karger AG, Basel.

  3. Precise measurement of instantaneous volume of eccrine sweat gland in mental sweating by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sugawa, Yoshihiko; Fukuda, Akihiro; Ohmi, Masato

    2015-03-01

    We have demonstrated dynamic analysis of the physiological function of eccrine sweat glands underneath skin surface by optical coherence tomography (OCT). We propose a method for extraction of the target eccrine sweat gland by use of the connected component extraction process and the adaptive threshold method, where the en-face OCT images are constructed by the SS-OCT. Furthermore, we demonstrate precise measurement of instantaneous volume of the sweat gland in response to the external stimulus. The dynamic change of instantaneous volume of eccrine sweat gland in mental sweating is performed by this method during the period of 300 sec with the frame intervals of 3.23 sec.

  4. Sweat conductivity and coulometric quantitative test in neonatal cystic fibrosis screening.

    PubMed

    Domingos, Mouseline Torquato; Magdalena, Neiva Isabel Rodrigues; Cat, Mônica Nunes Lima; Watanabe, Alexandra Mitiru; Rosário Filho, Nelson Augusto

    2015-01-01

    To compare the results obtained with the sweat test using the conductivity method and coulometric measurement of sweat chloride in newborns (NBs) with suspected cystic fibrosis (CF) in the neonatal screening program. The sweat test was performed simultaneously by both methods in children with and without CF. The cutoff values to confirm CF were >50 mmol/L in the conductivity and >60 mmol/L in the coulometric test. There were 444 infants without CF (185 males, 234 females, and 24 unreported) submitted to the sweat test through conductivity and coulometric measurement simultaneously, obtaining median results of 32 mmol/L and 12 mmol/L, respectively. For 90 infants with CF, the median values of conductivity and coulometric measurement were 108 mmol/L and 97 mmol/L, respectively. The false positive rate for conductivity was 16.7%, and was higher than 50 mmol/L in all patients with CF, which gives this method a sensitivity of 100% (95% CI: 93.8-97.8), specificity of 96.2% (95% CI: 93.8-97.8), positive predictive value of 83.3% (95% CI: 74.4-91.1), negative predictive value of 100% (95% CI: 90.5-109.4), and 9.8% accuracy. The correlation between the methods was r=0.97 (p>0.001). The best suggested cutoff value was 69.0 mmol/L, with a kappa coefficient=0.89. The conductivity test showed excellent correlation with the quantitative coulometric test, high sensitivity and specificity, and can be used in the diagnosis of CF in children detected through newborn screening. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  5. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat.

    PubMed

    Huang, Xian; Liu, Yuhao; Chen, Kaile; Shin, Woo-Jung; Lu, Ching-Jui; Kong, Gil-Woo; Patnaik, Dwipayan; Lee, Sang-Heon; Cortes, Jonathan Fajardo; Rogers, John A

    2014-08-13

    This paper introduces materials and architectures for ultrathin, stretchable wireless sensors that mount on functional elastomeric substrates for epidermal analysis of biofluids. Measurement of the volume and chemical properties of sweat via dielectric detection and colorimetry demonstrates some capabilities. Here, inductively coupled sensors consisting of LC resonators with capacitive electrodes show systematic responses to sweat collected in microporous substrates. Interrogation occurs through external coils placed in physical proximity to the devices. The substrates allow spontaneous sweat collection through capillary forces, without the need for complex microfluidic handling systems. Furthermore, colorimetric measurement modes are possible in the same system by introducing indicator compounds into the depths of the substrates, for sensing specific components (OH(-) , H(+) , Cu(+) , and Fe(2+) ) in the sweat. The complete devices offer Young's moduli that are similar to skin, thus allowing highly effective and reliable skin integration without external fixtures. Experimental results demonstrate volumetric measurement of sweat with an accuracy of 0.06 μL/mm(2) with good stability and low drift. Colorimetric responses to pH and concentrations of various ions provide capabilities relevant to analysis of sweat. Similar materials and device designs can be used in monitoring other body fluids. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Human Elimination of Phthalate Compounds: Blood, Urine, and Sweat (BUS) Study

    PubMed Central

    Genuis, Stephen J.; Beesoon, Sanjay; Lobo, Rebecca A.; Birkholz, Detlef

    2012-01-01

    Background. Individual members of the phthalate family of chemical compounds are components of innumerable everyday consumer products, resulting in a high exposure scenario for some individuals and population groups. Multiple epidemiological studies have demonstrated statistically significant exposure-disease relationships involving phthalates and toxicological studies have shown estrogenic effects in vitro. Data is lacking in the medical literature, however, on effective means to facilitate phthalate excretion. Methods. Blood, urine, and sweat were collected from 20 individuals (10 healthy participants and 10 participants with assorted health problems) and analyzed for parent phthalate compounds as well as phthalate metabolites using high performance liquid chromatography-tandem mass spectrometry. Results. Some parent phthalates as well as their metabolites were excreted into sweat. All patients had MEHP (mono(2-ethylhexyl) phthalate) in their blood, sweat, and urine samples, suggesting widespread phthalate exposure. In several individuals, DEHP (di (2-ethylhexl) phthalate) was found in sweat but not in serum, suggesting the possibility of phthalate retention and bioaccumulation. On average, MEHP concentration in sweat was more than twice as high as urine levels. Conclusions. Induced perspiration may be useful to facilitate elimination of some potentially toxic phthalate compounds including DEHP and MEHP. Sweat analysis may be helpful in establishing the existence of accrued DEHP in the human body. PMID:23213291

  7. [Axillary hyperhidrosis--efficacy and tolerability of an aluminium chloride antiperspirant. Prospective evaluation on 20 patients with idiopathic axillary hyperhidrosis].

    PubMed

    Streker, M; Reuther, T; Verst, S; Kerscher, M

    2010-02-01

    The purpose of this study was to evaluate the efficacy and tolerability of aluminium chloride gel for treatment of axillary hyperhidrosis. A total of 20 patients aged 22-38 (mean age: 26.9+/-4.3) with idiopathic axillary hyperhidrosis were included and treated with an antiperspirant (Sweat-off, Sweat-off GmbH, Hügelsheim). Study duration was 42 days. Treatment efficacy was evaluated clinically, as well as by starch-iodine test, gravimetric analysis and evaluation of the skin surface pH. After treatment there was a significant clinical improvement accompanied by significant qualitative and quantitative reduction of sweat as well as a significant reduction of skin surface pH. Except for slight skin irritation in 6 patients, there were no other side effects. Patient satisfaction improved markedly during the study. Treatment of axillary hyperhidrosis with aluminium chloride is an effective, safe and inexpensive treatment modality.

  8. Wearable Platform for Real-time Monitoring of Sodium in Sweat.

    PubMed

    McCaul, Margaret; Porter, Adam; Barrett, Ruairi; White, Paddy; Stroiescu, Florien; Wallace, Gordon; Diamond, Dermot

    2018-06-19

    A fully integrated and wearable platform for harvesting and analysing sweat sodium concentration in real time during exercise has been developed and tested. The platform was largely produced using 3D printing, which greatly simplifies fabrication and operation compared to previous versions generated with traditional production techniques. The 3D printed platform doubles the capacity of the sample storage reservoir to about 1.3 ml, reduces the assembly time and provides simple and precise component alignment and contact of the integrated solid-state ion-selective and reference electrodes with the sorbent material. The sampling flowrate in the device can be controlled by introducing threads to enhance wicking of sweat from the skin, across the electrodes to the storage area. The platform was characterised in the lab and in exercise trials over a period of about 60 minutes continuous monitoring. Sweat sodium concentration was found to rise initially to approximately 17 mM and decline gradually over the period of the trial to about 11-12 mM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Human Elimination of Organochlorine Pesticides: Blood, Urine, and Sweat Study

    PubMed Central

    Lane, Kevin; Birkholz, Detlef

    2016-01-01

    Background. Many individuals have been exposed to organochlorinated pesticides (OCPs) through food, water, air, dermal exposure, and/or vertical transmission. Due to enterohepatic reabsorption and affinity to adipose tissue, OCPs are not efficiently eliminated from the human body and may accrue in tissues. Many epidemiological studies demonstrate significant exposure-disease relationships suggesting OCPs can alter metabolic function and potentially lead to illness. There is limited study of interventions to facilitate OCP elimination from the human body. This study explored the efficacy of induced perspiration as a means to eliminate OCPs. Methods. Blood, urine, and sweat (BUS) were collected from 20 individuals. Analysis of 23 OCPs was performed using dual-column gas chromatography with electron-capture detectors. Results. Various OCPs and metabolites, including DDT, DDE, methoxychlor, endrin, and endosulfan sulfate, were excreted into perspiration. Generally, sweat samples showed more frequent OCP detection than serum or urine analysis. Many OCPs were not readily detected in blood testing while still being excreted and identified in sweat. No direct correlation was found among OCP concentrations in the blood, urine, or sweat compartments. Conclusions. Sweat analysis may be useful in detecting some accrued OCPs not found in regular serum testing. Induced perspiration may be a viable clinical tool for eliminating some OCPs. PMID:27800487

  10. Human Elimination of Organochlorine Pesticides: Blood, Urine, and Sweat Study.

    PubMed

    Genuis, Stephen J; Lane, Kevin; Birkholz, Detlef

    2016-01-01

    Background . Many individuals have been exposed to organochlorinated pesticides (OCPs) through food, water, air, dermal exposure, and/or vertical transmission. Due to enterohepatic reabsorption and affinity to adipose tissue, OCPs are not efficiently eliminated from the human body and may accrue in tissues. Many epidemiological studies demonstrate significant exposure-disease relationships suggesting OCPs can alter metabolic function and potentially lead to illness. There is limited study of interventions to facilitate OCP elimination from the human body. This study explored the efficacy of induced perspiration as a means to eliminate OCPs. Methods . Blood, urine, and sweat (BUS) were collected from 20 individuals. Analysis of 23 OCPs was performed using dual-column gas chromatography with electron-capture detectors. Results . Various OCPs and metabolites, including DDT, DDE, methoxychlor, endrin, and endosulfan sulfate, were excreted into perspiration. Generally, sweat samples showed more frequent OCP detection than serum or urine analysis. Many OCPs were not readily detected in blood testing while still being excreted and identified in sweat. No direct correlation was found among OCP concentrations in the blood, urine, or sweat compartments. Conclusions . Sweat analysis may be useful in detecting some accrued OCPs not found in regular serum testing. Induced perspiration may be a viable clinical tool for eliminating some OCPs.

  11. PIXE analysis of cystic fibrosis sweat samples with an external proton beam

    NASA Astrophysics Data System (ADS)

    Sommer, F.; Massonnet, B.

    1987-03-01

    PIXE analysis with an external proton beam is used to study, in four control and five cystic fibrosis children, the elemental composition of sweat samples collected from different parts of the body during entire body hyperthermia. We observe no significant difference of sweat rates and of temperature variations between the two groups during sweat test. The statistical study of results obtained by PIXE analysis allows us to pick out amongst 8 elements studied, 6 elements (Na, Cl, Ca, Mn, Cu, Br) significatively different between the two groups of subjects. Using regression analysis, Na, Cl and Br concentrations could be used in a predictive equation of the state of health.

  12. Sweat collection capsule

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Delaplaine, R. W. (Inventor)

    1980-01-01

    A sweat collection capsule permitting quantitative collection of sweat is described. The device consists of a frame held immobile on the skin, a closure secured to the frame and absorbent material located next to the skin in a cavity formed by the frame and the closure. The absorbent material may be removed from the device by removing the closure from the frame while the frame is held immobile on the skin.

  13. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications

    PubMed Central

    Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N.; Naik, R.

    2015-01-01

    Non-invasive and accurate access of biomarkers remains a holy grail of the biomedical community. Human eccrine sweat is a surprisingly biomarker-rich fluid which is gaining increasing attention. This is especially true in applications of continuous bio-monitoring where other biofluids prove more challenging, if not impossible. However, much confusion on the topic exists as the microfluidics of the eccrine sweat gland has never been comprehensively presented and models of biomarker partitioning into sweat are either underdeveloped and/or highly scattered across literature. Reported here are microfluidic models for eccrine sweat generation and flow which are coupled with review of blood-to-sweat biomarker partition pathways, therefore providing insights such as how biomarker concentration changes with sweat flow rate. Additionally, it is shown that both flow rate and biomarker diffusion determine the effective sampling rate of biomarkers at the skin surface (chronological resolution). The discussion covers a broad class of biomarkers including ions (Na+, Cl−, K+, NH4+), small molecules (ethanol, cortisol, urea, and lactate), and even peptides or small proteins (neuropeptides and cytokines). The models are not meant to be exhaustive for all biomarkers, yet collectively serve as a foundational guide for further development of sweat-based diagnostics and for those beginning exploration of new biomarker opportunities in sweat. PMID:26045728

  14. A Microfluidic Long-Period Fiber Grating Sensor Platform for Chloride Ion Concentration Measurement

    PubMed Central

    Wang, Jian-Neng

    2011-01-01

    Optical fiber sensors based on waveguide technology are promising and attractive in chemical, biotechnological, agronomy, and civil engineering applications. A microfluidic system equipped with a long-period fiber grating (LPFG) capable of measuring chloride ion concentrations of several sample materials is presented. The LPFG-based microfluidic platform was shown to be effective in sensing very small quantities of samples and its transmitted light signal could easily be used as a measurand. The investigated sample materials included reverse osmosis (RO) water, tap water, dilute aqueous sample of sea sand soaked in RO water, aqueous sample of sea sand soaked in RO water, dilute seawater, and seawater. By employing additionally a chloride ion-selective electrode sensor for the calibration of chloride-ion concentration, a useful correlation (R2 = 0.975) was found between the separately-measured chloride concentration and the light intensity transmitted through the LPFG at a wavelength of 1,550 nm. Experimental results show that the sensitivity of the LPFG sensor by light intensity interrogation was determined to be 5.0 × 10−6 mW/mg/L for chloride ion concentrations below 2,400 mg/L. The results obtained from the analysis of data variations in time-series measurements for all sample materials show that standard deviations of output power were relatively small and found in the range of 7.413 × 10−5−2.769 × 10−3 mW. In addition, a fairly small coefficients of variations were also obtained, which were in the range of 0.03%–1.29% and decreased with the decrease of chloride ion concentrations of sample materials. Moreover, the analysis of stability performance of the LPFG sensor indicated that the random walk coefficient decreased with the increase of the chloride ion concentration, illustrating that measurement stability using the microfluidic platform was capable of measuring transmitted optical power with accuracy in the range of −0.8569 mW/ h to −0

  15. Chloride: the queen of electrolytes?

    PubMed

    Berend, Kenrick; van Hulsteijn, Leonard Hendrik; Gans, Rijk O B

    2012-04-01

    Channelopathies, defined as diseases that are caused by mutations in genes encoding ion channels, are associated with a wide variety of symptoms and have been documented extensively over the past decade. In contrast, despite the important role of chloride in serum, textbooks in general do not allocate chapters exclusively on hypochloremia or hyperchloremia and information on chloride other than channelopathies is scattered in the literature. To systematically review the function of chloride in man, data for this review include searches of MEDLINE, PubMed, and references from relevant articles including the search terms "chloride," "HCl," "chloride channel" "acid-base," "acidosis," "alkalosis," "anion gap" "strong anion gap" "Stewart," "base excess" and "lactate." In addition, internal medicine, critical care, nephrology and gastroenterology textbooks were evaluated on topics pertaining the assessment and management of acid-base disorders, including reference lists from journals or textbooks. Chloride is, after sodium, the most abundant electrolyte in serum, with a key role in the regulation of body fluids, electrolyte balance, the preservation of electrical neutrality, acid-base status and it is an essential component for the assessment of many pathological conditions. When assessing serum electrolytes, abnormal chloride levels alone usually signify a more serious underlying metabolic disorder, such as metabolic acidosis or alkalosis. Chloride is an important component of diagnostic tests in a wide array of clinical situations. In these cases, chloride can be tested in sweat, serum, urine and feces. Abnormalities in chloride channel expression and function in many organs can cause a range of disorders. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  16. Gene expression in Listeria monocytogenes exposed to sublethal concentration of benzalkonium chloride.

    PubMed

    Tamburro, Manuela; Ripabelli, Giancarlo; Vitullo, Monia; Dallman, Timothy James; Pontello, Mirella; Amar, Corinne Francoise Laurence; Sammarco, Michela Lucia

    2015-06-01

    In this study, tolerance at sublethal concentration of benzalkonium chloride and transcription levels of mdrL, ladR, lde, sigB and bcrABC genes in Listeria monocytogenes strains were evaluated. Viable cells reduction occurred in 45% of strains and clinical isolates showed lower sensitivity than isolates from foods. An increased transcription of an efflux system encoding gene was found in 60% of strains, and simultaneous mdrL overexpression and ladR underexpression occurred in 30% of isolates. A significant association between reduced benzalkonium chloride activity and both mdrL and sigB overexpression was observed; sigB expression also correlated with both mdrL and ladR genes. The bcrABC gene was only found in six strains, all isolated from foods and sensitive to benzalkonium chloride, and in four strains an underexpression was observed. Disinfection at sublethal concentration was less effective in clinical isolates, and mdrL and sigB expression was significantly affected by disinfection. Further insights are needed to understand the adaptation to benzalkonium chloride and to evaluate whether changes in gene expression could affect the L. monocytogenes virulence traits and persistence in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 3D modeling and characterization of a calorimetric flow rate sensor for sweat rate sensing applications

    NASA Astrophysics Data System (ADS)

    Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga

    2017-03-01

    Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.

  18. Sweat Therapy Theory, Practice, and Efficacy

    ERIC Educational Resources Information Center

    Eason, Allen; Colmant, Stephen; Winterowd, Carrie

    2009-01-01

    The purpose of this article is to examine the potential application of sweat rituals to group counseling, adventure therapy, and other forms of group work by describing a theoretical model for how sweat rituals work and presenting the results of a randomized comparative outcome study on the efficacy of sweat therapy. The theoretical model proposes…

  19. Genetics Home Reference: cold-induced sweating syndrome

    MedlinePlus

    ... Health Conditions Cold-induced sweating syndrome Cold-induced sweating syndrome Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Cold-induced sweating syndrome is characterized by problems with regulating body ...

  20. Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development.

    PubMed

    Post van der Burg, Max; Tangen, Brian A

    2015-03-01

    Extraction of oil and gas via unconventional methods is becoming an important aspect of energy production worldwide. Studying the effects of this development in countries where these technologies are being widely used may provide other countries, where development may be proposed, with some insight in terms of concerns associated with development. A fairly recent expansion of unconventional oil and gas development in North America provides such an opportunity. Rapid increases in energy development in North America have caught the attention of managers and scientists as a potential stressor for wildlife and their habitats. Of particular concern in the Northern Great Plains of the U.S. is the potential for chloride-rich produced water associated with unconventional oil and gas development to alter the water chemistry of wetlands. We describe a landscape scale modeling approach designed to examine the relationship between potential chloride contamination in wetlands and patterns of oil and gas development. We used a spatial Bayesian hierarchical modeling approach to assess multiple models explaining chloride concentrations in wetlands. These models included effects related to oil and gas wells (e.g. age of wells, number of wells) and surficial geology (e.g. glacial till, outwash). We found that the model containing the number of wells and the surficial geology surrounding a wetland best explained variation in chloride concentrations. Our spatial predictions showed regions of localized high chloride concentrations. Given the spatiotemporal variability of regional wetland water chemistry, we do not regard our results as predictions of contamination, but rather as a way to identify locations that may require more intensive sampling or further investigation. We suggest that an approach like the one outlined here could easily be extended to more of an adaptive monitoring approach to answer questions about chloride contamination risk that are of interest to managers

  1. Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development

    USGS Publications Warehouse

    Post van der Burg, Max; Tangen, Brian A.

    2015-01-01

    Extraction of oil and gas via unconventional methods is becoming an important aspect of energy production worldwide. Studying the effects of this development in countries where these technologies are being widely used may provide other countries, where development may be proposed, with some insight in terms of concerns associated with development. A fairly recent expansion of unconventional oil and gas development in North America provides such an opportunity. Rapid increases in energy development in North America have caught the attention of managers and scientists as a potential stressor for wildlife and their habitats. Of particular concern in the Northern Great Plains of the U.S. is the potential for chloride-rich produced water associated with unconventional oil and gas development to alter the water chemistry of wetlands. We describe a landscape scale modeling approach designed to examine the relationship between potential chloride contamination in wetlands and patterns of oil and gas development. We used a spatial Bayesian hierarchical modeling approach to assess multiple models explaining chloride concentrations in wetlands. These models included effects related to oil and gas wells (e.g. age of wells, number of wells) and surficial geology (e.g. glacial till, outwash). We found that the model containing the number of wells and the surficial geology surrounding a wetland best explained variation in chloride concentrations. Our spatial predictions showed regions of localized high chloride concentrations. Given the spatiotemporal variability of regional wetland water chemistry, we do not regard our results as predictions of contamination, but rather as a way to identify locations that may require more intensive sampling or further investigation. We suggest that an approach like the one outlined here could easily be extended to more of an adaptive monitoring approach to answer questions about chloride contamination risk that are of interest to managers.

  2. Sweating

    MedlinePlus

    ... the autonomic nervous system. This is the part of the nervous system that is not under your control. Sweating is ... Skin layers References Chelimsky T, Chelimsky G. Disorders of the autonomic nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...

  3. Precise measurement of volume of eccrine sweat gland in mental sweating by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sugawa, Yoshihiko; Fukuda, Akihiro; Ohmi, Masato

    2015-04-01

    We have demonstrated dynamic analysis of the physiological function of eccrine sweat glands underneath skin surface by optical coherence tomography (OCT). In this paper, we propose a method for extraction of the specific eccrine sweat gland by means of the connected component extraction process and the adaptive threshold method, where the en face OCT images are constructed by the swept-source OCT. In the experiment, we demonstrate precise measurement of the volume of the sweat gland in response to the external stimulus.

  4. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons

    USGS Publications Warehouse

    Corsi, Steven R.; De Cicco, Laura A.; Lutz, Michelle A.; Hirsch, Robert M.

    2014-01-01

    Chloride concentrations in northern U.S. included in this study have increased substantially over time with average concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the northern U.S. Historical data were examined for 30 monitoring sites on 19 streams that had chloride concentration and flow records of 18 to 49 years. Chloride concentrations in most studied streams increased in all seasons (13 of 19 in all seasons; 16 of 19 during winter); maximum concentrations occurred during winter. Increasing concentrations during non-deicing periods suggest that chloride was stored in hydrologic reservoirs, such as the shallow groundwater system, during the winter and slowly released in baseflow throughout the year. Streamflow dependency was also observed with chloride concentrations increasing as streamflow decreased, a result of dilution during rainfall- and snowmelt-induced high-flow periods. The influence of chloride on aquatic life increased with time; 29% of sites studied exceeded the concentration for the USEPA chronic water quality criteria of 230 mg/L by an average of more than 100 individual days per year during 2006–2011. The rapid rate of chloride concentration increase in these streams is likely due to a combination of possible increased road salt application rates, increased baseline concentrations, and greater snowfall in the Midwestern U.S. during the latter portion of the study period.

  5. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons.

    PubMed

    Corsi, Steven R; De Cicco, Laura A; Lutz, Michelle A; Hirsch, Robert M

    2015-03-01

    Chloride concentrations in northern U.S. included in this study have increased substantially over time with average concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the northern U.S. Historical data were examined for 30 monitoring sites on 19 streams that had chloride concentration and flow records of 18 to 49 years. Chloride concentrations in most studied streams increased in all seasons (13 of 19 in all seasons; 16 of 19 during winter); maximum concentrations occurred during winter. Increasing concentrations during non-deicing periods suggest that chloride was stored in hydrologic reservoirs, such as the shallow groundwater system, during the winter and slowly released in baseflow throughout the year. Streamflow dependency was also observed with chloride concentrations increasing as streamflow decreased, a result of dilution during rainfall- and snowmelt-induced high-flow periods. The influence of chloride on aquatic life increased with time; 29% of sites studied exceeded the concentration for the USEPA chronic water quality criteria of 230 mg/L by an average of more than 100 individual days per year during 2006-2011. The rapid rate of chloride concentration increase in these streams is likely due to a combination of possible increased road salt application rates, increased baseline concentrations, and greater snowfall in the Midwestern U.S. during the latter portion of the study period. Published by Elsevier B.V.

  6. The ultrastructure of the sweat glands of the ox, sheep and goat during sweating and recovery.

    PubMed Central

    Jenkinson, D M; Montgomery, I; Elder, H Y

    1979-01-01

    The ultrastructure of the sweat glands of cattle, sheep and goats was studied before, during, and after, exposure of the animals to controlled warm environments. In cattle, sweating induced little ultrastructural change in the gland, although fluid-filled spaces appeared between the myo- and secretory epithelial layers. The mechanism appears to be one of fluid transport and exocytosis of secretory vesicles, which in this species seem to be derived from the Golgi apparatus and/or mitochondria. The glands of the sheep and goat also displayed signs of vesicle exocytosis and of fluid transport during sweating. The sweating 'fatigue' in these species was apparently due to failure of the secretory cells, some of which ruptured and were extruded into the lumen. The evidence during subsequent recovery indicates that neighbouring cells spread to make contact, encase remnants of atretic cells between them and the underlying myoepithelium, and engulf them. Sweat in these species appears to be formed (a) by secretion and (b) from cells which can no longer meet the demands of stimulation. The role in sweating of cell replacement, and of undifferentiated cells found between the myo- and secretory epithelia, is discussed. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:511758

  7. Dynamic analysis of mental sweating of eccrine sweat gland of human fingertip by time-sequential piled-up en face optical coherence tomography images.

    PubMed

    Ohmi, Masato; Wada, Yuki

    2016-08-01

    In this paper, we demonstrate dynamic analysis of mental sweating for sound stimulus of a few tens of eccrine sweat glands by the time-sequential piled-up en face optical coherence tomography (OCT) images with the frame spacing of 3.3 sec. In the experiment, the amount of excess sweat can be evaluated simultaneously for a few tens of sweat glands by piling up of all the en face OCT images. Non-uniformity was observed in mental sweating where the amount of sweat in response to sound stimulus is different for each sweat gland. Furthermore, the amount of sweat is significantly increased in proportion to the strength of the stimulus.

  8. Effect of local acetylcholinesterase inhibition on sweat rate in humans

    NASA Technical Reports Server (NTRS)

    Shibasaki, M.; Crandall, C. G.

    2001-01-01

    ACh is the neurotransmitter responsible for increasing sweat rate (SR) in humans. Because ACh is rapidly hydrolyzed by acetylcholinesterase (AChE), it is possible that AChE contributes to the modulation of SR. Thus the primary purpose of this project was to identify whether AChE around human sweat glands is capable of modulating SR during local application of various concentrations of ACh in vivo, as well as during a heat stress. In seven subjects, two microdialysis probes were placed in the intradermal space of the forearm. One probe was perfused with the AChE inhibitor neostigmine (10 microM); the adjacent membrane was perfused with the vehicle (Ringer solution). SR over both membranes was monitored via capacitance hygrometry during microdialysis administration of various concentrations of ACh (1 x 10(-7)-2 M) and during whole body heating. SR was significantly greater at the neostigmine-treated site than at the control site during administration of lower concentrations of ACh (1 x 10(-7)-1 x 10(-3) M, P < 0.05), but not during administration of higher concentrations of ACh (1 x 10(-2)-2 M, P > 0.05). Moreover, the core temperature threshold for the onset of sweating at the neostigmine-treated site was significantly reduced relative to that at the control site. However, no differences in SR were observed between sites after 35 min of whole body heating. These results suggest that AChE is capable of modulating SR when ACh concentrations are low to moderate (i.e., when sudomotor activity is low) but is less effective in governing SR after SR has increased substantially.

  9. Bromide, Chloride, and Sulfate Concentrations, and Specific Conductance, Lake Texoma, Texas and Oklahoma, 2007-08

    USGS Publications Warehouse

    Baldys, Stanley

    2009-01-01

    The U.S. Geological Survey, in cooperation with the City of Dallas Water Utilities Division, collected water-quality data from 11 sites on Lake Texoma, a reservoir on the Texas-Oklahoma border, during April 2007-September 2008. At 10 of the sites, physical properties (depth, specific conductance, pH, temperature, dissolved oxygen, and alkalinity) were measured and samples were collected for analysis of selected dissolved constituents (bromide, calcium, magnesium, potassium, sodium, carbonate, bicarbonate, chloride, and sulfate); at one site, only physical properties were measured. The primary constituent of interest was bromide. Bromate can form when ozone is used to disinfect raw water containing bromide, and bromate is a suspected human carcinogen. Chloride and sulfate were of secondary interest. Only the analytical results for bromide, chloride, sulfate, and measured specific conductance are discussed in this report. Median dissolved bromide concentrations ranged from 0.28 to 0.60 milligrams per liter. The largest median dissolved bromide concentration (0.60 milligram per liter at site 11) was from the Red River arm of Lake Texoma. Dissolved bromide concentrations generally were larger in the Red River arm of Lake Texoma than in the Washita arm of the lake. Median dissolved chloride concentrations were largest in the Red River arm of Lake Texoma at site 11 (431 milligrams per liter) and smallest at site 8 (122 milligrams per liter) in the Washita arm. At site 11 in the Red River arm, the mean and median chloride concentrations exceeded the secondary maximum contaminant level of 300 milligrams per liter for chloride established by the 'Texas Surface Water Quality Standards' for surface-water bodies designated for the public water supply use. Median dissolved sulfate concentrations ranged from 182 milligrams per liter at site 4 in the Big Mineral arm to 246 milligrams per liter at site 11 in the Red River arm. None of the mean or median sulfate concentrations

  10. Sweat output measurement of the post-ganglion sudomotor response by Q-Sweat Test: a normative database of Chinese individuals

    PubMed Central

    2012-01-01

    Background Q-Sweat is a model used for evaluating the post-ganglionic sudomotor function by assessing sweat response. This study aimed to establish the normative database of Q-Sweat test among Chinese individuals since this type of information is currently lacking. Results One hundred and fifty (150) healthy volunteers, 76 men and 74 women with age range of 22–76 years were included. Skin temperature and sweat onset latency measured at the four sites (i.e., the forearm, proximal leg, distal leg, and the foot) did not significantly correlate with age, gender, body height (BH), body weight (BW), and body mass index (BMI) but the total sweat volume measured in all four sites significantly correlated with sex, BH, and BW. Except for the distal leg, the total sweat volume measured at the other three sites had a significant correlation with BMI. In terms of gender, men had larger total sweat volume, with median differences at the forearm, proximal leg, distal leg, and foot of 0.591 μl, 0.693 μl, 0.696 μl, and 0.358 μl, respectively. Regarding BW difference (≥62 and < 62 Kg), those with BW ≥62 Kg had larger total sweat volume. Median differences at the forearm, proximal leg, distal leg, and foot were 0.538 μl, 0.744 μl, 0.695 μl, and 0.338 μl, respectively. There was an uneven distribution of male and female participants in the two BW groups. In all conditions, the total sweat volume recorded at the foot site was the smallest. Conclusion This is the first report to show the normative database of sweat response in Chinese participants evaluated using Q-Sweat device. This normative database can help guide further research on post-ganglionic sudomotor or related clinical practice involving a Chinese population. PMID:22682097

  11. 7 CFR 29.2306 - Sweated.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sweated. 29.2306 Section 29.2306 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweated. The condition of tobacco which has passed through one or more fermentations natural to tobacco...

  12. 7 CFR 29.2307 - Sweating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sweating. 29.2307 Section 29.2307 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweating. The condition of tobacco in the process of fermentation. [37 FR 13521, July 11, 1972...

  13. 7 CFR 29.2307 - Sweating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sweating. 29.2307 Section 29.2307 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweating. The condition of tobacco in the process of fermentation. [37 FR 13521, July 11, 1972...

  14. 7 CFR 29.2307 - Sweating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sweating. 29.2307 Section 29.2307 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweating. The condition of tobacco in the process of fermentation. [37 FR 13521, July 11, 1972...

  15. 7 CFR 29.2307 - Sweating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sweating. 29.2307 Section 29.2307 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweating. The condition of tobacco in the process of fermentation. [37 FR 13521, July 11, 1972...

  16. 7 CFR 29.3064 - Sweated.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sweated. 29.3064 Section 29.3064 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweated. The condition of tobacco which has passed through one or more fermentations natural to tobacco...

  17. 7 CFR 29.3064 - Sweated.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sweated. 29.3064 Section 29.3064 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweated. The condition of tobacco which has passed through one or more fermentations natural to tobacco...

  18. 7 CFR 29.2306 - Sweated.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sweated. 29.2306 Section 29.2306 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweated. The condition of tobacco which has passed through one or more fermentations natural to tobacco...

  19. 7 CFR 29.2306 - Sweated.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sweated. 29.2306 Section 29.2306 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweated. The condition of tobacco which has passed through one or more fermentations natural to tobacco...

  20. 7 CFR 29.2306 - Sweated.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sweated. 29.2306 Section 29.2306 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweated. The condition of tobacco which has passed through one or more fermentations natural to tobacco...

  1. 7 CFR 29.3064 - Sweated.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sweated. 29.3064 Section 29.3064 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweated. The condition of tobacco which has passed through one or more fermentations natural to tobacco...

  2. 7 CFR 29.2306 - Sweated.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sweated. 29.2306 Section 29.2306 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweated. The condition of tobacco which has passed through one or more fermentations natural to tobacco...

  3. 7 CFR 29.3064 - Sweated.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sweated. 29.3064 Section 29.3064 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweated. The condition of tobacco which has passed through one or more fermentations natural to tobacco...

  4. 7 CFR 29.2307 - Sweating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sweating. 29.2307 Section 29.2307 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweating. The condition of tobacco in the process of fermentation. [37 FR 13521, July 11, 1972...

  5. 7 CFR 29.3064 - Sweated.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sweated. 29.3064 Section 29.3064 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweated. The condition of tobacco which has passed through one or more fermentations natural to tobacco...

  6. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Vacher, H. L.; Sanford, Ward E.

    2009-06-01

    Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick.

  7. Matrigel basement membrane matrix induces eccrine sweat gland cells to reconstitute sweat gland-like structures in nude mice.

    PubMed

    Li, Haihong; Chen, Lu; Zeng, Shaopeng; Li, Xuexue; Zhang, Xiang; Lin, Changmin; Zhang, Mingjun; Xie, Sitian; He, Yunpu; Shu, Shenyou; Yang, Lvjun; Tang, Shijie; Fu, Xiaobing

    2015-03-01

    Severe burn results in irreversible damage to eccrine sweat glands, for which no effective treatment is available. Interaction between the extracellular matrix and epithelial cells is critical for proper three-dimensional organization and function of the epithelium. Matrigel-embedded eccrine sweat gland cells were subcutaneously implanted into the inguinal regions of nude mice. Two weeks later, the Matrigel plugs were removed and evaluated for series of detection items. Sweat gland cells developed into sweat gland-like structures in the Matrigel plugs based on: (1) de novo formation of tubular-like structures with one or more hollow lumens, (2) expression of epithelial and sweat gland markers (pancytokeratin, CK5/7/14/19, α-SMA and CEA), (3) basement membrane formation, (4) myoepithelial cells presenting in and encompassing the tubular-like structures, (5) cellular polarization, evident by the expression of tight junction proteins (claudin-1 and ZO-2), anchoring junctions (desmoglein-1 and -2 and E-cadherin) and CEA in the luminal membrane, (6) expression of proteins related to sweat secretion and absorption (Na(+)-K(+)-ATPase α/β, Na(+)-K(+)-2Cl-cotranspoter 1, Na(+)/H(+) exchanger 1, aquaporin-5, epithelial sodium channel, cystic fibrosis transmembrane conductance regulator, potassium channel and vacuolar-type H+-ATPase), and (7) about 20% of the tubular-like structures are de novo coils and 80% are de novo ducts. This study provides not only an excellent model to study eccrine sweat gland development, cytodifferentiation and reconstitution, but also an in vivo model for regeneration of eccrine sweat glands. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Axillary hyperhidrosis - topical treatment with aluminium chloride hexahydrate

    PubMed Central

    Ellis, Harold; Scurr, John H.

    1979-01-01

    Forty-two patients with axillary hyperhidrosis on the waiting list for surgery were treated with topical saturated solution of aluminium chloride hexahydrate in absolute alcohol. There have been 7 failures. Three patients were unable to cope with the treatment and 4 more experienced severe local irritation or soreness; these 4 were submitted to local surgery. This is a simple and effective treatment for the majority of cases of severe axillary sweating. PMID:548949

  9. A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring.

    PubMed

    Zhou, Shuangxi; Sheng, Wei; Deng, Fangming; Wu, Xiang; Fu, Zhihui

    2017-12-11

    In this paper, a novel approach for concrete chloride ion concentration measuring based on passive and wireless sensor tag is proposed. The chloride ion sensor based on RFID communication protocol is consisting of an energy harvesting and management circuit, a low dropout voltage regulator, a MCU, a RFID tag chip and a pair of electrodes. The proposed sensor harvests energy radiated by the RFID reader to power its circuitry. To improve the stability of power supply, a three-stage boost rectifier is customized to rectify the harvested power into dc power and step-up the voltage. Since the measured data is wirelessly transmitted, it contains miscellaneous noises which would decrease the accuracy of measuring. Thus, in this paper, the wavelet denoising method is adopted to denoise the raw data. Besides, a monitoring software is developed to display the measurement results in real-time. The measurement results indicate that the proposed passive sensor tag can achieve a reliable communication distance of 16.3 m and can reliably measure the chloride ion concentration in concrete.

  10. 7 CFR 29.3553 - Sweated.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sweated. 29.3553 Section 29.3553 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3553 Sweated. The condition of tobacco which has passed through one or more fermentations...

  11. 7 CFR 29.3065 - Sweating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sweating. 29.3065 Section 29.3065 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweating. The condition of tobacco in the process of fermentation. [24 FR 8771, Oct. 29, 1959. Redesignated...

  12. 7 CFR 29.6042 - Sweated.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sweated. 29.6042 Section 29.6042 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6042 Sweated. The condition of tobacco which has passed through one or...

  13. 7 CFR 29.6042 - Sweated.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sweated. 29.6042 Section 29.6042 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6042 Sweated. The condition of tobacco which has passed through one or...

  14. 7 CFR 29.6042 - Sweated.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sweated. 29.6042 Section 29.6042 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6042 Sweated. The condition of tobacco which has passed through one or...

  15. 7 CFR 29.3553 - Sweated.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sweated. 29.3553 Section 29.3553 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3553 Sweated. The condition of tobacco which has passed through one or more fermentations...

  16. 7 CFR 29.3065 - Sweating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sweating. 29.3065 Section 29.3065 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweating. The condition of tobacco in the process of fermentation. [24 FR 8771, Oct. 29, 1959. Redesignated...

  17. 7 CFR 29.3065 - Sweating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sweating. 29.3065 Section 29.3065 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweating. The condition of tobacco in the process of fermentation. [24 FR 8771, Oct. 29, 1959. Redesignated...

  18. 7 CFR 29.1064 - Sweated.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sweated. 29.1064 Section 29.1064 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1064 Sweated. The condition of tobacco which has passed through one or more fermentations...

  19. 7 CFR 29.6042 - Sweated.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sweated. 29.6042 Section 29.6042 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6042 Sweated. The condition of tobacco which has passed through one or...

  20. 7 CFR 29.1064 - Sweated.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sweated. 29.1064 Section 29.1064 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1064 Sweated. The condition of tobacco which has passed through one or more fermentations...

  1. 7 CFR 29.3065 - Sweating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sweating. 29.3065 Section 29.3065 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweating. The condition of tobacco in the process of fermentation. [24 FR 8771, Oct. 29, 1959. Redesignated...

  2. 7 CFR 29.1064 - Sweated.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sweated. 29.1064 Section 29.1064 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1064 Sweated. The condition of tobacco which has passed through one or more fermentations...

  3. 7 CFR 29.3553 - Sweated.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sweated. 29.3553 Section 29.3553 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3553 Sweated. The condition of tobacco which has passed through one or more fermentations...

  4. 7 CFR 29.3065 - Sweating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sweating. 29.3065 Section 29.3065 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Sweating. The condition of tobacco in the process of fermentation. [24 FR 8771, Oct. 29, 1959. Redesignated...

  5. 7 CFR 29.3553 - Sweated.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sweated. 29.3553 Section 29.3553 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3553 Sweated. The condition of tobacco which has passed through one or more fermentations...

  6. 7 CFR 29.1064 - Sweated.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sweated. 29.1064 Section 29.1064 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1064 Sweated. The condition of tobacco which has passed through one or more fermentations...

  7. 7 CFR 29.6042 - Sweated.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sweated. 29.6042 Section 29.6042 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6042 Sweated. The condition of tobacco which has passed through one or...

  8. 7 CFR 29.3553 - Sweated.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sweated. 29.3553 Section 29.3553 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3553 Sweated. The condition of tobacco which has passed through one or more fermentations...

  9. 7 CFR 29.1064 - Sweated.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sweated. 29.1064 Section 29.1064 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1064 Sweated. The condition of tobacco which has passed through one or more fermentations...

  10. 7 CFR 29.2559 - Sweating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sweating. 29.2559 Section 29.2559 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2559 Sweating. The condition of tobacco in...

  11. 7 CFR 29.2558 - Sweated.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sweated. 29.2558 Section 29.2558 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2558 Sweated. The condition of tobacco...

  12. 7 CFR 29.2559 - Sweating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sweating. 29.2559 Section 29.2559 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2559 Sweating. The condition of tobacco in...

  13. 7 CFR 29.3554 - Sweating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sweating. 29.3554 Section 29.3554 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3554 Sweating. The condition of tobacco in the process of fermentation. [30 FR 9207, July...

  14. 7 CFR 29.2558 - Sweated.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sweated. 29.2558 Section 29.2558 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2558 Sweated. The condition of tobacco...

  15. 7 CFR 29.1065 - Sweating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sweating. 29.1065 Section 29.1065 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1065 Sweating. The condition of tobacco in the process of fermentation. [42 FR 21092, Apr...

  16. 7 CFR 29.1065 - Sweating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sweating. 29.1065 Section 29.1065 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1065 Sweating. The condition of tobacco in the process of fermentation. [42 FR 21092, Apr...

  17. 7 CFR 29.2558 - Sweated.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sweated. 29.2558 Section 29.2558 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2558 Sweated. The condition of tobacco...

  18. 7 CFR 29.2559 - Sweating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sweating. 29.2559 Section 29.2559 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2559 Sweating. The condition of tobacco in...

  19. 7 CFR 29.3554 - Sweating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sweating. 29.3554 Section 29.3554 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3554 Sweating. The condition of tobacco in the process of fermentation. [30 FR 9207, July...

  20. 7 CFR 29.1065 - Sweating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sweating. 29.1065 Section 29.1065 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1065 Sweating. The condition of tobacco in the process of fermentation. [42 FR 21092, Apr...

  1. 7 CFR 29.2558 - Sweated.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sweated. 29.2558 Section 29.2558 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2558 Sweated. The condition of tobacco...

  2. 7 CFR 29.2559 - Sweating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sweating. 29.2559 Section 29.2559 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2559 Sweating. The condition of tobacco in...

  3. 7 CFR 29.2558 - Sweated.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sweated. 29.2558 Section 29.2558 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2558 Sweated. The condition of tobacco...

  4. 7 CFR 29.1065 - Sweating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sweating. 29.1065 Section 29.1065 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1065 Sweating. The condition of tobacco in the process of fermentation. [42 FR 21092, Apr...

  5. 7 CFR 29.3554 - Sweating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sweating. 29.3554 Section 29.3554 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3554 Sweating. The condition of tobacco in the process of fermentation. [30 FR 9207, July...

  6. 7 CFR 29.1065 - Sweating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sweating. 29.1065 Section 29.1065 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1065 Sweating. The condition of tobacco in the process of fermentation. [42 FR 21092, Apr...

  7. 7 CFR 29.2559 - Sweating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sweating. 29.2559 Section 29.2559 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2559 Sweating. The condition of tobacco in...

  8. 7 CFR 29.3554 - Sweating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sweating. 29.3554 Section 29.3554 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3554 Sweating. The condition of tobacco in the process of fermentation. [30 FR 9207, July...

  9. 7 CFR 29.3554 - Sweating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sweating. 29.3554 Section 29.3554 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3554 Sweating. The condition of tobacco in the process of fermentation. [30 FR 9207, July...

  10. Sweating Like a Pig: Physics or Irony?

    NASA Astrophysics Data System (ADS)

    Bohren, Craig F.

    2016-03-01

    In his interesting and informative book Is That a Fact?, Joe Schwarcz avers that pigs do not sweat and the saying "sweating like a pig" originates in iron smelting. Oblong pieces of hot iron, with a fancied resemblance to a sow with piglets, cool in sand to the dew point of the surrounding air, and hence water condenses on the "pig." But this explanation, which I have seen on the Internet, lacks a few caveats. It implies that molten iron, solidifying and cooling, anywhere, anytime, accretes liquid water, as if this were a special property of cooling iron. Set aside that real pigs sweat perceptibly from their snouts; kiss a pig and verify for yourself. Pigs also sweat imperceptibly. Imperceptible (insensible) perspiration is water vapor from the skin and lungs exuded without sensible condensation. That from humans is about 1 liter/day. Sweat is 99% liquid water, NaCl the dominant solute, secreted quickly, sometimes profusely, by subcutaneous sweat glands in response to thermal stress, in contrast to the slow, continuous diffusion of water vapor through skin.

  11. Improved COD Measurements for Organic Content in Flowback Water with High Chloride Concentrations.

    PubMed

    Cardona, Isabel; Park, Ho Il; Lin, Lian-Shin

    2016-03-01

    An improved method was used to determine chemical oxygen demand (COD) as a measure of organic content in water samples containing high chloride content. A contour plot of COD percent error in the Cl(-)-Cl(-):COD domain showed that COD errors increased with Cl(-):COD. Substantial errors (>10%) could occur in low Cl(-):COD regions (<300) for samples with low (<10 g/L) and high chloride concentrations (>25 g/L). Applying the method to flowback water samples resulted in COD concentrations ranging in 130 to 1060 mg/L, which were substantially lower than the previously reported values for flowback water samples from Marcellus Shale (228 to 21 900 mg/L). It is likely that overestimations of COD in the previous studies occurred as result of chloride interferences. Pretreatment with mercuric sulfate, and use of a low-strength digestion solution, and the contour plot to correct COD measurements are feasible steps to significantly improve the accuracy of COD measurements.

  12. Why Do I Sweat So Much?

    MedlinePlus

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & ... perfectly normal to sweat. Sweating plays an important health role because it helps maintain body temperature by cooling us down. When we're hot ...

  13. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

    USGS Publications Warehouse

    Hughes, J.D.; Vacher, H. Leonard; Sanford, W.E.

    2009-01-01

    Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick. ?? US Government 2008.

  14. Cannabis Use Surveillance by Sweat Analysis.

    PubMed

    Gambelunghe, Cristiana; Fucci, Nadia; Aroni, Kyriaki; Bacci, Mauro; Marcelli, Antonio; Rossi, Riccardo

    2016-10-01

    Sweat testing, an alternative matrix for establishing drug abuse, offers additional benefits to the more common biological samples. The authors developed a procedure using gas chromatography-mass spectrometry to test for Δ9-tetrahydrocannabinol, 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid, cannabinol (CBN), and cannabidiol (CBD) in a sweat patch. The results were compared with urine and hair sample results. Urine, hair, and sweat samples were simultaneously collected from 12 patients who were involved, respectively, in forensic case and monitoring abuse. Selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, intraday and interday imprecision, and inaccuracy of the quantification procedure were validated. LODs in hair were 0.05 ng/mg for Δ9-tetrahydrocannabinol, CBN, and CBD, and 0.005 ng/mg for 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid. The LOD for sweat was 0.30 ng/patch for all substances. The LOQ in hair was 0.1 ng/mg for Δ9-tetrahydrocannabinol, CBN, and CBD, and 0.01 ng/mg for 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid. The LOQ was 0.4 ng/patch in sweat for each analyte. Cannabinoid in urine was determined by means of immunochemical screening (cutoff 11-nor-Δ-tetrahydrocannabinol-9-carboxylic acid 50 ng/mL). All subjects tested positive for 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid and Δ9-tetrahydrocannabinol in urine and hair. In sweat samples, Δ9-tetrahydrocannabinol was found in all patches (0.4-2.0 ng/patch); 6 cases were positive for CBN (0.4-0.5 ng/patch) and 3 for CBD (0.4-0.6 ng/patch); 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid was never detected in patches. Present sweat analysis results integrated the information from hair and urine and showed that sweat analysis is a suitable, noninvasive method for monitoring compliance with rehabilitation therapy and for detecting recent cumulative use of cannabinoids.

  15. Effect of salt supplementation on the rate of inadequate sweat collection for infants less than 3 months of age referred for the sweat test.

    PubMed

    Guglani, Lokesh; Abdulhamid, Ibrahim

    2015-01-01

    Sweat testing in young infants (≤ 3 months) with a positive newborn screen for Cystic Fibrosis (CF) can yield higher rates of inadequate sweat collection. The role of salt supplements in improving sweat collection has not been studied before. All young infants referred to our CF center for sweat testing were randomized to either receive salt supplements {1/8th teaspoon salt (750 mg)} mixed in formula feeds 1 day prior to sweat testing (study group) or no salt supplement (controls). Of the 151 young infants that underwent sweat testing over 18 months, 75 received salt supplements, while 76 did not. A total of 9 (11.8%) infants in the salt supplement group had inadequate sweat collection, as compared to 4 (5.2%) infants in the control group (p = 0.16, Fisher's Exact Test). Oral salt supplementation for young infants prior to sweat testing does not help to reduce the rates of inadequate sweat collection.

  16. Peat porewater chloride concentration profiles in the Everglades during wet/dry cycles from January 1996 to June 1998: Field measurements and theoretical analysis

    USGS Publications Warehouse

    Reddy, M.M.; Reddy, M.B.; Kipp, K.L.; Burman, A.; Schuster, P.; Rawlik, P.S.

    2008-01-01

    Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat-surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection-diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water-chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Copyright ?? 2007 John Wiley & Sons, Ltd.

  17. Pituitary adenylate cyclase-activating polypeptide promotes eccrine gland sweat secretion.

    PubMed

    Sasaki, S; Watanabe, J; Ohtaki, H; Matsumoto, M; Murai, N; Nakamachi, T; Hannibal, J; Fahrenkrug, J; Hashimoto, H; Watanabe, H; Sueki, H; Honda, K; Miyazaki, A; Shioda, S

    2017-02-01

    Sweat secretion is the major function of eccrine sweat glands; when this process is disturbed (paridrosis), serious skin problems can arise. To elucidate the causes of paridrosis, an improved understanding of the regulation, mechanisms and factors underlying sweat production is required. Pituitary adenylate cyclase-activating polypeptide (PACAP) exhibits pleiotropic functions that are mediated via its receptors [PACAP-specific receptor (PAC1R), vasoactive intestinal peptide (VIP) receptor type 1 (VPAC1R) and VPAC2R]. Although some studies have suggested a role for PACAP in the skin and several exocrine glands, the effects of PACAP on the process of eccrine sweat secretion have not been examined. To investigate the effect of PACAP on eccrine sweat secretion. Reverse transcriptase-polymerase chain reaction and immunostaining were used to determine the expression and localization of PACAP and its receptors in mouse and human eccrine sweat glands. We injected PACAP subcutaneously into the footpads of mice and used the starch-iodine test to visualize sweat-secreting glands. Immunostaining showed PACAP and PAC1R expression by secretory cells from mouse and human sweat glands. PACAP immunoreactivity was also localized in nerve fibres around eccrine sweat glands. PACAP significantly promoted sweat secretion at the injection site, and this could be blocked by the PAC1R-antagonist PACAP6-38. VIP, an agonist of VPAC1R and VPAC2R, failed to induce sweat secretion. This is the first report demonstrating that PACAP may play a crucial role in sweat secretion via its action on PAC1R located in eccrine sweat glands. The mechanisms underlying the role of PACAP in sweat secretion may provide new therapeutic options to combat sweating disorders. © 2016 British Association of Dermatologists.

  18. Prevalence and predictors of night sweats, day sweats, and hot flashes in older primary care patients: an OKPRN study.

    PubMed

    Mold, James W; Roberts, Michelle; Aboshady, Hesham M

    2004-01-01

    We wanted to estimate the prevalence of night sweats, day sweats, and hot flashes in older primary care patients and identify associated factors. We undertook a cross-sectional study of patients older than 64 years recruited from the practices of 23 family physicians. Variables included sociodemographic information, health habits, chronic medical problems, symptoms, quality of life, and the degree to which patients were bothered by night sweats, daytime sweating, and hot flashes. Among the 795 patients, 10% reported being bothered by night sweats, 9% by day sweats, and 8% by hot flashes. Eighteen percent reported at least 1 of these symptoms. The 3 symptoms were strongly correlated. Factors associated with night sweats in the multivariate models were age (odds ratio [OR] 0.94/y; 95% confidence interval [CI], 0.89-0.98), fever (OR 12.60; 95% CI, 6.58-24.14), muscle cramps (OR 2.84; 95% CI, 1.53-5.24), numbness of hands and feet (OR 3.34; 95% CI, 1.92-5.81), impaired vision (OR 2.45; 95% CI, 1.41-4.27), and hearing loss (OR 1.84; 95% CI, 1.03-3.27). Day sweats were associated with fever (OR 4.10; 95% CI, 2.14-7.87), restless legs (OR 3.22; 95% CI, 1.76-5.89), lightheadedness (OR 2.24; 95% CI, 1.30-3.88), and diabetes (OR 2.19; 95% CI, 1.22-3.92). Hot flashes were associated with nonwhite race (OR 3.10; 95% CI, 1.60-5.98), fever (OR 3.98; 95% CI, 1.97-8.04), bone pain (OR 2.31; CI 95%: 1.30-4.08), impaired vision (OR 2.12; 95% CI, 1.19-3.79), and nervous spells (OR 1.87; 95% CI, 1.01-3.46). All 3 symptoms were associated with reduced quality of life. Many older patients are bothered by night sweats, day sweats, and hot flashes. Though these symptoms are similar and related, they have somewhat different associations with other variables. Clinical evaluation should include questions about febrile illnesses, sensory deficits, anxiety, depression, pain, muscle cramps, and restless legs syndrome.

  19. Hydrochromic Approaches to Mapping Human Sweat Pores.

    PubMed

    Park, Dong-Hoon; Park, Bum Jun; Kim, Jong-Man

    2016-06-21

    Hydrochromic materials, which undergo changes in their light absorption and/or emission properties in response to water, have been extensively investigated as humidity sensors. Recent advances in the design of these materials have led to novel applications, including monitoring the water content of organic solvents, water-jet-based rewritable printing on paper, and hydrochromic mapping of human sweat pores. Our interest in this area has focused on the design of hydrochromic materials for human sweat pore mapping. We recognized that materials appropriate for this purpose must have balanced sensitivities to water. Specifically, while they should not undergo light absorption and/or emission transitions under ambient moisture conditions, the materials must have sufficiently high hydrochromic sensitivities that they display responses to water secreted from human sweat pores. In this Account, we describe investigations that we have carried out to develop hydrochromic substances that are suitable for human sweat pore mapping. Polydiacetylenes (PDAs) have been extensively investigated as sensor matrices because of their stimulus-responsive color change property. We found that incorporation of headgroups composed of hygroscopic ions such as cesium or rubidium and carboxylate counterions enables PDAs to undergo a blue-to-red colorimetric transition as well as a fluorescence turn-on response to water. Very intriguingly, the small quantities of water secreted from human sweat pores were found to be sufficient to trigger fluorescence turn-on responses of the hydrochromic PDAs, allowing precise mapping of human sweat pores. Since the hygroscopic ion-containing PDAs developed in the initial stage display a colorimetric transition under ambient conditions that exist during humid summer periods, a new system was designed. A PDA containing an imidazolium ion was found to be stable under all ambient conditions and showed temperature-dependent hydrochromism corresponding to a

  20. Trapped sweat in basketball uniforms and the effect on sweat loss estimates.

    PubMed

    Baker, Lindsay B; Reimel, Adam J; Sopeña, Bridget C; Barnes, Kelly A; Nuccio, Ryan P; De Chavez, Peter John D; Stofan, John R; Carter, James M

    2017-09-01

    The aims of this study were to determine: (1) trapped sweat (TS) in basketball uniforms and the effect on sweat loss (SL) estimates during a laboratory-based basketball simulation protocol; (2) the impact of exercise intensity, body mass, age, and SL on TS; and (3) TS during on-court training to assess the ecological validity of the laboratory-based results. Twenty-four recreational/competitive male basketball players (23 ± 10 years, 77.0 ± 16.7 kg) completed three randomized laboratory-based trials (Low, Moderate, and High intensity) consisting of 150-min intermittent exercise. Eighteen elite male players (23 ± 4 years, 92.0 ± 20.6 kg) were observed during coach-led, on-court training. Nude and clothed body mass were measured pre and postexercise to determine TS. Data are mean ± SD. There was a significant effect of intensity on SL and TS ( P  < 0.001, Lowsweat and TS was 0.11 ± 0.15 kg (8.0 ± 5.1% SL). During Moderate, subjects lost 1.60 ± 0.56 kg sweat and TS was 0.21 ± 0.21 kg (11.6 ± 6.3% SL). During High, subjects lost 2.12 ± 0.66 kg sweat and TS was 0.38 ± 0.28 kg (16.0 ± 7.4% SL). Multiple regression and partial correlation analysis suggested TS was significantly related to SL ( P  < 0.0001; partial r  = 0.81-0.89), whereas the contributions of body mass ( P  = 0.22-0.92) and age ( P  = 0.29-0.44) were not significant. TS during on-court training was 0.35 ± 0.36 kg, which was associated with a 14.1 ± 11.5% underestimation in SL, and was not statistically different than laboratory-based results ( P  = 0.59). Clothed body mass measurements should be used with caution, as TS is highly variable and can cause a significant underestimation in SL in athletes with high sweating rates. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological

  1. Effect of Sweating on Insulation of Footwear.

    PubMed

    Kuklane, Kalev; Holmér, Ingvar

    1998-01-01

    The study aimed to find out the influence of sweating on footwear insulation with a thermal foot model. Simultaneously, the influence of applied weight (35 kg), sock, and steel toe cap were studied. Water to 3 sweat glands was supplied with a pump at the rate of 10 g/hr in total. Four models of boots with steel toe caps were tested. The same models were manufactured also without steel toe. Sweating reduced footwear insulation 19-25% (30-37% in toes). During static conditions, only a minimal amount of sweat evaporated from boots. Weight affected sole insulation: Reduction depended on compressibility of sole material. The influence of steel toe varied with insulation. The method of thermal foot model appears to be a practical tool for footwear evaluation.

  2. Eccrine Sweat Contains IL-1α, IL-1β and IL-31 and Activates Epidermal Keratinocytes as a Danger Signal

    PubMed Central

    Dai, Xiuju; Okazaki, Hidenori; Hanakawa, Yasushi; Murakami, Masamoto; Tohyama, Mikiko; Shirakata, Yuji; Sayama, Koji

    2013-01-01

    Eccrine sweat is secreted onto the skin's surface and is not harmful to normal skin, but can exacerbate eczematous lesions in atopic dermatitis. Although eccrine sweat contains a number of minerals, proteins, and proteolytic enzymes, how it causes skin inflammation is not clear. We hypothesized that it stimulates keratinocytes directly, as a danger signal. Eccrine sweat was collected from the arms of healthy volunteers after exercise, and levels of proinflammatory cytokines in the sweat were quantified by ELISA. We detected the presence of IL-1α, IL-1β, and high levels of IL-31 in sweat samples. To investigate whether sweat activates keratinocytes, normal human keratinocytes were stimulated with concentrated sweat. Western blot analysis demonstrated the activation of NF-κB, ERK, and JNK signaling in sweat-stimulated keratinocytes. Real-time PCR using total RNA and ELISA analysis of supernatants showed the upregulation of IL-8 and IL-1β by sweat. Furthermore, pretreatment with IL-1R antagonist blocked sweat-stimulated cytokine production and signal activation, indicating that bioactive IL-1 is a major factor in the activation of keratinocytes by sweat. Moreover, IL-31 seems to be another sweat stimulator that activates keratinocytes to produce inflammatory cytokine, CCL2. Sweat is secreted onto the skin's surface and does not come into contact with keratinocytes in normal skin. However, in skin with a defective cutaneous barrier, such as atopic dermatitis-affected skin, sweat cytokines can directly act on epidermal keratinocytes, resulting in their activation. In conclusion, eccrine sweat contains proinflammatory cytokines, IL-1 and IL-31, and activates epidermal keratinocytes as a danger signal. PMID:23874436

  3. Comment on "Local impermeant anions establish the neuronal chloride concentration".

    PubMed

    Voipio, Juha; Boron, Walter F; Jones, Stephen W; Hopfer, Ulrich; Payne, John A; Kaila, Kai

    2014-09-05

    Glykys et al. (Reports, 7 February 2014, p. 670) conclude that, rather than ion transporters, "local impermeant anions establish the neuronal chloride concentration" and thereby determine "the magnitude and direction of GABAAR currents at individual synapses." If this were possible, perpetual ion-motion machines could be constructed. The authors' conclusions conflict with basic thermodynamic principles. Copyright © 2014, American Association for the Advancement of Science.

  4. GLT-1 Transport Stoichiometry Is Constant at Low and High Glutamate Concentrations when Chloride Is Substituted by Gluconate

    PubMed Central

    Kabakov, Anatoli Y.; Rosenberg, Paul A.

    2015-01-01

    Glutamate is the major excitatory neurotransmitter, but prolonged exposure even at micromolar concentrations causes neuronal death. Extracellular glutamate is maintained at nanomolar level by glutamate transporters, which, however, may reverse transport and release glutamate. If and when the reverse occurs depends on glutamate transport stoichiometry (GTS). Previously we found that in the presence of chloride, the coupled GLT-1 glutamate transporter current and its relationship to radiolabeled glutamate flux significantly decreased when extracellular glutamate concentration increased above 0.2 mM, which implies a change in GTS. Such high concentrations are feasible near GLT-1 expressed close to synaptic release site during excitatory neurotransmission. The aim of this study was to determine GLT-1 GTS at both low (19–75 μM) and high (300–1200 μM) glutamate concentration ranges. GTS experiments were conducted in the absence of chloride to avoid contributions by the GLT-1 uncoupled chloride conductance. Mathematical analysis of the transporter thermodynamic equilibrium allowed us to derive equations revealing the number of a particular type of ion transported per elementary charge based on the measurements of the transporter reversal potential. We found that GLT-1a expressed in COS-7 cells co-transports 1.5 Na+, 0.5 Glu-, 0.5 H+ and counter-transports 0.6 K+ per elementary charge in both glutamate concentration ranges, and at both 37°C and 26°C temperatures. The thermodynamic parameter Q 10 = 2.4 for GLT-1 turnover rate of 19 s-1 (37°C, -50 mV) remained constant in the 10 μM–10 mM glutamate concentration range. Importantly, the previously reported decrease in the current/flux ratio at high glutamate concentration was not seen in the absence of chloride in both COS-7 cells and cultured rat neurons. Therefore, only in the absence of chloride, GLT-1 GTS remains constant at all glutamate concentrations. Possible explanations for why apparent GTS might vary in

  5. Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions

    NASA Astrophysics Data System (ADS)

    Grishina, E. P.; Kudryakova, N. O.

    2017-10-01

    The conductivity and electrochemical stability of choline chloride (ChCl) solutions with water contents ranging from 20 to 39 wt % are studied. Exposing ChCl to moist ambient air yields a highly concentrated aqueous solution that, as an electrolyte, exhibits the properties and variations in conductivity with temperature and concentration characteristic of other similar systems. Its electrochemical stability window, determined by cyclic voltammetry, is comparable to that of ChCl-based deep eutectic solvents (DESs). Products of the electrolysis of ChCl‒H2O mixtures seem to be less toxic than those of Reline, Ethaline, and Maline.

  6. Chloride concentration gradients in tank-stored hydraulic fracturing fluids following flowback

    Treesearch

    Pamela J. Edwards; Linda L. Tracy; William K. Wilson

    2011-01-01

    A natural gas well in West Virginia was hydraulically fractured and the flowback was recovered and stored in an 18-foot-deep tank. Both in situ field test kit and laboratory measurements of electrical conductivity and chloride concentrations increased substantially with depth, although the laboratory measurements showed a greater increase. The field test kit also...

  7. Bioanalytical devices: Technological leap for sweat sensing

    NASA Astrophysics Data System (ADS)

    Heikenfeld, Jason

    2016-01-01

    Sweat analysis is an ideal method for continuously tracking a person's physiological state, but developing devices for this is difficult. A wearable sweat monitor that measures several biomarkers is a breakthrough. See Letter p.509

  8. Does anticipatory sweating occur prior to fluid consumption?

    PubMed

    Wing, David; McClintock, Rebecca; Plumlee, Deva; Rathke, Michelle; Burnett, Tim; Lyons, Bailey; Buono, Michael J

    2012-01-01

    The purpose of this study was to examine if anticipatory sweating occurs prior to fluid consumption in dehydrated subjects. It was hypothesized that there would first be an anticipatory response to the sight of water, and then with drinking, a second response caused by mechanical stimulation of oropharyngeal nerves. Dehydrated subjects (n=19) sat in a heat chamber for 30 minutes. At minute 15, a resistance hygrometer capsule was attached and sweat rate was measured every 3 seconds. At minute 35:00, a researcher entered the room with previously measured water (2 ml/kg euhydrated body weight). At minute 35:30, the subject was allowed to drink. Data collection continued for 5 minutes post consumption. As expected, 16 of the 19 subjects responded to oropharyngeal stimuli with increased sweat rate. However, the new finding was that a majority (12 of 19) also showed an anticipatory sweating response prior to fluid consumption. Subjects were divided into 4 groups based on the magnitude of the sweating response. Strong responders' (n=4) anticipatory response accounted for 50% or more of the total change in sweat rate. Moderate responders' (n=4) anticipatory response accounted for 20%-49%. Weak responders' (n=4) anticipatory response accounted for 6-20%. Finally, non-responders (n=7) showed no anticipatory response. Although previously noted anecdotally in the literature, the current study is the first to demonstrate that measurable anticipatory sweating occurs prior to fluid intake in dehydrated subjects in a significant percentage of the population. Such data suggests that cerebral input, like oropharyngeal stimulation, can temporarily remove the dehydration-induced inhibition of sweating.

  9. Progressive freezing and sweating in a test unit

    NASA Astrophysics Data System (ADS)

    Ulrich, J.; Özoğuz, Y.

    1990-01-01

    Crystallization from melts is applied in several fields like waste water treatment, fruit juice or liquid food concentration and purification of organic chemicals. Investigations to improve the understanding, the performance and the control of the process have been carried out. The experimental unit used a vertical tube with a falling film on the outside. With an specially designed measuring technique process controlling parameters have been studied. The results demonstrate the dependency of those parameters upon each other and indicate the way to control the process by controlling the dominant parameter. This is the growth rate of the crystal coat. A further purification of the crystal layer can be achieved by introducing the procedure of sweating, which is a controlled partial melting of the crystal coat. Here again process parameters have been varied and results are presented. The strong effect upon the final purity of the product by an efficient executed sweating which is effectively tuned on the crystallization procedure should save crystallization steps, energy and time.

  10. Quantification of sweat gland volume and innervation in neuropathy: Correlation with thermoregulatory sweat testing.

    PubMed

    Loavenbruck, Adam; Wendelschaefer-Crabbe, Gwen; Sandroni, Paola; Kennedy, William R

    2014-10-01

    No study has correlated thermoregulatory sweat testing (TST) with histopathologic study of sweat glands (SGs) and SG nerve fibers (SGNFs). We studied 10 neuropathy patients in whom anhidrosis was found by TST and 10 matched controls. Skin biopsies were taken from both anhidrotic and sweating skin and immunohistochemical staining was done for nerves and basement membrane. For each biopsy, total tissue volume, total SG volume, and total SGNF length were measured. SGNF length per biopsy volume, SG volume per biopsy volume (SG%), and SGNF length per SG volume were calculated. SGNF length per biopsy volume was reduced in anhidrotic site biopsies of patients compared with controls. SG% was decreased and SGNF length per SG volume increased in patients compared with controls. The results suggest a concomitant loss of SG volume and SGNF length in neuropathy, with greater loss of SGNFs in anhidrotic skin, possibly exceeding collateral reinnervation. Copyright © 2014 Wiley Periodicals, Inc.

  11. Thermoregulation, Fluid Balance, and Sweat Losses in American Football Players.

    PubMed

    Davis, Jon K; Baker, Lindsay B; Barnes, Kelly; Ungaro, Corey; Stofan, John

    2016-10-01

    Numerous studies have reported on the thermoregulation and hydration challenges athletes face in team and individual sports during exercise in the heat. Comparatively less research, however, has been conducted on the American Football player. Therefore, the purpose of this article is to review data collected in laboratory and field studies and discuss the thermoregulation, fluid balance, and sweat losses of American Football players. American Football presents a unique challenge to thermoregulation compared with other sports because of the encapsulating nature of the required protective equipment, large body size of players, and preseason practice occurring during the hottest time of year. Epidemiological studies report disproportionately higher rates of exertional heat illness and heat stroke in American Football compared with other sports. Specifically, larger players (e.g., linemen) are at increased risk for heat ailments compared with smaller players (e.g., backs) because of greater body mass index, increased body fat, lower surface area to body mass ratio, lower aerobic capacity, and the stationary nature of the position, which can reduce heat dissipation. A consistent finding across studies is that larger players exhibit higher sweating rates than smaller players. Mean sweating rates from 1.0 to 2.9 L/h have been reported for college and professional American Football players, with several studies reporting 3.0 L/h or more in some larger players. Sweat sodium concentration of American Football players does not seem to differ from that of athletes in other sports; however, given the high volume of sweat loss, the potential for sodium loss is higher in American Football than in other sports. Despite high sweating rates with American Football players, the observed disturbances in fluid balance have generally been mild (mean body mass loss ≤2 %). The majority of field-based studies have been conducted in the northeastern part of the United States, with limited

  12. A new method of artificial latent fingerprint creation using artificial sweat and inkjet printer.

    PubMed

    Hong, Sungwook; Hong, Ingi; Han, Aleum; Seo, Jin Yi; Namgung, Juyoung

    2015-12-01

    In order to study fingerprinting in the field of forensic science, it is very important to have two or more latent fingerprints with identical chemical composition and intensity. However, it is impossible to obtain identical fingerprints, in reality, because fingerprinting comes out slightly differently every time. A previous research study had proposed an artificial fingerprint creation method in which inkjet ink was replaced with amino acids and sodium chloride solution: the components of human sweat. But, this method had some drawbacks: divalent cations were not added while formulating the artificial sweat solution, and diluted solutions were used for creating weakly deposited latent fingerprint. In this study, a method was developed for overcoming the drawbacks of the methods used in the previous study. Several divalent cations were added in this study because the amino acid-ninhydrin (or some of its analogues) complex is known to react with divalent cations to produce a photoluminescent product; and, similarly, the amino acid-1,2-indanedione complex is known to be catalyzed by a small amount of zinc ions to produce a highly photoluminescent product. Also, in this study, a new technique was developed which enables to adjust the intensity when printing the latent fingerprint patterns. In this method, image processing software is used to control the intensity of the master fingerprint patterns, which adjusts the printing intensity of the latent fingerprints. This new method opened the way to produce a more realistic artificial fingerprint in various strengths with one artificial sweat working solution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Study on Treatment of acidic and highly concentrated fluoride waste water using calcium oxide-calcium chloride

    NASA Astrophysics Data System (ADS)

    Ren, T.; Gao, X. R.; Zheng, T.; Wang, P.

    2016-08-01

    There are problems with treating acidic waste water containing high concentration fluorine by chemical precipitation, including the low sludge setting velocity and the high difficulty of reaching the criterion. In Heilongjiang province, a graphite factory producing high-purity graphite generates acidic waste water with a high concentration of fluorine. In this paper, the effect of removals on the concentration of fluoride with the combined treatment of calcium oxide and calcium chloride were discussed with regard to acid waste water. The study improved the sludge characteristics by using polyacrylamide (PAM) and polymeric aluminum chloride (PAC). The effect of different coagulants on sludge was evaluated by the sludge settlement ratio (SV), sludge volume index (SVI) and sludge moisture content. The results showed that the optimal combination for 100 ml waste water was calcium oxide addition amount of 14 g, a calcium chloride addition amount of 2.5 g, a PAM addition amount of 350 mg/L, and the effluent fluoride concentration was below 6 mg/L. PAM significantly improved the sludge settling velocity. The sludge settlement ratio reduced from 87.6% to 60%. The process for wastewater treatment was easily operated and involved low expenditure.

  14. Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis.

    PubMed

    Yu, Yijing; Prassas, Ioannis; Muytjens, Carla M J; Diamandis, Eleftherios P

    2017-02-23

    Sweat is produced by eccrine and apocrine glands and represents a biological fluid with established roles in thermo-regulation and host infection defense. The composition of sweat is highly dynamic and alters significantly in various skin and other disorders. Therefore, in-depth profiling of sweat protein composition is expected to augment our understanding of the pathobiology of several skin diseases and may lead to the identification of useful sweat-based disease biomarkers. We here reported an in-depth analysis of the human sweat proteome and peptidome. Sweat was collected from healthy males and healthy females of ages 20-60years, following strenuous exercise. Two sweat pools were prepared (1 for males and 1 for females) and were subjected to sample preparation for mass spectrometric analysis. We identified a total of 861 unique proteins during our proteomic analysis and 32,818 endogenous peptides (corresponding to additional 1067 proteins) from our peptidomics workflow. As expected, the human skin was identified as the most abundant source of sweat proteins and peptides. Several skin proteases and protease inhibitors were identified in human sweat, highlighting the intense proteolytic activity of human skin. The presence of several antimicrobial peptides supports the functional roles of sweat in host defense and innate immunity. Sweat is a skin-associated biological fluid, secreted by eccrine and apocrine glands, with essential function in body thermo-regulation and host infection defense. In the present study, we performed in-depth profiling of both sweat proteome and peptidome composition. Our data provide the most in-depth characterization of the skin's catalytic network present in sweat. For the first time, we brought to light novel peptides in human sweat that potentially have antimicrobial activity, which highlight the important role of this fluid in innate immunity. All these findings allow us to have a better understanding of the complex web of

  15. Sex differences in amino acids lost via sweating could lead to differential susceptibilities to disturbances in nitrogen balance and collagen turnover.

    PubMed

    Dunstan, R H; Sparkes, D L; Dascombe, B J; Stevens, C J; Murphy, G R; Macdonald, M M; Gottfries, J; Gottfries, C-G; Roberts, T K

    2017-08-01

    Fluid collected during sweating is enriched with amino acids derived from the skin's natural moisturising factors and has been termed "faux" sweat. Little is known about sex differences in sweat amino acid composition or whether faux sweat amino acid losses affect nitrogen balance. Faux sweat collected by healthy adults (n = 47) after exercise, and at rest by chronic fatigue patients, was analysed for amino acid composition. Healthy females had higher total amino acid concentrations in sweat (10.5 ± 1.2 mM) compared with healthy males (6.9 ± 0.9 mM). Females had higher levels of 13 amino acids in sweat including serine, alanine and glycine. Higher hydroxyproline and proline levels suggested greater collagen turnover in females. Modelling indicated that with conservative levels of exercise, amino acid losses in females via faux sweat were triple than those predicted for urine, whereas in males they were double. It was concluded that females were more susceptible to key amino acid loss during exercise and/or hot conditions. Females reporting chronic fatigue had higher levels of methionine in faux sweat than healthy females. Males reporting chronic fatigue had higher levels of numerous amino acids in faux sweat compared to healthy males. Higher amino acid loss in faux sweat associated with chronic fatigue could contribute to a hypometabolic state. Depending on activity levels, climatic conditions and gender, amino acid losses in sweat and skin leachate could influence daily protein turnover where periods of continuously high turnover could lead to a negative net nitrogen balance.

  16. Antisense oligodeoxynucleotide to the cystic fibrosis gene inhibits anion transport in normal cultured sweat duct cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorscher, E.J.; Kirk, K.L.; Weaver, M.L.

    The authors have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropryl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment for 24 hr virtually abolished Cl{sup {minus}} transport inmore » sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br{sup {minus}} uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatments, but not after treatments for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl{sup {minus}} transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl{sup {minus}} permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl{sup {minus}} permeability.« less

  17. Effects of ammonium sulfate and sodium chloride concentration on PEG/protein liquid-liquid phase separation.

    PubMed

    Dumetz, André C; Lewus, Rachael A; Lenhoff, Abraham M; Kaler, Eric W

    2008-09-16

    When added to protein solutions, poly(ethylene glycol) (PEG) creates an effective attraction between protein molecules due to depletion forces. This effect has been widely used to crystallize proteins, and PEG is among the most successful crystallization agents in current use. However, PEG is almost always used in combination with a salt at either low or relatively high concentrations. Here the effects of sodium chloride and ammonium sulfate concentration on PEG 8000/ovalbumin liquid-liquid (L-L) phase separation are investigated. At low salt the L-L phase separation occurs at decreasing protein concentration with increasing salt concentration, presumably due to repulsive electrostatic interactions between proteins. At high salt concentration, the behavior depends on the nature of the salt. Sodium chloride has little effect on the L-L phase separation, but ammonium sulfate decreases the protein concentration at which the L-L phase separation occurs. This trend is attributed to the effects of critical fluctuations on depletion forces. The implications of these results for designing solution conditions optimal for protein crystallization are discussed.

  18. The diagnosis of cystic fibrosis.

    PubMed

    De Boeck, Kris; Vermeulen, Francois; Dupont, Lieven

    2017-06-01

    Establishing the diagnosis of cystic fibrosis (CF) is straight forward in the majority of patients: they present with a clear clinical picture (most frequently chronic respiratory symptoms plus malabsorption), the sweat chloride value is>60mmol/L and two known disease causing CFTR mutations are identified. In less than 5% of subjects, mainly those with a milder or limited phenotype, the diagnostic process is more complex, because initial diagnostic test results are inconclusive: sweat chloride concentration in the intermediate range, less than 2 CF causing mutations identified or both. These patients should be referred to expert centers where bioassays of CFTR function like nasal potential difference measurement or intestinal current measurement can be done. Still, in some patients, despite symptoms compatible with CF and some indication of CFTR dysfunction (e.g. only intermediate sweat chloride value), diagnostic criteria are not met (e.g. only 1 CFTR mutation identified). For these subjects, the term CFTR related disorder (CFTR-RD) is used. Patients with disseminated bronchiectasis, congenital bilateral absence of the vas deferens and acute or recurrent pancreatitis may fall in this category. CF has a very wide disease spectrum and increasingly the diagnosis is being made during adult life, mainly in subjects with milder phenotypes. In many countries, nationwide CF newborn screening (NBS) has been introduced. In screen positive babies, the diagnosis of CF must be confirmed by a sweat test demonstrating a sweat chloride concentration above 60mmol/L. To achieve the benefit of NBS, every baby in whom the diagnosis of CF is confirmed must receive immediate follow-up and treatment in a CF reference center. CF NBS is not full proof: some diagnoses will be missed and in some babies the diagnosis cannot be confirmed nor ruled out with certainty. Screening algorithms that include gene sequencing will detect a high number of such babies that are screen positive with an

  19. Methylxanthine Drug Monitoring with Wearable Sweat Sensors.

    PubMed

    Tai, Li-Chia; Gao, Wei; Chao, Minghan; Bariya, Mallika; Ngo, Quynh P; Shahpar, Ziba; Nyein, Hnin Y Y; Park, Hyejin; Sun, Junfeng; Jung, Younsu; Wu, Eric; Fahad, Hossain M; Lien, Der-Hsien; Ota, Hiroki; Cho, Gyoujin; Javey, Ali

    2018-06-01

    Drug monitoring plays crucial roles in doping control and precision medicine. It helps physicians tailor drug dosage for optimal benefits, track patients' compliance to prescriptions, and understand the complex pharmacokinetics of drugs. Conventional drug tests rely on invasive blood draws. While urine and sweat are attractive alternative biofluids, the state-of-the-art methods require separate sample collection and processing steps and fail to provide real-time information. Here, a wearable platform equipped with an electrochemical differential pulse voltammetry sensing module for drug monitoring is presented. A methylxanthine drug, caffeine, is selected to demonstrate the platform's functionalities. Sweat caffeine levels are monitored under various conditions, such as drug doses and measurement time after drug intake. Elevated sweat caffeine levels upon increasing dosage and confirmable caffeine physiological trends are observed. This work leverages a wearable sweat sensing platform toward noninvasive and continuous point-of-care drug monitoring and management. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interpretation of postmortem vitreous concentrations of sodium and chloride.

    PubMed

    Zilg, B; Alkass, K; Berg, S; Druid, H

    2016-06-01

    Vitreous fluid can be used to analyze sodium and chloride levels in deceased persons, but it remains unclear to what extent such results can be used to diagnose antemortem sodium or chloride imbalances. In this study we present vitreous sodium and chloride levels from more than 3000 cases. We show that vitreous sodium and chloride levels both decrease with approximately 2.2mmol/L per day after death. Since potassium is a well-established marker for postmortem interval (PMI) and easily can be analyzed along with sodium and chloride, we have correlated sodium and chloride levels with the potassium levels and present postmortem reference ranges relative the potassium levels. We found that virtually all cases outside the reference range show signs of antemortem hypo- or hypernatremia. Vitreous sodium or chloride levels can be the only means to diagnose cases of water or salt intoxication, beer potomania or dehydration. We further show that postmortem vitreous sodium and chloride strongly correlate and in practice can be used interchangeably if analysis of one of the ions fails. It has been suggested that vitreous sodium and chloride levels can be used to diagnose drowning or to distinguish saltwater from freshwater drowning. Our results show that in cases of freshwater drowning, vitreous sodium levels are decreased, but that this mainly is an effect of postmortem diffusion between the eye and surrounding water rather than due to the drowning process, since the decrease in sodium levels correlates with immersion time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Gender differences in the sweat response during spinning exercise.

    PubMed

    Hazelhurst, Lynton T; Claassen, Nicolaas

    2006-08-01

    The purpose of this field study was to examine gender differences in the sweat response reported in the literature in trained men and women during indoor cycling. In the present study, 14 men and 12 women took part in a 90-minute spinning class in preparation for a 108-km road race. Delta body mass, corrected for the volume of water consumed, was used to estimate sweat loss during the exercise period. Men had a significantly higher sweat rate (1.12 L.h(-1)) compared to women (0.57 L.h(-1)), despite the fact that there were no significant gender differences in ad libitum fluid intake. Future research should focus on determining whether women may be more efficient in sweat production and evaporation and whether men may have a greater reserve capacity for increased sweating.

  2. Investigating the Effects of Sweat Therapy on Group Dynamics and Affect

    ERIC Educational Resources Information Center

    Colmant, Stephen A.; Eason, Evan A.; Winterowd, Carrie L.; Jacobs, Sue C.; Cashel, Chris

    2005-01-01

    In this study, we examined the effects of sweat therapy on group dynamics and affect. Sweat therapy is the combination of intense heat exposure with psychotherapy or counseling (Colmant & Merta, 1999; 2000). Twenty-four undergraduates were separated by sex and randomly assigned to eight sessions of either a sweat or non-sweat group counseling…

  3. Observation of the sweating in lipstick by scanning electron microscopy.

    PubMed

    Seo, S Y; Lee, I S; Shin, H Y; Choi, K Y; Kang, S H; Ahn, H J

    1999-06-01

    The relationship between the wax matrix in lipstick and sweating has been investigated by observing the change of size and shape of the wax matrix due to sweating by Scanning Electron Microscopy (SEM). For observation by SEM, a lipstick sample was frozen in liquid nitrogen. The oil in the lipstick was then extracted in cold isopropanol (-70 degrees C) for 1-3 days. After the isopropanol was evaporated, the sample was sputtered with gold and examined by SEM. The change of wax matrix underneath the surface from fine, uniform structure to coarse, nonuniform structure resulted from the caking of surrounding wax matrix. The oil underneath the surface migrated to the surface of lipstick with sweating; consequently the wax matrix in that region was rearranged into the coarse matrix. In case of flamed lipstick, sweating was delayed and the wax matrix was much coarser than that of the unflamed one. The larger wax matrix at the surface region was good for including oil. The effect of molding temperature on sweating was also studied. As the molding temperature rose, sweating was greatly reduced and the size of the wax matrix increased. It was found that sweating was influenced by the compatibility of wax and oil. A formula consisting of wax and oil that have good compatibility has a tendency to reduce sweating and increase the size of the wax matrix. When pigments were added to wax and oil, the size of the wax matrix was changed, but in all cases sweating was increased due to the weakening of the binding force between wax and oil. On observing the thick membrane of wax at the surface of lipstick a month after molding it was also found that sweating was influenced by ageing. In conclusion, the structure of the wax matrix at the surface region of lipstick was changed with the process of flaming, molding temperature, compatibility of wax and oil, addition of pigment, and ageing. In most cases, as the size of the wax matrix was increased, sweating was reduced and delayed.

  4. Sweating responses during heat acclimation and moderate conditioning

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Van Beaumont, W.

    1979-01-01

    Experiments were conducted on ten young male subjects to determine sweating onset, distribution, and patterns as well as the relationships of these responses to body temperature during heat acclimation and moderate conditioning performed in temperate (24 C) conditions. The subjects are randomly assigned to two groups of five subjects each. The experimental period consisted of eight successive days of either graded exercise to exhaustion on a bicycle ergometer in heat (acclimation group) or in a temperate environment (control group). Major conclusions are that (1) acclimation and conditioning result in relatively more sweat rate on the limbs than on the torso, but that these changes are less related to body temperature than torso sweat rate; and (2) sweating sensitivity increases during acclimation and conditioning, but its contribution to heat acclimation is minor.

  5. Brain stem representation of thermal and psychogenic sweating in humans.

    PubMed

    Farrell, Michael J; Trevaks, David; Taylor, Nigel A S; McAllen, Robin M

    2013-05-15

    Functional MRI was used to identify regions in the human brain stem activated during thermal and psychogenic sweating. Two groups of healthy participants aged 34.4 ± 10.2 and 35.3 ± 11.8 years (both groups comprising 1 woman and 10 men) were either heated by a water-perfused tube suit or subjected to a Stroop test, while they lay supine with their head in a 3-T MRI scanner. Sweating events were recorded as electrodermal responses (increases in AC conductance) from the palmar surfaces of fingers. Each experimental session consisted of two 7.9-min runs, during which a mean of 7.3 ± 2.1 and 10.2 ± 2.5 irregular sweating events occurred during psychogenic (Stroop test) and thermal sweating, respectively. The electrodermal waveform was used as the regressor in each subject and run to identify brain stem clusters with significantly correlated blood oxygen level-dependent signals in the group mean data. Clusters of significant activation were found with both psychogenic and thermal sweating, but a voxelwise comparison revealed no brain stem cluster whose signal differed significantly between the two conditions. Bilaterally symmetric regions that were activated by both psychogenic and thermal sweating were identified in the rostral lateral midbrain and in the rostral lateral medulla. The latter site, between the facial nuclei and pyramidal tracts, corresponds to a neuron group found to drive sweating in animals. These studies have identified the brain stem regions that are activated with sweating in humans and indicate that common descending pathways may mediate both thermal and psychogenic sweating.

  6. Tramadol reduces the sweating, vasoconstriction, and shivering thresholds.

    PubMed

    De Witte, J L; Kim, J S; Sessler, D I; Bastanmehr, H; Bjorksten, A R

    1998-07-01

    The analgesic tramadol inhibits the neuronal reuptake of norepinephrine and 5-hydroxytryptamine, facilitates 5-hydroxytryptamine release, and activates mu-opioid receptors. Each of these actions is likely to influence thermoregulatory control. We therefore tested the hypothesis that tramadol inhibits thermoregulatory control. Eight volunteers were evaluated on four study days, on which they received no drugs, tramadol 125 mg, tramadol 250 mg, and tramadol 250 mg with naloxone, respectively. Skin and core temperatures were gradually increased until sweating was observed and then decreased until vasoconstriction and shivering were detected. The core temperature triggering each response defined its threshold. Tramadol decreased the sweating threshold by -1.03 +/- 0.67 degrees C microgram-1.mL (r2 = 0.90 +/- 0.12). Tramadol also decreased the vasoconstriction threshold by -3.0 +/- 4.0 degrees C microgram-1.mL (r2 = 0.94 +/- 0.98) and the shivering threshold by -4.2 +/- 4.0 degrees C microgram-1.mL(r2 = 0.98 +/- 0.98). The sweating to vasoconstriction interthreshold range nearly doubled from 0.3 +/- 0.4 degree C to 0.7 +/- 0.6 degree C during the administration of large-dose tramadol (P = 0.04). The addition of naloxone only partially reversed the thermoregulatory effects of tramadol. The thermoregulatory effects of tramadol thus most resemble those of midazolam, another drug that slightly decreases the thresholds triggering all three major autonomic thermoregulatory defenses. In this respect, both drugs reduce the "setpoint" rather than produce a generalized impairment of thermoregulatory control. Nonetheless, tramadol nearly doubled the interthreshold range at a concentration near 200 ng/mL. This indicates that tramadol slightly decreases the precision of thermoregulatory control in addition to reducing the setpoint. The authors evaluated the effects of the analgesic tramadol on the three major thermoregulatory responses: sweating, vasoconstriction, and shivering

  7. Reduced expression of dermcidin, a peptide active against propionibacterium acnes, in sweat of patients with acne vulgaris.

    PubMed

    Nakano, Toshiaki; Yoshino, Takashi; Fujimura, Takao; Arai, Satoru; Mukuno, Akira; Sato, Naoya; Katsuoka, Kensei

    2015-09-01

    Dermcidin (DCD), an antimicrobial peptide with a broad spectrum of activity against bacteria such as Propionibacterum acnes, is expressed constitutively in sweat in the absence of stimulation due to injury or inflammation. The aim of this study was to determine the relationship between DCD expression and acne vulgaris associated with P. acnes. The antimicrobial activity of recombinant full-length DCD (50 μg/ml) was 97% against Escherichia coli and 100% against Staphylococcus aureus. Antimicrobial activity against P. acnes ranged from 68% at 50 μg/ml DCD to 83% at 270 μg/ml DCD. DCD concentration in sweat from patients with acne vulgaris (median 9.8 μg/ml, range 6.9-95.3 μg/ml) was significantly lower than in healthy subjects (median 136.7 μg/ml, range 45.4-201.6 μg/ml) (p = 0.001). DCD demonstrated concentration-dependent, but partial, microbicidal activity against P. acnes. These results suggest that reduced DCD concentration in sweat in patients with inflammatory acne may permit proliferation of P. acnes in pilosebaceous units, resulting in progression of inflammatory acne.

  8. Cyclooxygenase inhibition does not alter methacholine-induced sweating

    PubMed Central

    Fujii, Naoto; McGinn, Ryan; Paull, Gabrielle; Stapleton, Jill M.; Meade, Robert D.

    2014-01-01

    Cholinergic agents (e.g., methacholine) induce cutaneous vasodilation and sweating. Reports indicate that either nitric oxide (NO), cyclooxygenase (COX), or both can contribute to cholinergic cutaneous vasodilation. Also, NO is reportedly involved in cholinergic sweating; however, whether COX contributes to cholinergic sweating is unclear. Forearm sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) were evaluated in 10 healthy young (24 ± 4 yr) adults (7 men, 3 women) at four skin sites that were continuously perfused via intradermal microdialysis with 1) lactated Ringer (control), 2) 10 mM ketorolac (a nonselective COX inhibitor), 3) 10 mM NG-nitro-l-arginine methyl ester (l-NAME, a nonselective NO synthase inhibitor), or 4) a combination of 10 mM ketorolac + 10 mM l-NAME. At the four skin sites, methacholine was simultaneously infused in a dose-dependent manner (1, 10, 100, 1,000, 2,000 mM). Relative to the control site, forearm CVC was not influenced by ketorolac throughout the protocol (all P > 0.05), whereas l-NAME and ketorolac + l-NAME reduced forearm CVC at and above 10 mM methacholine (all P < 0.05). Conversely, there was no main effect of treatment site (P = 0.488) and no interaction of methacholine dose and treatment site (P = 0.711) on forearm sweating. Thus forearm sweating (in mg·min−1·cm−2) from baseline up to the maximal dose of methacholine was not different between the four sites (at 2,000 mM, control 0.50 ± 0.23, ketorolac 0.44 ± 0.23, l-NAME 0.51 ± 0.22, and ketorolac + l-NAME 0.51 ± 0.23). We show that both NO synthase and COX inhibition do not influence cholinergic sweating induced by 1–2,000 mM methacholine. PMID:25213633

  9. Quantifying loading, toxic concentrations, and systemic persistence of chloride in a contemporary mixed-land-use watershed using an experimental watershed approach.

    PubMed

    Hubbart, J A; Kellner, E; Hooper, L W; Zeiger, S

    2017-03-01

    A nested-scale experimental watershed study was implemented to quantify loading and persistence of chloride in an urbanizing, mixed-land-use watershed. A Midwest USA (Missouri) watershed was partitioned into five sub-basins with contrasting dominant land use. Streamwater was tested for chloride concentration four days per week from October 2009 through May 2014 at each site. Monitoring sites included co-located gauging and climate stations recording variables at 30-minute intervals. Results indicate significant (p<0.01) differences in chloride concentrations and loading between sites. Loading consistently increased from the forested headwaters (average=507kgday -1 ) to primarily urban watershed terminus (average=7501kgday -1 ). Chloride concentrations were highest (average=83.9mgL -1 ) with the greatest frequency of acutely toxic conditions (i.e. 860mgL -1 ) mid-watershed. This finding is in-part attributable to the ratio of chloride application to streamflow volume (i.e. increasing flow volume with stream distance resulted in chloride dilution, offsetting increased percent urban land use with stream distance). Results highlight the important, yet often confounding, interactions between pollutant loading and flow dynamics. Chloride peaks occurred during late winter/early spring melting periods, implicating road salt application as the primary contributor to the chloride regime. Floodplain groundwater analysis indicated seasonal sink/source relationships between the stream and floodplain, which could contribute to chronic toxicity and persistent low Cl - concentrations in streamwater year-round. Results hold important implications for resource managers wishing to mitigate water quality and aquatic habitat degradation, and suggest important water quality limitations to stream restoration success in complex urban aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Atmospheric Methyl Chloride

    DOE Data Explorer

    Khalil, M. A. K. [Portland State Univ., Portland, OR (United States); Rasmussen, R. A. [Oregon Graduate Institute, Portland, OR (USA)

    1999-01-01

    This data set provides monthly average concentrations of atmospheric methyl chloride taken from seven locations distributed among the polar, middle, and tropical latitudes of both hemispheres. The seven primary sites include Pt. Barrow, Alaska; Cape Kumukahi and Mauna Loa, Hawaii; Cape Matatula, Samoa; Cape Grim, Tasmania; and the South Pole and Palmer Station, Antarctica. Concentration measurements from these seven sites cover a period of 16 years, extending from 1981-1997. Monthly data taken between 1987-1989 from 20 short-term sites and vertical distribution measured at various latitudes are also provided. Air samples were collected from various sites in stainless steel flasks and methyl chloride concentrations were measured using an Electron Capture Gas Chromatograph. Concentrations are reported as mixing ratios in dry air. The concentrations are determined by using a set of calibration standards that are referenced against a primary standard which is also used to establish the absolute concentration. The primary standards were prepared by the investigators in the absence of an available standard from a centralized location. The data are useful in global methyl chloride budget analyses and for determining the atmospheric distribution and trends of methyl chloride and estimating the total emissions at various latitudes.

  11. Temporal changes in sulfate, chloride, and sodium concentrations in four eastern Pennsylvania streams

    USGS Publications Warehouse

    Barker, J.L.

    1986-01-01

    Trend analyses of 20 years or more of chemical quality and streamflow data for four streams in eastern Pennsylvania indicate that sulfate has decreased significantly in three of the four basins studied, while sodium and chloride have generally increased. The majority of chemical quality changes occurred in the late 1950 's and early 1960 's coincident with significant cultural changes. It is believed that these chemical quality changes are presently of little or no environmental consequence, as the concentrations are well within the range of those found in natural waters. Decreases in sulfate follow a regional trend concurrent with the conversion of home and industrial heating units from high to low sulfur coal, gas, and oil. The most significant decreases were observed in those basins severely affected by mine-drainage where pumpage has decreased significantly in the past 25 years, thereby further reducing the sulfur content of the streams. The observed increases in chloride and sodium are attributed to population increases and shifts from rural to suburban communities with concurrent increase in the percentage of the population using municipal waste treatment facilities and the increased use of salt on roadways. The concentrations of dissolved chloride, which are from two to three times higher in recent years, reach a peak in January, coincident with the application of salt to melt ice on the roadways. (USGS)

  12. Special topical approach to the treatment of acne. Suppression of sweating with aluminum chloride in an anhydrous formulation.

    PubMed

    Hurley, H J; Shelley, W B

    1978-12-01

    A new topical approach to acne treatment--the use of aluminum chloride hexahydrate in anhydrous ethanol (ACAE)--was studied in 141 patients. Using sequential treatment schedules, paired comparison techniques, and various concentrations of ACAE, we established maximal efficacy with minimal local irritation for the 6.25% strength solution. Clinical efficacy and lack of toxicity of this formulation were confirmed by the additional clinical study of 65 patients. The antiperspirant and antibacterial actions of 6.25% ACAE solution were then verified on acne skin areas. It is postulated that the clinical improvement in acne that follows the topical use of ACAE results from one or both of these actions.

  13. Skin-interfaced systems for sweat collection and analytics

    PubMed Central

    Choi, Jungil; Ghaffari, Roozbeh; Baker, Lindsay B.; Rogers, John A.

    2018-01-01

    Recent interdisciplinary advances in materials, mechanics, and microsystem designs for biocompatible electronics, soft microfluidics, and electrochemical biosensors establish the foundations for emerging classes of thin, skin-interfaced platforms capable of capturing, storing, and performing quantitative, spatiotemporal measurements of sweat chemistry, instantaneous local sweat rate, and total sweat loss. This review summarizes scientific and technical progress in this area and highlights the implications in real time and ambulatory modes of deployment during physical activities across a broad range of contexts in clinical health, physiology research, fitness/wellness, and athletic performance. PMID:29487915

  14. Transient Sweat Rate Calculation from Humidity Measurements Under Clothing

    DTIC Science & Technology

    2006-07-01

    Evaporation of sweat from the skin lowers core and skin temperatures, thus better enabling proper body temperatures in the heat. However, workers ...when individual workers require water to compensate for heat stress. This study made use of a sweating manikin and data from human studies to...Transient Sweat Rate Calculation from Humidity Measurements under Clothing M. Yokota, L.G. Berglund*, J.A. Gonzalez, L.A. Blanchard U.S. Army

  15. Sweat Gland Progenitors in Development, Homeostasis, and Wound Repair

    PubMed Central

    Lu, Catherine; Fuchs, Elaine

    2014-01-01

    The human body is covered with several million sweat glands. These tiny coiled tubular skin appendages produce the sweat that is our primary source of cooling and hydration of the skin. Numerous studies have been published on their morphology and physiology. Until recently, however, little was known about how glandular skin maintains homeostasis and repairs itself after tissue injury. Here, we provide a brief overview of sweat gland biology, including newly identified reservoirs of stem cells in glandular skin and their activation in response to different types of injuries. Finally, we discuss how the genetics and biology of glandular skin has advanced our knowledge of human disorders associated with altered sweat gland activity. PMID:24492848

  16. Sweating Like a Pig: Physics or Irony?

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2016-01-01

    In his interesting and informative book "Is That a Fact?," Joe Schwarcz avers that pigs do not sweat and the saying "sweating like a pig" originates in iron smelting. Oblong pieces of hot iron, with a fancied resemblance to a sow with piglets, cool in sand to the dew point of the surrounding air, and hence water condenses on…

  17. Sweat testing for the detection of atomoxetine from paediatric patients with attention deficit/ hyperactivity disorder: application to clinical practice.

    PubMed

    Marchei, Emilia; Papaseit, Esther; Garcia-Algar, Oscar; Bilbao, Amaia; Farré, Magí; Pacifici, Roberta; Pichini, Simona

    2013-03-01

    Atomoxetine (ATX) is a selective norepinephrine reuptake inhibitor approved since 2002 for the treatment of attention deficit hyperactivity disorder (ADHD) in children, adolescents, and adults as an alternative treatment to methylphenidate. Within the framework of a project evaluating the use of alternative biological matrices for therapeutic monitoring of psychoactive drugs in paediatric and non-paediatric individuals, the excretion of ATX and its principal metabolites has been recently studied in oral fluid and hair. The aim of this study was to describe the excretion profile of ATX and its metabolites 4-hydroxyatomoxetine (4-OH-ATX) and N-desmethylatomoxetine (N-des-ATX) in sweat following the administration of different dosage regimens (60, 40, 35, and 18 mg/day) of ATX to six paediatric patients. Sweat patches were applied to the back of each participant and removed at timed intervals. ATX and its metabolites were measured in patches using a previously validated liquid chromatography-tandem mass spectrometric (LC-MS/MS) method. Independently from the administered dose, ATX appeared in the sweat patches 1 h post administration and reached its maximum concentration generally at 24 h. Peak ATX concentrations ranged between 2.31 and 40.4 ng/patch and did not correlate with the administered drug dose, or with body surface area. Total ATX excreted in sweat ranged between 0.008 and 0.121 mg, corresponding to 0.02 and 0.3% of the administered drug. Neither 4-OH-ATX, nor N-des-ATX was detected in either of the collected sweat patches. Measuring ATX in sweat patches can provide information on cumulative drug use from patch application until removal. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Growth of Aeromonas species on increasing concentrations of sodium chloride.

    PubMed

    Delamare, A P; Costa, S O; Da Silveira, M M; Echeverrigaray, S

    2000-01-01

    The growth of 16 strains of Aeromonas, representing 12 species of the genera, were examined at different salt levels (0-1.71 M NaCl). All the strains grew on media with 0.34 M NaCl, and nine on media with 0.68 M. Two strains, Aer. enteropelogenes and Aer. trota, were able to grow on media with 0.85 M and 1.02 M NaCl, respectively. Comparison of the growth curves of Aer. hydrophila ATCC7966 and Aer. trota ATCC 49657 on four concentrations of NaCl (0.08, 0.34, 0.68 and 1.02 M) confirm the high tolerance of Aer. trota, and indicate that high concentrations of salt increase the lag time and decrease the maximum growth rate. However, both strains were able to grow, slowly, in at least 0.68 M NaCl, a sodium chloride concentration currently used as food preservative.

  19. Higher serum chloride concentrations are associated with acute kidney injury in unselected critically ill patients.

    PubMed

    Zhang, Zhongheng; Xu, Xiao; Fan, Haozhe; Li, Danyu; Deng, Hongsheng

    2013-10-28

    Chloride administration has been found to be harmful to the kidney in critically ill patients. However the association between plasma chloride concentration and renal function has never been investigated. This was a retrospective study conducted in a tertiary 24-bed intensive care unit from September 2010 to November 2012. Data on serum chloride for each patient during their ICU stay were abstracted from electronic database. Cl0 referred to the initial chloride on ICU entry, Cl(max), Cl(min) and Cl(mean) referred to the maximum, minimum and mean chloride values before the onset of AKI, respectively. AKI was defined according to the conventional AKIN criteria. Univariate and multivariable analysis were performed to examine the association of chloride and AKI development. A total of 1221 patients were included into analysis during study period. Three hundred and fifty-seven patients (29.2%) developed AKI. Cl(max) was significantly higher in AKI than in non-AKI group (111.8 ± 8.1 vs 107.9 ± 5.4 mmol/l; p < 0.001); Cl0 was not significantly different between AKI and non-AKI patients; Cl(mean) was significantly higher in AKI than non-AKI (104.3 ± 5.8 vs 103.4 ± 4.5;  = 0.0047) patients. Cl(max) remained to be associated with AKI in multivariable analysis (OR: 1.10, 95% CI: 1.08-1.13). Chloride overload as represented by Cl(mean) and Cl(max) is significantly associated with the development of AKI.

  20. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r).

    PubMed

    Lu, Yehu; Wang, Faming; Peng, Hui; Shi, Wen; Song, Guowen

    2016-04-01

    The ASTM F2370 (2010) is the only standard with regard to measurement of clothing real evaporative resistance by means of a sweating manikin. However, the sweating set-point is not recommended in the standard. In this study, the effect of sweating rate on clothing real evaporative resistance was investigated on a 34-zone "Newton" sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). Four different sweating set rates (i.e., all segments had a sweating rate of 400, 800, 1200 ml/hr ∙ m(2), respectively, and different sweating rates were assigned to different segments) were applied to determine the clothing real evaporative resistance of five clothing ensembles and the boundary air layer. The results indicated that the sweating rate did not affect the real evaporative resistance of clothing ensembles with the absence of strong moisture absorbent layers. For the clothing ensemble with tight cotton underwear, a sweating rate of lower than 400 ml/hr ∙ m(2) is not recommended. This is mainly because the wet fabric "skin" might not be fully saturated and thus led to a lower evaporative heat loss and thereby a higher real evaporative resistance. For vapor permeable clothing, the real evaporative resistance determined in the so-called isothermal condition should be corrected before being used in thermal comfort or heat strain models. However, the reduction of wet thermal insulation due to moisture absorption in different test scenarios had a limited contribution to the effect of sweating rate on the real evaporative resistance.

  1. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    PubMed

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  2. Sweat lipid mediator profiling: a non-invasive approach for cutaneous research

    USDA-ARS?s Scientific Manuscript database

    Sweat is a complex biological fluid with potential diagnostic value for the investigation of skin disorders. Previous efforts in sweat testing focused on analysis of small molecules and ions for forensic and diagnostic testing, but with advances in analytical and sweat collection techniques, there h...

  3. Qualification of a precise and easy-to-handle sweat casting imprint method for the prediction and quantification of anti-perspirant efficacy.

    PubMed

    Keyhani, R; Scheede, S; Thielecke, I; Wenck, H; Schmucker, R; Schreiner, V; Ennen, J; Herpens, A

    2009-06-01

    A time- and cost-effective sweat casting method using the forearm as test site to assess the efficacy of several anti-perspirant formulations with a low number of test subjects has been evaluated and qualified. The imprint sweat casting method is based on a 2-component silcone-imprint technique to measure the efficacy of more than eight products in parallel with the same test subject. In studies using aluminum chlorohydrate (ACH) formulations as test anti-perspirants, a clear-cut correlation could be demonstrated between sweat gland activities measured by the imprint method and gravimetric measurement of sweat gland activities. Concentration-dependent inhibition of sweat gland activity could be observed with the imprint technique up to an ACH concentration of 15%, and all formulations containing 2% ACH or above resulted in statistically significant reduction of sweat gland activity (P < 0.001) when compared with untreated control areas. Furthermore, the SDs of individual studies using the imprint technique were in a range of +/-20% of sweat gland activity, which can be regarded rather low for in vivo measurements of a complex process like sweat secretion. A group-wise comparison between the measurements of anti-perspirant activity as determined by the imprint protocol and the Food and Drug Administration (FDA) Guideline compliant gravimetric hot-room protocol revealed that the test results for anti-perspirant activity obtained with the imprint protocol are similar to those obtained with the hot-room protocol. Moreover, the data generated with the imprint protocol have a high predictive value for the outcome of a later guideline-compliant hot-room test. As the imprint casting method tends to be a little more sensitive for formulations with low anti-perspirant activity, and seems to be associated with less interassay variability than the standard gravimetric hot-room test, the imprint casting method may select products which later fail to pass the standard

  4. Effect of skin wettedness on sweat gland response

    NASA Technical Reports Server (NTRS)

    Nadel, E. R.; Stolwijk, J. A. J.

    1973-01-01

    Investigation of the effect of skin wettedness upon sweating rate. Several techniques were used to gain a better understanding of the quantitative nature of this effect. The results include the finding that the evaporative power of the environment has a profound effect on the relationship between body temperature and sweating rate.

  5. Mycostatic effect of recombinant dermcidin against Trichophyton rubrum and reduced dermcidin expression in the sweat of tinea pedis patients.

    PubMed

    Arai, Satoru; Yoshino, Takashi; Fujimura, Takao; Maruyama, Sachie; Nakano, Toshiaki; Mukuno, Akira; Sato, Naoya; Katsuoka, Kensei

    2015-01-01

    Trichophytosis, a common dermatophytosis, affects nearly 20-25% of the world's population. However, little is known about mechanisms for preventing colonization of Trichophyton on the skin. Dermcidin, an antimicrobial peptide that provides innate immunity to the skin and is constitutively secreted even in the absence of inflammatory stimulation, was studied to elucidate its antimycotic activity against Trichophyton. Recombinant dermcidin was determined to have antimycotic activity against Trichophyton rubrum, as evaluated by colony-forming unit (CFU) assays. The killing rate of dermcidin was 40.5% and 93.4% at 50 μg/mL (the average dermcidin concentration in healthy subjects) and 270 μg/mL, respectively. An effect of dermcidin treatment was found to be a reduction of the metabolic activity of Trichophyton as determined by nicotinamide adenine dinucleotide assay. Further, dermcidin concentrations in sweat of tinea pedis patients were found to be lower than those of healthy subjects. These findings suggest a mycostatic role for dermcidin, at normal sweat concentrations. Accordingly, we suspect that dermcidin, at normal sweat concentrations, inhibits growth of Trichophyton, where Trichophyton is subsequently eliminated in conjunction with epidermis turnover. Dermcidin, therefore, appears to play a role in the skin protection mechanism that prevents colonization of tinea pedis. © 2014 Japanese Dermatological Association.

  6. Monitoring Pregnant Women’s Illicit Opiate and Cocaine Use With Sweat Testing

    PubMed Central

    Brunet, Bertrand R.; Barnes, Allan J.; Choo, Robin E.; Mura, Patrick; Jones, Hendrée E.; Huestis, Marilyn A.

    2011-01-01

    Dependence on illicit drugs during pregnancy is a major public health concern as there may be associated adverse maternal, fetal, and neonatal consequences. Sweat patches (n = 389) were collected from 39 pregnant volunteers who provided written informed consent for this Institutional Review Board-approved protocol and wore patches, replaced approximately weekly, from study entry until delivery. Patches were analyzed for opiates (heroin, 6-acetylmor-phine, 6-acetylcodeine, morphine and codeine) and cocaine (cocaine, benzoylecgonine, ecgonine methyl ester, anhydroecgonine methyl ester) by solid phase extraction and gas chromatography mass spectrometry. Seventy-one percent (276) of collected sweat patches were ≥5 ng per patch (limit of quantification) for one or more analytes. Cocaine was present in 254 (65.3%) patches in concentrations ranging from 5.2 to 11,835 ng per patch with 154 of these high enough to satisfy the proposed Substance Abuse and Mental Health Services Administration guidelines for a confirmatory drug test (25 ng per patch). Interestingly, 6-acetylmorphine was the most prominent opiate analyte documented in 134 patches (34.4%) with 11.3% exceeding the proposed opiate Substance Abuse and Mental Health Services Administration cut-off (25 ng per patch). Heroin was identified in fewer patches (77), but in a similar concentration range (5.3–345.4 ng per patch). Polydrug use was evident by the presence of both cocaine and opiate metabolites in 136 (35.0%) patches. Sweat testing is an effective method for monitoring abstinence or illicit drug use relapse in this high-risk population of pregnant opiate- and/or cocaine-dependent women. PMID:19927046

  7. Study of sample preparation for quantitative analysis of amino acids in human sweat by liquid chromatography-tandem mass spectrometry.

    PubMed

    Delgado-Povedano, M M; Calderón-Santiago, M; Priego-Capote, F; Luque de Castro, M D

    2016-01-01

    The determination of physiological levels of amino acids is important to aid in the diagnosis and treatment of several diseases and nutritional status of individuals. Amino acids are frequently determined in biofluids such as blood (serum or plasma) and urine; however, there are less common biofluids with different concentration profiles of amino acids that could be of interest. One of these biofluids is sweat that can be obtained in a non-invasive manner and is characterized by low complex composition. The analysis of amino acids in human sweat requires the development of sample preparation strategies according to the sample matrix and small collected volume. The influence of sample preparation on the quantitative analysis of amino acids in sweat by LC-MS/MS has been assessed through a comparison between two strategies: dilution of sweat and centrifugal microsolid-phase extraction (c-μSPE). In both cases, several dilution factors were assayed for in-depth knowledge of the matrix effects, and the use of c-μSPE provided the best results in terms of accuracy. The behavior of the target analytes was a function of the dilution factor, thus providing a pattern for sample preparation that depended on the amino acid to be determined. The concentration of amino acids in sweat ranges between 6.20 ng mL(-1) (for homocysteine) and 259.77 µg mL(-1) (for serine) with precision, expressed as relative standard deviation, within 1.1-21.4%. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Hot Flashes and Night Sweats (PDQ®)—Patient Version

    Cancer.gov

    Hot flashes and night sweats can be a side effect of cancer or its treatment and can occur in both women and men. Learn more about hot flashes and night sweats and ways to treat them in this expert-reviewed summary.

  9. Evidence for metaboreceptor stimulation of sweating in normothermic and heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Shibasaki, M.; Kondo, N.; Crandall, C. G.

    2001-01-01

    1. Isometric handgrip (IHG) exercise increases sweat rate and arterial blood pressure, and both remain elevated during post-exercise ischaemia. The purpose of this study was to identify whether the elevation in arterial blood pressure during post-exercise ischaemia contributes to the increase in sweating. 2. In normothermia and during whole-body heating, 2 min IHG exercise at 40% maximal voluntary contraction, followed by 2 min post-exercise ischaemia, was performed with and without bolus intravenous administration of sodium nitroprusside during the ischaemic period. Sodium nitroprusside was administered to reduce blood pressure during post-exercise ischaemia to pre-exercise levels. Sweat rate was monitored over two microdialysis membranes placed in the dermal space of forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine, while the other was perfused with the vehicle. 3. In normothermia, IHG exercise increased sweat rate at the neostigmine-treated site but not at the control site. Sweat rate remained elevated during post-exercise ischaemia even after mean arterial blood pressure returned to the pre-IHG exercise baseline. Subsequent removal of the ischaemia stimulus returned sweat rate to pre-IHG exercise levels. Sweat rate during post-exercise ischaemia without sodium nitroprusside administration followed a similar pattern. 4. During whole-body heating, IHG exercise increased sweat rate at both neostigmine-treated and untreated sites. Similarly, regardless of whether mean arterial blood pressure remained elevated or was reduced during post-exercise ischaemia, sweat rate remained elevated during the ischaemic period. 5. These results suggest that sweating in non-glabrous skin during post-IHG exercise ischaemia is activated by metaboreflex stimulation and not via baroreceptor loading.

  10. Comparison of fabric skins for the simulation of sweating on thermal manikins

    NASA Astrophysics Data System (ADS)

    Koelblen, Barbara; Psikuta, Agnes; Bogdan, Anna; Annaheim, Simon; Rossi, René M.

    2017-09-01

    Sweating is an important thermoregulatory process helping to dissipate heat and, thus, to prevent overheating of the human body. Simulations of human thermo-physiological responses in hot conditions or during exercising are helpful for assessing heat stress; however, realistic sweating simulation and evaporative cooling is needed. To this end, thermal manikins dressed with a tight fabric skin can be used, and the properties of this skin should help human-like sweat evaporation simulation. Four fabrics, i.e., cotton with elastane, polyester, polyamide with elastane, and a skin provided by a manikin manufacturer (Thermetrics) were compared in this study. The moisture management properties of the fabrics have been investigated in basic tests with regard to all phases of sweating relevant for simulating human thermo-physiological responses, namely, onset of sweating, fully developed sweating, and drying. The suitability of the fabrics for standard tests, such as clothing evaporative resistance measurements, was evaluated based on tests corresponding to the middle phase of sweating. Simulations with a head manikin coupled to a thermo-physiological model were performed to evaluate the overall performance of the skins. The results of the study showed that three out of four evaluated fabrics have adequate moisture management properties with regard to the simulation of sweating, which was confirmed in the coupled simulation with the head manikin. The presented tests are helpful for comparing the efficiency of different fabrics to simulate sweat-induced evaporative cooling on thermal manikins.

  11. Use of dew-point hygrometry, direct sweat collection, and measurement of body water losses to determine sweating rates in exercising horses.

    PubMed

    Kingston, J K; Geor, R J; McCutcheon, L J

    1997-02-01

    To compare dew-point hygrometry, direct sweat collection, and measurement of body water loss as methods for determination of sweating rate (SR) in exercising horses. 6 exercise-trained Thoroughbreds. SR was measured in 6 horses exercising at 40% of the speed that elicited maximum oxygen consumption for 45 km, with a 15-minute rest at the end of each 15-km phase. Each horse completed 2 exercise trials. Dew-point hygrometry, as a method of local SR determination, was validated in vitro by measurement of rate of evaporative water loss. During exercise, local SR was determined every 10 minutes by the following 2 methods: (1) dew-point hygrometry on the neck and lateral area of the thorax, and (2) on the basis of the volume of sweat collected from a sealed plastic pouch attached to the lateral area of the thorax. Mean whole body SR was calculated from total body water loss incurred during exercise. Evaporation rate measured by use of dew-point hygrometry was significantly correlated (r2 = 0.92) with the actual rate of evaporative water loss. There was a similar pattern of change in SR measured by dew-point hygrometry on the neck and lateral area of the thorax during exercise, with a significantly higher SR on the neck. The SR measured on the thorax by direct sweat collection and by dew-point hygrometry were of similar magnitude. Mean whole body SR calculated from total body water loss was not significantly different from mean whole body SR estimated from direct sweat collection or dew-point hygrometry measurements on the thorax. Dew-point hygrometry and direct sweat collection are useful methods for determination of local SR in horses during prolonged, steady-state exercise in moderate ambient conditions. Both methods of local SR determination provide an accurate estimated of whole body SR.

  12. Role of CFTR mutation analysis in the diagnostic algorithm for cystic fibrosis.

    PubMed

    Ratkiewicz, Michelle; Pastore, Matthew; McCoy, Karen Sharrock; Thompson, Rohan; Hayes, Don; Sheikh, Shahid Ijaz

    2017-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation identification is being used with increased frequency to aid in the diagnosis of cystic fibrosis (CF) in those suspected with CF. Aim of this study was to identify diagnostic outcomes when CFTR mutational analysis was used in CF diagnosis. CFTR mutational analysis results were also compared with sweat chloride results. This study was done on all patients at our institution who had CFTR mutation analysis over a sevenyear period since August 2006. A total of 315 patients underwent CFTR mutational analysis. Fifty-one (16.2%) patients had two mutations identified. Among them 32 had positive sweat chloride levels (≥60 mmol/L), while seven had borderline sweat chloride levels (40-59 mmol/L). An additional 70 patients (22.3%) had only one mutation identified. Among them eight had positive sweat chloride levels, and 17 had borderline sweat chloride levels. Fifty-five patients (17.5%) without CFTR mutations had either borderline (n=45) or positive (n=10) sweat chloride results. Three patients with a CF phenotype had negative CFTR analysis but elevated sweat chloride levels. In eighty-three patients (26.4%) CFTR mutational analysis was done without corresponding sweat chloride testing. Although CFTR mutation analysis has improved the diagnostic capability for CF, its use either as the first step or the only test to diagnose CFTR dysfunction should be discouraged and CF diagnostic guidelines need to be followed.

  13. Sweat patterns differ between tilt-induced reflex syncope and tilt-induced anxiety among youth.

    PubMed

    Heyer, Geoffrey L; Harvey, Rebecca A; Islam, Monica P

    2016-08-01

    Profound sweating can occur with reflex-syncope and with emotional distress, but little is known about the similarities and differences between these sweat responses when they occur during orthostatic challenge. We sought to characterize and compare the sweat patterns related to tilt-induced syncope, presyncope, anxiety, and normal tilt testing. In a prospective observational study, quantitative sweat rate was measured from the abdomen, forearm, ankle, and thigh during head-upright tilt. Sweat characteristics were compared across tilt diagnoses of syncope, presyncope, anxiety, and normal testing. When anxiety and syncope/presyncope occurred during the same study (separated by ≥6 min), both were diagnosed. Our cohort comprised150 patients (15.1 ± 2.3 years; 82.9 % female) with 156 diagnoses: 76 with reflex-syncope, 31 with presyncope, 23 with anxiety, and 26 with normal results. All syncope/presyncope patients and 20 (87 %) of the anxiety patients had corresponding sweat responses. Minimal or negligible sweating occurred among patients with normal tests. Neither basal sweat (19.4 ± 4.7 versus 18.3 ± 3.7 versus 18.5 ± 3.7 nL/min/cm(2)) nor peak sweat (171 ± 47.4 versus 149.4 ± 64.4 versus 154.4 ± 59.2 nL/min/cm(2)) differed between patients with syncope, presyncope, or anxiety, p = .32 and p = .12, respectively. However, the qualitative sweat patterns related to syncope/presyncope (diffuse, smoothly contoured, symmetrical, single peaks) differed considerably from the sweat patterns related to anxiety (heterogeneous, asymmetrical, roughly contoured single-peak, multi-peak, or progressive sweat changes). The sweat patterns related to syncope/presyncope are distinguishable from the sweat patterns related to anxiety. Recognition of the different sweat patterns can inform how signs and symptoms are interpreted during clinical orthostatic challenge.

  14. Characterization of Chemical Constituents of Human Sweat: A Study Based on Indian Population.

    PubMed

    Moulvi, Aafrinnaz; Minz, Pooja; Rath, Subrata; Ashma, Richa

    2018-06-01

    There is a strong evidence in the literature that human odor is unique to an individual; therefore, the focus of this study was to strengthen this evidence through the testing of sweat samples on unrelated individuals with the same ethnicity. Sweat samples were collected from 42 unrelated Indian males and females residing in the same city to determine the chemical constituents in human sweat. The volatile compounds of sweat were subsequently analyzed and identified using gas chromatography-mass spectrometry, and a National Institute of Standards and Technology library was used for individual profiling. A total of 78 compounds were identified in human sweat tested with 22 compounds found to be unique to the individual (frequency of occurrence one). A scent profile, or "chexmotype," unique to the sweat of each individual was obtained. This is the first extensive study on an Indian population with 36 new compounds detected in human sweat.

  15. Sweat production during global heating and during isometric exercise in people with diabetes.

    PubMed

    Petrofsky, Jerrold Scott; Lee, Scott; Patterson, Chris; Cole, Melissa; Stewart, Brian

    2005-11-01

    While sweat production in response to heat is impaired in people with diabetes, sweat production has not been examined during isometric exercise. Eight subjects with type 2 diabetes and 9 control subjects exerted a fatiguing isometric contraction of the handgrip muscles at a tension of 40% of the maximum voluntary strength (MVC) after exposure to a 32 deg C environment for 30 min. compared to 10 controls and 10 subjects with diabetes exposed to a 39 deg C environment. Sweat was impaired to all areas of the body during heat exposure in patients with diabetes under both environmental conditions. For example, on the chest, the average sweat rates after exposure to the 32 deg environment was 259.2 +/- 55.2 nanoliters/min in control subjects and 198.3 +/- 46.2 nanoliters/min for subjects with diabetes. Compared to the 32 deg C environment, control subjects increased sweat in all 4 areas proportionally more than subjects with diabetes. Sudomotor rhythm was present in sweat in control subjects at a rate of repetition of 11 and 50 seconds but almost absent in subjects with diabetes. During exercise, sweat rates slowly increased from the beginning to the end of the exercise. But the head of the subjects with diabetes showed hypersweating while the other areas showed diminished sweating compared to control subjects. Thus some of the impairment in sweating may be due to central mechanisms associated with heat sensitivity or in the hypothalamus and not to the sweat glands themselves.

  16. Sweat: a sample with limited present applications and promising future in metabolomics.

    PubMed

    Mena-Bravo, A; Luque de Castro, M D

    2014-03-01

    Sweat is a biofluid with present scant use as clinical sample. This review tries to demonstrate the advantages of sweat over other biofluids such as blood or urine for routine clinical analyses and the potential when related to metabolomics. With this aim, critical discussion of sweat samplers and equipment for analysis of target compounds in this sample is made. Well established routine analyses in sweat as is that to diagnose cystic fibrosis, and the advantages and disadvantages of sweat versus urine or blood for doping control have also been discussed. Methods for analytes such as essential metals and xenometals, ethanol and electrolytes in sweat in fact constitute target metabolomics approaches or belong to any metabolomics subdiscipline such as metallomics, ionomics or xenometabolomics. The higher development of biomarkers based on genomics or proteomics as omics older than metabolomics is discussed and also the potential role of metabolomics in systems biology taking into account its emergent implementation. Normalization of the volume of sampled sweat constitutes a present unsolved shortcoming that deserves investigation. Foreseeable trends in this area are outlined. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Development of emotional sweating in the newborn infant.

    PubMed

    Harpin, V A; Rutter, N

    1982-09-01

    Sweating from the palm and sole occurs independently of ambient temperature but is influenced by emotional factors. It thus provides a useful objective measure of emotional state. The development of this emotional sweating in the newborn was investigated by measuring palmar water loss and relating it to the infant's state of arousal. Although 433 individual measurements were made on 124 babies of gestational age 25 to 41 weeks and postnatal age 15 hours to 9 weeks. Palmar water loss was also recorded continuously in 22 infants undergoing heel prick for routine blood sampling. In babies of 37 weeks' gestation or more, there was a clear relationship between palmar water loss and arousal from the day of birth, and by the third week levels on vigorous crying were comparable with those of an anxious adult. Less mature babies did not show emotional sweating at birth; it was first seen at the equivalent of 36 to 37 weeks' gestation regardless of maturity. Continuous recordings confirmed the cross-sectional data and illustrated the abrupt nature of the response. Emotional sweating could be a useful tool for the assessment of emotional state of the newborn.

  18. Fungal protein MGL_1304 in sweat is an allergen for atopic dermatitis patients.

    PubMed

    Hiragun, Takaaki; Ishii, Kaori; Hiragun, Makiko; Suzuki, Hidenori; Kan, Takanobu; Mihara, Shoji; Yanase, Yuhki; Bartels, Joachim; Schröder, Jens-M; Hide, Michihiro

    2013-09-01

    Sweat is a major aggravating factor of atopic dermatitis (AD) and approximately 80% of patients with AD show type I hypersensitivity against sweat. To identify and characterize an antigen in sweat that induces histamine release from basophils of patients with AD. Basophil histamine-releasing activity in sweat was purified by a combination of chromatographies, and proteins were analyzed with mass spectrometry. Recombinant proteins of the sweat antigen were generated, and their biological characteristics were studied by immunoblots, histamine release tests, and neutralization assays. We identified a fungal protein, MGL_1304, derived from Malassezia globosa (M globosa) in the purified sweat antigen. Recombinant MGL_1304 induced histamine release from basophils of most of the patients with AD, in accordance with the semi-purified sweat antigen. Moreover, recombinant MGL_1304 abolished the binding of serum IgE of patients with AD to the semi-purified sweat antigen, or vice versa in immunoblot analysis, and attenuated the sensitization of RBL-48 mast cells expressing human FcɛRI by serum IgE. Studies of truncated mutants of MGL_1304 indicated that IgE of patients with AD recognized the conformational structure of MGL_1304 rather than short peptide sequences. Western blot analysis of the whole lysate, the culture supernatant of M globosa, and the semi-purified sweat antigen showed that MGL_1304 was produced as a minor immunological antigen of M globosa with posttranslational modification, cleaved, and secreted as a 17-kDa major histamine-releasing sweat antigen. MGL_1304 is a major allergen in human sweat and could cause type I allergy in patients with AD. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. Skin pretreatment with microneedles prior to pilocarpine iontophoresis increases sweat production.

    PubMed

    Wing, David; Prausnitz, Mark R; Buono, Michael J

    2013-11-01

    Collection of sweat via pilocarpine iontophoresis is commonly used to diagnose cystic fibrosis (CF), with thousands of tests performed each day. The main source of resistance to the passage of pilocarpine ions to the sweat glands is the electrical resistance of the stratum corneum. It was hypothesized that pretreating the skin with 0·5 mm-long microneedles would significantly decrease this resistance, thus increasing pilocarpine's permeation into the skin. Improved permeation should result in significantly reduced time to sweat initiation, time to collection of a clinically meaningful amount of sweat, and increased total amount of sweat produced in 15 min. Subjects (n = 12) had two 5 cm(2) areas on the forearm measured, marked and randomized to experimental (microneedles + iontophoresis) or control (iontophoresis alone). Microneedle pretreatment was conducted using a 35-needle microneedle stamp in a manner that 20 applications completely covered the 5 cm(2) treatment area. This was repeated five times for a total of 100 applications. Both experimental and control sites were placed under iontophoresis (1·5 mA) for 5 min. Microneedle pretreatment significantly decreased mean skin resistance (260 ± 27 kΩ versus 160 ± 19 kΩ, P = 0·006), while significantly increasing mean sweat rate (0·76 ± 0·35 versus 0·54 ± 0·19 μl cm(2) min(-1) , P = 0·007). No significant difference was found concerning pain (P = 0·059), number of active sweat glands (P = 0·627) or the osmolality of the collected sweat (P = 0·636). The results of this study suggest that microneedle pretreatment prior to pilocarpine iontophoresis significantly increases sweat production. Such results have the potential to improve the methodology currently used to diagnose cystic fibrosis and, more broadly, to administer drugs via the skin. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  20. Novel methods of imaging and analysis for the thermoregulatory sweat test.

    PubMed

    Carroll, Michael Sean; Reed, David W; Kuntz, Nancy L; Weese-Mayer, Debra Ellyn

    2018-06-07

    The thermoregulatory sweat test (TST) can be central to the identification and management of disorders affecting sudomotor function and small sensory and autonomic nerve fibers, but the cumbersome nature of the standard testing protocol has prevented its widespread adoption. A high resolution, quantitative, clean and simple assay of sweating could significantly improve identification and management of these disorders. Images from 89 clinical TSTs were analyzed retrospectively using two novel techniques. First, using the standard indicator powder, skin surface sweat distributions were determined algorithmically for each patient. Second, a fundamentally novel method using thermal imaging of forced evaporative cooling was evaluated through comparison with the standard technique. Correlation and receiver operating characteristic analyses were used to determine the degree of match between these methods, and the potential limits of thermal imaging were examined through cumulative analysis of all studied patients. Algorithmic encoding of sweating and non-sweating regions produces a more objective analysis for clinical decision making. Additionally, results from the forced cooling method correspond well with those from indicator powder imaging, with a correlation across spatial regions of -0.78 (CI: -0.84 to -0.71). The method works similarly across body regions, and frame-by-frame analysis suggests the ability to identify sweating regions within about 1 second of imaging. While algorithmic encoding can enhance the standard sweat testing protocol, thermal imaging with forced evaporative cooling can dramatically improve the TST by making it less time-consuming and more patient-friendly than the current approach.

  1. Sweat Facilitated Amino Acid Losses in Male Athletes during Exercise at 32-34°C.

    PubMed

    Dunstan, R Hugh; Sparkes, Diane L; Dascombe, Benjamin J; Macdonald, Margaret M; Evans, Craig A; Stevens, Christopher J; Crompton, Marcus J; Gottfries, Johan; Franks, Jesse; Murphy, Grace; Wood, Ryan; Roberts, Timothy K

    2016-01-01

    Sweat contains amino acids and electrolytes derived from plasma and athletes can lose 1-2L of sweat per hour during exercise. Sweat may also contain contributions of amino acids as well as urea, sodium and potassium from the natural moisturizing factors (NMF) produced in the stratum corneum. In preliminary experiments, one participant was tested on three separate occasions to compare sweat composition with surface water washings from the same area of skin to assess contributions from NMF. Two participants performed a 40 minute self-paced cycle session with sweat collected from cleansed skin at regular intervals to assess the contributions to the sweat load from NMF over the period of exercise. The main study investigated sweat amino acid composition collected from nineteen male athletes following standardised endurance exercise regimes at 32-34°C and 20-30% RH. Plasma was also collected from ten of the athletes to compare sweat and plasma composition of amino acids. The amino acid profiles of the skin washings were similar to the sweat, suggesting that the NMF could contribute certain amino acids into sweat. Since the sweat collected from athletes contained some amino acid contributions from the skin, this fluid was subsequently referred to as "faux" sweat. Samples taken over 40 minutes of exercise showed that these contributions diminished over time and were minimal at 35 minutes. In the main study, the faux sweat samples collected from the athletes with minimal NMF contributions, were characterised by relatively high levels of serine, histidine, ornithine, glycine and alanine compared with the corresponding levels measured in the plasma. Aspartic acid was detected in faux sweat but not in the plasma. Glutamine and proline were lower in the faux sweat than plasma in all the athletes. Three phenotypic groups of athletes were defined based on faux sweat volumes and composition profiles of amino acids with varying relative abundances of histidine, serine, glycine

  2. Sweat Facilitated Amino Acid Losses in Male Athletes during Exercise at 32-34°C

    PubMed Central

    Dunstan, R. Hugh; Sparkes, Diane L.; Dascombe, Benjamin J.; Macdonald, Margaret M.; Evans, Craig A.; Stevens, Christopher J.; Crompton, Marcus J.; Gottfries, Johan; Franks, Jesse; Murphy, Grace; Wood, Ryan; Roberts, Timothy K.

    2016-01-01

    Sweat contains amino acids and electrolytes derived from plasma and athletes can lose 1-2L of sweat per hour during exercise. Sweat may also contain contributions of amino acids as well as urea, sodium and potassium from the natural moisturizing factors (NMF) produced in the stratum corneum. In preliminary experiments, one participant was tested on three separate occasions to compare sweat composition with surface water washings from the same area of skin to assess contributions from NMF. Two participants performed a 40 minute self-paced cycle session with sweat collected from cleansed skin at regular intervals to assess the contributions to the sweat load from NMF over the period of exercise. The main study investigated sweat amino acid composition collected from nineteen male athletes following standardised endurance exercise regimes at 32–34°C and 20–30% RH. Plasma was also collected from ten of the athletes to compare sweat and plasma composition of amino acids. The amino acid profiles of the skin washings were similar to the sweat, suggesting that the NMF could contribute certain amino acids into sweat. Since the sweat collected from athletes contained some amino acid contributions from the skin, this fluid was subsequently referred to as “faux” sweat. Samples taken over 40 minutes of exercise showed that these contributions diminished over time and were minimal at 35 minutes. In the main study, the faux sweat samples collected from the athletes with minimal NMF contributions, were characterised by relatively high levels of serine, histidine, ornithine, glycine and alanine compared with the corresponding levels measured in the plasma. Aspartic acid was detected in faux sweat but not in the plasma. Glutamine and proline were lower in the faux sweat than plasma in all the athletes. Three phenotypic groups of athletes were defined based on faux sweat volumes and composition profiles of amino acids with varying relative abundances of histidine, serine

  3. Genetics Home Reference: isolated hyperchlorhidrosis

    MedlinePlus

    ... loss of salt (sodium chloride or NaCl) in sweat. In particular, "hyperchlorhidrosis" refers to the high levels of chloride found in sweat, although both sodium and chloride are released. Because ...

  4. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations

    NASA Astrophysics Data System (ADS)

    Busschaert, Nathalie; Park, Seong-Hyun; Baek, Kyung-Hwa; Choi, Yoon Pyo; Park, Jinhong; Howe, Ethan N. W.; Hiscock, Jennifer R.; Karagiannidis, Louise E.; Marques, Igor; Félix, Vítor; Namkung, Wan; Sessler, Jonathan L.; Gale, Philip A.; Shin, Injae

    2017-07-01

    Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.

  5. Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers.

    PubMed

    Tang, Yong-Mei; Wang, Dao-Gang; Li, Jun; Li, Xing-Hua; Wang, Qian; Liu, Nan; Liu, Wei-Tian; Li, Ying-Xue

    2016-06-10

    We aimed to examine the effect of micronutrient losses through sweat on blood pressure (BP) among heat-exposed steelworkers. A total of 224 heat-exposed male steelworkers from an ironworks facility were evaluated in July 2012. We measured the Wet Bulb Globe Temperature Index to evaluate the level of heat stress in the workplace. We collected sweat from the workers during an eight-hour work, and then we measured the micronutrients in the sweat. We also measured the BP of each worker. The results revealed that vitamin C, potassium, and calcium losses in sweat were positively correlated with systolic (SBP) and diastolic (DBP) blood pressure (all P<0.05). A linear stepwise regression analysis revealed that potassium, and calcium losses in sweat adversely affected SBP and DBP (all P<0.05). An analysis of covariance showed that SBP increased when potassium or calcium losses in sweat were >900 mg, or >100 mg, respectively. Further, DBP increased when potassium or calcium losses in sweat were >600 mg or >130 mg, respectively. Therefore, vitamin C, potassium, and calcium losses in sweat may adversely effect BP. To help steelworkers maintain healthy BP, facilities with high temperatures should try to lower environmental temperatures to reduce vitamin C, potassium, and calcium losses in sweat. Additionally, heat-exposed steelworkers may need to increase their dietary intakes of vitamin C, potassium, and calcium. Further research is needed to confirm these findings and support these recommendations.

  6. Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers

    PubMed Central

    TANG, Yong-Mei; WANG, Dao-Gang; LI, Jun; LI, Xing-Hua; WANG, Qian; LIU, Nan; LIU, Wei-Tian; LI, Ying-Xue

    2016-01-01

    We aimed to examine the effect of micronutrient losses through sweat on blood pressure (BP) among heat-exposed steelworkers. A total of 224 heat-exposed male steelworkers from an ironworks facility were evaluated in July 2012. We measured the Wet Bulb Globe Temperature Index to evaluate the level of heat stress in the workplace. We collected sweat from the workers during an eight-hour work, and then we measured the micronutrients in the sweat. We also measured the BP of each worker. The results revealed that vitamin C, potassium, and calcium losses in sweat were positively correlated with systolic (SBP) and diastolic (DBP) blood pressure (all P<0.05). A linear stepwise regression analysis revealed that potassium, and calcium losses in sweat adversely affected SBP and DBP (all P<0.05). An analysis of covariance showed that SBP increased when potassium or calcium losses in sweat were >900 mg, or >100 mg, respectively. Further, DBP increased when potassium or calcium losses in sweat were >600 mg or >130 mg, respectively. Therefore, vitamin C, potassium, and calcium losses in sweat may adversely effect BP. To help steelworkers maintain healthy BP, facilities with high temperatures should try to lower environmental temperatures to reduce vitamin C, potassium, and calcium losses in sweat. Additionally, heat-exposed steelworkers may need to increase their dietary intakes of vitamin C, potassium, and calcium. Further research is needed to confirm these findings and support these recommendations. PMID:27087421

  7. Effect of antiperspirants on whole body sweat rate and thermoregulation.

    PubMed

    Burry, J S; Evans, R L; Rawlings, A V; Shiu, J

    2003-08-01

    It is well established that the evaporation of sweat from the human body surface is the main mechanism by which heat balance is maintained following a rise in body core temperature. Since the introduction of the first brand name antiperspirant in the United States during the early 1900s, antiperspirant products designed to control underarm wetness have grown to represent one of the largest cosmetic categories in most global markets. However, although axillary sweating only constitutes less than 1% of whole body sweat rate, consumers, particularly in hot countries, have begun to articulate the concern that antiperspirants may interfere with the body's natural cooling process. To investigate this, we undertook carefully designed experiments that measured the effects of axillary antiperspirant application on whole body sweat rate and body core temperature, following a regimen of exercise-induced heat stress in a hot environment in human volunteers. Our data show clearly that although antiperspirant prevents sweat production in the axillary area, this does not impact the ability of the body to thermoregulate following a rise in body core temperature. Thus, recent consumer questioning over this aspect of antiperspirant use appears to be unwarranted.

  8. Sweat osmolarity shows intra-animal regional variation in the horse.

    PubMed

    Potts, Samantha; Thatcher, Rhys; Jones, Arwel W; Warren, Lori K; Tenbroeck, Saundra H; Nottage, Florence; McEwan, Neil R

    2015-10-01

    Sweating is important in regulating body temperature but can be a source of loss of both fluids and electrolytes. Although the process has been studied in horses, the variation in sweat osmolarity across the body has not. This work describes an investigation to determine if there is regional variation in the osmolarity of sweat across different anatomical regions of the horse. Ten horses were used in the study and were animals either stabled for riding lessons or had livery on-site. Sweat samples were collected from five regions on each horse following exercise and the osmolarity measurements were made using an Osmomat 030 (Gonotec, Berlin, Germany). Values were analysed by paired t-tests and analysis of variance. Samples from the back and ears had statistically (P < 0.05) lower osmolarity values than those seen for the neck and forelimb, with thigh values intermediate between the other two sets of values. Previous studies have used osmolarity values based on the sweat collected from the horse's back. The current work demonstrates that these values are probably an underestimation of electrolyte loss, which may have implications for the composition and administration of rehydration compounds. © 2015 ESVD and ACVD.

  9. Influence of various environmental parameters on sweat gland activity.

    PubMed

    McMullen, Roger L; Gillece, Tim; Lu, Guojin; Laura, Donna; Chen, Susan

    2013-01-01

    The choice of environmental conditions when conducting antiperspirant studies greatly affects the quantity of sweat output. Our initial goal in this work was to develop an in-house procedure to test the efficacy of antiperspirant products using replica techniques in combination with image analysis. To ameliorate the skin replica method, we conducted rheological studies using dynamic mechanical analysis of the replica formulation. In terms of sweat output quantification, our preliminary results revealed a considerable amount of variation using the replica technique, leading us to conduct more fundamental studies of the factors that influence sweating behavior and how to best design the experimental strategy. In accordance with the FDA's protocol for antiperspirant testing, we carried out gravimetric analyses of axillae sweating under a variety of environmental conditions including temperature and humidity control. Subjects were first acclimatized in an environmentally controlled room for 30 min, and then placed in a sauna for an additional 30 or 45 min, depending on which test we administered. In Test 1 (30 min total in the sauna), the first 10 min in the sauna was another equilibration period, followed by a 20 min sweat production stage. We monitored axillae sweating during the last 20 min in the sauna by gravimetric analysis. At time (t) = 30 min in the sauna, skin replicas were taken and later analyzed using imaging and image analysis techniques. Test 1 was carried out on over 25 subjects, both male and female, from various racial backgrounds. In Test 2, subjects spent 45 min in the sauna after the initial 30-min period in the environmental room. During the 45 min, we obtained gravimetric readings of absorbent pads placed in the axillae. We conducted studies at various temperature and relative humidity settings. We also studied the influence of several external parameters on sudoriferous activity. Test 2 was a range-finding experiment on two subjects to determine

  10. Sweat, the driving force behind normal skin: an emerging perspective on functional biology and regulatory mechanisms.

    PubMed

    Murota, Hiroyuki; Matsui, Saki; Ono, Emi; Kijima, Akiko; Kikuta, Junichi; Ishii, Masaru; Katayama, Ichiro

    2015-01-01

    The various symptoms associated with excessive or insufficient perspiration can significantly reduce a patient's quality of life. If a versatile and minimally invasive method could be established for returning sweat activity to normalcy, there is no question that it could be used in the treatment of many diseases that are believed to involve perspiration. For this reason, based on an understanding of the sweat-gland control function and sweat activity, it was necessary to conduct a comprehensive search for the factors that control sweating, such as the central and peripheral nerves that control sweat-gland function, the microenvironment surrounding the sweat glands, and lifestyle. We focused on the mechanism by which atopic dermatitis leads to hypohidrosis and confirmed that histamine inhibits acetylcholinergic sweating. Acetylcholine promotes the phosphorylation of glycogen synthesis kinase 3β (GSK3β) in the sweat-gland secretory cells and leads to sensible perspiration. By suppressing the phosphorylation of GSK3β, histamine inhibits the movement of sweat from the sweat-gland secretory cells through the sweat ducts, which could presumably be demonstrated by dynamic observations of the sweat glands using two-photon microscopy. It is expected that the discovery of new factors that control sweat-gland function can contribute to the treatment of diseases associated with dyshidrosis. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Skin grafting impairs postsynaptic cutaneous vasodilator and sweating responses.

    PubMed

    Davis, Scott L; Shibasaki, Manabu; Low, David A; Cui, Jian; Keller, David M; Purdue, Gary F; Hunt, John L; Arnoldo, Brett D; Kowalske, Karen J; Crandall, Craig G

    2007-01-01

    This study tested the hypothesis that postsynaptic cutaneous vascular responses to endothelial-dependent and -independent vasodilators, as well as sweat gland function, are impaired in split-thickness grafted skin 5 to 9 months after surgery. Intradermal microdialysis membranes were placed in grafted and adjacent control skin, thereby allowing local delivery of the endothelial-dependent vasodilator, acetylcholine (ACh; 1 x 10(-7) to 1 x 10(-1) M at 10-fold increments) and the endothelial-independent nitric oxide donor, sodium nitroprusside (SNP; 5 x 10(-8) to 5 x 10(-2) M at 10-fold increments). Skin blood flow and sweat rate were simultaneously assessed over the semipermeable portion of the membrane. Cutaneous vascular conductance (CVC) was calculated from the ratio of laser Doppler-derived skin blood flow to mean arterial blood pressure. deltaCVC responses from baseline to these drugs were modeled via nonlinear regression curve fitting to identify the dose of ACh and SNP causing 50% of the maximal vasodilator response (EC50). A rightward shift in the CVC dose response curve for ACh was observed in grafted (EC50 = -2.61 +/- 0.44 log M) compared to adjacent control skin (EC50 = -3.34 +/- 0.46 log M; P = .003), whereas the mean EC50 for SNP was similar between grafted (EC50 = -4.21 +/- 0.94 log M) and adjacent control skin (EC50 = -3.87 +/- 0.65 log M; P = 0.332). Only minimal sweating to exogenous ACh was observed in grafted skin whereas normal sweating was observed in control skin. Increased EC50 and decreased maximal CVC responses to the exogenous administration of ACh suggest impairment of endothelial-dependent cutaneous vasodilator responses in grafted skin 5 to 9 months after surgery. Greatly attenuated sweating responses to ACh suggests either abnormal or an absence of functional sweat glands in the grafted skin.

  12. Effect of skin temperature on the cholinergic sensitivity of the human eccrine sweat gland.

    PubMed

    DiPasquale, Dana M; Buono, Michael J; Kolkhorst, Fred W

    2003-12-01

    Although sweat gland activity is directly controlled by the central nervous system, which detects changes in core body temperature, sweat glands can also be influenced by local cutaneous thermal conditions. The present study sought to determine the effect of local skin temperature on pilocarpine-induced sweating within a range of typical skin temperatures. Thirteen subjects (30 +/- 6 years; 172 +/- 11 cm; 72.8 +/- 11.0 kg) had forearm sweat rates measured at rest following pilocarpine iontophoresis at each of three skin temperatures in randomized order: warm (T(warm) = 37.1 +/- 0.9 degrees C), control (T(con) = 32.3 +/- 1.4 degrees C), and cool (T(cool) = 26.6 +/- 1.3 degrees C). T(skin) was raised and lowered with an electric heating pad and gel ice pack, respectively. Forearm T(skin) was measured with a skin temperature probe. Pilocarpine iontophoresis was used on an approximately 7 cm(2) area of the anterior forearm to stimulate localized sweating. Following stimulation, sweat was collected from the area for 15 min with a Macroduct Sweat Collection System. There was a higher sweat rate at T(warm) (p = 0.001) and T(con) (p = 0.006) compared to that at T(cool). However, there was no difference between the sweat rate at T(warm) and that at T(con) (p = 0.127). These results indicated that skin temperatures below approximately 32 degrees C affect local sweat production primarily by altering glandular sensitivity to the neurotransmitter, whereas skin temperatures above approximately 32 degrees C predominantly affect neurotransmitter release. Furthermore, sweat glands display maximal or near maximal cholinergic sensitivity at resting skin temperature in a thermoneutral environment.

  13. Effect of calcium chloride concentration on output force in electrical actuator made of sodium alginate gel

    NASA Astrophysics Data System (ADS)

    Wu, Yuda; Zhao, Gang; Wei, Chengye; Liu, Shuang; Fu, Yu; Liu, Xvxiong

    2018-01-01

    As a kind of artificial muscle intelligent material, the biological gel electric driver has the advantages of low driving voltage, large strain, good biological compatibility, good flexibility, low price, etc. The application prospect is broad and it has high academic value. Alginate, as a common substance in sea, has characteristics of low cost, green and pollution-free. Therefore,this paper obtains biological gel electric actuator by sodium alginate and calcium chloride. Effects on output force of the electric actuator is researched by changing the crosslinking of calcium chloride concentration and the output force enhancement mechanism is analyzed in this paper.

  14. Stability of methacholine chloride in isotonic sodium chloride using a capillary electrophoresis assay.

    PubMed

    Henn, S; Monfort, P; Vigneron, J H; Hoffman, M A; Hoffman, M

    1999-10-01

    To investigate the stability of methacholine chloride in 0.9% sodium chloride solutions. Methacholine powder was mixed with diluent to a final concentration of 5 and 10 mg/ml. Duplicates of each admixture were divided and stored in glass vials at 25 degrees C, 4 degrees C and -20 degrees C for 12 months. At appropriate times intervals, samples were removed from solutions and analysed. Methacholine concentrations were measured using a high performance capillary electrophoresis assay. No colour or other visual changes were seen in any sample. However, an additional peak was observed in some samples. Methacholine chloride solutions 5 mg/ml were stable in isotonic sodium chloride after refrigeration or freezing over a period of one year; methacholine chloride solutions 10 mg/ml were stable for one year after freezing. The solutions stored at ambient temperature were stable for 35 days and for less than 14 days, respectively, for the 5 and the 10 mg/ml solutions.

  15. Formation of biofilm by Listeria monocytogenes ATCC 19112 at different incubation temperatures and concentrations of sodium chloride

    PubMed Central

    Lee, H.Y.; Chai, L.C.; Pui, C.F.; Mustafa, S.; Cheah, Y.K.; Nishibuchi, M.; Radu, S.

    2013-01-01

    Biofilm formation can lead to various consequences in the food processing line such as contamination and equipment breakdowns. Since formation of biofilm can occur in various conditions; this study was carried out using L. monocytogenes ATCC 19112 and its biofilm formation ability tested under various concentrations of sodium chloride and temperatures. Cultures of L. monocytogenes ATCC 19112 were placed in 96-well microtitre plate containing concentration of sodium chloride from 1–10% (w/v) and incubated at different temperature of 4 °C, 30 °C and 45 °C for up to 60 h. Absorbance reading of crystal violet staining showed the density of biofilm formed in the 96-well microtitre plates was significantly higher when incubated in 4 °C. The formation of biofilm also occurs at a faster rate at 4 °C and higher optical density (OD 570 nm) was observed at 45 °C. This shows that storage under formation of biofilm that may lead to a higher contamination along the processing line in the food industry. Formation of biofilm was found to be more dependent on temperature compared to sodium chloride stress. PMID:24159283

  16. Concentrations of chloride and sodium in groundwater in New Hampshire from 1960 through 2011

    USGS Publications Warehouse

    Medalie, Laura

    2013-01-01

    A new cooperative study between the U.S. Geological Survey (USGS) and the NHDES (Medalie, 2012) assessed chloride and sodium levels in groundwater in New Hampshire from the 1960s through 2011. The purpose of the study was to integrate all data on concentrations of chloride and sodium from groundwater in New Hampshire available from various Federal and State sources, including from the NHDES, the New Hamsphire Department of Health and Human Services, the USGS, and the U.S. Environmental Protection SurveyAgency (USEPA), for public and private (domestic) wells and to organize the data into a database. Medalie (2012) explained the many assumptions and limitations of disparate data that were collected to meet wide-ranging objectives. This fact sheet summarizes the most important findings of the data.

  17. Crying for a Vision: The Native American Sweat Lodge Ceremony as Therapeutic Intervention

    ERIC Educational Resources Information Center

    Garrett, Michael Tlanusta; Torres-Rivera, Edil; Brubaker, Michael; Portman, Tarrell Awe Agahe; Brotherton, Dale; West-Olatunji, Cirecie; Conwill, William; Grayshield, Lisa

    2011-01-01

    The Native American sweat lodge ceremony or sweat therapy is being used increasingly in various medical, mental health, correctional, and substance abuse treatment centers serving both Native and non-Native clients. This article explores the sweat lodge ceremony's background, elements of Native American spirituality, origin story, cultural…

  18. [Study on sweat gland regeneration induced by microenvironment of three-dimensional bioprinting].

    PubMed

    Yao, B; Xie, J F; Huang, S; Fu, X B

    2017-01-20

    Sweat glands are abundant in the body surface and essential for thermoregulation. Sweat glands fail to conduct self-repair in patients with large area of burn and trauma, and the body temperature of patients increases in hot climate, which may cause shock or even death. Now, co-culture system, reprogramming, and tissue engineering have made progresses in inducing sweat gland regeneration, but the inductive efficiency and duration need to be improved. Cellular microenvironment can regulate cell biological behavior, including cell migration and cell differentiation. This article reviews the studies of establishment of microenvironment in vitro by three-dimensional bioprinting technology to induce sweat gland regeneration.

  19. In vivo sweat film layer thickness measured with Fourier-domain optical coherence tomography (FD-OCT)

    NASA Astrophysics Data System (ADS)

    Jonathan, Enock

    2008-06-01

    While human sweat secretion is accepted as a mechanism by which the body cools off, excessive sweating (hyperhidrosis) is now appreciated as a medical condition and the primary site for diagnosis is the palm of the hand. We propose sweat film layer thickness as a potential clinical diagnostic parameter when screening for excessive sweating. In this preliminary study we demonstrate the usefulness of Fourier-domain optical coherence tomography (FD-OCT) for measurement of sweat film thickness in vivo with micron-scale resolution on the hand of a human volunteer. FD-OCT has a superior image acquisition time and identification of active sweat glands, ducts and pores is also possible.

  20. 21 CFR 173.375 - Cetylpyridinium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cetylpyridinium chloride. 173.375 Section 173.375... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No....1666 of this chapter, at a concentration of 1.5 times that of cetylpyridinium chloride. (c) The...

  1. Stability of Alprostadil in 0.9% Sodium Chloride Stored in Polyvinyl Chloride Containers.

    PubMed

    McCluskey, Susan V; Kirkham, Kylian; Munson, Jessica M

    2017-01-01

    The stability of alprostadil diluted in 0.9% sodium chloride stored in polyvinyl chloride (VIAFLEX) containers at refrigerated temperature, protected from light, is reported. Five solutions of alprostadil 11 mcg/mL were prepared in 250 mL 0.9% sodium chloride polyvinyl chloride (PL146) containers. The final concentration of alcohol was 2%. Samples were stored under refrigeration (2°C to 8°C) with protection from light. Two containers were submitted for potency testing and analyzed in duplicate with the stability-indicating high-performance liquid chromatography assay at specific time points over 14 days. Three containers were submitted for pH and visual testing at specific time points over 14 days. Stability was defined as retention of 90% to 110% of initial alprostadil concentration, with maintenance of the original clear, colorless, and visually particulate-free solution. Study results reported retention of 90% to 110% initial alprostadil concentration at all time points through day 10. One sample exceeded 110% potency at day 14. pH values did not change appreciably over the 14 days. There were no color changes or particle formation detected in the solutions over the study period. This study concluded that during refrigerated, light-protected storage in polyvinyl chloride (VIAFLEX) containers, a commercial alcohol-containing alprostadil formulation diluted to 11 mcg/mL with 0.9% sodium chloride 250 mL was stable for 10 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  2. High follicle density does not decrease sweat gland density in Huacaya alpacas.

    PubMed

    Moore, K E; Maloney, S K; Blache, D

    2015-01-01

    When exposed to high ambient temperatures, mammals lose heat evaporatively by either sweating from glands in the skin or by respiratory panting. Like other camelids, alpacas are thought to evaporate more water by sweating than panting, despite a thick fleece, unlike sheep which mostly pant in response to heat stress. Alpacas were brought to Australia to develop an alternative fibre industry to sheep wool. In Australia, alpacas can be exposed to ambient temperatures higher than in their native South America. As a young industry there is a great deal of variation in the quality and quantity of the fleece produced in the national flock. There is selection pressure towards animals with finer and denser fleeces. Because the fibre from secondary follicles is finer than that from primary follicles, selecting for finer fibres might alter the ratio of primary and secondary follicles. In turn the selection might alter sweat gland density because the sweat glands are associated with the primary follicle. Skin biopsy and fibre samples were obtained from the mid-section of 33 Huacaya alpacas and the skin sections were processed into horizontal sections at the sebaceous gland level. Total, primary, and secondary follicles and the number of sweat gland ducts were quantified. Fibre samples from each alpaca were further analysed for mean fibre diameter. The finer-fibred animals had a higher total follicle density (P<0.001) and more sweat glands (P<0.001) than the thicker-fibred animals. The fibre diameter and total follicle density were negatively correlated (R(2)=0.56, P<0.001). Given that the finer-fibred animals had higher follicle density and more sweat glands than animals with thicker fibres, we conclude that alpacas with high follicle density should not be limited for potential sweating ability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. [Optimization of benzalkonium chloride concentration in 0.0015% tafluprost ophthalmic solution from the points of ocular surface safety and preservative efficacy].

    PubMed

    Asada, Hiroyuki; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu; Kimura, Akio

    2010-06-01

    Optimization of benzalkonium chloride (alkyl dimethylbenzylammonium chloride: BAK) concentration as preservative in 0.0015% tafluprost ophthalmic solution (Tapros 0.0015% ophthalmic solution), an anti-glaucoma medicine, was examined from the points of ocular surface safety and preservative efficacy. BAKC(12), which is dodecyl dimethylbenzylammonium chloride, and BAKmix, which is the mixture of dodecyl, tetradecyl and hexadecyl dimethylbenzylammonium chloride were used in this study. The effects of BAKC(12) concentrations and the BAK types, BAKC(12) and BAKmix, in tafluprost ophthalmic solution on ocular surface safety were evaluated using the in vitro SV 40-immobilized human corneal epithelium cell line (HCE-T). Following treatments of Tafluprost ophthalmic solutions with BAKC(12), its concentration dependency was observed on cell viability of HCE-T. The cell viability of HCE-T after treatment of these solutions with 0.001% to 0.003% BAKC(12) for 5 minutes were the same level as that after treatment of the solution without BAK. Tafluprost ophthalmic solution with 0.01% BAKC(12) was safer for the ocular surface than the same solution with 0.01% BAKmix. Preservatives-effectiveness tests of tafluprost ophthalmic solutions with various concentrations of BAKC(12) were performed according to the Japanese Pharmacopoeia (JP), and solutions with more than 0.0005% BAKC(12) conformed to JP criteria. It was concluded that 0.0005% to 0.003% of BAKC(12) in tafluprost ophthalmic solution was optimal, namely, well-balanced from the points of ocular surface safety and preservative efficacy.

  4. Maximal Oxygen Uptake, Sweating and Tolerance to Exercise in the Heat

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Castle, B. L.; Ruff, W. K.

    1972-01-01

    The physiological mechanisms that facilitate acute acclimation to heat have not been fully elucidated, but the result is the establishment of a more efficient cardiovascular system to increase heat dissipation via increased sweating that allows the acclimated man to function with a cooler internal environment and to extend his performance. Men in good physical condition with high maximal oxygen uptakes generally acclimate to heat more rapidly and retain it longer than men in poorer condition. Also, upon first exposure trained men tolerate exercise in the heat better than untrained men. Both resting in heat and physical training in a cool environment confer only partial acclimation when first exposed to work in the heat. These observations suggest separate additive stimuli of metabolic heat from exercise and environmental heat to increase sweating during the acclimation process. However, the necessity of utilizing physical exercise during acclimation has been questioned. Bradbury et al. (1964) have concluded exercise has no effect on the course of heat acclimation since increased sweating can be induced by merely heating resting subjects. Preliminary evidence suggests there is a direct relationship between the maximal oxygen uptake and the capacity to maintain thermal regulation, particularly through the control of sweating. Since increased sweating is an important mechanism for the development of heat acclimation, and fit men have high sweat rates, it follows that upon initial exposure to exercise in the heat, men with high maximal oxygen uptakes should exhibit less strain than men with lower maximal oxygen uptakes. The purpose of this study was: (1) to determine if men with higher maximal oxygen uptakes exhibit greater tolerance than men with lower oxygen uptakes during early exposure to exercise in the heat, and (2) to investigate further the mechanism of the relationship between sweating and maximal work capacity.

  5. Thermoregulatory vs. event sweating--comparison of clinical methodologies, physiology and results.

    PubMed

    Biehle-Hulette, S J; Krailler, J M; Elstun, L T; Bentz, S; Benzing, K W; Spruell, R D; Hellhammer, J; Swaile, D F

    2014-02-01

    Although the mechanisms of sweating due to thermoregulation vs. stress are distinct, the antiperspirant industry focuses primarily on perspiration due to heat as their method of efficacy testing. To better understand the overall protection afforded by a 'Clinical Strength' over-the-counter antiperspirant product, we compare results from a standard hot-room study with results from two studies using the Trier Social Stress Test (TSST). For each study, unscented antiperspirant was applied to one axilla, leaving the other untreated for internal control. The hot-room protocol involved a 40-min warm-up period with 2-20 min sweat collections at 100 ± 2 °F (35% RH). The TSST requires naïve subjects to give an impromptu speech and conduct mental arithmetic, with collections of sweat, heart rate and other biomarkers of stress before, during and after the event. During the TSST, heart rate and salivary cortisol data indicate significant emotional stress. Wetness results show that sweat was reduced by 69.4% in the hot-room study, compared with 83.7% and 89.3% reductions in the stress studies. We have found added value in investigating antiperspirancy from several causes of sweat production to give a more encompassing picture of the protection afforded by an antiperspirant product, specifically wetness protection from heat, activity and stress-induced sweat. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. PAR-2 receptor-induced effects on human eccrine sweat gland cells.

    PubMed

    L Bovell, Douglas; Kofler, Barbara; Lang, Roland

    2009-01-01

    Serine proteases can induce cell signaling by stimulating G-protein-coupled receptors, called proteinase-activated receptors (PAR's) on a variety of epithelial cells. While PAR-2, one such receptor, activates cell signaling in a secretory cell line derived from human sweat glands, there was no information on their presence and effects on intact sweat glands. PAR-2 presence and activation of eccrine sweat glands isolated from human skin samples was investigated using Western blot analysis, immunohistochemistry, electron microscopy (EM) and Ca(2+) imaging. Anti-human PAR-2 antibody demonstrated the presence of these receptors in eccrine sweat glands. EM showed that PAR-2 activation resulted in degranulation of secretory cells. Ca(2+) imaging using PAR-2 activators demonstrated a two phase increase in [Ca(2+)](i) which was dependent on extracellular Ca(2+) for the second phase, and that the response could be blocked by prior incubation with xestospongin, the IP(3) receptor blocker. The results demonstrated that PAR-2 receptors are present in human sweat gland secretory cells and that these receptors are functionally active and can induce changes associated with secretory events in eccrine glands.

  7. Dehydration and heat-related death: sweat lodge syndrome.

    PubMed

    Byard, Roger W; Riches, Karen J

    2005-09-01

    A 37-year-old Caucasian male died of dehydration and heat exposure following a sweat lodge ceremony in outback Australia. The case demonstrates difficulties that may arise in the determination of the cause of death at autopsy due to nonspecific pathologic findings in hyperthermic deaths. There are also a number of features that characterize this particular "sweat lodge syndrome," including prolonged exposure to elevated temperatures in a relatively uncontrolled environment, failure to ensure adequate hydration, failure to appreciate the significance of loss of consciousness, use of ineffective alternative methods of treatment, and delay in seeking appropriate medical care. Unfortunately, the adoption of rituals and practice from other cultures may not be a completely safe undertaking. Participants in this type of activity must be cognizant of the types of medical problems that may arise. Individuals with significant cardiovascular disease, those who are taking certain medications that predispose to hyperthermia, or those who have had large amounts of alcohol should not enter sweat lodges.

  8. Wearable sweat detector device design for health monitoring and clinical diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming

    2017-06-01

    Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.

  9. Does Replacing Sodium Excreted in Sweat Attenuate the Health Benefits of Physical Activity?

    PubMed

    Turner, Martin J; Avolio, Alberto P

    2016-08-01

    International guidelines suggest limiting sodium intake to 86-100 mmol/day, but average intake exceeds 150 mmol/day. Participants in physical activities are, however, advised to increase sodium intake before, during and after exercise to ensure euhydration, replace sodium lost in sweat, speed rehydration and maintain performance. A similar range of health benefits is attributable to exercise and to reduction in sodium intake, including reductions in blood pressure (BP) and the increase of BP with age, reduced risk of stroke and other cardiovascular diseases, and reduced risk of osteoporosis and dementia. Sweat typically contains 40-60 mmol/L of sodium, leading to approximately 20-90 mmol of sodium lost in one exercise session with sweat rates of 0.5-1.5 L/h. Reductions in sodium intake of 20-90 mmol/day have been associated with substantial health benefits. Homeostatic systems reduce sweat sodium as low as 3-10 mmol/L to prevent excessive sodium loss. "Salty sweaters" may be individuals with high sodium intake who perpetuate their "salty sweat" condition by continual replacement of sodium excreted in sweat. Studies of prolonged high intensity exercise in hot environments suggest that sodium supplementation is not necessary to prevent hyponatremia during exercise lasting up to 6 hr. We examine the novel hypothesis that sodium excreted in sweat during physical activity offsets a significant fraction of excess dietary sodium, and hence may contribute part of the health benefits of exercise. Replacing sodium lost in sweat during exercise may improve physical performance, but may attenuate the long-term health benefits of exercise.

  10. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration

    PubMed Central

    Duan, JinZhuo; Cao, Ning

    2018-01-01

    The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2), titanium alloy (TA2), and 316L stainless steel (316L SS). The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of) the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements. PMID:29677150

  11. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration.

    PubMed

    Ju, Hong; Duan, JinZhuo; Yang, Yuanfeng; Cao, Ning; Li, Yan

    2018-04-20

    The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2), titanium alloy (TA2), and 316L stainless steel (316L SS). The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of) the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements.

  12. Relationship between osmotic pressure of the blood and secretion of sweat

    NASA Technical Reports Server (NTRS)

    Montuori, A.

    1978-01-01

    Experiments with cats show that the thermic secretion of sweat represents a specific case of a general law: The central nervous apparatus that controls the secretion of sweat begins to function when the osmotic pressure of the blood drops below normal.

  13. Cutaneous microdialysis as a novel means of continuously stimulating eccrine sweat glands in vivo.

    PubMed

    Morgan, Caroline J; Friedmann, Peter S; Church, Martin K; Clough, Geraldine F

    2006-06-01

    Previous studies of the pharmacological regulation of sweat gland function in humans have administered agonists or antagonists systemically, by local intradermal injection or by iontophoresis. This has not allowed prolonged or steady-state activation of sweat glands to be examined. In this study, we used the technique of dermal microdialysis to administer pharmacological agents singly and in combination for up to 5 hours. Muscarinic stimulation with pilocarpine nitrate (50 mug ml(-1) to 1.66 mg ml(-1)) produced a sigmoid dose response curve, with maximal sweating (measured as transepidermal water loss) (mean 70 g m(-2) hour(-1)) after 15 minutes. This was sustained at steady-state levels (55 g m(-2) hour(-1)) until perfusion stopped. Perfusion with atropine (0.003 mg ml(-1)) reduced sweating below baseline and blocked pilocarpine-induced sweating completely. Noradrenaline (0.005 mg ml(-1)) induced much lower sweat rates than pilocarpine (56.8+/-1.62 g m(-2) hour(-1) vs 8.2+/-1.2 g m(-2) hour(-1), respectively, P<0.001) and this was unaffected by co-administration of atropine. This method has made it possible to show that sweat glands are capable of sustaining near maximal activity for at least 5 hours. The method has future application in investigation of conditions with disordered sweat gland activity.

  14. [Sodium chloride 0.9%: nephrotoxic crystalloid?].

    PubMed

    Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo

    2016-02-03

    Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials.

  15. Function of human eccrine sweat glands during dynamic exercise and passive heat stress

    NASA Technical Reports Server (NTRS)

    Kondo, N.; Shibasaki, M.; Aoki, K.; Koga, S.; Inoue, Y.; Crandall, C. G.

    2001-01-01

    The purpose of this study was to identify the pattern of change in the density of activated sweat glands (ASG) and sweat output per gland (SGO) during dynamic constant-workload exercise and passive heat stress. Eight male subjects (22.8 +/- 0.9 yr) exercised at a constant workload (117.5 +/- 4.8 W) and were also passively heated by lower-leg immersion into hot water of 42 degrees C under an ambient temperature of 25 degrees C and relative humidity of 50%. Esophageal temperature, mean skin temperature, sweating rate (SR), and heart rate were measured continuously during both trials. The number of ASG was determined every 4 min after the onset of sweating, whereas SGO was calculated by dividing SR by ASG. During both exercise and passive heating, SR increased abruptly during the first 8 min after onset of sweating, followed by a slower increase. Similarly for both protocols, the number of ASG increased rapidly during the first 8 min after the onset of sweating and then ceased to increase further (P > 0.05). Conversely, SGO increased linearly throughout both perturbations. Our results suggest that changes in forearm sweating rate rely on both ASG and SGO during the initial period of exercise and passive heating, whereas further increases in SR are dependent on increases in SGO.

  16. Chloride inhibition of nitrite uptake for non-teleost Actinopterygiian fishes.

    PubMed

    Boudreaux, Perry J; Ferrara, Allyse M; Fontenot, Quenton C

    2007-06-01

    Fish that transport environmental chloride with a gill uptake mechanism (gill epithelial Cl(-)/HCO(3)(-)cotransport exchange system), also transport nitrite into plasma through the same mechanism. Because of the relationship between nitrite uptake and the gill chloride uptake mechanism, nitrite uptake can provide insight regarding the method of chloride uptake for fish. This study was designed to determine if non-teleost fishes concentrate nitrite in their plasma, and to determine if chloride inhibits nitrite uptake in non-teleost fish. To determine if bowfin Amia calva, spotted gar Lepisosteus oculatus, alligator gar Atractosteus spatula, and paddlefish Polyodon spathula concentrate environmental nitrite in their plasma, individuals were exposed to concentrations of 0, 1, 10, or 100 mg/L nitrite-N. After exposure, all species had plasma nitrite-N concentrations greater than environmental levels. To determine if chloride inhibits nitrite uptake for spotted gar, alligator gar, and paddlefish, fish were exposed to 1 mg/L nitrite-N and 20 mg/L chloride as calcium chloride, or to 1 mg/L nitrite-N only. Chloride effectively prevented nitrite from being concentrated in the plasma of all species. It appears that non-teleost fish concentrate nitrite in their plasma via their chloride uptake mechanism and that this is an ancestral characteristic for teleost.

  17. Effects of stimulation technique, anatomical region and time on human sweat lipid mediator profiles.

    USDA-ARS?s Scientific Manuscript database

    Few studies compare sampling protocol effect on sweat composition. Here we evaluate the impact of sweat stimulation mode and site of collection on lipid mediator composition. Sweat from healthy males (n = 7) was collected weekly for three weeks from the volar forearm following either pilocarpine ion...

  18. Prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-metabolized cholinergic agent carbachol.

    PubMed

    Simmers, Phillip; Li, S Kevin; Kasting, Gerald; Heikenfeld, Jason

    2018-01-01

    Continuous non-invasive sampling and sensing of multiple classes of analytes could revolutionize medical diagnostics and wearable technologies, but also remains highly elusive because of the many confounding factors for candidate biofluids such as interstitial fluid, tears, saliva, and sweat. Eccrine sweat biosensing has seen a recent surge in demonstrations of wearable sampling and sensing devices. However, for subjects at rest, access to eccrine sweat is highly limited and unpredictable compared to saliva and tears. Reported here is a prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-metabolized nicotinic cholinergic agonist carbachol. Presented here are detailed measurements of natural baseline sweat rates across multiple days, confirming a clear need for localized sweat stimulation. Iontophoresis was performed with either carbachol or pilocarpine in order to stimulate sweat in subjects at rest. Furthermore, improved methods of quantifying sweat generation rates (nL/min/gland) are demonstrated. In-vivo testing reveals that carbachol stimulation can surpass a major goal of 24-h sweat access, in some cases providing more than an order of magnitude longer duration than stimulation with commonly-used pilocarpine. Also demonstrated is reduction of the traditional iontophoretic dosage for sweat stimulation (<5.25-42mC/cm 2 ). This increases the viability of repeated dosing as demonstrated herein, and for carbachol is as much as 100-1000X less than used for other applications. This work is not only significant for wearable sweat biosensing technology, but could also have broader impact for those studying topical skin products, antiperspirants, textiles and medical adhesives, nerve disorders, the effects of perspiration on skin-health, skin related diseases such as idiopathic pure sudomotor failure and hyperhidrosis, and other skin- and perspiration-related applications. Copyright © 2017 Japanese Society for Investigative Dermatology

  19. Sweat loss prediction using a multi-model approach

    NASA Astrophysics Data System (ADS)

    Xu, Xiaojiang; Santee, William R.

    2011-07-01

    A new multi-model approach (MMA) for sweat loss prediction is proposed to improve prediction accuracy. MMA was computed as the average of sweat loss predicted by two existing thermoregulation models: i.e., the rational model SCENARIO and the empirical model Heat Strain Decision Aid (HSDA). Three independent physiological datasets, a total of 44 trials, were used to compare predictions by MMA, SCENARIO, and HSDA. The observed sweat losses were collected under different combinations of uniform ensembles, environmental conditions (15-40°C, RH 25-75%), and exercise intensities (250-600 W). Root mean square deviation (RMSD), residual plots, and paired t tests were used to compare predictions with observations. Overall, MMA reduced RMSD by 30-39% in comparison with either SCENARIO or HSDA, and increased the prediction accuracy to 66% from 34% or 55%. Of the MMA predictions, 70% fell within the range of mean observed value ± SD, while only 43% of SCENARIO and 50% of HSDA predictions fell within the same range. Paired t tests showed that differences between observations and MMA predictions were not significant, but differences between observations and SCENARIO or HSDA predictions were significantly different for two datasets. Thus, MMA predicted sweat loss more accurately than either of the two single models for the three datasets used. Future work will be to evaluate MMA using additional physiological data to expand the scope of populations and conditions.

  20. Regional differences in sweat rate response of steers to short-term heat stress

    NASA Astrophysics Data System (ADS)

    Scharf, B.; Wax, L. E.; Aiken, G. E.; Spiers, D. E.

    2008-11-01

    Six Angus steers (319 ± 8.5 kg) were assigned to one of two groups (hot or cold exposure) of three steers each, and placed into two environmental chambers initially maintained at 16.5-18.8°C air temperature ( T a). Cold chamber T a was lowered to 8.4°C, while T a within the hot chamber was increased to 32.7°C over a 24-h time period. Measurements included respiration rate, and air and body (rectal and skin) temperatures. Skin temperature was measured at shoulder and rump locations, with determination of sweat rate using a calibrated moisture sensor. Rectal temperature did not change in cold or hot chambers. However, respiration rate nearly doubled in the heat ( P < 0.05), increasing when T a was above 24°C. Skin temperatures at the two locations were highly correlated ( P < 0.05) with each other and with T a. In contrast, sweat rate showed differences at rump and shoulder sites. Sweat rate of the rump exhibited only a small increase with T a. However, sweat rate at the shoulder increased more than four-fold with increasing T a. Increased sweat rate in this region is supported by an earlier report of a higher density of sweat glands in the shoulder compared to rump regions. Sweat rate was correlated with several thermal measurements to determine the best predictor. Fourth-order polynomial expressions of short-term rectal and skin temperature responses to hot and cold exposures produced r values of 0.60, 0.84, and 0.98, respectively. These results suggest that thermal inputs other than just rectal or skin temperature drive the sweat response in cattle.

  1. Influence of sodium chloride concentration on the controlled lactic acid fermentation of "Almagro" eggplants.

    PubMed

    Ballesteros, C; Palop, L; Sánchez, I

    1999-12-01

    The effect of a commercial Lactobacillus starter and sodium chloride concentration on the fermentation of "Almagro" eggplants (Solanum melongena L. var. esculentum depressum) was studied. The results of fermentation using added starter and varying salt concentrations (4, 6, and 10% w/v) in brine were compared with the results of spontaneous fermentation taking place in brine with a salt concentration of 4%. Fresh fruits, medium in size (34-44 g), were used in all cases; all fruits were blanched under identical conditions. Temperature in the fermenters was 32+/-2 degrees C. The results obtained indicate that addition of a suitable starter shortened the fermentation process, provided the salt concentration in the brine did not exceed 6%. In the conditions tested, the eggplants obtained after fermentation were found to be of good quality though somewhat bitter which may explained by the starter employed.

  2. Immunohistochemical evidence suggests intrinsic regulatory activity of human eccrine sweat glands

    PubMed Central

    ZANCANARO, CARLO; MERIGO, FLAVIA; CRESCIMANNO, CATERINA; ORLANDINI, SIMONETTA; OSCULATI, ANTONIO

    1999-01-01

    Immunohistochemistry of normal eccrine sweat glands was performed on paraffin sections of human skin. Immunoreactivity (ir) for neuron specific enolase, S100 protein (S100), regulatory peptides, nitric oxide synthase type I (NOS-I) and choline-acetyltransferase (ChAT) was found in small nerve bundles close to sweat glands. In the glands, secretory cells were labelled with anticytokeratin antibody. Using antibodies to S100, calcitonin gene-related peptide (CGRP) and substance P (SP) a specific distribution pattern was found in secretory cells. Granulated (dark) and parietal (clear) cells were immunopositive for CGRP, and S100 and SP, respectively. Immunoreactivity was diffuse in the cytoplasm for CGRP and S100, and peripheral for SP. Myoepithelial cells were not labelled. Electron microscopy revealed electron dense granules, probably containing peptide, in granulated cells. Using antibodies to NOS-I and ChAT, ir was exclusively found in myoepithelial cells. Immunoreactivity for the atrial natriuretic peptide was absent in sweat glands. These results provide evidence for the presence of both regulatory peptides involved in vasodilation and key enzymes for the synthesis of nitric oxide and acetylcholine in the secretory coil of human sweat glands. It is suggested that human sweat glands are capable of some intrinsic regulation in addition to that carried out by their nerve supply. PMID:10386780

  3. Autosomal recessive hyponatremia due to isolated salt wasting in sweat associated with a mutation in the active site of Carbonic Anhydrase 12.

    PubMed

    Muhammad, Emad; Leventhal, Neta; Parvari, Galit; Hanukoglu, Aaron; Hanukoglu, Israel; Chalifa-Caspi, Vered; Feinstein, Yael; Weinbrand, Jenny; Jacoby, Harel; Manor, Esther; Nagar, Tal; Beck, John C; Sheffield, Val C; Hershkovitz, Eli; Parvari, Ruti

    2011-04-01

    Genetic disorders of excessive salt loss from sweat glands have been observed in pseudohypoaldosteronism type I (PHA) and cystic fibrosis that result from mutations in genes encoding epithelial Na+ channel (ENaC) subunits and the transmembrane conductance regulator (CFTR), respectively. We identified a novel autosomal recessive form of isolated salt wasting in sweat, which leads to severe infantile hyponatremic dehydration. Three affected individuals from a small Bedouin clan presented with failure to thrive, hyponatremic dehydration and hyperkalemia with isolated sweat salt wasting. Using positional cloning, we identified the association of a Glu143Lys mutation in carbonic anhydrase 12 (CA12) with the disease. Carbonic anhydrase is a zinc metalloenzyme that catalyzes the reversible hydration of carbon dioxide to form a bicarbonate anion and a proton. Glu143 in CA12 is essential for zinc coordination in this metalloenzyme and lowering of the protein-metal affinity reduces its catalytic activity. This is the first presentation of an isolated loss of salt from sweat gland mimicking PHA, associated with a mutation in the CA12 gene not previously implicated in human disorders. Our data demonstrate the importance of bicarbonate anion and proton production on salt concentration in sweat and its significance for sodium homeostasis.

  4. Tropical Malaysians and temperate Koreans exhibit significant differences in sweating sensitivity in response to iontophoretically administered acetylcholine

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Beom; Bae, Jun-Sang; Matsumoto, Takaaki; Yang, Hun-Mo; Min, Young-Ki

    2009-03-01

    Natives of the tropics are able to tolerate high ambient temperatures. This results from their long-term residence in hot and often humid tropical climates. This study was designed to compare the peripheral mechanisms of thermal sweating in tropical natives with that of their temperate counterparts. Fifty-five healthy male subjects including 20 native Koreans who live in the temperate Korean climate (Temperate-N) and 35 native tropical Malaysian men that have lived all of their lives in Malaysia (Tropical-N) were enrolled in this study after providing written informed consent to participate. Quantitative sudomotor axon reflex testing after iontophoresis (2 mA for 5 min) with 10% acetylcholine (ACh) was used to determine directly activated (DIR) and axon reflex-mediated (AXR) sweating during ACh iontophoresis. The sweat rate, activated sweat gland density, sweat gland output per single gland activated, and oral and skin temperature changes were measured. The sweat onset time of AXR (nicotinic-receptor-mediated) was 56 s shorter in the Temperate-N than in the Tropical-N subjects ( P < 0.0001). The nicotinic-receptor-mediated sweating activity AXR (1), and the muscarinic-receptor-mediated sweating activity DIR, in terms of sweat volume, were 103% and 59% higher in the Temperate-N compared to the Tropical-N subjects ( P < 0.0001). The Temperate-N group also had a 17.8% ( P < 0.0001) higher active sweat gland density, 35.4% higher sweat output per gland, 0.24°C higher resting oral temperature, and 0.62°C higher resting forearm skin temperature compared to the Tropical-N subjects ( P < 0.01). ACh iontophoresis did not influence oral temperature, but increased skin temperature near where the ACh was administered, in both groups. These results suggest that suppressed thermal sweating in the Tropical-N subjects was, at least in part, due to suppressed sweat gland sensitivity to ACh through both recruitment of active sweat glands and the sweat gland output per each gland

  5. A Quick Reference on Chloride.

    PubMed

    Bohn, Andrea A; de Morais, Helio Autran

    2017-03-01

    Chloride is an essential element, playing important roles in digestion, muscular activity, regulation of body fluids, and acid-base balance. As the most abundant anion in extracellular fluid, chloride plays a major role in maintaining electroneutrality. Chloride is intrinsically linked to sodium in maintaining osmolality and fluid balance and has an inverse relationship with bicarbonate in maintaining acid-base balance. It is likely because of these close ties that chloride does not get the individual attention it deserves; we can use these facts to simplify and interpret changes in serum chloride concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Thermogenic and psychogenic recruitment of human eccrine sweat glands: Variations between glabrous and non-glabrous skin surfaces.

    PubMed

    Machado-Moreira, Christiano A; Taylor, Nigel A S

    2017-04-01

    Human eccrine sweat-gland recruitment and secretion rates were investigated from the glabrous (volar) and non-glabrous hand surfaces during psychogenic (mental arithmetic) and thermogenic stimuli (mild hyperthermia). It was hypothesised that these treatments would activate glands from both skin surfaces, with the non-thermal stimulus increasing secretion rates primarily by recruiting more sweat glands. Ten healthy men participated in two seated, resting trials in temperate conditions (25-26°C). Trials commenced under normothermic conditions during which the first psychogenic stress was applied. That was followed by passive heating (0.5°C mean body temperature elevation) and thermal clamping, with a second cognitive challenge then applied. Sudomotor activity was evaluated from both hands, with colourimetry used to identify activated sweat glands, skin conductance to determine the onset of precursor sweating and ventilated sweat capsules to measure rates of discharged sweating. From glandular activation and sweat rate data, sweat-gland outputs were derived. These psychogenic and thermogenic stimuli activated sweat glands from both the glabrous and non-glabrous skin surfaces, with the former dominating at the glabrous skin and the latter at the non-glabrous surface. Indeed, those stimuli individually accounted for ~90% of the site-specific maximal number of activated sweat glands observed when both stimuli were simultaneously applied. During the normothermic psychological stimulation, sweating from the glabrous surface was elevated via a 185% increase in the number of activated glands within the first 60s. The hypothetical mechanism for this response may involve the serial activation of additional eccrine sweat glands during the progressive evolution of psychogenic sweating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of Solution pH and Chloride Concentration on Akaganeite Precipitation: Implications for Akaganeite Formation on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. A.; Rampe, E. B.; Clark, J. V.; Archer, P. D., Jr.; Morris, R. V.; Ming, D. V.

    2017-01-01

    Akaganeite (Beta-FeOOH, chloride-containing Fe(III) (hydr)oxide) has been recently discovered on the surface of Mars by the Mars Science Laboratory Curiosity rover in Yellowknife Bay, Gale Crater, Mars [1] and from orbit by the Mars Reconnaissance Orbiter in Robert Sharp crater and Antoniadi basin [2]. However, the mechanism and aqueous environmental conditions of akaganeite formation (e.g., pH and chloride concentration) remain unknown. We have investigated formation of akaganeite through Fe(III) hydrolysis at variable initial pH and chloride concentrations. The formed Fe(III) precipitates were characterized by instruments similar to instruments on Mars robotic spacecraft. Syntheses were performed through hydrolysis of Fe(III) perchlorate with addition of Na cloride (Fe/Cl ratio between 0.5 and 5) and at initial pH of 1.5, 2, 4, 6 and 8 at 90degC. X-ray diffraction analysis revealed formation of akaganeite alone or in mixture with goethite, hematite and ferrihydrite at all initial pHs and Fe/Cl ratio between 0.5 and 2 while akaganeite precipitated only at pH 1.5 and Fe/Cl greater than2. Chloride content of akaganeite was affected by initial pH and decreased from 20-60 mg/g at pH 1.5 to less than 0.1 mg/g at pH 8. The synthesized akaganeite samples were also characterized by Mössbauer and infrared spectroscopy and volatiles were analysed by thermal and evolved gas analysis. The obtained characterization data will be compared to published data from rover and orbital missions [1-3] to determine martian akaganeite composition, crystallinity and formation conditions.

  8. Evaluation of protective ensemble thermal characteristics through sweating hot plate, sweating thermal manikin, and human tests.

    PubMed

    Kim, Jung-Hyun; Powell, Jeffery B; Roberge, Raymond J; Shepherd, Angie; Coca, Aitor

    2014-01-01

    The purpose of this study was to evaluate the predictive capability of fabric Total Heat Loss (THL) values on thermal stress that Personal Protective Equipment (PPE) ensemble wearers may encounter while performing work. A series of three tests, consisting of the Sweating Hot Plate (SHP) test on two sample fabrics and the Sweating Thermal Manikin (STM) and human performance tests on two single-layer encapsulating ensembles (fabric/ensemble A = low THL and B = high THL), was conducted to compare THL values between SHP and STM methods along with human thermophysiological responses to wearing the ensembles. In human testing, ten male subjects performed a treadmill exercise at 4.8 km and 3% incline for 60 min in two environmental conditions (mild = 22°C, 50% relative humidity (RH) and hot/humid = 35°C, 65% RH). The thermal and evaporative resistances were significantly higher on a fabric level as measured in the SHP test than on the ensemble level as measured in the STM test. Consequently the THL values were also significantly different for both fabric types (SHP vs. STM: 191.3 vs. 81.5 W/m(2) in fabric/ensemble A, and 909.3 vs. 149.9 W/m(2) in fabric/ensemble B (p < 0.001). Body temperature and heart rate response between ensembles A and B were consistently different in both environmental conditions (p < 0.001), which is attributed to significantly higher sweat evaporation in ensemble B than in A (p < 0.05), despite a greater sweat production in ensemble A (p < 0.001) in both environmental conditions. Further, elevation of microclimate temperature (p < 0.001) and humidity (p < 0.01) was significantly greater in ensemble A than in B. It was concluded that: (1) SHP test determined THL values are significantly different from the actual THL potential of the PPE ensemble tested on STM, (2) physiological benefits from wearing a more breathable PPE ensemble may not be feasible with incremental THL values (SHP test) less than approximately 150-200 W·m(2), and (3) the

  9. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    PubMed

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  10. Transformation of methyltin chlorides and stannic chloride under simulated landfill conditions.

    PubMed

    Björn, Annika; Hörsing, Maritha; Ejlertsson, Jörgen; Svensson, Bo H

    2011-12-01

    There is increasing concern regarding the fate of methyltins in the environment, particularly since large amounts of polyvinyl chloride (PVC) plastics are deposited in landfills. The potential transformation of methyltin chlorides and stannic chloride in landfills was investigated, by incubating the target substances at concentrations relevant to landfill conditions (100 and 500 µg Sn L(-1)). The amounts of methane formed in all treatment bottles, and controls, were measured to evaluate the general microbial activity of the inocula and possible effects of methyltins on the degradation of organic matter. The methyltins and stannic chloride were found to have no significant inhibitory effects on the activity of landfill micro-organisms, and the methanol used to disperse the tin compounds was completely degraded. In some experimental bottles, the methanol degradation gave rise to larger methane yields than expected, which was attributed to enhanced degradation of the waste material. Alkyltin analyses showed that monomethyltin trichloride at an initial concentration of 500 µg Sn L(-1) promoted methylation of inorganic tin present in the inoculum. No methylation activities were detected in the incubations with 100 µg Sn L(-1) methyltin chlorides (mono-, di- or tri-methyltin), but demethylation occurred instead. Levels of soluble inorganic tin increased during the incubation period, due partly to demethylation and partly to a release of tin from the waste inocula.

  11. Three-dimensional cell shapes and arrangements in human sweat glands as revealed by whole-mount immunostaining

    PubMed Central

    Kurata, Ryuichiro; Futaki, Sugiko; Nakano, Itsuko; Fujita, Fumitaka; Tanemura, Atsushi; Murota, Hiroyuki; Katayama, Ichiro; Okada, Fumihiro

    2017-01-01

    Because sweat secretion is facilitated by mechanical contraction of sweat gland structures, understanding their structure-function relationship could lead to more effective treatments for patients with sweat gland disorders such as heat stroke. Conventional histological studies have shown that sweat glands are three-dimensionally coiled tubular structures consisting of ducts and secretory portions, although their detailed structural anatomy remains unclear. To better understand the details of the three-dimensional (3D) coiled structures of sweat glands, a whole-mount staining method was employed to visualize 3D coiled gland structures with sweat gland markers for ductal luminal, ductal basal, secretory luminal, and myoepithelial cells. Imaging the 3D coiled gland structures demonstrated that the ducts and secretory portions were comprised of distinct tubular structures. Ductal tubules were occasionally bent, while secretory tubules were frequently bent and formed a self-entangled coiled structure. Whole-mount staining of complex coiled gland structures also revealed the detailed 3D cellular arrangements in the individual sweat gland compartments. Ducts were composed of regularly arranged cuboidal shaped cells, while secretory portions were surrounded by myoepithelial cells longitudinally elongated along entangled secretory tubules. Whole-mount staining was also used to visualize the spatial arrangement of blood vessels and nerve fibers, both of which facilitate sweat secretion. The blood vessels ran longitudinally parallel to the sweat gland tubules, while nerve fibers wrapped around secretory tubules, but not ductal tubules. Taken together, whole-mount staining of sweat glands revealed the 3D cell shapes and arrangements of complex coiled gland structures and provides insights into the mechanical contraction of coiled gland structures during sweat secretion. PMID:28636607

  12. Influence of Temperature and Chloride Concentration on Passivation Mechanism and Corrosion of a DSS2209 Welded Joint

    NASA Astrophysics Data System (ADS)

    Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine

    2016-10-01

    The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.

  13. Evidence for β-adrenergic modulation of sweating during incremental exercise in habitually trained males.

    PubMed

    Amano, Tatsuro; Shitara, Yosuke; Fujii, Naoto; Inoue, Yoshimitsu; Kondo, Narihiko

    2017-07-01

    The aim of the present study was to determine the β-adrenergic contribution to sweating during incremental exercise in habitually trained males. Nine habitually trained and 11 untrained males performed incremental cycling until exhaustion (20 W/min). Bilateral forearm sweat rates (ventilated capsule) were measured at two skin sites that were transdermally administered via iontophoresis with either 1% propranolol (Propranolol, a nonselective β-adrenergic receptor antagonist) or saline (Control). The sweat rate was evaluated as a function of both relative (percentage of maximum workload) and absolute exercise intensities. The sweat rate at the Propranolol site was lower than the control during exercise at 80 (0.57 ± 0.21 and 0.45 ± 0.19 mg·cm -2 ·min -1 for Control and Propranolol, respectively) and 90% (0.74 ± 0.22 and 0.65 ± 0.17 mg·cm -2 ·min -1 , respectively) of maximum workload in trained males (all P < 0.05). By contrast, no between-site differences in sweat rates were observed in untrained counterparts (all P > 0.05). At the same absolute intensity, higher sweat rates on the control site were observed in trained males relative to the untrained during exercise at 160 (0.23 ± 0.20 and 0.04 ± 0.05 mg·cm -2 ·min -1 for trained and untrained, respectively) and 180 W (0.40 ± 0.20 and 0.13 ± 0.13 mg·cm -2 ·min -1 , respectively) (all P < 0.05), whereas this between-group difference was not observed at the Propranolol site (all P > 0.05). We show that the β-adrenergic mechanism does modulate sweating during exercise at a submaximal high relative intensity in habitually trained males. The β-adrenergic mechanism may in part contribute to the greater sweat production in habitually trained males than in untrained counterparts during exercise. NEW & NOTEWORTHY We demonstrated for the first time that the β-adrenergic mechanism does modulate sweating (i.e., β-adrenergic sweating) during exercise using a localized

  14. A Proteomic Analysis of Eccrine Sweat: Implications for the Discovery of Schizophrenia Biomarker Proteins

    PubMed Central

    Raiszadeh, Michelle M.; Ross, Mark M.; Russo, Paul S.; Schaepper, Mary Ann H.; Zhou, Weidong; Deng, Jianghong; Ng, Daniel; Dickson, April; Dickson, Cindy; Strom, Monica; Osorio, Carolina; Soeprono, Thomas; Wulfkuhle, Julia D.; Kabbani, Nadine; Petricoin, Emanuel F.; Liotta, Lance A.; Kirsch, Wolff M.

    2012-01-01

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) and multiple reaction monitoring mass spectrometry (MRM-MS) proteomics analyses were performed on eccrine sweat of healthy controls, and the results were compared with those from individuals diagnosed with schizophrenia (SZ). This is the first large scale study of the sweat proteome. First, we performed LC-MS/MS on pooled SZ samples and pooled control samples for global proteomics analysis. Results revealed a high abundance of diverse proteins and peptides in eccrine sweat. Most of the proteins identified from sweat samples were found to be different than the most abundant proteins from serum, which indicates that eccrine sweat is not simply a plasma transudate, and may thereby be a source of unique disease-associated biomolecules. A second independent set of patient and control sweat samples were analyzed by LC-MS/MS and spectral counting to determine qualitative protein differential abundances between the control and disease groups. Differential abundances of selected proteins, initially determined by spectral counting, were verified by MRM-MS analyses. Seventeen proteins showed a differential abundance of approximately two-fold or greater between the SZ pooled sample and the control pooled sample. This study demonstrates the utility of LC-MS/MS and MRM-MS as a viable strategy for the discovery and verification of potential sweat protein disease biomarkers. PMID:22256890

  15. The effect of pH and chloride concentration on the stability and antimicrobial activity of chlorine-based sanitizers.

    PubMed

    Waters, Brian W; Hung, Yen-Con

    2014-04-01

    Chlorinated water and electrolyzed oxidizing (EO) water solutions were made to compare the free chlorine stability and microbicidal efficacy of chlorine-containing solutions with different properties. Reduction of Escherichia coli O157:H7 was greatest in fresh samples (approximately 9.0 log CFU/mL reduction). Chlorine loss in "aged" samples (samples left in open bottles) was greatest (approximately 40 mg/L free chlorine loss in 24 h) in low pH (approximately 2.5) and high chloride (Cl(-) ) concentrations (greater than 150 mg/L). Reduction of E. coli O157:H7 was also negatively impacted (<1.0 log CFU/mL reduction) in aged samples with a low pH and high Cl(-) . Higher pH values (approximately 6.0) did not appear to have a significant effect on free chlorine loss or numbers of surviving microbial cells when fresh and aged samples were compared. This study found chloride levels in the chlorinated and EO water solutions had a reduced effect on both free chlorine stability and its microbicidal efficacy in the low pH solutions. Greater concentrations of chloride in pH 2.5 samples resulted in decreased free chlorine stability and lower microbicidal efficacy. © 2014 Institute of Food Technologists®

  16. Assessing the impact of egg sweating on Salmonella Enteritidis penetration into shell eggs.

    PubMed

    Gradl, Janet A; Curtis, Patricia A; Jones, Deana R; Anderson, Kenneth E

    2017-07-01

    Salmonella Enteritidis (SE) prevalence in eggs is a major concern to the egg industry. Some research has shown that egg sweating can increase Salmonella penetration into egg contents when refrigerated eggs are moved to a warmer temperature. This occurs when eggs are tempered before wash, to minimize thermal cracks. The effect of egg sweating on SE penetration into shell eggs over a 6 week storage period at 4°C was assessed. A 2 × 2 factorial of SE inoculation and egg sweating was utilized. Treatments included (SES) nalidixic acid (NA)-resistant SE inoculated and sweated, (SENS) NA-resistant SE inoculated and not sweated, (NSES) buffered peptone water (BPW) inoculated and sweated, and (NSENS) BPW inoculated and not sweated. Eggs were inoculated with 108 SE. Eggs formed condensation for approximately 17 min in a 32°C incubator. Shell rinse, shell emulsion, and egg contents were sampled then enumerated and assessed for prevalence of SE over a 6 wk storage period at 4°C. After wk 1, the SENS shell rinse had higher SE counts (0.32 log10 CFU/mL) than the other 3 treatments, where no SE was enumerated. A significant week by treatment interaction was found for the shell rinse SE detection (P < 0.05). In subsequent weeks, no SE counts were obtained from the egg shell rinse, shell emulsion, or egg contents. The SENS shell rinses had significantly higher SE prevalence than the SES rinses in weeks 1 (100% vs. 34.3%), 2 (57.6% vs. 22.2%), and 3 (38.2% vs. 11.1%) (P < 0.05). In samples from weeks 4, 5, and 6, there was no difference in SE prevalence between SES and SENS. Egg sweating did not increase SE penetration into the shell emulsion across treatment or week (P < 0.05). The decreasing trend of SE prevalence obtained over the study period indicate that refrigeration is effective at inhibiting SE growth. These results indicate that egg sweating occurring under common US egg handling practices is not harmful to egg safety. © 2017 Poultry Science Association Inc.

  17. Imaging calcium carbonate distribution in human sweat pore in vivo using nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xueqin; Gasecka, Alicja; Formanek, Florian; Galey, Jean-Baptiste; Rigneault, Hervé

    2015-03-01

    Nonlinear microscopies, including two-photon excited autofluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS), were used to study individual human sweat pore morphology and topically applied antiperspirant salt penetration inside sweat pore, in vivo on human palms. Sweat pore inner morphology in vivo was imaged up to the depth of 100 μm by TPEF microscopy. The 3D penetration and distribution of "in situ calcium carbonate" (isCC), an antiperspirant salt model, was investigated using CARS microscopy.

  18. Freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems.

    PubMed

    Kajiwara, K; Motegi, A; Murase, N

    2001-01-01

    The freeze-thawing behaviour of highly concentrated aqueous alkali chloride-glucose systems was investigated by differential scanning calorimetry (DSC). In the aqueous NaCl-glucose solution system, single or double glass transitions followed by the corresponding devitrification exotherms were observed during rewarming. In the aqueous KCl-glucose solution system, on the other hand, a single glass transition followed by an exotherm was observed during rewarming. The presence of double glass transitions observed for a certain composition of the aqueous NaCl-glucose solution was taken as an evidence for the liquid-liquid immiscibility at low temperatures. Two kinds of crystallisation accompanied by exotherms during rewarming were identified by X-ray diffraction as ice and ice/NaCl x 2H(2)O, or ice/KCl eutectic component.

  19. 5α-Androst-16-en-3α-ol β-D-glucuronide, precursor of 5α-androst-16-en-3α-ol in human sweat.

    PubMed

    Starkenmann, Christian; Mayenzet, Fabienne; Brauchli, Robert; Troccaz, Myriam

    2013-12-01

    5α-Androst-16-en-3α-ol (α-androstenol) is an important contributor to human axilla sweat odor. It is assumed that α-andostenol is excreted from the apocrine glands via a H2 O-soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2 O-soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α-androstenol, β-androstenol sulfates, 5α-androsta-5,16-dien-3β-ol (β-androstadienol) sulfate, α-androstenol β-glucuronide, α-androstenol α-glucuronide, β-androstadienol β-glucuronide, and α-androstenol β-glucuronide furanose. The occurrence of α-androstenol β-glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative-ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α-androstenol was observed after incubation of the sterile human sweat or α-androstenol β-glucuronide with a commercial glucuronidase enzyme, the urine-isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β-glucuronidase activities. We demonstrated that if α- and β-androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2 O-soluble precursor of α-androstenol in apocrine secretion should be a β-glucuronide. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Proteomic profiling of eccrine sweat reveals its potential as a diagnostic biofluid for active tuberculosis.

    PubMed

    Adewole, Olanisun Olufemi; Erhabor, Greg Efosa; Adewole, Temitayo Oluwatoyin; Ojo, Abiodun Oluwasesan; Oshokoya, Harriet; Wolfe, Lisa M; Prenni, Jessica E

    2016-05-01

    Excessive sweating is a common symptom of the disease and an unexplored biofluid for TB diagnosis; we conducted a proof-of-concept study to identify potential diagnostic biomarkers of active TB in eccrine sweat. We performed a global proteomic profile of eccrine sweat sampled from patients with active pulmonary TB, other lung diseases (non-TB disease), and healthy controls. A comparison of proteomics between Active-TB, Non-TB, and Healthy Controls was done in search for potential biomarkers of active TB. Sweat specimens were pooled from 32 active TB patients, 27 patients with non-TB diseases, and 24 apparently healthy controls, all were negative for HIV. Over 100 unique proteins were identified in the eccrine sweat of all three groups. Twenty-six proteins were exclusively detected in the sweat of patients with active TB while the remaining detected proteins overlapped between three groups. Gene ontology evaluation indicated that the proteins detected uniquely in sweat of active TB patients were involved in immune response and auxiliary protein transport. Gene products for cellular components (e.g. ribosomes) were detected only in active TB patients. Data are available via ProteomeXchange with identifier PXD003224. Proteomics of sweat from active TB patients is a viable approach for biomarker identification, which could be used to develop a nonsputum-based test for detection of active TB. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module

    PubMed Central

    Lee, Hyunjae; Song, Changyeong; Hong, Yong Seok; Kim, Min Sung; Cho, Hye Rim; Kang, Taegyu; Shin, Kwangsoo; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-01-01

    Electrochemical analysis of sweat using soft bioelectronics on human skin provides a new route for noninvasive glucose monitoring without painful blood collection. However, sweat-based glucose sensing still faces many challenges, such as difficulty in sweat collection, activity variation of glucose oxidase due to lactic acid secretion and ambient temperature changes, and delamination of the enzyme when exposed to mechanical friction and skin deformation. Precise point-of-care therapy in response to the measured glucose levels is still very challenging. We present a wearable/disposable sweat-based glucose monitoring device integrated with a feedback transdermal drug delivery module. Careful multilayer patch design and miniaturization of sensors increase the efficiency of the sweat collection and sensing process. Multimodal glucose sensing, as well as its real-time correction based on pH, temperature, and humidity measurements, maximizes the accuracy of the sensing. The minimal layout design of the same sensors also enables a strip-type disposable device. Drugs for the feedback transdermal therapy are loaded on two different temperature-responsive phase change nanoparticles. These nanoparticles are embedded in hyaluronic acid hydrogel microneedles, which are additionally coated with phase change materials. This enables multistage, spatially patterned, and precisely controlled drug release in response to the patient’s glucose level. The system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus. PMID:28345030

  2. Sweating is greater in NCAA football linemen independently of heat production.

    PubMed

    Deren, Tomasz M; Coris, Eric E; Bain, Anthony R; Walz, Steve M; Jay, Ollie

    2012-02-01

    The study's purpose was to investigate whether differences in local sweat rates on the upper body between American football linemen (L) and backs (B) exist independently of differences in metabolic heat production. Twelve NCAA Division I American football players (6 linemen (mass = 141.6 ± 6.5 kg, body surface area (BSA) = 2.67 ± 0.08 m2) and 6 backs (mass = 88.1 ± 13.4 kg, BSA = 2.11 ± 0.19 m2)) cycled at a fixed metabolic heat production per unit BSA of 350 W·m(-2) for 60 min in a climatic chamber (t(db) [dry bulb temperature] = 32.4°C ± 1.0°C, t(wb) [wet bulb temperature] = 26.3°C ± 0.6°C, v [air velocity] = 0.9 ± 0.1 m·s(-1)). Local sweat rates on the head, arm, shoulder, lower back, and chest were measured after 10, 30, and 50 min of exercise. Core temperature, mean skin temperature, and HR were measured throughout exercise. Because metabolic heat production per unit surface area was fixed between participants, the rate of evaporation required for heat balance was similar (L = 261 ± 35 W·m(-2), B = 294 ± 30 W·m(-2), P = 0.11). However, local sweat rates on the head, arm, shoulder, and chest were all significantly greater (P < 0.05) in linemen at all time points, and end-exercise core temperature was significantly greater (P = 0.033) in linemen (38.5°C ± 0.4°C) relative to backs (38.0°C ± 0.2°C) despite a ∼25% lower heat production per unit mass. The change in mean skin temperature from rest was greater in linemen (P < 0.001) after 15, 30, 45, and 60 min, and HR was greater in linemen for the last 30 min of exercise. Football linemen sweat significantly more on the torso and head than football backs independently of any differences in metabolic heat production per unit BSA and therefore the evaporative requirements for heat balance. Despite greater sweating, linemen demonstrated significantly greater elevations in core temperature suggesting that sweating efficiency (i.e., the proportion of sweat that evaporates) was much lower in

  3. Sunscreen Use and Sweat Production in Men and Women

    PubMed Central

    Aburto-Corona, Jorge; Aragón-Vargas, Luis

    2016-01-01

    Context: Sunscreen lotions are important to protect the skin during outdoor exercise, but they may interfere with sweating. Objective: To measure the effect of 2 water-resistant sunscreens on local sweat production in men and women exercising in the heat and to compare those effects with the expected inhibition resulting from the use of an antiperspirant. Design: Randomized crossover study. Setting: Exercise in the heat (ambient temperature = 30.2°C ± 0.4°C dry bulb and 58% ± 4.3% relative humidity) in a controlled-environment laboratory. Patients or Other Participants: Twenty physically active, apparently healthy college students, 10 men (age = 22.5 ± 2.8 years, height = 1.771 ± 0.069 m, mass = 70.2 ± 11.0 kg) and 10 women (age = 22.2 ± 3.2 years, height = 1.625 ± 0.075 m, mass = 57.7 ± 7.9 kg). Intervention(s): With sweat-collection patches applied to their right and left scapular regions, the participants performed 2 exercise sessions on consecutive days. We assigned skin treatments (antiperspirant; organic chemical sun filter, sunscreen A; inorganic physical sun block, sunscreen B; no lotion) randomly to side and session. Participants pedaled at 79% ± 1% of maximum heart rate for 20 minutes in the heat. Main Outcome Measure(s): Scapular localized sweat rate. Results: No baseline, environmental, or exercise condition was different among skin treatments. Scapular localized sweat rate was lower for the antiperspirant treatment (88.3 μL/min·dm2; 95% confidence interval [CI] = 82.0, 94.7 μL/min·dm2) and the inorganic physical sun block (sunscreen B) treatment (99.3 μL/min·dm2; 95% CI = 93.1, 105.5 μL/min·dm2) than for the organic chemical sun filter (sunscreen A) treatment (114.8 μL/min·dm2; 95% CI = 108.8, 120.6 μL/min·dm2) or the no-lotion treatment (122.6 μL/min·dm2; 95% CI = 116.2, 129.0 μL/min·dm2; P < .01). Conclusions: The inorganic physical sun block, sunscreen B, hindered effective sweating to the same extent as the antiperspirant

  4. Prolonged head-down tilt exposure reduces maximal cutaneous vasodilator and sweating capacity in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Shibasaki, M.; Wilson, T. E.; Cui, J.; Levine, B. D.

    2003-01-01

    Cutaneous vasodilation and sweat rate are reduced during a thermal challenge after simulated and actual microgravity exposure. The effects of microgravity exposure on cutaneous vasodilator capacity and on sweat gland function are unknown. The purpose of this study was to test the hypothesis that simulated microgravity exposure, using the 6 degrees head-down tilt (HDT) bed rest model, reduces maximal forearm cutaneous vascular conductance (FVC) and sweat gland function and that exercise during HDT preserves these responses. To test these hypotheses, 20 subjects were exposed to 14 days of strict HDT bed rest. Twelve of those subjects exercised (supine cycle ergometry) at 75% of pre-bed rest heart rate maximum for 90 min/day throughout HDT bed rest. Before and after HDT bed rest, maximal FVC was measured, via plethysmography, by heating the entire forearm to 42 degrees C for 45 min. Sweat gland function was assessed by administering 1 x 10(-6) to 2 M acetylcholine (9 doses) via intradermal microdialysis while simultaneously monitoring sweat rate over the microdialysis membranes. In the nonexercise group, maximal FVC and maximal stimulated sweat rate were significantly reduced after HDT bed rest. In contrast, these responses were unchanged in the exercise group. These data suggest that 14 days of simulated microgravity exposure, using the HDT bed rest model, reduces cutaneous vasodilator and sweating capacity, whereas aerobic exercise training during HDT bed rest preserves these responses.

  5. Measurements of clothing evaporative resistance using a sweating thermal manikin: an overview

    PubMed Central

    WANG, Faming

    2017-01-01

    Evaporative resistance has been widely used to describe the evaporative heat transfer property of clothing. It is also a critical variable in heat stress models for predicting human physiological responses in various environmental conditions. At present, sweating thermal manikins provide a fast and cost-effective way to determine clothing evaporative resistance. Unfortunately, the measurement repeatability and reproducibility of evaporative resistance are rather low due to the complicated moisture transfer processes through clothing. This review article presents a systematical overview on major influential factors affecting the measurement precision of clothing evaporative resistance measurements. It also illustrates the state-of-the-art knowledge on the development of test protocol to measure clothing evaporative resistance by means of a sweating manikin. Some feasible and robust test procedures for measurement of clothing evaporative resistance using a sweating manikin are described. Recommendations on how to improve the measurement accuracy of clothing evaporative resistance are addressed and expected future trends on development of advanced sweating thermal manikins are finally presented. PMID:28566566

  6. Realistic facial expression of virtual human based on color, sweat, and tears effects.

    PubMed

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics.

  7. Realistic Facial Expression of Virtual Human Based on Color, Sweat, and Tears Effects

    PubMed Central

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics. PMID:25136663

  8. Increase in dermcidin-derived peptides in sweat of patients with atopic eczema caused by a humorous video.

    PubMed

    Kimata, Hajime

    2007-01-01

    Dermcidin (DCD)-derived peptide is an antimicrobial peptide produced by the sweat glands. However, the levels of DCD-derived peptide in sweat were decreased in patients with atopic eczema (AE). The effect of viewing a humorous video on the levels of DCD-derived peptide was studied. Twenty patients with AE viewed an 87-min humorous video (Modern Times, featuring Charlie Chaplin). Just before and immediately after viewing, sweat was collected, and the levels of DCD-derived peptide and total protein in sweat were measured. Viewing a humorous video increased the levels of DCD-derived peptide without affecting the levels of total protein in sweat. Viewing a humorous video increased DCD-derived peptide in sweat of patients with AE, and thus, it may be helpful in the treatment of skin infection of AE.

  9. In vivo single human sweat gland activity monitoring using coherent anti-Stokes Raman scattering and two-photon excited autofluorescence microscopy.

    PubMed

    Chen, X; Gasecka, P; Formanek, F; Galey, J-B; Rigneault, H

    2016-04-01

    Eccrine sweat secretion is of central importance for control of body temperature. Although the incidence of sweat gland dysfunction might appear of minor importance, it can be a real concern for people with either hypohidrosis or hyperhidrosis. However, sweat gland function remains relatively poorly explored. To investigate the function of single human sweat glands. We describe a new approach for noninvasive imaging of single sweat gland activity in human palms in vivo up to a depth of 100 μm, based on nonlinear two-photon excited autofluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS). These techniques appear to be useful compared with approaches already described for imaging single sweat gland activity, as they allow better three-dimensional spatial resolution of sweat pore inner morphology and real-time monitoring of individual sweat events. By filling the sweat pore with oil and tuning the CARS contrast at 2845 cm(-1) , we imaged the ejection of sweat droplets from a single sweat gland when oil is pushed out by sweat flow. On average, sweat events lasted for about 30 s every 3 min under the conditions studied. On the other hand, about 20% of sweat glands were found inactive. TPEF and CARS were also used to study, at the single pore level, the antiperspirant action of aluminium chlorohydrate (ACH) and to reveal, for the first time in vivo, the formation of a plug at the pore entrance, in agreement with reported ACH antiperspirant mechanisms. Although data were acquired on human palms, these techniques show great promise for a better understanding of sweat secretion physiology and should be helpful to improve the efficacy of antiperspirant formulations. © 2015 British Association of Dermatologists.

  10. Frequency of resonance of human sweat duct in different modes of operation

    NASA Astrophysics Data System (ADS)

    Tripathi, Saroj R.; Takahashi, Shogo; Kinumura, Kento; Kawase, Kodo

    2018-02-01

    Recently, some studies have demonstrated that the sweat ducts present in the skin play a significant role in terahertz (THz) wave interaction with human beings. It was reported that the sweat ducts act as a low-Q-factor helical antenna due to their helical structure, and resonate in the sub-terahertz frequency range according to their structural parameters, such as helix diameter and helix length. According to the antenna theory, a helical antenna resonates in two different modes of operation known as normal mode and axial mode and the dimension of the helix plays a key role to determine the frequency of resonance. Therefore, here we performed the optical coherence tomography (OCT) of number of human subjects on their palm and foot to investigate the density, distribution and morphological features of sweat ducts. Moreover, we calculated the dielectric properties of human skin using terahertz time domain spectroscopy. Based on the structural parameters of human sweat ducts and its THz dielectric properties of surrounding medium, we computed the frequency of resonance of sweat duct in different modes of operation and we found that these ducts resonate in subterahertz frequency region. We believe that these findings will facilitate further investigation of the THz-skin interaction and provide guidelines for safety levels with respect to human exposure to electromagnetic waves at these frequencies.

  11. Use of bromide:Chloride ratios to differentiate potential sources of chloride in a shallow, unconfined aquifer affected by brackish-water intrusion

    USGS Publications Warehouse

    Andreasen, D.C.; Fleck, W.B.

    1997-01-01

    Brackish water from Chesapeake Bay and its tributaries has entered the Aquia aquifer in east-central Anne Arundel County, Maryland, USA. This determination was made based on chloride analyses of water samples collected in wells screened in the Aquia aquifer between October 1988 and May 1989. The Aquia aquifer, which is composed of fine- to medium-grained sand, is a shallow, unconfined aquifer in this area. Land use is primarily urban, consisting of a mixture of residential and light commercial areas. Associated with the urban setting is the potential for chloride contamination to enter the Aquia aquifer from anthropogenic sources, such as residential septic-tank effluent, leaky public sewer lines, road-deicing salt, stormwater infiltration basins, and domestic water-conditioning recharge effluent. In order to map the distribution of bay-water intrusion in the Aquia aquifer, chloride derived from Chesapeake Bay was differentiated from chloride derived from anthropogenic sources by comparing the ratio of dissolved bromide to dissolved chloride (bromide:chloride) in groundwater to the distinctive ratio in Chesapeake Bay water. Two additional factors considered in determining the source of the chloride were nitrogen concentrations and well-screen positions of sampled wells in relation to the estimated depth of the fresh-water/brackish-water interface. Of 36 Aquia-aquifer water samples with chloride concentrations greater than 30 mg/L, 22 had bromide:chloride ratios similar to the ratio in Chesapeake Bay water, an indication that bay water is the primary source of the chloride. Of the other 14 samples with bromide:chloride ratios dissimilar to the ratio in Chesapeake Bay water, seven were from wells where screen positions were substantially above the estimated fresh-water/brackish-water interface. Three of these samples had nitrogen concentrations (as nitrite plus nitrate) greater than 3.0 mg/L, an indication that chloride in these groundwater samples comes from

  12. THE EXCRETION OF Na$sup 22$ IN SWEAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigel, H.W.; Parsons, J.; Elrick, H.

    A new method for measuring sodium excretion in sweat, utilizing Na/sup 22/, is described. The physical characteristics of the radioisotope are very favorable and the test procedure is simple. The method has been applied to 50 control subjects, 20 patients with chronic lung disease, and 4 patients with fibrocystic disease of the pancreas. The results show a significant elevation of sweat Na excretion in patients with chronic lung disease, but not to the degree seen in patients with cystic fibrosis of the pancreas. These findings are compatible with the concept that some patients with chronic lung disease may have amore » form of pancreatic fibrosis not clinically detectable. (auth)« less

  13. Transport and fate of chloride from road salt within a mixed urban and agricultural watershed in Illinois (USA): assessing the influence of chloride application rates

    NASA Astrophysics Data System (ADS)

    Ludwikowski, Jessica J.; Peterson, Eric W.

    2018-01-01

    In a typical winter season, approximately 471,000 tons of road salt are deposited along roadways in Illinois, USA. An estimated 45% of the deposited road salt will infiltrate through the soils and into shallow aquifers. Transported through shallow aquifers, chloride associated with the road salts has the potential to reside within groundwater for years based on the pathway, the geologic material, and the recharge rate of the aquifer system. Utilizing MODFLOW and MT3D, simulations employing various road-salt application rates were conducted to assess the net accumulation of chloride and the residence times of chloride in an agriculture-dominated watershed that originates in an urban area. A positive-linear relationship was observed between the application rate of chloride and both the maximum chloride concentration and total mass accumulated within the watershed. Simulated annual recharge rates along impacted surfaces ranged from 1,000 to 10,000 mg/L. After 60 years of application, simulated chloride concentrations in groundwater ranged from 197 to 1,900 mg/L. For all application rates, chloride concentrations within the groundwater rose at an annual rate of >3 mg/L. While concentrations increase throughout the system, the majority of chloride accumulation occurs near the roads and the urban areas. Model simulations reveal a positive relationship between application rate and residence time of chloride (1,123-1,288 days based on application rate). The models indicate that continued accumulation of chloride in shallow aquifers can be expected, and methods that apply less chloride effectively need to be examined.

  14. Transport and fate of chloride from road salt within a mixed urban and agricultural watershed in Illinois (USA): assessing the influence of chloride application rates

    NASA Astrophysics Data System (ADS)

    Ludwikowski, Jessica J.; Peterson, Eric W.

    2018-06-01

    In a typical winter season, approximately 471,000 tons of road salt are deposited along roadways in Illinois, USA. An estimated 45% of the deposited road salt will infiltrate through the soils and into shallow aquifers. Transported through shallow aquifers, chloride associated with the road salts has the potential to reside within groundwater for years based on the pathway, the geologic material, and the recharge rate of the aquifer system. Utilizing MODFLOW and MT3D, simulations employing various road-salt application rates were conducted to assess the net accumulation of chloride and the residence times of chloride in an agriculture-dominated watershed that originates in an urban area. A positive-linear relationship was observed between the application rate of chloride and both the maximum chloride concentration and total mass accumulated within the watershed. Simulated annual recharge rates along impacted surfaces ranged from 1,000 to 10,000 mg/L. After 60 years of application, simulated chloride concentrations in groundwater ranged from 197 to 1,900 mg/L. For all application rates, chloride concentrations within the groundwater rose at an annual rate of >3 mg/L. While concentrations increase throughout the system, the majority of chloride accumulation occurs near the roads and the urban areas. Model simulations reveal a positive relationship between application rate and residence time of chloride (1,123-1,288 days based on application rate). The models indicate that continued accumulation of chloride in shallow aquifers can be expected, and methods that apply less chloride effectively need to be examined.

  15. Distinguishing hyperhidrosis and normal physiological sweat production: new data and review of hyperhidrosis data for 1980-2013.

    PubMed

    Thorlacius, Linnea; Gyldenløve, Mette; Zachariae, Claus; Carlsen, Berit C

    2015-10-01

    Hyperhidrosis is a condition in which the production of sweat is abnormally increased. No objective criteria for the diagnosis of hyperhidrosis exist, mainly because reference intervals for normal physiological sweat production at rest are unknown. The main objective of this study was to establish reference intervals for normal physiological axillary and palmar sweat production. Gravimetric testing was performed in 75 healthy control subjects. Subsequently, these results were compared with findings in a cohort of patients with hyperhidrosis and with the results derived from a review of data on hyperhidrosis published between 1980 and 2013. Approximately 90% of the controls had axillary and palmar sweat production rates of below 100 mg/5 min. In all except one of the axillary and palmar hyperhidrosis studies reviewed, average sweat production exceeded 100 mg/5 min. A sweat production rate of 100 mg/5 min as measured by gravimetric testing may be a reasonable cut-off value for distinguishing axillary and palmar hyperhidrosis from normal physiological sweat production. © 2015 The International Society of Dermatology.

  16. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    PubMed

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  17. Technical note: Method for isolation of the bovine sweat gland and conditions for in vitro culture.

    PubMed

    Hamzaoui, S; Burger, C A; Collier, J L; Collier, R J

    2018-05-01

    Apocrine sweat glands in bovine skin are involved in thermoregulation. Human, horse, and sheep sweat gland epithelial cells have been isolated and grown in vitro. The present study was conducted to identify a method to isolate bovine sweat glands and culture apocrine bovine sweat gland epithelial cells in vitro. Mechanical shearing, collagenase digestion, centrifugation, and neutral red staining were used to identify and isolate the apocrine glands from skin. Bovine sweat glands in situ and after isolation comprised 2 major cell types consisting of a single layer of cuboidal epithelial cells resting on a layer of myoepithelial cells. In situ, the glands were embedded in a collagen matrix primarily comprising fibroblasts, and some of these cells were also present in the isolated material. The isolated material was transferred to complete medium (keratinocyte serum-free medium, bovine pituitary extract, and human recombinant epidermal growth factor + 2.5% fetal bovine serum) in a T 25 flask (Falcon, Franklin Lakes, NJ) with media film and then incubated at 37°C for 24 h. After sweat glands adhered to the bottom of the flask, an additional 2 mL of complete medium was added and the medium was changed every 3 d. Isolated apocrine sweat glands and bovine sweat gland epithelial cells were immunostained for cytokeratin and fibroblast specific protein, indicating fibroblast-free cultures. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Classification of Systemic and Localized Sweating Disorders.

    PubMed

    Ohshima, Yuichiro; Tamada, Yasuhiko

    2016-01-01

    Hyperhidrosis can be subdivided into generalized hyperhidrosis, with increased sweating over the entire body, and focal hyperhidrosis, in which the excessive sweating is restricted to specific parts of the body. Generalized hyperhidrosis may be either primary (idiopathic) or secondary. Secondary generalized hyperhidrosis may be caused by infections such as tuberculosis, hyperthyroidism, endocrine and metabolic disturbances such as pheochromocytoma, neurological disorders, or drugs. Focal hyperhidrosis may also be primary (idiopathic) or secondary. Frey's syndrome is one form of secondary focal hyperhidrosis that occurs during eating together with reddening of the area in front of the ear following parotid gland surgery or injury. Primary focal hyperhidrosis is particularly common on the palms and soles of the feet, in the axilla, and on the head. Anhidrosis may be either congenital/genetic or acquired. Some of the most typical forms of congenital/genetic anhidrosis include hypohidrotic ectodermal dysplasia, congenital insensitivity to pain and anhidrosis, and Fabry disease. Acquired anhidrosis is classified as secondary anhidrosis, which may be due to an underlying disorder such as a neurological disorder, an endocrine or metabolic disturbance, or the effect of drugs, or idiopathic anhidrosis for which the pathology, cause, and mechanism are unknown. Idiopathic anhidrosis is classified into acquired idiopathic generalized anhidrosis (AIGA), idiopathic segmental anhidrosis, and Ross syndrome. AIGA is divided into three categories according to differences in the site of disturbance: (1) sudomotor neuropathy, (2) idiopathic pure sudomotor failure, and (3) sweat gland failure. © 2016 S. Karger AG, Basel.

  19. Multidimensional Raman spectroscopic signature of sweat and its potential application to forensic body fluid identification.

    PubMed

    Sikirzhytski, Vitali; Sikirzhytskaya, Aliaksandra; Lednev, Igor K

    2012-03-09

    This proof-of-concept study demonstrated the potential of Raman microspectroscopy for nondestructive identification of traces of sweat for forensic purposes. Advanced statistical analysis of Raman spectra revealed that dry sweat was intrinsically heterogeneous, and its biochemical composition varies significantly with the donor. As a result, no single Raman spectrum could adequately represent sweat traces. Instead, a multidimensional spectroscopic signature of sweat was built that allowed for the presentation of any single experimental spectrum as a linear combination of two fluorescent backgrounds and three Raman spectral components dominated by the contribution from lactate, lactic acid, urea and single amino acids. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. The physiological effects of dehydration caused by sweat loss. [athletes

    NASA Technical Reports Server (NTRS)

    Israel, S.

    1981-01-01

    The mechanisms of fluid loss in the human body while sweating due to physical exercise are discussed. Trained and untrained persons were examined and compared. Since sweat is hypotonous, a disruption in the hydrosalinic balance occurs; the consequences of this finding, also pertaining to the fluid and electrolytic substitution, are presented. Further explanations on the problem of dehydration refer to reactions of individual organ systems, to alterations in bodily capabilities as well as to questions relating to sex and age.

  1. Impact of blanching, sweating and drying operations on pungency, aroma and color of Piper borbonense.

    PubMed

    Weil, M; Shum Cheong Sing, A; Méot, J M; Boulanger, R; Bohuon, P

    2017-03-15

    Low pungency, high aromatic potential and red color, give to Piper borbonense its originality when compared to Piper nigrum. Effects of blanching, sweating and drying on these characteristics were assessed. The three operations had no impact on the concentration of piperine and essential oil but affected the composition of essential oil slightly and considerably affected the color of the pepper. The "wet process", including blanching, sweating and drying, had the largest impact on the composition of aroma, increasing para-cymene content by 89% and reducing safrole content by 33% in dried pepper compared to fresh. Blanching increased the drying rate thus reducing drying time. Drying had a major impact on color, which changed from red to brown. The biggest differences observed led to reductions of 2.2, 7.9 and 8.4units in L ∗ , a ∗ and b ∗ values, when chromatic values measured in fresh pepper were compared to those of dried pepper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Detection of colloidal silver chloride near solubility limit

    NASA Astrophysics Data System (ADS)

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  3. High Intracellular Chloride Slows the Decay of Glycinergic Currents

    PubMed Central

    Pitt, Samantha J.; Sivilotti, Lucia G.; Beato, Marco

    2009-01-01

    The time course of currents mediated by native and recombinant glycine receptors was examined with a combination of rapid agonist applications to outside-out patches and single-channel recording. The deactivation time constant of currents evoked by brief, saturating pulses of glycine is profoundly affected by the chloride concentration on the intracellular side of the cell membrane. Deactivation was threefold slower when intracellular chloride was increased from a low level (10 mm), similar to that observed in living mature neurons, to 131 mm (“symmetrical” chloride, often used in pipette internal solutions). Single-channel analysis revealed that high chloride has its greatest effect on the channel closing rate, slowing it by a factor of 2 compared with the value we estimated in the cell-attached mode (in which the channels are at physiological intracellular chloride concentrations). The same effect of chloride was observed when glycinergic evoked synaptic currents were recorded from juvenile rat spinal motoneurons in vitro, because the decay time constant was reduced from ∼7ms to ∼3 ms when cells were dialyzed with 10 mm chloride intracellular recording solution. Our results indicate that the time course of glycinergic synaptic inhibition in intact neurons is much faster than is estimated by measurements in symmetrical chloride and can be modulated by changes in intracellular chloride concentration in the range that can occur in physiological or pathological conditions. PMID:18987182

  4. The effect of water temperature and voluntary drinking on the post rehydration sweating.

    PubMed

    Hosseinlou, Abdollah; Khamnei, Saeed; Zamanlu, Masumeh

    2013-01-01

    During heat stress and dehydration, thermoregulation is partly suppressed to save body fluid and circulation. Drinking induces the recovery of thermoregulatory responses including sweating. Our objective is to investigate the effect of water temperature and voluntary drinking on the extent of the drinking-induced sweating. Six healthy subjects 23.7 ± 0.6 yr old and 80.7 ± 5.7 kg wt were dehydrated by performing mild exercise (ergometer cycling) in a hot and humid chamber (38-40°C, 20-28% relative humidity). After dehydration, subjects were allowed to drink water with temperatures of 5, 16, 26, 58°C on four separate days. The sweating rate was measured on the forehead area before and after drinking. Also, blood samples were collected during the experiments and plasma osmolality was measured. Sweating increased markedly just a few minutes after the onset of drinking. The rate of this response was lower in ingested water temperature of 5°C (0.43 ± 0.03 g, p = 0.000). Different intake occurred with different water temperatures (respectively 4.2, 6.4, 3.1, 1.8 ml/kg). Water at 16°C induced higher intake (6.4 ml/kg) together with lower sweating (0.54 ± 0.03 g), which can result in optimum level of hydration. Conclusion- When dehydrated subjects drink water with different temperatures, there are different sweating responses together with different voluntary intakes. According to our results, consuming 16°C water, cool tap water, could be suggested in dehydration.

  5. Nitric oxide synthase and cyclooxygenase modulate β-adrenergic cutaneous vasodilatation and sweating in young men.

    PubMed

    Fujii, Naoto; McNeely, Brendan D; Kenny, Glen P

    2017-02-15

    β-Adrenergic receptor agonists such as isoproterenol induce cutaneous vasodilatation and sweating in humans, but the mechanisms underpinning this response remain unresolved. Using intradermal microdialysis, we evaluated the roles of nitric oxide synthase (NOS) and cyclooxygenase (COX) in β-adrenergic cutaneous vasodilatation and sweating elicited by administration of isoproterenol. We show that while NOS contributes to β-adrenergic cutaneous vasodilatation, COX restricts cutaneous vasodilatation. We also show that combined inhibition of NOS and COX augments β-adrenergic sweating These new findings advance our basic knowledge regarding the physiological control of cutaneous blood flow and sweating, and provide important and new information to better understand the physiological significance of β-adrenergic receptors in the skin. β-Adrenergic receptor agonists such as isoproterenol can induce cutaneous vasodilatation and sweating in humans, but the mechanisms underpinning this response remain unresolved. We evaluated the hypotheses that (1) nitric oxide synthase (NOS) contributes to β-adrenergic cutaneous vasodilatation, whereas cyclooxygenase (COX) limits the vasodilatation, and (2) COX contributes to β-adrenergic sweating. In 10 young males (25 ± 5 years), cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal forearm skin sites infused with (1) lactated Ringer solution (control), (2) 10 mm N ω -nitro-l-arginine (l-NNA), a non-specific NOS inhibitor, (3) 10 mm ketorolac, a non-specific COX inhibitor, or (4) a combination of l-NNA and ketorolac. All sites were co-administered with a high dose of isoproterenol (100 μm) for 3 min to maximally induce β-adrenergic sweating (β-adrenergic sweating is significantly blunted by subsequent activations). Approximately 60 min after the washout period, three incremental doses of isoproterenol were co-administered (1, 10 and 100 μm each for 25 min). Increases in CVC induced

  6. In Vivo Readout of CFTR Function: Ratiometric Measurement of CFTR-Dependent Secretion by Individual, Identifiable Human Sweat Glands

    PubMed Central

    Wine, Jeffrey J.; Char, Jessica E.; Chen, Jonathan; Cho, Hyung-ju; Dunn, Colleen; Frisbee, Eric; Joo, Nam Soo; Milla, Carlos; Modlin, Sara E.; Park, Il-Ho; Thomas, Ewart A. C.; Tran, Kim V.; Verma, Rohan; Wolfe, Marlene H.

    2013-01-01

    To assess CFTR function in vivo, we developed a bioassay that monitors and compares CFTR-dependent and CFTR-independent sweat secretion in parallel for multiple (∼50) individual, identified glands in each subject. Sweating was stimulated by intradermally injected agonists and quantified by optically measuring spherical sweat bubbles in an oil-layer that contained dispersed, water soluble dye particles that partitioned into the sweat bubbles, making them highly visible. CFTR-independent secretion (M-sweat) was stimulated with methacholine, which binds to muscarinic receptors and elevates cytosolic calcium. CFTR-dependent secretion (C-sweat) was stimulated with a β-adrenergic cocktail that elevates cytosolic cAMP while blocking muscarinic receptors. A C-sweat/M-sweat ratio was determined on a gland-by-gland basis to compensate for differences unrelated to CFTR function, such as gland size. The average ratio provides an approximately linear readout of CFTR function: the heterozygote ratio is ∼0.5 the control ratio and for CF subjects the ratio is zero. During assay development, we measured C/M ratios in 6 healthy controls, 4 CF heterozygotes, 18 CF subjects and 4 subjects with ‘CFTR-related’ conditions. The assay discriminated all groups clearly. It also revealed consistent differences in the C/M ratio among subjects within groups. We hypothesize that these differences reflect, at least in part, levels of CFTR expression, which are known to vary widely. When C-sweat rates become very low the C/M ratio also tended to decrease; we hypothesize that this nonlinearity reflects ductal fluid absorption. We also discovered that M-sweating potentiates the subsequent C-sweat response. We then used potentiation as a surrogate for drugs that can increase CFTR-dependent secretion. This bioassay provides an additional method for assessing CFTR function in vivo, and is well suited for within-subject tests of systemic, CFTR-directed therapeutics. PMID:24204751

  7. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... basis and analyzes the samples with gas chromatography or, if the owner or operator assumes that all... concentration of vinyl chloride in the exhaust gases does not exceed 10 ppm (average for 3-hour period), or... chloride in the exhaust gases does not exceed 10 ppm (average for 3-hour period), or equivalent as provided...

  8. Chemistry and Mechanism of Interaction Between Molybdenite Concentrate and Sodium Chloride When Heated in the Presence of Oxygen

    NASA Astrophysics Data System (ADS)

    Aleksandrov, P. V.; Medvedev, A. S.; Imideev, V. A.; Moskovskikh, D. O.

    2017-04-01

    Roasting of molybdenum concentrates with sodium chloride has high potential and can be an alternative to oxidizing roasting and autoclave leaching; however, the chemistry and mechanism are poorly known. The chemical mechanism of the roasting process between molybdenite concentrate and sodium chloride in the presence of atmospheric oxygen is proposed. It is demonstrated that the process occurs through molybdenite oxidation, up to molybdenum trioxide, with subsequent formation of sodium polymolybdates and molybdenum dioxydichloride from molybdenum trioxide. It is found that the formation of water-soluble sodium polymolybdates from molybdenum trioxide stops over time due to passivation of sodium chloride surface by polymolybdates. It is proved experimentally that preliminary grinding of the mixture in a furnace charge leads to an increase in the polymolybdate fraction of the roasting products, which constitutes approximately 65 pct of molybdenum initially in the roasted mixture against 20 to 22 pct in a nonground mixture (or 75 to 77 pct against 30 to 33 pct of molybdenum in calcine). For the first time, the presence of the Na2S2O7 phase in the calcine was confirmed experimentally. The suggested mechanism gives possible explanations for the sharp increase of MoO2Cl2 formation within the temperature range of 673 K to 723 K (400 °C to 450 °C) that is based on the catalytic reaction of molybdenum dioxydichloride from the Na2S2O7 liquid phase as it runs in a melt.

  9. Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation.

    PubMed

    Poirier, Martin P; Gagnon, Daniel; Kenny, Glen P

    2016-08-01

    The purpose of this study was to examine if local changes in sweat rate following 14 days of heat acclimation reflect those that occur at the whole-body level. Both prior to and following a 14-day traditional heat acclimation protocol, 10 males exercised in the heat (35 °C, ∼20% relative humidity) at increasing rates of heat production equal to 300 (Ex1), 350 (Ex2), and 400 (Ex3) W·m(-2). A 10-min recovery period followed Ex1, while a 20-min recovery period separated Ex2 and Ex3. The exercise protocol was performed in a direct calorimeter to measure whole-body sweat rate and, on a separate day, in a thermal chamber to measure local sweat rate (LSR), sweat gland activation (SGA), and sweat gland output (SGO) on the upper back, chest, and mid-anterior forearm. Post-acclimation, whole-body sweat rate was greater during each exercise bout (Ex1: 14.3 ± 0.9; Ex2: 17.3 ± 1.2; Ex3: 19.4 ± 1.3 g·min(-1), all p ≤ 0.05) relative to pre-acclimation (Ex1: 13.1 ± 0.6; Ex2: 15.4 ± 0.8; Ex3: 16.5 ± 1.3 g·min(-1)). In contrast, only LSR on the forearm increased with acclimation, and this increase was only observed during Ex2 (Post: 1.32 ± 0.33 vs. Pre: 1.06 ± 0.22 mg·min(-1)·cm(-2), p = 0.03) and Ex3 (Post: 1.47 ± 0.41 vs. Pre: 1.17 ± 0.23 mg·min(-1)·cm(-2), p = 0.05). The greater forearm LSR post-acclimation was due to an increase in SGO, as no changes in SGA were observed. Overall, these data demonstrate marked regional variability in the effect of heat acclimation on LSR, such that not all local measurements of sweat rate reflect the improvements observed at the whole-body level.

  10. Sweat test and cystic fibrosis: overview of test performance at public and private centers in the state of São Paulo, Brazil.

    PubMed

    Servidoni, Maria Fátima; Gomez, Carla Cristina Souza; Marson, Fernando Augusto Lima; Toro, Adyléia Aparecida Dalbo Contrera; Ribeiro, Maria Ângela Gonçalves de Oliveira; Ribeiro, José Dirceu; Ribeiro, Antônio Fernando

    2017-01-01

    The sweat test (ST) measures chloride levels in sweat and is considered the gold standard for the diagnosis of cystic fibrosis (CF). However, the reliability of a ST depends on their being performed by experienced technicians and in accordance with strict guidelines. Our aim was to evaluate how sweat stimulation, sweat collection, and chloride measurement are performed at 14 centers (9 public centers and 5 private centers) that routinely perform STs in the state of São Paulo, which has the highest frequency of CF in Brazil. This was a cross-sectional cohort study, using a standardized questionnaire administered in loco to the staff responsible for conducting STs. No uniformity regarding the procedures was found among the centers. Most centers were noncompliant with the international guidelines, especially regarding the collection of sweat (the samples were insufficient in 10-50% of the subjects tested); availability of stimulation equipment (which was limited at 2 centers); modernity and certification of stimulation equipment (most of the equipment having been used for 3-23 years); and written protocols (which were lacking at 12 centers). Knowledge of ST guidelines was evaluated at only 1 center. Our results show that STs largely deviate from internationally accepted guidelines at the participating centers. Therefore, there is an urgent need for standardization of STs, training of qualified personnel, and acquisition/certification of suitable equipment. These are essential conditions for a reliable diagnosis of CF, especially with the increasing demand due to newborn screening nationwide, and for the assessment of a possible clinical benefit from the use of modulator drugs. O teste do suor (TS) mede os níveis de cloro no suor e é considerado o padrão ouro para o diagnóstico da fibrose cística (FC). Contudo, a confiabilidade do TS depende de sua realização por técnicos experientes e segundo diretrizes rígidas. Nosso objetivo foi avaliar como s

  11. Quantitative DFT modeling of product concentration in organometallic reactions: Cu-mediated pentafluoroethylation of benzoic acid chlorides as a case study.

    PubMed

    Jover, Jesús

    2017-11-08

    DFT calculations are widely used for computing properties, reaction mechanisms and energy profiles in organometallic reactions. A qualitative agreement between the experimental and the calculated results seems to usually be enough to validate a computational methodology but recent advances in computation indicate that a nearly quantitative agreement should be possible if an appropriate DFT study is carried out. Final percent product concentrations, often reported as yields, are by far the most commonly reported properties in experimental metal-mediated synthesis studies but reported DFT studies have not focused on predicting absolute product amounts. The recently reported stoichiometric pentafluoroethylation of benzoic acid chlorides (R-C 6 H 4 COCl) with [(phen)Cu(PPh 3 )C 2 F 5 ] (phen = 1,10-phenanthroline, PPh 3 = triphenylphosphine) has been used as a case study to check whether the experimental product concentrations can be reproduced by any of the most popular DFT approaches with high enough accuracy. To this end, the Gibbs energy profile for the pentafluoroethylation of benzoic acid chloride has been computed using 14 different DFT methods. These computed Gibbs energy profiles have been employed to build kinetic models predicting the final product concentration in solution. The best results are obtained with the D3-dispersion corrected B3LYP functional, which has been successfully used afterwards to model the reaction outcomes of other simple (R = o-Me, p-Me, p-Cl, p-F, etc.) benzoic acid chlorides. The product concentrations of more complex reaction networks in which more than one position of the substrate may be activated by the copper catalyst (R = o-Br and p-I) are also predicted appropriately.

  12. Monitoring of heavy metal levels in the major rivers and in residents' blood in Zhenjiang City, China, and assessment of heavy metal elimination via urine and sweat in humans.

    PubMed

    Sheng, Jianguo; Qiu, Wenhui; Xu, Bentuo; Xu, Hui; Tang, Chong

    2016-06-01

    The coastal areas of China face great challenges, owing to heavy metal contamination caused by rapid industrialization and urbanization. To our knowledge, this study is the first report of the levels of heavy metals in the major rivers of Zhenjiang, one of the most important cities of the Yangtze River Delta in China. In addition, we measured heavy metal levels in the blood of 76 residents of Zhenjiang. The results suggest that the presence of heavy metals in the blood may threaten human health and the distribution appeared to correspond to most highly populated areas and/or areas with high traffic. We also found that the concentration of heavy metals in human blood showed an accumulation effect with increase in age. Moreover, the levels of most heavy metals were lower in participants who regularly exercised than in those who did not. We studied heavy metal levels in the urine and sweat of another 17 volunteers to monitor the elimination of bioaccumulated heavy metal. Heavy metals were found in the urine and sweat of all the 17 participants and were more concentrated in sweat. Induced micturition and sweating appear to be potential methods for the elimination of heavy metals from the human body.

  13. Small cell sweat gland carcinoma of childhood

    PubMed Central

    Drut, R; Giménez, O P; Oliva, J

    2005-01-01

    Small cell sweat gland carcinoma appears to represent a very unusual histological type of sweat gland anlage tumour presenting in children. The differential diagnosis from other small blue cell tumours involving the skin is often difficult. The present report confirms the original observation describing two patients of 2 and 5 years of age harbouring cutaneous tumours. The histology of these lesions showed a monomorphic proliferation of small cells with a high mitotic rate and areas of necrosis. Immunohistochemically, the cells were negative for desmin, cytokeratin 7, cytokeratin 20, Cam 5.2, CD99, chromogranin, CD56, synaptophysin, and S-100, and focally positive for the pancytokeratin marker AE1/AE3, carcinoembryonic antigen (one case), and neurone specific enolase (one case). The prognosis of this type of tumour seems to be good. As more cases are added, the clinical pathological spectrum of the lesion will become better defined. PMID:16311358

  14. Normal and PPP-affected palmoplantar sweat gland express neuroendocrine markers chromogranins and synaptophysin differently.

    PubMed

    Hagforsen, Eva; Michaëlsson, Gerd; Stridsberg, Mats

    2010-11-01

    Earlier findings indicate the acrosyringium as the target for the inflammation in the chronic and intensely inflammatory skin disease palmoplantar pustulosis (PPP). The sweat gland apparatus seems to be an immune-competent structure that probably contributes to the defence of the skin. Furthermore, the sweat gland and duct may be a hitherto unrecognized neuroendocrine organ because it expresses cholineacetyl-transferase and acetylcholinesterase, nicotinic receptors, beta-adrenergic and angiotensin receptors. The aim of this study was to obtain further information about neuroendocrine properties of the sweat gland apparatus by examining the expression of common neuroendocrine markers synaptophysin and chromogranins A and B in healthy palmar skin and in PPP skin. Synaptophysin and chromogranins were expressed in the sweat glands and ducts with some variation in the pattern and intensity of the expression. In PPP skin the expression differed, being higher and lower, depending on the part of the sweat duct. Chromogranins were further expressed in the epidermis, endothelium and inflammatory cells, but its intensity was weaker in epidermis than in the sweat gland apparatus. In most cases, chromogranins in epidermis in involved PPP were weakly expressed compared to healthy controls. The presence of synaptophysin and chromogranins in palmoplantar skin may have marked neuroendocrine effects, and the palmoplantar skin is likely to have important neuroimmuno-endocrine properties. Moreover, the altered chromogranin expression in PPP skin might influence both the neuroendocrine and neuroimmunologic properties of palmoplantar skin in these patients. These results indicate important neuroendocrine properties of the palmoplantar skin.

  15. Diffusion vs. concentration of chloride ions in concrete : [summary].

    DOT National Transportation Integrated Search

    2014-06-01

    The Florida Department of Transportation : (FDOT) maintains hundreds of bridges, and also : builds new ones, in marine environments. These : structures are built with reinforced steel, and : over time, chloride ions from sea salt can migrate : throug...

  16. Silver release from nanocomposite Ag/alginate hydrogels in the presence of chloride ions: experimental results and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Kostic, Danijela; Vidovic, Srđan; Obradovic, Bojana

    2016-03-01

    A stepwise experimental and mathematical modeling approach was used to assess silver release from nanocomposite Ag/alginate microbeads in wet and dried forms into water and into normal saline solution chosen as a simplified model for certain biological fluids (e.g., blood plasma, wound exudates, sweat, etc). Three phenomena were connected and mathematically described: diffusion of silver nanoparticles (AgNPs) within the alginate hydrogel, AgNP oxidation/dissolution and reaction with chloride ions, and diffusion of the resultant silver-chloride species. Mathematical modeling results agreed well with the experimental data with the AgNP diffusion coefficient estimated as 1.3 × 10-18 m2 s-1, while the first-order kinetic rate constant of AgNP oxidation/dissolution and diffusivity of silver-chloride species were shown to be inversely related. In specific, rapid rehydration and swelling of dry Ag/alginate microbeads induced fast AgNP oxidation/dissolution reaction with Cl- and AgCl precipitation within the microbeads with the lowest diffusivity of silver-chloride species compared to wet microbeads in normal saline. The proposed mathematical model provided an insight into the phenomena related to silver release from nanocomposite Ca-alginate hydrogels relevant for use of antimicrobial devices and established, at the same time, a basis for further in-depth studies of AgNP interactions in hydrogels in the presence of chloride ions.

  17. Expanded prediction equations of human sweat loss and water needs.

    PubMed

    Gonzalez, R R; Cheuvront, S N; Montain, S J; Goodman, D A; Blanchard, L A; Berglund, L G; Sawka, M N

    2009-08-01

    The Institute of Medicine expressed a need for improved sweating rate (msw) prediction models that calculate hourly and daily water needs based on metabolic rate, clothing, and environment. More than 25 years ago, the original Shapiro prediction equation (OSE) was formulated as msw (g.m(-2).h(-1))=27.9.Ereq.(Emax)(-0.455), where Ereq is required evaporative heat loss and Emax is maximum evaporative power of the environment; OSE was developed for a limited set of environments, exposures times, and clothing systems. Recent evidence shows that OSE often overpredicts fluid needs. Our study developed a corrected OSE and a new msw prediction equation by using independent data sets from a wide range of environmental conditions, metabolic rates (rest to sweat losses were carefully measured in 101 volunteers (80 males and 21 females; >500 observations) by using a variety of metabolic rates over a range of environmental conditions (ambient temperature, 15-46 degrees C; water vapor pressure, 0.27-4.45 kPa; wind speed, 0.4-2.5 m/s), clothing, and equipment combinations and durations (2-8 h). Data are expressed as grams per square meter per hour and were analyzed using fuzzy piecewise regression. OSE overpredicted sweating rates (P<0.003) compared with observed msw. Both the correction equation (OSEC), msw=147.exp (0.0012.OSE), and a new piecewise (PW) equation, msw=147+1.527.Ereq-0.87.Emax were derived, compared with OSE, and then cross-validated against independent data (21 males and 9 females; >200 observations). OSEC and PW were more accurate predictors of sweating rate (58 and 65% more accurate, P<0.01) and produced minimal error (standard error estimate<100 g.m(-2).h(-1)) for conditions both within and outside the original OSE domain of validity. The new equations provide for more accurate sweat predictions over a broader range of conditions with applications to public health, military, occupational, and sports

  18. Artificial sweat enhances dermal transfer of chlorpyrifos from treated nylon carpet fibers.

    PubMed

    Williams, Ryan L; Reifenrath, William G; Krieger, Robert I

    2005-01-01

    The dermal transfer and absorption of 14C-ring-chlorpyrifos from nylon carpet fibers was measured in skin penetration-evaporation cells with excised pig skin. Prior to application, synthetic sweat was applied to skin in half of the cells. Radioactivity was measured in receptor fluid, dermis, epidermis, tape stripping samples, and vapor trap samples during a 24-h period. The sum of radiolabel recovered from the dermis and receptor fluid represented the absorbed dose. There was no significant difference (p > 0.05) in percutaneous absorption between cells that received the synthetic sweat application and "dry" cells (1.3 +/- 0.3% of applied dose). There was significantly more (p < 0.05) radiolabel recovered from tape stripping (5.4 +/- 2.1 vs. 2.8 +/- 0.6%) and in the epidermis (4.5 +/- 0.8 vs. 3.1 +/- 0.3%) from cells that received the synthetic sweat application, which indicated synthetic sweat facilitated transfer of chlorpyrifos from a treated substrate to the skin surface. The measured value for percutaneous absorption of chlorpyrifos agreed with the value predicted from an empirical model previously developed for nitro compound-containing soil.

  19. Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure: a re-evaluation of the effects of pH and chloride concentration

    NASA Astrophysics Data System (ADS)

    Murphy, P. J.; LaGrange, M. S.

    1998-11-01

    Previous work on gold chloride and hydroxide speciation in fluids has shown differences in opinion as to the relative importance of gold (I) and gold (III) species, as well as for the Raman peak assignments for the various species. In addition, previous experimental work has not been consistent with theoretical predictions either of the number or of the frequencies of the peaks in the Raman spectrum. In order to re-evaluate the effect of pH on Raman spectra and speciation, solutions containing gold (III) chloride were analysed by Raman spectroscopy at ambient temperature and pressure, over a range of pH from 1 to 11. Total gold concentrations were from 0.001 to 0.02 M, with total chloride concentrations of 0.004-0.5 M. The spectra obtained are consistent with the hydrolysis sequence of square-planar Au(III) complex ions [AuCl x(OH) 4-x] -, where x = 0-4. The Au-Cl stretching peaks obtained were 348/325 Rcm -1 for [AuCl 4] -, 348/335/325 Rcm -1 for [AuCl 3(OH)] -, 337/355 Rcm -1 for [AuCl 2(OH) 2] -, and 355 Rcm -1 for [AuCl(OH) 3] -. [Au(OH) 4] - probably occurred, alongside [AuCl(OH) 3] - at pH values above 11. A dark purplish-grey precipitate (Au(I)OH) formed at high pH values. No evidence for Au(I) species was found. The spectra are more consistent with theory than previous data and show the predicted number of peaks for Au-Cl and Au-OH stretches for each species. However, the peak frequencies do not fit precisely with the predictions of Tossell (1996), particularly for Au-OH stretches. Hydrolysis of the simple chloride species occurs at lower pH values than found previously, and both gold and chloride concentration were found to affect the pH ranges of stability for the various chloro-hydroxy species. Decreasing gold concentration resulted in hydrolysis occurring at lower pH values. This is especially important in the absence of excess chloride (ΣCl = 4ΣAu). Substantial hydrolysis occurred below pH = 4 for 0.02 M Au /0.08 M Cl -, and below pH = 2 for 0.001 M

  20. Surface Chloride Levels in Colorado Structural Concrete

    DOT National Transportation Integrated Search

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  1. Feasibility and normal values of an integrated conductivity (Nanoduct™) sweat test system in healthy newborns.

    PubMed

    Kuehni, Claudia E; Schindler, Matthias; Mazur, Agnieszka; Malzacher, Andreas; Hornung, René; Barben, Juerg

    2017-07-01

    Nanoduct™ is a simple and practical sweat analysis system measuring conductivity in situ. It requires only three microlitres of sweat, making it especially applicable to newborns. We measured conductivity in 260 healthy term infants at the age of four days, and again at four weeks to determine the proportion of successful tests, test duration, and normal values for sweat conductivity in newborns. Sufficient sweat was collected in 159/260 of four-day olds (61%), and in 225/239 of four-week olds (94%). Mean (sd) test duration was 27 (5) and 25 (5) min. Mean (sd, range) conductivity was 53mmol/l (16, 8-114) at age four days, and 36 (9, 12-64) at four weeks. Determination of sweat conductivity using Nanoduct™ cannot be recommended for four-day old newborns. However, at the age of four weeks the success rate is high (94%), and conductivity values at that age are comparable to older healthy children. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  2. Disinfection potential of electrolyzed solutions containing sodium chloride at low concentrations.

    PubMed

    Morita, C; Sano, K; Morimatsu, S; Kiura, H; Goto, T; Kohno, T; Hong, W U; Miyoshi, H; Iwasawa, A; Nakamura, Y; Tagawa, M; Yokosuka, O; Saisho, H; Maeda, T; Katsuoka, Y

    2000-03-01

    Electrolyzed products of sodium chloride solution were examined for their disinfection potential against hepatitis B virus (HBV) and human immunodeficiency virus (HIV) in vitro. Electrolysis of 0.05% NaCl in tap water was carried out for 45 min at room temperature using a 3 A electric current in separate wells installed with positive and negative electrodes. The electrolyzed products were obtained from the positive well. The oxidation reduction potential (ORP), pH and free chlorine content of the product were 1053 mV, pH 2.34 and 4.20 ppm, respectively. The products modified the antigenicity of the surface protein of HBV as well as the infectivity of HIV in time- and concentration-dependent manner. Although the inactivating potential was decreased by the addition of contaminating protein, recycling of the product or continuous addition of fresh product may restore the complete disinfection against bloodborne pathogens.

  3. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat.

    PubMed

    Selvam, Anjan Panneer; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-03-21

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001-100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.

  4. Estimation of sweat rates during cycling exercise by means of the closed chamber condenser technology.

    PubMed

    Clarys, P; Clijsen, R; Barel, A O; Schouteden, R; van Olst, B; Aerenhouts, D

    2017-02-01

    Knowledge of local sweating patterns is of importance in occupational and exercise physiology settings. The recently developed closed chamber condenser technology (Biox Aquaflux ® ) allows the measurement of evaporative skin water loss with a greater measurement capacity (up to 1325 g/h/m 2 ) compared to traditional evaporimeters. The aim of this study was to evaluate the applicability of the Biox Aquaflux ® to estimate sweat production during exercise. Fourteen healthy subjects performed a 20-min cycle ergometer trial at respectively 55% heart rate (HR reserve and 75% HR reserve . Sweat production was estimated by measuring body weight before and after exercise, by calculating the amount of sweat collected in a patch, and by measuring the water flux (in g/h/m 2 ) with the Biox Aquaflux ® instrument. The Biox Aquaflux ® instrument allowed the follow up of sweat kinetics at both intensities. Correlations between the measurement methods were all significant for the 75% HR reserve trial (with r ranging from 0.68 to 0.76) whilst for the 55% HR reserve a significant relation was detected between the patch method and the Biox Aquaflux ® only (with r ranging from 0.41 to 0.79). The Biox Aquaflux ® instrument is a practical and direct method for the estimation of local sweat rates under field conditions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Nitric oxide synthase and cyclooxygenase modulate β‐adrenergic cutaneous vasodilatation and sweating in young men

    PubMed Central

    Fujii, Naoto; McNeely, Brendan D.

    2016-01-01

    Key points β‐Adrenergic receptor agonists such as isoproterenol induce cutaneous vasodilatation and sweating in humans, but the mechanisms underpinning this response remain unresolved.Using intradermal microdialysis, we evaluated the roles of nitric oxide synthase (NOS) and cyclooxygenase (COX) in β‐adrenergic cutaneous vasodilatation and sweating elicited by administration of isoproterenol.We show that while NOS contributes to β‐adrenergic cutaneous vasodilatation, COX restricts cutaneous vasodilatation.We also show that combined inhibition of NOS and COX augments β‐adrenergic sweatingThese new findings advance our basic knowledge regarding the physiological control of cutaneous blood flow and sweating, and provide important and new information to better understand the physiological significance of β‐adrenergic receptors in the skin. Abstract β‐Adrenergic receptor agonists such as isoproterenol can induce cutaneous vasodilatation and sweating in humans, but the mechanisms underpinning this response remain unresolved. We evaluated the hypotheses that (1) nitric oxide synthase (NOS) contributes to β‐adrenergic cutaneous vasodilatation, whereas cyclooxygenase (COX) limits the vasodilatation, and (2) COX contributes to β‐adrenergic sweating. In 10 young males (25 ± 5 years), cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal forearm skin sites infused with (1) lactated Ringer solution (control), (2) 10 mm N ω‐nitro‐l‐arginine (l‐NNA), a non‐specific NOS inhibitor, (3) 10 mm ketorolac, a non‐specific COX inhibitor, or (4) a combination of l‐NNA and ketorolac. All sites were co‐administered with a high dose of isoproterenol (100 μm) for 3 min to maximally induce β‐adrenergic sweating (β‐adrenergic sweating is significantly blunted by subsequent activations). Approximately 60 min after the washout period, three incremental doses of isoproterenol were co‐administered (1, 10 and

  6. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat

    PubMed Central

    2010-01-01

    Silver nanoparticles have been used in numerous commercial products, including textiles, to prevent bacterial growth. Meanwhile, there is increasing concern that exposure to these nanoparticles may cause potential adverse effects on humans as well as the environment. This study determined the quantity of silver released from commercially claimed nanosilver and laboratory-prepared silver coated fabrics into various formulations of artificial sweat, each made according to AATCC, ISO and EN standards. For each fabric sample, the initial amount of silver and the antibacterial properties against the model Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria on each fabric was investigated. The results showed that silver was not detected in some commercial fabrics. Furthermore, antibacterial properties of the fabrics varied, ranging from 0% to greater than 99%. After incubation of the fabrics in artificial sweat, silver was released from the different fabrics to varying extents, ranging from 0 mg/kg to about 322 mg/kg of fabric weight. The quantity of silver released from the different fabrics was likely to be dependent on the amount of silver coating, the fabric quality and the artificial sweat formulations including its pH. This study is the unprecedented report on the release of silver nanoparticles from antibacterial fabrics into artificial sweat. This information might be useful to evaluate the potential human risk associated with the use of textiles containing silver nanoparticles. PMID:20359338

  7. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform.

    PubMed

    Emaminejad, Sam; Gao, Wei; Wu, Eric; Davies, Zoe A; Yin Yin Nyein, Hnin; Challa, Samyuktha; Ryan, Sean P; Fahad, Hossain M; Chen, Kevin; Shahpar, Ziba; Talebi, Salmonn; Milla, Carlos; Javey, Ali; Davis, Ronald W

    2017-05-02

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.

  8. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    PubMed Central

    Emaminejad, Sam; Gao, Wei; Wu, Eric; Davies, Zoe A.; Yin Yin Nyein, Hnin; Challa, Samyuktha; Ryan, Sean P.; Fahad, Hossain M.; Chen, Kevin; Shahpar, Ziba; Talebi, Salmonn; Milla, Carlos; Javey, Ali; Davis, Ronald W.

    2017-01-01

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals’ health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications. PMID:28416667

  9. Age‐related differences in postsynaptic increases in sweating and skin blood flow postexercise

    PubMed Central

    Stapleton, Jill M.; Fujii, Naoto; McGinn, Ryan; McDonald, Katherine; Kenny, Glen P.

    2014-01-01

    Abstract The influence of peripheral factors on the control of heat loss responses (i.e., sweating and skin blood flow) in the postexercise period remains unknown in young and older adults. Therefore, in eight young (22 ± 3 years) and eight older (65 ± 3 years) males, we examined dose‐dependent responses to the administration of acetylcholine (ACh) and methacholine (MCh) for sweating (ventilated capsule), as well as to ACh and sodium nitroprusside (SNP) for cutaneous vascular conductance (CVC, laser‐Doppler flowmetry, % of max). In order to assess if peripheral factors are involved in the modulation of thermoeffector activity postexercise, pharmacological agonists were perfused via intradermal microdialysis on two separate days: (1) at rest (DOSE) and (2) following a 30‐min bout of exercise (Ex+DOSE). No differences in sweat rate between the DOSE and Ex+DOSE conditions at either ACh or MCh were observed for the young (ACh: P =0.992 and MCh: P =0.710) or older (ACh: P =0.775 and MCh: P =0.738) adults. Similarly, CVC was not different between the DOSE and Ex+DOSE conditions for the young (ACh: P =0.123 and SNP: P =0.893) or older (ACh: P =0.113 and SNP: P =0.068) adults. Older adults had a lower sweating response for both the DOSE (ACh: P =0.049 and MCh: P =0.006) and Ex+DOSE (ACh: P =0.050 and MCh: P =0.029) conditions compared to their younger counterparts. These findings suggest that peripheral factors do not modulate postexercise sweating and skin blood flow in both young and older adults. Additionally, sweat gland function is impaired in older adults, albeit the impairments were not exacerbated during postexercise recovery. PMID:25347861

  10. Refrigerator with anti-sweat hot liquid loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolley, S.J.; Cushing, D.S.; Jenkins, T.E.

    A cabinet assembly for a refrigerator having a freezer compartment ontop with two top front corners, a fresh food compartment on the bottom, a mullion partition between the compartments and a hot liquid anti-sweat loop is described comprising; an outer sheet metal shell having a top panel, side panels and a front face, a brace located at each of the two top front corners of the cabinet and having two formed sections at right angles to each other and each section is formed as an inwardly open U-shaped channel having a base, a first leg and a second leg spacedmore » apart and integrally joined to the base, fastening means for rigidly attaching each of the second leg of the corner braces to the flange of the third wall of the front face, and means to secure a portion of the hot liquid anti-sweat loop to the braces.« less

  11. Experimental and modeling study of chloride ingress into concrete and reinforcement corrosion initiation

    NASA Astrophysics Data System (ADS)

    Yu, Hui

    Effects of reinforcement and coarse aggregate on chloride ingression into concrete and reinforcement corrosion initiation have been studied with experimental and modeling (finite element method) analyses. Once specimens were fabricated and exposed to a chloride solution, various experimental techniques were employed to determine the effect of reinforcement and coarse aggregate on time-to-corrosion and chloride ingress and concentration at corrosion locations. Model analyses were performed to verify and explain the experimental results. Based upon the results, it was determined that unexpectedly higher chloride concentrations were present on the top of the rebar trace than that to the side at the same depth and an inverse concentration gradient (increasing [ Cl-] with increasing depth) occurred near the top of rebars. Also, coarse aggregate volume profile in close proximity to the rebar and spatial distribution of these aggregates, in conjunction with the physical obstruction afforded by reinforcement to chloride flow, complicates concrete sampling for Cl- intended to define the critical concentration of this species to initiate corrosion. Modeling analyses that considered cover thickness, chloride threshold concentration, reinforcement size and shape, and coarse aggregate type and percolation confirmed the experimental findings. The results, at least in part, account for the relatively wide spread in chloride corrosion threshold values reported in the literature and illustrate that more consistent chloride threshold concentrations can be acquired from mortar or paste specimens than from concrete ones.

  12. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    DOE PAGES

    Emaminejad, Sam; Gao, Wei; Wu, Eric; ...

    2017-04-17

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 μL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, withoutmore » electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. In conclusion, our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.« less

  13. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emaminejad, Sam; Gao, Wei; Wu, Eric

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 μL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, withoutmore » electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. In conclusion, our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.« less

  14. An Investigative Study on the Effect of Silver Nanoparticles on E.Coli K12 in Various Sodium Chloride Concentrations

    NASA Astrophysics Data System (ADS)

    Levard, C.; Mitra, S.; Badireddy, A.; Jew, A. D.; Brown, G. E.

    2011-12-01

    Engineered nanomaterials have had an increasing presence in consumer products. Consequently, their release in wastewater systems is believed to pose a viable threat to the environment. NPs are used for drug delivery devices, imaging agents, and consumer products like sunscreens, paints, and cosmetics. Among the major types of manufactured nanoparticles, silver nanoparticles (Ag-NPs) are currently the most widely used in the nanotechnology industry. These particles have unique antibacterial, antiviral, and antifungal properties and as a result, there is a growing concern about the environmental impact of released Ag nanoparticles, particularly their unintended impact on organisms and ecosystems. Even though the toxicity of Ag-NPs has been extensively studied, the environmental transformations that the Ag-NPs may experience once released in the environment have not been considered. These transformations can readily impact their properties and therefore their behavior in terms of reactivity and toxicity. For example, it is known that silver strongly react with Chloride (Cl), which is ubiquitous in natural waters. At a low Cl/Ag ratio, Cl may precipitate on the surface and partly inhibit dissolution. On the contrary, for a high Cl/Ag ratio, chloride may enhance dissolution and therefore toxicity since soluble Ag species are a main source of toxicity. In this context, the focus of this study is on understanding the toxicity of coated Ag-NPs at various concentrations (1ppb-100ppm) on E.Coli (K12) in deionized water and various sodium chloride concentrations that mimic natural conditions (.5, .1 and .01 M NaCl). Ag+ ions (100 ppm-1ppb) were also tested in these salt concentrations as a control. Samples were inoculated in bacteria and incubated for 24 hours. Based on this test, we inferred that increasing concentrations of Ag+ ions/ AgNps played a role in the inhibition of growth of E.Coli K12. A live-dead staining test has shown the correlation between inhibition of

  15. Development and critical evaluation of fluorescent chloride nanosensors.

    PubMed

    Graefe, Anja; Stanca, Sarmiza E; Nietzsche, Sandor; Kubicova, Lenka; Beckert, Rainer; Biskup, Christoph; Mohr, Gerhard J

    2008-09-01

    In this study, we describe the preparation and evaluation of new fluorescent sensor nanoparticles for the ratiometric measurement of chloride concentrations. Both a chloride-sensitive dye (lucigenin) and a reference dye (sulforhodamine derivative) were incorporated into polyacrylamide nanoparticles via inverse microemulsion polymerization and investigated for their response to chloride ions in buffered suspension as well as in living cells. The fluorescence intensity of lucigenin reversibly decreased in the presence of chloride ions due to a collisional quenching process, which can be described with the Stern-Volmer equation. The determined Stern-Volmer constant K SV for the quenching of lucigenin incorporated into particles was found to be 53 M (-1) and is considerably smaller than the Stern-Volmer constant for quenching of free lucigenin ( K SV = 250 M (-1)) under the same conditions. To test the nanosensors in living cells, we incorporated them into Chinese hamster ovary cells and mouse fibroblasts by using the conventional lipofectamin technique and monitored the response to changing chloride concentrations in the cell.

  16. Use of an electrical resistance hygrometer to measure human sweat rates

    NASA Technical Reports Server (NTRS)

    Suga, T.

    1980-01-01

    The application of the resistance hygrometer as a tool to measure the localized sweat rate from the human body in both the active and passive sweat regions was studied. It was found that the physiological function of the skin membrane and fluid carrier transport phenomena from the outer skin have an indistinguishable effect on the observed findings from the instrument. The problems associated with the resistance hygrometer technique are identified and the usage of the instrument in the physiological experimentation from the engineering standpoint is evaluated.

  17. Effect of two sweating simulation methods on clothing evaporative resistance in a so-called isothermal condition.

    PubMed

    Lu, Yehu; Wang, Faming; Peng, Hui

    2016-07-01

    The effect of sweating simulation methods on clothing evaporative resistance was investigated in a so-called isothermal condition (T manikin  = T a  = T r ). Two sweating simulation methods, namely, the pre-wetted fabric "skin" (PW) and the water supplied sweating (WS), were applied to determine clothing evaporative resistance on a "Newton" thermal manikin. Results indicated that the clothing evaporative resistance determined by the WS method was significantly lower than that measured by the PW method. In addition, the evaporative resistances measured by the two methods were correlated and exhibited a linear relationship. Validation experiments demonstrated that the empirical regression equation showed highly acceptable estimations. The study contributes to improving the accuracy of measurements of clothing evaporative resistance by means of a sweating manikin.

  18. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution.

    PubMed

    Taltavull, C; Shi, Z; Torres, B; Rams, J; Atrens, A

    2014-02-01

    This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions. The carbonated calcium phosphate layer that formed in Hank's solution was important in determining the protective properties of the surface film.

  19. Surgical treatment of axillary hyperhidrosis by suction-curettage of sweat glands*

    PubMed Central

    de Rezende, Rebeca Maffra; Luz, Flávio Barbosa

    2014-01-01

    Suction curettage is a dermatologic surgery technique for the treatment of axillary hyperhidrosis, which is becoming more popular. Objective: The purpose of this study is to describe the current technique of removal of axillary sweat glands, and evaluate its efficacy and safety. Conclusion: Suction-curettage of sweat glands is a minimally invasive surgical technique that is easy to perform, safe, has high rates of success and relatively few side-effects. It is generally well tolerated by patients and requires shorter time away from daily activities, when compared with other surgical modalities. PMID:25387499

  20. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    NASA Astrophysics Data System (ADS)

    Wang, Yuchi; Mao, Hua; Wong, Lid B.

    2010-02-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl-]i) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl-]i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl-]i. Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl-]i. These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  1. Attitudes about Advances in Sweat Patch Testing in Drug Courts: Insights from a Case Study in Southern California

    ERIC Educational Resources Information Center

    Polzer, Katherine

    2010-01-01

    Drug courts are reinventing the drug testing framework by experimenting with new methods, including use of the sweat patch. The sweat patch is a band-aid like strip used to monitor drug court participants. The validity and reliability of the sweat patch as an effective testing method was examined, as well as the effectiveness, meaning how likely…

  2. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat

    PubMed Central

    Panneer Selvam, Anjan; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-01-01

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001–100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours. PMID:26996103

  3. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat

    NASA Astrophysics Data System (ADS)

    Panneer Selvam, Anjan; Muthukumar, Sriram; Kamakoti, Vikramshankar; Prasad, Shalini

    2016-03-01

    We demonstrate for the first time a wearable biochemical sensor for monitoring alcohol consumption through the detection and quantification of a metabolite of ethanol, ethyl glucuronide (EtG). We designed and fabricated two co-planar sensors with gold and zinc oxide as sensing electrodes. We also designed a LED based reporting for the presence of EtG in the human sweat samples. The sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for EtG were immobilized on the electrodes using thiol based chemistry. Detection of EtG from human sweat was achieved through chemiresistive sensing mechanism. In this method, an AC voltage was applied across the two coplanar electrodes and the impedance across the sensor electrodes was measured and calibrated for physiologically relevant doses of EtG in human sweat. EtG detection over a dose concentration of 0.001-100 μg/L was demonstrated on both glass and polyimide substrates. Detection sensitivity was lower at 1 μg/L with gold electrodes as compared to ZnO, which had detection sensitivity of 0.001 μg/L. Based on the detection range the wearable sensor has the ability to detect alcohol consumption of up to 11 standard drinks in the US over a period of 4 to 9 hours.

  4. Devices Would Detect Drugs In Sweat

    NASA Technical Reports Server (NTRS)

    Mintz, Fredrick W.; Richards, Gil; Kidwell, David A.; Foster, Conrad; Kern, Roger G.; Nelson, Gregory A.

    1996-01-01

    Proposed devices worn on skin detect such substances as methamphetamine, morphine, tetrahydrocannabinol (THC), and cocaine in wearers' sweat and transmits radio signals in response to computer queries. Called Remote Biochemical Assay Telemetering System (R-BATS), commonly referred to as "drug badge," attached to wearer by use of adhesive wristband. Used for noninvasive monitoring of levels of prescribed medications in hospital and home-care settings and to detect overdoses quickly.

  5. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection.

    PubMed

    Oh, Seung Yun; Hong, Soo Yeong; Jeong, Yu Ra; Yun, Junyeong; Park, Heun; Jin, Sang Woo; Lee, Geumbee; Oh, Ju Hyun; Lee, Hanchan; Lee, Sang-Soo; Ha, Jeong Sook

    2018-04-25

    As part of increased efforts to develop wearable healthcare devices for monitoring and managing physiological and metabolic information, stretchable electrochemical sweat sensors have been investigated. In this study, we report on the fabrication of a stretchable and skin-attachable electrochemical sensor for detecting glucose and pH in sweat. A patterned stretchable electrode was fabricated via layer-by-layer deposition of carbon nanotubes (CNTs) on top of patterned Au nanosheets (AuNS) prepared by filtration onto stretchable substrate. For the detection of glucose and pH, CoWO 4 /CNT and polyaniline/CNT nanocomposites were coated onto the CNT-AuNS electrodes, respectively. A reference electrode was prepared via chlorination of silver nanowires. Encapsulation of the stretchable sensor with sticky silbione led to a skin-attachable sweat sensor. Our sensor showed high performance with sensitivities of 10.89 μA mM -1 cm -2 and 71.44 mV pH -1 for glucose and pH, respectively, with mechanical stability up to 30% stretching and air stability for 10 days. The sensor also showed good adhesion even to wet skin, allowing the detection of glucose and pH in sweat from running while being attached onto the skin. This work suggests the application of our stretchable and skin-attachable electrochemical sensor to health management as a high-performance healthcare wearable device.

  6. Intracellular chloride ion concentration in differentiating neuronal cell and its role in growing neurite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Ken-ichi; Marunaka, Yoshinori; Department of Bio-Ionomics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566

    Chloride ion (Cl{sup −}) is one of the most abundant anions in our body. Increasing evidence suggests that Cl{sup −} plays fundamental roles in various cellular functions. We have previously reported that electroneutral cation-chloride cotransporters, such as Na{sup +}-K{sup +}-2Cl{sup −} cotransporter 1 (NKCC1) and K{sup +}-Cl{sup −} cotransporter 1 (KCC1), are involved in neurite outgrowth during neuronal differentiation. In the present study, we studied if there is correlation between intracellular Cl{sup −} concentrations ([Cl{sup −}]{sub i}) and the length of growing neurites. We measured [Cl{sup −}]{sub i} in the cell body and growing neurite tips using halide-sensitive fluorescent dyemore » N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE), revealing that [Cl{sup −}]{sub i} in the tip of growing neurite was higher than that in cell body in a single cell. Importantly, there was a significant positive correlation between the length of growing neurite and [Cl{sup −}]{sub i} in neurite tip. Bumtanide (BMT), an inhibitor of NKCC1, significantly inhibited neurite outgrowth and decreased [Cl{sup −}]{sub i} in neurite tip. The results obtained in the present study and our previous studies together strongly suggest that high [Cl{sup −}]{sub i} in neurite tip region is crucial for efficient neurite outgrowth. - Highlights: • Intracellular Cl{sup −} concentrations ([Cl{sup −}]{sub i}) in the tip of growing neurite is higher than that in cell body in a single cell. • There is a significant positive correlation between the length of growing neurite and [Cl{sup −}]{sub i} in neurite tip. • Bumetanide significantly inhibits neurite outgrowth and decreased [Cl{sup −}]{sub i} in neurite tip. • High [Cl{sup −}]{sub i} in neurite tip region is crucial for efficient neurite outgrowth.« less

  7. Effect of Heat Acclimation on Sweat Minerals

    DTIC Science & Technology

    2007-12-01

    training on the trace metals chromium, zinc, and copper. Sports Med. 1987;4:9–18. 6. Chinevere TD , McClung JP, Cheuvront SN. Trace mineral losses in sweat...versus patch tests for estimating body surface electrolyte losses. Int J Sports Nutr Exerc Metab. 2003;13:479–88. 33. Robert MF, Wenger CB, Stolwijk JAJ

  8. Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry.

    PubMed

    Csősz, É; Emri, G; Kalló, G; Tsaprailis, G; Tőzsér, J

    2015-10-01

    The healthy human skin with its effective antimicrobial defense system forms an efficient barrier against invading pathogens. There is evidence suggesting that the composition of this chemical barrier varies between diseases, making the easily collected sweat an ideal candidate for biomarker discoveries. Our aim was to provide information about the normal composition of the sweat, and to study the chemical barrier found at the surface of skin. Sweat samples from healthy individuals were collected during sauna bathing, and the global protein panel was analysed by label-free mass spectrometry. SRM-based targeted proteomic methods were designed and stable isotope labelled reference peptides were used for method validation. Ninety-five sweat proteins were identified, 20 of them were novel proteins. It was shown that dermcidin is the most abundant sweat protein, and along with apolipoprotein D, clusterin, prolactin-inducible protein and serum albumin, they make up 91% of secreted sweat proteins. The roles of these highly abundant proteins were reviewed; all of which have protective functions, highlighting the importance of sweat glands in composing the first line of innate immune defense system, and maintaining the epidermal barrier integrity. Our findings with regard to the proteins forming the chemical barrier of the skin as determined by label-free quantification and targeted proteomics methods are in accordance with previous studies, and can be further used as a starting point for non-invasive sweat biomarker research. © 2015 European Academy of Dermatology and Venereology.

  9. Inhibition of neuropeptide degradation suppresses sweating but increases the area of the axon reflex flare.

    PubMed

    Schlereth, Tanja; Breimhorst, Markus; Werner, Nicolas; Pottschmidt, Katrin; Drummond, Peter D; Birklein, Frank

    2013-04-01

    The neuropeptides CGRP (calcitonin gene-elated peptide) and substance P (SP) mediate neurogenic inflammation. Both are degraded by the neutral endopeptidase (NEP) which can be blocked by phosphoramidon. The aim was to evaluate the effect of NEP inhibition on sweating and vasodilatation. Dermal microdialysis was performed on the skin of 39 subjects. Two fibres were perfused with phosphoramidon (0.01%, 0.02% or 0.2%), two with saline. Acetylcholine (ACh) was either added to the microdialysis perfusate (n = 30, 10(-2)  m) or thermoregulatory sweating was induced (n = 9). Co-application of phosphoramidon reduced cholinergic and thermoregulatory sweating. However, the flare size - a localized increase in superficial blood flow after ACh-application - was significantly increased. The increase in flare size is most probably due to increased CGRP levels. The inhibition of sweating by phosphoramidon may involve an increase in SP, a reduction in CGRP-degradation fragments or a direct inhibitory action of phosphoramidon. © 2013 John Wiley & Sons A/S.

  10. Methods for evaluating temporal groundwater quality data and results of decadal-scale changes in chloride, dissolved solids, and nitrate concentrations in groundwater in the United States, 1988-2010

    USGS Publications Warehouse

    Lindsey, Bruce D.; Rupert, Michael G.

    2012-01-01

    Decadal-scale changes in groundwater quality were evaluated by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Samples of groundwater collected from wells during 1988-2000 - a first sampling event representing the decade ending the 20th century - were compared on a pair-wise basis to samples from the same wells collected during 2001-2010 - a second sampling event representing the decade beginning the 21st century. The data set consists of samples from 1,236 wells in 56 well networks, representing major aquifers and urban and agricultural land-use areas, with analytical results for chloride, dissolved solids, and nitrate. Statistical analysis was done on a network basis rather than by individual wells. Although spanning slightly more or less than a 10-year period, the two-sample comparison between the first and second sampling events is referred to as an analysis of decadal-scale change based on a step-trend analysis. The 22 principal aquifers represented by these 56 networks account for nearly 80 percent of the estimated withdrawals of groundwater used for drinking-water supply in the Nation. Well networks where decadal-scale changes in concentrations were statistically significant were identified using the Wilcoxon-Pratt signed-rank test. For the statistical analysis of chloride, dissolved solids, and nitrate concentrations at the network level, more than half revealed no statistically significant change over the decadal period. However, for networks that had statistically significant changes, increased concentrations outnumbered decreased concentrations by a large margin. Statistically significant increases of chloride concentrations were identified for 43 percent of 56 networks. Dissolved solids concentrations increased significantly in 41 percent of the 54 networks with dissolved solids data, and nitrate concentrations increased significantly in 23 percent of 56 networks. At least one of the three - chloride, dissolved solids, or

  11. Synchronous Bioimaging of Intracellular pH and Chloride Based on LSS Fluorescent Protein.

    PubMed

    Paredes, Jose M; Idilli, Aurora I; Mariotti, Letizia; Losi, Gabriele; Arslanbaeva, Lyaysan R; Sato, Sebastian Sulis; Artoni, Pietro; Szczurkowska, Joanna; Cancedda, Laura; Ratto, Gian Michele; Carmignoto, Giorgio; Arosio, Daniele

    2016-06-17

    Ion homeostasis regulates critical physiological processes in the living cell. Intracellular chloride concentration not only contributes in setting the membrane potential of quiescent cells but it also plays a role in modulating the dynamic voltage changes during network activity. Dynamic chloride imaging demands new tools, allowing faster acquisition rates and correct accounting of concomitant pH changes. Joining a long-Stokes-shift red-fluorescent protein to a GFP variant with high sensitivity to pH and chloride, we obtained LSSmClopHensor, a genetically encoded fluorescent biosensor optimized for the simultaneous chloride and pH imaging and requiring only two excitation wavelengths (458 and 488 nm). LSSmClopHensor allowed us to monitor the dynamic changes of intracellular pH and chloride concentration during seizure like discharges in neocortical brain slices. Only cells with tightly controlled resting potential revealed a narrow distribution of chloride concentration peaking at about 5 and 8 mM, in neocortical neurons and SK-N-SH cells, respectively. We thus showed that LSSmClopHensor represents a new versatile tool for studying the dynamics of chloride and proton concentration in living systems.

  12. Karyotyping, dermatoglyphic, and sweat pore analysis of five families affected with ectodermal dysplasia

    PubMed Central

    Sidhu, Manpreet; Kale, Alka D; Kotrashetti, Vijayalakshmi S

    2012-01-01

    Background: Hereditary ectodermal dysplasia is a genetic recessive trait characterized by hypohydrosis, hypotrichosis, and hypodontia. The affected individual show characteristic physiognomy like protruded forehead, depressed nasal bridge, periorbital wrinkling, protruded lips, etc. There is marked decrease in sweat and salivary secretion. Due to skin involvement palm and sole ridge patterns are disrupted. Aim: In this study an attempt has been made to classify the affected members according to the degree of penetrance by pedigree analysis and also study karyotyping for cytogenetics, dermatoglyphic analysis for the various ridge patterns and variations in the number of sweat glands by sweat pore analysis in affected individuals. Materials and Methods: A total of five families who were affected with ectodermal dysplasia were considered. Pedigree analysis was drawn up to three generation by obtaining history. Dermatoglyphics and sweat pore analysis was done by obtaining palm and finger print impression using stamp pad ink. Karyotyping was done by collecting 3–5 ml peripheral blood. Karyotyping was prepared using lymphocyte culture. Chromosomes were examined at 20 spreads selected randomly under ×100 magnification. Results were analyzed by calculating mean values and percentage was obtained. Results: Karyotyping did not show any abnormalities, dermatoglyphic analysis and sweat pore counts showed marked variations when compared with normal. Moreover, pedigree analysis confirmed the status of the disease as that of the recessive trait. Conclusion: Large number of affected patients needs to be evaluated for dermatoglypic analysis. Genetic aspect of the disease needs to be looked into the molecular level in an attempt to locate the gene locus responsible for ectodermal dysplasia and its manifestation. PMID:23248471

  13. Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment

    NASA Astrophysics Data System (ADS)

    Lei, Mingfeng; Lin, Dayong; Liu, Jianwen; Shi, Chenghua; Ma, Jianjun; Yang, Weichao; Yu, Xiaoniu

    2018-03-01

    For the purpose of investigating lining concrete durability, this study derives a modified chloride diffusion model for concrete based on the odd continuation of boundary conditions and Fourier transform. In order to achieve this, the linear stress distribution on a sectional structure is considered, detailed procedures and methods are presented for model verification and parametric analysis. Simulation results show that the chloride diffusion model can reflect the effects of linear stress distribution of the sectional structure on the chloride diffusivity with reliable accuracy. Along with the natural environmental characteristics of practical engineering structures, reference value ranges of model parameters are provided. Furthermore, a chloride diffusion model is extended for the consideration of multi-factor coupling of linear stress distribution, chloride concentration and diffusion time. Comparison between model simulation and typical current research results shows that the presented model can produce better considerations with a greater universality.

  14. Spatial an temporal analysis of chloride concentrations in underground water in the coastal wetland of l'Albufera, Spain

    NASA Astrophysics Data System (ADS)

    Puhakka, Evelina; Pascual-Aguilar, Juan Antonio; Andreu, Vicente

    2010-05-01

    Mediterranean coastal wetlands are of great interest for their richness in biodiversity. They are also fragile systems because they are exposed to various human pressures, such as farming systems and urban sprawl. Most Mediterranean coastal wetlands have a transient underground inter phase of continental and marine water. In many cases, the variations of the rain regime towards an increasing dryness and the overexploitation of aquiphers in these zones could favour the marine water intrusion, being a source of continental water salinisation and loss of its quality. This process can directly affect the ecosystems and produce loss of biodiversity. Thus, studies to assess the dynamics in time and space of the possible marine intrusion are necessary to evaluate coastal environment health and quality. The study has been applied to L'Albufera Natural Park, the largest Coastal Wetland in eastern Spain. Due to its importance, it has been included in the list of Wetlands of the RAMSAR Convention. In the area there is a complex relationship between the intrinsic natural importance (endemicity and biodiversity) and the human activities (traditional agriculture and hinterland industrial and settlement development). The methodological approach is based in the analysis of chloride concentrations time series of thirteen sample water points distributed in and around the boundaries of the Natural Park. All time series, between 1982 and 2008, have been analysed to establish trends both in time and space. Results show that in samples close to the see (between 1500 and 2000 metres) chloride concentrations are not too high, with values between 37 mg/l and 213 mg/l. Nonetheless, the shorter is the distance to the see the higher are the chloride levels, with values between 58 mg/l and 1131 mg/l. For longer distances, more than 2000 from the coast line, values are quite similar in most sample points, from 52 mg/l to 691 mg/l. Among all the thirteen time series analysed trends are detected

  15. De novo epidermal regeneration using human eccrine sweat gland cells: higher competence of secretory over absorptive cells.

    PubMed

    Pontiggia, Luca; Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Oliveira, Carol; Braziulis, Erik; Klar, Agnieszka S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2014-06-01

    In our previous work, we showed that human sweat gland-derived epithelial cells represent an alternative source of keratinocytes to grow a near normal autologous epidermis. The role of subtypes of sweat gland cells in epidermal regeneration and maintenance remained unclear. In this study, we compare the regenerative potential of both secretory and absorptive sweat gland cell subpopulations. We demonstrate the superiority of secretory over absorptive cells in forming a new epidermis on two levels: first, the proliferative and colony-forming efficiencies in vitro are significantly higher for secretory cells (SCs), and second, SCs show a higher frequency of successful epidermis formation as well as an increase in the thickness of the formed epidermis in the in vitro and in vivo functional analyses using a 3D dermo-epidermal skin model. However, the ability of forming functional skin substitutes is not limited to SCs, which supports the hypothesis that multiple subtypes of sweat gland epithelial cells hold regenerative properties, while the existence and exact localization of a keratinocyte stem cell population in the human eccrine sweat gland remain elusive.

  16. Chloride Sources and Losses in Two Tile-Drained Agricultural Watersheds.

    PubMed

    David, Mark B; Mitchell, Corey A; Gentry, Lowell E; Salemme, Ronald K

    2016-01-01

    Chloride is a relatively unreactive plant nutrient that has long been used as a biogeochemical tracer but also can be a pollutant causing aquatic biology impacts when concentrations are high, typically from rock salt applications used for deicing roads. Chloride inputs to watersheds are most often from atmospheric deposition, road salt, or agricultural fertilizer, although studies on agricultural watersheds with large fertilizer inputs are few. We used long-term (21 and 17 yr) chloride water quality data in two rivers of east-central Illinois to better understand chloride biogeochemistry in two agricultural watersheds (Embarras and Kaskaskia), the former with a larger urban land use and both with extensive tile drainage. During our sampling period, the average chloride concentration was 23.7 and 20.9 mg L in the Embarras and Kaskaskia Rivers, respectively. Annual fluxes of chloride were 72.5 and 61.2 kg ha yr in the Embarras and Kaskaskia watersheds, respectively. In both watersheds, fertilizer chloride was the dominant input (∼49 kg ha yr), with road salt likely the other major source (23.2 and 7.2 kg ha yr for the Embarras and Kaskaskia watersheds, respectively). Combining our monitoring data with earlier published data on the Embarras River showed an increase in chloride concentrations as potash use increased in Illinois during the 1960s and 1970s with a lag of about 2 to 6 yr to changes in potash inputs based on a multiple-regression model. In these agricultural watersheds, riverine chloride responds relatively quickly to potash fertilization as a result of tile-drainage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Effect of low concentrations of benzalkonium chloride on acanthamoebal survival and its potential impact on empirical therapy of infectious keratitis.

    PubMed

    Tu, Elmer Y; Shoff, Megan E; Gao, Weihua; Joslin, Charlotte E

    2013-05-01

    The significant antiacanthamoebal effect of benzalkonium chloride, at or below concentrations used for preservation of common ophthalmic preparations, should be understood both when choosing empiric antibiotic therapy for infectious keratitis and when assessing the persistent rise in Acanthamoeba cases in the United States since 2003. To characterize the antiacanthamoebal efficacy of low concentrations of benzalkonium chloride (BAK) for drug preservation and therapeutic effect against Acanthamoeba. Experimental study with a review of the literature. Laboratory. A concentration of 10(4) trophozoites of 3 well-characterized clinical strains of Acanthamoeba were exposed at 0.5, 2.0, 3.5, 5.0, and 6.5 hours to BAK (0.001%, 0.002%, and 0.003%), moxifloxacin hydrochloride (0.5%), and moxifloxacin (0.5%) + BAK (0.001% and 0.003%) with hydrogen peroxide (3%) and amoeba saline controls. Amoeba survival was calculated using the most probable number method recorded as log kill values. The relationship of BAK concentration and exposure time as well as the relative effect of BAK and moxifloxacin on acanthamoebal survival were analyzed. Amoebicidal activity of BAK is both time dependent and concentration dependent in pooled and strain-stratified analyses (P < .001). Moxifloxacin demonstrated no significant independent inhibitory effect or additive effect to BAK efficacy on acanthamoebal survival. The profound antiacanthamoebal effect of BAK, 0.003%, was similar to that of hydrogen peroxide for certain strains. Low concentrations of BAK, previously demonstrated to concentrate and persist in ocular surface epithelium, exhibit significant antiacanthamoebal activity in vitro at or below concentrations found in commercially available ophthalmic anti-infectives. The unexplained persistence of the Acanthamoeba keratitis outbreak in the United States, clusters abroad, and clinical studies reporting resolution or modification of Acanthamoeba keratitis without specific antiacanthamoebal

  18. Influence of the different sodium chloride concentrations on microbiological and physico-chemical characteristics of mozzarella cheese.

    PubMed

    Faccia, Michele; Mastromatteo, Marianna; Conte, Amalia; Del Nobile, Matteo Alessandro

    2012-11-01

    In this work the effects of addition of different amounts of sodium chloride, during cheese making, on shelf life of mozzarella cheese were evaluated. The mozzarella cheese quality decay was assessed during storage at 9 °C by monitoring microbiological, sensory and physico-chemical changes in the product. Results showed that Pseudomonas spp. growth was responsible for cheese unacceptability, whereas the sensory quality did not limit cheese shelf life. In particular, the highest shelf life values were obtained for mozzarella without salt and with the lowest salt concentration (0·23 g NaCl), and amounted to about 5 and 4 d, respectively. On the contrary, high salt concentrations affected product shelf life, probably as a consequence of progressive solubilisation of cheese casein, due to the phenomenon of 'salting in'.

  19. Regional and circadian variations of sweating rate and body surface temperature in camels (Camelus dromedarius).

    PubMed

    Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Al-Haidary, Ahmed A

    2012-07-01

    It was the aim of this study to investigate the regional variations in surface temperature and sweating rate and to visualize body thermal windows responsible for the dissipation of excess body heat in dromedary camels. This study was conducted on five dromedary camels with mean body weight of 450 ± 20.5 kg and 2 years of age. Sweating rate, skin and body surface temperature showed significant (P < 0.001) circadian variation together with the variation in ambient temperature. However, daily mean values of sweating rate, skin and body surface temperature measured on seven regions of the camel body did not significantly differ. The variation in body surface temperature compared to the variation in skin temperature was higher in the hump compared to the axillary and flank regions, indicating the significance of camel's fur in protecting the skin from daily variation in ambient temperature. Infrared thermography revealed that flank and axillary regions had lower thermal gradients at higher ambient temperature (T(a) ) and higher thermal gradients at lower T(a) , which might indicate the working of flank and axillary regions as thermal windows dissipating heat during the night. Sweating rate showed moderate correlation to skin and body surface temperatures, which might indicate their working as potential thermal drivers of sweating in camels. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  20. Sodium Chloride Affects Helicobacter pylori Growth and Gene Expression▿

    PubMed Central

    Gancz, Hanan; Jones, Kathleen R.; Merrell, D. Scott

    2008-01-01

    Epidemiological evidence links high-salt diets and Helicobacter pylori infection with increased risk of developing gastric maladies. The mechanism by which elevated sodium chloride content causes these manifestations is unclear. Here we characterize the response of H. pylori to temporal changes in sodium chloride concentration and show that growth, cell morphology, survival, and virulence factor expression are all altered by increased salt concentration. PMID:18375562

  1. The Sweat Lodge Ceremony in Challenge/Adventure Programming.

    ERIC Educational Resources Information Center

    Quinn, William J.; Smith, Thomas E.

    This paper advocates the potentials of "sweat lodge" rituals for adventure education programs. Historically, rituals and ceremonies have been instrumental in passing major philosophical and sociological paradigms from one generation to the next. However, there is little theory and research about how ritual and ceremony results in the…

  2. Oxidative stress does not influence local sweat rate during high-intensity exercise.

    PubMed

    Meade, Robert D; Fujii, Naoto; Poirier, Martin P; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2018-02-01

    What is the central question of this study? We evaluated whether oxidative stress attenuates the contribution of nitric oxide to sweating during high-intensity exercise. What is the main finding and its importance? In contrast to our previous report of an oxidative stress-mediated reduction in nitric oxide-dependent cutaneous vasodilatation in this cohort during intense exercise, we demonstrated no influence of local ascorbate administration on the sweating response during moderate- (∼51% peak oxygen uptake) or high-intensity exercise (∼72% peak oxygen uptake). These new findings provide important mechanistic insight into how exercise-induced oxidative stress impacts sudomotor activity. Nitric oxide (NO)-dependent sweating is diminished during high- but not moderate-intensity exercise. We evaluated whether this impairment stems from increased oxidative stress during high-intensity exercise. On two separate days, 11 young (24 ± 4 years) men cycled in the heat (35°C) at a moderate [500 W; 52 ± 6% peak oxygen uptake (V̇O2 peak )] or high (700 W; 71 ± 5% V̇O2 peak ) rate of metabolic heat production. Each session included two 30 min exercise bouts separated by a 20 min recovery period. Local sweat rate was monitored at four forearm skin sites continuously perfused via intradermal microdialysis with the following: (i) lactated Ringer solution (Control); (ii) 10 mm ascorbate (Ascorbate; non-selective antioxidant); (iii) 10 mm N G -nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor); or (iv) 10 mm ascorbate plus 10 mm l-NAME (Ascorbate + l-NAME). During moderate exercise, sweat rate was attenuated at the l-NAME and Ascorbate + l-NAME sites (both ∼1.0 mg min -1  cm -2 ; all P < 0.05) but not at the Ascorbate site (∼1.1 mg min -1  cm -2 ; both P ≥ 0.28) in comparison to the Control site (∼1.1 mg min -1  cm -2 ). However, no differences were observed between treatment sites (∼1.4 mg min -1  cm -2 ; P = 0

  3. Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Clay A; Hershey, Ronald L; Healey, John M

    Groundwater recharge on Pahute Mesa was estimated using the chloride mass-balance (CMB) method. This method relies on the conservative properties of chloride to trace its movement from the atmosphere as dry- and wet-deposition through the soil zone and ultimately to the saturated zone. Typically, the CMB method assumes no mixing of groundwater with different chloride concentrations; however, because groundwater is thought to flow into Pahute Mesa from valleys north of Pahute Mesa, groundwater flow rates (i.e., underflow) and chloride concentrations from Kawich Valley and Gold Flat were carefully considered. Precipitation was measured with bulk and tipping-bucket precipitation gauges installed formore » this study at six sites on Pahute Mesa. These data, along with historical precipitation amounts from gauges on Pahute Mesa and estimates from the PRISM model, were evaluated to estimate mean annual precipitation. Chloride deposition from the atmosphere was estimated by analyzing quarterly samples of wet- and dry-deposition for chloride in the bulk gauges and evaluating chloride wet-deposition amounts measured at other locations by the National Atmospheric Deposition Program. Mean chloride concentrations in groundwater were estimated using data from the UGTA Geochemistry Database, data from other reports, and data from samples collected from emplacement boreholes for this study. Calculations were conducted assuming both no underflow and underflow from Kawich Valley and Gold Flat. Model results estimate recharge to be 30 mm/yr with a standard deviation of 18 mm/yr on Pahute Mesa, for elevations >1800 m amsl. These estimates assume Pahute Mesa recharge mixes completely with underflow from Kawich Valley and Gold Flat. The model assumes that precipitation, chloride concentration in bulk deposition, underflow and its chloride concentration, have been constant over the length of time of recharge.« less

  4. Genomic and transcriptomic insights into how bacteria withstand high concentrations of benzalkonium chloride biocides.

    PubMed

    Kim, Minjae; Hatt, Janet K; Weigand, Michael R; Krishnan, Raj; Pavlostathis, Spyros G; Konstantinidis, Konstantinos T

    2018-04-13

    Benzalkonium chlorides (BAC) are commonly used biocides in broad-spectrum disinfectant solutions. How microorganisms cope with BAC exposure remains poorly understood, despite its importance for disinfection and disinfectant-induced antibiotic resistance. To provide insights into these issues, we exposed two isolates of an opportunistic pathogen, Pseudomonas aeruginosa , to increasing concentrations of BAC. One isolate was pre-adapted to BAC as it originated from a bioreactor fed with sub-inhibitory concentrations of BAC for 3 years, while the other originated from a bioreactor that received no BAC. Replicated populations of both isolates were able to survive high concentrations of BAC, up to 1200 and 1600mg/L for the non- and pre-adapted ones, respectively, exceeding typical application doses. RNA-seq analysis revealed up-regulation of efflux pump genes and decreased expression of porins related to BAC transport as well as reduced growth rate. Increased expression of spermidine (a polycation) synthase genes and mutations in the pmrB (polymyxin resistance) gene, which cause a reduction in membrane negative charge, suggested that a major adaptation to exposure to the cationic surfactant BAC was to actively stabilize cell surface charge. Collectively, these results revealed that P. aeruginosa adapts to BAC exposure by a combination of mechanisms, and provided genetic markers to monitor BAC-resistant organisms that may have applications in the practice of disinfection. Importance Benzalkonium chlorides (BAC) are widely used as biocides in disinfectant solutions, food processing lines, domestic households, and healthcare facilities. Due to their wide use and mode of action, there has been rising concern that BAC may promote antibiotic resistance. Consistently, at least 40 outbreaks have been attributed to infection by disinfectant- and antibiotic-resistant pathogens such as Pseudomonas aeruginosa However, the underlying molecular mechanisms that bacteria deal with BAC

  5. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells

    NASA Astrophysics Data System (ADS)

    Saha, Sonali; Prakash, Ved; Halder, Saheli; Chakraborty, Kasturi; Krishnan, Yamuna

    2015-07-01

    The concentration of chloride ions in the cytoplasm and subcellular organelles of living cells spans a wide range (5-130 mM), and is tightly regulated by intracellular chloride channels or transporters. Chloride-sensitive protein reporters have been used to study the role of these chloride regulators, but they are limited to a small range of chloride concentrations and are pH-sensitive. Here, we show that a DNA nanodevice can precisely measure the activity and location of subcellular chloride channels and transporters in living cells in a pH-independent manner. The DNA nanodevice, called Clensor, is composed of sensing, normalizing and targeting modules, and is designed to localize within organelles along the endolysosomal pathway. It allows fluorescent, ratiometric sensing of chloride ions across the entire physiological regime. We used Clensor to quantitate the resting chloride concentration in the lumen of acidic organelles in Drosophila melanogaster. We showed that lumenal lysosomal chloride, which is implicated in various lysosomal storage diseases, is regulated by the intracellular chloride transporter DmClC-b.

  6. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells.

    PubMed

    Saha, Sonali; Prakash, Ved; Halder, Saheli; Chakraborty, Kasturi; Krishnan, Yamuna

    2015-07-01

    The concentration of chloride ions in the cytoplasm and subcellular organelles of living cells spans a wide range (5-130 mM), and is tightly regulated by intracellular chloride channels or transporters. Chloride-sensitive protein reporters have been used to study the role of these chloride regulators, but they are limited to a small range of chloride concentrations and are pH-sensitive. Here, we show that a DNA nanodevice can precisely measure the activity and location of subcellular chloride channels and transporters in living cells in a pH-independent manner. The DNA nanodevice, called Clensor, is composed of sensing, normalizing and targeting modules, and is designed to localize within organelles along the endolysosomal pathway. It allows fluorescent, ratiometric sensing of chloride ions across the entire physiological regime. We used Clensor to quantitate the resting chloride concentration in the lumen of acidic organelles in Drosophila melanogaster. We showed that lumenal lysosomal chloride, which is implicated in various lysosomal storage diseases, is regulated by the intracellular chloride transporter DmClC-b.

  7. The impact of the sweat lodge ceremony on dimensions of well-being.

    PubMed

    Schiff, Jeannette Wagemakers; Moore, Kerrie

    2006-01-01

    The importance of traditional healing practices for First Nations people has created interest in traditional ceremonies, including sweat lodges, which are increasingly incorporated into programs serving Aboriginal people. Despite the fact that traditional healing practices have always been valued by Aboriginal people, there is virtually no research on their efficacy. The results of a pilot study that measured the impact of the sweat lodge ceremony on the physical, mental, emotional, and spiritual domains of individual participants indicated that an increase in spiritual and emotional well-being of participants was directly attributable to the ceremony.

  8. 29 CFR 1910.1017 - Vinyl chloride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Cancer; central nervous system effects; liver effects; blood effects; and flammability. (iii) Employers..., whichever occurs first. (B) A continuous-monitoring and alarm system must be provided when concentrations of... system must be used to alert employees when vinyl chloride concentrations exceed the allowable...

  9. 29 CFR 1910.1017 - Vinyl chloride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Cancer; central nervous system effects; liver effects; blood effects; and flammability. (iii) Employers..., whichever occurs first. (B) A continuous-monitoring and alarm system must be provided when concentrations of... system must be used to alert employees when vinyl chloride concentrations exceed the allowable...

  10. 29 CFR 1910.1017 - Vinyl chloride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Cancer; central nervous system effects; liver effects; blood effects; and flammability. (iii) Employers..., whichever occurs first. (B) A continuous-monitoring and alarm system must be provided when concentrations of... system must be used to alert employees when vinyl chloride concentrations exceed the allowable...

  11. Hybrid electrooxidation and adsorption process for the removal of ammonia in low concentration chloride wastewater.

    PubMed

    Ding, Jing; Zhao, Qing-Liang; Zhang, Jun; Jiang, Jun-Qiu; Li, Wei; Yu, Hang; Huang, Li-Kun; Zhang, Yun-Shu

    2017-02-01

    The ammonia removal performance of a hybrid electrooxidation and adsorption reactor (HEAR) is evaluated. The influences of current density, chloride concentration, and packing particles for ammonia removal in HEAR were investigated, and the performance of HEAR under serials circulation was studied. Results indicated that ammonia removal efficiency achieved around 70 % under the optimal condition after 30-min electrolysis. The optimal condition was determined as current density of 10 mA/cm 2 , Cl - /NH 4 + molar ratio of 1.8, and modified zeolites as particles. The ammonia adsorption kinetic and adsorption isotherm on zeolites fitted well with second-order kinetic and Langmuir isotherm model, respectively. Adsorption amount of ammonia on zeolites sampled at 30-min electrolysis achieved 2.4 mg/L, higher than 1.9 mg/L of zeolites at 20-min electrolysis, indicating that electrooxidation coupled with adsorption led to simultaneous ammonia removal and zeolite regeneration in HEAR. No decrease of ammonia removal efficiency was observed over several cycles with the electrooxidation treatment. The presence of free chlorine indicating ammonia removal in HEAR was due to the combined influence by adsorption and indirect electrooxidation. These results showed that HEAR was a prospective alternative as a tertiary treatment for wastewater with low chloride ions.

  12. Evidence for cyclooxygenase-dependent sweating in young males during intermittent exercise in the heat

    PubMed Central

    Fujii, Naoto; McGinn, Ryan; Stapleton, Jill M; Paull, Gabrielle; Meade, Robert D; Kenny, Glen P

    2014-01-01

    Our recent work implicated nitric oxide (NO) in the control of sweating during intermittent exercise; however, it is unclear if cyclooxygenase (COX) is also involved. On separate days, ten healthy young (24 ± 4 years) males cycled in the heat (35°C). Two 30 min exercise bouts were performed at either a moderate (400 W, moderate heat load) or high (700 W, high heat load) rate of metabolic heat production and were followed by 20 and 40 min of recovery, respectively. Forearm sweating (ventilated capsule) was evaluated at four skin sites that were continuously perfused via intradermal microdialysis with: (1) lactated Ringer solution (Control), (2) 10 mm ketorolac (a non-selective COX inhibitor), (3) 10 mm NG-nitro-l-arginine methyl ester (l-NAME; a non-selective NO synthase inhibitor) or (4) a combination of 10 mm ketorolac + 10 mml-NAME. During the last 5 min of the first exercise at moderate heat load, forearm sweating (mg min−1 cm−2) was equivalently reduced with ketorolac (0.54 ± 0.08), l-NAME (0.55 ± 0.07) and ketorolac+l-NAME (0.56 ± 0.08) compared to Control (0.67 ± 0.06) (all P < 0.05). Similar results were obtained for the second exercise at moderate heat load (all P < 0.05). However, forearm sweating was similar between the four sites during exercise at high heat load and during recovery regardless of exercise intensity (all P > 0.05). We show that (1) although both COX and NO modulate forearm sweating during intermittent exercise bouts in the heat at a moderate heat load, the effects are not additive, and (2) the contribution of both enzymes to forearm sweating is less evident during intermittent exercise when the heat load is high and during recovery. PMID:25326453

  13. Quantification of cortisol in human eccrine sweat by liquid chromatography - tandem mass spectrometry.

    PubMed

    Jia, Min; Chew, Wade M; Feinstein, Yelena; Skeath, Perry; Sternberg, Esther M

    2016-03-21

    Cortisol has long been recognized as the "stress biomarker" in evaluating stress related disorders. Plasma, urine or saliva are the current source for cortisol analysis. The sampling of these biofluids is either invasive or has reliability problems that could lead to inaccurate results. Sweat has drawn increasing attention as a promising source for non-invasive stress analysis. A sensitive HPLC-MS/MS method was developed for the quantitation of cortisol ((11β)-11,17,21-trihydroxypregn-4-ene-3,20-dione) in human eccrine sweat. At least one unknown isomer that has previously not been reported and could potentially interfere with quantification was separated from cortisol with mixed mode RP HPLC. Detection of cortisol was carried out using atmospheric pressure chemical ionization (APCI) and selected reaction monitoring (SRM) in positive ion mode, using cortisol-9,11,12,12-D4 as internal standard. LOD and LOQ were estimated to be 0.04 ng ml(-1) and 0.1 ng ml(-1), respectively. Linear range of 0.10-25.00 ng ml(-1) was obtained. Intraday precision (2.5%-9.7%) and accuracy (0.5%-2.1%), interday precision (12.3%-18.7%) and accuracy (7.1%-15.1%) were achieved. This method has been successfully applied to the cortisol analysis of human eccrine sweat samples. This is the first demonstration that HPLC-MS/MS can be used for the sensitive and highly specific determination of cortisol in human eccrine sweat in the presence of at least one isomer that has similar hydrophobicity as cortisol. This study demonstrated that human eccrine sweat could be used as a promising source for non-invasive assessment of stress biomarkers such as cortisol and other steroid hormones.

  14. Influence of chloride on the chronic toxicity of sodium nitrate to Ceriodaphnia dubia and Hyalella azteca.

    PubMed

    Soucek, David J; Dickinson, Amy

    2016-09-01

    While it has been well established that increasing chloride concentration in water reduces the toxicity of nitrite to freshwater species, little work has been done to investigate the effect of chloride on nitrate toxicity. We conducted acute and chronic nitrate (as sodium nitrate) toxicity tests with the cladoceran Ceriodaphnia dubia and the amphipod Hyalella azteca (chronic tests only) over a range of chloride concentrations spanning natural chloride levels found in surface waters representative of watersheds of the Great Lakes Region. Chronic nitrate toxicity test results with both crustaceans were variable, with H. azteca appearing to be one of the more sensitive invertebrate species tested and C. dubia being less sensitive. While the variability in results for H. azteca were to an extent related to chloride concentration in test water that was distinctly not the case for C. dubia. We concluded that the chloride dependent toxicity of nitrate is not universal among freshwater crustaceans. An additional sodium chloride chronic toxicity test with the US Lab strain of H. azteca in the present study suggested that when present as predominantly sodium chloride and with relatively low concentrations of other ions, there is a narrow range of chloride concentrations over which this strain is most fit, and within which toxicity test data are reliable.

  15. The significance of hypersensitivity to autologous sweat and serum in cholinergic urticaria: cholinergic urticaria may have different subtypes.

    PubMed

    Kim, Jung Eun; Jung, Kwan Ho; Cho, Hyun Hee; Kang, Hoon; Park, Young Min; Park, Hyun Jeong; Lee, Jun Young

    2015-07-01

    The pathogenesis of cholinergic urticaria (ChU) has been unclear except for the involvement of acetylcholine. Attempts to classify ChU according to etiology have rarely been performed. To evaluate the significance of responsiveness to autologous sweat and serum in ChU in relation to their clinical characteristics. This study involved 18 patients diagnosed with ChU between January 2010 and April 2011 in the Catholic Medical Center-St. Paul's Hospital. History taking included symptom duration, association with atopy, decreased sweat secretions, seasonal variation, and response to treatment. Intradermal autologous serum skin test (ASST) and autologous sweat skin test (ASwST) and basophil histamine release test with sweat were done. Sweat hypersensitivity was proven by a positive ASwST and basophil histamine release test in only 37.5% of patients with ChU, and in none of the healthy controls. The weal size of ASwST correlated with percentage basophil histamine release. A positive response to autologous serum was displayed by 38.9% of patients, whereas 10% of healthy controls showed a positive ASST response. Intriguingly, patients with a positive ASwST had a negative ASST, and vice versa. Despite this, there was no difference in the clinical characteristics between positive ASST and positive ASwST groups. The frequency of hypersensitivity to autologous sweat and serum was significantly higher in patients with ChU, compared with healthy controls. This suggests that autoimmunity to an unknown serum factor as well as sweat hypersensitivity may be involved in the pathogenesis of ChU. © 2014 The International Society of Dermatology.

  16. Changes in chloride concentration in water from municipal wells that tap aquifers in rocks of Cambrian and Ordovician age in northeastern Illinois, 1915-84

    USGS Publications Warehouse

    Balding, G.O.

    1991-01-01

    During the past few decades, several municipalities in northeastern Illinois have noted increases in the salinity of water from wells that tap aquifers in rocks of Cambrian and Ordovician age. The municipalities have discontinued the use of, or sealed-off sections of, those wells. The aquifers involved include the Ancell, the Ironton-Galesville, and the Elmhurst-Mt. Simon. To define the location, magnitude, and possible causes for the salinity increases in the six northeastern counties of Illinois, 17 municipal wells and 1 deep test well were selected on the basis of their proximity to major pumping centers, the availability of water-quality data, and their documented maintenance history. Well depths ranged from about 960 to 3,475 feet. One well was finished in the middle confining unit, 2 wells were finished in the Ironton-Galesville aquifer, 4 wells were finished in the Eau Claire confining unit, and 10 wells were finished in the Elmhurst-Mt. Simon aquifer. The deep test well was finished below the Elmhurst-Mt. Simon aquifer in Precambrian-age rock. Chloride concentrations in the municipal wells ranged from less than 5 to greater than 600 milligrams per liter; in the deep test well, they ranged from 13 t o 37,000 milligrams per liter. Some changes in the chloride concentration in water from the studied municipal wells can be related to physical changes to the wells, including the partial filling in of a well, bridging within a well, the cleaning out of a well, or the deepening of a well. Some changes in chloride concentration are not related to physical changes but may be caused by increased pumpage; changes in pumping rate, frequency, or duration; cessation of pumping; improper abandonment of wells; and the upconing of highly mineralized water. The data base was inadequate for a quantitative study of the changes in chloride concentration in water from individual aquifers in rocks of Cambrian and Ordovician age.

  17. Effect of Exercise-induced Sweating on facial sebum, stratum corneum hydration, and skin surface pH in normal population.

    PubMed

    Wang, Siyu; Zhang, Guirong; Meng, Huimin; Li, Li

    2013-02-01

    Evidence demonstrated that sweat was an important factor affecting skin physiological properties. We intended to assess the effects of exercise-induced sweating on the sebum, stratum corneum (SC) hydration and skin surface pH of facial skin. 102 subjects (aged 5-60, divided into five groups) were enrolled to be measured by a combination device called 'Derma Unit SSC3' in their frontal and zygomatic regions when they were in a resting state (RS), at the beginning of sweating (BS), during excessive sweating (ES) and an hour after sweating (AS), respectively. Compared to the RS, SC hydration in both regions increased at the BS or during ES, and sebum increased at the BS but lower during ES. Compared to during ES, Sebum increased in AS but lower than RS. Compared to the RS, pH decreased in both regions at the BS in the majority of groups, and increased in frontal region during ES and in zygomatic region in the AS. There was an increase in pH in both regions during ES in the majority of groups compared to the BS, but a decrease in the AS compared to during ES. The study implies that even in summer, after we sweat excessively, lipid products should be applied locally in order to maintain stability of the barrier function of the SC. The study suggests that after a short term(1 h or less) of self adjustment, excessive sweat from moderate exercise will not impair the primary acidic surface pH of the facial skin. Exercise-induced sweating significantly affected the skin physiological properties of facial region. © 2012 John Wiley & Sons A/S.

  18. Comparison of daily urine, sweat, and skin swabs among cocaine users.

    PubMed

    Kidwell, D A; Kidwell, J D; Shinohara, F; Harper, C; Roarty, K; Bernadt, K; McCaulley, R A; Smith, F P

    2003-04-23

    This study (1) compares urine, skin swabs, and PharmChek sweat patches for monitoring drug use; (2) measures possible environmental contamination in recent cocaine (COC) users; and (3) evaluates various immunoassays (IA) for screening COC in diverse matrices. Unique aspects include daily urine monitoring of 10 participants for 4 weeks, multiple monitoring methods, analysis for all specimens by IA and gas chromatography (GC)/mass spectrometry (MS), and the potential for continued illicit drug use by participants. Urine served as the "gold standard" specimen for determining drug use. Only cocaine and related substances were detected. Trace amounts of drugs were found on the skin (<50 ng per swab) of urine-negative participants' hands or forehead. In contrast, larger quantities of COC were found on the skin of individuals with BE-positive urines or individuals living with drug users (up to 20 microg per swab). Patch COC amounts among the three regular users (250-9000, 0-240, 160-22,000 ng per patch) exceeded BE (50-950, none, 30-2200 ng per patch). Pre-swabs, valuable for interpreting the source or time frame of positive patch results, contained substantial COC (38-1160, 0-152, 34-762 ng per swab) prior to patch application; therefore, patch results may represent current use, prior use, contamination, or a combination. In three individuals with no indication of cocaine use, false positives (defined as sweat patch positive when urine specimens were <300ng BE/ml) occurred at a 7% rate. Proposed cut-off concentrations of 75 ng cocaine per patch and 300 ng BE/ml urine curtail the incidence of false positives in this limited population. Three immunoassays were compared to screen specimens for cocaine: a modified, manual Microgenics CEDIA; a Cozart ELISA; and an OraSure ELISA. CEDIA's limit of detection (LOD) was 81ng/ml, compared with LODs of 4 ng/ml for the Cozart ELISA and 1.5 ng/ml for the OraSure ELISA. Cozart correlated with OraSure results for COC concentrations

  19. [Treatment of hyperhidrosis (excessive sweating)].

    PubMed

    Salava, Alexander; Jousimaa, Jukkapekka

    2016-01-01

    Hyperhidrosis can be localized or generalized and may cause the patient significant discomfort. Localized hyperhidrosis is usually primary, often begins in adolescence and is partly based on genetic dispositions. As a rule it does not necessitate investigations for secondary causes (e.g. endocrine or neurologic conditions). Generalized hyperhidrosis is commonly associated with environmental or lifestyle factors, and sometimes physiological factors. In new-onset generalized sweating of unclear origin, it may be appropriate to consider secondary causes (underlying diseases, medications, infections). Relatively effective symptomatic treatments are available in localized hyperhidrosis. The treatment of generalized hyperhidrosis is almost always directed against the underlying factors.

  20. Effects of temperature and sodium chloride concentration on the activities of proteases and amylases in soy sauce koji.

    PubMed

    Su, Nan-Wei; Wang, Mei-Ling; Kwok, Kam-Fu; Lee, Min-Hsiung

    2005-03-09

    This study investigated the effects of temperature and sodium chloride concentration on the proteolytic and amylolytic activities of soy sauce koji. The optimal temperatures for both protease and amylase were found in the range of 50-55 degrees C. The protease was not stable at 55 degrees C and retained only approximately 20% residual activity after incubation at 55 degrees C for 4 h. The protease was labile in sodium chloride solution, whereas the amylase was quite stable. The residual protease activity in an 18% NaCl solution was only approximately 3%. The harvested koji was mixed with 1.5 volumes of water (v/w) and incubated at 45 degrees C for 48 h; the total nitrogen and amino nitrogen contents were 1.3 and 0.56%, respectively. The results indicated that the hydrolysis of koji at the critical temperature of 45 degrees C could be employed as a rapid fermentation method to reduce the time for soy sauce manufacturing. According to this study, the combination of 5% sodium chloride and fermentation at 45 degrees C was considered as the best condition for the prohydrolysis of koji for making soy sauce. In addition, the critical temperature of 45 degrees C was very important when used in the preparation of protein hydrolysates for the flavoring industry and for the preparation of biologically active peptides.

  1. Bovine serum albumin partitioning in an aqueous two-phase system: effect of pH and sodium chloride concentration.

    PubMed

    Gündüz, U; Korkmaz, K

    2000-06-23

    The partitioning of bovine serum albumin (BSA) in a polyethylene glycol 3350 (8% w/w)-dextran 37 500 (6% w/w)-0.05 M phosphate aqueous two-phase was investigated at different pHs, at varying concentrations of sodium chloride at 20 degrees C. The effect of NaCl concentration on the partition coefficient of BSA was studied for the PEG-dx systems with initial pH values of 4.2, 5.0, 7.0, 9.0, and 9.8. The NaCl concentrations in the phase systems with constant pH value were 0.06, 0.1, 0.2, 0.3, and 0.34 M. It was observed that the BSA partition coefficient decreased at concentrations smaller than 0.2 M NaCl and increased at concentrations greater than 0.2 M NaCl for all systems with initial pHs of 4.2, 5.0, 7.0, 9.0, and 9.8. It was also seen that the partition coefficient of BSA decreased as the pH of the aqueous two-phase systems increased at any NaCl salt concentration studied.

  2. Preliminary buprenorphine sublingual tablet pharmacokinetic data in plasma, oral fluid and sweat during treatment of opioid-dependent pregnant women

    PubMed Central

    Concheiro, Marta; Jones, Hendreé E.; Johnson, Rolley E.; Choo, Robin; Huestis, Marilyn A.

    2011-01-01

    Background Buprenorphine is currently under investigation as a pharmacotherapy to treat pregnant women for opioid dependence. This research evaluates buprenorphine (BUP), norbuprenophine (NBUP), buprenorphine-glucuronide (BUP-Gluc) and norbuprenorphine-glucuronide (NBUP-Gluc) pharmacokinetics after high dose (14–20 mg) BUP sublingual tablet administration in three opioid-dependent pregnant women. Methods Oral fluid and sweat specimens were collected in addition to plasma specimens for 24 h during gestation weeks 28 or 29 and 34, and 2 months after delivery. Tmax was not affected by pregnancy; however, BUP and NBUP Cmax and AUC0–24h tended to be lower during pregnancy compared to postpartum levels. Results Statistically significant but weak positive correlations were found for BUP plasma and OF concentrations, and BUP/NBUP ratios in plasma and OF. Conclusion Statistically significant negative correlations were observed for times of specimen collection and BUP and NBUP OF/plasma ratios. BUP-Gluc and NBUP-Gluc were detected in only 5% of OF specimens. In sweat, BUP and NBUP were detected in only 4 of 25 (12 or 24 h) specimens in low concentrations (<2.4 ng/patch). These preliminary data describe BUP and metabolite pharmacokinetics in pregnant women and suggest that, like methadone, upward dose adjustments may be needed with advancing gestation. PMID:21860340

  3. Survey of Virginia aggregates for chloride contents : final report.

    DOT National Transportation Integrated Search

    1980-01-01

    A major cause of concrete bridge deck deterioration is the corrosion of the reinforcing steel which, in turn, is caused by the presence of extremely high concentrations of chloride ions in the concrete. It was believed that the chloride came almost e...

  4. Guidelines for the clinical management and follow-up of infants with inconclusive cystic fibrosis diagnosis through newborn screening.

    PubMed

    Sermet-Gaudelus, I; Brouard, J; Audrézet, M-P; Couderc Kohen, L; Weiss, L; Wizla, N; Vrielynck, S; LLerena, K; Le Bourgeois, M; Deneuville, E; Remus, N; Nguyen-Khoa, T; Raynal, C; Roussey, M; Girodon, E

    2017-12-01

    Neonatal screening for cystic fibrosis (CF) can detect infants with elevated immunoreactive trypsinogen (IRT) levels and inconclusive sweat tests and/or CFTR DNA results. These cases of uncertain diagnosis are defined by (1) either the presence of at most one CF-associated cystic fibrosis transmembrane conductance regulator (CFTR) mutation with sweat chloride values between 30 and 59mmol/L or (2) two CFTR mutations with at least one of unknown pathogenic potential and a sweat chloride concentration below 60mmol/L. This encompasses various clinical situations whose progression cannot be predicted. In these cases, a sweat chloride test has to be repeated at 12 months, and if possible at 6 and 24 months of life along with extended CFTR sequencing to detect rare mutations. When the diagnosis is not definite, CFTR functional explorations may provide a better understanding of CFTR dysfunction. The initial evaluation of these infants must be conducted in dedicated CF reference centers and should include bacteriological sputum analysis, chest radiology, and fecal elastase assay. The primary care physicians in charge of these patients should be familiar with the current management of CF and should work in collaboration with CF centers. A follow-up should be performed in a CF reference center at 3, 6, and 12 months of life and every year thereafter. Any symptom indicative of CF requires immediate reevaluation of the diagnosis. These guidelines were established by the "neonatal screening and difficult diagnoses" working group of the French CF society. Their objective is to standardize the management of infants with unclear diagnosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness

    PubMed Central

    Fournet, Damien; Hodder, Simon; Havenith, George

    2015-01-01

    Humans sense the wetness of a wet surface through the somatosensory integration of thermal and tactile inputs generated by the interaction between skin and moisture. However, little is known on how wetness is sensed when moisture is produced via sweating. We tested the hypothesis that, in the absence of skin cooling, intermittent tactile cues, as coded by low-threshold skin mechanoreceptors, modulate the perception of sweat-induced skin wetness, independently of the level of physical wetness. Ten males (22 yr old) performed an incremental exercise protocol during two trials designed to induce the same physical skin wetness but to induce lower (TIGHT-FIT) and higher (LOOSE-FIT) wetness perception. In the TIGHT-FIT, a tight-fitting clothing ensemble limited intermittent skin-sweat-clothing tactile interactions. In the LOOSE-FIT, a loose-fitting ensemble allowed free skin-sweat-clothing interactions. Heart rate, core and skin temperature, galvanic skin conductance (GSC), and physical (wbody) and perceived skin wetness were recorded. Exercise-induced sweat production and physical wetness increased significantly [GSC: 3.1 μS, SD 0.3 to 18.8 μS, SD 1.3, P < 0.01; wbody: 0.26 no-dimension units (nd), SD 0.02, to 0.92 nd, SD 0.01, P < 0.01], with no differences between TIGHT-FIT and LOOSE-FIT (P > 0.05). However, the limited intermittent tactile inputs generated by the TIGHT-FIT ensemble reduced significantly whole-body and regional wetness perception (P < 0.01). This reduction was more pronounced when between 40 and 80% of the body was covered in sweat. We conclude that the central integration of intermittent mechanical interactions between skin, sweat, and clothing, as coded by low-threshold skin mechanoreceptors, significantly contributes to the ability to sense sweat-induced skin wetness. PMID:25878153

  6. Physiological adjustments of young men to five-hour desert walks.

    PubMed

    Dill, D B; Soholt, L F; Oddershede, I B

    1976-02-01

    Seven young men undertook a desert walk of 30 km at a rate of 100 m/min. Six finished; the seventh stopped after 24 km. Each satisfied his thirst with cool tap water each hour. Periodic observations included metabolic rate, blood pressure, heart rate, rectal and skin temperature, body weight, and volume of water drunk. Hand sweat was collected each hour and body sweat residues on the skin were collected at the end of the walk. Subjective reports revealed portents of breakdown: aching muscles, painful joints, hot or blistered feet, hunger, and boredom. Cardiovascular adjustment and temperature regulation maintained tolerable conditions. The volumes of water evaporated by the 5-h walkers were about the same. Wet bulb temperatures were below 25 degrees C; all sweat evaporated and was available for temperature regulation. The volume of water drawn from body reserves was closely correlated with concentration of chloride in body sweat; the volume of water that satisfied thirst maintained osmotic pressure.

  7. Physiological responses to heat of resting man with impaired sweating capacity

    NASA Technical Reports Server (NTRS)

    Totel, G. L.

    1974-01-01

    The effects of total-body heat exposure were studied in three groups of subjects with varied degrees of impaired sweating capacity. The responses of two ectodermal dysplasic men, six quadriplegic men, and a man with widespread burned scar tissue were compared with the responses of three able-bodied men resting in the heat. It was found that the able-bodied and burned subjects competed successfully with a controlled environment of 38 C and 20% relative humidity for up to 150 min, whereas the quadriplegic and ectodermal dysplasic men developed hyperthermia, hyperventilation, and distress after only 120 and 75 min of heat exposure, respectively. The intolerance to heat is thus ascribed directly to the inability to produce and evaporate sweat.

  8. Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams.

    PubMed

    Trowbridge, Philip R; Kahl, J Steve; Sassan, Dari A; Heath, Douglas L; Walsh, Edward M

    2010-07-01

    Six watersheds in New Hampshire were studied to determine the effects of road salt on stream water quality. Specific conductance in streams was monitored every 15 min for one year using dataloggers. Chloride concentrations were calculated from specific conductance using empirical relationships. Stream chloride concentrations were directly correlated with development in the watersheds and were inversely related to streamflow. Exceedances of the EPA water quality standard for chloride were detected in the four watersheds with the most development. The number of exceedances during a year was linearly related to the annual average concentration of chloride. Exceedances of the water quality standard were not predicted for streams with annual average concentrations less than 102 mg L(-1). Chloride was imported into three of the watersheds at rates ranging from 45 to 98 Mg Cl km(-2) yr(-1). Ninety-one percent of the chloride imported was road salt for deicing roadways and parking lots. A simple, mass balance equation was shown to predict annual average chloride concentrations from streamflow and chloride import rates to the watershed. This equation, combined with the apparent threshold for exceedances of the water quality standard, can be used for screening-level TMDLs for road salt in impaired watersheds.

  9. Sauna, sweat and science - quantifying the proportion of condensation water versus sweat using a stable water isotope ((2)H/(1)H and (18)O/(16)O) tracer experiment.

    PubMed

    Zech, Michael; Bösel, Stefanie; Tuthorn, Mario; Benesch, Marianne; Dubbert, Maren; Cuntz, Matthias; Glaser, Bruno

    2015-01-01

    Most visitors of a sauna appreciate the heat pulse that is perceived when water is poured on the stones of a sauna stove. However, probably only few bathers are aware that this pleasant heat pulse is caused by latent heat being released onto our skin due to condensation of water vapour. In order to quantify the proportion of condensation water versus sweat to dripping water of test persons we conducted sauna experiments using isotopically labelled (δ(18)O and δ(2)H) thrown water as tracer. This allows differentiating between 'pure sweat' and 'condensation water'. Two ways of isotope mass balance calculations were applied and yielded similar results for both water isotopes. Accordingly, condensation contributed considerably to dripping water with mean proportions of 52 ± 12 and 54 ± 7% in a sauna experiment in winter semester 2011/12 and 30 ± 13 and 33 ± 6% in a sauna experiment in winter semester 2012/13, respectively, depending on the way of calculating the isotope mass balance. It can be concluded from the results of our dual isotope labelling sauna experiment that it is not all about sweat in the sauna.

  10. Chloride in Groundwater and Surface Water in Areas Underlain by the Glacial Aquifer System, Northern United States

    USGS Publications Warehouse

    Mullaney, John R.; Lorenz, David L.; Arntson, Alan D.

    2009-01-01

    A study of chloride in groundwater and surface water was conducted for the glacial aquifer system of the northern United States in forested, agricultural, and urban areas by analyzing data collected for the National Water-Quality Assessment Program from 1991 to 2004. Groundwater-quality data from a sampling of 1,329 wells in 19 states were analyzed. Chloride concentrations were greater than the secondary maximum contaminant level established by the U.S. Environmental Protection Agency of 250 milligrams per liter in 2.5 percent of samples from 797 shallow monitoring wells and in 1.7 percent of samples from 532 drinking-water supply wells. Water samples from shallow monitoring wells in urban areas had the largest concentration of chloride, followed by water samples from agricultural and forested areas (medians of 46, 12, and 2.9 milligrams per liter, respectively). An analysis of chloride:bromide ratios, by mass, and chloride concentrations compared to binary mixing curves for dilute groundwater, halite, sewage and animal waste, potassium chloride fertilizer, basin brines, seawater, and landfill leachate in samples from monitoring wells indicated multiple sources of chloride in samples from wells in urban areas and agricultural areas. Water from shallow monitoring wells in urban areas had the largest chloride:bromide ratio, and samples with chloride:bromide ratios greater than 1,000 and chloride concentrations greater than 100 milligrams per liter were dominated by halite; however, the samples commonly contained mixtures that indicated input from sewage or animal waste. Chloride:bromide ratios were significantly larger in samples from public-supply drinking-water wells than from private drinking-water wells, and ratios were significantly larger in all drinking-water wells in eastern and central regions of the glacial aquifer system than in west-central and western regions of the glacial aquifer system. Surface-water-quality data collected regularly during varying

  11. Pacing-induced palmar sweating evaluated by unique hygrometer: possible implications of sympathetic activation during tachycardia.

    PubMed

    Maruyama, T; Yanaga, T; Makino, N

    2000-03-01

    Although reflex sympathetic activation is a major determinant of the haemodynamic tolerability of ventricular tachycardia (VT), the methods for evaluating this aspect during on-going VT remain invasive and complicated. Palmar sweating as an indirect but non-invasive measure of sympathetic activity was estimated by means of a unique hygrometer under right ventricular (RV) rapid pacing (up to 150 beats min-1) replicating VT, and concurrent monitoring of aortic blood pressure in five patients with various kinds of cardiac arrhythmias in our electrophysiological laboratory. The peak palmar sweating rate in arbitrary units was augmented as the RV pacing rate increased and was proportional to the pacing-induced fall in systolic blood pressure (SBP), with a correlation coefficient of more than 0.903 (P<0.006). The slope of linearity between the sweating rate and the fall in SBP varied among individual patients, with greater sweating amplitude in the younger patients even with the same extent of fall in SBP. This preliminary study suggests sympathetic acceleration caused by haemodynamic deterioration under simulated VT, and therefore this protocol may be able to predict the haemodynamic tolerability of sustained monomorphic VT.

  12. Determination of Critical Micellar Concentration of Homologous 2-Alkoxyphenylcarbamoyloxyethyl-Morpholinium Chlorides.

    PubMed

    Stopková, Lenka; Gališinová, Jana; Šuchtová, Zuzana; Čižmárik, Jozef; Andriamainty, Fils

    2018-05-02

    The critical micellar concentrations of selected alkyloxy homologues of local anesthetic 4-(2-{[(2-alkoxyphenyl)carbamoyl]oxy}ethyl)morpholin-4-ium chloride with n c = 2, 4, 5, 6, 7, 8, and 9 carbons in alkyloxy tail were determined by absorption spectroscopy in the UV⁻vis spectral region with the use of a pyrene probe. Within the homologous series of the studied amphiphilic compounds, the ln( cmc ) was observed to be dependent linearly on the number of carbon atoms n c in the hydrophobic tail: ln( cmc ) = 0.705⁻0.966 n c . The Gibbs free energy, necessary for the transfer of the methylene group of the alkoxy chain from the water phase into the inner part of the micelle at the temperature of 25 °C and pH ≈ 4.5⁻5.0, was found to be −2.39 kJ/mol. The experimentally determined cmc values showed good correlations with the predicted values of the bulkiness of the alkoxy tail expressed as the molar volume of substituent R, as well as with the surface tension of the compounds.

  13. Voluntary drinking versus imposed drinking in the methodology of investigations about the drinking-induced thermoregulatory sweating

    PubMed Central

    Hosseinlou, Abdollah; Khamnei, Saeed; Zamanlu, Masumeh

    2014-01-01

    Studies have shown that dehydrated humans or animals in a warm environment begin to sweat within seconds to minutes after drinking. This phenomenon is one of the drinking-induced thermoregulatory responses; being investigated from different aspects. Our objective is to show the difference of voluntary drinking and imposed drinking in the methodology of these experiments. Six healthy subjects 23.7 ± 0.6 yr old and 80.7 ± 5.7 kg wt were dehydrated by performing mild exercise (ergometer cycling) in a hot and humid chamber (38-40°C, 20-28% relative humidity). We incorporated two protocols: after dehydration, subjects were allowed to drink water with 1) imposed volumes of 1, 3, 5 ml/kg and 2) voluntary volumes; on four separate days. The sweating rate was measured on the forehead area before and after drinking. Sweating increased markedly just a few minutes after the onset of drinking. The mean sweat rates of the imposed volumes of 1, 3, 5 ml/Kg were 0.33 ± 0.15, 0.31 ± 0.17, 0.47 ± 0.21 respectively and for the voluntary volume it was 0.54 ± 0.19. The mean intake in the voluntary trial was 6.58 ± 1.14 ml/Kg, more than the imposed volume of 5 ml/Kg. The trend of the rate of the sweating response in the imposed trials was distinct from the response in the voluntary trial. Conclusion: There exists a difference between voluntary drinking and imposed drinking in the sweating response that follows rehydration. So it is suggested to use the methods of voluntary drinking in the investigations of this phenomenon, to reveal the natural events that happen in the actual circumstances. PMID:25419429

  14. Immunological multimetal deposition for rapid visualization of sweat fingerprints.

    PubMed

    He, Yayun; Xu, Linru; Zhu, Yu; Wei, Qianhui; Zhang, Meiqin; Su, Bin

    2014-11-10

    A simple method termed immunological multimetal deposition (iMMD) was developed for rapid visualization of sweat fingerprints with bare eyes, by combining the conventional MMD with the immunoassay technique. In this approach, antibody-conjugated gold nanoparticles (AuNPs) were used to specifically interact with the corresponding antigens in the fingerprint residue. The AuNPs serve as the nucleation sites for autometallographic deposition of silver particles from the silver staining solution, generating a dark ridge pattern for visual detection. Using fingerprints inked with human immunoglobulin G (hIgG), we obtained the optimal formulation of iMMD, which was then successfully applied to visualize sweat fingerprints through the detection of two secreted polypeptides, epidermal growth factor and lysozyme. In comparison with the conventional MMD, iMMD is faster and can provide additional information than just identification. Moreover, iMMD is facile and does not need expensive instruments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Newborn screening for cystic fibrosis with the chloride electrode and neutron activation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerson, C.T.; Sertel, H.; Guerkan, M.

    From third annual meeting of the European Working Group of Cystic Fibrosis; Erbach, Germany (6 Sep 1972). In 6,061 newborns, the chloride electrode technique was used for the detection of cystic fibrosis. The electrolyte values obtained were found to vary with the type of electrode used (45.9 plus or minus 9.9 mEq/l Beckman and 22.3 plus or minus 12 mEq/l Orion), and in both cases a value greater than the mean + 2 standard deviation was held as suspect and retested. In the group studied, the incidence of cystic fibrosis was calculated to be 1 in 3,000. In 590 ofmore » these cases the sodium values of nail clippings were measured by neutron activation analysis and were found to differ according to the washing method used; wash in vivo with ethanol 211.26 plus or minus 85.9 mEq/ kg water wash and acetone rinse 93.00 plus or minus 47.24 mEq/ kg; washing with H/sub 2/O/sub 2/ + absolute ethanol + diethyl ether, 183.42 plus or minus 61.26 mEq/k g. In addition, no correlation was found between chloride in sweat and the sodium content of nails. (auth)« less

  16. TOLERANCE OF STAPHYLOCOCCUS AUREUS TO SODIUM CHLORIDE

    PubMed Central

    Parfentjev, I. A.; Catelli, Anna R.

    1964-01-01

    Parfentjev, I. A. (Institute of Applied Biology, New York, N.Y.), and Anna R. Catelli. Tolerance of Staphylococcus aureus to sodium chloride. J. Bacteriol. 88:1–3. 1964.—The tolerance of Staphylococcus aureus to high concentrations of sodium chloride in liquid medium has been reported. We found that S. aureus grows at 37 C in Tryptose Phosphate Broth saturated with sodium chloride. No difference was noticed between possibly pathogenic and nonpathogenic strains. Under the conditions of our tests, no changes in the original properties of S. aureus strains occurred. In contrast, solutions of sodium chloride in distilled water were injurious to staphylococci and killed most of these organisms in 1 hr. Staphylococci were killed faster at 37 C than at room temperature in a solution of 0.85% sodium chloride in water. Addition of traces of Tryptose Phosphate Broth had a protective effect and prolonged the life of these organisms in physiological saline. All tests were performed at pH 7.2. PMID:14197887

  17. Chloride Concentration in Water from the Upper Permeable Zone of the Tertiary Limestone Aquifer System, Southeastern United States

    USGS Publications Warehouse

    Sprinkle, Craig L.

    1982-01-01

    INTRODUCTION The tertiary limestone aquifer system of the southeastern United States is a sequence of carbonate rocks referred to as the Floridan aquifer in Florida and the principal artesian aquifer in Georgia, Alabama, and South Carolina. More than 3 billion gallons of water are pumped daily from the limestone aquifer; and the system is the principal source of municipal, industrial, and agricultural water supply in south Georgia and most of Florida. The aquifer system includes units of Paleocene to early Miocene age that combine to form a continuous carbonate sequence that is hydraulically connected in varying degrees. In a small area near Brunswick, Ga., a thin sequence of rocks of Late Cretaceous age is part of the system. In and directly downdip from much of the outcrop area, the system consists of one continuous permeable unit. Further downdip the aquifer system generally consists of two major permeable zones separated by a less-permeable unit of highly variable hydraulic properties (very leaky to virtually nonleaky). Conditions for the system vary from unconfined to confined depending upon whether the argillaceous Miocene and younger rocks that form the upper confining unit have been removed by erosion. This report is one of a series of preliminary products depicting the hydrogeologic framework, water chemistry, and hydrology of the aquifer system. The map shows the distribution of chloride ions in water from the upper permeable zone of the limestone aquifer system. The upper permeable zone consists of several formations, primarily the Tampa, Suwannee, Ocala, and Avon Park Limestones (Miller 1981a, b). Chloride concentrations of water within the upper permeable zone vary from nearly zero in recharge areas to many thousands of milligrams per liter (mg/L) in coastal discharge areas. Where the aquifer system discharges into the sea, the upper permeable zone contains increasing amounts of seawater. In these areas, wells that fully penetrate the upper permeable

  18. An FHWA Special Study: Post-Tensioning Tendon Grout Chloride Thresholds

    DOT National Transportation Integrated Search

    2014-05-01

    "Elevated levels of chloride were recently discovered in a commercially available pre-bagged grout product made for : post-tensioned (PT) tendons. Chloride concentrations were reported to be as high as 5.27 percent by weight of cement. : These number...

  19. Regional analysis of the effect of paved roads on sodium and chloride in lakes.

    PubMed

    Kelting, Daniel L; Laxson, Corey L; Yerger, Elizabeth C

    2012-05-15

    Salinization of surface water from sodium chloride (road salt) applied to paved roads is a widely recognized environmental concern in the northern hemisphere, yet practical information to improve winter road management to reduce the environmental impacts of this deicer is lacking. The purpose of our study was to provide such information by developing baseline concentrations for sodium and chloride for lakes in watersheds without paved roads, and then determining the relationship between these ions and density, type, and proximity of paved roads to shoreline. We used average summer (June-September) sodium and chloride data for 138 lakes combined in a watershed based analysis of paved road networks in the Adirondack Park of New York, U.S.A. The watersheds used in our study represented a broad range in paved road density and type, 56 of which had no paved roads. Median lake sodium and chloride concentrations in these 56 watersheds averaged 0.55 and 0.24 mg/L, respectively. In contrast, the median sodium and chloride concentrations for the 82 lakes in watersheds with paved roads were 3.60 and 7.22 mg/L, respectively. Paved road density (lane-km/km(2)) was positively correlated with sodium and chloride concentrations, but only state roads were significantly correlated with sodium and chloride while local roads were not. State road density alone explained 84 percent of the variation in both ions. We also successfully modeled the relationship between road proximity to shoreline and sodium and chloride concentrations in lakes, which allowed us to identify sections of road that contributed more to explaining the variation in sodium and chloride in lakes. This model and our approach could be used as part of larger efforts to identify environmentally sensitive areas where alternative winter road management treatments should be applied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Pseudo-Bartter syndrome in an infant with congenital chloride diarrhoea.

    PubMed

    Igrutinović, Zoran; Peco-Antić, Amira; Radlović, Nedeljko; Vuletić, Biljana; Marković, Slavica; Vujić, Ana; Rasković, Zorica

    2011-01-01

    Pseudo-Bartter syndrome encompasses a heterogenous group of disorders similar to Bartter syndrome. We are presenting an infant with pseudo-Bartter syndrome caused by congenital chloride diarrhoea. A male newborn born in the 37th gestational week (GW) to young healthy and non-consanguineous parents. In the 35th GW a polyhydramnios with bowel dilatation was verified by ultrasonography. After birth he manifested several episodes of hyponatremic dehydration with hypochloraemia, hypokalaemia and metabolic alkalosis, so as Bartter syndrome was suspected treatment with indomethacin, spironolactone and additional intake of NaCl was initiated. However, this therapy gave no results, so that at age six months he was rehospitalized under the features of persistent watery diarrhoea, vomiting, dehydration and acute renal failure (serum creatinine 123 micromol/L). The laboratory results showed hyponatraemia (123 mmol/L), hypokalaemia (3.1 mmol/L), severe hypochloraemia (43 mmol/L), alcalosis (blood pH 7.64, bicarbonate 50.6 mmol/L), high plasma renin (20.6 ng/ml) and aldosterone (232.9 ng/ml), but a low urinary chloride concentration (2.1 mmol/L). Based on these findings, as well as the stool chloride concentration of 110 mmol/L, the patient was diagnosed congenital chloride diarrhoea. In further course, the patient was treated by intensive fluid, sodium and potassium supplementation which resulted in the normalization of serum electrolytes, renal function, as well as his mental and physical development during 10 months of follow-up. Persistent watery diarrhoea with a high concentration of chloride in stool is the key finding in the differentiation of congenital chloride diarrhoea from Bartter syndrome. The treatment of congenital chloride diarrhoea consists primarily of adequate water and electrolytes replacement.