Science.gov

Sample records for sym minisuperspace approximation

  1. Minisuperspace models as infrared contributions

    NASA Astrophysics Data System (ADS)

    Bojowald, Martin; Brahma, Suddhasattwa

    2016-06-01

    A direct correspondence of quantum mechanics as a minisuperspace model for a self-interacting scalar quantum-field theory is established by computing, in several models, the infrared contributions to 1-loop effective potentials of Coleman-Weinberg type. A minisuperspace approximation rather than truncation is thereby obtained. By this approximation, the spatial averaging scale of minisuperspace models is identified with an infrared scale (but not a regulator or cutoff) delimiting the modes included in the minisuperspace model. Some versions of the models studied here have discrete space or modifications of the Hamiltonian expected from proposals of loop quantum gravity. They shed light on the question of how minisuperspace models of quantum cosmology can capture features of full quantum gravity. While it is shown that modifications of the Hamiltonian can be well described by minisuperspace truncations, some related phenomena such as signature change, confirmed and clarified here for modified scalar field theories, require at least a perturbative treatment of inhomogeneity beyond a strict minisuperspace model. The new methods suggest a systematic extension of minisuperspace models by a canonical effective formulation of perturbative inhomogeneity.

  2. Mabuchi spectrum from the minisuperspace

    NASA Astrophysics Data System (ADS)

    de Lacroix, Corinne; Erbin, Harold; Svanes, Eirik E.

    2016-07-01

    It was recently shown that other functionals contribute to the effective action for the Liouville field when considering massive matter coupled to two-dimensional gravity in the conformal gauge. The most important of these new contributions corresponds to the Mabuchi functional. We propose a minisuperspace action that reproduces the main features of the Mabuchi action in order to describe the dynamics of the zero-mode. We show that the associated Hamiltonian coincides with the (quantum mechanical) Liouville Hamiltonian. As a consequence the Liouville theory and our model of the Mabuchi theory both share the same spectrum, eigenfunctions and - in this approximation - correlation functions.

  3. Anisotropic invariance in minisuperspace models

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Sabido, Miguel

    2016-06-01

    In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski–Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann–Robertson–Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.

  4. Gauge fixation and global phase time for minisuperspaces

    NASA Astrophysics Data System (ADS)

    Simeone, Claudio

    1999-09-01

    Homogeneous and isotropic cosmological models whose Hamilton-Jacobi equation is separable are deparametrized by turning their action functional into that of an ordinary gauge system. Canonical gauge conditions imposed on the gauge system are used to define a global phase time in terms of the canonical coordinates and momenta of the minisuperspaces. The procedure clearly shows how the geometry of the constraint surface restricts the choice of time; the consequences that this has on the path integral quantization are discussed.

  5. Minisuperspace dynamics in a generalized uncertainty principle framework

    SciTech Connect

    Battisti, Marco Valerio; Montani, Giovanni

    2008-01-03

    The minisuperspace dynamics of the Friedmann-Robertson-Walker (FRW) and of the Taub Universes in the context of a Generalized Uncertainty Principle is analyzed in detail. In particular, the motion of the wave packets is investigated and, in both the models, the classical singularity appear to be probabilistic suppressed. Moreover, the FRW wave packets approach the Planckian region in a stationary way and no evidences for a Big-Bounce, as predicted in Loop Quantum Cosmology, appear. On the other hand, the Taub wave packets provide the right behavior in predicting an isotropic Universe.

  6. BRST symmetry for Regge-Teitelboim-based minisuperspace models

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker; Paul, Biswajit

    2016-07-01

    The Einstein-Hilbert action in the context of higher derivative theories is considered for finding their BRST symmetries. Being a constraint system, the model is transformed in the minisuperspace language with the FRLW background and the gauge symmetries are explored. Exploiting the first order formalism developed by Banerjee et al. the diffeomorphism symmetry is extracted. From the general form of the gauge transformations of the field, the analogous BRST transformations are calculated. The effective Lagrangian is constructed by considering two gauge-fixing conditions. Further, the BRST (conserved) charge is computed, which plays an important role in defining the physical states from the total Hilbert space of states. The finite field-dependent BRST formulation is also studied in this context where the Jacobian for the functional measure is illustrated specifically.

  7. Bootstrapping correlation functions in {N}=4 SYM

    NASA Astrophysics Data System (ADS)

    Chicherin, Dmitry; Doobary, Reza; Eden, Burkhard; Heslop, Paul; Korchemsky, Gregory P.; Sokatchev, Emery

    2016-03-01

    We describe a new approach to computing the chiral part of correlation functions of stress-tensor supermultiplets in {N}=4 SYM that relies on symmetries, analytic properties and the structure of the OPE only. We demonstrate that the correlation functions are given by a linear combination of chiral {N}=4 superconformal invariants accompanied by coefficient functions depending on the space-time coordinates only. We present the explicit construction of these invariants and show that the six-point correlation function is fixed in the Born approximation up to four constant coefficients by its symmetries. In addition, the known asymptotic structure of the correlation function in the light-like limit fixes unambiguously these coefficients up to an overall normalization. We demonstrate that the same approach can be applied to obtain a representation for the six-point NMHV amplitude that is free from any auxiliary gauge fixing parameters, does not involve spurious poles and manifests half of the dual superconformal symmetry.

  8. NLO evolution of color dipoles in N=4 SYM

    SciTech Connect

    Chirilli, Giovanni A.; Balitsky, Ian

    2009-07-04

    Here, high-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformal ${\\cal N}$=4 SYM theory. We define the "composite dipole operator" with the rapidity cutoff preserving conformal invariance.

  9. Phase structure of mathcal{N} = 2* SYM on ellipsoids

    NASA Astrophysics Data System (ADS)

    Marmiroli, Daniele

    2016-06-01

    We analyse the phase structure of an mathcal{N} = 2 massive deformation of mathcal{N} = 4 SYM theory on a four-dimensional ellipsoid using recent results on supersymmetric localisation. Besides the 't Hooft coupling λ, the relevant parameters appearing in the theory and discriminating between the different phases are the hypermultiplet mass M and the deformation (or squashing) parameter Q. Geometric deformation manifests itself as an effective mass term, thus braking the conformal invariance of the theory with massless hypermultiplets. The structure of perturbative corrections around the spherical geometry is analysed in the details and a systematic computational procedure is given, together with the first few corrections. The master field approximation of the matrix model associated to the analytically continued theory in the regime Q 2 M and on the compact space is exactly solvable and does not display any phase transition, similarly to mathcal{N} = 2 SU ( N) SYM with 2 N massive hypermultiplets. In the strong coupling limit, equivalent in our settings to the decompactification of the four-dimensional ellipsoid, we find evidence that the theory undergoes an infinite number of phase transitions starting at finite coupling and accumulating at λ = 8. Quite interestingly, the threshold points at which transitions occur can be pushed towards the weak coupling region by drifting Q to the value 2 M.

  10. NLO evolution of color dipoles in N=4 SYM

    DOE PAGESBeta

    Chirilli, Giovanni A.; Balitsky, Ian

    2009-07-04

    Here, high-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformalmore » $${\\cal N}$$=4 SYM theory. We define the "composite dipole operator" with the rapidity cutoff preserving conformal invariance.« less

  11. NLO evolution of color dipoles in N=4 SYM

    SciTech Connect

    Balitsky, Ian; Chirilli, Giovanni

    2009-01-01

    High-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformal ${\\cal N}$=4 SYM theory. We define the ``composite dipole operator' with the rapidity cutoff preserving conformal invariance. The resulting M\\"obius invariant kernel agrees with the forward NLO BFKL calculation of Ref. 1

  12. SymRK and the nodule vascular system

    PubMed Central

    Sanchez-Lopez, Rosana; Jáuregui, David; Quinto, Carmen

    2012-01-01

    Symbiotic legume-rhizobia relationship leads to the formation of nitrogen-fixing nodules. Successful nodulation depends on the expression and cross-talk of a batttery of genes, among them SymRK (symbiosis receptor-like kinase), a leucine-rich repeat receptor-like kinase. SymRK is required for the rhizobia invasion of root hairs, as well as for the infection thread and symbiosome formation. Using immunolocalization and downregulation strategies we have recently provided evidence of a new function of PvSymRK in nodulation. We have found that a tight regulation of PvSymRK expression is required for the accurate development of the vascular bundle system in Phaseolus vulgaris nodules. PMID:22580688

  13. SymGF: A Symbolic Tool for Quantum Transport Theory

    NASA Astrophysics Data System (ADS)

    Feng, Zi Min

    In this thesis, I report the development and application of a symbolic derivation tool named "SymGF'' - standing for Symbolic Green's Function, that can automatically and analytically derive quantum transport expressions and the associated Keldysh nonequilibrium Green's functions (NEGF). Quantum transport happens in open systems consisting of a scattering region coupled to external electrodes. When there are strong electron-electron interactions in the scattering region, analytical derivations of the Green's functions can be very tedious and error prone. Running on a personal computer, SymGF derives the necessary analytical formulas at a level of correlation specified by the user, using the equation of motion (EOM) method. The input to SymGF are the second quantized form the device Hamiltonian, the (anti)commutators of the operators that appear in the Hamiltonian, and a truncation rule for the correlators which determines the accuracy of the final outcome. The output of SymGF are the analytical expressions of transport properties such as electric current and conductance in terms of various Green's functions; as well as the Green's functions themselves in terms of the unperturbed non-interacting Green's functions that can be obtained straightforwardly. For systems where electron-electron interaction can be neglected, the transport problems can be easily solved and SymGF is not necessary - even though SymGF gives the same answer; but for interacting systems SymGF drastically reduces the mathematical burden of analytical derivations. We have tested SymGF for several transport problems involving Kondo resonances where analytical derivations were done by humans: exactly the same results were obtained by SymGF but in a tiny fraction of time. We have applied SymGF to new and very hard problems that resist analytical derivations by hand, including quantum transport in a double quantum dot system; transport through a single quantum dot in parallel to a direct lead

  14. Applications of Subleading-Color Amplitudes in N = 4 SYM Theory

    DOE PAGESBeta

    Naculich, Stephen G.; Nastase, Horatiu; Schnitzer, Howard J.

    2011-01-01

    A numore » mber of features and applications of subleading-color amplitudes of N = 4 SYM theory are reviewed. Particular attention is given to the IR divergences of the subleading-color amplitudes, the relationships of N = 4 SYM theory to N = 8 supergravity, and to geometric interpretations of one-loop subleading-color and N k MHV amplitudes of N = 4 SYM theory.« less

  15. In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus.

    PubMed

    Filichkin, S A; Brumfield, S; Filichkin, T P; Young, M J

    1997-01-01

    Barley yellow dwarf virus (BYDV)-vector relationships suggest that there are specific interactions between BYDV virions and the aphid's cellular components. However, little is known about vector factors that mediate virion recognition, cellular trafficking, and accumulation within the aphid. Symbionins are molecular chaperonins produced by intracellular endosymbiotic bacteria and are the most abundant proteins found in aphids. To elucidate the potential role of symbionins in BYDV transmission, we have isolated and characterized two new symbionin symL genes encoded by the endosymbionts which are harbored by the BYDV aphid vectors Rhopalosiphum padi and Sitobion avenae. Endosymbiont symL-encoded proteins have extensive homology with the pea aphid SymL and Escherichia coli GroEL chaperonin. Recombinant and native SymL proteins can be assembled into oligomeric complexes which are similar to the GroEL oligomer. R. padi SymL protein demonstrates an in vitro binding affinity for BYDV and its recombinant readthrough polypeptide. In contrast to the R. padi SymL, the closely related GroEL does not exhibit a significant binding affinity either for BYDV or for its recombinant readthrough polypeptide. Comparative sequence analysis between SymL and GroEL was used to identify potential SymL-BYDV binding sites. Affinity binding of SymL to BYDV in vitro suggests a potential involvement of endosymbiotic chaperonins in interactions with virions during their trafficking through the aphid. PMID:8985385

  16. A one-loop test for construction of 4D N = 4 SYM from 2D SYM via fuzzy-sphere geometry

    NASA Astrophysics Data System (ADS)

    Matsuura, So; Sugino, Fumihiko

    2016-04-01

    As a perturbative check of the construction of 4D N=4 supersymmetric Yang-Mills theory (SYM) from mass-deformed N=(8,8) SYM on the 2D lattice, the one-loop effective action for scalar kinetic terms is computed in N=4 U(k) SYM on R^2 × (fuzzy S^2), which is obtained by expanding 2D N=(8,8) U(N) SYM with mass deformation around its fuzzy-sphere classical solution. The radius of the fuzzy sphere is proportional to the inverse of the mass. We consider two successive limits: (1) decompactify the fuzzy sphere to a noncommutative (Moyal) plane and (2) turn off the noncommutativity of the Moyal plane. It is straightforward at the classical level to obtain the ordinary N=4 SYM on R^4 in the limits, while it is nontrivial at the quantum level. The one-loop effective action for the SU(k) sector of the gauge group U(k) coincides with that of the ordinary 4D N=4 SYM in the above limits. Although a "noncommutative anomaly" appears in the overall U(1) sector of the U(k) gauge group, this can be expected to be a gauge artifact not affecting gauge-invariant observables.

  17. Symbolic Quantum Computation Simulation in SymPy

    NASA Astrophysics Data System (ADS)

    Cugini, Addison; Curry, Matt; Granger, Brian

    2010-10-01

    Quantum computing is an emerging field which aims to use quantum mechanics to solve difficult computational problems with greater efficiency than on a classical computer. There is a need to create software that i) helps newcomers to learn the field, ii) enables practitioners to design and simulate quantum circuits and iii) provides an open foundation for further research in the field. Towards these ends we have created a package, in the open-source symbolic computation library SymPy, that simulates the quantum circuit model of quantum computation using Dirac notation. This framework builds on the extant powerful symbolic capabilities of SymPy to preform its simulations in a fully symbolic manner. We use object oriented design to abstract circuits as ordered collections of quantum gate and qbit objects. The gate objects can either be applied directly to the qbit objects or be represented as matrices in different bases. The package is also capable of performing the quantum Fourier transform and Shor's algorithm. A notion of measurement is made possible through the use of a non-commutative gate object. In this talk, we describe the software and show examples of quantum circuits on single and multi qbit states that involve common algorithms, gates and measurements.

  18. The exact Schur index of N=4 SYM

    NASA Astrophysics Data System (ADS)

    Bourdier, Jun; Drukker, Nadav; Felix, Jan

    2015-11-01

    The Witten index counts the difference in the number of bosonic and fermionic states of a quantum mechanical system. The Schur index, which can be defined for theories with at least N=2 supersymmetry in four dimensions is a particular refinement of the index, dependent on one parameter q serving as the fugacity for a particular set of charges which commute with the hamiltonian and some supersymmetry generators. This index has a known expression for all Lagrangian and some non-Lagrangian theories as a finite dimensional integral or a complicated infinite sum. In the case of N=2 SYM with gauge group U( N ) we rewrite this as the partition function of a gas of N non interacting and translationally invariant fermions on a circle. This allows us to perform the integrals and write down explicit expressions for fixed N as well as the exact all orders large N expansion.

  19. Effect of the intra-layer potential distributions and spatial currents on the performance of graphene SymFETs

    SciTech Connect

    Hasan, Mehdi; Sensale-Rodriguez, Berardi

    2015-09-15

    In this paper, a two-dimensional (2-D) model for a graphene symmetric field effect transistor (SymFET), which considers (a) the intra-graphene layer potential distributions and (b) the internal current flows through the device, is presented and discussed. The local voltages along the graphene electrodes as well as the current-voltage characteristics of the device are numerically calculated based on a single-particle tunneling model. Our numerical results show that: (i) when the tunneling current is small, due to either a large tunneling thickness (≥ 2 atomic layers of BN) or a small coherence length, the voltage distributions along the graphene electrodes have almost zero variations upon including these distributed effects, (ii) when the tunnel current is large, due to either a small tunneling thickness (∼ 1 atomic layer of BN) or due to a large coherence length, the local voltage distributions along the graphene electrodes become appreciable and the device behavior deviates from that predicted by a 1-D approximation. These effects, which are not captured in one-dimensional SymFET models, can provide a better understanding about the electron dynamics in the device and might indicate potential novel applications for this proposed device.

  20. Conformal kernel for NLO BFKL equation in ${\\cal N}$=4 SYM

    SciTech Connect

    Balitsky, Ian; Chirilli, Giovanni

    2009-01-01

    Using the requirement of M\\"{o}bius invariance of ${\\cal N}$=4 SYM amplitudes in the Regge limit we restore the conformal NLO BFKL kernel out of the eigenvalues known from the forward NLO BFKL result.

  1. Sym004, a novel EGFR antibody mixture, can overcome acquired resistance to cetuximab.

    PubMed

    Iida, Mari; Brand, Toni M; Starr, Megan M; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D; Kragh, Michael; Wheeler, Deric L

    2013-10-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (Ctx(R)) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for Ctx(R) tumor cells. Sym004 treatment of Ctx(R) clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo Ctx(R) NCI-H226 mouse xenografts and subsequently treated Ctx(R) tumors with Sym004. Sym004 treatment of mice harboring Ctx(R) tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in Ctx(R) tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for Ctx(R) tumors. PMID:24204198

  2. On the logarithmic behaviour in Script N = 4 SYM theory

    NASA Astrophysics Data System (ADS)

    Bianchi, Massimo; Kovacs, Stefano; Rossi, Giancarlo; Stanev, Yassen S.

    1999-08-01

    We show that the logarithmic behaviour seen in perturbative and non perturbative contributions to Green functions of gauge-invariant composite operators in Script N = 4 SYM with SU(N) gauge group can be consistently interpreted in terms of anomalous dimensions of unprotected operators in long multiplets of the superconformal group SU(2,2|4). In order to illustrate the point we analyse the short-distance behaviour of a particularly simple four-point Green function of the lowest scalar components of the Script N = 4 supercurrent multiplet. Assuming the validity of the Operator Product Expansion, we are able to reproduce the known value of the one-loop anomalous dimension of the single-trace operators in the Konishi supermultiplet. We also show that it does not receive any non-perturbative contribution from the one-instanton sector. We briefly comment on double- and multi-trace operators and on the bearing of our results on the AdS/SCFT correspondence.

  3. All tree-level MHV form factors in N = 4 SYM from twistor space

    NASA Astrophysics Data System (ADS)

    Koster, Laura; Mitev, Vladimir; Staudacher, Matthias; Wilhelm, Matthias

    2016-06-01

    We incorporate all gauge-invariant local composite operators into the twistor-space formulation of N = 4 SYM theory, detailing and expanding on ideas we presented recently in [1]. The vertices for these operators contain infinitely many terms and we show how they can be constructed by taking suitable derivatives of a light-like Wilson loop in twistor space and shrinking it down to a point. In particular, these vertices directly yield the tree-level MHV super form factors of all composite operators in N = 4 SYM theory.

  4. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    PubMed

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes. PMID:25617765

  5. Contribution from different current systems to SYM and ASY midlatitude indices

    NASA Astrophysics Data System (ADS)

    Dubyagin, S.; Ganushkina, N.; Kubyshkina, M.; Liemohn, M.

    2014-09-01

    Using empirical magnetospheric models, we study the relative contribution from different current systems to the SYM and ASY midlatitude indices. It was found that the models can reproduce ground-based midlatitude indices with correlation coefficients between the model and real indices being ˜0.8-0.9 for SYM-H and ˜0.6-0.8 and ˜0.5-0.7 for ASY-H and ASY-D, respectively. The good agreement between the indices computed using magnetospheric models and real ones indicates that purely ionospheric current systems, on average, give modest contribution to these indices. The superposed epoch analysis of the indices computed using the models shows that, nominally, the cross-tail current gives the dominant contribution to SYM-H index during the main phase. However, it should be remembered that the model region 2, partial ring current, and cross-tail current systems are not spatially demarcated (the systems are overlapped in the vicinity of geostationary orbit). For this reason, this result should be taken with a precaution. The relative contribution from symmetric ring current to SYM-H starts to increase a bit prior or just after SYM-H minimum and attains its maximum during recovery phase. The ASY-H and ASY-D indices are controlled by interplay between three current systems which close via the ionosphere. The region 1 FAC gives the largest contribution to ASY-H and ASY-D indices during the main phase, though, region 2 FAC and partial ring current contributions are also prominent. In addition, we discuss the application of these results to resolving the long-debated inconsistencies of the substorm-controlled geomagnetic storm scenario.

  6. Contributions from Different Current Systems to Sym and Asy Mid-Latitude Indices

    NASA Astrophysics Data System (ADS)

    Ganushkina, N. Y.; Dubyagin, S.

    2014-12-01

    Separating the contributions from different current systems from point magnetic field measurements and interpreting them is very difficult, and caution must be used when deciphering near-Earth currents from either data or modeling results. At the same time, there are other continuously measured quantities, which can provide, though indirectly, information about the dynamics of the magnetospheric current systems. The SYM-H and ASY-H indices, computed from the observations of magnetic field at low latitude ground-based stations, contain contributions from major magnetospheric current systems, such as the symmetric and asymmetric ring current, tail current, magnetopause currents and field-aligned currents. Highly distorted magnetospheric magnetic field during storm times due to disturbances in the current systems is reflected in the SYM-H and ASY-H observed variations.Using empirical magnetospheric models we study the relative contribution from different current systems to the SYM and ASY mid-latitude indices. It was found that the models can reproduce ground based mid-latitude indices rather well. The good agreement between the indices computed using magnetospheric models and real ones indicates that purely ionospheric current systems, on average, give modest contribution to these indices. The superposed epoch analysis of the indices computed using the models shows that the cross-tail current gives dominant contribution to SYM-H index during the main phase though this contribution can not be separated from FAC region 2 and partial ring current contributions since these systems are overlapped. The relative contribution from symmetric ring current to SYM-H starts to increase a bit prior or just after SYM-H minimum and attains its maximum during recovery phase. The ASY-H and ASY-D indices are controlled by interplay between three current systems which close via the ionosphere. The region 1 FAC gives the largest contribution to ASY-H and ASY-D indices during the main

  7. Magnetospheric current systems as inferred from SYM and ASY mid-latitude indices

    NASA Astrophysics Data System (ADS)

    Ganushkina, Natalia; Dubyagin, Stepan

    2015-04-01

    Separating the contributions from different current systems from point magnetic field measurements and interpreting them as belonging to one system or another is very difficult, and caution must be used when deciphering near-Earth currents from either data or modeling results. At the same time, there are other continuously measured quantities, which can provide, though indirectly, information about the dynamics of the magnetospheric current systems. The SYM-H and ASY-H indices, computed from the observations of magnetic field at low latitude ground-based stations, contain contributions from major magnetospheric current systems, such as the symmetric and asymmetric ring current, tail current, magnetopause currents and field-aligned currents. Highly distorted magnetospheric magnetic field during storm times due to disturbances in the current systems is reflected in the SYM-H and ASY-H observed variations. Using empirical magnetospheric models we study the relative contribution from different current systems to the SYM and ASY mid-latitude indices. It was found that the models can reproduce ground based mid-latitude indices rather well. The good agreement between the indices computed using magnetospheric models and real ones indicates that purely ionospheric current systems, on average, give modest contribution to these indices. The superposed epoch analysis of the indices computed using the models shows that the cross-tail current gives dominant contribution to SYM-H index during the main phase though this contribution can not be separated from FAC region 2 and partial ring current contributions since these systems are overlapped. The relative contribution from symmetric ring current to SYM-H starts to increase a bit prior or just after SYM-H minimum and attains its maximum during recovery phase. The ASY-H and ASY-D indices are controlled by interplay between three current systems which close via the ionosphere. The region 1 FAC gives the largest contribution to ASY

  8. Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy.

    PubMed

    Pedersen, Mikkel Wandahl; Jacobsen, Helle Jane; Koefoed, Klaus; Hey, Adam; Pyke, Charles; Haurum, John Sørensen; Kragh, Michael

    2010-01-15

    Epidermal growth factor receptor (EGFR) is a validated therapeutic target in cancer and EGFR antagonists with greater effectiveness than existing clinical agents remain of interest. Here, we report a novel approach based on Sym004, a mixture of two anti-EGFR monoclonal antibodies directed against distinct nonoverlapping epitopes in EGFR extracellular domain III. Like anti-EGFR monoclonal antibodies in current clinical use, Sym004 inhibits cancer cell growth and survival by blocking ligand-binding receptor activation and phosphorylation and downstream receptor signaling. However, unlike the other antibodies, Sym004 induces rapid and efficient removal of the receptor from the cancer cell surface by triggering EGFR internalization and degradation. Compared with reference anti-EGFR monoclonal antibodies, Sym004 exhibited more pronounced growth inhibition in vitro and superior efficacy in vivo. Together, these findings illustrate a strategy to target EGFR more effectively than existing clinical antibodies. PMID:20068188

  9. High-Quality draft genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain CJ3Sym

    DOE PAGESBeta

    Reeve, Wayne; Sullivan, John; Ronson, Clive; Tian, Rui; Munk, Christine; Han, Cliff; Reddy, T. B. K.; Seshadri, Rekha; Woyke, Tanja; Pati, Amrita; et al

    2015-08-14

    Mesorhizobium loti strain CJ3Sym was isolated in 1998 following transfer of the integrative and conjugative element ICE Ml SymR7A , also known as the R7A symbiosis island, in a laboratory mating from the donor M. loti strain R7A to a nonsymbiotic recipient Mesorhizobium strain CJ3. Strain CJ3 was originally isolated from a field site in the Rocklands range in New Zealand in 1994. CJ3Sym is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M. loti strain CJ3Sym currently comprises 70 scaffolds totaling 7,563,725 bp. In conclusion, the high-quality draft genome is arranged in 70 scaffolds of 71more » contigs, contains 7,331 protein-coding genes and 70 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.« less

  10. High-Quality draft genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain CJ3Sym

    SciTech Connect

    Reeve, Wayne; Sullivan, John; Ronson, Clive; Tian, Rui; Munk, Christine; Han, Cliff; Reddy, T. B. K.; Seshadri, Rekha; Woyke, Tanja; Pati, Amrita; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos

    2015-08-14

    Mesorhizobium loti strain CJ3Sym was isolated in 1998 following transfer of the integrative and conjugative element ICE Ml SymR7A , also known as the R7A symbiosis island, in a laboratory mating from the donor M. loti strain R7A to a nonsymbiotic recipient Mesorhizobium strain CJ3. Strain CJ3 was originally isolated from a field site in the Rocklands range in New Zealand in 1994. CJ3Sym is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M. loti strain CJ3Sym currently comprises 70 scaffolds totaling 7,563,725 bp. In conclusion, the high-quality draft genome is arranged in 70 scaffolds of 71 contigs, contains 7,331 protein-coding genes and 70 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.

  11. Psychometric evaluation of a patient-reported symptom assessment tool for adults with haemophilia (the HAEMO-SYM).

    PubMed

    Rentz, A; Flood, E; Butler, R; Christie, B; Giangrande, P; McCusker, P; Wasserman, J; Gorina, E

    2009-09-01

    In patients with haemophilia, repeated bleeding events result in significant comorbid conditions that can degrade health-related quality of life. Clinician-reported symptom measures are available for use in patients with haemophilia A or B; however, there has not been a validated patient-reported symptom evaluation instrument available for haemophilia to date. The objective of this study was to develop and evaluate a self-report instrument, the HAEMO-SYM, for measuring symptom severity in patients with haemophilia. Eighty-four haemophilic subjects from Canada and the USA were enrolled and completed the HAEMO-SYM, SF-36, and Health Assessment Questionnaire-Functional Disability Index (HAQ-FDI). Four-week reproducibility was evaluated in 72 stable subjects. Construct validity was assessed by correlating subscale scores with the SF-36, HAQ-FDI, a coping questionnaire and clinical scores. The final 17-item HAEMO-SYM has two subscales: pain and bleeds. Internal consistency reliability was good (Cronbach's alphas, 0.86-0.94) and test-retest reliability was good (Intraclass Correlation Coefficients, 0.75-0.94). HAEMO-SYM subscale scores were significantly correlated with SF-36 scores (P < 0.05 for all except HAEMO-SYM Pain and SF-36 Mental Health), HAQ-FDI scores (P < 0.05 for all but HAEMO-SYM Bleeds with HAQ-FDI Hygiene and Reach), Gilbert scale (P < 0.01), coping (P < 0.05) and global pain (P < 0.001). Mean HAEMO-SYM scores varied significantly in groups defined by severity, HIV status and treatment regimen. Greater symptom severity was associated with more severe disease, HIV-positive status and prophylaxis treatment. The results of this study suggest that the HAEMO-SYM, a haemophilia-specific symptom severity instrument, has good reliability and provides evidence that supports construct validity in patients with haemophilia. PMID:19515029

  12. C. elegans sym-1 is a downstream target of the hunchback-like-1 developmental timing transcription factor

    PubMed Central

    Niwa, Ryusuke; Hada, Kazumasa; Moliyama, Kouichi; Ohniwa, Ryosuke L.; Tan, Yi-Meng; Olsson-Carter, Katherine; Chi, Woo; Reinke, Valerie; Slack, Frank J.

    2010-01-01

    In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) and its family members control the timing of key developmental events in part by directly regulating expression of hunchback-like-1 (hbl-1). C. elegans hbl-1 mutants display multiple developmental timing deficiencies, including cell cycle defects during larval development. While hbl-1 is predicted to encode a transcriptional regulator, downstream targets of HBL-1 have not been fully elucidated. Here we report using microarray analysis to uncover genes downstream of HBL-1. We established a transgenic strain that overexpresses hbl-1 under the control of a heat shock promoter. Heat shock-induced hbl-1 overexpression led to retarded hypodermal structures at the adult stage, opposite to the effect seen in loss of function (lf) hbl-1 mutants. The microarray screen identified numerous potential genes that are upregulated or downregulated by HBL-1, including sym-1, which encodes a leucine-rich repeat protein with a signal sequence. We found an increase in sym-1 transcription in the heat shock-induced hbl-1 overexpression strain, while loss of hbl-1 function caused a decrease in sym-1 expression levels. Furthermore, we found that sym-1(lf) modified the hypodermal abnormalities in hbl-1 mutants. Given that SYM-1 is a protein secreted from hypodermal cells to the surrounding cuticle, we propose that the adult-specific cuticular structures may be under the temporal control of HBL-1 through regulation of sym-1 transcription. PMID:19923914

  13. On KLT and SYM-supergravity relations from 5-point 1-loop amplitudes

    NASA Astrophysics Data System (ADS)

    Nastase, Horatiu; Schnitzer, Howard J.

    2011-01-01

    We derive a new non-singular tree-level KLT relation for the n = 5-point amplitudes, with manifest 2( n - 2)! symmetry, using information from one-loop amplitudes and IR divergences, and speculate how one might extend it to higher n-point functions. We show that the subleading-color mathcal{N} = 4 SYM 5-point amplitude has leading IR divergence of 1/ ɛ, which is essential for the applications of this paper. We also propose a relation between the subleading-color mathcal{N} = 4 SYM and mathcal{N} = 8 supergravity 1-loop 5-point amplitudes, valid for the IR divergences and possibly for the whole amplitudes, using techniques similar to those used in our derivation of the new KLT relation.

  14. Towards one-loop SYM amplitudes from the pure spinor BRST cohomology

    NASA Astrophysics Data System (ADS)

    Mafra, Carlos R.; Schlotterer, Oliver

    2015-02-01

    In this paper, we outline a method to compute supersymmetric one-loop integrands in ten-dimensional SYM theory. It relies on the constructive interplay between their cubic-graph organization and BRST invariance of the underlying pure spinor superstring description. The five- and six-point amplitudes are presented in a manifestly local form where the kinematic dependence is furnished by BRST-covariant expressions in pure spinor superspace. At five points, the local kinematic numerators are shown to satisfy the BCJ duality between color and kinematics leading to supergravity amplitudes as a byproduct. At six points, the sources of the hexagon anomaly are identified in superspace as systematic obstructions to BRST invariance. Our results are expected to reproduce any integrated SYM amplitude in dimensions $D< 8$.

  15. Beyond cusp anomalous dimension from integrability in SYM{sub 4}

    SciTech Connect

    Fioravanti, Davide; Grinza, Paolo; Rossi, Marco

    2011-07-15

    We study the first sub-leading correction O((ln s){sup 0}) to the cusp anomalous dimension in the high spin expansion of finite twist operators in N = 4 SYM theory. This term is still governed by a linear integral equation which we study in the weak and strong coupling regimes. In the strong coupling regime we find agreement with the string theory computations.

  16. Divergently overlapping cis-encoded antisense RNA regulating toxin-antitoxin systems from E. coli: hok/sok, ldr/rdl, symE/symR.

    PubMed

    Kawano, Mitsuoki

    2012-12-01

    Toxin-antitoxin (TA) systems are categorized into three classes based on the type of antitoxin. In type I TA systems, the antitoxin is a small antisense RNA that inhibits translation of small toxic proteins by binding to the corresponding mRNAs. Those type I TA systems were originally identified as plasmid stabilization modules rendering a post-segregational killing (PSK) effect on the host cells. The type I TA loci also exist on the Escherichia coli chromosome but their biological functions are less clear. Genetic organization and regulatory elements of hok/sok and ldr/rdl families are very similar and the toxins are predicted to contain a transmembrane domain, but otherwise share no detectable sequence similarity. This review will give an overview of the type I TA modules of E. coli K-12, especially hok/sok, ldr/rdl and SOS-inducible symE/symR systems, which are regulated by divergently overlapping cis-encoded antisense RNAs. PMID:23131729

  17. On a residual freedom of the next-to-leading BFKL eigenvalue in color adjoint representation in planar {N}=4 SYM

    NASA Astrophysics Data System (ADS)

    Bondarenko, Sergey; Prygarin, Alex

    2016-07-01

    We discuss a residual freedom of the next-to-leading BFKL eigenvalue that originates from ambiguity in redistributing the next-to-leading (NLO) corrections between the adjoint BFKL eigenvalue and eigenfunctions in planar {N}=4 super-Yang-Mills (SYM) Theory. In terms of the remainder function of the Bern-Dixon-Smirnov (BDS) amplitude this freedom is translated to reshuffling correction between the eigenvalue and the impact factors in the multi-Regge kinematics (MRK) in the next-to-leading logarithm approximation (NLA). We show that the modified NLO BFKL eigenvalue suggested by the authors in ref. [1] can be introduced in the MRK expression for the remainder function by shifting the anomalous dimension in the impact factor in such a way that the two and three loop remainder function is left unchanged to the NLA accuracy.

  18. Structural implications of mutations in the pea SYM8 symbiosis gene, the DMI1 ortholog, encoding a predicted ion channel.

    PubMed

    Edwards, Anne; Heckmann, Anne B; Yousafzai, Faridoon; Duc, Gerard; Downie, J Allan

    2007-10-01

    The Pisum sativum SYM8 gene plays an essential part in both rhizobial and mycorrhizal symbioses. Mutation of sym8 in the original type line R25 blocks nodulation, mycorrhization, and Nod-factor-induced calcium spiking, an early component of the nodulation signaling pathway. We describe four new sym8 alleles of pea, which fall into the same complementation group as R25. The sym8 mutants are phenotypically similar to Medicago truncatula dmi1 mutants and map to a syntenic location. We used sequence homology to isolate the pea ortholog of M. truncatula DMI1 and have shown that the cloned pea ortholog can complement a M. truncatula dmi1 mutant for nodulation. Each of the five pea sym8 mutants carries a mutation in the DMI1 ortholog, confirming that the pea SYM8 is the DMI1 ortholog. Based on predicted structural similarities with an archaebacterial ion channel, we propose that SYM8 forms a tetrameric calcium-gated channel of a predicted structure similar to the archaebacterial potassium channel but containing a filter region that is different. The predicted structure identifies four aspartate residues (one from each subunit) forming the channel opening. We made a mutation changing the aspartate to valine and identified a missense mutation (changing alanine to valine adjacent to the aspartate residues) in this predicted filter region; both mutations caused a loss of function. We also identified a loss-of-function missense mutation (changing arginine to isoleucine) in a domain proposed to link the predicted channel and the gating ring domains, indicating that this mutation may block function by preventing a protein conformational change being transmitted from the gating-ring domain to the pore domain. PMID:17918620

  19. On soft theorems and form factors in N=4 SYM theory

    NASA Astrophysics Data System (ADS)

    Bork, L. V.; Onishchenko, A. I.

    2015-12-01

    Soft theorems for the form factors of 1/2-BPS and Konishi operator super-multiplets are derived at tree level in N=4 SYM theory. They have a form identical to the one in the amplitude case. For MHV sectors of stress tensor and Konishi operator supermultiplets loop corrections to soft theorems are considered at one loop level. They also appear to have universal form in the soft limit. Possible generalization of the on-shell diagrams to the form factors based on leading soft behavior is suggested. Finally, we give some comments on inverse soft limit and integrability of form factors in the limit q 2 → 0.

  20. On a CFT limit of planar γi-deformed N = 4 SYM theory

    NASA Astrophysics Data System (ADS)

    Sieg, Christoph; Wilhelm, Matthias

    2016-05-01

    We show that an integrable four-dimensional non-unitary field theory that was recently proposed as a certain limit of the γi-deformed N = 4 SYM theory is incomplete and not conformal - not even in the planar limit. We complete this theory by double-trace couplings and find conformal one-loop fixed points when admitting respective complex coupling constants. These couplings must not be neglected in the planar limit, as they can contribute to planar multi-point functions. Based on our results for certain two-loop planar anomalous dimensions, we propose tests of integrability.

  1. KLT and new relations for mathcal{N} = 8 SUGRA and mathcal{N} = 4 SYM

    NASA Astrophysics Data System (ADS)

    Feng, Bo; He, Song

    2010-09-01

    In this short note, we prove the supersymmetric Kawai-Lewellen-Tye (KLT) relations between mathcal{N} = 8 supergravity (SUGRA) and mathcal{N} = 4 super Yang-Mills (SYM) tree-level amplitudes in the frame of S-matrix program, especially we do not use string theory or the explicit Lagrangian form of corresponding theories. Our supersymmetric KLT relations naturally unify the non-supersymmetric KLT relations and newly discovered gauge theory identities and produce more identities for amplitudes involving scalars and fermions. We point out also that these newly discovered identities can be used to reduce helicity basis from ( n - 3)! further down.

  2. Quantum Spectral Curve for a cusped Wilson line in {N}=4 SYM

    NASA Astrophysics Data System (ADS)

    Gromov, Nikolay; Levkovich-Maslyuk, Fedor

    2016-04-01

    We show that the Quantum Spectral Curve (QSC) formalism, initially formulated for the spectrum of anomalous dimensions of all local single trace operators in {N}=4 SYM, can be extended to the generalized cusp anomalous dimension for all values of the parameters. We find that the large spectral parameter asymptotics and some analyticity properties have to be modified, but the functional relations are unchanged. As a demonstration, we find an all-loop analytic expression for the first two nontrivial terms in the small |ϕ ± θ | expansion. We also present nonperturbative numerical results at generic angles which match perfectly 4-loop perturbation theory and the classical string prediction.

  3. Quantum inflationary minisuperspace cosmological models

    SciTech Connect

    Kim Sangpyo.

    1991-01-01

    The Wheeler-DeWitt equations for the Friedmann-Robertson-Walker cosmology conformally and minimally coupled to scalar fields with power-lay potential are expanded in the eigenstates of the scalar field parts. The gravitational parts become a diagonal matrix-valued differential equation for a conformal scalar field, and a coupled matrix-valued differential equation for a minimally coupled scalar field. The Cauchy initial value problem is defined with respect to the intrinsic timelike coordinate, and the wavefunctions incorporating initial data are constructed using the product integral formulation. The packetlike wavefunctions around classical turning points are shown possible in the product integral formulation, and the returning wavepackets near the returning point of the classical Friedmann-Robertson-Walker cosmology are constructed. The wavefunctions to the Wheeler-DeWitt equation minimally coupled to the scaler field are constructed by two differential methods, the master equation and the enlarged matrix equation. The spectrum for the wavefunctions regular at the infinite size of universe is found, and these are interpreted as the Hawking-Page spectrum of wormholes connecting two asymptotically Euclidean regions. The quantum Friedmann-Robertson-Walker cosmology is extended to the minimal scalar field with the inflationary potential having a first order phase transition. The Wheeler-DeWitt equation is expanded in the eigenstates of the scalar field, and the gravitational part becomes a coupled matrix-valued differential equation.

  4. RNA2 of TRV SYM breaks the rules for tobravirus genome structure.

    PubMed

    Ashfaq, Muhammad; McGavin, Wendy; Macfarlane, Stuart A

    2011-09-01

    Currently, all of the RNA2 molecules described for all of the more than thirty sequenced isolates of the three tobraviruses, Tobacco rattle virus (TRV), Pea early-browning virus (PEBV) and Pepper ringspot virus (PepRSV), have the virus coat protein (CP) gene located in the 5' proximal position. However, sequencing of the RNA2 of the SYM isolate of TRV revealed that this isolate has a unique genome structure in which the virus CP gene is located in the central region of RNA2 downstream of three completely novel open reading frames (ORFN1, ORFN2 and ORFN3). An infectious clone of SYM RNA2 was constructed and mutations were introduced separately into each of the novel genes to interrupt their translation. However, none of the mutations resulted in any noticeable change in the ability of TRV RNA1 or RNA2 to replicate and move systemically in the leaves or roots of infected plants. In addition, individual expression of the novel ORFs either from a Potato virus X (PVX) vector or from a binary plasmid in Agrobacterium tumefaciens did not reveal any potential function. PMID:21798296

  5. The complete one-loop dilatation operator of planar real β-deformed = 4 SYM theory

    NASA Astrophysics Data System (ADS)

    Fokken, Jan; Sieg, Christoph; Wilhelm, Matthias

    2014-07-01

    We determine the missing finite-size corrections to the asymptotic one-loop dilatation operator of the real β-deformed = 4 SYM theory for the gauge groups U( N) and SU( N) in the 't Hooft limit. In the SU( N) case, the absence of the U(1) field components leads to a new kind of finite-size effect, which we call prewrapping. We classify which states are potentially affected by prewrapping at generic loop orders and comment on the necessity to include it into the integrability-based description. As a further result, we identify classes of n-point correlation functions which at all loop orders in the planar theory are given by the values of their undeformed counterparts. Finally, we determine the superconformal multiplet structure and one-loop anomalous dimensions of all single-trace states with classical scaling dimension Δ0 ≤ 4.5.

  6. Ne matrix spectra of the sym-C6Br3F3+ radical cation

    USGS Publications Warehouse

    Bondybey, V.E.; Sears, T.J.; Miller, T.A.; Vaughn, C.; English, J.H.; Shiley, R.S.

    1981-01-01

    The electronic absorption and laser excited, wavelength resolved fluorescence spectra of the title cation have been observed in solid Ne matrix and vibrationally analysed. The vibrational structure of the excited B2A2??? state shows close similarity to the parent compound. The X2E??? ground state structure is strongly perturbed and irregular owing to a large Jahn-Teller distortion. The data are analysed in terms of a recently developed, sophisticated multimode Jahn-Teller theoretical model. We have generated the sym-C6Br3F3+ cations in solid Ne matrix and obtained their wavelength resolved emission and absorption spectra. T ground electronic X2E??? state exhibits an irregular and strongly perturbed vibrational structure, which can be successfully modeled using sophisticated multimode Jahn-Teller theory. ?? 1981.

  7. High-energy amplitudes in N = 4 SYM in the next-to-leading order

    SciTech Connect

    Chirilli, Giovanni; Balitsky, Ian

    2010-03-16

    In this study, the high-energy behavior of the N = 4 SYM amplitudes in the Regge limit can be calculated order by order in perturbation theory using the high-energy operator expansion in Wilson lines. At large $N_c$, a typical four-point amplitude is determined by a single BFKL pomeron. The conformal structure of the four-point amplitude is fixed in terms of two functions: pomeron intercept and the coefficient function in front of the pomeron (the product of two residues). The pomeron intercept is universal while the coefficient function depends on the correlator in question. The intercept is known in the first two orders in coupling constant: BFKL intercept and NLO BFKL intercept calculated in Ref. 1. As an example of using the Wilson-line OPE, we calculate the coefficient function in front of the pomeron for the correlator of four $Z^2$ currents in the first two orders in perturbation theory.

  8. Performance analysis for wireless networks: an analytical approach by multifarious Sym Teredo.

    PubMed

    Punithavathani, D Shalini; Radley, Sheryl

    2014-01-01

    IPv4-IPv6 transition rolls out numerous challenges to the world of Internet as the Internet is drifting from IPv4 to IPv6. IETF recommends few transition techniques which includes dual stack and translation and tunneling. By means of tunneling the IPv6 packets over IPv4 UDP, Teredo maintains IPv4/IPv6 dual stack node in isolated IPv4 networks behindhand network address translation (NAT). However, the proposed tunneling protocol works with the symmetric and asymmetric NATs. In order to make a Teredo support several symmetric NATs along with several asymmetric NATs, we propose multifarious Sym Teredo (MTS), which is an extension of Teredo with a capability of navigating through several symmetric NATs. The work preserves the Teredo architecture and also offers a backward compatibility with the original Teredo protocol. PMID:25506611

  9. Performance Analysis for Wireless Networks: An Analytical Approach by Multifarious Sym Teredo

    PubMed Central

    Punithavathani, D. Shalini; Radley, Sheryl

    2014-01-01

    IPv4-IPv6 transition rolls out numerous challenges to the world of Internet as the Internet is drifting from IPv4 to IPv6. IETF recommends few transition techniques which includes dual stack and translation and tunneling. By means of tunneling the IPv6 packets over IPv4 UDP, Teredo maintains IPv4/IPv6 dual stack node in isolated IPv4 networks behindhand network address translation (NAT). However, the proposed tunneling protocol works with the symmetric and asymmetric NATs. In order to make a Teredo support several symmetric NATs along with several asymmetric NATs, we propose multifarious Sym Teredo (MTS), which is an extension of Teredo with a capability of navigating through several symmetric NATs. The work preserves the Teredo architecture and also offers a backward compatibility with the original Teredo protocol. PMID:25506611

  10. Local integrand representations of all two-loop amplitudes in planar SYM

    NASA Astrophysics Data System (ADS)

    Bourjaily, Jacob L.; Trnka, Jaroslav

    2015-08-01

    We use generalized unitarity at the integrand-level to directly construct local, manifestly dual-conformally invariant formulae for all two-loop scattering amplitudes in planar, maximally supersymmetric Yang-Mills theory (SYM). This representation separates contributions into manifestly finite and manifestly divergent terms — in a way that renders all infrared-safe observables (including ratio functions) calculable without any need for regulation. These results perfectly match the all-loop BCFW recursion relations, to which we provide a closed-form solution valid through two-loop-order. Finally, we describe and document a Mathematica package which implements these results, available as part of this work's source files on the arXiv.

  11. SymPix: A Spherical Grid for Efficient Sampling of Rotationally Invariant Operators

    NASA Astrophysics Data System (ADS)

    Seljebotn, D. S.; Eriksen, H. K.

    2016-02-01

    We present SymPix, a special-purpose spherical grid optimized for efficiently sampling rotationally invariant linear operators. This grid is conceptually similar to the Gauss-Legendre (GL) grid, aligning sample points with iso-latitude rings located on Legendre polynomial zeros. Unlike the GL grid, however, the number of grid points per ring varies as a function of latitude, avoiding expensive oversampling near the poles and ensuring nearly equal sky area per grid point. The ratio between the number of grid points in two neighboring rings is required to be a low-order rational number (3, 2, 1, 4/3, 5/4, or 6/5) to maintain a high degree of symmetries. Our main motivation for this grid is to solve linear systems using multi-grid methods, and to construct efficient preconditioners through pixel-space sampling of the linear operator in question. As a benchmark and representative example, we compute a preconditioner for a linear system that involves the operator \\widehat{{\\boldsymbol{D}}}+{\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}}, where \\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}} may be described as both local and rotationally invariant operators, and {\\boldsymbol{N}} is diagonal in the pixel domain. For a bandwidth limit of {{\\ell }}{max} = 3000, we find that our new SymPix implementation yields average speed-ups of 360 and 23 for {\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}}, respectively, compared with the previous state-of-the-art implementation.

  12. On a discrete symmetry of the Bremsstrahlung function in {N} = 4 SYM

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Macorini, Guido

    2013-07-01

    We consider the quark anti-quark potential on the three sphere in planar {N} = 4 SYM and the associated vacuum potential in the near BPS limit with L units of R-charge. The associated Bremsstrahlung function B L has been recently computed analytically by means of the Thermodynamical Bethe Ansatz. We discuss it at strong coupling by computing it at large but finite L. We provide strong support to a special symmetry of the Bremsstrahlung function under the formal discrete {{{Z}}_2} symmetry L → -1 - L. In this context, it is the counterpart of the reciprocity invariance discovered in the past in the spectrum of various gauge invariant composite operators. The {{{Z}}_2} symmetry has remarkable consequences in the scaling limit where L is taken to be large with fixed ratio to the 't Hooft coupling. This limit organizes in inverse powers of the coupling and resembles the semiclassical expansion of the dual string theory which is indeed known to capture the leading classical term. We show that the various higher-order contributions to the Bremsstrahlung function obey several constraints and, in particular, the next-to-leading term, formally associated with the string one-loop correction, is completely determined by the classical contribution. The large L limit at strong coupling is also discussed.

  13. Fermionic and bosonic mass deformations of mathcal{N} = 4 SYM and their bulk supergravity dual

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Graña, Mariana; Kuperstein, Stanislav; Ntokos, Praxitelis; Petrini, Michela

    2016-05-01

    We examine the AdS-CFT dual of arbitrary (non)supersymmetric fermionic mass deformations of mathcal{N} = 4 SYM, and investigate how the backreaction of the RR and NS-NS two-form potentials dual to the fermion masses contribute to Coulomb-branch potential of D3 branes, which we interpret as the bulk boson mass matrix. Using representation theory and supergravity arguments we show that the fermion masses completely determine the trace of this matrix, and that on the other hand its traceless components have to be turned on as non-normalizable modes. Our result resolves the tension between the belief that the AdS bulk dual of the trace of the boson mass matrix (which is not a chiral operator) is a stringy excitation with dimension of order ( g s N )1/4 and the existence of non-stringy supergravity flows describing theories where this trace is nonzero, by showing that the stringy mode does not parameterize the sum of the squares of the boson masses but rather its departure from the trace of the square of the fermion mass matrix. Hence, asymptotically-AdS flows can only describe holographically theories where the sums of the squares of the bosonic and fermionic masses are equal, which is consistent with the weakly-coupled result that only such theories can have a conformal UV fixed point.

  14. High-energy amplitudes in N = 4 SYM in the next-to-leading order

    DOE PAGESBeta

    Chirilli, Giovanni; Balitsky, Ian

    2010-03-16

    In this study, the high-energy behavior of the N = 4 SYM amplitudes in the Regge limit can be calculated order by order in perturbation theory using the high-energy operator expansion in Wilson lines. At large $N_c$, a typical four-point amplitude is determined by a single BFKL pomeron. The conformal structure of the four-point amplitude is fixed in terms of two functions: pomeron intercept and the coefficient function in front of the pomeron (the product of two residues). The pomeron intercept is universal while the coefficient function depends on the correlator in question. The intercept is known in the firstmore » two orders in coupling constant: BFKL intercept and NLO BFKL intercept calculated in Ref. 1. As an example of using the Wilson-line OPE, we calculate the coefficient function in front of the pomeron for the correlator of four $Z^2$ currents in the first two orders in perturbation theory.« less

  15. Conical for stepwise, glancing for concerted: the role of the excited-state topology in the three-body dissociation of sym-triazine.

    PubMed

    Mozhayskiy, Vadim A; Savee, John D; Mann, Jennifer E; Continetti, Robert E; Krylov, Anna I

    2008-12-01

    The highly debated three-body dissociation of sym-triazine to three HCN products has been investigated by translational spectroscopy and high-level ab initio calculations. Dissociation was induced by charge exchange between the sym-triazine radical cation and cesium. Calculated state energies and electronic couplings suggest that sym-triazine is produced in the 3s Rydberg and pi* <-- n manifolds. Analysis of the topology of these manifolds along with momentum correlation in the dissociation products suggest that the 3s Rydberg manifold characterized by a conical intersection of two potential energy surfaces leads to stepwise dissociation, while the pi* <-- n manifold consisting of a four-fold glancing intersection leads to a symmetric concerted reaction. PMID:18959397

  16. 'Ca. Liberibacter asiaticus' proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nitrogen-fixing alfalfa-nodulating microsymbiont, Sinorhizobium meliloti, has a genome consisting of a 3.5 Mbp circular chromosome and two megaplasmids totaling 3.0 Mbp, one a 1.3 Mbp pSymA carrying nonessential ‘accessory’ genes including nif, nod and others involved in plant interaction. Predict...

  17. A piece of cake: the ground-state energies in γ i -deformed = 4 SYM theory at leading wrapping order

    NASA Astrophysics Data System (ADS)

    Fokken, Jan; Sieg, Christoph; Wilhelm, Matthias

    2014-09-01

    In the non-supersymmetric γi-deformed = 4 SYM theory, the scaling dimensions of the operators tr[ Z L ] composed of L scalar fields Z receive finite-size wrapping and prewrapping corrections in the 't Hooft limit. In this paper, we calculate these scaling dimensions to leading wrapping order directly from Feynman diagrams. For L ≥ 3, the result is proportional to the maximally transcendental `cake' integral. It matches with an earlier result obtained from the integrability-based Lüscher corrections, TBA and Y-system equations. At L = 2, where the integrability-based equations yield infinity, we find a finite rational result. This result is renormalization-scheme dependent due to the non-vanishing β-function of an induced quartic scalar double-trace coupling, on which we have reported earlier. This explicitly shows that conformal invariance is broken — even in the 't Hooft limit. [Figure not available: see fulltext.

  18. ‘Ca. Liberibacter asiaticus’ Proteins Orthologous with pSymA-Encoded Proteins of Sinorhizobium meliloti: Hypothetical Roles in Plant Host Interaction

    PubMed Central

    Kuykendall, L. David; Shao, Jonathan Y.; Hartung, John S.

    2012-01-01

    Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mbp pSymA carrying nonessential ‘accessory’ genes for nitrogen fixation (nif), nodulation and host specificity (nod). A related bacterium, psyllid-vectored ‘Ca. Liberibacter asiaticus,’ is an obligate phytopathogen with a reduced genome that was previously analyzed for genes orthologous to genes on the S. meliloti circular chromosome. In general, proteins encoded by pSymA genes are more similar in sequence alignment to those encoded by S. meliloti chromosomal orthologs than to orthologous proteins encoded by genes carried on the ‘Ca. Liberibacter asiaticus’ genome. Only two ‘Ca. Liberibacter asiaticus’ proteins were identified as having orthologous proteins encoded on pSymA but not also encoded on the chromosome of S. meliloti. These two orthologous gene pairs encode a Na+/K+ antiporter (shared with intracellular pathogens of the family Bartonellacea) and a Co++, Zn++ and Cd++ cation efflux protein that is shared with the phytopathogen Agrobacterium. Another shared protein, a redox-regulated K+ efflux pump may regulate cytoplasmic pH and homeostasis. The pSymA and ‘Ca. Liberibacter asiaticus’ orthologs of the latter protein are more highly similar in amino acid alignment compared with the alignment of the pSymA-encoded protein with its S. meliloti chromosomal homolog. About 182 pSymA encoded proteins have sequence similarity (≤E-10) with ‘Ca. Liberibacter asiaticus’ proteins, often present as multiple orthologs of single ‘Ca. Liberibacter asiaticus’ proteins. These proteins are involved with amino acid uptake, cell surface structure, chaperonins, electron transport, export of bioactive molecules, cellular homeostasis, regulation of gene expression, signal transduction and synthesis of amino acids and metabolic cofactors. The presence of multiple orthologs defies

  19. Approximate flavor symmetries

    SciTech Connect

    Rasin, A.

    1994-04-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  20. Light Microscopy Study of Nodule Initiation in Pisum sativum L. cv Sparkle and in Its Low-Nodulating Mutant E2 (sym 5) 1

    PubMed Central

    Guinel, Frédérique C.; LaRue, Thomas A.

    1991-01-01

    We compared nodule initiation in lateral roots of Pisum sativum (L.) cv Sparkle and in a low-nodulating mutant E2 (sym 5). In Sparkle, about 25% of the infections terminated in the epidermis, a similar number stopped in the cortex, and 50% resulted in the formation of a nodule meristem or an emerged nodule. The mutant E2 (sym 5) was infected as often as was the parent, and it formed a normal infection thread. In the mutant, cell divisions rarely occurred in advance of the infection thread, and few nodule primordia were produced. Growing the mutant at a low root temperature or adding Ag+ to the substrate increased the number of cell divisions and nodule primordia. We conclude that, in the E2 line, the infection process is arrested in the cortex, at the stage of initial cell divisions before the establishment of a nodule primordium. ImagesFigure 1 PMID:16668510

  1. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.

  2. Calculator Function Approximation.

    ERIC Educational Resources Information Center

    Schelin, Charles W.

    1983-01-01

    The general algorithm used in most hand calculators to approximate elementary functions is discussed. Comments on tabular function values and on computer function evaluation are given first; then the CORDIC (Coordinate Rotation Digital Computer) scheme is described. (MNS)

  3. On the cusp anomalous dimension in the ladder limit of mathcal{N}=4 SYM

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido

    2016-06-01

    We analyze the cusp anomalous dimension in the (leading) ladder limit of mathcal{N}=4 SYMandpresentnewresultsforitshigher-orderperturbativeexpansion. Westudy two different limits with respect to the cusp angle ϕ. The first is the light-like regime where x = e iϕ → 0. This limit is characterised by a non-trivial expansion of the cusp anomaly as a sum of powers of log x, where the maximum exponent increases with the loop order. The coefficients of this expansion have remarkable transcendentality features and can be expressed by products of single zeta values. We show that the whole logarithmic expansion is fully captured by a solvable Woods-Saxon like one-dimensional potential. From the exact solution, we extract generating functions for the cusp anomaly as well as for the various specific transcendental structures appearing therein. The second limit that we discuss is the regime of small cusp angle. In this somewhat simpler case, we show how to organise the quantum mechanical perturbation theory in a novel efficient way by means of a suitable all-order Ansatz for the ground state of the associated Schrödinger problem. Our perturbative setup allows to systematically derive higher-order perturbative corrections in powers of the cusp angle as explicit non-perturbative functions of the effective coupling. This series approximation is compared with the numerical solution of the Schrödinger equation to show that we can achieve very good accuracy over the whole range of coupling and cusp angle. Our results have been obtained by relatively simple techniques. Nevertheless, they provide several non-trivial tests useful to check the application of Quantum Spectral Curve methods to the ladder approximation at non zero ϕ, in the two limits we studied.

  4. Approximate spatial reasoning

    NASA Technical Reports Server (NTRS)

    Dutta, Soumitra

    1988-01-01

    Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.

  5. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. PMID:25528318

  6. Fast approximate motif statistics.

    PubMed

    Nicodème, P

    2001-01-01

    We present in this article a fast approximate method for computing the statistics of a number of non-self-overlapping matches of motifs in a random text in the nonuniform Bernoulli model. This method is well suited for protein motifs where the probability of self-overlap of motifs is small. For 96% of the PROSITE motifs, the expectations of occurrences of the motifs in a 7-million-amino-acids random database are computed by the approximate method with less than 1% error when compared with the exact method. Processing of the whole PROSITE takes about 30 seconds with the approximate method. We apply this new method to a comparison of the C. elegans and S. cerevisiae proteomes. PMID:11535175

  7. The Guiding Center Approximation

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Sunn

    The guiding center approximation for charged particles in strong magnetic fields is introduced here. This approximation is very useful in situations where the charged particles are very well magnetized, such that the gyration (Larmor) radius is small compared to relevant length scales of the confinement device, and the gyration is fast relative to relevant timescales in an experiment. The basics of motion in a straight, uniform, static magnetic field are reviewed, and are used as a starting point for analyzing more complicated situations where more forces are present, as well as inhomogeneities in the magnetic field -- magnetic curvature as well as gradients in the magnetic field strength. The first and second adiabatic invariant are introduced, and slowly time-varying fields are also covered. As an example of the use of the guiding center approximation, the confinement concept of the cylindrical magnetic mirror is analyzed.

  8. Covariant approximation averaging

    NASA Astrophysics Data System (ADS)

    Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph

    2015-06-01

    We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.

  9. Monotone Boolean approximation

    SciTech Connect

    Hulme, B.L.

    1982-12-01

    This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application for the analysis of noncoherent fault trees and event tree sequences.

  10. A novel ARID DNA-binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus.

    PubMed

    Zhu, Hui; Chen, Tao; Zhu, Maosheng; Fang, Qing; Kang, Heng; Hong, Zonglie; Zhang, Zhongming

    2008-09-01

    During the establishment of symbiosis in legume roots, the rhizobial Nod factor signal is perceived by the host cells via receptor-like kinases, including SymRK. The NODULE INCEPTION (NIN) gene in Lotus japonicus is required for rhizobial entry into root cells and for nodule organogenesis. We describe here a novel DNA-binding protein from L. japonicus, referred to as SIP1, because it was identified as a SymRK-interacting protein. SIP1 contains a conserved AT-rich interaction domain (ARID) and represents a unique member of the ARID-containing proteins in plants. The C terminus of SIP1 was found to be responsible for its interaction with the kinase domain of SymRK and for homodimerization in the absence of DNA. SIP1 specifically binds to the promoter of LjNIN but not to that of LjCBP1 (a calcium-binding protein gene), both of which are known to be inducible by Nod factors. SIP1 recognizes two of the three AT-rich domains present in the NIN gene promoter. Deletion of one of the AT-rich domains at the NIN promoter diminishes the binding of SIP1 to the NIN promoter. The protein is localized to the nuclei when expressed as a red fluorescence fusion protein in the onion (Allium cepa) epidermal cells. The SIP1 gene is expressed constitutively in the uninfected roots, and its expression levels are elevated after infection by Mesorhizobium loti. It is proposed that SIP1 may be required for the expression of NIN and involved in the initial communications between the rhizobia and the host root cells. PMID:18633121

  11. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.

    1998-06-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  12. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  13. Multicriteria approximation through decomposition

    SciTech Connect

    Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |

    1997-12-01

    The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

  14. Optimizing the Zeldovich approximation

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.

    1994-01-01

    We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment

  15. A new symbiotic cluster on the pSym megaplasmid of Rhizobium meliloti 2011 carries a functional fix gene repeat and a nod locus.

    PubMed Central

    Renalier, M H; Batut, J; Ghai, J; Terzaghi, B; Gherardi, M; David, M; Garnerone, A M; Vasse, J; Truchet, G; Huguet, T

    1987-01-01

    A 290-kilobase (kb) region of the Rhizobium meliloti 2011 pSym megaplasmid, which contains nodulation genes (nod) as well as genes involved in nitrogen fixation (nif and fix), was shown to carry at least six sequences repeated elsewhere in the genome. One of these reiterated sequences, about 5 kb in size, had previously been identified as part of a cluster of fix genes located 220 kb downstream of the nifHDK promoter. Deletion of the reiterated part of this fix cluster does not alter the symbiotic phenotype. Deletion of the second copy of this reiterated sequence, which maps on pSym 40 kb upstream of the nifHDK promoter, also has no effect. Deletion of both of these copies however leads to a Fix- phenotype, indicating that both sequences carry functionally reiterated fix gene(s). The fix copy 40 kb upstream of nifHDK is part of a symbiotic cluster which also carries a nod locus, the deletion of which produces a marked delay in nodulation. Images PMID:3571166

  16. Approximate option pricing

    SciTech Connect

    Chalasani, P.; Saias, I.; Jha, S.

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  17. Beyond the Kirchhoff approximation

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto

    1989-01-01

    The three most successful models for describing scattering from random rough surfaces are the Kirchhoff approximation (KA), the small-perturbation method (SPM), and the two-scale-roughness (or composite roughness) surface-scattering (TSR) models. In this paper it is shown how these three models can be derived rigorously from one perturbation expansion based on the extinction theorem for scalar waves scattering from perfectly rigid surface. It is also shown how corrections to the KA proportional to the surface curvature and higher-order derivatives may be obtained. Using these results, the scattering cross section is derived for various surface models.

  18. Countably QC-Approximating Posets

    PubMed Central

    Mao, Xuxin; Xu, Luoshan

    2014-01-01

    As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σc(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730

  19. Approximate Bayesian multibody tracking.

    PubMed

    Lanz, Oswald

    2006-09-01

    Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the trade-off between reliable modeling and computational efficiency. The Hybrid Joint-Separable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physically-based model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in cases of complete occlusion, tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust, and able to resolve long-term occlusions between targets with identical appearance. PMID:16929730

  20. Relationships of storm-time changes in thermospheric mass density with solar wind/IMF parameters and ring current index of Sym-H

    NASA Astrophysics Data System (ADS)

    Zhou, Yunliang; Ma, S. Y.; Xiong, Chao; Luehr, Hermann

    The total air mass densities at about 500 km altitude are derived using super-STAR accelerom-eter measurements onboard GRACE satellites for 25 great magnetic storms with minimum Dst less than 100 nT during 2002 to 2006 years. Taking NRLMSISE-00 model-predicted densities without active ap index input as a reference baseline of quiet-time mass density, the storm-time changes in upper thermospheric mass densities are obtained by subtraction for all the storm events and sorted into different grids of latitude by local time sector. The relationships of the storm-time density changes with various interplanetary parameters and magnetospheric ring current index of Sym-H are statistically investigated. The parameters include Akasofu energy coupling function, the merging electric field Em, the magnitude of IMF component in the GSM y-z plane etc. as calculated from OMNI data at 1 AU. It is found that the storm-time changes in the upper thermospheric mass density have the best linear correlation with the Sym-H index in general, showing nearly zero time delay at low-latitudes and a little time ahead at high-latitudes for most cases. Unexpectedly, the magnitude of IMF component in the y-z plane, Byz, shows correlation with storm-time mass density changes better and closer than Akasofu function and even Em. And, the mass density changes lag behind Byz about 1-4 hours for most cases at low-latitudes. The correlations considered above are local time dependent, showing the lowest at dusk sectors. For the largest superstorm of November 2003, the changes in mass density are correlated very closely with Byz, Em, and Sym-H index, showing correlation coefficients averaged over all latitudes in noon sector as high as 0.93, 0.91 and 0.90 separately. The physical factors controlling the lag times between the mass density changes at mid-low-latitudes and the interplanetary parameter variations are also analyzed. The results in this study may pro-vide useful suggestions for establishing

  1. Approximation by hinge functions

    SciTech Connect

    Faber, V.

    1997-05-01

    Breiman has defined {open_quotes}hinge functions{close_quotes} for use as basis functions in least squares approximations to data. A hinge function is the max (or min) function of two linear functions. In this paper, the author assumes the existence of smooth function f(x) and a set of samples of the form (x, f(x)) drawn from a probability distribution {rho}(x). The author hopes to find the best fitting hinge function h(x) in the least squares sense. There are two problems with this plan. First, Breiman has suggested an algorithm to perform this fit. The author shows that this algorithm is not robust and also shows how to create examples on which the algorithm diverges. Second, if the author tries to use the data to minimize the fit in the usual discrete least squares sense, the functional that must be minimized is continuous in the variables, but has a derivative which jumps at the data. This paper takes a different approach. This approach is an example of a method that the author has developed called {open_quotes}Monte Carlo Regression{close_quotes}. (A paper on the general theory is in preparation.) The author shall show that since the function f is continuous, the analytic form of the least squares equation is continuously differentiable. A local minimum is solved for by using Newton`s method, where the entries of the Hessian are estimated directly from the data by Monte Carlo. The algorithm has the desirable properties that it is quadratically convergent from any starting guess sufficiently close to a solution and that each iteration requires only a linear system solve.

  2. Structural optimization with approximate sensitivities

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.

    1994-01-01

    Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.

  3. Cavity approximation for graphical models.

    PubMed

    Rizzo, T; Wemmenhove, B; Kappen, H J

    2007-07-01

    We reformulate the cavity approximation (CA), a class of algorithms recently introduced for improving the Bethe approximation estimates of marginals in graphical models. In our formulation, which allows for the treatment of multivalued variables, a further generalization to factor graphs with arbitrary order of interaction factors is explicitly carried out, and a message passing algorithm that implements the first order correction to the Bethe approximation is described. Furthermore, we investigate an implementation of the CA for pairwise interactions. In all cases considered we could confirm that CA[k] with increasing k provides a sequence of approximations of markedly increasing precision. Furthermore, in some cases we could also confirm the general expectation that the approximation of order k , whose computational complexity is O(N(k+1)) has an error that scales as 1/N(k+1) with the size of the system. We discuss the relation between this approach and some recent developments in the field. PMID:17677405

  4. Approximate circuits for increased reliability

    SciTech Connect

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  5. Approximate circuits for increased reliability

    SciTech Connect

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  6. Approximate Genealogies Under Genetic Hitchhiking

    PubMed Central

    Pfaffelhuber, P.; Haubold, B.; Wakolbinger, A.

    2006-01-01

    The rapid fixation of an advantageous allele leads to a reduction in linked neutral variation around the target of selection. The genealogy at a neutral locus in such a selective sweep can be simulated by first generating a random path of the advantageous allele's frequency and then a structured coalescent in this background. Usually the frequency path is approximated by a logistic growth curve. We discuss an alternative method that approximates the genealogy by a random binary splitting tree, a so-called Yule tree that does not require first constructing a frequency path. Compared to the coalescent in a logistic background, this method gives a slightly better approximation for identity by descent during the selective phase and a much better approximation for the number of lineages that stem from the founder of the selective sweep. In applications such as the approximation of the distribution of Tajima's D, the two approximation methods perform equally well. For relevant parameter ranges, the Yule approximation is faster. PMID:17182733

  7. Grands principes de symétrie à l'épreuve de l'expérience

    NASA Astrophysics Data System (ADS)

    Depommier, P.

    nombres leptoniques partiels. Dans la plupart des extensions du modèle standard on met en évidence plusieurs mécanismes de conversion d'un lepton en un lepton d'une autre famille, avec comme conséquences expérimentales : les désintégrations μ → e γ , μ → e γ γ et μ → e e e la conversion muon-électron dans un noyau, les oscillations de neutrinos. La possibilité d'obtenir une résonance lors de l'oscillation des neutrinos dans la matière a des conséquences importantes pour l'astrophysique. En principe, l'isospin n'était pas au menu du cours, puisque traité par un autre professeur. On a cependant ajouté, à la demande de l'éditeur, un chapitre sur les expériences recherchant une violation de la symétrie de charge dans les forces nucléaires (chapitre 10).

  8. Approximate factorization with source terms

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Chyu, W. J.

    1991-01-01

    A comparative evaluation is made of three methodologies with a view to that which offers the best approximate factorization error. While two of these methods are found to lead to more efficient algorithms in cases where factors which do not contain source terms can be diagonalized, the third method used generates the lowest approximate factorization error. This method may be preferred when the norms of source terms are large, and transient solutions are of interest.

  9. Mathematical algorithms for approximate reasoning

    NASA Technical Reports Server (NTRS)

    Murphy, John H.; Chay, Seung C.; Downs, Mary M.

    1988-01-01

    Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away

  10. Exponential approximations in optimal design

    NASA Technical Reports Server (NTRS)

    Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.

    1990-01-01

    One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.

  11. Approximating random quantum optimization problems

    NASA Astrophysics Data System (ADS)

    Hsu, B.; Laumann, C. R.; Läuchli, A. M.; Moessner, R.; Sondhi, S. L.

    2013-06-01

    We report a cluster of results regarding the difficulty of finding approximate ground states to typical instances of the quantum satisfiability problem k-body quantum satisfiability (k-QSAT) on large random graphs. As an approximation strategy, we optimize the solution space over “classical” product states, which in turn introduces a novel autonomous classical optimization problem, PSAT, over a space of continuous degrees of freedom rather than discrete bits. Our central results are (i) the derivation of a set of bounds and approximations in various limits of the problem, several of which we believe may be amenable to a rigorous treatment; (ii) a demonstration that an approximation based on a greedy algorithm borrowed from the study of frustrated magnetism performs well over a wide range in parameter space, and its performance reflects the structure of the solution space of random k-QSAT. Simulated annealing exhibits metastability in similar “hard” regions of parameter space; and (iii) a generalization of belief propagation algorithms introduced for classical problems to the case of continuous spins. This yields both approximate solutions, as well as insights into the free energy “landscape” of the approximation problem, including a so-called dynamical transition near the satisfiability threshold. Taken together, these results allow us to elucidate the phase diagram of random k-QSAT in a two-dimensional energy-density-clause-density space.

  12. Wavelet Sparse Approximate Inverse Preconditioners

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Tang, W.-P.; Wan, W. L.

    1996-01-01

    There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.

  13. Approximate entropy of network parameters.

    PubMed

    West, James; Lacasa, Lucas; Severini, Simone; Teschendorff, Andrew

    2012-04-01

    We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches. PMID:22680542

  14. Approximate entropy of network parameters

    NASA Astrophysics Data System (ADS)

    West, James; Lacasa, Lucas; Severini, Simone; Teschendorff, Andrew

    2012-04-01

    We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches.

  15. Relativistic regular approximations revisited: An infinite-order relativistic approximation

    SciTech Connect

    Dyall, K.G.; van Lenthe, E.

    1999-07-01

    The concept of the regular approximation is presented as the neglect of the energy dependence of the exact Foldy{endash}Wouthuysen transformation of the Dirac Hamiltonian. Expansion of the normalization terms leads immediately to the zeroth-order regular approximation (ZORA) and first-order regular approximation (FORA) Hamiltonians as the zeroth- and first-order terms of the expansion. The expansion may be taken to infinite order by using an un-normalized Foldy{endash}Wouthuysen transformation, which results in the ZORA Hamiltonian and a nonunit metric. This infinite-order regular approximation, IORA, has eigenvalues which differ from the Dirac eigenvalues by order E{sup 3}/c{sup 4} for a hydrogen-like system, which is a considerable improvement over the ZORA eigenvalues, and similar to the nonvariational FORA energies. A further perturbation analysis yields a third-order correction to the IORA energies, TIORA. Results are presented for several systems including the neutral U atom. The IORA eigenvalues for all but the 1s spinor of the neutral system are superior even to the scaled ZORA energies, which are exact for the hydrogenic system. The third-order correction reduces the IORA error for the inner orbitals to a very small fraction of the Dirac eigenvalue. {copyright} {ital 1999 American Institute of Physics.}

  16. Gadgets, approximation, and linear programming

    SciTech Connect

    Trevisan, L.; Sudan, M.; Sorkin, G.B.; Williamson, D.P.

    1996-12-31

    We present a linear-programming based method for finding {open_quotes}gadgets{close_quotes}, i.e., combinatorial structures reducing constraints of one optimization problems to constraints of another. A key step in this method is a simple observation which limits the search space to a finite one. Using this new method we present a number of new, computer-constructed gadgets for several different reductions. This method also answers a question posed by on how to prove the optimality of gadgets-we show how LP duality gives such proofs. The new gadgets improve hardness results for MAX CUT and MAX DICUT, showing that approximating these problems to within factors of 60/61 and 44/45 respectively is N P-hard. We also use the gadgets to obtain an improved approximation algorithm for MAX 3SAT which guarantees an approximation ratio of .801. This improves upon the previous best bound of .7704.

  17. Heat pipe transient response approximation

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.

    2002-01-01

    A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper. .

  18. Pythagorean Approximations and Continued Fractions

    ERIC Educational Resources Information Center

    Peralta, Javier

    2008-01-01

    In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…

  19. Chemical Laws, Idealization and Approximation

    NASA Astrophysics Data System (ADS)

    Tobin, Emma

    2013-07-01

    This paper examines the notion of laws in chemistry. Vihalemm ( Found Chem 5(1):7-22, 2003) argues that the laws of chemistry are fundamentally the same as the laws of physics they are all ceteris paribus laws which are true "in ideal conditions". In contrast, Scerri (2000) contends that the laws of chemistry are fundamentally different to the laws of physics, because they involve approximations. Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34-50, 2000) agree that the laws of chemistry are operationally different to the laws of physics, but claim that the distinction between exact and approximate laws is too simplistic to taxonomise them. Approximations in chemistry involve diverse kinds of activity and often what counts as a scientific law in chemistry is dictated by the context of its use in scientific practice. This paper addresses the question of what makes chemical laws distinctive independently of the separate question as to how they are related to the laws of physics. From an analysis of some candidate ceteris paribus laws in chemistry, this paper argues that there are two distinct kinds of ceteris paribus laws in chemistry; idealized and approximate chemical laws. Thus, while Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34--50, 2000) are correct to point out that the candidate generalisations in chemistry are diverse and heterogeneous, a distinction between idealizations and approximations can nevertheless be used to successfully taxonomise them.

  20. Bouncing scalar field cosmology in the polymeric minisuperspace picture

    NASA Astrophysics Data System (ADS)

    Vakili, B.; Nozari, K.; Hosseinzadeh, V.; Gorji, M. A.

    2014-10-01

    We study a cosmological setup consisting of a FRW metric as the background geometry with a massless scalar field in the framework of classical polymerization of a given dynamical system. To do this, we first introduce the polymeric representation of the quantum operators. We then extend the corresponding process to reach a transformation which maps any classical variable to its polymeric counterpart. It is shown that such a formalism has also an analogue in terms of the symplectic structure, i.e. instead of applying polymerization to the classical Hamiltonian to arrive its polymeric form, one can use a new set of variables in terms of which Hamiltonian retains its form but now the corresponding symplectic structure gets a new deformed functional form. We show that these two methods are equivalent and by applying them to the scalar field FRW cosmology see that the resulting scale factor exhibits a bouncing behavior from a contraction phase to an expanding era. Since the replacing of the big bang singularity by a bouncing behavior is one of the most important predictions of the quantum cosmological theories, we may claim that our polymerized classical model brings with itself some signals from quantum theory.

  1. Noncommutative minisuperspace, gravity-driven acceleration, and kinetic inflation

    NASA Astrophysics Data System (ADS)

    Rasouli, S. M. M.; Moniz, Paulo Vargas

    2014-10-01

    In this paper, we introduce a noncommutative version of the Brans-Dicke (BD) theory and obtain the Hamiltonian equations of motion for a spatially flat Friedmann-Lemaître-Robertson-Walker universe filled with a perfect fluid. We focus on the case where the scalar potential as well as the ordinary matter sector are absent. Then, we investigate gravity-driven acceleration and kinetic inflation in this noncommutative BD cosmology. In contrast to the commutative case, in which the scale factor and BD scalar field are in a power-law form, in the noncommutative case the power-law scalar factor is multiplied by a dynamical exponential warp factor. This warp factor depends on the noncommutative parameter as well as the momentum conjugate associated to the BD scalar field. We show that the BD scalar field and the scale factor effectively depend on the noncommutative parameter. For very small values of this parameter, we obtain an appropriate inflationary solution, which can overcome problems within BD standard cosmology in a more efficient manner. Furthermore, a graceful exit from an early acceleration epoch towards a decelerating radiation epoch is provided. For late times, due to the presence of the noncommutative parameter, we obtain a zero acceleration epoch, which can be interpreted as the coarse-grained explanation.

  2. One sign ion mobile approximation

    NASA Astrophysics Data System (ADS)

    Barbero, G.

    2011-12-01

    The electrical response of an electrolytic cell to an external excitation is discussed in the simple case where only one group of positive and negative ions is present. The particular case where the diffusion coefficients of the negative ions, Dm, is very small with respect to that of the positive ions, Dp, is considered. In this framework, it is discussed under what conditions the one mobile approximation, in which the negative ions are assumed fixed, works well. The analysis is performed by assuming that the external excitation is sinusoidal with circular frequency ω, as that used in the impedance spectroscopy technique. In this framework, we show that there exists a circular frequency, ω*, such that for ω > ω*, the one mobile ion approximation works well. We also show that for Dm ≪ Dp, ω* is independent of Dm.

  3. Testing the frozen flow approximation

    NASA Technical Reports Server (NTRS)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1993-01-01

    We investigate the accuracy of the frozen-flow approximation (FFA), recently proposed by Matarrese, et al. (1992), for following the nonlinear evolution of cosmological density fluctuations under gravitational instability. We compare a number of statistics between results of the FFA and n-body simulations, including those used by Melott, Pellman & Shandarin (1993) to test the Zel'dovich approximation. The FFA performs reasonably well in a statistical sense, e.g. in reproducing the counts-in-cell distribution, at small scales, but it does poorly in the crosscorrelation with n-body which means it is generally not moving mass to the right place, especially in models with high small-scale power.

  4. Approximate Counting of Graphical Realizations

    PubMed Central

    2015-01-01

    In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994

  5. Approximate Counting of Graphical Realizations.

    PubMed

    Erdős, Péter L; Kiss, Sándor Z; Miklós, István; Soukup, Lajos

    2015-01-01

    In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994

  6. Computer Experiments for Function Approximations

    SciTech Connect

    Chang, A; Izmailov, I; Rizzo, S; Wynter, S; Alexandrov, O; Tong, C

    2007-10-15

    This research project falls in the domain of response surface methodology, which seeks cost-effective ways to accurately fit an approximate function to experimental data. Modeling and computer simulation are essential tools in modern science and engineering. A computer simulation can be viewed as a function that receives input from a given parameter space and produces an output. Running the simulation repeatedly amounts to an equivalent number of function evaluations, and for complex models, such function evaluations can be very time-consuming. It is then of paramount importance to intelligently choose a relatively small set of sample points in the parameter space at which to evaluate the given function, and then use this information to construct a surrogate function that is close to the original function and takes little time to evaluate. This study was divided into two parts. The first part consisted of comparing four sampling methods and two function approximation methods in terms of efficiency and accuracy for simple test functions. The sampling methods used were Monte Carlo, Quasi-Random LP{sub {tau}}, Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. The function approximation methods utilized were Multivariate Adaptive Regression Splines (MARS) and Support Vector Machines (SVM). The second part of the study concerned adaptive sampling methods with a focus on creating useful sets of sample points specifically for monotonic functions, functions with a single minimum and functions with a bounded first derivative.

  7. Approximate reasoning using terminological models

    NASA Technical Reports Server (NTRS)

    Yen, John; Vaidya, Nitin

    1992-01-01

    Term Subsumption Systems (TSS) form a knowledge-representation scheme in AI that can express the defining characteristics of concepts through a formal language that has a well-defined semantics and incorporates a reasoning mechanism that can deduce whether one concept subsumes another. However, TSS's have very limited ability to deal with the issue of uncertainty in knowledge bases. The objective of this research is to address issues in combining approximate reasoning with term subsumption systems. To do this, we have extended an existing AI architecture (CLASP) that is built on the top of a term subsumption system (LOOM). First, the assertional component of LOOM has been extended for asserting and representing uncertain propositions. Second, we have extended the pattern matcher of CLASP for plausible rule-based inferences. Third, an approximate reasoning model has been added to facilitate various kinds of approximate reasoning. And finally, the issue of inconsistency in truth values due to inheritance is addressed using justification of those values. This architecture enhances the reasoning capabilities of expert systems by providing support for reasoning under uncertainty using knowledge captured in TSS. Also, as definitional knowledge is explicit and separate from heuristic knowledge for plausible inferences, the maintainability of expert systems could be improved.

  8. The structural physical approximation conjecture

    NASA Astrophysics Data System (ADS)

    Shultz, Fred

    2016-01-01

    It was conjectured that the structural physical approximation (SPA) of an optimal entanglement witness is separable (or equivalently, that the SPA of an optimal positive map is entanglement breaking). This conjecture was disproved, first for indecomposable maps and more recently for decomposable maps. The arguments in both cases are sketched along with important related results. This review includes background material on topics including entanglement witnesses, optimality, duality of cones, decomposability, and the statement and motivation for the SPA conjecture so that it should be accessible for a broad audience.

  9. Improved non-approximability results

    SciTech Connect

    Bellare, M.; Sudan, M.

    1994-12-31

    We indicate strong non-approximability factors for central problems: N{sup 1/4} for Max Clique; N{sup 1/10} for Chromatic Number; and 66/65 for Max 3SAT. Underlying the Max Clique result is a proof system in which the verifier examines only three {open_quotes}free bits{close_quotes} to attain an error of 1/2. Underlying the Chromatic Number result is a reduction from Max Clique which is more efficient than previous ones.

  10. Generalized Gradient Approximation Made Simple

    SciTech Connect

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-10-01

    Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}

  11. Quantum tunneling beyond semiclassical approximation

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Ranjan Majhi, Bibhas

    2008-06-01

    Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.

  12. Fermion tunneling beyond semiclassical approximation

    NASA Astrophysics Data System (ADS)

    Majhi, Bibhas Ranjan

    2009-02-01

    Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in R. Banerjee and B. R. Majhi, J. High Energy Phys.JHEPFG1029-8479 06 (2008) 09510.1088/1126-6708/2008/06/095 for the scalar particle, Hawking radiation as tunneling of the Dirac particle through an event horizon is analyzed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.

  13. Wavelet Approximation in Data Assimilation

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Atlas, Robert (Technical Monitor)

    2002-01-01

    Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.

  14. Plasma Physics Approximations in Ares

    SciTech Connect

    Managan, R. A.

    2015-01-08

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for Aα (ζ ),Aβ (ζ ), ζ, f(ζ ) = (1 + e-μ/θ)F1/2(μ/θ), F1/2'/F1/2, Fcα, and Fcβ. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  15. Approximating metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej

    2015-12-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.

  16. Interplay of approximate planning strategies.

    PubMed

    Huys, Quentin J M; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J; Dayan, Peter; Roiser, Jonathan P

    2015-03-10

    Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or "options." PMID:25675480

  17. Strong shock implosion, approximate solution

    NASA Astrophysics Data System (ADS)

    Fujimoto, Y.; Mishkin, E. A.; Alejaldre, C.

    1983-01-01

    The self-similar, center-bound motion of a strong spherical, or cylindrical, shock wave moving through an ideal gas with a constant, γ= cp/ cv, is considered and a linearized, approximate solution is derived. An X, Y phase plane of the self-similar solution is defined and the representative curved of the system behind the shock front is replaced by a straight line connecting the mappings of the shock front with that of its tail. The reduced pressure P(ξ), density R(ξ) and velocity U1(ξ) are found in closed, quite accurate, form. Comparison with numerically obtained results, for γ= {5}/{3} and γ= {7}/{5}, is shown.

  18. Approximate analytic solutions to the NPDD: Short exposure approximations

    NASA Astrophysics Data System (ADS)

    Close, Ciara E.; Sheridan, John T.

    2014-04-01

    There have been many attempts to accurately describe the photochemical processes that take places in photopolymer materials. As the models have become more accurate, solving them has become more numerically intensive and more 'opaque'. Recent models incorporate the major photochemical reactions taking place as well as the diffusion effects resulting from the photo-polymerisation process, and have accurately described these processes in a number of different materials. It is our aim to develop accessible mathematical expressions which provide physical insights and simple quantitative predictions of practical value to material designers and users. In this paper, starting with the Non-Local Photo-Polymerisation Driven Diffusion (NPDD) model coupled integro-differential equations, we first simplify these equations and validate the accuracy of the resulting approximate model. This new set of governing equations are then used to produce accurate analytic solutions (polynomials) describing the evolution of the monomer and polymer concentrations, and the grating refractive index modulation, in the case of short low intensity sinusoidal exposures. The physical significance of the results and their consequences for holographic data storage (HDS) are then discussed.

  19. Nitration of sym-trichlorobenzene

    SciTech Connect

    Quinlin, W.T.

    1981-02-01

    Basic thermal and kinetic data were obtained for the nitration of 1,3,5-trichlorobenzene to trichlorotrinitrobenzene in the presence of oleum/nitric acid. A limiting specific production rate of 5.4 kg/l/hr was determined for the addition of the first two nitro groups at 130 C and a rate of 0.16 kg/l/hr was obtained at 150 C for the addition of the third nitro group.

  20. Function approximation in inhibitory networks.

    PubMed

    Tripp, Bryan; Eliasmith, Chris

    2016-05-01

    In performance-optimized artificial neural networks, such as convolutional networks, each neuron makes excitatory connections with some of its targets and inhibitory connections with others. In contrast, physiological neurons are typically either excitatory or inhibitory, not both. This is a puzzle, because it seems to constrain computation, and because there are several counter-examples that suggest that it may not be a physiological necessity. Parisien et al. (2008) showed that any mixture of excitatory and inhibitory functional connections could be realized by a purely excitatory projection in parallel with a two-synapse projection through an inhibitory population. They showed that this works well with ratios of excitatory and inhibitory neurons that are realistic for the neocortex, suggesting that perhaps the cortex efficiently works around this apparent computational constraint. Extending this work, we show here that mixed excitatory and inhibitory functional connections can also be realized in networks that are dominated by inhibition, such as those of the basal ganglia. Further, we show that the function-approximation capacity of such connections is comparable to that of idealized mixed-weight connections. We also study whether such connections are viable in recurrent networks, and find that such recurrent networks can flexibly exhibit a wide range of dynamics. These results offer a new perspective on computation in the basal ganglia, and also perhaps on inhibitory networks within the cortex. PMID:26963256

  1. Interplay of approximate planning strategies

    PubMed Central

    Huys, Quentin J. M.; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J.; Dayan, Peter; Roiser, Jonathan P.

    2015-01-01

    Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or “options.” PMID:25675480

  2. Multidimensional stochastic approximation Monte Carlo.

    PubMed

    Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang

    2016-06-01

    Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383

  3. Multidimensional stochastic approximation Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang

    2016-06-01

    Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .

  4. Decision analysis with approximate probabilities

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas

    1992-01-01

    This paper concerns decisions under uncertainty in which the probabilities of the states of nature are only approximately known. Decision problems involving three states of nature are studied. This is due to the fact that some key issues do not arise in two-state problems, while probability spaces with more than three states of nature are essentially impossible to graph. The primary focus is on two levels of probabilistic information. In one level, the three probabilities are separately rounded to the nearest tenth. This can lead to sets of rounded probabilities which add up to 0.9, 1.0, or 1.1. In the other level, probabilities are rounded to the nearest tenth in such a way that the rounded probabilities are forced to sum to 1.0. For comparison, six additional levels of probabilistic information, previously analyzed, were also included in the present analysis. A simulation experiment compared four criteria for decisionmaking using linearly constrained probabilities (Maximin, Midpoint, Standard Laplace, and Extended Laplace) under the eight different levels of information about probability. The Extended Laplace criterion, which uses a second order maximum entropy principle, performed best overall.

  5. Producing approximate answers to database queries

    NASA Technical Reports Server (NTRS)

    Vrbsky, Susan V.; Liu, Jane W. S.

    1993-01-01

    We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.

  6. An approximation technique for jet impingement flow

    SciTech Connect

    Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.

    2015-03-10

    The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.

  7. Comparison of two Pareto frontier approximations

    NASA Astrophysics Data System (ADS)

    Berezkin, V. E.; Lotov, A. V.

    2014-09-01

    A method for comparing two approximations to the multidimensional Pareto frontier in nonconvex nonlinear multicriteria optimization problems, namely, the inclusion functions method is described. A feature of the method is that Pareto frontier approximations are compared by computing and comparing inclusion functions that show which fraction of points of one Pareto frontier approximation is contained in the neighborhood of the Edgeworth-Pareto hull approximation for the other Pareto frontier.

  8. Fractal Trigonometric Polynomials for Restricted Range Approximation

    NASA Astrophysics Data System (ADS)

    Chand, A. K. B.; Navascués, M. A.; Viswanathan, P.; Katiyar, S. K.

    2016-05-01

    One-sided approximation tackles the problem of approximation of a prescribed function by simple traditional functions such as polynomials or trigonometric functions that lie completely above or below it. In this paper, we use the concept of fractal interpolation function (FIF), precisely of fractal trigonometric polynomials, to construct one-sided uniform approximants for some classes of continuous functions.

  9. A unified approach to the Darwin approximation

    SciTech Connect

    Krause, Todd B.; Apte, A.; Morrison, P. J.

    2007-10-15

    There are two basic approaches to the Darwin approximation. The first involves solving the Maxwell equations in Coulomb gauge and then approximating the vector potential to remove retardation effects. The second approach approximates the Coulomb gauge equations themselves, then solves these exactly for the vector potential. There is no a priori reason that these should result in the same approximation. Here, the equivalence of these two approaches is investigated and a unified framework is provided in which to view the Darwin approximation. Darwin's original treatment is variational in nature, but subsequent applications of his ideas in the context of Vlasov's theory are not. We present here action principles for the Darwin approximation in the Vlasov context, and this serves as a consistency check on the use of the approximation in this setting.

  10. Approximate Analysis of Semiconductor Laser Arrays

    NASA Technical Reports Server (NTRS)

    Marshall, William K.; Katz, Joseph

    1987-01-01

    Simplified equation yields useful information on gains and output patterns. Theoretical method based on approximate waveguide equation enables prediction of lateral modes of gain-guided planar array of parallel semiconductor lasers. Equation for entire array solved directly using piecewise approximation of index of refraction by simple functions without customary approximation based on coupled waveguid modes of individual lasers. Improved results yield better understanding of laser-array modes and help in development of well-behaved high-power semiconductor laser arrays.

  11. Constructive approximate interpolation by neural networks

    NASA Astrophysics Data System (ADS)

    Llanas, B.; Sainz, F. J.

    2006-04-01

    We present a type of single-hidden layer feedforward neural networks with sigmoidal nondecreasing activation function. We call them ai-nets. They can approximately interpolate, with arbitrary precision, any set of distinct data in one or several dimensions. They can uniformly approximate any continuous function of one variable and can be used for constructing uniform approximants of continuous functions of several variables. All these capabilities are based on a closed expression of the networks.

  12. Piecewise linear approximation for hereditary control problems

    NASA Technical Reports Server (NTRS)

    Propst, Georg

    1990-01-01

    This paper presents finite-dimensional approximations for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems, when a quadratic cost integral must be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in the case where the cost integral ranges over a finite time interval, as well as in the case where it ranges over an infinite time interval. The arguments in the last case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense.

  13. Inversion and approximation of Laplace transforms

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    A method of inverting Laplace transforms by using a set of orthonormal functions is reported. As a byproduct of the inversion, approximation of complicated Laplace transforms by a transform with a series of simple poles along the left half plane real axis is shown. The inversion and approximation process is simple enough to be put on a programmable hand calculator.

  14. An approximation for inverse Laplace transforms

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1981-01-01

    Programmable calculator runs simple finite-series approximation for Laplace transform inversions. Utilizing family of orthonormal functions, approximation is used for wide range of transforms, including those encountered in feedback control problems. Method works well as long as F(t) decays to zero as it approaches infinity and so is appliable to most physical systems.

  15. Quirks of Stirling's Approximation

    ERIC Educational Resources Information Center

    Macrae, Roderick M.; Allgeier, Benjamin M.

    2013-01-01

    Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…

  16. Taylor approximations of multidimensional linear differential systems

    NASA Astrophysics Data System (ADS)

    Lomadze, Vakhtang

    2016-06-01

    The Taylor approximations of a multidimensional linear differential system are of importance as they contain a complete information about it. It is shown that in order to construct them it is sufficient to truncate the exponential trajectories only. A computation of the Taylor approximations is provided using purely algebraic means, without requiring explicit knowledge of the trajectories.

  17. Approximation for nonresonant beam target fusion reactivities

    SciTech Connect

    Mikkelsen, D.R.

    1988-11-01

    The beam target fusion reactivity for a monoenergetic beam in a Maxwellian target is approximately evaluated for nonresonant reactions. The approximation is accurate for the DD and TT fusion reactions to better than 4% for all beam energies up to 300 keV and all ion temperatures up to 2/3 of the beam energy. 12 refs., 1 fig., 1 tab.

  18. Spline approximations for nonlinear hereditary control systems

    NASA Technical Reports Server (NTRS)

    Daniel, P. L.

    1982-01-01

    A sline-based approximation scheme is discussed for optimal control problems governed by nonlinear nonautonomous delay differential equations. The approximating framework reduces the original control problem to a sequence of optimization problems governed by ordinary differential equations. Convergence proofs, which appeal directly to dissipative-type estimates for the underlying nonlinear operator, are given and numerical findings are summarized.

  19. Diagonal Pade approximations for initial value problems

    SciTech Connect

    Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.

    1987-06-01

    Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab.

  20. Computing Functions by Approximating the Input

    ERIC Educational Resources Information Center

    Goldberg, Mayer

    2012-01-01

    In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…

  1. Linear radiosity approximation using vertex radiosities

    SciTech Connect

    Max, N. Lawrence Livermore National Lab., CA ); Allison, M. )

    1990-12-01

    Using radiosities computed at vertices, the radiosity across a triangle can be approximated by linear interpolation. We develop vertex-to-vertex form factors based on this linear radiosity approximation, and show how they can be computed efficiently using modern hardware-accelerated shading and z-buffer technology. 9 refs., 4 figs.

  2. An approximate model for pulsar navigation simulation

    NASA Astrophysics Data System (ADS)

    Jovanovic, Ilija; Enright, John

    2016-02-01

    This paper presents an approximate model for the simulation of pulsar aided navigation systems. High fidelity simulations of these systems are computationally intensive and impractical for simulating periods of a day or more. Simulation of yearlong missions is done by abstracting navigation errors as periodic Gaussian noise injections. This paper presents an intermediary approximate model to simulate position errors for periods of several weeks, useful for building more accurate Gaussian error models. This is done by abstracting photon detection and binning, replacing it with a simple deterministic process. The approximate model enables faster computation of error injection models, allowing the error model to be inexpensively updated throughout a simulation. Testing of the approximate model revealed an optimistic performance prediction for non-millisecond pulsars with more accurate predictions for pulsars in the millisecond spectrum. This performance gap was attributed to noise which is not present in the approximate model but can be predicted and added to improve accuracy.

  3. Approximating maximum clique with a Hopfield network.

    PubMed

    Jagota, A

    1995-01-01

    In a graph, a clique is a set of vertices such that every pair is connected by an edge. MAX-CLIQUE is the optimization problem of finding the largest clique in a given graph and is NP-hard, even to approximate well. Several real-world and theory problems can be modeled as MAX-CLIQUE. In this paper, we efficiently approximate MAX-CLIQUE in a special case of the Hopfield network whose stable states are maximal cliques. We present several energy-descent optimizing dynamics; both discrete (deterministic and stochastic) and continuous. One of these emulates, as special cases, two well-known greedy algorithms for approximating MAX-CLIQUE. We report on detailed empirical comparisons on random graphs and on harder ones. Mean-field annealing, an efficient approximation to simulated annealing, and a stochastic dynamics are the narrow but clear winners. All dynamics approximate much better than one which emulates a "naive" greedy heuristic. PMID:18263357

  4. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  5. Alternative approximation concepts for space frame synthesis

    NASA Technical Reports Server (NTRS)

    Lust, R. V.; Schmit, L. A.

    1985-01-01

    A method for space frame synthesis based on the application of a full gamut of approximation concepts is presented. It is found that with the thoughtful selection of design space, objective function approximation, constraint approximation and mathematical programming problem formulation options it is possible to obtain near minimum mass designs for a significant class of space frame structural systems while requiring fewer than 10 structural analyses. Example problems are presented which demonstrate the effectiveness of the method for frame structures subjected to multiple static loading conditions with limits on structural stiffness and strength.

  6. APPROXIMATING LIGHT RAYS IN THE SCHWARZSCHILD FIELD

    SciTech Connect

    Semerák, O.

    2015-02-10

    A short formula is suggested that approximates photon trajectories in the Schwarzschild field better than other simple prescriptions from the literature. We compare it with various ''low-order competitors'', namely, with those following from exact formulas for small M, with one of the results based on pseudo-Newtonian potentials, with a suitably adjusted hyperbola, and with the effective and often employed approximation by Beloborodov. Our main concern is the shape of the photon trajectories at finite radii, yet asymptotic behavior is also discussed, important for lensing. An example is attached indicating that the newly suggested approximation is usable—and very accurate—for practically solving the ray-deflection exercise.

  7. Approximate Bruechner orbitals in electron propagator calculations

    SciTech Connect

    Ortiz, J.V.

    1999-12-01

    Orbitals and ground-state correlation amplitudes from the so-called Brueckner doubles approximation of coupled-cluster theory provide a useful reference state for electron propagator calculations. An operator manifold with hold, particle, two-hole-one-particle and two-particle-one-hole components is chosen. The resulting approximation, third-order algebraic diagrammatic construction [2ph-TDA, ADC (3)] and 3+ methods. The enhanced versatility of this approximation is demonstrated through calculations on valence ionization energies, core ionization energies, electron detachment energies of anions, and on a molecule with partial biradical character, ozone.

  8. Detecting Gravitational Waves using Pade Approximants

    NASA Astrophysics Data System (ADS)

    Porter, E. K.; Sathyaprakash, B. S.

    1998-12-01

    We look at the use of Pade Approximants in defining a metric tensor for the inspiral waveform template manifold. By using this method we investigate the curvature of the template manifold and the number of templates needed to carry out a realistic search for a Gravitational Wave signal. By comparing this method with the normal use of Taylor Approximant waveforms we hope to show that (a) Pade Approximants are a superior method for calculating the inspiral waveform, and (b) the number of search templates needed, and hence computing power, is reduced.

  9. Approximate knowledge compilation: The first order case

    SciTech Connect

    Val, A. del

    1996-12-31

    Knowledge compilation procedures make a knowledge base more explicit so as make inference with respect to the compiled knowledge base tractable or at least more efficient. Most work to date in this area has been restricted to the propositional case, despite the importance of first order theories for expressing knowledge concisely. Focusing on (LUB) approximate compilation, our contribution is twofold: (1) We present a new ground algorithm for approximate compilation which can produce exponential savings with respect to the previously known algorithm. (2) We show that both ground algorithms can be lifted to the first order case preserving their correctness for approximate compilation.

  10. Adiabatic approximation for nucleus-nucleus scattering

    SciTech Connect

    Johnson, R.C.

    2005-10-14

    Adiabatic approximations to few-body models of nuclear scattering are described with emphasis on reactions with deuterons and halo nuclei (frozen halo approximation) as projectiles. The different ways the approximation should be implemented in a consistent theory of elastic scattering, stripping and break-up are explained and the conditions for the theory's validity are briefly discussed. A formalism which links few-body models and the underlying many-body system is outlined and the connection between the adiabatic and CDCC methods is reviewed.

  11. Information geometry of mean-field approximation.

    PubMed

    Tanaka, T

    2000-08-01

    I present a general theory of mean-field approximation based on information geometry and applicable not only to Boltzmann machines but also to wider classes of statistical models. Using perturbation expansion of the Kullback divergence (or Plefka expansion in statistical physics), a formulation of mean-field approximation of general orders is derived. It includes in a natural way the "naive" mean-field approximation and is consistent with the Thouless-Anderson-Palmer (TAP) approach and the linear response theorem in statistical physics. PMID:10953246

  12. An approximation method for electrostatic Vlasov turbulence

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.

    1979-01-01

    Electrostatic Vlasov turbulence in a bounded spatial region is considered. An iterative approximation method with a proof of convergence is constructed. The method is non-linear and applicable to strong turbulence.

  13. Approximation concepts for efficient structural synthesis

    NASA Technical Reports Server (NTRS)

    Schmit, L. A., Jr.; Miura, H.

    1976-01-01

    It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.

  14. A Survey of Techniques for Approximate Computing

    DOE PAGESBeta

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

  15. Adiabatic approximation for the density matrix

    NASA Astrophysics Data System (ADS)

    Band, Yehuda B.

    1992-05-01

    An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.

  16. Approximate probability distributions of the master equation

    NASA Astrophysics Data System (ADS)

    Thomas, Philipp; Grima, Ramon

    2015-07-01

    Master equations are common descriptions of mesoscopic systems. Analytical solutions to these equations can rarely be obtained. We here derive an analytical approximation of the time-dependent probability distribution of the master equation using orthogonal polynomials. The solution is given in two alternative formulations: a series with continuous and a series with discrete support, both of which can be systematically truncated. While both approximations satisfy the system size expansion of the master equation, the continuous distribution approximations become increasingly negative and tend to oscillations with increasing truncation order. In contrast, the discrete approximations rapidly converge to the underlying non-Gaussian distributions. The theory is shown to lead to particularly simple analytical expressions for the probability distributions of molecule numbers in metabolic reactions and gene expression systems.

  17. Linear Approximation SAR Azimuth Processing Study

    NASA Technical Reports Server (NTRS)

    Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.

    1979-01-01

    A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.

  18. Some Recent Progress for Approximation Algorithms

    NASA Astrophysics Data System (ADS)

    Kawarabayashi, Ken-ichi

    We survey some recent progress on approximation algorithms. Our main focus is the following two problems that have some recent breakthroughs; the edge-disjoint paths problem and the graph coloring problem. These breakthroughs involve the following three ingredients that are quite central in approximation algorithms: (1) Combinatorial (graph theoretical) approach, (2) LP based approach and (3) Semi-definite programming approach. We also sketch how they are used to obtain recent development.

  19. Polynomial approximation of functions in Sobolev spaces

    SciTech Connect

    Dupont, T.; Scott, R.

    1980-04-01

    Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomical plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.

  20. Polynomial approximation of functions in Sobolev spaces

    NASA Technical Reports Server (NTRS)

    Dupont, T.; Scott, R.

    1980-01-01

    Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.

  1. Approximate Solutions Of Equations Of Steady Diffusion

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1992-01-01

    Rigorous analysis yields reliable criteria for "best-fit" functions. Improved "curve-fitting" method yields approximate solutions to differential equations of steady-state diffusion. Method applies to problems in which rates of diffusion depend linearly or nonlinearly on concentrations of diffusants, approximate solutions analytic or numerical, and boundary conditions of Dirichlet type, of Neumann type, or mixture of both types. Applied to equations for diffusion of charge carriers in semiconductors in which mobilities and lifetimes of charge carriers depend on concentrations.

  2. An improved proximity force approximation for electrostatics

    SciTech Connect

    Fosco, Cesar D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2012-08-15

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

  3. Parallel SVD updating using approximate rotations

    NASA Astrophysics Data System (ADS)

    Goetze, Juergen; Rieder, Peter; Nossek, J. A.

    1995-06-01

    In this paper a parallel implementation of the SVD-updating algorithm using approximate rotations is presented. In its original form the SVD-updating algorithm had numerical problems if no reorthogonalization steps were applied. Representing the orthogonalmatrix V (right singular vectors) using its parameterization in terms of the rotation angles of n(n - 1)/2 plane rotations these reorthogonalization steps can be avoided during the SVD-updating algorithm. This results in a SVD-updating algorithm where all computations (matrix vector multiplication, QRD-updating, Kogbetliantz's algorithm) are entirely based on the evaluation and application of orthogonal plane rotations. Therefore, in this form the SVD-updating algorithm is amenable to an implementation using CORDIC-based approximate rotations. Using CORDIC-based approximate rotations the n(n - 1)/2 rotations representing V (as well as all other rotations) are only computed to a certain approximation accuracy (in the basis arctan 2i). All necessary computations required during the SVD-updating algorithm (exclusively rotations) are executed with the same accuracy, i.e., only r << w (w: wordlength) elementary orthonormal (mu) rotations are used per plane rotation. Simulations show the efficiency of the implementation using CORDIC-based approximate rotations.

  4. 'LTE-diffusion approximation' for arc calculations

    NASA Astrophysics Data System (ADS)

    Lowke, J. J.; Tanaka, M.

    2006-08-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on De/W, where De is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode.

  5. On the Accuracy of the MINC approximation

    SciTech Connect

    Lai, C.H.; Pruess, K.; Bodvarsson, G.S.

    1986-02-01

    The method of ''multiple interacting continua'' is based on the assumption that changes in thermodynamic conditions of rock matrix blocks are primarily controlled by the distance from the nearest fracture. The accuracy of this assumption was evaluated for regularly shaped (cubic and rectangular) rock blocks with uniform initial conditions, which are subjected to a step change in boundary conditions on the surface. Our results show that pressures (or temperatures) predicted from the MINC approximation may deviate from the exact solutions by as much as 10 to 15% at certain points within the blocks. However, when fluid (or heat) flow rates are integrated over the entire block surface, MINC-approximation and exact solution agree to better than 1%. This indicates that the MINC approximation can accurately represent transient inter-porosity flow in fractured porous media, provided that matrix blocks are indeed subjected to nearly uniform boundary conditions at all times.

  6. Separable approximations of two-body interactions

    NASA Astrophysics Data System (ADS)

    Haidenbauer, J.; Plessas, W.

    1983-01-01

    We perform a critical discussion of the efficiency of the Ernst-Shakin-Thaler method for a separable approximation of arbitrary two-body interactions by a careful examination of separable 3S1-3D1 N-N potentials that were constructed via this method by Pieper. Not only the on-shell properties of these potentials are considered, but also a comparison is made of their off-shell characteristics relative to the Reid soft-core potential. We point out a peculiarity in Pieper's application of the Ernst-Shakin-Thaler method, which leads to a resonant-like behavior of his potential 3SD1D. It is indicated where care has to be taken in order to circumvent drawbacks inherent in the Ernst-Shakin-Thaler separable approximation scheme. NUCLEAR REACTIONS Critical discussion of the Ernst-Shakin-Thaler separable approximation method. Pieper's separable N-N potentials examined on shell and off shell.

  7. Approximate solutions of the hyperbolic Kepler equation

    NASA Astrophysics Data System (ADS)

    Avendano, Martín; Martín-Molina, Verónica; Ortigas-Galindo, Jorge

    2015-12-01

    We provide an approximate zero widetilde{S}(g,L) for the hyperbolic Kepler's equation S-g {{arcsinh}}(S)-L=0 for gin (0,1) and Lin [0,∞ ). We prove, by using Smale's α -theory, that Newton's method starting at our approximate zero produces a sequence that converges to the actual solution S( g, L) at quadratic speed, i.e. if S_n is the value obtained after n iterations, then |S_n-S|≤ 0.5^{2^n-1}|widetilde{S}-S|. The approximate zero widetilde{S}(g,L) is a piecewise-defined function involving several linear expressions and one with cubic and square roots. In bounded regions of (0,1) × [0,∞ ) that exclude a small neighborhood of g=1, L=0, we also provide a method to construct simpler starters involving only constants.

  8. Faddeev random-phase approximation for molecules

    SciTech Connect

    Degroote, Matthias; Van Neck, Dimitri; Barbieri, Carlo

    2011-04-15

    The Faddeev random-phase approximation is a Green's function technique that makes use of Faddeev equations to couple the motion of a single electron to the two-particle-one-hole and two-hole-one-particle excitations. This method goes beyond the frequently used third-order algebraic diagrammatic construction method: all diagrams involving the exchange of phonons in the particle-hole and particle-particle channel are retained, but the phonons are now described at the level of the random-phase approximation, which includes ground-state correlations, rather than at the Tamm-Dancoff approximation level, where ground-state correlations are excluded. Previously applied to atoms, this paper presents results for small molecules at equilibrium geometry.

  9. Ancilla-approximable quantum state transformations

    SciTech Connect

    Blass, Andreas; Gurevich, Yuri

    2015-04-15

    We consider the transformations of quantum states obtainable by a process of the following sort. Combine the given input state with a specially prepared initial state of an auxiliary system. Apply a unitary transformation to the combined system. Measure the state of the auxiliary subsystem. If (and only if) it is in a specified final state, consider the process successful, and take the resulting state of the original (principal) system as the result of the process. We review known information about exact realization of transformations by such a process. Then we present results about approximate realization of finite partial transformations. We not only consider primarily the issue of approximation to within a specified positive ε, but also address the question of arbitrarily close approximation.

  10. Fast wavelet based sparse approximate inverse preconditioner

    SciTech Connect

    Wan, W.L.

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  11. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  12. The Cell Cycle Switch Computes Approximate Majority

    NASA Astrophysics Data System (ADS)

    Cardelli, Luca; Csikász-Nagy, Attila

    2012-09-01

    Both computational and biological systems have to make decisions about switching from one state to another. The `Approximate Majority' computational algorithm provides the asymptotically fastest way to reach a common decision by all members of a population between two possible outcomes, where the decision approximately matches the initial relative majority. The network that regulates the mitotic entry of the cell-cycle in eukaryotes also makes a decision before it induces early mitotic processes. Here we show that the switch from inactive to active forms of the mitosis promoting Cyclin Dependent Kinases is driven by a system that is related to both the structure and the dynamics of the Approximate Majority computation. We investigate the behavior of these two switches by deterministic, stochastic and probabilistic methods and show that the steady states and temporal dynamics of the two systems are similar and they are exchangeable as components of oscillatory networks.

  13. Approximation by fully complex multilayer perceptrons.

    PubMed

    Kim, Taehwan; Adali, Tülay

    2003-07-01

    We investigate the approximation ability of a multilayer perceptron (MLP) network when it is extended to the complex domain. The main challenge for processing complex data with neural networks has been the lack of bounded and analytic complex nonlinear activation functions in the complex domain, as stated by Liouville's theorem. To avoid the conflict between the boundedness and the analyticity of a nonlinear complex function in the complex domain, a number of ad hoc MLPs that include using two real-valued MLPs, one processing the real part and the other processing the imaginary part, have been traditionally employed. However, since nonanalytic functions do not meet the Cauchy-Riemann conditions, they render themselves into degenerative backpropagation algorithms that compromise the efficiency of nonlinear approximation and learning in the complex vector field. A number of elementary transcendental functions (ETFs) derivable from the entire exponential function e(z) that are analytic are defined as fully complex activation functions and are shown to provide a parsimonious structure for processing data in the complex domain and address most of the shortcomings of the traditional approach. The introduction of ETFs, however, raises a new question in the approximation capability of this fully complex MLP. In this letter, three proofs of the approximation capability of the fully complex MLP are provided based on the characteristics of singularity among ETFs. First, the fully complex MLPs with continuous ETFs over a compact set in the complex vector field are shown to be the universal approximator of any continuous complex mappings. The complex universal approximation theorem extends to bounded measurable ETFs possessing a removable singularity. Finally, it is shown that the output of complex MLPs using ETFs with isolated and essential singularities uniformly converges to any nonlinear mapping in the deleted annulus of singularity nearest to the origin. PMID:12816570

  14. Exponential Approximations Using Fourier Series Partial Sums

    NASA Technical Reports Server (NTRS)

    Banerjee, Nana S.; Geer, James F.

    1997-01-01

    The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.

  15. Characterizing inflationary perturbations: The uniform approximation

    SciTech Connect

    Habib, Salman; Heinen, Andreas; Heitmann, Katrin; Jungman, Gerard; Molina-Paris, Carmen

    2004-10-15

    The spectrum of primordial fluctuations from inflation can be obtained using a mathematically controlled, and systematically extendable, uniform approximation. Closed-form expressions for power spectra and spectral indices may be found without making explicit slow-roll assumptions. Here we provide details of our previous calculations, extend the results beyond leading-order in the approximation, and derive general error bounds for power spectra and spectral indices. Already at next-to-leading-order, the errors in calculating the power spectrum are less than a percent. This meets the accuracy requirement for interpreting next-generation cosmic microwave background observations.

  16. [Diagnostics of approximal caries - literature review].

    PubMed

    Berczyński, Paweł; Gmerek, Anna; Buczkowska-Radlińska, Jadwiga

    2015-01-01

    The most important issue in modern cariology is the early diagnostics of carious lesions, because only early detected lesions can be treated with as little intervention as possible. This is extremely difficult on approximal surfaces because of their anatomy, late onset of pain, and very few clinical symptoms. Modern diagnostic methods make dentists' everyday work easier, often detecting lesions unseen during visual examination. This work presents a review of the literature on the subject of modern diagnostic methods that can be used to detect approximal caries. PMID:27344873

  17. Approximate convective heating equations for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.; Sutton, K.

    1979-01-01

    Laminar and turbulent heating-rate equations appropriate for engineering predictions of the convective heating rates about blunt reentry spacecraft at hypersonic conditions are developed. The approximate methods are applicable to both nonreacting and reacting gas mixtures for either constant or variable-entropy edge conditions. A procedure which accounts for variable-entropy effects and is not based on mass balancing is presented. Results of the approximate heating methods are in good agreement with existing experimental results as well as boundary-layer and viscous-shock-layer solutions.

  18. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  19. ANALOG QUANTUM NEURON FOR FUNCTIONS APPROXIMATION

    SciTech Connect

    A. EZHOV; A. KHROMOV; G. BERMAN

    2001-05-01

    We describe a system able to perform universal stochastic approximations of continuous multivariable functions in both neuron-like and quantum manner. The implementation of this model in the form of multi-barrier multiple-silt system has been earlier proposed. For the simplified waveguide variant of this model it is proved, that the system can approximate any continuous function of many variables. This theorem is also applied to the 2-input quantum neural model analogical to the schemes developed for quantum control.

  20. HALOGEN: Approximate synthetic halo catalog generator

    NASA Astrophysics Data System (ADS)

    Avila Perez, Santiago; Murray, Steven

    2015-05-01

    HALOGEN generates approximate synthetic halo catalogs. Written in C, it decomposes the problem of generating cosmological tracer distributions (eg. halos) into four steps: generating an approximate density field, generating the required number of tracers from a CDF over mass, placing the tracers on field particles according to a bias scheme dependent on local density, and assigning velocities to the tracers based on velocities of local particles. It also implements a default set of four models for these steps. HALOGEN uses 2LPTic (ascl:1201.005) and CUTE (ascl:1505.016); the software is flexible and can be adapted to varying cosmologies and simulation specifications.

  1. Block Addressing Indices for Approximate Text Retrieval.

    ERIC Educational Resources Information Center

    Baeza-Yates, Ricardo; Navarro, Gonzalo

    2000-01-01

    Discusses indexing in large text databases, approximate text searching, and space-time tradeoffs for indexed text searching. Studies the space overhead and retrieval times as functions of the text block size, concludes that an index can be sublinear in space overhead and query time, and applies the analysis to the Web. (Author/LRW)

  2. Fostering Formal Commutativity Knowledge with Approximate Arithmetic.

    PubMed

    Hansen, Sonja Maria; Haider, Hilde; Eichler, Alexandra; Godau, Claudia; Frensch, Peter A; Gaschler, Robert

    2015-01-01

    How can we enhance the understanding of abstract mathematical principles in elementary school? Different studies found out that nonsymbolic estimation could foster subsequent exact number processing and simple arithmetic. Taking the commutativity principle as a test case, we investigated if the approximate calculation of symbolic commutative quantities can also alter the access to procedural and conceptual knowledge of a more abstract arithmetic principle. Experiment 1 tested first graders who had not been instructed about commutativity in school yet. Approximate calculation with symbolic quantities positively influenced the use of commutativity-based shortcuts in formal arithmetic. We replicated this finding with older first graders (Experiment 2) and third graders (Experiment 3). Despite the positive effect of approximation on the spontaneous application of commutativity-based shortcuts in arithmetic problems, we found no comparable impact on the application of conceptual knowledge of the commutativity principle. Overall, our results show that the usage of a specific arithmetic principle can benefit from approximation. However, the findings also suggest that the correct use of certain procedures does not always imply conceptual understanding. Rather, the conceptual understanding of commutativity seems to lag behind procedural proficiency during elementary school. PMID:26560311

  3. Large Hierarchies from Approximate R Symmetries

    SciTech Connect

    Kappl, Rolf; Ratz, Michael; Schmidt-Hoberg, Kai; Nilles, Hans Peter; Ramos-Sanchez, Saul; Vaudrevange, Patrick K. S.

    2009-03-27

    We show that hierarchically small vacuum expectation values of the superpotential in supersymmetric theories can be a consequence of an approximate R symmetry. We briefly discuss the role of such small constants in moduli stabilization and understanding the huge hierarchy between the Planck and electroweak scales.

  4. An approximate classical unimolecular reaction rate theory

    NASA Astrophysics Data System (ADS)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  5. Approximation and compression with sparse orthonormal transforms.

    PubMed

    Sezer, Osman Gokhan; Guleryuz, Onur G; Altunbasak, Yucel

    2015-08-01

    We propose a new transform design method that targets the generation of compression-optimized transforms for next-generation multimedia applications. The fundamental idea behind transform compression is to exploit regularity within signals such that redundancy is minimized subject to a fidelity cost. Multimedia signals, in particular images and video, are well known to contain a diverse set of localized structures, leading to many different types of regularity and to nonstationary signal statistics. The proposed method designs sparse orthonormal transforms (SOTs) that automatically exploit regularity over different signal structures and provides an adaptation method that determines the best representation over localized regions. Unlike earlier work that is motivated by linear approximation constructs and model-based designs that are limited to specific types of signal regularity, our work uses general nonlinear approximation ideas and a data-driven setup to significantly broaden its reach. We show that our SOT designs provide a safe and principled extension of the Karhunen-Loeve transform (KLT) by reducing to the KLT on Gaussian processes and by automatically exploiting non-Gaussian statistics to significantly improve over the KLT on more general processes. We provide an algebraic optimization framework that generates optimized designs for any desired transform structure (multiresolution, block, lapped, and so on) with significantly better n -term approximation performance. For each structure, we propose a new prototype codec and test over a database of images. Simulation results show consistent increase in compression and approximation performance compared with conventional methods. PMID:25823033

  6. Alternative approximation concepts for space frame synthesis

    NASA Technical Reports Server (NTRS)

    Lust, R. V.; Schmit, L. A.

    1985-01-01

    A structural synthesis methodology for the minimum mass design of 3-dimensionall frame-truss structures under multiple static loading conditions and subject to limits on displacements, rotations, stresses, local buckling, and element cross-sectional dimensions is presented. A variety of approximation concept options are employed to yield near optimum designs after no more than 10 structural analyses. Available options include: (A) formulation of the nonlinear mathematcal programming problem in either reciprocal section property (RSP) or cross-sectional dimension (CSD) space; (B) two alternative approximate problem structures in each design space; and (C) three distinct assumptions about element end-force variations. Fixed element, design element linking, and temporary constraint deletion features are also included. The solution of each approximate problem, in either its primal or dual form, is obtained using CONMIN, a feasible directions program. The frame-truss synthesis methodology is implemented in the COMPASS computer program and is used to solve a variety of problems. These problems were chosen so that, in addition to exercising the various approximation concepts options, the results could be compared with previously published work.

  7. An adiabatic approximation for grain alignment theory

    NASA Astrophysics Data System (ADS)

    Roberge, W. G.

    1997-10-01

    The alignment of interstellar dust grains is described by the joint distribution function for certain `internal' and `external' variables, where the former describe the orientation of the axes of a grain with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical time-scales of the internal and external variables - which is typically 2-3 orders of magnitude - can be exploited to simplify calculations of the required distribution greatly. The method is based on an `adiabatic approximation' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the `fast' dynamical variables and a simplified Fokker-Planck equation for the `slow' variables which can be solved straightforwardly using various techniques. These solutions are accurate to O(epsilon), where epsilon is the ratio of the fast and slow dynamical time-scales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.

  8. An Adiabatic Approximation for Grain Alignment Theory

    NASA Astrophysics Data System (ADS)

    Roberge, W. G.

    1997-12-01

    The alignment of interstellar dust grains is described by the joint distribution function for certain ``internal'' and ``external'' variables, where the former describe the orientation of a grain's axes with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical timescales of the internal and external variables--- which is typically 2--3 orders of magnitude--- can be exploited to greatly simplify calculations of the required distribution. The method is based on an ``adiabatic approximation'' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the ``fast'' dynamical variables and a simplified Fokker-Planck equation for the ``slow'' variables which can be solved straightforwardly using various techniques. These solutions are accurate to cal {O}(epsilon ), where epsilon is the ratio of the fast and slow dynamical timescales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.

  9. Progressive Image Coding by Hierarchical Linear Approximation.

    ERIC Educational Resources Information Center

    Wu, Xiaolin; Fang, Yonggang

    1994-01-01

    Proposes a scheme of hierarchical piecewise linear approximation as an adaptive image pyramid. A progressive image coder comes naturally from the proposed image pyramid. The new pyramid is semantically more powerful than regular tessellation but syntactically simpler than free segmentation. This compromise between adaptability and complexity…

  10. Median Approximations for Genomes Modeled as Matrices.

    PubMed

    Zanetti, Joao Paulo Pereira; Biller, Priscila; Meidanis, Joao

    2016-04-01

    The genome median problem is an important problem in phylogenetic reconstruction under rearrangement models. It can be stated as follows: Given three genomes, find a fourth that minimizes the sum of the pairwise rearrangement distances between it and the three input genomes. In this paper, we model genomes as matrices and study the matrix median problem using the rank distance. It is known that, for any metric distance, at least one of the corners is a [Formula: see text]-approximation of the median. Our results allow us to compute up to three additional matrix median candidates, all of them with approximation ratios at least as good as the best corner, when the input matrices come from genomes. We also show a class of instances where our candidates are optimal. From the application point of view, it is usually more interesting to locate medians farther from the corners, and therefore, these new candidates are potentially more useful. In addition to the approximation algorithm, we suggest a heuristic to get a genome from an arbitrary square matrix. This is useful to translate the results of our median approximation algorithm back to genomes, and it has good results in our tests. To assess the relevance of our approach in the biological context, we ran simulated evolution tests and compared our solutions to those of an exact DCJ median solver. The results show that our method is capable of producing very good candidates. PMID:27072561

  11. Approximate analysis of electromagnetically coupled microstrip dipoles

    NASA Astrophysics Data System (ADS)

    Kominami, M.; Yakuwa, N.; Kusaka, H.

    1990-10-01

    A new dynamic analysis model for analyzing electromagnetically coupled (EMC) microstrip dipoles is proposed. The formulation is based on an approximate treatment of the dielectric substrate. Calculations of the equivalent impedance of two different EMC dipole configurations are compared with measured data and full-wave solutions. The agreement is very good.

  12. Approximations For Controls Of Hereditary Systems

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1988-01-01

    Convergence properties of controls, trajectories, and feedback kernels analyzed. Report discusses use of factorization techniques to approximate optimal feedback gains in finite-time, linear-regulator/quadratic-cost-function problem of system governed by retarded-functional-difference equations RFDE's with control delays. Presents approach to factorization based on discretization of state penalty leading to simple structure for feedback control law.

  13. Revisiting Twomey's approximation for peak supersaturation

    NASA Astrophysics Data System (ADS)

    Shipway, B. J.

    2015-04-01

    Twomey's seminal 1959 paper provided lower and upper bound approximations to the estimation of peak supersaturation within an updraft and thus provides the first closed expression for the number of nucleated cloud droplets. The form of this approximation is simple, but provides a surprisingly good estimate and has subsequently been employed in more sophisticated treatments of nucleation parametrization. In the current paper, we revisit the lower bound approximation of Twomey and make a small adjustment that can be used to obtain a more accurate calculation of peak supersaturation under all potential aerosol loadings and thermodynamic conditions. In order to make full use of this improved approximation, the underlying integro-differential equation for supersaturation evolution and the condition for calculating peak supersaturation are examined. A simple rearrangement of the algebra allows for an expression to be written down that can then be solved with a single lookup table with only one independent variable for an underlying lognormal aerosol population. While multimodal aerosol with N different dispersion characteristics requires 2N+1 inputs to calculate the activation fraction, only N of these one-dimensional lookup tables are needed. No additional information is required in the lookup table to deal with additional chemical, physical or thermodynamic properties. The resulting implementation provides a relatively simple, yet computationally cheap, physically based parametrization of droplet nucleation for use in climate and Numerical Weather Prediction models.

  14. Padé approximations and diophantine geometry

    PubMed Central

    Chudnovsky, D. V.; Chudnovsky, G. V.

    1985-01-01

    Using methods of Padé approximations we prove a converse to Eisenstein's theorem on the boundedness of denominators of coefficients in the expansion of an algebraic function, for classes of functions, parametrized by meromorphic functions. This result is applied to the Tate conjecture on the effective description of isogenies for elliptic curves. PMID:16593552

  15. Achievements and Problems in Diophantine Approximation Theory

    NASA Astrophysics Data System (ADS)

    Sprindzhuk, V. G.

    1980-08-01

    ContentsIntroduction I. Metrical theory of approximation on manifolds § 1. The basic problem § 2. Brief survey of results § 3. The principal conjecture II. Metrical theory of transcendental numbers § 1. Mahler's classification of numbers § 2. Metrical characterization of numbers with a given type of approximation § 3. Further problems III. Approximation of algebraic numbers by rationals § 1. Simultaneous approximations § 2. The inclusion of p-adic metrics § 3. Effective improvements of Liouville's inequality IV. Estimates of linear forms in logarithms of algebraic numbers § 1. The basic method § 2. Survey of results § 3. Estimates in the p-adic metric V. Diophantine equations § 1. Ternary exponential equations § 2. The Thue and Thue-Mahler equations § 3. Equations of hyperelliptic type § 4. Algebraic-exponential equations VI. The arithmetic structure of polynomials and the class number § 1. The greatest prime divisor of a polynomial in one variable § 2. The greatest prime divisor of a polynomial in two variables § 3. Square-free divisors of polynomials and the class number § 4. The general problem of the size of the class number Conclusion References

  16. Approximation of virus structure by icosahedral tilings.

    PubMed

    Salthouse, D G; Indelicato, G; Cermelli, P; Keef, T; Twarock, R

    2015-07-01

    Viruses are remarkable examples of order at the nanoscale, exhibiting protein containers that in the vast majority of cases are organized with icosahedral symmetry. Janner used lattice theory to provide blueprints for the organization of material in viruses. An alternative approach is provided here in terms of icosahedral tilings, motivated by the fact that icosahedral symmetry is non-crystallographic in three dimensions. In particular, a numerical procedure is developed to approximate the capsid of icosahedral viruses by icosahedral tiles via projection of high-dimensional tiles based on the cut-and-project scheme for the construction of three-dimensional quasicrystals. The goodness of fit of our approximation is assessed using techniques related to the theory of polygonal approximation of curves. The approach is applied to a number of viral capsids and it is shown that detailed features of the capsid surface can indeed be satisfactorily described by icosahedral tilings. This work complements previous studies in which the geometry of the capsid is described by point sets generated as orbits of extensions of the icosahedral group, as such point sets are by construction related to the vertex sets of icosahedral tilings. The approximations of virus geometry derived here can serve as coarse-grained models of viral capsids as a basis for the study of virus assembly and structural transitions of viral capsids, and also provide a new perspective on the design of protein containers for nanotechnology applications. PMID:26131897

  17. Parameter Choices for Approximation by Harmonic Splines

    NASA Astrophysics Data System (ADS)

    Gutting, Martin

    2016-04-01

    The approximation by harmonic trial functions allows the construction of the solution of boundary value problems in geoscience, e.g., in terms of harmonic splines. Due to their localizing properties regional modeling or the improvement of a global model in a part of the Earth's surface is possible with splines. Fast multipole methods have been developed for some cases of the occurring kernels to obtain a fast matrix-vector multiplication. The main idea of the fast multipole algorithm consists of a hierarchical decomposition of the computational domain into cubes and a kernel approximation for the more distant points. This reduces the numerical effort of the matrix-vector multiplication from quadratic to linear in reference to the number of points for a prescribed accuracy of the kernel approximation. The application of the fast multipole method to spline approximation which also allows the treatment of noisy data requires the choice of a smoothing parameter. We investigate different methods to (ideally automatically) choose this parameter with and without prior knowledge of the noise level. Thereby, the performance of these methods is considered for different types of noise in a large simulation study. Applications to gravitational field modeling are presented as well as the extension to boundary value problems where the boundary is the known surface of the Earth itself.

  18. Can Distributional Approximations Give Exact Answers?

    ERIC Educational Resources Information Center

    Griffiths, Martin

    2013-01-01

    Some mathematical activities and investigations for the classroom or the lecture theatre can appear rather contrived. This cannot, however, be levelled at the idea given here, since it is based on a perfectly sensible question concerning distributional approximations that was posed by an undergraduate student. Out of this simple question, and…

  19. Quickly Approximating the Distance Between Two Objects

    NASA Technical Reports Server (NTRS)

    Hammen, David

    2009-01-01

    A method of quickly approximating the distance between two objects (one smaller, regarded as a point; the other larger and complexly shaped) has been devised for use in computationally simulating motions of the objects for the purpose of planning the motions to prevent collisions.

  20. Approximation algorithms for planning and control

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; Dean, Thomas

    1989-01-01

    A control system operating in a complex environment will encounter a variety of different situations, with varying amounts of time available to respond to critical events. Ideally, such a control system will do the best possible with the time available. In other words, its responses should approximate those that would result from having unlimited time for computation, where the degree of the approximation depends on the amount of time it actually has. There exist approximation algorithms for a wide variety of problems. Unfortunately, the solution to any reasonably complex control problem will require solving several computationally intensive problems. Algorithms for successive approximation are a subclass of the class of anytime algorithms, algorithms that return answers for any amount of computation time, where the answers improve as more time is allotted. An architecture is described for allocating computation time to a set of anytime algorithms, based on expectations regarding the value of the answers they return. The architecture described is quite general, producing optimal schedules for a set of algorithms under widely varying conditions.

  1. Kravchuk functions for the finite oscillator approximation

    NASA Technical Reports Server (NTRS)

    Atakishiyev, Natig M.; Wolf, Kurt Bernardo

    1995-01-01

    Kravchuk orthogonal functions - Kravchuk polynomials multiplied by the square root of the weight function - simplify the inversion algorithm for the analysis of discrete, finite signals in harmonic oscillator components. They can be regarded as the best approximation set. As the number of sampling points increases, the Kravchuk expansion becomes the standard oscillator expansion.

  2. Fostering Formal Commutativity Knowledge with Approximate Arithmetic

    PubMed Central

    Hansen, Sonja Maria; Haider, Hilde; Eichler, Alexandra; Godau, Claudia; Frensch, Peter A.; Gaschler, Robert

    2015-01-01

    How can we enhance the understanding of abstract mathematical principles in elementary school? Different studies found out that nonsymbolic estimation could foster subsequent exact number processing and simple arithmetic. Taking the commutativity principle as a test case, we investigated if the approximate calculation of symbolic commutative quantities can also alter the access to procedural and conceptual knowledge of a more abstract arithmetic principle. Experiment 1 tested first graders who had not been instructed about commutativity in school yet. Approximate calculation with symbolic quantities positively influenced the use of commutativity-based shortcuts in formal arithmetic. We replicated this finding with older first graders (Experiment 2) and third graders (Experiment 3). Despite the positive effect of approximation on the spontaneous application of commutativity-based shortcuts in arithmetic problems, we found no comparable impact on the application of conceptual knowledge of the commutativity principle. Overall, our results show that the usage of a specific arithmetic principle can benefit from approximation. However, the findings also suggest that the correct use of certain procedures does not always imply conceptual understanding. Rather, the conceptual understanding of commutativity seems to lag behind procedural proficiency during elementary school. PMID:26560311

  3. Counting independent sets using the Bethe approximation

    SciTech Connect

    Chertkov, Michael; Chandrasekaran, V; Gamarmik, D; Shah, D; Sin, J

    2009-01-01

    The authors consider the problem of counting the number of independent sets or the partition function of a hard-core model in a graph. The problem in general is computationally hard (P hard). They study the quality of the approximation provided by the Bethe free energy. Belief propagation (BP) is a message-passing algorithm can be used to compute fixed points of the Bethe approximation; however, BP is not always guarantee to converge. As the first result, they propose a simple message-passing algorithm that converges to a BP fixed pont for any grapy. They find that their algorithm converges within a multiplicative error 1 + {var_epsilon} of a fixed point in {Omicron}(n{sup 2}E{sup -4} log{sup 3}(nE{sup -1})) iterations for any bounded degree graph of n nodes. In a nutshell, the algorithm can be thought of as a modification of BP with 'time-varying' message-passing. Next, they analyze the resulting error to the number of independent sets provided by such a fixed point of the Bethe approximation. Using the recently developed loop calculus approach by Vhertkov and Chernyak, they establish that for any bounded graph with large enough girth, the error is {Omicron}(n{sup -{gamma}}) for some {gamma} > 0. As an application, they find that for random 3-regular graph, Bethe approximation of log-partition function (log of the number of independent sets) is within o(1) of corret log-partition - this is quite surprising as previous physics-based predictions were expecting an error of o(n). In sum, their results provide a systematic way to find Bethe fixed points for any graph quickly and allow for estimating error in Bethe approximation using novel combinatorial techniques.

  4. Approximate inverse preconditioners for general sparse matrices

    SciTech Connect

    Chow, E.; Saad, Y.

    1994-12-31

    Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.

  5. Approximated solutions to Born-Infeld dynamics

    NASA Astrophysics Data System (ADS)

    Ferraro, Rafael; Nigro, Mauro

    2016-02-01

    The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.

  6. Weizsacker-Williams approximation in quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.

    The Weizsacker-Williams approximation for a large nucleus in quantum chromodynamics is developed. The non-Abelian Wieizsacker Williams field for a large ultrarelativistic nucleus is constructed. This field is an exact solution of the classical Yang-Mills equations of motion in light cone gauge. The connection is made to the McLerran- Venugopalan model of a large nucleus, and the color charge density for a nucleus in this model is found. The density of states distribution, as a function of color charge density, is proved to be Gaussian. We construct the Feynman diagrams in the light cone gauge which correspond to the classical Weizsacker Williams field. Analyzing these diagrams we obtain a limitation on using the quasi-classical approximation for nuclear collisions.

  7. Small Clique Detection and Approximate Nash Equilibria

    NASA Astrophysics Data System (ADS)

    Minder, Lorenz; Vilenchik, Dan

    Recently, Hazan and Krauthgamer showed [12] that if, for a fixed small ɛ, an ɛ-best ɛ-approximate Nash equilibrium can be found in polynomial time in two-player games, then it is also possible to find a planted clique in G n, 1/2 of size C logn, where C is a large fixed constant independent of ɛ. In this paper, we extend their result to show that if an ɛ-best ɛ-approximate equilibrium can be efficiently found for arbitrarily small ɛ> 0, then one can detect the presence of a planted clique of size (2 + δ) logn in G n, 1/2 in polynomial time for arbitrarily small δ> 0. Our result is optimal in the sense that graphs in G n, 1/2 have cliques of size (2 - o(1)) logn with high probability.

  8. Planetary ephemerides approximation for radar astronomy

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Shahshahani, M.

    1991-01-01

    The planetary ephemerides approximation for radar astronomy is discussed, and, in particular, the effect of this approximation on the performance of the programmable local oscillator (PLO) used in Goldstone Solar System Radar is presented. Four different approaches are considered and it is shown that the Gram polynomials outperform the commonly used technique based on Chebyshev polynomials. These methods are used to analyze the mean square, the phase error, and the frequency tracking error in the presence of the worst case Doppler shift that one may encounter within the solar system. It is shown that in the worst case the phase error is under one degree and the frequency tracking error less than one hertz when the frequency to the PLO is updated every millisecond.

  9. Some approximation concepts for structural synthesis

    NASA Technical Reports Server (NTRS)

    Schmit, L. A., Jr.; Farshi, B.

    1974-01-01

    An efficient automated minimum weight design procedure is presented which is applicable to sizing structural systems that can be idealized by truss, shear panel, and constant strain triangles. Static stress and displacement constraints under alternative loading conditions are considered. The optimization algorithm is an adaptation of the method of inscribed hyperspheres and high efficiency is achieved by using several approximation concepts including temporary deletion of noncritical constraints, design variable linking, and Taylor series expansions for response variables in terms of design variables. Optimum designs for several planar and space truss examples problems are presented. The results reported support the contention that the innovative use of approximation concepts in structural synthesis can produce significant improvements in efficiency.

  10. Some approximation concepts for structural synthesis.

    NASA Technical Reports Server (NTRS)

    Schmit, L. A., Jr.; Farshi, B.

    1973-01-01

    An efficient automated minimum weight design procedure is presented which is applicable to sizing structural systems that can be idealized by truss, shear panel, and constant strain triangles. Static stress and displacement constraints under alternative loading conditions are considered. The optimization algorithm is an adaptation of the method of inscribed hyperspheres and high efficiency is achieved by using several approximation concepts including temporary deletion of noncritical constraints, design variable linking, and Taylor series expansions for response variables in terms of design variables. Optimum designs for several planar and space truss example problems are presented. The results reported support the contention that the innovative use of approximation concepts in structural synthesis can produce significant improvements in efficiency.

  11. Approximate gauge symemtry of composite vector bosons

    SciTech Connect

    Suzuki, Mahiko

    2010-06-01

    It can be shown in a solvable field theory model that the couplings of the composite vector mesons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in more an intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.

  12. Private Medical Record Linkage with Approximate Matching

    PubMed Central

    Durham, Elizabeth; Xue, Yuan; Kantarcioglu, Murat; Malin, Bradley

    2010-01-01

    Federal regulations require patient data to be shared for reuse in a de-identified manner. However, disparate providers often share data on overlapping populations, such that a patient’s record may be duplicated or fragmented in the de-identified repository. To perform unbiased statistical analysis in a de-identified setting, it is crucial to integrate records that correspond to the same patient. Private record linkage techniques have been developed, but most methods are based on encryption and preclude the ability to determine similarity, decreasing the accuracy of record linkage. The goal of this research is to integrate a private string comparison method that uses Bloom filters to provide an approximate match, with a medical record linkage algorithm. We evaluate the approach with 100,000 patients’ identifiers and demographics from the Vanderbilt University Medical Center. We demonstrate that the private approximation method achieves sensitivity that is, on average, 3% higher than previous methods. PMID:21346965

  13. Approximate gauge symmetry of composite vector bosons

    NASA Astrophysics Data System (ADS)

    Suzuki, Mahiko

    2010-08-01

    It can be shown in a solvable field theory model that the couplings of the composite vector bosons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in a more intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.

  14. Approximate locality for quantum systems on graphs.

    PubMed

    Osborne, Tobias J

    2008-10-01

    In this Letter we make progress on a long-standing open problem of Aaronson and Ambainis [Theory Comput. 1, 47 (2005)]: we show that if U is a sparse unitary operator with a gap Delta in its spectrum, then there exists an approximate logarithm H of U which is also sparse. The sparsity pattern of H gets more dense as 1/Delta increases. This result can be interpreted as a way to convert between local continuous-time and local discrete-time quantum processes. As an example we show that the discrete-time coined quantum walk can be realized stroboscopically from an approximately local continuous-time quantum walk. PMID:18851512

  15. Approximation of pseudospectra on a Hilbert space

    NASA Astrophysics Data System (ADS)

    Schmidt, Torge; Lindner, Marko

    2016-06-01

    The study of spectral properties of linear operators on an infinite-dimensional Hilbert space is of great interest. This task is especially difficult when the operator is non-selfadjoint or even non-normal. Standard approaches like spectral approximation by finite sections generally fail in that case. In this talk we present an algorithm which rigorously computes upper and lower bounds for the spectrum and pseudospectrum of such operators using finite-dimensional approximations. One of our main fields of research is an efficient implementation of this algorithm. To this end we will demonstrate and evaluate methods for the computation of the pseudospectrum of finite-dimensional operators based on continuation techniques.

  16. Approximate Solutions in Planted 3-SAT

    NASA Astrophysics Data System (ADS)

    Hsu, Benjamin; Laumann, Christopher; Moessner, Roderich; Sondhi, Shivaji

    2013-03-01

    In many computational settings, there exists many instances where finding a solution requires a computing time that grows exponentially in the number of variables. Concrete examples occur in combinatorial optimization problems and cryptography in computer science or glassy systems in physics. However, while exact solutions are often known to require exponential time, a related and important question is the running time required to find approximate solutions. Treating this problem as a problem in statistical physics at finite temperature, we examine the computational running time in finding approximate solutions in 3-satisfiability for randomly generated 3-SAT instances which are guaranteed to have a solution. Analytic predictions are corroborated by numerical evidence using stochastic local search algorithms. A first order transition is found in the running time of these algorithms.

  17. Analysing organic transistors based on interface approximation

    SciTech Connect

    Akiyama, Yuto; Mori, Takehiko

    2014-01-15

    Temperature-dependent characteristics of organic transistors are analysed thoroughly using interface approximation. In contrast to amorphous silicon transistors, it is characteristic of organic transistors that the accumulation layer is concentrated on the first monolayer, and it is appropriate to consider interface charge rather than band bending. On the basis of this model, observed characteristics of hexamethylenetetrathiafulvalene (HMTTF) and dibenzotetrathiafulvalene (DBTTF) transistors with various surface treatments are analysed, and the trap distribution is extracted. In turn, starting from a simple exponential distribution, we can reproduce the temperature-dependent transistor characteristics as well as the gate voltage dependence of the activation energy, so we can investigate various aspects of organic transistors self-consistently under the interface approximation. Small deviation from such an ideal transistor operation is discussed assuming the presence of an energetically discrete trap level, which leads to a hump in the transfer characteristics. The contact resistance is estimated by measuring the transfer characteristics up to the linear region.

  18. Uncertainty relations for approximation and estimation

    NASA Astrophysics Data System (ADS)

    Lee, Jaeha; Tsutsui, Izumi

    2016-05-01

    We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér-Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position-momentum and the time-energy relations in one framework albeit handled differently.

  19. Flexible least squares for approximately linear systems

    NASA Astrophysics Data System (ADS)

    Kalaba, Robert; Tesfatsion, Leigh

    1990-10-01

    A probability-free multicriteria approach is presented to the problem of filtering and smoothing when prior beliefs concerning dynamics and measurements take an approximately linear form. Consideration is given to applications in the social and biological sciences, where obtaining agreement among researchers regarding probability relations for discrepancy terms is difficult. The essence of the proposed flexible-least-squares (FLS) procedure is the cost-efficient frontier, a curve in a two-dimensional cost plane which provides an explicit and systematic way to determine the efficient trade-offs between the separate costs incurred for dynamic and measurement specification errors. The FLS estimates show how the state vector could have evolved over time in a manner minimally incompatible with the prior dynamic and measurement specifications. A FORTRAN program for implementing the FLS filtering and smoothing procedure for approximately linear systems is provided.

  20. Second derivatives for approximate spin projection methods

    SciTech Connect

    Thompson, Lee M.; Hratchian, Hrant P.

    2015-02-07

    The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical second derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.

  1. Flow past a porous approximate spherical shell

    NASA Astrophysics Data System (ADS)

    Srinivasacharya, D.

    2007-07-01

    In this paper, the creeping flow of an incompressible viscous liquid past a porous approximate spherical shell is considered. The flow in the free fluid region outside the shell and in the cavity region of the shell is governed by the Navier Stokes equation. The flow within the porous annulus region of the shell is governed by Darcy’s Law. The boundary conditions used at the interface are continuity of the normal velocity, continuity of the pressure and Beavers and Joseph slip condition. An exact solution for the problem is obtained. An expression for the drag on the porous approximate spherical shell is obtained. The drag experienced by the shell is evaluated numerically for several values of the parameters governing the flow.

  2. Microscopic justification of the equal filling approximation

    SciTech Connect

    Perez-Martin, Sara; Robledo, L. M.

    2008-07-15

    The equal filling approximation, a procedure widely used in mean-field calculations to treat the dynamics of odd nuclei in a time-reversal invariant way, is justified as the consequence of a variational principle over an average energy functional. The ideas of statistical quantum mechanics are employed in the justification. As an illustration of the method, the ground and lowest-lying states of some octupole deformed radium isotopes are computed.

  3. APPROXIMATION ALGORITHMS FOR DISTANCE-2 EDGE COLORING.

    SciTech Connect

    BARRETT, CHRISTOPHER L; ISTRATE, GABRIEL; VILIKANTI, ANIL KUMAR; MARATHE, MADHAV; THITE, SHRIPAD V

    2002-07-17

    The authors consider the link scheduling problem for packet radio networks which is assigning channels to the connecting links so that transmission may proceed on all links assigned the same channel simultaneously without collisions. This problem can be cast as the distance-2 edge coloring problem, a variant of proper edge coloring, on the graph with transceivers as vertices and links as edges. They present efficient approximation algorithms for the distance-2 edge coloring problem for various classes of graphs.

  4. Approximation methods in relativistic eigenvalue perturbation theory

    NASA Astrophysics Data System (ADS)

    Noble, Jonathan Howard

    In this dissertation, three questions, concerning approximation methods for the eigenvalues of quantum mechanical systems, are investigated: (i) What is a pseudo--Hermitian Hamiltonian, and how can its eigenvalues be approximated via numerical calculations? This is a fairly broad topic, and the scope of the investigation is narrowed by focusing on a subgroup of pseudo--Hermitian operators, namely, PT--symmetric operators. Within a numerical approach, one projects a PT--symmetric Hamiltonian onto an appropriate basis, and uses a straightforward two--step algorithm to diagonalize the resulting matrix, leading to numerically approximated eigenvalues. (ii) Within an analytic ansatz, how can a relativistic Dirac Hamiltonian be decoupled into particle and antiparticle degrees of freedom, in appropriate kinematic limits? One possible answer is the Foldy--Wouthuysen transform; however, there are alter- native methods which seem to have some advantages over the time--tested approach. One such method is investigated by applying both the traditional Foldy--Wouthuysen transform and the "chiral" Foldy--Wouthuysen transform to a number of Dirac Hamiltonians, including the central-field Hamiltonian for a gravitationally bound system; namely, the Dirac-(Einstein-)Schwarzschild Hamiltonian, which requires the formal- ism of general relativity. (iii) Are there are pseudo--Hermitian variants of Dirac Hamiltonians that can be approximated using a decoupling transformation? The tachyonic Dirac Hamiltonian, which describes faster-than-light spin-1/2 particles, is gamma5--Hermitian, i.e., pseudo-Hermitian. Superluminal particles remain faster than light upon a Lorentz transformation, and hence, the Foldy--Wouthuysen program is unsuited for this case. Thus, inspired by the Foldy--Wouthuysen program, a decoupling transform in the ultrarelativistic limit is proposed, which is applicable to both sub- and superluminal particles.

  5. JIMWLK evolution in the Gaussian approximation

    NASA Astrophysics Data System (ADS)

    Iancu, E.; Triantafyllopoulos, D. N.

    2012-04-01

    We demonstrate that the Balitsky-JIMWLK equations describing the high-energy evolution of the n-point functions of the Wilson lines (the QCD scattering amplitudes in the eikonal approximation) admit a controlled mean field approximation of the Gaussian type, for any value of the number of colors N c . This approximation is strictly correct in the weak scattering regime at relatively large transverse momenta, where it re-produces the BFKL dynamics, and in the strong scattering regime deeply at saturation, where it properly describes the evolution of the scattering amplitudes towards the respective black disk limits. The approximation scheme is fully specified by giving the 2-point function (the S-matrix for a color dipole), which in turn can be related to the solution to the Balitsky-Kovchegov equation, including at finite N c . Any higher n-point function with n ≥ 4 can be computed in terms of the dipole S-matrix by solving a closed system of evolution equations (a simplified version of the respective Balitsky-JIMWLK equations) which are local in the transverse coordinates. For simple configurations of the projectile in the transverse plane, our new results for the 4-point and the 6-point functions coincide with the high-energy extrapolations of the respective results in the McLerran-Venugopalan model. One cornerstone of our construction is a symmetry property of the JIMWLK evolution, that we notice here for the first time: the fact that, with increasing energy, a hadron is expanding its longitudinal support symmetrically around the light-cone. This corresponds to invariance under time reversal for the scattering amplitudes.

  6. Approximating spheroid inductive responses using spheres

    SciTech Connect

    Smith, J. Torquil; Morrison, H. Frank

    2003-12-12

    The response of high permeability ({mu}{sub r} {ge} 50) conductive spheroids of moderate aspect ratios (0.25 to 4) to excitation by uniform magnetic fields in the axial or transverse directions is approximated by the response of spheres of appropriate diameters, of the same conductivity and permeability, with magnitude rescaled based on the differing volumes, D.C. magnetizations, and high frequency limit responses of the spheres and modeled spheroids.

  7. Beyond the Kirchhoff approximation. II - Electromagnetic scattering

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto

    1991-01-01

    In a paper by Rodriguez (1981), the momentum transfer expansion was introduced for scalar wave scattering. It was shown that this expansion can be used to obtain wavelength-dependent curvature corrections to the Kirchhoff approximation. This paper extends the momentum transfer perturbation expansion to electromagnetic waves. Curvature corrections to the surface current are obtained. Using these results, the specular field and the backscatter cross section are calculated.

  8. Relativistic point interactions: Approximation by smooth potentials

    NASA Astrophysics Data System (ADS)

    Hughes, Rhonda J.

    1997-06-01

    We show that the four-parameter family of one-dimensional relativistic point interactions studied by Benvegnu and Dąbrowski may be approximated in the strong resolvent sense by smooth, local, short-range perturbations of the Dirac Hamiltonian. In addition, we prove that the nonrelativistic limits correspond to the Schrödinger point interactions studied extensively by the author and Paul Chernoff.

  9. Approximation methods for stochastic petri nets

    NASA Technical Reports Server (NTRS)

    Jungnitz, Hauke Joerg

    1992-01-01

    Stochastic Marked Graphs are a concurrent decision free formalism provided with a powerful synchronization mechanism generalizing conventional Fork Join Queueing Networks. In some particular cases the analysis of the throughput can be done analytically. Otherwise the analysis suffers from the classical state explosion problem. Embedded in the divide and conquer paradigm, approximation techniques are introduced for the analysis of stochastic marked graphs and Macroplace/Macrotransition-nets (MPMT-nets), a new subclass introduced herein. MPMT-nets are a subclass of Petri nets that allow limited choice, concurrency and sharing of resources. The modeling power of MPMT is much larger than that of marked graphs, e.g., MPMT-nets can model manufacturing flow lines with unreliable machines and dataflow graphs where choice and synchronization occur. The basic idea leads to the notion of a cut to split the original net system into two subnets. The cuts lead to two aggregated net systems where one of the subnets is reduced to a single transition. A further reduction leads to a basic skeleton. The generalization of the idea leads to multiple cuts, where single cuts can be applied recursively leading to a hierarchical decomposition. Based on the decomposition, a response time approximation technique for the performance analysis is introduced. Also, delay equivalence, which has previously been introduced in the context of marked graphs by Woodside et al., Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's is slower, but the accuracy is generally better. Delay

  10. Capacitor-Chain Successive-Approximation ADC

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas

    2003-01-01

    A proposed successive-approximation analog-to-digital converter (ADC) would contain a capacitively terminated chain of identical capacitor cells. Like a conventional successive-approximation ADC containing a bank of binary-scaled capacitors, the proposed ADC would store an input voltage on a sample-and-hold capacitor and would digitize the stored input voltage by finding the closest match between this voltage and a capacitively generated sum of binary fractions of a reference voltage (Vref). However, the proposed capacitor-chain ADC would offer two major advantages over a conventional binary-scaled-capacitor ADC: (1) In a conventional ADC that digitizes to n bits, the largest capacitor (representing the most significant bit) must have 2(exp n-1) times as much capacitance, and hence, approximately 2(exp n-1) times as much area as does the smallest capacitor (representing the least significant bit), so that the total capacitor area must be 2(exp n) times that of the smallest capacitor. In the proposed capacitor-chain ADC, there would be three capacitors per cell, each approximately equal to the smallest capacitor in the conventional ADC, and there would be one cell per bit. Therefore, the total capacitor area would be only about 3(exp n) times that of the smallest capacitor. The net result would be that the proposed ADC could be considerably smaller than the conventional ADC. (2) Because of edge effects, parasitic capacitances, and manufacturing tolerances, it is difficult to make capacitor banks in which the values of capacitance are scaled by powers of 2 to the required precision. In contrast, because all the capacitors in the proposed ADC would be identical, the problem of precise binary scaling would not arise.

  11. Solving Math Problems Approximately: A Developmental Perspective

    PubMed Central

    Ganor-Stern, Dana

    2016-01-01

    Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults’ ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger) than the exact answer and when it was far (vs. close) from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner. PMID:27171224

  12. Strong washout approximation to resonant leptogenesis

    NASA Astrophysics Data System (ADS)

    Garbrecht, Björn; Gautier, Florian; Klaric, Juraj

    2014-09-01

    We show that the effective decay asymmetry for resonant Leptogenesis in the strong washout regime with two sterile neutrinos and a single active flavour can in wide regions of parameter space be approximated by its late-time limit ɛ=Xsin(2varphi)/(X2+sin2varphi), where X=8πΔ/(|Y1|2+|Y2|2), Δ=4(M1-M2)/(M1+M2), varphi=arg(Y2/Y1), and M1,2, Y1,2 are the masses and Yukawa couplings of the sterile neutrinos. This approximation in particular extends to parametric regions where |Y1,2|2gg Δ, i.e. where the width dominates the mass splitting. We generalise the formula for the effective decay asymmetry to the case of several flavours of active leptons and demonstrate how this quantity can be used to calculate the lepton asymmetry for phenomenological scenarios that are in agreement with the observed neutrino oscillations. We establish analytic criteria for the validity of the late-time approximation for the decay asymmetry and compare these with numerical results that are obtained by solving for the mixing and the oscillations of the sterile neutrinos. For phenomenologically viable models with two sterile neutrinos, we find that the flavoured effective late-time decay asymmetry can be applied throughout parameter space.

  13. Green-Ampt approximations: A comprehensive analysis

    NASA Astrophysics Data System (ADS)

    Ali, Shakir; Islam, Adlul; Mishra, P. K.; Sikka, Alok K.

    2016-04-01

    Green-Ampt (GA) model and its modifications are widely used for simulating infiltration process. Several explicit approximate solutions to the implicit GA model have been developed with varying degree of accuracy. In this study, performance of nine explicit approximations to the GA model is compared with the implicit GA model using the published data for broad range of soil classes and infiltration time. The explicit GA models considered are Li et al. (1976) (LI), Stone et al. (1994) (ST), Salvucci and Entekhabi (1994) (SE), Parlange et al. (2002) (PA), Barry et al. (2005) (BA), Swamee et al. (2012) (SW), Ali et al. (2013) (AL), Almedeij and Esen (2014) (AE), and Vatankhah (2015) (VA). Six statistical indicators (e.g., percent relative error, maximum absolute percent relative error, average absolute percent relative errors, percent bias, index of agreement, and Nash-Sutcliffe efficiency) and relative computer computation time are used for assessing the model performance. Models are ranked based on the overall performance index (OPI). The BA model is found to be the most accurate followed by the PA and VA models for variety of soil classes and infiltration periods. The AE, SW, SE, and LI model also performed comparatively better. Based on the overall performance index, the explicit models are ranked as BA > PA > VA > LI > AE > SE > SW > ST > AL. Results of this study will be helpful in selection of accurate and simple explicit approximate GA models for solving variety of hydrological problems.

  14. A coastal ocean model with subgrid approximation

    NASA Astrophysics Data System (ADS)

    Walters, Roy A.

    2016-06-01

    A wide variety of coastal ocean models exist, each having attributes that reflect specific application areas. The model presented here is based on finite element methods with unstructured grids containing triangular and quadrilateral elements. The model optimizes robustness, accuracy, and efficiency by using semi-implicit methods in time in order to remove the most restrictive stability constraints, by using a semi-Lagrangian advection approximation to remove Courant number constraints, and by solving a wave equation at the discrete level for enhanced efficiency. An added feature is the approximation of the effects of subgrid objects. Here, the Reynolds-averaged Navier-Stokes equations and the incompressibility constraint are volume averaged over one or more computational cells. This procedure gives rise to new terms which must be approximated as a closure problem. A study of tidal power generation is presented as an example of this method. A problem that arises is specifying appropriate thrust and power coefficients for the volume averaged velocity when they are usually referenced to free stream velocity. A new contribution here is the evaluation of three approaches to this problem: an iteration procedure and two mapping formulations. All three sets of results for thrust (form drag) and power are in reasonable agreement.

  15. Approximation abilities of neuro-fuzzy networks

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2010-01-01

    The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.

  16. Using Approximations to Accelerate Engineering Design Optimization

    NASA Technical Reports Server (NTRS)

    Torczon, Virginia; Trosset, Michael W.

    1998-01-01

    Optimization problems that arise in engineering design are often characterized by several features that hinder the use of standard nonlinear optimization techniques. Foremost among these features is that the functions used to define the engineering optimization problem often are computationally intensive. Within a standard nonlinear optimization algorithm, the computational expense of evaluating the functions that define the problem would necessarily be incurred for each iteration of the optimization algorithm. Faced with such prohibitive computational costs, an attractive alternative is to make use of surrogates within an optimization context since surrogates can be chosen or constructed so that they are typically much less expensive to compute. For the purposes of this paper, we will focus on the use of algebraic approximations as surrogates for the objective. In this paper we introduce the use of so-called merit functions that explicitly recognize the desirability of improving the current approximation to the objective during the course of the optimization. We define and experiment with the use of merit functions chosen to simultaneously improve both the solution to the optimization problem (the objective) and the quality of the approximation. Our goal is to further improve the effectiveness of our general approach without sacrificing any of its rigor.

  17. New Hardness Results for Diophantine Approximation

    NASA Astrophysics Data System (ADS)

    Eisenbrand, Friedrich; Rothvoß, Thomas

    We revisit simultaneous Diophantine approximation, a classical problem from the geometry of numbers which has many applications in algorithms and complexity. The input to the decision version of this problem consists of a rational vector α ∈ ℚ n , an error bound ɛ and a denominator bound N ∈ ℕ + . One has to decide whether there exists an integer, called the denominator Q with 1 ≤ Q ≤ N such that the distance of each number Q ·α i to its nearest integer is bounded by ɛ. Lagarias has shown that this problem is NP-complete and optimization versions have been shown to be hard to approximate within a factor n c/ loglogn for some constant c > 0. We strengthen the existing hardness results and show that the optimization problem of finding the smallest denominator Q ∈ ℕ + such that the distances of Q·α i to the nearest integer are bounded by ɛ is hard to approximate within a factor 2 n unless {textrm{P}} = NP.

  18. Generalized Quasilinear Approximation: Application to Zonal Jets

    NASA Astrophysics Data System (ADS)

    Marston, J. B.; Chini, G. P.; Tobias, S. M.

    2016-05-01

    Quasilinear theory is often utilized to approximate the dynamics of fluids exhibiting significant interactions between mean flows and eddies. We present a generalization of quasilinear theory to include dynamic mode interactions on the large scales. This generalized quasilinear (GQL) approximation is achieved by separating the state variables into large and small zonal scales via a spectral filter rather than by a decomposition into a formal mean and fluctuations. Nonlinear interactions involving only small zonal scales are then removed. The approximation is conservative and allows for scattering of energy between small-scale modes via the large scale (through nonlocal spectral interactions). We evaluate GQL for the paradigmatic problems of the driving of large-scale jets on a spherical surface and on the beta plane and show that it is accurate even for a small number of large-scale modes. As GQL is formally linear in the small zonal scales, it allows for the closure of the system and can be utilized in direct statistical simulation schemes that have proved an attractive alternative to direct numerical simulation for many geophysical and astrophysical problems.

  19. Approximate number and approximate time discrimination each correlate with school math abilities in young children.

    PubMed

    Odic, Darko; Lisboa, Juan Valle; Eisinger, Robert; Olivera, Magdalena Gonzalez; Maiche, Alejandro; Halberda, Justin

    2016-01-01

    What is the relationship between our intuitive sense of number (e.g., when estimating how many marbles are in a jar), and our intuitive sense of other quantities, including time (e.g., when estimating how long it has been since we last ate breakfast)? Recent work in cognitive, developmental, comparative psychology, and computational neuroscience has suggested that our representations of approximate number, time, and spatial extent are fundamentally linked and constitute a "generalized magnitude system". But, the shared behavioral and neural signatures between number, time, and space may alternatively be due to similar encoding and decision-making processes, rather than due to shared domain-general representations. In this study, we investigate the relationship between approximate number and time in a large sample of 6-8 year-old children in Uruguay by examining how individual differences in the precision of number and time estimation correlate with school mathematics performance. Over four testing days, each child completed an approximate number discrimination task, an approximate time discrimination task, a digit span task, and a large battery of symbolic math tests. We replicate previous reports showing that symbolic math abilities correlate with approximate number precision and extend those findings by showing that math abilities also correlate with approximate time precision. But, contrary to approximate number and time sharing common representations, we find that each of these dimensions uniquely correlates with formal math: approximate number correlates more strongly with formal math compared to time and continues to correlate with math even when precision in time and individual differences in working memory are controlled for. These results suggest that there are important differences in the mental representations of approximate number and approximate time and further clarify the relationship between quantity representations and mathematics. PMID:26587963

  20. An n log n Generalized Born Approximation.

    PubMed

    Anandakrishnan, Ramu; Daga, Mayank; Onufriev, Alexey V

    2011-03-01

    Molecular dynamics (MD) simulations based on the generalized Born (GB) model of implicit solvation offer a number of important advantages over the traditional explicit solvent based simulations. Yet, in MD simulations, the GB model has not been able to reach its full potential partly due to its computational cost, which scales as ∼n(2), where n is the number of solute atoms. We present here an ∼n log n approximation for the generalized Born (GB) implicit solvent model. The approximation is based on the hierarchical charge partitioning (HCP) method (Anandakrishnan and Onufriev J. Comput. Chem. 2010 , 31 , 691 - 706 ) previously developed and tested for electrostatic computations in gas-phase and distant dependent dielectric models. The HCP uses the natural organization of biomolecular structures to partition the structures into multiple hierarchical levels of components. The charge distribution for each of these components is approximated by a much smaller number of charges. The approximate charges are then used for computing electrostatic interactions with distant components, while the full set of atomic charges are used for nearby components. To apply the HCP concept to the GB model, we define the equivalent of the effective Born radius for components. The component effective Born radius is then used in GB computations for points that are distant from the component. This HCP approximation for GB (HCP-GB) is implemented in the open source MD software, NAB in AmberTools, and tested on a set of representative biomolecular structures ranging in size from 632 atoms to ∼3 million atoms. For this set of test structures, the HCP-GB method is 1.1-390 times faster than the GB computation without additional approximations (the reference GB computation), depending on the size of the structure. Similar to the spherical cutoff method with GB (cutoff-GB), which also scales as ∼n log n, the HCP-GB is relatively simple. However, for the structures considered here, we show

  1. Strong washout approximation to resonant leptogenesis

    SciTech Connect

    Garbrecht, Björn; Gautier, Florian; Klaric, Juraj E-mail: florian.gautier@tum.de

    2014-09-01

    We show that the effective decay asymmetry for resonant Leptogenesis in the strong washout regime with two sterile neutrinos and a single active flavour can in wide regions of parameter space be approximated by its late-time limit ε=Xsin(2φ)/(X{sup 2}+sin{sup 2}φ), where X=8πΔ/(|Y{sub 1}|{sup 2}+|Y{sub 2}|{sup 2}), Δ=4(M{sub 1}-M{sub 2})/(M{sub 1}+M{sub 2}), φ=arg(Y{sub 2}/Y{sub 1}), and M{sub 1,2}, Y{sub 1,2} are the masses and Yukawa couplings of the sterile neutrinos. This approximation in particular extends to parametric regions where |Y{sub 1,2}|{sup 2}>> Δ, i.e. where the width dominates the mass splitting. We generalise the formula for the effective decay asymmetry to the case of several flavours of active leptons and demonstrate how this quantity can be used to calculate the lepton asymmetry for phenomenological scenarios that are in agreement with the observed neutrino oscillations. We establish analytic criteria for the validity of the late-time approximation for the decay asymmetry and compare these with numerical results that are obtained by solving for the mixing and the oscillations of the sterile neutrinos. For phenomenologically viable models with two sterile neutrinos, we find that the flavoured effective late-time decay asymmetry can be applied throughout parameter space.

  2. Photoelectron spectroscopy and the dipole approximation

    SciTech Connect

    Hemmers, O.; Hansen, D.L.; Wang, H.

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  3. Product-State Approximations to Quantum States

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.

    2016-02-01

    We show that for any many-body quantum state there exists an unentangled quantum state such that most of the two-body reduced density matrices are close to those of the original state. This is a statement about the monogamy of entanglement, which cannot be shared without limit in the same way as classical correlation. Our main application is to Hamiltonians that are sums of two-body terms. For such Hamiltonians we show that there exist product states with energy that is close to the ground-state energy whenever the interaction graph of the Hamiltonian has high degree. This proves the validity of mean-field theory and gives an explicitly bounded approximation error. If we allow states that are entangled within small clusters of systems but product across clusters then good approximations exist when the Hamiltonian satisfies one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state where the blocks in the partition have sublinear entanglement. Previously this was known only in the case of small expansion or in the regime where the entanglement was close to zero. Our approximations allow an extensive error in energy, which is the scale considered by the quantum PCP (probabilistically checkable proof) and NLTS (no low-energy trivial-state) conjectures. Thus our results put restrictions on the possible Hamiltonians that could be used for a possible proof of the qPCP or NLTS conjectures. By contrast the classical PCP constructions are often based on constraint graphs with high degree. Likewise we show that the parallel repetition that is possible with classical constraint satisfaction problems cannot also be possible for quantum Hamiltonians, unless qPCP is false. The main technical tool behind our results is a collection of new classical and quantum de Finetti theorems which do not make any symmetry assumptions on the underlying states.

  4. Fast Approximate Analysis Of Modified Antenna Structure

    NASA Technical Reports Server (NTRS)

    Levy, Roy

    1991-01-01

    Abbreviated algorithms developed for fast approximate analysis of effects of modifications in supporting structures upon root-mean-square (rms) path-length errors of paraboloidal-dish antennas. Involves combination of methods of structural-modification reanalysis with new extensions of correlation analysis to obtain revised rms path-length error. Full finite-element analysis, usually requires computer of substantial capacity, necessary only to obtain responses of unmodified structure to known external loads and to selected self-equilibrating "indicator" loads. Responses used in shortcut calculations, which, although theoretically "exact", simple enough to be performed on hand-held calculator. Useful in design, design-sensitivity analysis, and parametric studies.

  5. Virial expansion coefficients in the harmonic approximation.

    PubMed

    Armstrong, J R; Zinner, N T; Fedorov, D V; Jensen, A S

    2012-08-01

    The virial expansion method is applied within a harmonic approximation to an interacting N-body system of identical fermions. We compute the canonical partition functions for two and three particles to get the two lowest orders in the expansion. The energy spectrum is carefully interpolated to reproduce ground-state properties at low temperature and the noninteracting high-temperature limit of constant virial coefficients. This resembles the smearing of shell effects in finite systems with increasing temperature. Numerical results are discussed for the second and third virial coefficients as functions of dimension, temperature, interaction, and transition temperature between low- and high-energy limits. PMID:23005730

  6. Simple analytic approximations for the Blasius problem

    NASA Astrophysics Data System (ADS)

    Iacono, R.; Boyd, John P.

    2015-08-01

    The classical boundary layer problem formulated by Heinrich Blasius more than a century ago is revisited, with the purpose of deriving simple and accurate analytical approximations to its solution. This is achieved through the combined use of a generalized Padé approach and of an integral iteration scheme devised by Hermann Weyl. The iteration scheme is also used to derive very accurate bounds for the value of the second derivative of the Blasius function at the origin, which plays a crucial role in this problem.

  7. Approximations for crossing two nearby spin resonances

    NASA Astrophysics Data System (ADS)

    Ranjbar, V. H.

    2015-01-01

    Solutions to the Thomas-Bargmann-Michel-Telegdi spin equation for spin 1 /2 particles have to date been confined to the single-resonance crossing. However, in reality, most cases of interest concern the overlapping of several resonances. While there have been several serious studies of this problem, a good analytical solution or even an approximation has eluded the community. We show that this system can be transformed into a Hill-like equation. In this representation, we show that, while the single-resonance crossing represents the solution to the parabolic cylinder equation, the overlapping case becomes a parametric type of resonance.

  8. Rapidly converging series approximation to Kepler's equation

    NASA Astrophysics Data System (ADS)

    Peters, R. D.

    1984-08-01

    A power series solution in eccentricity e and normalized mean anomaly f has been developed for elliptic orbits. Expansion through the fourth order yields approximate errors about an order of magnitude smaller than the corresponding Lagrange series. For large e, a particular algorithm is shown to be superior to published initializers for Newton iteration solutions. The normalized variable f varies between zero and one on each of two separately defined intervals: 0 to x = (pi/2-e) and x to pi. The expansion coefficients are polynomials based on a one-time evaluation of sine and cosine terms in f.

  9. Partially coherent contrast-transfer-function approximation.

    PubMed

    Nesterets, Yakov I; Gureyev, Timur E

    2016-04-01

    The contrast-transfer-function (CTF) approximation, widely used in various phase-contrast imaging techniques, is revisited. CTF validity conditions are extended to a wide class of strongly absorbing and refracting objects, as well as to nonuniform partially coherent incident illumination. Partially coherent free-space propagators, describing amplitude and phase in-line contrast, are introduced and their properties are investigated. The present results are relevant to the design of imaging experiments with partially coherent sources, as well as to the analysis and interpretation of the corresponding images. PMID:27140752

  10. [Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect

    Butler, L.J.

    1993-02-28

    The adiabatic Born-Oppenheimer potential energy surface approximation is not valid for reaction of a wide variety of energetic materials and organic fuels; coupling between electronic states of reacting species plays a key role in determining the selectivity of the chemical reactions induced. This research program initially studies this coupling in (1) selective C-Br bond fission in 1,3- bromoiodopropane, (2) C-S:S-H bond fission branching in CH[sub 3]SH, and (3) competition between bond fission channels and H[sub 2] elimination in CH[sub 3]NH[sub 2].