Science.gov

Sample records for synaptic potentiation induced

  1. Orexin A induces bidirectional modulation of synaptic plasticity: Inhibiting long-term potentiation and preventing depotentiation.

    PubMed

    Lu, Guan-Ling; Lee, Chia-Hsu; Chiou, Lih-Chu

    2016-08-01

    The orexin system consists of two peptides, orexin A and B and two receptors, OX1R and OX2R. It is implicated in learning and memory regulation while controversy remains on its role in modulating hippocampal synaptic plasticity in vivo and in vitro. Here, we investigated effects of orexin A on two forms of synaptic plasticity, long-term potentiation (LTP) and depotentiation of field excitatory postsynaptic potentials (fEPSPs), at the Schaffer Collateral-CA1 synapse of mouse hippocampal slices. Orexin A (≧30 nM) attenuated LTP induced by theta burst stimulation (TBS) in a manner antagonized by an OX1R (SB-334867), but not OX2R (EMPA), antagonist. Conversely, at 1 pM, co-application of orexin A prevented the induction of depotentiation induced by low frequency stimulation (LFS), i.e. restoring LTP. This re-potentiation effect of sub-nanomolar orexin A occurred at LFS of 1 Hz, but not 2 Hz, and with LTP induced by either TBS or tetanic stimulation. It was significantly antagonized by SB-334867, EMPA and TCS-1102, selective OX1R, OX2R and dual OXR antagonists, respectively, and prevented by D609, SQ22536 and H89, inhibitors of phospholipase C (PLC), adenylyl cyclase (AC) and protein kinase A (PKA), respectively. LFS-induced depotentiation was antagonized by blockers of NMDA, A1-adenosine and type 1/5 metabotropic glutamate (mGlu1/5) receptors, respectively. However, orexin A (1 pM) did not affect chemical-induced depotentiation by agonists of these receptors. These results suggest that orexin A bidirectionally modulates hippocampal CA1 synaptic plasticity, inhibiting LTP via OX1Rs at moderate concentrations while inducing re-potentiation via OX1Rs and OX2Rs, possibly through PLC and AC-PKA signaling at sub-nanomolar concentrations. PMID:26965217

  2. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour.

    PubMed

    Pascoli, Vincent; Turiault, Marc; Lüscher, Christian

    2012-01-01

    Drug-evoked synaptic plasticity is observed at many synapses and may underlie behavioural adaptations in addiction. Mechanistic investigations start with the identification of the molecular drug targets. Cocaine, for example, exerts its reinforcing and early neuroadaptive effects by inhibiting the dopamine transporter, thus causing a strong increase in mesolimbic dopamine. Among the many signalling pathways subsequently engaged, phosphorylation of the extracellular signal-regulated kinase (ERK) in the nucleus accumbens is of particular interest because it has been implicated in NMDA-receptor and type 1 dopamine (D1)-receptor-dependent synaptic potentiation as well as in several behavioural adaptations. A causal link between drug-evoked plasticity at identified synapses and behavioural adaptations, however, is missing, and the benefits of restoring baseline transmission have yet to be demonstrated. Here we find that cocaine potentiates excitatory transmission in D1-receptor-expressing medium-sized spiny neurons (D1R-MSNs) in mice via ERK signalling with a time course that parallels locomotor sensitization. Depotentiation of cortical nucleus accumbens inputs by optogenetic stimulation in vivo efficiently restored normal transmission and abolished cocaine-induced locomotor sensitization. These findings establish synaptic potentiation selectively in D1R-MSNs as a mechanism underlying a core component of addiction, probably by creating an imbalance between distinct populations of MSNs in the nucleus accumbens. Our data also provide proof of principle that reversal of cocaine-evoked synaptic plasticity can treat behavioural alterations caused by addictive drugs and may inspire novel therapeutic approaches involving deep brain stimulation or transcranial magnetic stimulation. PMID:22158102

  3. Population synaptic potentials evoked in lumbar motoneurons following stimulation of the nucleus reticularis gigantocellularis during carbachol-induced atonia.

    PubMed

    Yamuy, J; Jiménez, I; Morales, F; Rudomin, P; Chase, M

    1994-03-14

    The effect of electrical stimulation of the medullary nucleus reticularis gigantocellularis (NRGc) on lumbar spinal cord motoneurons was studied in the decerebrate cat using sucrose-gap recordings from ventral roots. The NRGc was stimulated ipsi- and contralaterally before and during atonia elicited by the microinjection of carbachol into the pontine reticular formation. Prior to carbachol administration, the NRGc-induced response recorded from the sucrose-gap consisted of two consecutive excitatory population synaptic potentials followed by a long-lasting, small amplitude inhibitory population synaptic potential. Following carbachol injection, the same NRGc stimulus evoked a distinct, large amplitude inhibitory population synaptic potential, whereas the excitatory population synaptic potentials decreased in amplitude. In addition, after carbachol administration, the amplitude of the monosynaptic excitatory population synaptic potential, which was evoked by stimulation of group Ia afferents in hindlimb nerves, was reduced by 18 to 43%. When evoked at the peak of the NRGc-induced inhibitory response, this potential was further decreased in amplitude. Systemic strychnine administration (0.07-0.1 mg/kg, i.v.) blocked the NRGc-induced inhibitory population synaptic potential and promoted an increase in the amplitude of the excitatory population synaptic potentials induced by stimulation of the NRGc and group Ia afferents. These data indicate that during the state of carbachol-induced atonia, the NRGc effects on ipsi- and contralateral spinal cord motoneurons are predominantly inhibitory and that glycine is likely to be involved in this inhibitory process. These results support the hypothesis that the nucleus reticularis gigantocellularis is part of the system responsible for state-dependent somatomotor inhibition that occurs during active sleep. PMID:8205484

  4. Sulforhodamine 101 induces long-tem potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons

    PubMed Central

    Kang, Jian; Kang, Ning; Yu, Yufei; Zhang, Jinsong; Petersen, Nicolas; Tian, Guo-Feng; Nedergaard, Maiken

    2010-01-01

    Sulforhodamine 101 (SR101) has been extensively used for investigation as a specific marker for astroglia in vivo and activity-dependent dye for monitoring regulated exocytosis. Here, we report that SR101 has bioactive effects on neuronal activity. Perfusion of slices with SR101 (1 μM) for 10 min induced long-term potentiation of intrinsic neuronal excitability (LTP-IE) and a long-lasting increase in evoked EPSCs (eEPSCs) in CA1 pyramidal neurons in hippocampal slices. The increase in intrinsic neuronal excitability was a result of negative shifts in the action potential (AP) threshold. The N-methyl D-aspartate receptor (NMDAR) antagonist, AP-5 (50 μM), blocked SR101-induced LTP-IE, but glutamate receptor blockers, AP-5 (50 μM), MCPG (200 μM), and MSOP (100 μM), only partially blocked SR101-induced potentiation of eEPSCs. SR101 induced an enhancement of evoked synaptic NMDAR currents, suggesting that SR101 enhances activation of synaptic NMDARs. SR101-induced LTP-IE and potentiation of synaptic transmission triggered spontaneous neuronal firing in slices and in vivo epileptic seizures. Our results suggest that SR101 is an epileptogenic agent that long-lastingly lowers the AP threshold to increase intrinsic neuronal excitability and enhances the synaptic efficacy to increase synaptic inputs. As such, SR101 can be used as an experimental tool to induce epileptic seizures. PMID:20600669

  5. Learning-induced synaptic potentiation in implanted neural precursor cell-derived neurons

    PubMed Central

    Park, Kyungjoon; Heo, Hwon; Han, Ma Eum; Choi, Kyuhyun; Yi, Jee Hyun; Kang, Shin Jung; Kwon, Yunhee Kim; Shin, Ki Soon

    2015-01-01

    Neuronal loss caused by neurodegenerative diseases, traumatic brain injury and stroke results in cognitive dysfunctioning. Implantation of neural stem/precursor cells (NPCs) can improve the brain function by replacing lost neurons. Proper synaptic integration following neuronal differentiation of implanted cells is believed to be a prerequisite for the functional recovery. In the present study, we characterized the functional properties of immortalized neural progenitor HiB5 cells implanted into the rat hippocampus with chemically induced lesion. The implanted HiB5 cells migrated toward CA1 pyramidal layer and differentiated into vGluT1-positive glutamatergic neurons with morphological and electrophysiological properties of endogenous CA1 pyramidal cells. Functional synaptic integration of HiB5 cell-derived neurons was also evidenced by immunohistochemical and electrophysiological data. Lesion-caused memory deficit was significantly recovered after the implantation when assessed by inhibitory avoidance (IA) learning. Remarkably, IA learning preferentially produced long-term potentiation (LTP) at the synapses onto HiB5 cell-derived neurons, which occluded paring protocol-induced LTP ex vivo. We conclude that the implanted HiB5 cell-derived neurons actively participate in learning process through LTP formation, thereby counteracting lesion-mediated memory impairment. PMID:26634434

  6. Post-anesthesia AMPA receptor potentiation prevents anesthesia-induced learning and synaptic deficits.

    PubMed

    Huang, Lianyan; Cichon, Joseph; Ninan, Ipe; Yang, Guang

    2016-06-22

    Accumulating evidence has shown that repeated exposure to general anesthesia during critical stages of brain development results in long-lasting behavioral deficits later in life. To date, there has been no effective treatment to mitigate the neurotoxic effects of anesthesia on brain development. By performing calcium imaging in the mouse motor cortex, we show that ketamine anesthesia causes a marked and prolonged reduction in neuronal activity during the period of post-anesthesia recovery. Administration of the AMPAkine drug CX546 [1-(1,4-benzodioxan-6-ylcarbonyl)piperidine] to potentiate AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor activity during emergence from anesthesia in mice enhances neuronal activity and prevents long-term motor learning deficits induced by repeated neonatal anesthesia. In addition, we show that CX546 administration also ameliorates various synaptic deficits induced by anesthesia, including reductions in synaptic expression of NMDA (N-methyl-d-aspartate) and AMPA receptor subunits, motor training-evoked neuronal activity, and dendritic spine remodeling associated with motor learning. Together, our results indicate that pharmacologically enhancing neuronal activity during the post-anesthesia recovery period could effectively reduce the adverse effects of early-life anesthesia. PMID:27334260

  7. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation

    PubMed Central

    Gipson, Cassandra D.; Kupchik, Yonatan M.; Shen, Haowei; Reissner, Kathryn J.; Thomas, Charles A.; Kalivas, Peter W.

    2013-01-01

    Summary Cocaine addiction is characterized by long-lasting vulnerability to relapse arising because neutral environmental stimuli become associated with drug use and then act as cues that induce relapse. It is not known how cues elicit cocaine seeking, and why cocaine seeking is more difficult to regulate than seeking a natural reward. We found that cocaine-associated cues initiate cocaine seeking by inducing a rapid, transient increase in dendritic spine size and synaptic strength in the nucleus accumbens. These changes required neural activity in the prefrontal cortex. This is not the case when identical cues were associated with obtaining sucrose, which did not elicit changes in spine size or synaptic strength. The marked cue-induced synaptic changes in the accumbens were correlated with the intensity of cocaine, but not sucrose seeking, and may explain the difficulty addicts experience in managing relapse to cocaine use. PMID:23473317

  8. Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons

    NASA Astrophysics Data System (ADS)

    Malgaroli, Antonio; Tsien, Richard W.

    1992-05-01

    Glutamate application at synapses between hippocampal neurons in culture produces long-term potentiation of the frequency of spontaneous miniature synaptic currents, together with long-term potentiation of evoked synaptic currents. The mini frequency potentiation is initiated postsynaptically and requires activity of NMDA receptors. Although the frequency of unitary quanta! responses increases strongly, their amplitude remains little changed with potentiation. Tests of postsynaptic responsiveness rule out recruitment of latent glutamate receptor clusters. Thus, postsynaptic induction can lead to enhancement of presynaptic transmitter release. The sustained potentiation of mini frequency is expressed even in the absence of Ca2+ entry into presynaptic terminals.

  9. Inactivity–Induced Increase in nAChRs Up–Regulates Shal K+ Channels to Stabilize Synaptic Potentials

    PubMed Central

    Ping, Yong; Tsunoda, Susan

    2011-01-01

    Long–term synaptic changes, which are essential for learning and memory, are dependent on homeostatic mechanisms that stabilize neural activity. Homeostatic responses have also been implicated in pathological conditions, including nicotine addiction. Although multiple homeostatic pathways have been described, little is known about how compensatory responses are tuned to prevent them from overshooting their optimal range of activity. We show that prolonged inhibition of nicotinic acetylcholine receptors (nAChRs), the major excitatory receptor in the Drosophila CNS, results in a homeostatic increase in the Dα7 nAChR. This response then induces an increase in the transient A–type K+ current carried by Shal/Kv4 channels. While increasing Dα7 boosts mEPSCs, the ensuing increase in Shal channels serves to stabilize postsynaptic potentials. This identifies a novel mechanism to fine–tune the homeostatic response. PMID:22081160

  10. Loss of D2 Dopamine Receptor Function Modulates Cocaine-Induced Glutamatergic Synaptic Potentiation in the Ventral Tegmental Area

    PubMed Central

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello

    2013-01-01

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons. PMID:23884939

  11. Loss of D2 dopamine receptor function modulates cocaine-induced glutamatergic synaptic potentiation in the ventral tegmental area.

    PubMed

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello; Whistler, Jennifer L

    2013-07-24

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons. PMID:23884939

  12. Optogenetic inhibition of cortical afferents in the nucleus accumbens simultaneously prevents cue-induced transient synaptic potentiation and cocaine-seeking behavior.

    PubMed

    Stefanik, Michael T; Kupchik, Yonatan M; Kalivas, Peter W

    2016-04-01

    Animal models of relapse reveal that the motivation to seek drug is regulated by enduring morphological and physiological changes in the nucleus accumbens, as well as transient synaptic potentiation in the accumbens core (NAcore) that parallels drug-seeking behavior. The current study sought to examine the link between the behavioral and synaptic consequences of cue-induced cocaine seeking by optically silencing glutamatergic afferents to the NAcore from the prelimbic cortex (PL). Adeno-associated virus coding for the inhibitory opsin archaerhodopsin was microinjected into PL, and optical fibers were targeted to NAcore. Animals were trained to self-administer cocaine followed by extinction training, and then underwent cue-induced reinstatement in the presence or absence of 15 min of optically induced inhibition of PL fibers in NAcore. Inhibiting the PL-to-NAcore projection blocked reinstated behavior and was paralleled by decreased dendritic spine head diameter and AMPA/NMDA ratio relative to sham-laser control rats. Interestingly, while spine density was elevated after extinction training, no further effects were observed by cued reinstatement or optical inhibition. These findings validate the critical role for PL afferents to the NAcore in simultaneously regulating both reinstated behavior and the associated transient synaptic potentiation. PMID:25663648

  13. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer's disease.

    PubMed

    Tu, Shichun; Okamoto, Shu-ichi; Lipton, Stuart A; Xu, Huaxi

    2014-01-01

    Alzheimer's disease (AD) is a devastating disease characterized by synaptic and neuronal loss in the elderly. Compelling evidence suggests that soluble amyloid-β peptide (Aβ) oligomers induce synaptic loss in AD. Aβ-induced synaptic dysfunction is dependent on overstimulation of N-methyl-D-aspartate receptors (NMDARs) resulting in aberrant activation of redox-mediated events as well as elevation of cytoplasmic Ca2+, which in turn triggers downstream pathways involving phospho-tau (p-tau), caspases, Cdk5/dynamin-related protein 1 (Drp1), calcineurin/PP2B, PP2A, Gsk-3β, Fyn, cofilin, and CaMKII and causes endocytosis of AMPA receptors (AMPARs) as well as NMDARs. Dysfunction in these pathways leads to mitochondrial dysfunction, bioenergetic compromise and consequent synaptic dysfunction and loss, impaired long-term potentiation (LTP), and cognitive decline. Evidence also suggests that Aβ may, at least in part, mediate these events by causing an aberrant rise in extrasynaptic glutamate levels by inhibiting glutamate uptake or triggering glutamate release from glial cells. Consequent extrasynaptic NMDAR (eNMDAR) overstimulation then results in synaptic dysfunction via the aforementioned pathways. Consistent with this model of Aβ-induced synaptic loss, Aβ synaptic toxicity can be partially ameliorated by the NMDAR antagonists (such as memantine and NitroMemantine). PSD-95, an important scaffolding protein that regulates synaptic distribution and activity of both NMDA and AMPA receptors, is also functionally disrupted by Aβ. PSD-95 dysregulation is likely an important intermediate step in the pathological cascade of events caused by Aβ. In summary, Aβ-induced synaptic dysfunction is a complicated process involving multiple pathways, components and biological events, and their underlying mechanisms, albeit as yet incompletely understood, may offer hope for new therapeutic avenues. PMID:25394486

  14. Berberine chloride improved synaptic plasticity in STZ induced diabetic rats.

    PubMed

    Moghaddam, Hamid Kalalian; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad; Goshadrou, Fatemeh; Ronaghi, Abdolaziz

    2013-09-01

    Previous studies indicated that diabetes affects synaptic transmission in the hippocampus, leading to impairments of synaptic plasticity and defects in learning and memory. Although berberine treatment ameliorates memory impairment and improves synaptic plasticity in streptozotocin (STZ) induced diabetic rats, it is not clear if the effects are pre- or post-synaptic or both. The aim of this study was to evaluate the effects of berberine chloride on short-term plasticity in inhibitory interneurons in the dentate gyrus of STZ-induced diabetic rats. Experimental groups included: The control, control berberine treated (100 mg/kg), diabetic and diabetic berberine treated (50,100 mg/kg/day for 12 weeks) groups. The paired pulse paradigm was used to stimulate the perforant pathway and field excitatory post-synaptic potentials (fEPSP) were recorded in dentate gyrus (DG). In comparison with control, paired pulse facilitation in the diabetic group was significantly increased (P < 0.01) and this effect prevented by chronic berberine treatment (50,100 mg/kg). However, there were no differences between responses of the control berberine 100 mg/kg treated and diabetes berberine treated (50 and 100 mg/kg) groups as compared to the control group. The present results suggest that the pre-synaptic component of synaptic plasticity in the dentate gyrus is affected under diabetic conditions and that berberine prevents this effect. PMID:23640014

  15. Precise Synaptic Efficacy Alignment Suggests Potentiation Dominated Learning.

    PubMed

    Hartmann, Christoph; Miner, Daniel C; Triesch, Jochen

    2015-01-01

    Recent evidence suggests that parallel synapses from the same axonal branch onto the same dendritic branch have almost identical strength. It has been proposed that this alignment is only possible through learning rules that integrate activity over long time spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP) are commonly assumed to be temporally local. Here, we propose that the combination of temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient to explain the alignment of parallel synapses. To address this issue, we introduce three increasingly complex models: First, we model the idealized interaction of STDP and synaptic normalization in a single neuron as a simple stochastic process and derive analytically that the alignment effect can be described by a so-called Kesten process. From this we can derive that synaptic efficacy alignment requires potentiation-dominated learning regimes. We verify these conditions in a single-neuron model with independent spiking activities but more realistic synapses. As expected, we only observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we explore how well the findings transfer to recurrent neural networks where the learning mechanisms interact with the correlated activity of the network. We find that due to the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for both long-term potentiation- and depression-biased STDP, because the learning will be potentiation dominated in both cases due to the potentiating events induced by correlated activity. This is in line with recent results demonstrating a dominance of potentiation over depression during waking and normalization during sleep. This leads us to predict that individual spine pairs will be more similar after sleep compared to after sleep deprivation. In conclusion, we show that synaptic normalization in conjunction with coordinated

  16. Precise Synaptic Efficacy Alignment Suggests Potentiation Dominated Learning

    PubMed Central

    Hartmann, Christoph; Miner, Daniel C.; Triesch, Jochen

    2016-01-01

    Recent evidence suggests that parallel synapses from the same axonal branch onto the same dendritic branch have almost identical strength. It has been proposed that this alignment is only possible through learning rules that integrate activity over long time spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP) are commonly assumed to be temporally local. Here, we propose that the combination of temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient to explain the alignment of parallel synapses. To address this issue, we introduce three increasingly complex models: First, we model the idealized interaction of STDP and synaptic normalization in a single neuron as a simple stochastic process and derive analytically that the alignment effect can be described by a so-called Kesten process. From this we can derive that synaptic efficacy alignment requires potentiation-dominated learning regimes. We verify these conditions in a single-neuron model with independent spiking activities but more realistic synapses. As expected, we only observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we explore how well the findings transfer to recurrent neural networks where the learning mechanisms interact with the correlated activity of the network. We find that due to the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for both long-term potentiation- and depression-biased STDP, because the learning will be potentiation dominated in both cases due to the potentiating events induced by correlated activity. This is in line with recent results demonstrating a dominance of potentiation over depression during waking and normalization during sleep. This leads us to predict that individual spine pairs will be more similar after sleep compared to after sleep deprivation. In conclusion, we show that synaptic normalization in conjunction with coordinated

  17. Decreased striatal dopamine release underlies increased expression of long-term synaptic potentiation at corticostriatal synapses 24 hours after 3-nitropropionic acid induced chemical hypoxia

    PubMed Central

    Akopian, Garnik; Crawford, Cynthia; Beal, M. Flint; Cappelletti, Maurand; Jakowec, Michael W.; Petzinger, Giselle M.; Zheng, Ling; Gheorghe, Stacey L.; Reichel, Carmela M.; Chow, Robert; Walsh, John P

    2008-01-01

    The striatum is particularly sensitive to the irreversible inhibitor of succinate dehyrdrogenase 3-nitropropionic acid (3-NP). In the present study we examined early changes in behavior and dopamine and glutamate synaptic physiology created by a single systemic injection of 3-NP in Fischer 344 rats. Hind limb dystonia was seen 2 hours after 3-NP injections and rats performed poorly on balance beam and rota-rod motor tests 24 hours later. Systemic 3-NP increased NMDA receptor-dependent long-term potentiation (LTP) at corticostriatal synapses over the same time period. The 3-NP induced corticostriatal LTP was not due to increased NMDA receptor number or function, since 3-NP did not change MK-801 binding or NMDA/AMPA receptor current ratios. The LTP seen 24 hours after 3-NP was D1 receptor-dependent and reversed by exogenous addition of dopamine or a D2 receptor agonist to brain slices. High performance liquid chromatography and fast scan cyclic voltammetry revealed a decrease in dopamine content and release in rats injected 24 hours earlier with 3-NP, and much like the enhanced LTP, dopamine changes were reversed by 48 hours. Tyrosine hydroxylase expression was not changed and there was no evidence of striatal cell loss at 24–48 hours after 3-NP exposure. Sprague-Dawley rats showed similar physiological responses to systemic 3-NP, albeit with reduced sensitivity. Thus, 3-NP causes significant changes in motor behavior marked by parallel changes in striatal dopamine release and corticostriatal synaptic plasticity. PMID:18799690

  18. Synaptic Mechanisms of Blast-Induced Brain Injury.

    PubMed

    Przekwas, Andrzej; Somayaji, Mahadevabharath R; Gupta, Raj K

    2016-01-01

    Blast wave-induced traumatic brain injury (TBI) is one of the most common injuries to military personnel. Brain tissue compression/tension due to blast-induced cranial deformations and shear waves due to head rotation may generate diffuse micro-damage to neuro-axonal structures and trigger a cascade of neurobiological events culminating in cognitive and neurodegenerative disorders. Although diffuse axonal injury is regarded as a signature wound of mild TBI (mTBI), blast loads may also cause synaptic injury wherein neuronal synapses are stretched and sheared. This synaptic injury may result in temporary disconnect of the neural circuitry and transient loss in neuronal communication. We hypothesize that mTBI symptoms such as loss of consciousness or dizziness, which start immediately after the insult, could be attributed to synaptic injury. Although empirical evidence is beginning to emerge; the detailed mechanisms underlying synaptic injury are still elusive. Coordinated in vitro-in vivo experiments and mathematical modeling studies can shed light into the synaptic injury mechanisms and their role in the potentiation of mTBI symptoms. PMID:26834697

  19. Synaptic Mechanisms of Blast-Induced Brain Injury

    PubMed Central

    Przekwas, Andrzej; Somayaji, Mahadevabharath R.; Gupta, Raj K.

    2016-01-01

    Blast wave-induced traumatic brain injury (TBI) is one of the most common injuries to military personnel. Brain tissue compression/tension due to blast-induced cranial deformations and shear waves due to head rotation may generate diffuse micro-damage to neuro-axonal structures and trigger a cascade of neurobiological events culminating in cognitive and neurodegenerative disorders. Although diffuse axonal injury is regarded as a signature wound of mild TBI (mTBI), blast loads may also cause synaptic injury wherein neuronal synapses are stretched and sheared. This synaptic injury may result in temporary disconnect of the neural circuitry and transient loss in neuronal communication. We hypothesize that mTBI symptoms such as loss of consciousness or dizziness, which start immediately after the insult, could be attributed to synaptic injury. Although empirical evidence is beginning to emerge; the detailed mechanisms underlying synaptic injury are still elusive. Coordinated in vitro–in vivo experiments and mathematical modeling studies can shed light into the synaptic injury mechanisms and their role in the potentiation of mTBI symptoms. PMID:26834697

  20. Cell-specific synaptic plasticity induced by network oscillations

    PubMed Central

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg RP

    2016-01-01

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner. DOI: http://dx.doi.org/10.7554/eLife.14912.001 PMID:27218453

  1. Cell-specific synaptic plasticity induced by network oscillations.

    PubMed

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg Rp; Dugladze, Tamar; Gloveli, Tengis

    2016-01-01

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner. PMID:27218453

  2. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    SciTech Connect

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    1995-05-01

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series of PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.

  3. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission

    PubMed Central

    Park, Hye Jin; Lee, Seungheon; Jung, Ji Wook; Lee, Young Choon; Choi, Seong-Min; Kim, Dong Hyun

    2016-01-01

    Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol. PMID:27257009

  4. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission.

    PubMed

    Park, Hye Jin; Lee, Seungheon; Jung, Ji Wook; Lee, Young Choon; Choi, Seong-Min; Kim, Dong Hyun

    2016-07-01

    Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol. PMID:27257009

  5. RPS23RG1 reduces Aβ oligomer-induced synaptic and cognitive deficits

    PubMed Central

    Yan, Li; Chen, Yaomin; Li, Wubo; Huang, Xiumei; Badie, Hedieh; Jian, Fan; Huang, Timothy; Zhao, Yingjun; Cohen, Stanley N.; Li, Limin; Zhang, Yun-wu; Luo, Huanmin; Tu, Shichun; Xu, Huaxi

    2016-01-01

    Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is generally believed that β-amyloidogenesis, tau-hyperphosphorylation, and synaptic loss underlie cognitive decline in AD. Rps23rg1, a functional retroposed mouse gene, has been shown to reduce Alzheimer’s β-amyloid (Aβ) production and tau phosphorylation. In this study, we have identified its human homolog, and demonstrated that RPS23RG1 regulates synaptic plasticity, thus counteracting Aβ oligomer (oAβ)-induced cognitive deficits in mice. The level of RPS23RG1 mRNA is significantly lower in the brains of AD compared to non-AD patients, suggesting its potential role in the pathogenesis of the disease. Similar to its mouse counterpart, human RPS23RG1 interacts with adenylate cyclase, activating PKA/CREB, and inhibiting GSK-3. Furthermore, we show that human RPS23RG1 promotes synaptic plasticity and offsets oAβ-induced synaptic loss in a PKA-dependent manner in cultured primary neurons. Overexpression of Rps23rg1 in transgenic mice consistently prevented oAβ-induced PKA inactivation, synaptic deficits, suppression of long-term potentiation, and cognitive impairment as compared to wild type littermates. Our study demonstrates that RPS23RG1 may reduce the occurrence of key elements of AD pathology and enhance synaptic functions to counteract oAβ-induced synaptic and cognitive deficits in AD. PMID:26733416

  6. The impact of synaptic conductance on action potential waveform: evoking realistic action potentials with a simulated synaptic conductance.

    PubMed

    Johnston, Jamie; Postlethwaite, Michael; Forsythe, Ian D

    2009-10-15

    Most current clamp studies trigger action potentials (APs) by step current injection through the recording electrode and assume that the resulting APs are essentially identical to those triggered by orthodromic synaptic inputs. However this assumption is not always valid, particularly when the synaptic conductance is of large magnitude and of close proximity to the axon initial segment. We addressed this question of similarity using the Calyx of Held/MNTB synapse; we compared APs evoked by long duration step current injections, short step current injections and orthodromic synaptic stimuli. Neither injected current protocol evoked APs that matched the evoked orthodromic AP waveform, showing differences in AP height, half-width and after-hyperpolarization. We postulated that this 'error' could arise from changes in the instantaneous conductance during the combined synaptic and AP waveforms, since the driving forces for the respective ionic currents are integrating and continually evolving over this time-course. We demonstrate that a simple Ohm's law manipulation of the EPSC waveform, which accounts for the evolving driving force on the synaptic conductance during the AP, produces waveforms that closely mimic those generated by physiological synaptic stimulation. This stimulation paradigm allows supra-threshold physiological stimulation (single stimuli or trains) without the variability caused by quantal fluctuation in transmitter release, and can be implemented without a specialised dynamic clamp system. Combined with pharmacological tools this method provides a reliable means to assess the physiological roles of postsynaptic ion channels without confounding affects from the presynaptic input. PMID:19560491

  7. Long-term potentiation at excitatory synaptic inputs to the intercalated cell masses of the amygdala.

    PubMed

    Huang, Chiung-Chun; Chen, Chien-Chung; Liang, Ying-Ching; Hsu, Kuei-Sen

    2014-08-01

    The intercalated cell masses (ITCs) of the amygdala are clusters of GABAergic interneurons that surround the basolateral complex of the amygdala. ITCs have been increasingly implicated in the acquisition and extinction of conditioned fear responses, but the underlying cellular mechanisms remain unexplored. Here, we report that repetitive stimulation of lateral amygdala (LA) afferents with a modified theta burst stimulation (TBS) protocol and induces long-term potentiation (LTP) of excitatory synapses onto medial paracapsular ITC (Imp) neurons. This TBS-induced LTP is; (1) induced and expressed post-synaptically, (2) involves a rise in post-synaptic Ca2+ and the activation of NR2B-containing N-methyl-D-aspartate receptors (NMDARs), (3) dependent on calcium/calmodulin-dependent protein kinase II and cAMP-dependent protein kinase activation, and (4) associated with increased exocytotic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) to the post-synaptic membrane. Remarkably, auditory fear conditioning led to a persistent increase in AMPAR/NMDAR ratio of glutamatergic synaptic currents and occluded TBS-induced LTP at LA-Imp synapses. Furthermore, extinction training rescued the effect of fear conditioning on AMPAR/NMDAR ratio and LTP induction. These results show that a prominent form of LTP can be elicited at LA-Imp synapses and suggest that this synaptic plasticity may contribute to the expression of fear conditioning. PMID:24556032

  8. Finite Post Synaptic Potentials Cause a Fast Neuronal Response

    PubMed Central

    Helias, Moritz; Deger, Moritz; Rotter, Stefan; Diesmann, Markus

    2011-01-01

    A generic property of the communication between neurons is the exchange of pulses at discrete time points, the action potentials. However, the prevalent theory of spiking neuronal networks of integrate-and-fire model neurons relies on two assumptions: the superposition of many afferent synaptic impulses is approximated by Gaussian white noise, equivalent to a vanishing magnitude of the synaptic impulses, and the transfer of time varying signals by neurons is assessable by linearization. Going beyond both approximations, we find that in the presence of synaptic impulses the response to transient inputs differs qualitatively from previous predictions. It is instantaneous rather than exhibiting low-pass characteristics, depends non-linearly on the amplitude of the impulse, is asymmetric for excitation and inhibition and is promoted by a characteristic level of synaptic background noise. These findings resolve contradictions between the earlier theory and experimental observations. Here we review the recent theoretical progress that enabled these insights. We explain why the membrane potential near threshold is sensitive to properties of the afferent noise and show how this shapes the neural response. A further extension of the theory to time evolution in discrete steps quantifies simulation artifacts and yields improved methods to cross check results. PMID:21427776

  9. Synaptic plasticity in myenteric neurons of the guinea-pig distal colon: presynaptic mechanisms of inflammation-induced synaptic facilitation

    PubMed Central

    Krauter, Eric M; Linden, David R; Sharkey, Keith A; Mawe, Gary M

    2007-01-01

    The purpose of this study was to investigate the pre- and postsynaptic mechanisms that contribute to synaptic facilitation in the myenteric plexus of the trinitrobenzene sulphonic acid-inflamed guinea-pig distal colon. Intracellular recordings of evoked fast excitatory postsynaptic potentials (fEPSPs) in myenteric S neurons were evaluated, and the density of synaptic terminals was morphometrically analysed by transmission electron microscopy. In inflamed tissue, fEPSPs were reduced to control levels by the protein kinase A (PKA) inhibitor, H89, but H89 did not affect the fEPSPs in control tissue. This PKA activation in inflamed tissue did not appear to involve 5-HT4 receptors because the antagonist/inverse agonist, GR 125487, caused comparable decreases of fEPSPs in both tissues. Inhibition of BK channels with iberiotoxin did not alter the fEPSPs in inflamed tissue, but increased the fEPSPs in control tissue to the amplitude detected in inflamed tissue. During trains of stimuli, run-down of EPSPs was less extensive in inflamed tissue and there was a significant increase in the paired pulse ratio. Depolarizations in response to exogenous neurotransmitters were not altered in inflamed tissue. These inflammation-induced changes were not accompanied by alterations in the pharmacological profile of EPSPs, and no changes in synaptic density were detected by electron microscopy. Collectively, these data indicate that synaptic facilitation in the inflamed myenteric plexus involves a presynaptic increase in PKA activity, possibly involving an inhibition of BK channels, and an increase in the readily releasable pool of synaptic vesicles. PMID:17363386

  10. Activity-dependent synaptic GRIP1 accumulation drives synaptic scaling up in response to action potential blockade

    PubMed Central

    Gainey, Melanie A.; Tatavarty, Vedakumar; Nahmani, Marc; Lin, Heather; Turrigiano, Gina G.

    2015-01-01

    Synaptic scaling is a form of homeostatic plasticity that stabilizes neuronal firing in response to changes in synapse number and strength. Scaling up in response to action-potential blockade is accomplished through increased synaptic accumulation of GluA2-containing AMPA receptors (AMPAR), but the receptor trafficking steps that drive this process remain largely obscure. Here, we show that the AMPAR-binding protein glutamate receptor-interacting protein-1 (GRIP1) is essential for regulated synaptic AMPAR accumulation during scaling up. Synaptic abundance of GRIP1 was enhanced by activity deprivation, directly increasing synaptic GRIP1 abundance through overexpression increased the amplitude of AMPA miniature excitatory postsynaptic currents (mEPSCs), and shRNA-mediated GRIP1 knockdown prevented scaling up of AMPA mEPSCs. Furthermore, knockdown and replace experiments targeting either GRIP1 or GluA2 revealed that scaling up requires the interaction between GRIP1 and GluA2. Finally, GRIP1 synaptic accumulation during scaling up did not require GluA2 binding. Taken together, our data support a model in which activity-dependent trafficking of GRIP1 to synaptic sites drives the forward trafficking and enhanced synaptic accumulation of GluA2-containing AMPAR during synaptic scaling up. PMID:26109571

  11. Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo

    PubMed Central

    Buschler, Arne; Manahan-Vaughan, Denise

    2012-01-01

    Long-term environmental enrichment (EE) elicits enduring effects on the adult brain, including altered synaptic plasticity. Synaptic plasticity may underlie memory formation and includes robust (>24 h) and weak (<2 h) forms of long-term potentiation (LTP) and long-term depression (LTD). Most studies of the effect of EE on synaptic efficacy have examined the consequences of very prolonged EE-exposure. It is unclear whether brief exposure to EE can alter synaptic plasticity. Clarifying this issue could help develop strategies to address cognitive deficits arising from neglect in children or adults. We assessed whether short-term EE elicits alterations in hippocampal synaptic plasticity and if social context may play a role. Adult mice were exposed to EE for 14 consecutive days. We found that robust late-LTP (>24 h) and short-term depression (<2 h) at Schaffer-collateral-CA1 synapses in freely behaving mice were unaltered, whereas early-LTP (E-LTP, <2 h) was significantly enhanced by EE. Effects were transient: E-LTP returned to control levels 1 week after cessation of EE. Six weeks later, animals were re-exposed to EE for 14 days. Under these conditions, E-LTP was facilitated into L-LTP (>24 h), suggesting that metaplasticity was induced during the first EE experience and that EE-mediated modifications are cumulative. Effects were absent in mice that underwent solitary enrichment or were group-housed without EE. These data suggest that EE in naïve animals strengthens E-LTP, and also promotes L-LTP in animals that underwent EE in the past. This indicates that brief exposure to EE, particularly under social conditions can elicit lasting positive effects on synaptic strength that may have beneficial consequences for cognition that depends on synaptic plasticity. PMID:23248592

  12. Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurones and in slow inhibitory post-synaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent

    PubMed Central

    Libet, B.; Owman, Ch.

    1974-01-01

    1. Dopamine was identified by formaldehyde histochemistry and cytospectrofluorometry in the rabbit's superior cervical ganglion. Dopamine was localized to the intraganglionic `small intensely fluorescent' cells, and also to the characteristically beaded fibres forming a network in close contact with virtually all ganglion cell bodies. The extensive beaded fibres are therefore presumed to be processes of the small intensely fluorescent cells. 2. Changes in the dopamine content of these interneurones were studied by recording alterations in their relative fluorescence intensity in conjunction with changes in the slow inhibitory post-synaptic potential (s.-i.p.s.p.) response of the ganglion to orthodromic nerve input. 3. Dopamine content was lower after several hours in vitro even without special stimulation; this was in accord with a regularly observed spontaneous reduction of the s.-i.p.s.p. response. 4. After a period of conditioning stimulation of the preganglionic nerve, in the presence of an anticholinesterase agent (eserine) and an inhibitor of catecholamine synthesis (α-methyl-p-tyrosine), the s.-i.p.s.p. was selectively and markedly reduced. The dopamine fluorescence in the small intensely fluorescent cell interneurones was also significantly reduced, to a mean value of about 55 or 60% of the fluorescence in the dopamine interneurones of the paired but unstimulated control ganglion. A significant reduction in dopamine fluorescence was always accompanied by a marked loss of s.-i.p.s.p. response; the reverse was not always true. 5. Treatment with the muscarinic agent bethanechol for 30 min, with no α-methyl-p-tyrosine or eserine present, similarly resulted in reductions in the s.-i.p.s.p. response of the ganglia and in the formaldehyde-induced fluorescence of the dopamine interneurones. 6. A functional uptake of extrinsic dopamine by the dopamine interneurones was also demonstrated: temporary exposure to dopamine restored a large fraction of both the s

  13. Brain-derived neurotrophic factor activation of CaM-kinase kinase via transient receptor potential canonical channels induces the translation and synaptic incorporation of GluA1-containing calcium-permeable AMPA receptors.

    PubMed

    Fortin, Dale A; Srivastava, Taasin; Dwarakanath, Diya; Pierre, Philippe; Nygaard, Sean; Derkach, Victor A; Soderling, Thomas R

    2012-06-13

    Glutamatergic synapses in early postnatal development transiently express calcium-permeable AMPA receptors (CP-AMPARs). Although these GluA2-lacking receptors are essential and are elevated in response to brain-derived neurotrophic factor (BDNF), little is known regarding molecular mechanisms that govern their expression and synaptic insertion. Here we show that BDNF-induced GluA1 translation in rat primary hippocampal neurons requires the activation of mammalian target of rapamycin (mTOR) via calcium calmodulin-dependent protein kinase kinase (CaMKK). Specifically, BDNF-mediated phosphorylation of threonine 308 (T308) in AKT, a known substrate of CaMKK and an upstream activator of mTOR-dependent translation, was prevented by (1) pharmacological inhibition of CaMKK with STO-609, (2) overexpression of a dominant-negative CaMKK, or (3) short hairpin-mediated knockdown of CaMKK. GluA1 surface expression induced by BDNF, as assessed by immunocytochemistry using an extracellular N-terminal GluA1 antibody or by surface biotinylation, was impaired following knockdown of CaMKK or treatment with STO-609. Activation of CaMKK by BDNF requires transient receptor potential canonical (TRPC) channels as SKF-96365, but not the NMDA receptor antagonist d-APV, prevented BDNF-induced GluA1 surface expression as well as phosphorylation of CaMKI, AKT(T308), and mTOR. Using siRNA we confirmed the involvement of TRPC5 and TRPC6 subunits in BDNF-induced AKT(T308) phosphorylation. The BDNF-induced increase in mEPSC was blocked by IEM-1460, a selected antagonist of CP-AMPARs, as well as by the specific repression of acute GluA1 translation via siRNA to GluA1 but not GluA2. Together these data support the conclusion that newly synthesized GluA1 subunits, induced by BDNF, are readily incorporated into synapses where they enhance the expression of CP-AMPARs and synaptic strength. PMID:22699894

  14. Competition between recently potentiated synaptic inputs reveals a winner-take-all phase of synaptic tagging and capture

    PubMed Central

    Sajikumar, Sreedharan; Morris, Richard G. M.; Korte, Martin

    2014-01-01

    Canonical models suggest that mechanisms of long-term memory consist of a synapse-specific, protein synthesis-independent induction phase (changes in synaptic weights/temporary tagging of such synapses) and, within adjacent dendritic compartments, a protein synthesis-dependent distribution phase that may accompany or immediately precede induction and whose protein products enable consolidation through synaptic capture. We now report that this distribution phase is competitive in a “winner-take-all” fashion when synapses potentiated at induction compete with each other for plasticity-related proteins. This finding highlights the importance of synaptic competition in creating stable long-lasting memory in neural networks without disruption. PMID:25092326

  15. A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration.

    PubMed

    Scott, David A; Tabarean, Iustin; Tang, Yong; Cartier, Anna; Masliah, Eliezer; Roy, Subhojit

    2010-06-16

    Several neurodegenerative diseases are typified by intraneuronal alpha-synuclein deposits, synaptic dysfunction, and dementia. While even modest alpha-synuclein elevations can be pathologic, the precise cascade of events induced by excessive alpha-synuclein and eventually culminating in synaptotoxicity is unclear. To elucidate this, we developed a quantitative model system to evaluate evolving alpha-synuclein-induced pathologic events with high spatial and temporal resolution, using cultured neurons from brains of transgenic mice overexpressing fluorescent-human-alpha-synuclein. Transgenic alpha-synuclein was pathologically altered over time and overexpressing neurons showed striking neurotransmitter release deficits and enlarged synaptic vesicles; a phenotype reminiscent of previous animal models lacking critical presynaptic proteins. Indeed, several endogenous presynaptic proteins involved in exocytosis and endocytosis were undetectable in a subset of transgenic boutons ("vacant synapses") with diminished levels in the remainder, suggesting that such diminutions were triggering the overall synaptic pathology. Similar synaptic protein alterations were also retrospectively seen in human pathologic brains, highlighting potential relevance to human disease. Collectively the data suggest a previously unknown cascade of events where pathologic alpha-synuclein leads to a loss of a number of critical presynaptic proteins, thereby inducing functional synaptic deficits. PMID:20554859

  16. A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration

    PubMed Central

    Scott, David A.; Tabarean, Iustin; Tang, Yong; Cartier, Anna; Masliah, Eliezer; Roy, Subhojit

    2010-01-01

    Several neurodegenerative diseases are typified by intra-neuronal α-synuclein deposits, synaptic dysfunction and dementia. While even modest α-synuclein elevations can be pathologic, the precise cascade of events induced by excessive α-synuclein and eventually culminating in synaptotoxicity is unclear. Towards this, we developed a quantitative model-system to evaluate evolving α-synuclein-induced pathologic events with high spatial and temporal resolution, using cultured neurons from brains of transgenic mice over-expressing fluorescent-human-α-synuclein. Transgenic α-synuclein was pathologically altered over time and over-expressing neurons showed striking neurotransmitter release deficits and enlarged synaptic vesicles; a phenotype reminiscent of previous animal-models lacking critical presynaptic proteins. Indeed several endogenous presynaptic proteins involved in exo- and endo-cytosis were undetectable in a subset of transgenic boutons (‘vacant synapses’) with diminished levels in the remainder; suggesting that such diminutions were triggering the overall synaptic pathology. Similar synaptic protein alterations were also retrospectively seen in human pathologic brains, highlighting potential relevance to human disease. Collectively the data suggest a previously unknown cascade of events where pathologic α-synuclein leads to a loss of a number of critical presynaptic proteins, thereby inducing functional synaptic deficits. PMID:20554859

  17. Short-term potentiation of GABAergic synaptic inputs to vasopressin and oxytocin neurones

    PubMed Central

    Morton, Linda A; Popescu, Ion R; Haam, Juhee; Tasker, Jeffrey G

    2014-01-01

    The magnocellular vasopressin (VP) and oxytocin (OT) neurones undergo long-term synaptic plasticity to accommodate prolonged hormone demand. By contrast, rapidly induced, transient synaptic plasticity in response to brief stimuli could enable the activation of magnocellular neurones in response to acute challenges. Here, we report a robust short-term potentiation of asynchronous GABAergic synaptic inputs (STPGABA) to VP and OT neurones of the hypothalamic supraoptic nucleus elicited by repetitive extracellular electrical stimulation. The STPGABA required extracellular Ca2+, but did not require activation of glutamate, VP or OT receptors or nitric oxide synthesis. Presynaptic action potential generation was necessary for the induction, but not the maintenance, of STPGABA. The STPGABA led to a minutes-long GABAA receptor-dependent increase in spike frequency in VP neurones, but not in OT neurones, consistent with an excitatory function of GABA in only VP neurones and with the generation of prolonged bursts of action potentials in VP neurones. Therefore, this short-term plasticity of GABAergic synaptic inputs is likely to play very different roles in the regulation of OT and VP neurones and their distinct patterns of physiological activation. PMID:25063825

  18. The synaptic glycoprotein neuroplastin is involved in long-term potentiation at hippocampal CA1 synapses

    PubMed Central

    Smalla, K. -H.; Matthies, H.; Langnäse, K.; Shabir, S.; Böckers, T. M.; Wyneken, U.; Staak, S.; Krug, M.; Beesley, P. W.; Gundelfinger, E. D.

    2000-01-01

    Neuroplastin-65 and -55 (previously known as gp65 and gp55) are glycoproteins of the Ig superfamily that are enriched in rat forebrain synaptic membrane preparations. Whereas the two-Ig domain isoform neuroplastin-55 is expressed in many tissues, the three-Ig domain isoform neuroplastin-65 is brain-specific and enriched in postsynaptic density (PSD) protein preparations. Here, we have assessed the function of neuroplastin in long-term synaptic plasticity. Immunocytochemical studies with neuroplastin-65-specific antibodies differentially stain distinct synaptic neuropil regions of the rat hippocampus with most prominent immunoreactivity in the CA1 region and the proximal molecular layer of the dentate gyrus. Kainate-induced seizures cause a significant enhancement of neuroplastin-65 association with PSDs. Similarly, long-term potentiation (LTP) of CA1 synapses in hippocampal slices enhanced the association of neuroplastin-65 with a detergent-insoluble PSD-enriched protein fraction. Several antibodies against the neuroplastins, including one specific for neuroplastin-65, inhibited the maintenance of LTP. A similar effect was observed when recombinant fusion protein containing the three extracellular Ig domains of neuroplastin-65 was applied to hippocampal slices before LTP induction. Microsphere binding experiments using neuroplastin-Fc chimeric proteins show that constructs containing Ig1–3 or Ig1 domains, but not Ig2–3 domains mediate homophilic adhesion. These data suggest that neuroplastin plays an essential role in implementing long-term changes in synaptic activity, possibly by means of a homophilic adhesion mechanism. PMID:10759566

  19. The Immunoglobulin super family protein RIG-3 prevents synaptic potentiation and regulates Wnt signaling

    PubMed Central

    Babu, Kavita; Hu, Zhitao; Chien, Shih-Chieh; Garriga, Gian; Kaplan, Joshua M.

    2011-01-01

    Cell surface Ig superfamily proteins (IgSF) have been implicated in several aspects of neuron development and function. Here, we describe a novel function for a C. elegans IgSF protein, RIG-3. Mutants lacking RIG-3 have an exaggerated paralytic response to a cholinesterase inhibitor, aldicarb. Although RIG-3 is expressed in motor neurons, heightened drug responsiveness was caused by an aldicarb-induced increase in muscle ACR-16 acetylcholine receptor (AChR) abundance, and a corresponding potentiation of post-synaptic responses at neuromuscular junctions. Mutants lacking RIG-3 also had defects in the anteroposterior polarity of the ALM mechanosensory neurons. RIG -3’s effects on synaptic transmission and ALM polarity were both mediated by changes in Wnt signaling, and in particular by inhibiting CAM-1, a Ror-type receptor tyrosine kinase that binds Wnt ligands. These results identify RIG-3 as a novel regulator of Wnt signaling, and suggest that RIG-3 has an anti-plasticity function that prevents activity-induced changes in post-synaptic receptor fields. PMID:21745641

  20. PKMζ Inhibition Reverses Learning-Induced Increases in Hippocampal Synaptic Strength and Memory during Trace Eyeblink Conditioning

    PubMed Central

    Madroñal, Noelia; Gruart, Agnès; Sacktor, Todd C.; Delgado-García, José M.

    2010-01-01

    A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP), a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS) or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS and by experience the same? Protein kinase Mzeta (PKMζ), an autonomously active atypical protein kinase C isoform, plays a key role in the maintenance of LTP induced by tetanic stimulation and the storage of long-term memory. To test whether the persistent action of PKMζ is necessary for the maintenance of synaptic potentiation induced after learning, the effects of ZIP (zeta inhibitory peptide), a PKMζ inhibitor, on eyeblink-conditioned mice were studied. PKMζ inhibition in the hippocampus disrupted both the correct retrieval of conditioned responses (CRs) and the experience-dependent persistent increase in synaptic strength observed at CA3-CA1 synapses. In addition, the effects of ZIP on the same associative test were examined when tetanic LTP was induced at the hippocampal CA3-CA1 synapse before conditioning. In this case, PKMζ inhibition both reversed tetanic LTP and prevented the expected LTP-mediated deleterious effects on eyeblink conditioning. Thus, PKMζ inhibition in the CA1 area is able to reverse both the expression of trace eyeblink conditioned memories and the underlying changes in CA3-CA1 synaptic strength, as well as the anterograde effects of LTP on associative learning. PMID:20454458

  1. Cocaine- and morphine-induced synaptic plasticity in the nucleus accumbens.

    PubMed

    Alcantara, Adriana A; Lim, Helen Y; Floyd, Christopher E; Garces, Juanita; Mendenhall, John M; Lyons, Chelsea L; Berlanga, Monica L

    2011-04-01

    The critical brain areas and molecular mechanisms involved in drug abuse and dependence have been extensively studied. Drug-induced persistent behaviors such as sensitization, tolerance, or relapse, however, far outlast any previously reported mechanisms. A challenge in the field of addiction, therefore, has been to identify drug-induced changes in brain circuitry that may subserve long-lasting changes in behavior. This study examined behavioral changes and electron microscopic evidence of altered synaptic connectivity within the nucleus accumbens (NAc) following repeated administration of cocaine or morphine. The unbiased quantitative stereological physical disector method was used to estimate the number of synapses per neuron. Increases in the synapse-to-neuron ratio were found in the NAc shell of cocaine-treated (49.1%) and morphine-treated (55.1%) rats and in the NAc core of cocaine-treated animals (49.1%). This study provides direct ultrastructural evidence of drug-induced synaptic plasticity and identifies synaptic remodeling as a potential neural substrate underlying drug-induced behavioral sensitization. PMID:20730804

  2. Enhancement of synaptic transmission induced by BDNF in cultured cortical neurons

    NASA Astrophysics Data System (ADS)

    He, Jun; Gong, Hui; Zeng, Shaoqun; Li, Yanling; Luo, Qingming

    2005-03-01

    Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation (LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as were the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]c). This effect was partially dependent on [Ca2+]o; The BDNF-induced increase in [Ca2+]c can not be completely blocked by Ca2+-free solution. It was completely blocked by K252a and partially blocked by Cd2+ and TTX. The results demonstrate that BDNF can enhances synaptic transmission and that this effect is accompanied by a rise in [Ca2+]c that requires two route: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels in cultured cortical neurons.

  3. Differential Dendritic Integration of Synaptic Potentials and Calcium in Cerebellar Interneurons.

    PubMed

    Tran-Van-Minh, Alexandra; Abrahamsson, Therése; Cathala, Laurence; DiGregorio, David A

    2016-08-17

    Dendritic voltage integration determines the transformation of synaptic inputs into output firing, while synaptic calcium integration drives plasticity mechanisms thought to underlie memory storage. Dendritic calcium integration has been shown to follow the same synaptic input-output relationship as dendritic voltage, but whether similar operations apply to neurons exhibiting sublinear voltage integration is unknown. We examined the properties and cellular mechanisms of these dendritic operations in cerebellar molecular layer interneurons using dendritic voltage and calcium imaging, in combination with synaptic stimulation or glutamate uncaging. We show that, while synaptic potentials summate sublinearly, concomitant dendritic calcium signals summate either linearly or supralinearly depending on the number of synapses activated. The supralinear dendritic calcium triggers a branch-specific, short-term suppression of neurotransmitter release that alters the pattern of synaptic activation. Thus, differential voltage and calcium integration permits dynamic regulation of neuronal input-output transformations without altering intrinsic nonlinear integration mechanisms. PMID:27537486

  4. Histone Deacetylase Inhibition Facilitates Massed Pattern-Induced Synaptic Plasticity and Memory

    ERIC Educational Resources Information Center

    Pandey, Kiran; Sharma, Kaushik P.; Sharma, Shiv K.

    2015-01-01

    Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well…

  5. Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex.

    PubMed Central

    Carmignoto, G; Pizzorusso, T; Tia, S; Vicini, S

    1997-01-01

    1. The effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) on excitatory synaptic transmission in the developing visual cortex was studied by whole-cell patch-clamp recordings from rat brain slices. 2. Both neurotrophins induced a rapid increase in the amplitude of impulse-evoked excitatory postsynaptic currents (EPSCs). BDNF also increased the frequency of spontaneous EPSCs. 3. Analysis of the currents revealed that alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated components contributing to the EPSC peak amplitude were equally potentiated by the neurotrophins. 4. When synaptic transmission was studied by minimal stimulation of intracortical afferents, neurotrophins induced a decrease in the occurrence of release failures. 5. A number of neurones were insensitive to the effects of the neurotrophins, possibly related to the considerable heterogeneity of neuronal types and to the uneven distribution of neurotrophin receptors in the visual cortex. 6. The probability of neurotransmitter release represents a rapidly modifiable synaptic feature by which neurotrophins can potentiate the efficacy of excitatory synaptic transmission in the visual cortex. PMID:9023775

  6. Millisecond Coupling of Local Field Potentials to Synaptic Currents in the Awake Visual Cortex

    PubMed Central

    Haider, Bilal; Schulz, David P.A.; Häusser, Michael; Carandini, Matteo

    2016-01-01

    Summary The cortical local field potential (LFP) is a common measure of population activity, but its relationship to synaptic activity in individual neurons is not fully established. This relationship has been typically studied during anesthesia and is obscured by shared slow fluctuations. Here, we used patch-clamp recordings in visual cortex of anesthetized and awake mice to measure intracellular activity; we then applied a simple method to reveal its coupling to the simultaneously recorded LFP. LFP predicted membrane potential as accurately as synaptic currents, indicating a major role for synaptic currents in the relationship between cortical LFP and intracellular activity. During anesthesia, cortical LFP predicted excitation far better than inhibition; during wakefulness, it predicted them equally well, and visual stimulation further enhanced predictions of inhibition. These findings reveal a central role for synaptic currents, and especially inhibition, in the relationship between the subthreshold activity of individual neurons and the cortical LFP during wakefulness. PMID:27021173

  7. Radiation-induced alterations in synaptic neurotransmission of dentate granule cells depend on the dose and species of charged particles.

    PubMed

    Marty, V N; Vlkolinsky, R; Minassian, N; Cohen, T; Nelson, G A; Spigelman, I

    2014-12-01

    The evaluation of potential health risks associated with neuronal exposure to space radiation is critical for future long duration space travel. The purpose of this study was to evaluate and compare the effects of low-dose proton and high-energy charged particle (HZE) radiation on electrophysiological parameters of the granule cells in the dentate gyrus (DG) of the hippocampus and its associated functional consequences. We examined excitatory and inhibitory neurotransmission in DG granule cells (DGCs) in dorsal hippocampal slices from male C57BL/6 mice at 3 months after whole body irradiation with accelerated proton, silicon or iron particles. Multielectrode arrays were used to investigate evoked field synaptic potentials, an extracellular measurement of synaptic excitability in the perforant path to DG synaptic pathway. Whole-cell patch clamp recordings were used to measure miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) in DGCs. Exposure to proton radiation increased synaptic excitability and produced dose-dependent decreases in amplitude and charge transfer of mIPSCs, without affecting the expression of γ-aminobutyric acid type A receptor α2, β3 and γ2 subunits determined by Western blotting. Exposure to silicon radiation had no significant effects on synaptic excitability, mEPSCs or mIPSCs of DGCs. Exposure to iron radiation had no effect on synaptic excitability and mIPSCs, but significantly increased mEPSC frequency at 1 Gy, without changes in mEPSC kinetics, suggesting a presynaptic mechanism. Overall, the data suggest that proton and HZE exposure results in radiation dose- and species-dependent long-lasting alterations in synaptic neurotransmission, which could cause radiation-induced impairment of hippocampal-dependent cognitive functions. PMID:25402556

  8. Therapeutic hypothermia protects against ischemia-induced impairment of synaptic plasticity following juvenile cardiac arrest in sex-dependent manner.

    PubMed

    Dietz, R M; Deng, G; Orfila, J E; Hui, X; Traystman, R J; Herson, P S

    2016-06-14

    Pediatric cardiac arrest (CA) often leads to poor neurologic outcomes, including deficits in learning and memory. The only approved treatment for CA is therapeutic hypothermia, although its utility in the pediatric population remains unclear. This study analyzed the effect of mild therapeutic hypothermia after CA in juvenile mice on hippocampal neuronal injury and the cellular model of learning and memory, termed long-term potentiation (LTP). Juvenile mice were subjected to cardiac arrest and cardiopulmonary resuscitation (CA/CPR) followed by normothermia (37°C) and hypothermia (30°C, 32°C). Histological injury of hippocampal CA1 neurons was performed 3days after resuscitation using hematoxylin and eosin (H&E) staining. Field excitatory post-synaptic potentials (fEPSPs) were recorded from acute hippocampal slices 7days after CA/CPR to determine LTP. Synaptic function was impaired 7days after CA/CPR. Mice exposed to hypothermia showed equivalent neuroprotection, but exhibited sexually dimorphic protection against ischemia-induced impairment of LTP. Hypothermia (32°C) protects synaptic plasticity more effectively in females, with males requiring a deeper level of hypothermia (30°C) for equivalent protection. In conclusion, male and female juvenile mice exhibit equivalent neuronal injury following CA/CPR and hypothermia protects both males and females. We made the surprising finding that juvenile mice have a sexually dimorphic response to mild therapeutic hypothermia protection of synaptic function, where males may need a deeper level of hypothermia for equivalent synaptic protection. PMID:27033251

  9. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1

    PubMed Central

    Rodrigues, Elizabeth M.; Scudder, Samantha L.; Goo, Marisa S.

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. SIGNIFICANCE STATEMENT Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. PMID:26843640

  10. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood

    PubMed Central

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period. PMID:26617490

  11. Multivesicular release underlies short term synaptic potentiation independent of release probability change in the supraoptic nucleus.

    PubMed

    Quinlan, Michelle E; Hirasawa, Michiru

    2013-01-01

    Magnocellular neurons of the supraoptic nucleus receive glutamatergic excitatory inputs that regulate the firing activity and hormone release from these neurons. A strong, brief activation of these excitatory inputs induces a lingering barrage of tetrodotoxin-resistant miniature EPSCs (mEPSCs) that lasts for tens of minutes. This is known to accompany an immediate increase in large amplitude mEPSCs. However, it remains unknown how long this amplitude increase can last and whether it is simply a byproduct of greater release probability. Using in vitro patch clamp recording on acute rat brain slices, we found that a brief, high frequency stimulation (HFS) of afferents induced a potentiation of mEPSC amplitude lasting up to 20 min. This amplitude potentiation did not correlate with changes in mEPSC frequency, suggesting that it does not reflect changes in presynaptic release probability. Nonetheless, neither postsynaptic calcium chelator nor the NMDA receptor antagonist blocked the potentiation. Together with the known calcium dependency of HFS-induced potentiation of mEPSCs, our results imply that mEPSC amplitude increase requires presynaptic calcium. Further analysis showed multimodal distribution of mEPSC amplitude, suggesting that large mEPSCs were due to multivesicular glutamate release, even at late post-HFS when the frequency is no longer elevated. In conclusion, high frequency activation of excitatory synapses induces lasting multivesicular release in the SON, which is independent of changes in release probability. This represents a novel form of synaptic plasticity that may contribute to prolonged excitatory tone necessary for generation of burst firing of magnocellular neurons. PMID:24086774

  12. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring.

    PubMed

    Buffington, Shelly A; Di Prisco, Gonzalo Viana; Auchtung, Thomas A; Ajami, Nadim J; Petrosino, Joseph F; Costa-Mattioli, Mauro

    2016-06-16

    Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with offspring of mothers on a regular diet (MRD) and transferable to germ-free mice. In addition, social interaction induces synaptic potentiation (LTP) in the ventral tegmental area (VTA) of MRD, but not MHFD offspring. Moreover, MHFD offspring had fewer oxytocin immunoreactive neurons in the hypothalamus. Using metagenomics and precision microbiota reconstitution, we identified a single commensal strain that corrects oxytocin levels, LTP, and social deficits in MHFD offspring. Our findings causally link maternal diet, gut microbial imbalance, VTA plasticity, and behavior and suggest that probiotic treatment may relieve specific behavioral abnormalities associated with neurodevelopmental disorders. VIDEO ABSTRACT. PMID:27315483

  13. Muscarinic M1 receptors modulate endotoxemia-induced loss of synaptic plasticity.

    PubMed

    Zivkovic, Aleksandar R; Sedlaczek, Oliver; von Haken, Rebecca; Schmidt, Karsten; Brenner, Thorsten; Weigand, Markus A; Bading, Hilmar; Bengtson, C Peter; Hofer, Stefan

    2015-01-01

    Septic encephalopathy is associated with rapid deterioration of cortical functions. Using magnetic resonance imaging (MRI) we detected functional abnormalities in the hippocampal formation of patients with septic delirium. Hippocampal dysfunction was further investigated in an animal model for sepsis using lipopolysaccharide (LPS) injections to induce endotoxemia in rats, followed by electrophysiological recordings in brain slices. Endotoxemia induced a deficit in long term potentiation which was completely reversed by apamin, a blocker of small conductance calcium-activated potassium (SK) channels, and partly restored by treatment with physostigmine (eserine), an acetylcholinesterase inhibitor, or TBPB, a selective M1 muscarinic acetylcholine receptor agonist. These results suggest a novel role for SK channels in the etiology of endotoxemia and explain why boosting cholinergic function restores deficits in synaptic plasticity. Drugs which enhance cholinergic or M1 activity in the brain may prove beneficial in treatment of septic delirium in the intensive care unit. PMID:26531194

  14. Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays

    PubMed Central

    Kopanitsa, Maksym V; Afinowi, Nurudeen O; Grant, Seth GN

    2006-01-01

    Background Multi-electrode arrays (MEAs) have become popular tools for recording spontaneous and evoked electrical activity of excitable tissues. The majority of previous studies of synaptic transmission in brain slices employed MEAs with planar electrodes that had limited ability to detect signals coming from deeper, healthier layers of the slice. To overcome this limitation, we used three-dimensional (3D) MEAs with tip-shaped electrodes to probe plasticity of field excitatory synaptic potentials (fEPSPs) in the CA1 area of hippocampal slices of 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice. Results Using 3D MEAs, we were able to record larger fEPSPs compared to signals measured by planar MEAs. Several stimulation protocols were used to induce long-term potentiation (LTP) of synaptic responses in the CA1 area recorded following excitation of Schäffer collateral/commissural fibres. Either two trains of high frequency tetanic stimulation or three trains of theta-burst stimulation caused a persistent, pathway specific enhancement of fEPSPs that remained significantly elevated for at least 60 min. A third LTP induction protocol that comprised 150 pulses delivered at 5 Hz, evoked moderate LTP if excitation strength was increased to 1.5× of the baseline stimulus. In all cases, we observed a clear spatial plasticity gradient with maximum LTP levels detected in proximal apical dendrites of pyramidal neurones. No significant differences in the manifestation of LTP were observed between 129S5/SvEvBrd and C57BL/6J-TyrC-Brd mice with the three protocols used. All forms of plasticity were sensitive to inhibition of N-methyl-D-aspartate (NMDA) receptors. Conclusion Principal features of LTP (magnitude, pathway specificity, NMDA receptor dependence) recorded in the hippocampal slices using MEAs were very similar to those seen in conventional glass electrode experiments. Advantages of using MEAs are the ability to record from different regions of the slice and the ease of conducting

  15. Conditioned taste aversion prevents the long-lasting BDNF-induced enhancement of synaptic transmission in the insular cortex: A metaplastic effect.

    PubMed

    Rivera-Olvera, Alejandro; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-04-01

    Homeostatic plasticity mechanisms dynamically adjust synaptic strengths to promote stability that is crucial for memory storage. Metaplasticity is an example of these forms of plasticity that modify the capacity of synapses to experience subsequent Hebbian modifications. In particular, training in several behavioral tasks modifies the ability to induce long-term potentiation (LTP). Recently, we have reported that prior training in conditioned taste aversion (CTA) prevents the subsequent induction of LTP generated by high frequency stimulation in the projection from the basolateral nucleus of the amygdala (Bla) to the insular cortex (IC). One of the key molecular players that underlie long-term synaptic plasticity is brain-derived neurotrophic factor (BDNF). Previous studies from our group reported that acute microinfusion of BDNF in the IC induces a lasting potentiation of synaptic efficacy at the Bla-IC projection. Thus, the aim of the present study was to analyze whether CTA training modifies the ability to induce subsequent BDNF-induced potentiation of synaptic transmission in the Bla-IC projection in vivo. Accordingly, CTA trained rats received intracortical microinfusion of BDNF in order to induce lasting potentiation 48h after the aversion test. Our results show that CTA training prevents the induction of in vivo BDNF-LTP in the Bla-IC projection. The present results provide evidence that CTA modulates BDNF-dependent changes in IC synaptic strength. PMID:26854904

  16. Long-term potentiation modulates synaptic phosphorylation networks and reshapes the structure of the postsynaptic interactome.

    PubMed

    Li, Jing; Wilkinson, Brent; Clementel, Veronica A; Hou, Junjie; O'Dell, Thomas J; Coba, Marcelo P

    2016-01-01

    The postsynaptic site of neurons is composed of more than 1500 proteins arranged in protein-protein interaction complexes, the composition of which is modulated by protein phosphorylation through the actions of complex signaling networks. Components of these networks function as key regulators of synaptic plasticity, in particular hippocampal long-term potentiation (LTP). The postsynaptic density (PSD) is a complex multicomponent structure that includes receptors, enzymes, scaffold proteins, and structural proteins. We triggered LTP in the mouse hippocampus CA1 region and then performed large-scale analyses to identify phosphorylation-mediated events in the PSD and changes in the protein-protein interactome of the PSD that were associated with LTP induction. Our data indicated LTP-induced reorganization of the PSD. The dynamic reorganization of the PSD links glutamate receptor signaling to kinases (writers) and phosphatases (erasers), as well as the target proteins that are modulated by protein phosphorylation and the proteins that recognize the phosphorylation status of their binding partners (readers). Protein phosphorylation and protein interaction networks converged at highly connected nodes within the PSD network. Furthermore, the LTP-regulated phosphoproteins, which included the scaffold proteins Shank3, Syngap1, Dlgap1, and Dlg4, represented the "PSD risk" for schizophrenia and autism spectrum disorder, such that without these proteins in the analysis, the association with the PSD and these two psychiatric diseases was not present. These data are a rich resource for future studies of LTP and suggest that the PSD holds the keys to understanding the molecular events that contribute to complex neurological disorders that affect synaptic plasticity. PMID:27507650

  17. Potentiation of synaptic transmission in Rat anterior cingulate cortex by chronic itch.

    PubMed

    Zhang, Ting-Ting; Shen, Feng-Yan; Ma, Li-Qing; Wen, Wen; Wang, Bin; Peng, Yuan-Zhi; Wang, Zhi-Ru; Zhao, Xuan

    2016-01-01

    Itch and pain share similar mechanisms. It has been well documented that the anterior cingulate cortex (ACC) is important for pain-related perception. ACC has also been approved to be a potential pruritus-associated brain region. However, the mechanism of sensitization in pruriceptive neurons in the ACC is not clear. In current study, a chronic itch model was established by diphenylcyclopropenone (DCP) application. We found that both the frequency and amplitude of miniature excitatory postsynaptic currents in the ACC were enhanced after the formation of chronic itch. The paired-pulse ratio in ACC neurons recorded from the DCP group were smaller than those recorded in control group at the 50-ms interval. We also observe a significant increase in the AMPA/NMDA ratio in the DCP group. Moreover, an increased inward rectification of AMPARs in ACC pyramidal neurons was observed in the DCP group. Interestingly, the calculated ratio of silent synapses was significantly reduced in the DCP group compared with controls. Taken together, we conclude that a potentiation of synaptic transmission in the ACC can be induced by chronic itch, and unsilencing silent synapses, which probably involved recruitment of AMPARS, contributed to the potentiation of postsynaptic transmission. PMID:27472923

  18. Modelling bidirectional modulations in synaptic plasticity: A biochemical pathway model to understand the emergence of long term potentiation (LTP) and long term depression (LTD).

    PubMed

    He, Yao; Kulasiri, Don; Samarasinghe, Sandhya

    2016-08-21

    Synaptic plasticity induces bidirectional modulations of the postsynaptic response following a synaptic transmission. The long term forms of synaptic plasticity, named long term potentiation (LTP) and long term depression (LTD), are critical for the antithetic functions of the memory system, memory formation and removal, respectively. A common Ca(2+) signalling upstream triggers both LTP and LTD, and the critical proteins and factors coordinating the LTP/LTD inductions are not well understood. We develop an integrated model based on the sub-models of the indispensable synaptic proteins in the emergence of synaptic plasticity to validate and understand their potential roles in the expression of synaptic plasticity. The model explains Ca(2+)/calmodulin (CaM) complex dependent coordination of LTP/LTD expressions by the interactions among the indispensable proteins using the experimentally estimated kinetic parameters. Analysis of the integrated model provides us with insights into the effective timescales of the key proteins and we conclude that the CaM pool size is critical for the coordination between LTP/LTD expressions. PMID:27185535

  19. Changes in Synaptic Transmission and Long-term Potentiation Induction as a Possible Mechanism for Learning Disability in an Animal Model of Multiple Sclerosis

    PubMed Central

    2016-01-01

    Purpose: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. It has been shown that memory deficits is common in patients with MS. Recent studies using experimental autoimmune encephalomyelitis (EAE) as an animal model of MS have shown that indicated that EAE causes hippocampal-dependent impairment in learning and memory. Thus far, there have been no in vivo electrophysiological reports describing synaptic transmission in EAE animals. The aim of the present work is to evaluate the synaptic changes in the CA1 region of the hippocampus of EAE rats. Methods: To evaluate changes in synaptic transmission in the CA1 region of the hippocampus of EAE rats, field excitatory postsynaptic potentials (fEPSPs) from the stratum radiatum of CA1 neurons, were recorded following Schaffer collateral stimulation. Results: The results showed that EAE causes deficits in synaptic transmission and long-term potentiation (LTP) in the hippocampus. In addition, paired-pulse index with a 120 msec interstimulus interval was decreased in the EAE group. These findings indicate that EAE might induce suppression in synaptic transmission and LTP by increasing the inhibitory effect of GABAB receptors on the glutamate-mediated EPSP. Conclusions: In conclusion, influence of inflammation-triggered mechanisms on synaptic transmission may explain the negative effect of EAE on learning abilities in rats. PMID:27032554

  20. Imperfect traveling chimera states induced by local synaptic gradient coupling

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Banerjee, Tanmoy

    2016-07-01

    In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state.

  1. Imperfect traveling chimera states induced by local synaptic gradient coupling.

    PubMed

    Bera, Bidesh K; Ghosh, Dibakar; Banerjee, Tanmoy

    2016-07-01

    In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state. PMID:27575131

  2. Presynaptic protein synthesis required for NT-3-induced long-term synaptic modulation

    PubMed Central

    2011-01-01

    Background Neurotrophins elicit both acute and long-term modulation of synaptic transmission and plasticity. Previously, we demonstrated that the long-term synaptic modulation requires the endocytosis of neurotrophin-receptor complex, the activation of PI3K and Akt, and mTOR mediated protein synthesis. However, it is unclear whether the long-term synaptic modulation by neurotrophins depends on protein synthesis in pre- or post-synaptic cells. Results Here we have developed an inducible protein translation blocker, in which the kinase domain of protein kinase R (PKR) is fused with bacterial gyrase B domain (GyrB-PKR), which could be dimerized upon treatment with a cell permeable drug, coumermycin. By genetically targeting GyrB-PKR to specific cell types, we show that NT-3 induced long-term synaptic modulation requires presynaptic, but not postsynaptic protein synthesis. Conclusions Our results provide mechanistic insights into the cell-specific requirement for protein synthesis in the long-term synaptic modulation by neurotrophins. The GyrB-PKR system may be useful tool to study protein synthesis in a cell-specific manner. PMID:21211057

  3. Timing is Essential for Rapid Effects of Corticosterone on Synaptic Potentiation in the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Joels, Marian; Krugers, Harm; Wiegert, Olof

    2006-01-01

    Stress facilitates memory formation, but only when the stressor is closely linked to the learning context. These effects are, at least in part, mediated by corticosteroid hormones. Here we demonstrate that corticosterone rapidly facilitates synaptic potentiation in the mouse hippocampal CA1 area when high levels of the hormone and high-frequency…

  4. Dysregulation of synaptic and extrasynaptic N-methyl-D-aspartate receptors induced by amyloid-β.

    PubMed

    Wang, Zhi-Cong; Zhao, Jie; Li, Shao

    2013-12-01

    The toxicity of amyloid-beta (Aβ) is strongly associated with Alzheimer's disease (AD), which has a high incidence in the elderly worldwide. Recent evidence showed that alteration in the activity of N-methyl-D-aspartate receptors (NMDARs) plays a key role in Aβ-induced neurotoxicity. However, the activation of synaptic and extrasynaptic NMDARs has distinct consequences for plasticity, gene regulation, neuronal death, and Aβ production. This review focuses on the dysregulation of synaptic and extrasynaptic NMDARs induced by Aβ. On one hand, Aβ downregulates the synaptic NMDAR response by promoting NMDAR endocytosis, leading to either neurotoxicity or neuroprotection. On the other hand, Aβ enhances the activation of extrasynaptic NMDARs by decreasing neuronal glutamate uptake and inducing glutamate spillover, subsequently causing neurotoxicity. In addition, selective enhancement of synaptic activity by low doses of NMDA, or reduction of extrasynaptic activity by memantine, a non-competitive NMDAR antagonist, halts Aβ-induced neurotoxicity. Therefore, future neuroprotective drugs for AD should aim at both the enhancement of synaptic activity and the disruption of extrasynaptic NMDAR-dependent death signaling. PMID:24136243

  5. Vitamin C reverses lead-induced deficits in hippocampal synaptic plasticity in rats.

    PubMed

    Karamian, Ruhollah; Komaki, Alireza; Salehi, Iraj; Tahmasebi, Lida; Komaki, Hamidreza; Shahidi, Siamak; Sarihi, Abdolrahman

    2015-07-01

    Lead (Pb) is a neurotoxic metal that is widely distributed in the environment. In experimental animals, chronic exposure to this neurotoxicant resulted in impaired synaptic plasticity and cognitive function. In this study, we examined the protective effects of vitamin C (ascorbic acid) against Pb exposure-induced impairment of long-term potentiation (LTP). Forty-four adult male Wistar rats were divided into six groups and subjected to the following treatments for three months: (1) vehicle (distilled water); (2) Pb; (3) ascorbic acid; (4) Pb+ascorbic acid; (5) Pb (two months) followed by ascorbic acid; and (6) ascorbic acid (one month) followed by Pb. After treatment, the population spike (PS) amplitude and slope of excitatory postsynaptic potentials (EPSP) were measured in the dentate gyrus(DG) of rats in vivo. Following these measurements, blood samples were collected for the following biochemical assays: malondialdehyde (MDA), total antioxidant capacity (TAC), and total oxidant status (TOS). There was a significant increase in plasma MDA and TOS in the Pb-intoxicated group compared to the control group. There was a significant increase in TAC levels in the ascorbic acid group. Our results also show that Pb exposure caused a decrease in the EPSP slope and PS amplitude when compared with the control group, whereas vitamin C increased these parameters. Co-administration of Pb with vitamin C inhibited the effects of Pb. These findings suggested that Pb exposure caused impairment in LTP, that may have been mediated through oxidative damage. Vitamin C ameliorated the Pb-induced impairment of synaptic plasticity in the DG via antioxidant activity. PMID:26004788

  6. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity.

    PubMed

    Liu, Zhigang; Patil, Ishan Y; Jiang, Tianyi; Sancheti, Harsh; Walsh, John P; Stiles, Bangyan L; Yin, Fei; Cadenas, Enrique

    2015-01-01

    High-fat diet (HFD)-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group) or a HFD (60% of calorie from fat; HFD group) for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a) a significant decrease of insulin receptor substrate (IRS-1) phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b) these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c) primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment); this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a) an inactivation of the IRS-1 and, consequentially, (b) a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c) a suppression of the ERK/CREB pathway, and (d) a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity). It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts

  7. Dendritic morphology, synaptic transmission, and activity of mature granule cells born following pilocarpine-induced status epilepticus in the rat

    PubMed Central

    Gao, Fei; Song, Xueying; Zhu, Dexiao; Wang, Xiaochen; Hao, Aijun; Nadler, J. Victor; Zhan, Ren-Zhi

    2015-01-01

    To understand the potential role of enhanced hippocampal neurogenesis after pilocarpine-induced status epilepticus (SE) in the development of epilepsy, we quantitatively analyzed the geometry of apical dendrites, synaptic transmission, and activation levels of normotopically distributed mature newborn granule cells in the rat. SE in male Sprague-Dawley rats (between 6 and 7 weeks old) lasting for more than 2 h was induced by an intraperitoneal injection of pilocarpine. The complexity, spine density, miniature post-synaptic currents, and activity-regulated cytoskeleton-associated protein (Arc) expression of granule cells born 5 days after SE were studied between 10 and 17 weeks after CAG-GFP retroviral vector-mediated labeling. Mature granule cells born after SE had dendritic complexity similar to that of granule cells born naturally, but with denser mushroom-like spines in dendritic segments located in the outer molecular layer. Miniature inhibitory post-synaptic currents (mIPSCs) were similar between the controls and rats subjected to SE; however, smaller miniature excitatory post-synaptic current (mEPSC) amplitude with a trend toward less frequent was found in mature granule cells born after SE. After maturation, granule cells born after SE did not show denser Arc expression in the resting condition or 2 h after being activated by pentylenetetrazol-induced transient seizure activity than vicinal GFP-unlabeled granule cells. Thus our results suggest that normotopic granule cells born after pilocarpine-induced SE are no more active when mature than age-matched, naturally born granule cells. PMID:26500490

  8. Functional contributions of synaptically localized NR2B subunits of the NMDA receptor to synaptic transmission and long-term potentiation in the adult mouse CNS

    PubMed Central

    Miwa, Hideki; Fukaya, Masahiro; Watabe, Ayako M; Watanabe, Masahiko; Manabe, Toshiya

    2008-01-01

    The NMDA-type glutamate receptor is a heteromeric complex composed of the NR1 and at least one of the NR2 subunits. Switching from the NR2B to the NR2A subunit is thought to underlie functional alteration of the NMDA receptor during synaptic maturation, and it is generally believed that it results in preferential localization of NR2A subunits on the synaptic site and that of NR2B subunits on the extracellular site in the mature brain. It has also been proposed that activation of the NR2A and NR2B subunits results in long-term potentiation (LTP) and long-term depression (LTD), respectively. Furthermore, recent reports suggest that synaptic and extrasynaptic receptors may have distinct roles in synaptic plasticity as well as in gene expression associated with neuronal death. Here, we have investigated whether NR2B subunit-containing receptors are present and functional at mature synapses in the lateral nucleus of the amygdala (LA) and the CA1 region of the hippocampus, comparing their properties between the two brain regions. We have found, in contrast to the above hypotheses, that the NR2B subunit significantly contributes to synaptic transmission as well as LTP induction. Furthermore, its contribution is greater in the LA than in the CA1 region, and biophysical properties of NMDA receptors and the NR2B/NR2A ratio are different between the two brain regions. These results indicate that NR2B subunit-containing NMDA receptors accumulate on the synaptic site and are responsible for the unique properties of synaptic function and plasticity in the amygdala. PMID:18372311

  9. Gender differences in spatial learning, synaptic activity, and long-term potentiation in the hippocampus in rats: molecular mechanisms.

    PubMed

    Monfort, Pilar; Gomez-Gimenez, Belen; Llansola, Marta; Felipo, Vicente

    2015-08-19

    In tests of spatial ability, males outperform females both in rats and in humans. The mechanism underlying this gender differential learning ability and memory in spatial tasks remains unknown. Long-term potentiation (LTP) in the hippocampus is considered the basis for spatial learning and memory. The aims of this work were (a) to assess spatial learning and memory in male and female rats in the radial and Morris mazes; (b) to assess whether basal synaptic activity and LTP in the hippocampus are different in male and female rats; and (c) to identify the molecular mechanisms responsible for the gender differences in LTP. We analyzed in young male and female rats (a) performance in spatial tasks in the radial and Morris water mazes; (b) basal synaptic activity in hippocampal slices; and (c) LTP and some mechanisms modulating its magnitude. The results reported allow us to conclude that female rats show larger AMPA receptor-mediate synaptic responses under basal conditions, likely due to enhanced phosphorylation of GluR2 in Ser880 and increased amounts of GluR2-containing AMPA receptors in postsynaptic densities. In contrast, the magnitude of tetanus-induced LTP was lower in females than in males. This is due to reduced activation of soluble guanylate cyclase and the formation of cGMP, leading to lower activation of cGMP-dependent protein kinase and phosphorylation of GluR1 in Ser845, which results in lower insertion of AMPA receptors in the synaptic membrane and a lower magnitude of LTP. These mechanisms may contribute to the reduced performance of females in the radial and Morris water mazes. PMID:26098845

  10. Chronic ciguatoxin treatment induces synaptic scaling through voltage gated sodium channels in cortical neurons.

    PubMed

    Martín, Víctor; Vale, Carmen; Rubiolo, Juan A; Roel, Maria; Hirama, Masahiro; Yamashita, Shuji; Vieytes, Mercedes R; Botana, Luís M

    2015-06-15

    Ciguatoxins are sodium channels activators that cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents with long-term neurological alterations. In central neurons, chronic perturbations in activity induce homeostatic synaptic mechanisms that adjust the strength of excitatory synapses and modulate glutamate receptor expression in order to stabilize the overall activity. Immediate early genes, such as Arc and Egr1, are induced in response to activity changes and underlie the trafficking of glutamate receptors during neuronal homeostasis. To better understand the long lasting neurological consequences of ciguatera, it is important to establish the role that chronic changes in activity produced by ciguatoxins represent to central neurons. Here, the effect of a 30 min exposure of 10-13 days in vitro (DIV) cortical neurons to the synthetic ciguatoxin CTX 3C on Arc and Egr1 expression was evaluated using real-time polymerase chain reaction approaches. Since the toxin increased the mRNA levels of both Arc and Egr1, the effect of CTX 3C in NaV channels, membrane potential, firing activity, miniature excitatory postsynaptic currents (mEPSCs), and glutamate receptors expression in cortical neurons after a 24 h exposure was evaluated using electrophysiological and western blot approaches. The data presented here show that CTX 3C induced an upregulation of Arc and Egr1 that was prevented by previous coincubation of the neurons with the NaV channel blocker tetrodotoxin. In addition, chronic CTX 3C caused a concentration-dependent shift in the activation voltage of NaV channels to more negative potentials and produced membrane potential depolarization. Moreover, 24 h treatment of cortical neurons with 5 nM CTX 3C decreased neuronal firing and induced synaptic scaling mechanisms, as evidenced by a decrease in the amplitude of mEPSCs and downregulation in the protein level of glutamate receptors that was also prevented by tetrodotoxin

  11. Activity-Dependent Calpain Activation Plays a Critical Role in Synaptic Facilitation and Post-Tetanic Potentiation

    ERIC Educational Resources Information Center

    Khoutorsky, Arkady; Spira, Micha E.

    2009-01-01

    Synaptic facilitation and post-tetanic potentiation (PTP) are believed to necessitate active regeneration of the release machinery and supply of synaptic vesicles to a ready-releasable site. The prevailing hypothesis assumes that synapsins play pivotal roles in these processes. Using a cholinergic synapse formed between cultured "Aplysia" neurons…

  12. High-frequency stimulation-induced synaptic potentiation in dorsal and ventral CA1 hippocampal synapses: the involvement of NMDA receptors, mGluR5, and (L-type) voltage-gated calcium channels.

    PubMed

    Papatheodoropoulos, Costas; Kouvaros, Stylianos

    2016-09-01

    The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for short-lasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that 200-Hz stimulation induced nondecremental LTP that was maintained for at least 7 h and was greater in the DH than in the VH. The interaction of NMDA receptors with L-type voltage-dependent calcium channels appeared to be more effective in the DH than in the VH. Furthermore, the LTP was significantly enhanced in the DH only, between 2 and 5 h post-tetanus. Furthermore, the mGluR5 contributed to the post-tetanic potentiation more in the VH than in the DH. PMID:27531836

  13. A Single Brief Burst Induces GluR1-Dependent Associative Short-Term Potentiation: A Potential Mechanism for Short-Term Memory

    ERIC Educational Resources Information Center

    Erickson, Martha A.; Maramara, Lauren A.; Lisman, John

    2010-01-01

    Recent work showed that short-term memory (STM) is selectively reduced in GluR1 knockout mice. This raises the possibility that a form of synaptic modification dependent on GluR1 might underlie STM. Studies of synaptic plasticity have shown that stimuli too weak to induce long-term potentiation induce short-term potentiation (STP), a phenomenon…

  14. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    PubMed Central

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  15. Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons

    PubMed Central

    Manchon, Jose Felix Moruno; Dabaghian, Yuri; Uzor, Ndidi-Ese; Kesler, Shelli R.; Wefel, Jeffrey S.; Tsvetkov, Andrey S.

    2016-01-01

    Neurotoxicity may occur in cancer patients and survivors during or after chemotherapy. Cognitive deficits associated with neurotoxicity can be subtle or disabling and frequently include disturbances in memory, attention, executive function and processing speed. Searching for pathways altered by anti-cancer treatments in cultured primary neurons, we discovered that doxorubicin, a commonly used anti-neoplastic drug, significantly decreased neuronal survival. The drug promoted the formation of DNA double-strand breaks in primary neurons and reduced synaptic and neurite density. Pretreatment of neurons with levetiracetam, an FDA-approved anti-epileptic drug, enhanced survival of chemotherapy drug-treated neurons, reduced doxorubicin-induced formation of DNA double-strand breaks, and mitigated synaptic and neurite loss. Thus, levetiracetam might be part of a valuable new approach for mitigating synaptic damage and, perhaps, for treating cognitive disturbances in cancer patients and survivors. PMID:27168474

  16. Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons.

    PubMed

    Manchon, Jose Felix Moruno; Dabaghian, Yuri; Uzor, Ndidi-Ese; Kesler, Shelli R; Wefel, Jeffrey S; Tsvetkov, Andrey S

    2016-01-01

    Neurotoxicity may occur in cancer patients and survivors during or after chemotherapy. Cognitive deficits associated with neurotoxicity can be subtle or disabling and frequently include disturbances in memory, attention, executive function and processing speed. Searching for pathways altered by anti-cancer treatments in cultured primary neurons, we discovered that doxorubicin, a commonly used anti-neoplastic drug, significantly decreased neuronal survival. The drug promoted the formation of DNA double-strand breaks in primary neurons and reduced synaptic and neurite density. Pretreatment of neurons with levetiracetam, an FDA-approved anti-epileptic drug, enhanced survival of chemotherapy drug-treated neurons, reduced doxorubicin-induced formation of DNA double-strand breaks, and mitigated synaptic and neurite loss. Thus, levetiracetam might be part of a valuable new approach for mitigating synaptic damage and, perhaps, for treating cognitive disturbances in cancer patients and survivors. PMID:27168474

  17. Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity.

    PubMed

    Brassai, A; Suvanjeiev, R-G; Bán, E-Gy; Lakatos, M

    2015-03-01

    In acute ischaemic brain injury and chronic neurodegeneration, the first step leading to excitotoxicity and cell death is the excessive release of Glu and the prolonged activation of Glu receptors, followed by intracellular calcium overload. There is apparent agreement that glutamatergic transmission via synaptic NMDA receptors (composed of GluN2A subunits) is neuroprotective, whereas transmission via non-synaptic NMDA receptors (composed of GluN2B subunits) is excitotoxic. Extrasynaptic NMDARs activate cell death pathways and may play a key role in Glu-induced excitotoxic neurodegeneration and apoptosis. Accordingly, the function of protective pathways may be impaired by the concomitant blockade of GluN2A-containing receptors. In contrast, the selective inhibition of non-synaptic GluN2B-containing NMDARs may be beneficial in neuroprotection because it can prevent neuronal cell death and thus maintain protective pathways. PMID:25540918

  18. Measurement of quantal secretion induced by ouabain and its correlation with depletion of synaptic vesicles.

    PubMed

    Haimann, C; Torri-Tarelli, F; Fesce, R; Ceccarelli, B

    1985-11-01

    Ouabain (0.1 and 0.05 mM) was applied to frog cutaneous pectoris nerve-muscle preparations bathed in modified Ringer's solution containing either 1.8 mM Ca2+ (and 4 mM Mg2+) or no added Ca2+ (4 mM Mg2+ and 1 mM EGTA). During the intense quantal release of acetylcholine (ACh) induced by ouabain, the parameters of the miniature endplate potentials (mepps) were deduced from the variance, skew, and power spectra of the endplate recordings by applying a recently described modification of classical fluctuation analysis. Often the high frequency of mepps is not stationary; therefore, the signal was high-pass filtered (time constant of the resistance-capacitance filter of 2 ms) to remove the errors introduced by nonstationarity. When ouabain was applied in the presence of Ca2+, mepp frequency started to rise exponentially after a lag of 1.5-2 h, reached an average peak frequency of 1,300/s in approximately 30 min, and then suddenly subsided to low level (10/s). In Ca2+-free solution, after a shorter lag (1-1.5 h), mepp frequency rose to peak rate of 700/s in approximately 20 min and then gradually subsided. In spite of the different time course of secretion in the two experimental conditions, the cumulative quantal release was not significantly different (7.4 +/- 1.3 X 10(5) in Ca2+-containing and 8.8 +/- 2.7 X 10(5) in Ca2+-free solutions). 60 min after the peak secretion, the muscles were fixed for observation in the electron microscope. Morphometric analysis on micrographs of neuromuscular junctions revealed in both cases a profound depletion of synaptic vesicles and deep infoldings of presynaptic membrane. This rapid depletion and the lack of uptake of horseradish peroxidase suggest that ouabain impairs the recycling process that tends to conserve the vesicle population during intense secretion of neurotransmitter. The good correlation observed between the reduction in the store of synaptic vesicles and the total number of quanta of ACh secreted in the absence of a

  19. Odor-Specific Habituation Arises from Interaction of Afferent Synaptic Adaptation and Intrinsic Synaptic Potentiation in Olfactory Cortex

    ERIC Educational Resources Information Center

    Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.

    2009-01-01

    Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…

  20. Acetyl-l-carnitine restores synaptic transmission and enhances the inducibility of stable LTP after oxygen-glucose deprivation.

    PubMed

    Kocsis, Kitti; Frank, Rita; Szabó, József; Knapp, Levente; Kis, Zsolt; Farkas, Tamás; Vécsei, László; Toldi, József

    2016-09-22

    Hypoxic circumstances result in functional and structural impairments of the brain. Oxygen-glucose deprivation (OGD) on hippocampal slices is a technique widely used to investigate the consequences of ischemic stroke and the potential neuroprotective effects of different drugs. Acetyl-l-carnitine (ALC) is a naturally occurring substance in the body, and it can therefore be administered safely even in relatively high doses. In previous experiments, ALC pretreatment proved to be effective against global hypoperfusion. In the present study, we investigated whether ALC can be protective in an OGD model. We are not aware of any earlier study in which the long-term potentiation (LTP) function on hippocampal slices was measured after OGD. Therefore, we set out to determine whether an effective ALC concentration has an effect on synaptic plasticity after OGD in the hippocampal CA1 subfield of rats. A further aim was to investigate the mechanism underlying the protective effect of this compound. The experiments revealed that ALC is neuroprotective against OGD in a dose-dependent manner, which is manifested not only in the regeneration of the impaired synaptic transmission after the OGD, but also in the inducibility and stability of the LTP. In the case of the most effective concentration of ALC (500μM), use of a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002) revealed that the PI3K/Akt signaling pathway has a key role in the restoration of the synaptic transmission and plasticity reached by ALC treatment. PMID:27378558

  1. Membrane potential-dependent integration of synaptic inputs in entorhinal stellate neurons.

    PubMed

    Economo, Michael N; Martínez, Joan José; White, John A

    2014-12-01

    Stellate cells (SCs) of the medial entorhinal cortex exhibit robust spontaneous membrane-potential oscillations (MPOs) in the theta (4-12 Hz) frequency band as well as theta-frequency resonance in their membrane impedance spectra. Past experimental and modeling work suggests that these features may contribute to the phase-locking of SCs to the entorhinal theta rhythm and may be important for forming the hexagonally tiled grid cell place fields exhibited by these neurons in vivo. Among the major biophysical mechanisms contributing to MPOs is a population of persistent (non-inactivating or slowly inactivating) sodium channels. The resulting persistent sodium conductance (GNaP ) gives rise to an apparent increase in input resistance as the cell approaches threshold. In this study, we used dynamic clamp to test the hypothesis that this increased input resistance gives rise to voltage-dependent, and thus MPO phase-dependent, changes in the amplitude of excitatory and inhibitory post-synaptic potential (PSP) amplitudes. We find that PSP amplitude depends on membrane potential, exhibiting a 5-10% increase in amplitude per mV depolarization. The effect is larger than-and sums quasi-linearly with-the effect of the synaptic driving force, V - Esyn . Given that input-driven MPOs 10 mV in amplitude are commonly observed in MEC stellate cells in vivo, this voltage- and phase-dependent synaptic gain is large enough to modulate PSP amplitude by over 50% during theta-frequency MPOs. Phase-dependent synaptic gain may therefore impact the phase locking and phase precession of grid cells in vivo to ongoing network oscillations. © 2014 Wiley Periodicals, Inc. PMID:25044927

  2. Endocannabinoids mediate muscarine-induced synaptic depression at the vertebrate neuromuscular junction.

    PubMed

    Newman, Zachary; Malik, Priya; Wu, Tse-Yu; Ochoa, Christopher; Watsa, Nayantara; Lindgren, Clark

    2007-03-01

    Endocannabinoids (eCBs) inhibit neurotransmitter release throughout the central nervous system. Using the Ceratomandibularis muscle from the lizard Anolis carolinensis we asked whether eCBs play a similar role at the vertebrate neuromuscular junction. We report here that the CB(1) cannabinoid receptor is concentrated on motor terminals and that eCBs mediate the inhibition of neurotransmitter release induced by the activation of M(3) muscarinic acetylcholine (ACh) receptors. N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide, a CB(1) antagonist, prevents muscarine from inhibiting release and arachidonylcyclopropylamide (ACPA), a CB(1) receptor agonist, mimics M(3) activation and occludes the effect of muscarine. As for its mechanism of action, ACPA reduces the action-potential-evoked calcium transient in the nerve terminal and this decrease is more than sufficient to account for the observed inhibition of neurotransmitter release. Similar to muscarine, the inhibition of synaptic transmission by ACPA requires nitric oxide, acting via the synthesis of cGMP and the activation of cGMP-dependent protein kinase. 2-Arachidonoylglycerol (2-AG) is responsible for the majority of the effects of eCB as inhibitors of phospholipase C and diacylglycerol lipase, two enzymes responsible for synthesis of 2-AG, significantly limit muscarine-induced inhibition of neurotransmitter release. Lastly, the injection of (5Z,8Z,11Z,14Z)-N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide (an inhibitor of eCB transport) into the muscle prevents muscarine, but not ACPA, from inhibiting ACh release. These results collectively lead to a model of the vertebrate neuromuscular junction whereby 2-AG mediates the muscarine-induced inhibition of ACh release. To demonstrate the physiological relevance of this model we show that the CB(1) antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide prevents

  3. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

    PubMed Central

    Guzman, Segundo J.; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states. PMID:27069691

  4. Calcium flux-independent NMDA receptor activity is required for Aβ oligomer-induced synaptic loss

    PubMed Central

    Birnbaum, J H; Bali, J; Rajendran, L; Nitsch, R M; Tackenberg, C

    2015-01-01

    Synaptic loss is one of the major features of Alzheimer's disease (AD) and correlates with the degree of dementia. N-methyl-d-aspartate receptors (NMDARs) have been shown to mediate downstream effects of the β-amyloid peptide (Aβ) in AD models. NMDARs can trigger intracellular cascades via Ca2+ entry, however, also Ca2+-independent (metabotropic) functions of NMDARs have been described. We aimed to determine whether ionotropic or metabotropic NMDAR signaling is required for the induction of synaptic loss by Aβ. We show that endogenous Aβ as well as exogenously added synthetic Aβ oligomers induced dendritic spine loss and reductions in pre- and postsynaptic protein levels in hippocampal slice cultures. Synaptic alterations were mitigated by blocking glutamate binding to NMDARs using NMDAR antagonist APV, but not by preventing ion flux with Ca2+ chelator BAPTA or open-channel blockers MK-801 or memantine. Aβ increased the activity of p38 MAPK, a kinase involved in long-term depression and inhibition of p38 MAPK abolished the loss of dendritic spines. Aβ-induced increase of p38 MAPK activity was prevented by APV but not by BAPTA, MK-801 or memantine treatment highlighting the role of glutamate binding to NMDARs but not Ca2+ flux for synaptic degeneration by Aβ. We further show that treatment with the G protein inhibitor pertussis toxin (PTX) did not prevent dendritic spine loss in the presence of Aβ oligomers. Our data suggest that Aβ induces the activation of p38 MAPK and subsequent synaptic loss through Ca2+ flux- and G protein-independent mechanisms. PMID:26086964

  5. Calcium flux-independent NMDA receptor activity is required for Aβ oligomer-induced synaptic loss.

    PubMed

    Birnbaum, J H; Bali, J; Rajendran, L; Nitsch, R M; Tackenberg, C

    2015-01-01

    Synaptic loss is one of the major features of Alzheimer's disease (AD) and correlates with the degree of dementia. N-methyl-D-aspartate receptors (NMDARs) have been shown to mediate downstream effects of the β-amyloid peptide (Aβ) in AD models. NMDARs can trigger intracellular cascades via Ca(2+) entry, however, also Ca(2+)-independent (metabotropic) functions of NMDARs have been described. We aimed to determine whether ionotropic or metabotropic NMDAR signaling is required for the induction of synaptic loss by Aβ. We show that endogenous Aβ as well as exogenously added synthetic Aβ oligomers induced dendritic spine loss and reductions in pre- and postsynaptic protein levels in hippocampal slice cultures. Synaptic alterations were mitigated by blocking glutamate binding to NMDARs using NMDAR antagonist APV, but not by preventing ion flux with Ca(2+) chelator BAPTA or open-channel blockers MK-801 or memantine. Aβ increased the activity of p38 MAPK, a kinase involved in long-term depression and inhibition of p38 MAPK abolished the loss of dendritic spines. Aβ-induced increase of p38 MAPK activity was prevented by APV but not by BAPTA, MK-801 or memantine treatment highlighting the role of glutamate binding to NMDARs but not Ca(2+) flux for synaptic degeneration by Aβ. We further show that treatment with the G protein inhibitor pertussis toxin (PTX) did not prevent dendritic spine loss in the presence of Aβ oligomers. Our data suggest that Aβ induces the activation of p38 MAPK and subsequent synaptic loss through Ca(2+) flux- and G protein-independent mechanisms. PMID:26086964

  6. The effects of L-arginine on spatial memory and synaptic plasticity impairments induced by lipopolysaccharide

    PubMed Central

    Anaeigoudari, Akbar; Shafei, Mohammad Naser; Soukhtanloo, Mohammad; Sadeghnia, Hamid Reza; Reisi, Parham; Nosratabadi, Reza; Behradnia, Sepehr; Hosseini, Mahmoud

    2015-01-01

    Background: An important role of nitric oxide (NO) in neuroinflammation has been suggested. It is also suggested that NO has a critical role in learning and memory. Neuro-inflammation induced by lipopolysaccharide (LPS) has been reported that deteriorates learning and memory. The effect of L-arginine (LA) as a precursor of NO on LPS-induced spatial learning and memory and neuronal plasticity impairment was evaluated. Materials and Methods: The animals were grouped into: (1) Control, (2) LPS, (3) LA-LPS, and (4) LA. The rats received intraperitoneally LPS (1 mg/kg) 2 h before experiments and LA (200 mg/kg) 30 min before LPS. The animals were examined in Morris water maze (MWM). Long-term potentiation (LTP) from CA1 area of the hippocampus was also assessed by 100 Hz stimulation in the ipsilateral Schaffer collateral pathway. Results: In MWM, time latency and traveled path were higher in LPS group than the control group (P < 0.001) whereas in LA-LPS group they were shorter than LPS group (P < 0.001). The amplitude and slope of field excitatory postsynaptic potential (fEPSP) decreased in LPS group compared to control group (P < 0.05 and P < 0.01) whereas, there was not any significant difference in these parameters between LPS and LA-LPS groups. Conclusion: Administration of LPS impaired spatial memory and synaptic plasticity. Although LA ameliorated deleterious effects of LPS on learning of spatial tasks, it could not restore LPS-induced LTP impairment. PMID:26601090

  7. An apparatus for recording synaptic potentials from neuronal cultures using voltage-sensitive fluorescent dyes.

    PubMed

    Chien, C B; Pine, J

    1991-07-01

    Voltage-sensitive dyes offer the promise of noninvasive multicell recording of electrical activity, and should therefore be useful for studying the synaptic interactions of small networks of cultured neurons. We have designed and built a system for recording from microcultures of 1-15 neurons from the rat superior cervical ganglion (SCG), using voltage-sensitive fluorescent dyes of the styryl class. The apparatus comprises a standard inverted epifluorescence microscope; a mercury arc lamp with an optical feedback regulator; a 256-pixel fiber-optic camera with individual photodiode detectors and very low-noise amplifiers; and a personal computer-based data acquisition system. Its dark noise and illumination fluctuations are low enough that at typical fluorescence levels for these cells, it is limited by shot noise (the inherent physical limit of detection). Recording from SCG neurons, the signal-to-noise ratio is high enough to see large subthreshold synaptic potentials without signal averaging. This apparatus should be useful for studying long-term synaptic plasticity in cultures of vertebrate neurons, and several of its features should apply to optical recording from other preparations. PMID:1784131

  8. Iron Mediates N-Methyl-d-aspartate Receptor-dependent Stimulation of Calcium-induced Pathways and Hippocampal Synaptic Plasticity*

    PubMed Central

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T.

    2011-01-01

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-d-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP. PMID:21296883

  9. Tissue-type plasminogen activator induces synaptic vesicle endocytosis in cerebral cortical neurons.

    PubMed

    Yepes, M; Wu, F; Torre, E; Cuellar-Giraldo, D; Jia, D; Cheng, L

    2016-04-01

    The release of the serine proteinase tissue-type plasminogen activator (tPA) from the presynaptic terminal of cerebral cortical neurons plays a central role in the development of synaptic plasticity, adaptation to metabolic stress and neuronal survival. Our earlier studies indicate that by inducing the recruitment of the cytoskeletal protein βII-spectrin and voltage-gated calcium channels to the active zone, tPA promotes Ca(2+)-dependent translocation of synaptic vesicles (SVs) to the synaptic release site where they release their load of neurotransmitters into the synaptic cleft. Here we used a combination of in vivo and in vitro experiments to investigate whether this effect leads to depletion of SVs in the presynaptic terminal. Our data indicate that tPA promotes SV endocytosis via a mechanism that does not require the conversion of plasminogen into plasmin. Instead, we show that tPA induces calcineurin-mediated dynamin I dephosphorylation, which is followed by dynamin I-induced recruitment of the actin-binding protein profilin II to the presynaptic membrane, and profilin II-induced F-actin formation. We report that this tPA-induced sequence of events leads to the association of newly formed SVs with F-actin clusters in the endocytic zone. In summary, the data presented here indicate that following the exocytotic release of neurotransmitters tPA activates the mechanism whereby SVs are retrieved from the presynaptic membrane and endocytosed to replenish the pool of vesicles available for a new cycle of exocytosis. Together, these results indicate that in murine cerebral cortical neurons tPA plays a central role coupling SVs exocytosis and endocytosis. PMID:26820595

  10. Distinctive PSA-NCAM and NCAM Hallmarks in Glutamate-Induced Dendritic Atrophy and Synaptic Disassembly

    PubMed Central

    Podestá, María Fernanda; Yam, Patricia; Codagnone, Martín Gabriel; Uccelli, Nonthué Alejandra; Colman, David; Reinés, Analía

    2014-01-01

    Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss. PMID:25279838

  11. NR2A/B-containing NMDA receptors mediate cocaine-induced synaptic plasticity in the VTA and cocaine psychomotor sensitization.

    PubMed

    Schumann, Johanna; Matzner, Henry; Michaeli, Avner; Yaka, Rami

    2009-09-18

    Cocaine-induced modifications of glutamatergic synaptic transmission in the mesolimbic system play a key role in adaptations that promote addictive behaviors. In particular, the activation of ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) in the ventral tegmental area (VTA) is critical for both cocaine-induced synaptic plasticity induced by a single cocaine injection and for the initiation of cocaine psychomotor sensitization. In this study, we set to determine whether the NR2 subunits of the NMDAR play a specific role in triggering cocaine-induced alterations in synaptic plasticity and the development of psychomotor sensitization. We found that inhibition of NR2A-containing NMDARs by NVP-AAM077, or NR2B-containing receptors by ifenprodil, blocked cocaine-induced increase in the AMPAR/NMDAR currents ratio, a measure of long-term potentiation (LTP) in vivo, in VTA neurons 24h following a single cocaine injection. Furthermore, inhibition of the NR2A subunit during the development of psychomotor sensitization attenuated the enhanced locomotor activity following repeated cocaine injections. Together, these results suggest that NR2-containing NMDA receptors play an important role in the machinery that triggers synaptic and behavioral adaptations to drugs of abuse such as cocaine. PMID:19524640

  12. Early β-Amyloid-induced Synaptic Dysfunction Is Counteracted by Estrogen in Organotypic Hippocampal Cultures.

    PubMed

    Merlo, Sara; Spampinato, Simona Federica; Capani, Francisco; Sortino, Maria Angela

    2016-01-01

    In the present study we set up a model of slow progression of neuronal injury by exposing organotypic hippocampal cultures to a low concentration of Amyloid β (25-35) peptide (Aβ, 2 μM) to analyze the time-related effects of 17-β estradiol (17β-E2, 10 nM). Neuronal death occurs after 7 d and is prevented by addition of 17β-E2 24 h prior to, together with or 48 h after exposure to Aβ. This effect is mimicked by selective ERα agonist PPT (100 nM). Treatment with Aβ leads to early and transient (16-72 h) increase of pre- and post-synaptic proteins synaptophysin and PSD95, followed by a decrease coincident with neuronal death (7d), all prevented by 17β-E2. At 72 h of Aβ exposure, synaptic activity is increased, as by higher levels of glutamate and increased loading and unloading of FM 1-43-labeled synaptic vesicles. All these effects are also prevented by 17β-E2. These data point out beneficial effects of estrogen on early Aβ-induced synaptic disruption. PMID:26805000

  13. IκB Kinase Regulates Social Defeat Stress-Induced Synaptic and Behavioral Plasticity

    PubMed Central

    Christoffel, Daniel J.; Golden, Sam A.; Dumitriu, Dani; Robison, Alfred J.; Janssen, William G.; Ahn, H. Francisca; Krishnan, Vaishnav; Reyes, Cindy M.; Han, Ming-Hu; Ables, Jessica L.; Eisch, Amelia J.; Dietz, David M.; Ferguson, Deveroux; Neve, Rachael L.; Greengard, Paul; Kim, Yong; Morrison, John H.; Russo, Scott J.

    2011-01-01

    The neurobiological underpinnings of mood and anxiety disorders have been linked to the nucleus accumbens (NAc), a region important in processing the rewarding and emotional salience of stimuli. Using chronic social defeat stress, an animal model of mood and anxiety disorders, we investigated whether alterations in synaptic plasticity are responsible for the long-lasting behavioral symptoms induced by this form of stress. We hypothesized that chronic social defeat stress alters synaptic strength or connectivity of medium spiny neurons (MSNs) in the NAc to induce social avoidance. To test this, we analyzed the synaptic profile of MSNs via confocal imaging of Lucifer-yellow-filled cells, ultrastructural analysis of the postsynaptic density, and electrophysiological recordings of miniature EPSCs (mEPSCs) in mice after social defeat. We found that NAc MSNs have more stubby spine structures with smaller postsynaptic densities and an increase in the frequency of mEPSCs after social defeat. In parallel to these structural changes, we observed significant increases in IκB kinase (IKK) in the NAc after social defeat, a molecular pathway that has been shown to regulate neuronal morphology. Indeed, we find using viral-mediated gene transfer of dominant-negative and constitutively active IKK mutants that activation of IKK signaling pathways during social defeat is both necessary and sufficient to induce synaptic alterations and behavioral effects of the stress. These studies establish a causal role for IKK in regulating stress-induced adaptive plasticity and may present a novel target for drug development in the treatment of mood and anxiety disorders in humans. PMID:21209217

  14. Fear Conditioning Potentiates Synaptic Transmission onto Long-Range Projection Neurons in the Lateral Subdivision of Central Amygdala

    PubMed Central

    Penzo, Mario A.; Robert, Vincent

    2014-01-01

    Recent studies indicate that the lateral subdivision of the central amygdala (CeL) is essential for fear learning. Specifically, fear conditioning induces cell-type-specific synaptic plasticity in CeL neurons that is required for the storage of fear memories. The CeL also controls fear expression by gating the activity of the medial subdivision of the central amygdala (CeM), the canonical amygdala output to areas that mediate defensive responses. In addition to the connection with CeM, the CeL sends long-range projections to innervate extra-amygdala areas. However, the long-range projection CeL neurons have not been well characterized, and their role in fear regulation is unknown. Here we show in mice that a subset of CeL neurons directly project to the midbrain periaqueductal gray (PAG) and the paraventricular nucleus of the thalamus, two brain areas implicated in defensive behavior. These long-range projection CeL neurons are predominantly somatostatin-positive (SOM+) neurons, which can directly inhibit PAG neurons, and some of which innervate both the PAG and paraventricular nucleus of the thalamus. Notably, fear conditioning potentiates excitatory synaptic transmission onto these long-range projection CeL neurons. Thus, our study identifies a subpopulation of SOM+ CeL neurons that may contribute to fear learning and regulate fear expression independent of CeM. PMID:24523533

  15. Nuclear Calcium Signaling Induces Expression of the Synaptic Organizers Lrrtm1 and Lrrtm2*

    PubMed Central

    Hayer, Stefanie N.; Bading, Hilmar

    2015-01-01

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2–4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca2+/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. PMID:25527504

  16. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments

    PubMed Central

    2013-01-01

    Background Tau is a microtubule stabilizing protein and is mainly expressed in neurons. Tau aggregation into oligomers and tangles is considered an important pathological event in tauopathies, such as frontotemporal dementia (FTD) and Alzheimer’s disease (AD). Tauopathies are also associated with deficits in synaptic plasticity such as long-term potentiation (LTP), but the specific role of tau in the manifestation of these deficiencies is not well-understood. We examined long lasting forms of synaptic plasticity in JNPL3 (BL6) mice expressing mutant tau that is identified in some inherited FTDs. Results We found that aged (>12 months) JNPL3 (BL6) mice exhibit enhanced hippocampal late-phase (L-LTP), while young JNPL3 (BL6) mice (age 6 months) displayed normal L-LTP. This enhanced L-LTP in aged JNPL3 (BL6) mice was rescued with the GABAAR agonist, zolpidem, suggesting a loss of GABAergic function. Indeed, we found that mutant mice displayed a reduction in hippocampal GABAergic interneurons. Finally, we also found that expression of mutant tau led to severe sensorimotor-gating and hippocampus-dependent memory deficits in the aged JNPL3 (BL6) mice. Conclusions We show for the first time that hippocampal GABAergic function is impaired by pathological tau protein, leading to altered synaptic plasticity and severe memory deficits. Increased understanding of the molecular mechanisms underlying the synaptic failure in AD and FTD is critical to identifying targets for therapies to restore cognitive deficiencies associated with tauopathies. PMID:24252661

  17. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression.

    PubMed

    Li, Bo; Piriz, Joaquin; Mirrione, Martine; Chung, ChiHye; Proulx, Christophe D; Schulz, Daniela; Henn, Fritz; Malinow, Roberto

    2011-02-24

    The cellular basis of depressive disorders is poorly understood. Recent studies in monkeys indicate that neurons in the lateral habenula (LHb), a nucleus that mediates communication between forebrain and midbrain structures, can increase their activity when an animal fails to receive an expected positive reward or receives a stimulus that predicts aversive conditions (that is, disappointment or anticipation of a negative outcome). LHb neurons project to, and modulate, dopamine-rich regions, such as the ventral tegmental area (VTA), that control reward-seeking behaviour and participate in depressive disorders. Here we show that in two learned helplessness models of depression, excitatory synapses onto LHb neurons projecting to the VTA are potentiated. Synaptic potentiation correlates with an animal's helplessness behaviour and is due to an enhanced presynaptic release probability. Depleting transmitter release by repeated electrical stimulation of LHb afferents, using a protocol that can be effective for patients who are depressed, markedly suppresses synaptic drive onto VTA-projecting LHb neurons in brain slices and can significantly reduce learned helplessness behaviour in rats. Our results indicate that increased presynaptic action onto LHb neurons contributes to the rodent learned helplessness model of depression. PMID:21350486

  18. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression

    SciTech Connect

    Li, B.; Schulz, D.; Li, B; Piriz, J.; Mirrione, M.; Chung, C.H.; Proulx, C.D.; Schulz, D.; Henn, F.; Malinow, R.

    2011-02-24

    The cellular basis of depressive disorders is poorly understood. Recent studies in monkeys indicate that neurons in the lateral habenula (LHb), a nucleus that mediates communication between forebrain and midbrain structures, can increase their activity when an animal fails to receive an expected positive reward or receives a stimulus that predicts aversive conditions (that is, disappointment or anticipation of a negative outcome). LHb neurons project to, and modulate, dopamine-rich regions, such as the ventral tegmental area (VTA), that control reward-seeking behaviour and participate in depressive disorders. Here we show that in two learned helplessness models of depression, excitatory synapses onto LHb neurons projecting to the VTA are potentiated. Synaptic potentiation correlates with an animal's helplessness behaviour and is due to an enhanced presynaptic release probability. Depleting transmitter release by repeated electrical stimulation of LHb afferents, using a protocol that can be effective for patients who are depressed, markedly suppresses synaptic drive onto VTA-projecting LHb neurons in brain slices and can significantly reduce learned helplessness behaviour in rats. Our results indicate that increased presynaptic action onto LHb neurons contributes to the rodent learned helplessness model of depression.

  19. Taurine-Induced Long-Lasting Enhancement of Synaptic Transmission in Mice: Role of Transporters

    PubMed Central

    Sergeeva, O A; Chepkova, A N; Doreulee, N; Eriksson, K S; Poelchen, W; Mönnighoff, I; Heller-Stilb, B; Warskulat, U; Häussinger, D; Haas, H L

    2003-01-01

    Taurine, a major osmolyte in the brain evokes a long-lasting enhancement (LLETAU) of synaptic transmission in hippocampal and cortico-striatal slices. Hippocampal LLETAU was abolished by the GABA uptake blocker nipecotic acid (NPA) but not by the taurine-uptake inhibitor guanidinoethyl sulphonate (GES). Striatal LLETAU was sensitive to GES but not to NPA. Semiquantitative PCR analysis and immunohistochemistry revealed that taurine transporter expression is significantly higher in the striatum than in the hippocampus. Taurine transporter-deficient mice displayed very low taurine levels in both structures and a low ability to develop LLETAU in the striatum, but not in the hippocampus. The different mechanisms of taurine-induced synaptic plasticity may reflect the different vulnerabilities of these brain regions under pathological conditions that are accompanied by osmotic changes such as hepatic encephalopathy. PMID:12824447

  20. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats

    SciTech Connect

    Krueger, Katharina Straub, Heidrun; Hirner, Alfred V.; Hippler, Joerg; Binding, Norbert; Musshoff, Ulrich

    2009-04-01

    Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krueger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Mu{beta}hoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krueger, K., Straub, H., Binding, N., Mu{beta}hoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krueger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Mu{beta}hoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA{sup V}) and monomethylarsonous acid (MMA{sup III}) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA{sup V} had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA{sup III} strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 {mu}mol/l (adult rats) and 25 {mu}mol/l (young rats) and LTP amplitudes at concentrations of 25 {mu}mol/l (adult rats) and 10 {mu}mol/l (young rats), respectively. In contrast, application of 1 {mu}mol/l MMA{sup III} led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at

  1. Entorhinal Denervation Induces Homeostatic Synaptic Scaling of Excitatory Postsynapses of Dentate Granule Cells in Mouse Organotypic Slice Cultures

    PubMed Central

    Vlachos, Andreas; Becker, Denise; Jedlicka, Peter; Winkels, Raphael; Roeper, Jochen; Deller, Thomas

    2012-01-01

    Denervation-induced changes in excitatory synaptic strength were studied following entorhinal deafferentation of hippocampal granule cells in mature (≥3 weeks old) mouse organotypic entorhino-hippocampal slice cultures. Whole-cell patch-clamp recordings revealed an increase in excitatory synaptic strength in response to denervation during the first week after denervation. By the end of the second week synaptic strength had returned to baseline. Because these adaptations occurred in response to the loss of excitatory afferents, they appeared to be in line with a homeostatic adjustment of excitatory synaptic strength. To test whether denervation-induced changes in synaptic strength exploit similar mechanisms as homeostatic synaptic scaling following pharmacological activity blockade, we treated denervated cultures at 2 days post lesion for 2 days with tetrodotoxin. In these cultures, the effects of denervation and activity blockade were not additive, suggesting that similar mechanisms are involved. Finally, we investigated whether entorhinal denervation, which removes afferents from the distal dendrites of granule cells while leaving the associational afferents to the proximal dendrites of granule cells intact, results in a global or a local up-scaling of granule cell synapses. By using computational modeling and local electrical stimulations in Strontium (Sr2+)-containing bath solution, we found evidence for a lamina-specific increase in excitatory synaptic strength in the denervated outer molecular layer at 3–4 days post lesion. Taken together, our data show that entorhinal denervation results in homeostatic functional changes of excitatory postsynapses of denervated dentate granule cells in vitro. PMID:22403720

  2. Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice.

    PubMed

    Hendriks, Hester S; Koolen, Lucas A E; Dingemans, Milou M L; Viberg, Henrik; Lee, Iwa; Leonards, Pim E G; Ramakers, Geert M J; Westerink, Remco H S

    2015-12-01

    Brominated flame retardants such as tetrabromobisphenol-A (TBBPA) may exert (developmental) neurotoxic effects. However, data on (neuro)toxicity of halogen-free flame retardants (HFFRs) are scarce. Recent in vitro studies indicated a high neurotoxic potential for some HFFRs, e.g., zinc stannate (ZS), whereas the neurotoxic potential of other HFFRs, such as aluminum diethylphosphinate (Alpi), appears low. However, the in vivo (neuro)toxicity of these compounds is largely unknown. We therefore investigated effects of neonatal exposure to TBBPA, Alpi or ZS on synaptic plasticity in mouse hippocampus. Male C57bl/6 mice received a single oral dose of 211 µmol/kg bw TBBPA, Alpi or ZS on postnatal day (PND) 10. On PND 17-19, effects on hippocampal synaptic plasticity were investigated using ex vivo extracellular field recordings. Additionally, we measured levels of postsynaptic proteins involved in long-term potentiation (LTP) as well as flame retardant concentrations in brain, muscle and liver tissues. All three flame retardants induced minor, but insignificant, effects on LTP. Additionally, TBBPA induced a minor decrease in post-tetanic potentiation. Despite these minor effects, expression of selected synaptic proteins involved in LTP was not affected. The flame retardants could not be measured in significant amounts in the brains, suggesting low bioavailability and/or rapid elimination/metabolism. We therefore conclude that a single neonatal exposure on PND 10 to TBBPA, Alpi or ZS does affect neurodevelopment and synaptic plasticity only to a small extent in mice. Additional data, in particular on persistence, bioaccumulation and (in vivo) toxicity, following prolonged (developmental) exposure are required for further (human) risk assessment. PMID:25253649

  3. Pseudopterosin A: Protection of Synaptic Function and Potential as a Neuromodulatory Agent.

    PubMed

    Caplan, Stacee Lee; Zheng, Bo; Dawson-Scully, Ken; White, Catherine A; West, Lyndon M

    2016-03-01

    Natural products have provided an invaluable source of inspiration in the drug discovery pipeline. The oceans are a vast source of biological and chemical diversity. Recently, this untapped resource has been gaining attention in the search for novel structures and development of new classes of therapeutic agents. Pseudopterosins are group of marine diterpene glycosides that possess an array of potent biological activities in several therapeutic areas. Few studies have examined pseudopterosin effects during cellular stress and, to our knowledge, no studies have explored their ability to protect synaptic function. The present study probes pseudopterosin A (PsA) for its neuromodulatory properties during oxidative stress using the fruit fly, Drosophila melanogaster. We demonstrate that oxidative stress rapidly reduces neuronal activity, resulting in the loss of neurotransmission at a well-characterized invertebrate synapse. PsA mitigates this effect and promotes functional tolerance during oxidative stress by prolonging synaptic transmission in a mechanism that differs from scavenging activity. Furthermore, the distribution of PsA within mammalian biological tissues following single intravenous injection was investigated using a validated bioanalytical method. Comparable exposure of PsA in the mouse brain and plasma indicated good distribution of PsA in the brain, suggesting its potential as a novel neuromodulatory agent. PMID:26978375

  4. Pseudopterosin A: Protection of Synaptic Function and Potential as a Neuromodulatory Agent

    PubMed Central

    Caplan, Stacee Lee; Zheng, Bo; Dawson-Scully, Ken; White, Catherine A.; West, Lyndon M.

    2016-01-01

    Natural products have provided an invaluable source of inspiration in the drug discovery pipeline. The oceans are a vast source of biological and chemical diversity. Recently, this untapped resource has been gaining attention in the search for novel structures and development of new classes of therapeutic agents. Pseudopterosins are group of marine diterpene glycosides that possess an array of potent biological activities in several therapeutic areas. Few studies have examined pseudopterosin effects during cellular stress and, to our knowledge, no studies have explored their ability to protect synaptic function. The present study probes pseudopterosin A (PsA) for its neuromodulatory properties during oxidative stress using the fruit fly, Drosophila melanogaster. We demonstrate that oxidative stress rapidly reduces neuronal activity, resulting in the loss of neurotransmission at a well-characterized invertebrate synapse. PsA mitigates this effect and promotes functional tolerance during oxidative stress by prolonging synaptic transmission in a mechanism that differs from scavenging activity. Furthermore, the distribution of PsA within mammalian biological tissues following single intravenous injection was investigated using a validated bioanalytical method. Comparable exposure of PsA in the mouse brain and plasma indicated good distribution of PsA in the brain, suggesting its potential as a novel neuromodulatory agent. PMID:26978375

  5. Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation.

    PubMed

    Adasme, Tatiana; Haeger, Paola; Paula-Lima, Andrea C; Espinoza, Italo; Casas-Alarcón, M Mercedes; Carrasco, M Angélica; Hidalgo, Cecilia

    2011-02-15

    Ryanodine receptors (RyR) amplify activity-dependent calcium influx via calcium-induced calcium release. Calcium signals trigger postsynaptic pathways in hippocampal neurons that underlie synaptic plasticity, learning, and memory. Recent evidence supports a role of the RyR2 and RyR3 isoforms in these processes. Along with calcium signals, brain-derived neurotrophic factor (BDNF) is a key signaling molecule for hippocampal synaptic plasticity and spatial memory. Upon binding to specific TrkB receptors, BDNF initiates complex signaling pathways that modify synaptic structure and function. Here, we show that BDNF-induced remodeling of hippocampal dendritic spines required functional RyR. Additionally, incubation with BDNF enhanced the expression of RyR2, RyR3, and PKMζ, an atypical protein kinase C isoform with key roles in hippocampal memory consolidation. Consistent with their increased RyR protein content, BDNF-treated neurons generated larger RyR-mediated calcium signals than controls. Selective inhibition of RyR-mediated calcium release with inhibitory ryanodine concentrations prevented the PKMζ, RyR2, and RyR3 protein content enhancement induced by BDNF. Intrahippocampal injection of BDNF or training rats in a spatial memory task enhanced PKMζ, RyR2, RyR3, and BDNF hippocampal protein content, while injection of ryanodine at concentrations that stimulate RyR-mediated calcium release improved spatial memory learning and enhanced memory consolidation. We propose that RyR-generated calcium signals are key features of the complex neuronal plasticity processes induced by BDNF, which include increased expression of RyR2, RyR3, and PKMζ and the spine remodeling required for spatial memory formation. PMID:21282625

  6. Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation

    PubMed Central

    Adasme, Tatiana; Haeger, Paola; Paula-Lima, Andrea C.; Espinoza, Italo; Casas-Alarcón, M. Mercedes; Carrasco, M. Angélica; Hidalgo, Cecilia

    2011-01-01

    Ryanodine receptors (RyR) amplify activity-dependent calcium influx via calcium-induced calcium release. Calcium signals trigger postsynaptic pathways in hippocampal neurons that underlie synaptic plasticity, learning, and memory. Recent evidence supports a role of the RyR2 and RyR3 isoforms in these processes. Along with calcium signals, brain-derived neurotrophic factor (BDNF) is a key signaling molecule for hippocampal synaptic plasticity and spatial memory. Upon binding to specific TrkB receptors, BDNF initiates complex signaling pathways that modify synaptic structure and function. Here, we show that BDNF-induced remodeling of hippocampal dendritic spines required functional RyR. Additionally, incubation with BDNF enhanced the expression of RyR2, RyR3, and PKMζ, an atypical protein kinase C isoform with key roles in hippocampal memory consolidation. Consistent with their increased RyR protein content, BDNF-treated neurons generated larger RyR-mediated calcium signals than controls. Selective inhibition of RyR-mediated calcium release with inhibitory ryanodine concentrations prevented the PKMζ, RyR2, and RyR3 protein content enhancement induced by BDNF. Intrahippocampal injection of BDNF or training rats in a spatial memory task enhanced PKMζ, RyR2, RyR3, and BDNF hippocampal protein content, while injection of ryanodine at concentrations that stimulate RyR-mediated calcium release improved spatial memory learning and enhanced memory consolidation. We propose that RyR-generated calcium signals are key features of the complex neuronal plasticity processes induced by BDNF, which include increased expression of RyR2, RyR3, and PKMζ and the spine remodeling required for spatial memory formation. PMID:21282625

  7. Learning and reconsolidation implicate different synaptic mechanisms.

    PubMed

    Li, Yan; Meloni, Edward G; Carlezon, William A; Milad, Mohammed R; Pitman, Roger K; Nader, Karim; Bolshakov, Vadim Y

    2013-03-19

    Synaptic mechanisms underlying memory reconsolidation after retrieval are largely unknown. Here we report that synapses in projections to the lateral nucleus of the amygdala implicated in auditory fear conditioning, which are potentiated by learning, enter a labile state after memory reactivation, and must be restabilized through a postsynaptic mechanism implicating the mammalian target of rapamycin kinase-dependent signaling. Fear-conditioning-induced synaptic enhancements were primarily presynaptic in origin. Reconsolidation blockade with rapamycin, inhibiting mammalian target of rapamycin kinase activity, suppressed synaptic potentiation in slices from fear-conditioned rats. Surprisingly, this reduction of synaptic efficacy was mediated by post- but not presynaptic mechanisms. These findings suggest that different plasticity rules may apply to the processes underlying the acquisition of original fear memory and postreactivational stabilization of fear-conditioning-induced synaptic enhancements mediating fear memory reconsolidation. PMID:23487762

  8. Learning and reconsolidation implicate different synaptic mechanisms

    PubMed Central

    Li, Yan; Meloni, Edward G.; Carlezon, William A.; Milad, Mohammed R.; Pitman, Roger K.; Nader, Karim; Bolshakov, Vadim Y.

    2013-01-01

    Synaptic mechanisms underlying memory reconsolidation after retrieval are largely unknown. Here we report that synapses in projections to the lateral nucleus of the amygdala implicated in auditory fear conditioning, which are potentiated by learning, enter a labile state after memory reactivation, and must be restabilized through a postsynaptic mechanism implicating the mammalian target of rapamycin kinase-dependent signaling. Fear-conditioning–induced synaptic enhancements were primarily presynaptic in origin. Reconsolidation blockade with rapamycin, inhibiting mammalian target of rapamycin kinase activity, suppressed synaptic potentiation in slices from fear-conditioned rats. Surprisingly, this reduction of synaptic efficacy was mediated by post- but not presynaptic mechanisms. These findings suggest that different plasticity rules may apply to the processes underlying the acquisition of original fear memory and postreactivational stabilization of fear-conditioning–induced synaptic enhancements mediating fear memory reconsolidation. PMID:23487762

  9. Spike-timing control by dendritic plateau potentials in the presence of synaptic barrages

    PubMed Central

    Shai, Adam S.; Koch, Christof; Anastassiou, Costas A.

    2014-01-01

    Apical and tuft dendrites of pyramidal neurons support regenerative electrical potentials, giving rise to long-lasting (approximately hundreds of milliseconds) and strong (~50 mV from rest) depolarizations. Such plateau events rely on clustered glutamatergic input, can be mediated by calcium or by NMDA currents, and often generate somatic depolarizations that last for the time course of the dendritic plateau event. We address the computational significance of such single-neuron processing via reduced but biophysically realistic modeling. We introduce a model based on two discrete integration zones, a somatic and a dendritic one, that communicate from the dendritic to the somatic compartment via a long plateau-conductance. We show principled differences in the way dendritic vs. somatic inhibition controls spike timing, and demonstrate how this could implement spike time control in the face of barrages of synaptic inputs. PMID:25177288

  10. Activation of the anti-inflammatory reflex blocks lipopolysaccharide-induced decrease in synaptic inhibition in the temporal cortex of the rat.

    PubMed

    Garcia-Oscos, Francisco; Peña, David; Housini, Mohammad; Cheng, Derek; Lopez, Diego; Cuevas-Olguin, Roberto; Saderi, Nadia; Salgado Delgado, Roberto; Galindo Charles, Luis; Salgado Burgos, Humberto; Rose-John, Stefan; Flores, Gonzalo; Kilgard, Michael P; Atzori, Marco

    2015-06-01

    Stress is a potential trigger for a number of neuropsychiatric conditions, including anxiety syndromes and schizophrenic psychoses. The temporal neocortex is a stress-sensitive area involved in the development of such conditions. We have recently shown that aseptic inflammation and mild electric shock shift the balance between synaptic excitation and synaptic inhibition in favor of the former in this brain area (Garcia-Oscos et al., 2012), as well as in the prefrontal cortex (Garcia-Oscos et al., 2014). Given the potential clinical importance of this phenomenon in the etiology of hyperexcitable neuropsychiatric illness, this study investigates whether inactivation of the peripheral immune system by the "anti-inflammatory reflex" would reduce the central response to aseptic inflammation. For a model of aseptic inflammation, this study used i.p. injections of the bacterial toxin lipopolysaccharide (LPS; 5 µM) and activated the anti-inflammatory reflex either pharmacologically by i.p. injections of the nicotinic α7 receptor agonist PHA543613 or physiologically through electrical stimulation of the left vagal nerve (VNS). Patch-clamp recording was used to monitor synaptic function. Recordings from LPS-injected Sprague Dawley rats show that activation of the anti-inflammatory reflex either pharmacologically or by VNS blocks or greatly reduces the LPS-induced decrease of the synaptic inhibitory-to-excitatory ratio and the saturation level of inhibitory current input-output curves. Given the ample variety of pharmacologically available α7 nicotinic receptor agonists as well as the relative safety of clinical VNS already approved by the FDA for the treatment of epilepsy and depression, our findings suggest a new therapeutic avenue in the treatment of stress-induced hyperexcitable conditions mediated by a decrease in synaptic inhibition in the temporal cortex. PMID:25626997

  11. CA3 Synaptic Silencing Attenuates Kainic Acid-Induced Seizures and Hippocampal Network Oscillations123

    PubMed Central

    Yu, Lily M. Y.; Wintzer, Marie E.

    2016-01-01

    Abstract Epilepsy is a neurological disorder defined by the presence of seizure activity, manifest both behaviorally and as abnormal activity in neuronal networks. An established model to study the disorder in rodents is the systemic injection of kainic acid, an excitatory neurotoxin that at low doses quickly induces behavioral and electrophysiological seizures. Although the CA3 region of the hippocampus has been suggested to be crucial for kainic acid-induced seizure, because of its strong expression of kainate glutamate receptors and its high degree of recurrent connectivity, the precise role of excitatory transmission in CA3 in the generation of seizure and the accompanying increase in neuronal oscillations remains largely untested. Here we use transgenic mice in which CA3 pyramidal cell synaptic transmission can be inducibly silenced in the adult to demonstrate CA3 excitatory output is required for both the generation of epileptiform oscillatory activity and the progression of behavioral seizures. PMID:27022627

  12. Redistribution of synaptic efficacy between neocortical pyramidal neurons

    NASA Astrophysics Data System (ADS)

    Markram, Henry; Tsodyks, Misha

    1996-08-01

    EXPERiENCE-dependent potentiation and depression of synaptic strength has been proposed to subserve learning and memory by changing the gain of signals conveyed between neurons1,2. Here we examine synaptic plasticity between individual neocortical layer-5 pyramidal neurons. We show that an increase in the synaptic response, induced by pairing action-potential activity in pre- and postsynaptic neurons, was only observed when synaptic input occurred at low frequencies. This frequency-dependent increase in synaptic responses arises because of a redistribution of the available synaptic efficacy and not because of an increase in the efficacy. Redistribution of synaptic efficacy could represent a mechanism to change the content, rather than the gain, of signals conveyed between neurons.

  13. Synaptic long-term potentiation realized in Pavlov's dog model based on a NiOx-based memristor

    NASA Astrophysics Data System (ADS)

    Hu, S. G.; Liu, Y.; Liu, Z.; Chen, T. P.; Yu, Q.; Deng, L. J.; Yin, Y.; Hosaka, Sumio

    2014-12-01

    Synaptic Long-Term Potentiation (LTP), which is a long-lasting enhancement in signal transmission between neurons, is widely considered as the major cellular mechanism during learning and memorization. In this work, a NiOx-based memristor is found to be able to emulate the synaptic LTP. Electrical conductance of the memristor is increased by electrical pulse stimulation and then spontaneously decays towards its initial state, which resembles the synaptic LTP. The lasting time of the LTP in the memristor can be estimated with the relaxation equation, which well describes the conductance decay behavior. The LTP effect of the memristor has a dependence on the stimulation parameters, including pulse height, width, interval, and number of pulses. An artificial network consisting of three neurons and two synapses is constructed to demonstrate the associative learning and LTP behavior in extinction of association in Pavlov's dog experiment.

  14. Oridonin Attenuates Synaptic Loss and Cognitive Deficits in an Aβ1-42-Induced Mouse Model of Alzheimer's Disease.

    PubMed

    Wang, Sulei; Yu, Linjie; Yang, Hui; Li, Chaosheng; Hui, Zhen; Xu, Yun; Zhu, Xiaolei

    2016-01-01

    Synaptic loss induced by beta-amyloid (Aβ) plays a critical role in the pathophysiology of Alzheimer's disease (AD), but the mechanisms underlying this process remain unknown. In this study, we found that oridonin (Ori) rescued synaptic loss induced by Aβ1-42 in vivo and in vitro and attenuated the alterations in dendritic structure and spine density observed in the hippocampus of AD mice. In addition, Ori increased the expression of PSD-95 and synaptophysin and promoted mitochondrial activity in the synaptosomes of AD mice. Ori also activated the BDNF/TrkB/CREB signaling pathway in the hippocampus of AD mice. Furthermore, in the Morris water maze test, Ori reduced latency and searching distance and increased the number of platform crosses in AD mice. These data suggest that Ori might prevent synaptic loss and improve behavioral symptoms in Aβ1-42-induced AD mice. PMID:26974541

  15. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    PubMed Central

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  16. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.

    PubMed

    Streeter, K A; Baker-Herman, T L

    2014-06-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  17. EPO induces changes in synaptic transmission and plasticity in the dentate gyrus of rats.

    PubMed

    Almaguer-Melian, William; Mercerón-Martínez, Daymara; Delgado-Ocaña, Susana; Pavón-Fuentes, Nancy; Ledón, Nuris; Bergado, Jorge A

    2016-06-01

    Erythropoietin has shown wide physiological effects on the central nervous system in animal models of disease, and in healthy animals. We have recently shown that systemic EPO administration 15 min, but not 5 h, after daily training in a water maze is able to induce the recovery of spatial memory in fimbria-fornix chronic-lesioned animals, suggesting that acute EPO triggers mechanisms which can modulate the active neural plasticity mechanism involved in spatial memory acquisition in lesioned animals. Additionally, this EPO effect is accompanied by the up-regulation of plasticity-related early genes. More remarkably, this time-dependent effects on learning recovery could signify that EPO in nerve system modulate specific living-cellular processes. In the present article, we focus on the question if EPO could modulate the induction of long-term synaptic plasticity like LTP and LTD, which presumably could support our previous published data. Our results show that acute EPO peripheral administration 15 min before the induction of synaptic plasticity is able to increase the magnitude of the LTP (more prominent in PSA than fEPSP-Slope) to facilitate the induction of LTD, and to protect LTP from depotentiation. These findings showing that EPO modulates in vivo synaptic plasticity sustain the assumption that EPO can act not only as a neuroprotective substance, but is also able to modulate transient neural plasticity mechanisms and therefore to promote the recovery of nerve function after an established chronic brain lesion. According to these results, EPO could be use as a molecular tool for neurorestaurative treatments. Synapse 70:240-252, 2016. © 2016 Wiley Periodicals, Inc. PMID:26860222

  18. Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory

    PubMed Central

    Wang, Szu-Han; Redondo, Roger L.; Morris, Richard G. M.

    2010-01-01

    Memory for inconsequential events fades, unless these happen before or after other novel or surprising events. However, our understanding of the neurobiological mechanisms of novelty-enhanced memory persistence is mainly restricted to aversive or fear-associated memories. We now outline an “everyday appetitive” behavioral model to examine whether and how unrelated novelty facilitates the persistence of spatial memory coupled to parallel electrophysiological studies of the persistence of long-term potentiation (LTP). Across successive days, rats were given one trial per day to find food in different places and later had to recall that day's location. This task is both hippocampus and NMDA receptor dependent. First, encoding with low reward induced place memory that decayed over 24 h; in parallel, weak tetanization of CA1 synapses in brain slices induced early-LTP fading to baseline. Second, novelty exploration scheduled 30 min after this weak encoding resulted in persistent place memory; similarly, strong tetanization—analogous to novelty—both induced late-LTP and rescued early- into late-LTP on an independent but convergent pathway. Third, hippocampal dopamine D1/D5 receptor blockade or protein synthesis inhibition within 15 min of exploration prevented persistent place memory and blocked late-LTP. Fourth, symmetrically, when spatial memory was encoded using strong reward, this memory persisted for 24 h unless encoding occurred under hippocampal D1/D5 receptor blockade. Novelty exploration before this encoding rescued the drug-induced memory impairment. Parallel effects were observed in LTP. These findings can be explained by the synaptic tagging and capture hypothesis. PMID:20962282

  19. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity

    PubMed Central

    Horvath, Tamas L.; Sarman, Beatrix; García-Cáceres, Cristina; Enriori, Pablo J.; Sotonyi, Peter; Shanabrough, Marya; Borok, Erzsebet; Argente, Jesus; Chowen, Julie A.; Perez-Tilve, Diego; Pfluger, Paul T.; Brönneke, Hella S.; Levin, Barry E.; Diano, Sabrina; Cowley, Michael A.; Tschöp, Matthias H.

    2010-01-01

    The neuronal circuits involved in the regulation of feeding behavior and energy expenditure are soft-wired, reflecting the relative activity of the postsynaptic neuronal system, including the anorexigenic proopiomelanocortin (POMC)-expressing cells of the arcuate nucleus. We analyzed the synaptic input organization of the melanocortin system in lean rats that were vulnerable (DIO) or resistant (DR) to diet-induced obesity. We found a distinct difference in the quantitative and qualitative synaptology of POMC cells between DIO and DR animals, with a significantly greater number of inhibitory inputs in the POMC neurons in DIO rats compared with DR rats. When exposed to a high-fat diet (HFD), the POMC cells of DIO animals lost synapses, whereas those of DR rats recruited connections. In both DIO rats and mice, the HFD-triggered loss of synapses on POMC neurons was associated with increased glial ensheathment of the POMC perikarya. The altered synaptic organization of HFD-fed animals promoted increased POMC tone and a decrease in the stimulatory connections onto the neighboring neuropeptide Y (NPY) cells. Exposure to HFD was associated with reactive gliosis, and this affected the structure of the blood-brain barrier such that the POMC and NPY cell bodies and dendrites became less accessible to blood vessels. Taken together, these data suggest that consumption of an HFD has a major impact on the cytoarchitecture of the arcuate nucleus in vulnerable subjects, with changes that might be irreversible due to reactive gliosis. PMID:20679202

  20. Synthetic Aβ oligomers (Aβ(1-42) globulomer) modulate presynaptic calcium currents: prevention of Aβ-induced synaptic deficits by calcium channel blockers.

    PubMed

    Hermann, David; Mezler, Mario; Müller, Michaela K; Wicke, Karsten; Gross, Gerhard; Draguhn, Andreas; Bruehl, Claus; Nimmrich, Volker

    2013-02-28

    Alzheimer's disease is accompanied by increased brain levels of soluble amyloid-β (Aβ) oligomers. It has been suggested that oligomers directly impair synaptic function, thereby causing cognitive deficits in Alzheimer's disease patients. Recently, it has been shown that synthetic Aβ oligomers directly modulate P/Q-type calcium channels, possibly leading to excitotoxic cascades and subsequent synaptic decline. Using whole-cell recordings we studied the modulation of recombinant presynaptic calcium channels in HEK293 cells after application of a stable Aβ oligomer preparation (Aβ1-42 globulomer). Aβ globulomer shifted the half-activation voltage of P/Q-type and N-type calcium channels to more hyperpolarized values (by 11.5 and 7.5 mV). Application of non-aggregated Aβ peptides had no effect. We then analyzed the potential of calcium channel blockers to prevent Aβ globulomer-induced synaptic decline in hippocampal slice cultures. Specific block of P/Q-type or N-type calcium channels with peptide toxins completely reversed Aβ globulomer-induced deficits in glutamatergic neurotransmission. Two state-dependent low molecular weight P/Q-type and N-type calcium channel blockers also protected neurons from Aβ-induced alterations. On the contrary, inhibition of L-type calcium channels failed to reverse the deficit. Our data show that Aβ globulomer directly modulates recombinant P/Q-type and N-type calcium channels in HEK293 cells. Block of presynaptic calcium channels with both state-dependent and state-independent modulators can reverse Aβ-induced functional deficits in synaptic transmission. These findings indicate that presynaptic calcium channel blockers may be a therapeutic strategy for the treatment of Alzheimer's disease. PMID:23376566

  1. Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation.

    PubMed

    Yan, Jin; Leal, Karina; Magupalli, Venkat G; Nanou, Evanthia; Martinez, Gilbert Q; Scheuer, Todd; Catterall, William A

    2014-11-01

    Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity. PMID:25447945

  2. The Palmitoyl Acyltransferase DHHC2 Regulates Recycling Endosome Exocytosis and Synaptic Potentiation through Palmitoylation of AKAP79/150

    PubMed Central

    Woolfrey, Kevin M.; Sanderson, Jennifer L.

    2015-01-01

    Phosphorylation and dephosphorylation of AMPA-type ionotropic glutamate receptors (AMPARs) by kinases and phosphatases and interactions with scaffold proteins play essential roles in regulating channel biophysical properties and trafficking events that control synaptic strength during NMDA receptor-dependent synaptic plasticity, such as LTP and LTD. We previously demonstrated that palmitoylation of the AMPAR-linked scaffold protein A-kinase anchoring protein (AKAP) 79/150 is required for its targeting to recycling endosomes in dendrites, where it regulates exocytosis from these compartments that is required for LTP-stimulated enlargement of postsynaptic dendritic spines, delivery of AMPARs to the plasma membrane, and maintenance of synaptic potentiation. Here, we report that the recycling endosome-resident palmitoyl acyltransferase DHHC2 interacts with and palmitoylates AKAP79/150 to regulate these plasticity signaling mechanisms. In particular, RNAi-mediated knockdown of DHHC2 expression in rat hippocampal neurons disrupted stimulation of exocytosis from recycling endosomes, enlargement of dendritic spines, AKAP recruitment to spines, and potentiation of AMPAR-mediated synaptic currents that occur during LTP. Importantly, expression of a palmitoylation-independent lipidated AKAP mutant in DHHC2-deficient neurons largely restored normal plasticity regulation. Thus, we conclude that DHHC2-AKAP79/150 signaling is an essential regulator of dendritic recycling endosome exocytosis that controls both structural and functional plasticity at excitatory synapses. PMID:25589740

  3. The palmitoyl acyltransferase DHHC2 regulates recycling endosome exocytosis and synaptic potentiation through palmitoylation of AKAP79/150.

    PubMed

    Woolfrey, Kevin M; Sanderson, Jennifer L; Dell'Acqua, Mark L

    2015-01-14

    Phosphorylation and dephosphorylation of AMPA-type ionotropic glutamate receptors (AMPARs) by kinases and phosphatases and interactions with scaffold proteins play essential roles in regulating channel biophysical properties and trafficking events that control synaptic strength during NMDA receptor-dependent synaptic plasticity, such as LTP and LTD. We previously demonstrated that palmitoylation of the AMPAR-linked scaffold protein A-kinase anchoring protein (AKAP) 79/150 is required for its targeting to recycling endosomes in dendrites, where it regulates exocytosis from these compartments that is required for LTP-stimulated enlargement of postsynaptic dendritic spines, delivery of AMPARs to the plasma membrane, and maintenance of synaptic potentiation. Here, we report that the recycling endosome-resident palmitoyl acyltransferase DHHC2 interacts with and palmitoylates AKAP79/150 to regulate these plasticity signaling mechanisms. In particular, RNAi-mediated knockdown of DHHC2 expression in rat hippocampal neurons disrupted stimulation of exocytosis from recycling endosomes, enlargement of dendritic spines, AKAP recruitment to spines, and potentiation of AMPAR-mediated synaptic currents that occur during LTP. Importantly, expression of a palmitoylation-independent lipidated AKAP mutant in DHHC2-deficient neurons largely restored normal plasticity regulation. Thus, we conclude that DHHC2-AKAP79/150 signaling is an essential regulator of dendritic recycling endosome exocytosis that controls both structural and functional plasticity at excitatory synapses. PMID:25589740

  4. Molecular Motors and Synaptic Assembly

    PubMed Central

    Cai, Qian; Sheng, Zu-Hang

    2016-01-01

    Proper synaptic function requires the seamless integration of the transport, assembly, and regulation of synaptic components and structures. Inasmuch as the synapse is often distant from the neuronal cell body, newly synthesized synaptic proteins, the precursors of synaptic vesicles, active zone compartments, channels and receptors, and mitochondria, must be transported along lengthy neuronal processes to participate in synaptogenesis. Neuronal transport is mediated by motor proteins that associate with their cargoes via adaptors (or receptors) and that travel along the cytoskeleton network within the neuronal processes. Thus, the identity of membranous protein cargoes and the specificity of motor-cargo interactions are critical for correctly targeting cargoes and properly assembling synapses in developing neurons and in remodeling synapses of mature neurons in response to neuronal activity. In this article, the authors review recent progress in characterizing microtubule- and actin-based motor proteins that are involved in delivering synaptic components and discuss potential mechanisms underlying the formation of motor- receptor-cargo complexes that contribute to synaptogenesis and activity-induced synaptic plasticity. PMID:19218232

  5. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording

    PubMed Central

    Zhao, Xiao-Yan; Liu, Ming-Gang; Yuan, Dong-Liang; Wang, Yan; He, Ying; Wang, Dan-Dan; Chen, Xue-Feng; Zhang, Fu-Kang; Li, Hua; He, Xiao-Sheng; Chen, Jun

    2009-01-01

    Background Pain is known to be processed by a complex neural network (neuromatrix) in the brain. It is hypothesized that under pathological state, persistent or chronic pain can affect various higher brain functions through ascending pathways, leading to co-morbidities or mental disability of pain. However, so far the influences of pathological pain on the higher brain functions are less clear and this may hinder the advances in pain therapy. In the current study, we studied spatiotemporal plasticity of synaptic connection and function in the hippocampal formation (HF) in response to persistent nociception. Results On the hippocampal slices of rats which had suffered from persistent nociception for 2 h by receiving subcutaneous bee venom (BV) or formalin injection into one hand paw, multisite recordings were performed by an 8 × 8 multi-electrode array probe. The waveform of the field excitatory postsynaptic potential (fEPSP), induced by perforant path electrical stimulation and pharmacologically identified as being activity-dependent and mediated by ionotropic glutamate receptors, was consistently positive-going in the dentate gyrus (DG), while that in the CA1 was negative-going in shape in naïve and saline control groups. For the spatial characteristics of synaptic plasticity, BV- or formalin-induced persistent pain significantly increased the number of detectable fEPSP in both DG and CA1 area, implicating enlargement of the synaptic connection size by the injury or acute inflammation. Moreover, the input-output function of synaptic efficacy was shown to be distinctly enhanced by the injury with the stimulus-response curve being moved leftward compared to the control. For the temporal plasticity, long-term potentiation produced by theta burst stimulation (TBS) conditioning was also remarkably enhanced by pain. Moreover, it is strikingly noted that the shape of fEPSP waveform was drastically deformed or split by a TBS conditioning under the condition of

  6. Evidence that receptors mediating central synaptic potentials extend beyond the postsynaptic density.

    PubMed Central

    Faber, D S; Funch, P G; Korn, H

    1985-01-01

    Physiological recordings and computer simulations of unitary inhibitory postsynaptic potentials in the Mauthner cell of the goldfish central nervous system have been used to estimate the expected size of the postsynaptic receptor matrix at individual junctions. Simultaneous pre- and postsynaptic recordings were used to determine the kinetic parameters of the quantal responses under normal conditions and in the presence of strychnine, a competitive antagonist of glycine, which is the putative transmitter at these synapses. Calculations indicate that if the postsynaptic density, which has a radius of 0.1 micron, were to accommodate the population of channels estimated to be opened during a quantal response, the glycine binding site density in that region would be unrealistically high. Computer simulation of the quantal responses included transmitter diffusion, transmitter-receptor interactions, and channel activation under conditions including both normal and lowered binding site densities, the latter corresponding to the experimental data obtained with strychnine. The data indicate that the synaptic receptors involved in generating unitary responses are widely distributed to include regions located outside the junctional area, which directly faces the presynaptic release sites. We further suggest that the receptor matrix is surrounded by a restricted diffusional space; this geometrical organization may underlie the finding that response rise times are relatively independent of receptor binding site densities. PMID:2582417

  7. Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises

    PubMed Central

    2011-01-01

    The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals. PMID:21304459

  8. Potential Synaptic Connectivity of Different Neurons onto Pyramidal Cells in a 3D Reconstruction of the Rat Hippocampus

    PubMed Central

    Ropireddy, Deepak; Ascoli, Giorgio A.

    2011-01-01

    Most existing connectomic data and ongoing efforts focus either on individual synapses (e.g., with electron microscopy) or on regional connectivity (tract tracing). An individual pyramidal cell (PC) extends thousands of synapses over macroscopic distances (∼cm). The contrasting requirements of high-resolution and large field of view make it too challenging to acquire the entire synaptic connectivity for even a single typical cortical neuron. Light microscopy can image whole neuronal arbors and resolve dendritic branches. Analyzing connectivity in terms of close spatial appositions between axons and dendrites could thus bridge the opposite scales, from synaptic level to whole systems. In the mammalian cortex, structural plasticity of spines and boutons makes these “potential synapses” functionally relevant to learning capability and memory capacity. To date, however, potential synapses have only been mapped in the surrounding of a neuron and relative to its local orientation rather than in a system-level anatomical reference. Here we overcome this limitation by estimating the potential connectivity of different neurons embedded into a detailed 3D reconstruction of the rat hippocampus. Axonal and dendritic trees were oriented with respect to hippocampal cytoarchitecture according to longitudinal and transversal curvatures. We report the potential connectivity onto PC dendrites from the axons of a dentate granule cell, three CA3 PCs, one CA2 PC, and 13 CA3b interneurons. The numbers, densities, and distributions of potential synapses were analyzed in each sub-region (e.g., CA3 vs. CA1), layer (e.g., oriens vs. radiatum), and septo-temporal location (e.g., dorsal vs. ventral). The overall ratio between the numbers of actual and potential synapses was ∼0.20 for the granule and CA3 PCs. All potential connectivity patterns are strikingly dependent on the anatomical location of both pre-synaptic and post-synaptic neurons. PMID:21779242

  9. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    PubMed Central

    van Huijstee, Aile N.; Mansvelder, Huibert D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction. PMID:25653591

  10. Cocaine-Induced Synaptic Alterations in Thalamus to Nucleus Accumbens Projection.

    PubMed

    Neumann, Peter A; Wang, Yicun; Yan, Yijin; Wang, Yao; Ishikawa, Masago; Cui, Ranji; Huang, Yanhua H; Sesack, Susan R; Schlüter, Oliver M; Dong, Yan

    2016-08-01

    Exposure to cocaine induces addiction-associated behaviors partially through remodeling neurocircuits in the nucleus accumbens (NAc). The paraventricular nucleus of thalamus (PVT), which projects to the NAc monosynaptically, is activated by cocaine exposure and has been implicated in several cocaine-induced emotional and motivational states. Here we show that disrupting synaptic transmission of select PVT neurons with tetanus toxin activated via retrograde trans-synaptic transport of cre from NAc efferents decreased cocaine self-administration in rats. This projection underwent complex adaptations after self-administration of cocaine (0.75 mg/kg/infusion; 2 h/d × 5 d, 1d overnight training). Specifically, 1d after cocaine self-administration, we observed increased levels of AMPA receptor (AMPAR)-silent glutamatergic synapses in this projection, accompanied by a decreased ratio of AMPAR-to-NMDA receptor (NMDAR)-mediated EPSCs. Furthermore, the decay kinetics of NMDAR EPSCs was significantly prolonged, suggesting insertion of new GluN2B-containing NMDARs to PVT-to-NAc synapses. After 45-d withdrawal, silent synapses within this projection returned to the basal levels, accompanied by a return of the AMPAR/NMDAR ratio and NMDAR decay kinetics to the basal levels. In amygdala and infralimbic prefrontal cortical projections to the NAc, a portion of cocaine-generated silent synapses becomes unsilenced by recruiting calcium-permeable AMPARs (CP-AMPARs) after drug withdrawal. However, the sensitivity of PVT-to-NAc synapses to CP-AMPAR-selective antagonists was not changed after withdrawal, suggesting that CP-AMPAR trafficking is not involved in the evolution of cocaine-generated silent synapses within this projection. Meanwhile, the release probability of PVT-to-NAc synapses was increased after short- and long-term cocaine withdrawal. These results reveal complex and profound alterations at PVT-to-NAc synapses after cocaine exposure and withdrawal. PMID:27074816

  11. Altered neuronal intrinsic properties and reduced synaptic transmission of the rat's medial geniculate body in salicylate-induced tinnitus.

    PubMed

    Su, Yan-Yan; Luo, Bin; Jin, Yan; Wu, Shu-Hui; Lobarinas, Edward; Salvi, Richard J; Chen, Lin

    2012-01-01

    Sodium salicylate (NaSal), an aspirin metabolite, can cause tinnitus in animals and human subjects. To explore neural mechanisms underlying salicylate-induced tinnitus, we examined effects of NaSal on neural activities of the medial geniculate body (MGB), an auditory thalamic nucleus that provides the primary and immediate inputs to the auditory cortex, by using the whole-cell patch-clamp recording technique in MGB slices. Rats treated with NaSal (350 mg/kg) showed tinnitus-like behavior as revealed by the gap prepulse inhibition of acoustic startle (GPIAS) paradigm. NaSal (1.4 mM) decreased the membrane input resistance, hyperpolarized the resting membrane potential, suppressed current-evoked firing, changed the action potential, and depressed rebound depolarization in MGB neurons. NaSal also reduced the excitatory and inhibitory postsynaptic response in the MGB evoked by stimulating the brachium of the inferior colliculus. Our results demonstrate that NaSal alters neuronal intrinsic properties and reduces the synaptic transmission of the MGB, which may cause abnormal thalamic outputs to the auditory cortex and contribute to NaSal-induced tinnitus. PMID:23071681

  12. Amyloid-β impairs, and ibuprofen restores, the cGMP pathway, synaptic expression of AMPA receptors and long-term potentiation in the hippocampus.

    PubMed

    Monfort, Pilar; Felipo, Vicente

    2010-01-01

    Amyloid-β (Aβ) rapidly impairs hippocampal long-term potentiation (LTP) and cognitive function in rats. We hypothesized that: a) Aβ-induced impairment of LTP would be due to impairment of the nitric oxide (NO)-cGMP pathway and AMPA receptor translocation; and b) treatment with the anti-inflammatory drug ibuprofen would restore the NO-cGMP pathway and LTP. The aims of this work were to assess whether ibuprofen prevents and/or rescues Aβ-induced LTP impairments in hippocampal slices and to analyze the role of the altered NO-cGMP-protein kinase G pathway and AMPA receptor phosphorylation and synaptic expression in the mechanisms by which Aβ impairs and ibuprofen restores LTP. Aβ impairs tetanus-induced activation of guanylate cyclase and cGMP increase, preventing protein kinase G activation, phosphorylation of GluR1 in Ser845 and AMPA receptors translocation to synaptic membranes, which is responsible for LTP impairment by Aβ. Ibuprofen prevents LTP impairment by Aβ by restoring guanylate cyclase activation and increase in cGMP and, subsequently, activation of protein kinase G, phosphorylation of GluR1 in Ser845 and synaptic expression of AMPA receptors. Restoration of cGMP levels is enough to restore all this process as indicated by the fact that the cGMP analog 8-Br-cGMP also normalizes the function of this pathway and restores LTP in the presence of Aβ. These results indicate that Aβ impairs LTP by impairing the NO-cGMP pathway and that ibuprofen restores LTP by restoring this pathway. These data suggest that restoring cGMP levels may have therapeutic utility to improve cognitive function impaired by Aβ. PMID:20858955

  13. A single amino acid difference between the intracellular domains of amyloid precursor protein and amyloid-like precursor protein 2 enables induction of synaptic depression and block of long-term potentiation.

    PubMed

    Trillaud-Doppia, Emilie; Paradis-Isler, Nicolas; Boehm, Jannic

    2016-07-01

    Alzheimer disease (AD) is initially characterized as a disease of the synapse that affects synaptic transmission and synaptic plasticity. While amyloid-beta and tau have been traditionally implicated in causing AD, recent studies suggest that other factors, such as the intracellular domain of the amyloid-precursor protein (APP-ICD), can also play a role in the development of AD. Here, we show that the expression of APP-ICD induces synaptic depression, while the intracellular domain of its homolog amyloid-like precursor protein 2 (APLP2-ICD) does not. We are able to show that this effect by APP-ICD is due to a single alanine vs. proline difference between APP-ICD and APLP2-ICD. The alanine in APP-ICD and the proline in APLP2-ICD lie directly behind a conserved caspase cleavage site. Inhibition of caspase cleavage of APP-ICD prevents the induction of synaptic depression. Finally, we show that the expression of APP-ICD increases and facilitates long-term depression and blocks induction of long-term potentiation. The block in long-term potentiation can be overcome by mutating the aforementioned alanine in APP-ICD to the proline of APLP2. Based on our results, we propose the emergence of a new APP critical domain for the regulation of synaptic plasticity and in consequence for the development of AD. PMID:26921470

  14. Longitudinal testing of hippocampal plasticity reveals the onset and maintenance of endogenous human Aß-induced synaptic dysfunction in individual freely behaving pre-plaque transgenic rats: rapid reversal by anti-Aß agents.

    PubMed

    Qi, Yingjie; Klyubin, Igor; Harney, Sarah C; Hu, NengWei; Cullen, William K; Grant, Marianne K; Steffen, Julia; Wilson, Edward N; Do Carmo, Sonia; Remy, Stefan; Fuhrmann, Martin; Ashe, Karen H; Cuello, A Claudio; Rowan, Michael J

    2014-01-01

    Long before synaptic loss occurs in Alzheimer's disease significant harbingers of disease may be detected at the functional level. Here we examined if synaptic long-term potentiation is selectively disrupted prior to extracellular deposition of Aß in a very complete model of Alzheimer's disease amyloidosis, the McGill-R-Thy1-APP transgenic rat. Longitudinal studies in freely behaving animals revealed an age-dependent, relatively rapid-onset and persistent inhibition of long-term potentiation without a change in baseline synaptic transmission in the CA1 area of the hippocampus. Thus the ability of a standard 200 Hz conditioning protocol to induce significant NMDA receptor-dependent short- and long-term potentiation was lost at about 3.5 months of age and this deficit persisted for at least another 2-3 months, when plaques start to appear. Consistent with in vitro evidence for a causal role of a selective reduction in NMDA receptor-mediated synaptic currents, the deficit in synaptic plasticity in vivo was associated with a reduction in the synaptic burst response to the conditioning stimulation and was overcome using stronger 400 Hz stimulation. Moreover, intracerebroventricular treatment for 3 days with an N-terminally directed monoclonal anti- human Aß antibody, McSA1, transiently reversed the impairment of synaptic plasticity. Similar brief treatment with the BACE1 inhibitor LY2886721 or the γ-secretase inhibitor MRK-560 was found to have a comparable short-lived ameliorative effect when tracked in individual rats. These findings provide strong evidence that endogenously generated human Aß selectively disrupts the induction of long-term potentiation in a manner that enables potential therapeutic options to be assessed longitudinally at the pre-plaque stage of Alzheimer's disease amyloidosis. PMID:25540024

  15. Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss

    PubMed Central

    Di, J.; Cohen, L. S.; Corbo, C. P.; Phillips, G. R.; El Idrissi, A.; Alonso, A. D.

    2016-01-01

    The hyperphosphorylated microtubule-associated protein tau is present in several neurodegenerative diseases, although the causal relationship remains elusive. Few mouse models used to study Alzheimer-like dementia target tau phosphorylation. We created an inducible pseudophosphorylated tau (Pathological Human Tau, PH-Tau) mouse model to study the effect of conformationally modified tau in vivo. Leaky expression resulted in two levels of PH-Tau: low basal level and higher upon induction (4% and 14% of the endogenous tau, respectively). Unexpectedly, low PH-Tau resulted in significant cognitive deficits, decrease in the number of synapses (seen by EM in the CA1 region), reduction of synaptic proteins, and localization to the nucleus. Induction of PH-Tau triggered neuronal death (60% in CA3), astrocytosis, and loss of the processes in CA1. These findings suggest, that phosphorylated tau is sufficient to induce neurodegeneration and that two different mechanisms can induce cognitive impairment depending on the levels of PH-Tau expression. PMID:26888634

  16. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Adams, Joanna M.; Thomas, Philip; Smart, Trevor G.

    2015-01-01

    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3S408A,S409Aγ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3S408A,S409Aδ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4S443Aβ3S408A,S409Aδ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3S408,S409 implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by

  17. Determining the True Polarity and Amplitude of Synaptic Currents Underlying Gamma Oscillations of Local Field Potentials

    PubMed Central

    Makarov, Valeri A.; Herreras, Oscar

    2013-01-01

    Fluctuations in successive waves of oscillatory local field potentials (LFPs) reflect the ongoing processing of neuron populations. However, their amplitude, polarity and synaptic origin are uncertain due to the blending of electric fields produced by multiple converging inputs, and the lack of a baseline in standard AC-coupled recordings. Consequently, the estimation of underlying currents by laminar analysis yields spurious sequences of inward and outward currents. We devised a combined analytical/experimental approach that is suitable to study laminated structures. The approach was essayed on an experimental oscillatory LFP as the Schaffer-CA1 gamma input in anesthetized rats, and it was verified by parallel processing of model LFPs obtained through a realistic CA1 aggregate of compartmental units. This approach requires laminar LFP recordings and the isolation of the oscillatory input from other converging pathways, which was achieved through an independent component analysis. It also allows the spatial and temporal components of pathway-specific LFPs to be separated. While reconstructed Schaffer-specific LFPs still show spurious inward/outward current sequences, these were clearly stratified into distinct subcellular domains. These spatial bands guided the localized delivery of neurotransmitter blockers in experiments. As expected, only Glutamate but not GABA blockers abolished Schaffer LFPs when applied to the active but not passive subcellular domains of pyramidal cells. The known chemical nature of the oscillatory LFP allowed an empirical offset of the temporal component of Schaffer LFPs, such that following reconstruction they yield only sinks or sources at the appropriate sites. In terms of number and polarity, some waves increased and others decreased proportional to the concomitant inputs in native multisynaptic LFPs. Interestingly, the processing also retrieved the initiation time for each wave, which can be used to discriminate afferent from

  18. Synaptic potentials evoked by convergent somatosensory and corticocortical inputs in raccoon somatosensory cortex: substrates for plasticity.

    PubMed

    Smits, E; Gordon, D C; Witte, S; Rasmusson, D D; Zarzecki, P

    1991-09-01

    1. "Unmasking" of weak synaptic connections has been suggested as a mechanism for the early changes in cortical topographic maps that follow alterations of sensory activity. For such a mechanism to operate, convergent sensory inputs must already exist in the normal cortex. 2. We tested for topographic and cross-modality convergence in primary somatosensory cortex of raccoon. The representation of glabrous skin of forepaw digits was chosen because, even though it is dominated by inputs from the glabrous skin of a single digit, it nevertheless comes to respond to stimulation of other digits when, e.g., a digit is removed. 3. Intracellular recordings were made from 109 neurons in the representation of glabrous skin of digit 4. Neurons were tested for somatosensory inputs with electrical and natural stimulation of digits. 4. Excitatory postsynaptic potentials (EPSPs) were evoked in 100% of the neurons (109/109) by electrical stimulation of glabrous skin of digit 4, and in 79% (31 of 39) by vibrotactile stimulation. 5. Glabrous skin of digit 4 was not the sole source of somatosensory inputs. A minority of neurons generated EPSPs after electrical stimulation of hairy skin of digit 4 (10 of 98 neurons, 10%). Electrical stimulation of digits 3 or 5 evoked EPSPs in 22 of 103 neurons (21%). Natural stimulation (vibrotactile or hair bending) was also effective in most of these latter cases (digit 3, 6/7; digit 5, 9/10). 6. Intracortical microstimulation of the "heterogeneous zone" was used to test for corticocortical connections to neurons in the glabrous zone.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1753280

  19. Hydrogen Sulfide Prevents Synaptic Plasticity from VD-Induced Damage via Akt/GSK-3β Pathway and Notch Signaling Pathway in Rats.

    PubMed

    Liu, Chunhua; Xu, Xiaxia; Gao, Jing; Zhang, Tao; Yang, Zhuo

    2016-08-01

    Our previous study has demonstrated that hydrogen sulfide (H2S) attenuates neuronal injury induced by vascular dementia (VD) in rats, but the mechanism is still poorly understood. In this study, we aimed to investigate whether the neuroprotection of H2S was associated with synaptic plasticity and try to interpret the potential underlying mechanisms. Adult male Wistar rats were suffered the ligation of bilateral common carotid arteries. At 24 h after surgery, rats were administered intraperitoneally with sodium hydrosulfide (NaHS, 5.6 mg·kg(-1)·day(-1)), a H2S donor, for 3 weeks in the VD+NaHS group and treated intraperitoneally with saline in the VD group respectively. Our results demonstrated that NaHS significantly decreased the level of glutamate. It obviously ameliorated cognitive flexibility as well as the spatial learning and memory abilities by Morris water maze. Moreover, NaHS significantly improved the long-term depression (LTD), and was able to elevate the expression of N-methyl-D-aspartate receptor subunit 2A, which plays a pivotal role in synaptic plasticity. Interestingly, NaHS decreased the phosphorylation of Akt, and it could maintain the activity of glycogen synthase kinase-3β (GSK-3β). Surprisingly, NaHS triggered the canonical Notch pathway by increasing expressions of Jagged-1 and Hes-1. These findings suggest that NaHS prevents synaptic plasticity from VD-induced damage partly via Akt/GSK-3β pathway and Notch signaling pathway.Hydrogen sulfide modulated the ratio of NMDAR 2A/2B and improved the synaptic plasticity via Akt/GSK-3β pathway and Notch signaling pathway in VD rats. PMID:26208699

  20. Synaptic GluN2B/CaMKII-α Signaling Induces Synapto-Nuclear Transport of ERK and Jacob.

    PubMed

    Melgarejo da Rosa, Michelle; Yuanxiang, PingAn; Brambilla, Riccardo; Kreutz, Michael R; Karpova, Anna

    2016-01-01

    A central pathway in synaptic plasticity couples N-Methyl-D-Aspartate-receptor (NMDAR)-signaling to the activation of extracellular signal-regulated kinases (ERKs) cascade. ERK-dependency has been demonstrated for several forms of synaptic plasticity as well as learning and memory and includes local synaptic processes but also long-distance signaling to the nucleus. It is, however, controversial how NMDAR signals are connected to ERK activation in dendritic spines and nuclear import of ERK. The synapto-nuclear messenger Jacob couples NMDAR-dependent Ca(2+)-signaling to CREB-mediated gene expression. Protein transport of Jacob from synapse to nucleus essentially requires activation of GluN2B-containing NMDARs. Subsequent phosphorylation and binding of ERK1/2 to and ERK-dependent phosphorylation of serine 180 in Jacob encodes synaptic but not extrasynaptic NMDAR activation. In this study we show that stimulation of synaptic NMDAR in hippocampal primary neurons and induction of long-term potentiation (LTP) in acute slices results in GluN2B-dependent activation of CaMKII-α and subsequent nuclear import of active ERK and serine 180 phosphorylated Jacob. On the contrary, no evidence was found that either GluN2A-containing NMDAR or RasGRF2 are upstream of ERK activation and nuclear import of Jacob and ERK. PMID:27559307

  1. Synaptic GluN2B/CaMKII-α Signaling Induces Synapto-Nuclear Transport of ERK and Jacob

    PubMed Central

    Melgarejo da Rosa, Michelle; Yuanxiang, PingAn; Brambilla, Riccardo; Kreutz, Michael R.; Karpova, Anna

    2016-01-01

    A central pathway in synaptic plasticity couples N-Methyl-D-Aspartate-receptor (NMDAR)-signaling to the activation of extracellular signal-regulated kinases (ERKs) cascade. ERK-dependency has been demonstrated for several forms of synaptic plasticity as well as learning and memory and includes local synaptic processes but also long-distance signaling to the nucleus. It is, however, controversial how NMDAR signals are connected to ERK activation in dendritic spines and nuclear import of ERK. The synapto-nuclear messenger Jacob couples NMDAR-dependent Ca2+-signaling to CREB-mediated gene expression. Protein transport of Jacob from synapse to nucleus essentially requires activation of GluN2B-containing NMDARs. Subsequent phosphorylation and binding of ERK1/2 to and ERK-dependent phosphorylation of serine 180 in Jacob encodes synaptic but not extrasynaptic NMDAR activation. In this study we show that stimulation of synaptic NMDAR in hippocampal primary neurons and induction of long-term potentiation (LTP) in acute slices results in GluN2B-dependent activation of CaMKII-α and subsequent nuclear import of active ERK and serine 180 phosphorylated Jacob. On the contrary, no evidence was found that either GluN2A-containing NMDAR or RasGRF2 are upstream of ERK activation and nuclear import of Jacob and ERK. PMID:27559307

  2. Persistent ERK Activation Maintains Learning-Induced Long-Lasting Modulation of Synaptic Connectivity

    ERIC Educational Resources Information Center

    Cohen-Matsliah, Sivan Ida; Seroussi, Yaron; Rosenblum, Kobi; Barkai, Edi

    2008-01-01

    Pyramidal neurons in the piriform cortex from olfactory-discrimination (OD) trained rats undergo synaptic modifications that last for days after learning. A particularly intriguing modification is reduced paired-pulse facilitation (PPF) in the synapses interconnecting these cells; a phenomenon thought to reflect enhanced synaptic release. The…

  3. Synaptic silencing and plasma membrane dyshomeostasis induced by amyloid-β peptide are prevented by Aristotelia chilensis enriched extract.

    PubMed

    Fuentealba, Jorge; Dibarrart, Andrea; Saez-Orellana, Francisco; Fuentes-Fuentes, María Cecilia; Oyanedel, Carlos N; Guzmán, José; Perez, Claudia; Becerra, José; Aguayo, Luis G

    2012-01-01

    Alzheimer's disease (AD) is characterized by the presence of different types of extracellular and neurotoxic aggregates of amyloid-β (Aβ). Recently, bioactive compounds extracted from natural sources showing neuroprotective properties have become of interest in brain neurodegeneration. We have purified, characterized, and evaluated the protective potential of one extract enriched in polyphenols obtained from Aristotelia chilensis (MQ), a Chilean berry fruit, in neuronal models of AD induced by soluble oligomers of Aβ1-40. For example, using primary hippocampal cultures from rats (E18), we observed neuroprotection when the neurons were co-incubated with Aβ (0.5 μM) plus MQ for 24 h (Aβ = 23 ± 2%; Aβ + MQ = 3 ± 1%; n = 3). In parallel, co-incubation of Aβ with MQ recovered the frequency of Ca2+ transient oscillations when compared to neurons treated with Aβ alone (Aβ = 72 ± 3%; Aβ + MQ = 86 ± 2%; n = 5), correlating with the changes observed in spontaneous synaptic activity. Additionally, MAP-2 immunostaining showed a preservation of the dendritic tree, suggesting that the toxic effect of Aβ is prevented in the presence of MQ. A new complex mechanism is proposed by which MQ induces neuroprotective effects including antioxidant properties, modulation of cell survival pathways, and/or direct interaction with the Aβ aggregates. Our results suggest that MQ induces changes in the aggregation kinetics of Aβ producing variations in the nucleation phase (Aβ: k1 = 2.7 ± 0.4 × 10-3 s-1 MQ: k1 = 8.3 ± 0.6 × 10-3 s-1) and altering Thioflavin T insertion in β-sheets. In conclusion, MQ induces a potent neuroprotection by direct interaction with the Aβ aggregates, generating far less toxic species and in this way protecting the neuronal network. PMID:22728896

  4. Pregnenolone sulfate induces NMDA receptor dependent release of dopamIne from synaptIc termInals in the striatum

    PubMed Central

    Whittaker, Matthew T.; Gibbs, Terrell T.; Farb, David H.

    2009-01-01

    Neuromodulators that alter the balance between lower-frequency glutamate-mediated excitatory and higher-frequency GABA-mediated inhibitory synaptic transmission are likely to participate in core mechanisms for CNS function and may contribute to the pathophysiology of neurological disorders such as schizophrenia and Alzheimer's disease. Pregnenolone sulfate (PS) modulates both ionotropic glutamate and GABAA receptor mediated synaptic transmission. The enzymes necessary for PS synthesis and degradation are found in brain tissue of several species including human and rat, and up to 5 nM PS has been detected in extracts of postmortem human brain. Here, we ask whether PS could modulate transmitter release from nerve terminals located in the striatum. Superfusion of a preparation of striatal nerve terminals comprised of mixed synaptosomes and synaptoneurosomes with brief-duration (2 min) pulses of 25 nM PS demonstrates that PS increases the release of newly accumulated [3H]dopamine ([3H]DA), but not [14C]glutamate or [3H]GABA, whereas pregnenolone is without effect. PS does not affect dopamine transporter (DAT) mediated uptake of [3H]DA, demonstrating that it specifically affects the transmitter release mechanism. The PS-induced [3H]DA release occurs via an NMDA receptor (NMDAR) dependent mechanism as it is blocked by D-2-amino-5-phosphonovaleric acid. PS modulates DA release with very high potency, significantly increasing [3H]DA release at PS concentrations as low as 25 pM. This first report of a selective direct enhancement of synaptosomal dopamine release by PS at picomolar concentrations via an NMDAR dependent mechanism raises the possibility that dopaminergic axon terminals may be a site of action for this neurosteroid. PMID:18710414

  5. Protection against β-amyloid-induced synaptic and memory impairments via altering β-amyloid assembly by bis(heptyl)-cognitin

    PubMed Central

    Chang, Lan; Cui, Wei; Yang, Yong; Xu, Shujun; Zhou, Wenhua; Fu, Hongjun; Hu, Shengquan; Mak, Shinghung; Hu, Juwei; Wang, Qin; Pui-Yan Ma, Victor; Chung-lit Choi, Tony; Dik-lung Ma, Edmond; Tao, Liang; Pang, Yuanping; Rowan, Michael J.; Anwyl, Roger; Han, Yifan; Wang, Qinwen

    2015-01-01

    β-amyloid (Aβ) oligomers have been closely implicated in the pathogenesis of Alzheimer’s disease (AD). We found, for the first time, that bis(heptyl)-cognitin, a novel dimeric acetylcholinesterase (AChE) inhibitor derived from tacrine, prevented Aβ oligomers-induced inhibition of long-term potentiation (LTP) at concentrations that did not interfere with normal LTP. Bis(heptyl)-cognitin also prevented Aβ oligomers-induced synaptotoxicity in primary hippocampal neurons. In contrast, tacrine and donepezil, typical AChE inhibitors, could not prevent synaptic impairments in these models, indicating that the modification of Aβ oligomers toxicity by bis(heptyl)-cognitin might be attributed to a mechanism other than AChE inhibition. Studies by using dot blotting, immunoblotting, circular dichroism spectroscopy, and transmission electron microscopy have shown that bis(heptyl)-cognitin altered Aβ assembly via directly inhibiting Aβ oligomers formation and reducing the amount of preformed Aβ oligomers. Molecular docking analysis further suggested that bis(heptyl)-cognitin presumably interacted with the hydrophobic pockets of Aβ, which confers stabilizing powers and assembly alteration effects on Aβ. Most importantly, bis(heptyl)-cognitin significantly reduced cognitive impairments induced by intra-hippocampal infusion of Aβ oligomers in mice. These results clearly demonstrated how dimeric agents prevent Aβ oligomers-induced synaptic and memory impairments, and offered a strong support for the beneficial therapeutic effects of bis(heptyl)-cognitin in the treatment of AD. PMID:26194093

  6. Protection against β-amyloid-induced synaptic and memory impairments via altering β-amyloid assembly by bis(heptyl)-cognitin.

    PubMed

    Chang, Lan; Cui, Wei; Yang, Yong; Xu, Shujun; Zhou, Wenhua; Fu, Hongjun; Hu, Shengquan; Mak, Shinghung; Hu, Juwei; Wang, Qin; Ma, Victor Pui-Yan; Choi, Tony Chung-lit; Ma, Edmond Dik-lung; Tao, Liang; Pang, Yuanping; Rowan, Michael J; Anwyl, Roger; Han, Yifan; Wang, Qinwen

    2015-01-01

    β-amyloid (Aβ) oligomers have been closely implicated in the pathogenesis of Alzheimer's disease (AD). We found, for the first time, that bis(heptyl)-cognitin, a novel dimeric acetylcholinesterase (AChE) inhibitor derived from tacrine, prevented Aβ oligomers-induced inhibition of long-term potentiation (LTP) at concentrations that did not interfere with normal LTP. Bis(heptyl)-cognitin also prevented Aβ oligomers-induced synaptotoxicity in primary hippocampal neurons. In contrast, tacrine and donepezil, typical AChE inhibitors, could not prevent synaptic impairments in these models, indicating that the modification of Aβ oligomers toxicity by bis(heptyl)-cognitin might be attributed to a mechanism other than AChE inhibition. Studies by using dot blotting, immunoblotting, circular dichroism spectroscopy, and transmission electron microscopy have shown that bis(heptyl)-cognitin altered Aβ assembly via directly inhibiting Aβ oligomers formation and reducing the amount of preformed Aβ oligomers. Molecular docking analysis further suggested that bis(heptyl)-cognitin presumably interacted with the hydrophobic pockets of Aβ, which confers stabilizing powers and assembly alteration effects on Aβ. Most importantly, bis(heptyl)-cognitin significantly reduced cognitive impairments induced by intra-hippocampal infusion of Aβ oligomers in mice. These results clearly demonstrated how dimeric agents prevent Aβ oligomers-induced synaptic and memory impairments, and offered a strong support for the beneficial therapeutic effects of bis(heptyl)-cognitin in the treatment of AD. PMID:26194093

  7. Seizure-Induced Regulations of Amyloid-β, STEP61, and STEP61 Substrates Involved in Hippocampal Synaptic Plasticity

    PubMed Central

    Jang, Sung-Soo; Royston, Sara E.; Lee, Gunhee; Wang, Shuwei; Chung, Hee Jung

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline. Pathologic accumulation of soluble amyloid-β (Aβ) oligomers impairs synaptic plasticity and causes epileptic seizures, both of which contribute to cognitive dysfunction in AD. However, whether seizures could regulate Aβ-induced synaptic weakening remains unclear. Here we show that a single episode of electroconvulsive seizures (ECS) increased protein expression of membrane-associated STriatal-Enriched protein tyrosine Phosphatase (STEP61) and decreased tyrosine-phosphorylation of its substrates N-methyl D-aspartate receptor (NMDAR) subunit GluN2B and extracellular signal regulated kinase 1/2 (ERK1/2) in the rat hippocampus at 2 days following a single ECS. Interestingly, a significant decrease in ERK1/2 expression and an increase in APP and Aβ levels were observed at 3-4 days following a single ECS when STEP61 level returned to the baseline. Given that pathologic levels of Aβ increase STEP61 activity and STEP61-mediated dephosphorylation of GluN2B and ERK1/2 leads to NMDAR internalization and ERK1/2 inactivation, we propose that upregulation of STEP61 and downregulation of GluN2B and ERK1/2 phosphorylation mediate compensatory weakening of synaptic strength in response to acute enhancement of hippocampal network activity, whereas delayed decrease in ERK1/2 expression and increase in APP and Aβ expression may contribute to the maintenance of this synaptic weakening. PMID:27127657

  8. CDK5 Is Essential for Soluble Amyloid β-Induced Degradation of GKAP and Remodeling of the Synaptic Actin Cytoskeleton

    PubMed Central

    Roselli, Francesco; Livrea, Paolo; Almeida, Osborne F. X.

    2011-01-01

    The early stages of Alzheimer's disease are marked by synaptic dysfunction and loss. This process results from the disassembly and degradation of synaptic components, in particular of scaffolding proteins that compose the post-synaptic density (PSD), namely PSD95, Homer and Shank. Here we investigated in rat frontal cortex dissociated culture the mechanisms involved in the downregulation of GKAP (SAPAP1), which links the PSD95 complex to the Shank complex and cytoskeletal structures within the PSD. We show that Aβ causes the rapid loss of GKAP from synapses through a pathway that critically requires cdk5 activity, and is set in motion by NMDAR activity and Ca2+ influx. We show that GKAP is a direct substrate of cdk5 and that its phosphorylation results in polyubiquitination and proteasomal degradation of GKAP and remodeling (collapse) of the synaptic actin cytoskeleton; the latter effect is abolished in neurons expressing GKAP mutants that are resistant to phosphorylation by cdk5. Given that cdk5 also regulates degradation of PSD95, these results underscore the central position of cdk5 in mediating Aβ-induced PSD disassembly and synapse loss. PMID:21829588

  9. Effects of hypothyroidism induced by perinatal exposure to PTU on rat behavior and synaptic gene expression.

    PubMed

    Kobayashi, Kumiko; Tsuji, Ryozo; Yoshioka, Takafumi; Kushida, Masahiko; Yabushita, Setsuko; Sasaki, Madoka; Mino, Terumasa; Seki, Takaki

    2005-09-01

    Hypothyroidism in the rat induced by perinatal exposure to propylthiouracil (PTU) is a useful animal model to study molecular changes underlying neurobehavioral defects associated with this condition. Understanding the developmental alterations in gene expression related to the neurobehavioral dysfunction should help to identify molecular markers for developmental neurotoxicity at an early stage of development. In the present study, we evaluate the effects of PTU on the expression of a set of genes implicated in neural network formation or synaptic function at a minimal dose of PTU causing behavioral alteration. Various doses of PTU were administered to dams from late pregnancy to the lactation period and the expression of selected genes in the hippocampus and the cerebral cortex of offspring was examined by quantitative RT-PCR. Behavioral performance of PTU-treated rats was also assessed. PTU-treated rats showed increased motor activity and impairment of E-maze learning at weaning and after maturation. At doses causing such behavioral alteration, expression of GAP-43 and M1 mRNAs was changed during neuronal network formation, suggesting that levels of these factors during development are important for accurate postnatal development and function. PMID:15941614

  10. Fasting induces a form of autonomic synaptic plasticity that prevents hypoglycemia.

    PubMed

    Wang, Manqi; Wang, Qian; Whim, Matthew D

    2016-05-24

    During fasting, activation of the counter-regulatory response (CRR) prevents hypoglycemia. A major effector arm is the autonomic nervous system that controls epinephrine release from adrenal chromaffin cells and, consequently, hepatic glucose production. However, whether modulation of autonomic function determines the relative strength of the CRR, and thus the ability to withstand food deprivation and maintain euglycemia, is not known. Here we show that fasting leads to altered transmission at the preganglionic → chromaffin cell synapse. The dominant effect is a presynaptic, long-lasting increase in synaptic strength. Using genetic and pharmacological approaches we show this plasticity requires neuropeptide Y, an adrenal cotransmitter and the activation of adrenal Y5 receptors. Loss of neuropeptide Y prevents a fasting-induced increase in epinephrine release and results in hypoglycemia in vivo. These findings connect plasticity within the sympathetic nervous system to a physiological output and indicate the strength of the final synapse in this descending pathway plays a decisive role in maintaining euglycemia. PMID:27092009

  11. Mitochondria controlled by UCP2 determine hypoxia-induced synaptic remodeling in the cortex and hippocampus.

    PubMed

    Varela, Luis; Schwartz, Michael L; Horvath, Tamas L

    2016-06-01

    We have established that mitochondrial dynamics, under metabolic control, play crucial roles in the regulation of systemic metabolism by hypothalamic circuits. The role of mitochondrial dynamics in neurons in higher brain regions is, however, ill-defined. Here we show that early postnatal exposure of animals to temporal hypoxia followed by normoxia, a major metabolic challenge on brain cells, resulted in adaptive responses of neuronal mitochondria. The number and oxygen consumption of mitochondria in cortical and hippocampal neurons were altered, while mitochondria-endoplasmic reticulum (ER) interactions were preserved. These changes coincided with increased synaptic input of neurons in the cortex and hippocampus. We identified that the changing oxygen tension triggered mitochondrial uncoupling protein 2 (UCP2) expression and showed that UCP2 is crucial for these adaptive mitochondrial responses. In UCP2 KO mice, changing oxygen tension did not induce changes in mitochondrial parameters and function but decreased mitochondria-ER contacts and resulted in loss of synapses both in the cortex and hippocampus. These observations establish that mitochondrial location controlled by UCP2 is relevant for adaptive responses of neurons in cortical and hippocampal neurons and are relevant to perinatal hypoxia-triggered circuit adaptations. PMID:26777666

  12. Vagal nerve stimulation blocks interleukin 6-dependent synaptic hyperexcitability induced by lipopolysaccharide-induced acute stress in the rodent prefrontal cortex.

    PubMed

    Garcia-Oscos, Francisco; Peña, David; Housini, Mohammad; Cheng, Derek; Lopez, Diego; Borland, Michael S; Salgado-Delgado, Roberto; Salgado, Humberto; D'Mello, Santosh; Kilgard, Michael P; Rose-John, Stefan; Atzori, Marco

    2015-01-01

    The ratio between synaptic inhibition and excitation (sI/E) is a critical factor in the pathophysiology of neuropsychiatric disease. We recently described a stress-induced interleukin-6 dependent mechanism leading to a decrease in sI/E in the rodent temporal cortex. The aim of the present study was to determine whether a similar mechanism takes place in the prefrontal cortex, and to elaborate strategies to prevent or attenuate it. We used aseptic inflammation (single acute injections of lipopolysaccharide, LPS, 10mg/kg) as stress model, and patch-clamp recording on a prefrontal cortical slice preparation from wild-type rat and mice, as well as from transgenic mice in which the inhibitor of IL-6 trans-signaling sgp130Fc was produced in a brain-specific fashion (sgp130Fc mice). The anti-inflammatory reflex was activated either by vagal nerve stimulation or peripheral administration of the nicotinic α7 receptor agonist PHA543613. We found that the IL-6-dependent reduction in prefrontal cortex synaptic inhibition was blocked in sgp130Fc mice, or - in wild-type animals - upon application sgp130Fc. Similar results were obtained by activating the "anti-inflammatory reflex" - a neural circuit regulating peripheral immune response - by stimulation of the vagal nerve or through peripheral administration of the α7 nicotinic receptor agonist PHA543613. Our results indicate that the prefrontal cortex is an important potential target of IL-6 mediated trans-signaling, and suggest a potential new avenue in the treatment of a large class of hyperexcitable neuropsychiatric conditions, including epilepsy, schizophrenic psychoses, anxiety disorders, autism spectrum disorders, and depression. PMID:25128387

  13. Bis(propyl)-cognitin Prevents β-amyloid-induced Memory Deficits as Well as Synaptic Formation and Plasticity Impairments via the Activation of PI3-K Pathway.

    PubMed

    Jiang, Liting; Huang, Meng; Xu, Shujun; Wang, Yu; An, Pengyuan; Feng, Chenxi; Chen, Xiaowei; Wei, Xiaofei; Han, Yifan; Wang, Qinwen

    2016-08-01

    Bis(propyl)-cognitin (B3C), derived from tacrine linked with three methylene (-CH2-) groups, is a dimerized molecule interacting multiple targets. During the past several years, it has been reported as a promising therapeutic drug for Alzheimer's disease (AD) and other neurodegenerative disorders. However, the therapeutic mechanism of B3C for AD needs further demonstration. Based on a combination of behavioral tests, electrophysiological technique, immunocytochemistry, and live cell imaging, we studied the effects and the underlying mechanism of B3C on the impairments of cognitive function, synapse formation, and synaptic plasticity induced by soluble amyloid-β protein (Aβ) oligomers. Our study showed that spatial learning and memory in a Morris water maze task and recognition memory in a novel object recognition task were significantly decreased in the AD model mice created by hippocampal injection of Aβ. Chronic administration of B3C for 21 days prevented the memory impairments of the AD model mice in a dose-dependent manner. Live cell imaging study showed that 2-h pretreatment of B3C prevented the decrease in the number of filopodia and synapses induced by Aβ (0.5 μM) in a dose-dependent manner. Besides, electrophysiological recording data showed that the inhibition of long-term potentiation (LTP) induced by Aβ1-42 oligomers in the dentate gyrus (DG) of hippocampus was prevented by B3C in a dose-dependent manner. Furthermore, we found that the neuroprotective effect of B3C against Aβ-oligomer-induced impairments of synaptic formation and plasticity could be partially blocked by a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 (50 μM). Therefore, these results indicate that B3C can prevent Aβ-oligomer-induced cognitive deficits, synaptic formation impairments, and synaptic plasticity impairments in a concentration-dependent manner. These effects of B3C are partially mediated via the PI3-K pathway. This study provides novel insights

  14. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  15. Light-evoked recovery from wortmannin-induced inhibition of catecholamine secretion and synaptic transmission.

    PubMed

    Warashina, A

    1999-07-15

    Wortmannin (WT) is known to inhibit catecholamine (CA) secretion in chromaffin cells. This effect was found to be sensitive to UV light in experiments designed to perform simultaneous monitoring of changes in [Ca2+]i and CA secretion in perfused rat adrenal medullas. When the change in [Ca2+]i was measured using calcium green-1 (490 nm excitation), a 35-min treatment with 10 microM WT caused a 69% inhibition of CA secretion evoked by excess (30 mM) extracellular K+ and a moderate inhibition of the [Ca2+]i response. In contrast, the same treatment of fura-2-loaded cells with WT caused only an 11% inhibition of the high-K+-evoked secretion and no significant attenuation of the [Ca2+]i response. However, during interruption of fluorometry with fura-2, the inhibitory effect of WT developed at a rate similar to that exhibited in calcium green-1-loaded cells. The WT-induced inhibition of high-K+- or bradykinin-evoked secretory responses, which was otherwise irreversible, was reversed by exposing WT-treated chromaffin cells to 380-nm light. When WT was reapplied to the cells of which the secretory ability had been restored by light irradiation, the secretory response was inhibited with a time course similar to that shown during the initial treatment with WT. The photosensitive effect of WT was also demonstrated using bullfrog sympathetic ganglia in which WT-induced inhibition of synaptic transmission was reversed by irradiation with 380-nm light. These results suggest that UV light removes the inhibitory effects of WT by disrupting the covalent bond formed between WT and a target molecule which remains to be determined, although myosin light chain kinase has been reported as the target molecule in both cases examined in this study. PMID:10395748

  16. Bidirectional regulation of synaptic plasticity in the basolateral amygdala induced by the D1-like family of dopamine receptors and group II metabotropic glutamate receptors

    PubMed Central

    Li, Chenchen; Rainnie, Donald G

    2014-01-01

    Competing mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in principal neurons of the basolateral amygdala (BLA) are thought to underlie the acquisition and consolidation of fear memories, and their subsequent extinction. However, no study to date has examined the locus of action and/or the cellular mechanism(s) by which these processes interact. Here, we report that synaptic plasticity in the cortical pathway onto BLA principal neurons is frequency-dependent and shows a transition from LTD to LTP at stimulation frequencies of ∼10 Hz. At the crossover point from LTD to LTP induction we show that concurrent activation of D1 and group II metabotropic glutamate (mGluR2/3) receptors act to nullify any net change in synaptic strength. Significantly, blockade of either D1 or mGluR2/3 receptors unmasked 10 Hz stimulation-induced LTD and LTP, respectively. Significantly, prior activation of presynaptic D1 receptors caused a time-dependent attenuation of mGluR2/3-induced depotentiation of previously induced LTP. Furthermore, studies with cell type-specific postsynaptic transgene expression of designer receptors activated by designer drugs (DREADDs) suggest that the interaction results via bidirectional modulation of adenylate cyclase activity in presynaptic glutamatergic terminals. The results of our study raise the possibility that the temporal sequence of activation of either presynaptic D1 receptors or mGluR2/3 receptors may critically regulate the direction of synaptic plasticity in afferent pathways onto BLA principal neurons. Hence, the interaction of these two neurotransmitter systems may represent an important mechanism for bidirectional metaplasticity in BLA circuits and thus modulate the acquisition and extinction of fear memory. PMID:25107924

  17. Bidirectional regulation of synaptic plasticity in the basolateral amygdala induced by the D1-like family of dopamine receptors and group II metabotropic glutamate receptors.

    PubMed

    Li, Chenchen; Rainnie, Donald G

    2014-10-01

    Competing mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in principal neurons of the basolateral amygdala (BLA) are thought to underlie the acquisition and consolidation of fear memories, and their subsequent extinction. However, no study to date has examined the locus of action and/or the cellular mechanism(s) by which these processes interact. Here, we report that synaptic plasticity in the cortical pathway onto BLA principal neurons is frequency-dependent and shows a transition from LTD to LTP at stimulation frequencies of ∼10 Hz. At the crossover point from LTD to LTP induction we show that concurrent activation of D1 and group II metabotropic glutamate (mGluR2/3) receptors act to nullify any net change in synaptic strength. Significantly, blockade of either D1 or mGluR2/3 receptors unmasked 10 Hz stimulation-induced LTD and LTP, respectively. Significantly, prior activation of presynaptic D1 receptors caused a time-dependent attenuation of mGluR2/3-induced depotentiation of previously induced LTP. Furthermore, studies with cell type-specific postsynaptic transgene expression of designer receptors activated by designer drugs (DREADDs) suggest that the interaction results via bidirectional modulation of adenylate cyclase activity in presynaptic glutamatergic terminals. The results of our study raise the possibility that the temporal sequence of activation of either presynaptic D1 receptors or mGluR2/3 receptors may critically regulate the direction of synaptic plasticity in afferent pathways onto BLA principal neurons. Hence, the interaction of these two neurotransmitter systems may represent an important mechanism for bidirectional metaplasticity in BLA circuits and thus modulate the acquisition and extinction of fear memory. PMID:25107924

  18. Raised Intracellular Calcium Contributes to Ischemia-Induced Depression of Evoked Synaptic Transmission

    PubMed Central

    Jalini, Shirin; Ye, Hui; Tonkikh, Alexander A.; Charlton, Milton P.; Carlen, Peter L.

    2016-01-01

    Oxygen-glucose deprivation (OGD) leads to depression of evoked synaptic transmission, for which the mechanisms remain unclear. We hypothesized that increased presynaptic [Ca2+]i during transient OGD contributes to the depression of evoked field excitatory postsynaptic potentials (fEPSPs). Additionally, we hypothesized that increased buffering of intracellular calcium would shorten electrophysiological recovery after transient ischemia. Mouse hippocampal slices were exposed to 2 to 8 min of OGD. fEPSPs evoked by Schaffer collateral stimulation were recorded in the stratum radiatum, and whole cell current or voltage clamp recordings were performed in CA1 neurons. Transient ischemia led to increased presynaptic [Ca2+]i, (shown by calcium imaging), increased spontaneous miniature EPSP/Cs, and depressed evoked fEPSPs, partially mediated by adenosine. Buffering of intracellular Ca2+ during OGD by membrane-permeant chelators (BAPTA-AM or EGTA-AM) partially prevented fEPSP depression and promoted faster electrophysiological recovery when the OGD challenge was stopped. The blocker of BK channels, charybdotoxin (ChTX), also prevented fEPSP depression, but did not accelerate post-ischemic recovery. These results suggest that OGD leads to elevated presynaptic [Ca2+]i, which reduces evoked transmitter release; this effect can be reversed by increased intracellular Ca2+ buffering which also speeds recovery. PMID:26934214

  19. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory

    PubMed Central

    Xu, Lin-Hao; Xie, Hui; Shi, Zhi-Hui; Du, Li-Da; Wing, Yun-Kwok; Li, Albert M.

    2015-01-01

    Abstract Aims: This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits. Results: Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA. Innovation and Conclusion: These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment. Antioxid. Redox Signal. 23, 695–710. PMID:25843188

  20. Effect of castration on the susceptibility of male rats to the sleep deprivation-induced impairment of behavioral and synaptic plasticity.

    PubMed

    Hajali, Vahid; Sheibani, Vahid; Ghazvini, Hamed; Ghadiri, Tahereh; Valizadeh, Toktam; Saadati, Hakimeh; Shabani, Mohammad

    2015-09-01

    In both human and animal studies, the effect of sleep deficiency on cognitive performances has mostly been studied during adulthood in males, but very little data exist concerning the effects of poor sleep in gonadal hormones-depleted status, such as aging or gonadectomized (GDX) male animal models. The present study investigated the potential modulatory effects of the endogenous male sex hormones on the 48h REM sleep deprivation (SD)-induced cognitive and synaptic impairments by comparing the gonadally intact with castrated male rats, a rodent model of androgen-deprived male animals. The multiple platform method was used for inducing REM-SD and spatial performances were evaluated using Morris water maze (MWM) task. Early long-term potentiation (E-LTP) was measured in area CA1 of the hippocampus and PCR and western blotting assays were employed to assess brain derived neurotrophic factor (BDNF) gene and protein expression in the hippocampus. To reveal any influence of sleep loss on stress level, we also evaluated the plasma corticosterone levels of animals. Regardless of reproductive status, REM-SD significantly disrupted short-term memory and LTP, as well as hippocampal BDNF expression. The corticosterone levels were not significantly changed following REM-SD neither in intact nor in GDX male rats. These findings suggest that depletion of male sex steroid hormones by castration does not lead to any heightened sensitivity of male animals to the deleterious effects of 48h REM-SD on cognitive and synaptic performances. PMID:26079215

  1. Propofol, but not etomidate, increases corticosterone levels and induces long-term alteration in hippocampal synaptic activity in neonatal rats.

    PubMed

    Xu, Changqing; Seubert, Christoph N; Gravenstein, Nikolaus; Martynyuk, Anatoly E

    2016-04-01

    Animal studies provide strong evidence that general anesthetics (GAs), administered during the early postnatal period, induce long-term cognitive and neurological abnormalities. Because the brain growth spurt in rodents is delayed compared to that in humans, a fundamental question is whether the postnatal human brain is similarly vulnerable. Sevoflurane and propofol, GAs that share positive modulation of the gamma-aminobutyric acid type A receptor (GABAAR) function cause marked increase in corticosterone levels and induce long-term developmental alterations in synaptic activity in rodents. If synaptogenesis is affected, investigation of mechanisms of the synaptic effects of GAs is of high interest because synaptogenesis in humans continues for several years after birth. Here, we compared long-term synaptic effects of etomidate with those of propofol. Etomidate and propofol both positively modulate GABAAR activity, but in contrast to propofol, etomidate inhibits the adrenal synthesis of corticosterone. Postnatal day (P) 4, 5, or 6 rats received five injections of etomidate, propofol, or vehicle control during 5h of maternal separation. Endocrine effects of the anesthetics were evaluated by measuring serum levels of corticosterone immediately after anesthesia or maternal separation. The frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs) in hippocampal CA1 pyramidal neurons were measured at P24-40 and P≥80. Only propofol caused a significant increase in serum corticosterone levels (F(4.26)=17.739, P<0.001). In contrast to increased frequency of mIPSCs in the propofol group (F(4.23)=8.731, p<0.001), mIPSC activity in the etomidate group was not different from that in the vehicle groups. The results of this study together with previously published data suggest that anesthetic-caused increase in corticosterone levels is required for GABAergic GAs to induce synaptic effects in the form of a long-term increase in the frequency of hippocampal m

  2. A new genetic model of activity-induced Ras signaling dependent pre-synaptic plasticity in Drosophila

    PubMed Central

    Freeman, Amanda; Bowers, Mallory; Mortimer, Alysia Vrailas; Timmerman, Christina; Roux, Stephanie; Ramaswami, Mani; Sanyal, Subhabrata

    2010-01-01

    Techniques to induce activity-dependent neuronal plasticity in vivo allow the underlying signaling pathways to be studied in their biological context. Here, we demonstrate activity-induced plasticity at neuromuscular synapses of Drosophila double mutant for comatose (an NSF mutant) and Kum (a SERCA mutant), and present an analysis of the underlying signaling pathways. comt; Kum (CK) double mutants exhibit increased locomotor activity under normal culture conditions, concomitant with a larger neuromuscular junction synapse and stably elevated evoked transmitter release. The observed enhancements of synaptic size and transmitter release in CK mutants are completely abrogated by: a) reduced activity of motor neurons; b) attenuation of the Ras/ERK signaling cascade; or c) inhibition of the transcription factors Fos and CREB. all of which restrict synaptic properties to near wild type levels. Together, these results document neural activity-dependent plasticity of motor synapses in CK animals that requires Ras/ERK signaling and normal transcriptional activity of Fos and CREB. Further, novel in vivo reporters of neuronal Ras activation and Fos transcription also confirm increased signaling through a Ras/AP-1 pathway in motor neurons of CK animals, consistent with results from our genetic experiments. Thus, this study: a) provides a robust system in which to study activity-induced synaptic plasticity in vivo; b) establishes a causal link between neural activity, Ras signaling, transcriptional regulation and pre-synaptic plasticity in glutamatergic motor neurons of Drosophila larvae; and c) presents novel, genetically encoded reporters for Ras and AP-1 dependent signaling pathways in Drosophila. PMID:20193670

  3. Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex

    PubMed Central

    Kuhn, Marion; Wolf, Elias; Maier, Jonathan G.; Mainberger, Florian; Feige, Bernd; Schmid, Hanna; Bürklin, Jan; Maywald, Sarah; Mall, Volker; Jung, Nikolai H.; Reis, Janine; Spiegelhalder, Kai; Klöppel, Stefan; Sterr, Annette; Eckert, Anne; Riemann, Dieter; Normann, Claus; Nissen, Christoph

    2016-01-01

    Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep–wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation. We demonstrate indices of increased net synaptic strength (TMS intensity to elicit a predefined amplitude of motor-evoked potential and EEG theta activity) and decreased LTP-like plasticity (paired associative stimulation induced change in motor-evoked potential and memory formation) after sleep deprivation. Changes in plasma BDNF are identified as a potential mechanism. Our study indicates that sleep recalibrates homeostatic and associative synaptic plasticity, believed to be the neural basis for adaptive behaviour, in humans. PMID:27551934

  4. Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex.

    PubMed

    Kuhn, Marion; Wolf, Elias; Maier, Jonathan G; Mainberger, Florian; Feige, Bernd; Schmid, Hanna; Bürklin, Jan; Maywald, Sarah; Mall, Volker; Jung, Nikolai H; Reis, Janine; Spiegelhalder, Kai; Klöppel, Stefan; Sterr, Annette; Eckert, Anne; Riemann, Dieter; Normann, Claus; Nissen, Christoph

    2016-01-01

    Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep-wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation. We demonstrate indices of increased net synaptic strength (TMS intensity to elicit a predefined amplitude of motor-evoked potential and EEG theta activity) and decreased LTP-like plasticity (paired associative stimulation induced change in motor-evoked potential and memory formation) after sleep deprivation. Changes in plasma BDNF are identified as a potential mechanism. Our study indicates that sleep recalibrates homeostatic and associative synaptic plasticity, believed to be the neural basis for adaptive behaviour, in humans. PMID:27551934

  5. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus

    PubMed Central

    Dennis, Siobhan H.; Pasqui, Francesca; Colvin, Ellen M.; Sanger, Helen; Mogg, Adrian J.; Felder, Christian C.; Broad, Lisa M.; Fitzjohn, Steve M.; Isaac, John T.R.; Mellor, Jack R.

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans. PMID:26472558

  6. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus.

    PubMed

    Dennis, Siobhan H; Pasqui, Francesca; Colvin, Ellen M; Sanger, Helen; Mogg, Adrian J; Felder, Christian C; Broad, Lisa M; Fitzjohn, Steve M; Isaac, John T R; Mellor, Jack R

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans. PMID:26472558

  7. Interactions of Human Autoantibodies with Hippocampal GABAergic Synaptic Transmission – Analyzing Antibody-Induced Effects ex vivo

    PubMed Central

    Haselmann, Holger; Röpke, Luise; Werner, Christian; Kunze, Albrecht; Geis, Christian

    2015-01-01

    Autoantibodies (aAB) to the presynaptic located enzyme glutamate decarboxylase 65 (GAD65) are a characteristic attribute for a variety of autoimmune diseases of the central nervous system including subtypes of limbic encephalitis, stiff person-syndrome, cerebellar ataxia, and Batten’s disease. Clinical signs of hyperexcitability and improvement of disease symptoms upon immunotherapy in some of these disorders suggest a possible pathogenic role of associated aAB. Recent experimental studies report inconsistent results regarding a direct pathogenic influence of anti-GAD65 aAB affecting inhibitory synaptic transmission in central GABAergic pathways. We here provide a method for direct evaluation of aAB-induced pathomechanisms in the intact hippocampal network. Purified patient IgG fractions containing aAB to GAD65 together with fixable lipophilic styryl dyes (FMdyes) are stereotactically injected into the hilus and the dentate gyrus in anesthetized mice. Twenty-four hours after intrahippocampal injection, acute hippocampal slices are prepared and transferred to a patch-clamp recording setup equipped with a fluorescence light source. Intraneural incorporated FMdyes show correct injection site for patch-clamp recording. Whole-cell patch-clamp recordings are performed from granule cells in the dentate gyrus and extracellular stimulation is applied in the border area of the dentate gyrus-hilus region to stimulate GABAergic afferents arising from parvalbumin positive basket cells. GABA-A receptor mediated inhibitory postsynaptic currents (IPSC) and miniature IPSC are recorded after blocking glutamatergic transmission. This approach allows investigation of potential aAB-induced effects on GABA-A receptor signaling ex vivo in an intact neuronal network. This offers several advantages compared to experimental procedures used in previous studies by in vitro AB preincubation of primary neurons or slice preparations. Furthermore, this method requires only small amounts of

  8. EDITORIAL: Synaptic electronics Synaptic electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    edge of chaos, where complex phenomena, including creativity and intelligence, may emerge'. Also in this issue R Stanley Williams and colleagues report results from simulations that demonstrate the potential for using Mott transistors as building blocks for scalable neuristor-based integrated circuits without transistors [5]. The scalability of neural chip designs is also tackled in the design reported by Narayan Srinivasa and colleagues in the US [6]. Meanwhile Carsten Timm and Massimiliano Di Ventra describe simulations of a molecular transistor in which electrons strongly coupled to a vibrational mode lead to a Franck-Condon (FC) blockade that mimics the spiking action potentials in synaptic memory behaviour [7]. The 'atomic switches' used to demonstrate synaptic behaviour by a collaboration of researchers in California and Japan also come under further scrutiny in this issue. James K Gimzewski and colleagues consider the difference between the behaviour of an atomic switch in isolation and in a network [8]. As the authors point out, 'The work presented represents steps in a unified approach of experimentation and theory of complex systems to make atomic switch networks a uniquely scalable platform for neuromorphic computing'. Researchers in Germany [9] and Sweden [10] also report on theoretical approaches to modelling networks of memristive elements and complementary resistive switches for synaptic devices. As Vincent Derycke and colleagues in France point out, 'Actual experimental demonstrations of neural network type circuits based on non-conventional/non-CMOS memory devices and displaying function learning capabilities remain very scarce'. They describe how their work using carbon nanotubes provides a rare demonstration of actual function learning with synapses based on nanoscale building blocks [11]. However, this is far from the only experimental work reported in this issue, others include: short-term memory of TiO2-based electrochemical capacitors [12]; a

  9. Activation of synaptic group II metabotropic glutamate receptors induces long-term depression at GABAergic synapses in CNS neurons.

    PubMed

    Tang, Zheng-Quan; Liu, Yu-Wei; Shi, Wei; Dinh, Emilie Hoang; Hamlet, William R; Curry, Rebecca J; Lu, Yong

    2013-10-01

    Metabotropic glutamate receptor (mGluR)-dependent homosynaptic long-term depression (LTD) has been studied extensively at glutamatergic synapses in the CNS. However, much less is known about heterosynaptic long-term plasticity induced by mGluRs at inhibitory synapses. Here we report that pharmacological or synaptic activation of group II mGluRs (mGluR II) induces LTD at GABAergic synapses without affecting the excitatory glutamatergic transmission in neurons of the chicken cochlear nucleus. Coefficient of variation and failure rate analysis suggested that the LTD was expressed presynaptically. The LTD requires presynaptic spike activity, but does not require the activation of NMDA receptors. The classic cAMP-dependent protein kinase A signaling is involved in the transduction pathway. Remarkably, blocking mGluR II increased spontaneous GABA release, indicating the presence of tonic activation of mGluR II by ambient glutamate. Furthermore, synaptically released glutamate induced by electrical stimulations that concurrently activated both the glutamatergic and GABAergic pathways resulted in significant and constant suppression of GABA release at various stimulus frequencies (3.3, 100, and 300 Hz). Strikingly, low-frequency stimulation (1 Hz, 15 min) of the glutamatergic synapses induced heterosynaptic LTD of GABAergic transmission, and the LTD was blocked by mGluR II antagonist, indicating that synaptic activation of mGluR II induced the LTD. This novel form of long-term plasticity in the avian auditory brainstem may play a role in the development as well as in temporal processing in the sound localization circuit. PMID:24089501

  10. EDITORIAL: Synaptic electronics Synaptic electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    edge of chaos, where complex phenomena, including creativity and intelligence, may emerge'. Also in this issue R Stanley Williams and colleagues report results from simulations that demonstrate the potential for using Mott transistors as building blocks for scalable neuristor-based integrated circuits without transistors [5]. The scalability of neural chip designs is also tackled in the design reported by Narayan Srinivasa and colleagues in the US [6]. Meanwhile Carsten Timm and Massimiliano Di Ventra describe simulations of a molecular transistor in which electrons strongly coupled to a vibrational mode lead to a Franck-Condon (FC) blockade that mimics the spiking action potentials in synaptic memory behaviour [7]. The 'atomic switches' used to demonstrate synaptic behaviour by a collaboration of researchers in California and Japan also come under further scrutiny in this issue. James K Gimzewski and colleagues consider the difference between the behaviour of an atomic switch in isolation and in a network [8]. As the authors point out, 'The work presented represents steps in a unified approach of experimentation and theory of complex systems to make atomic switch networks a uniquely scalable platform for neuromorphic computing'. Researchers in Germany [9] and Sweden [10] also report on theoretical approaches to modelling networks of memristive elements and complementary resistive switches for synaptic devices. As Vincent Derycke and colleagues in France point out, 'Actual experimental demonstrations of neural network type circuits based on non-conventional/non-CMOS memory devices and displaying function learning capabilities remain very scarce'. They describe how their work using carbon nanotubes provides a rare demonstration of actual function learning with synapses based on nanoscale building blocks [11]. However, this is far from the only experimental work reported in this issue, others include: short-term memory of TiO2-based electrochemical capacitors [12]; a

  11. Serotonin Modulates Developmental Microglia via 5-HT2B Receptors: Potential Implication during Synaptic Refinement of Retinogeniculate Projections.

    PubMed

    Kolodziejczak, Marta; Béchade, Catherine; Gervasi, Nicolas; Irinopoulou, Theano; Banas, Sophie M; Cordier, Corinne; Rebsam, Alexandra; Roumier, Anne; Maroteaux, Luc

    2015-07-15

    Maturation of functional neuronal circuits during central nervous system development relies on sophisticated mechanisms. First, axonal and dendritic growth should reach appropriate targets for correct synapse elaboration. Second, pruning and neuronal death are required to eliminate redundant or inappropriate neuronal connections. Serotonin, in addition to its role as a neurotransmitter, actively participates in postnatal establishment and refinement of brain wiring in mammals. Brain resident macrophages, that is, microglia, also play an important role in developmentally regulated neuronal death as well as in synaptic maturation and elimination. Here, we tested the hypothesis of cross-regulation between microglia and serotonin during postnatal brain development in a mouse model of synaptic refinement. We found expression of the serotonin 5-HT2B receptor on postnatal microglia, suggesting that serotonin could participate in temporal and spatial synchronization of microglial functions. Using two-photon microscopy, acute brain slices, and local delivery of serotonin, we observed that microglial processes moved rapidly toward the source of serotonin in Htr2B(+/+) mice, but not in Htr2B(-/-) mice lacking the 5-HT2B receptor. We then investigated whether some developmental steps known to be controlled by serotonin could potentially result from microglia sensitivity to serotonin. Using an in vivo model of synaptic refinement during early brain development, we investigated the maturation of the retinal projections to the thalamus and observed that Htr2B(-/-) mice present anatomical alterations of the ipsilateral projecting area of retinal axons into the thalamus. In addition, activation markers were upregulated in microglia from Htr2B(-/-) compared to control neonates, in the absence of apparent morphological modifications. These results support the hypothesis that serotonin interacts with microglial cells and these interactions participate in brain maturation. PMID

  12. Chronic Intermittent Ethanol Exposure Enhances the Excitability and Synaptic Plasticity of Lateral Orbitofrontal Cortex Neurons and Induces a Tolerance to the Acute Inhibitory Actions of Ethanol.

    PubMed

    Nimitvilai, Sudarat; Lopez, Marcelo F; Mulholland, Patrick J; Woodward, John J

    2016-03-01

    Alcoholism is associated with changes in brain reward and control systems, including the prefrontal cortex. In prefrontal areas, the orbitofrontal cortex (OFC) has been suggested to have an important role in the development of alcohol-abuse disorders and studies from this laboratory demonstrate that OFC-mediated behaviors are impaired in alcohol-dependent animals. However, it is not known whether chronic alcohol (ethanol) exposure alters the fundamental properties of OFC neurons. In this study, mice were exposed to repeated cycles of chronic intermittent ethanol (CIE) exposure to induce dependence and whole-cell patch-clamp electrophysiology was used to examine the effects of CIE treatment on lateral OFC (lOFC) neuron excitability, synaptic transmission, and plasticity. Repeated cycles of CIE exposure and withdrawal enhanced current-evoked action potential (AP) spiking and this was accompanied by a reduction in the after-hyperpolarization and a decrease in the functional activity of SK channels. CIE mice also showed an increase in the AMPA/NMDA ratio, and this was associated with an increase in GluA1/GluA2 AMPA receptor expression and a decrease in GluN2B NMDA receptor subunits. Following CIE treatment, lOFC neurons displayed a persistent long-term potentiation of glutamatergic synaptic transmission following a spike-timing-dependent protocol. Lastly, CIE treatment diminished the inhibitory effect of acute ethanol on AP spiking of lOFC neurons and reduced expression of the GlyT1 transporter. Taken together, these results suggest that chronic exposure to ethanol leads to enhanced intrinsic excitability and glutamatergic synaptic signaling of lOFC neurons. These alterations may contribute to the impairment of OFC-dependent behaviors in alcohol-dependent individuals. PMID:26286839

  13. Fast Learning with Weak Synaptic Plasticity.

    PubMed

    Yger, Pierre; Stimberg, Marcel; Brette, Romain

    2015-09-30

    New sensory stimuli can be learned with a single or a few presentations. Similarly, the responses of cortical neurons to a stimulus have been shown to increase reliably after just a few repetitions. Long-term memory is thought to be mediated by synaptic plasticity, but in vitro experiments in cortical cells typically show very small changes in synaptic strength after a pair of presynaptic and postsynaptic spikes. Thus, it is traditionally thought that fast learning requires stronger synaptic changes, possibly because of neuromodulation. Here we show theoretically that weak synaptic plasticity can, in fact, support fast learning, because of the large number of synapses N onto a cortical neuron. In the fluctuation-driven regime characteristic of cortical neurons in vivo, the size of membrane potential fluctuations grows only as √N, whereas a single output spike leads to potentiation of a number of synapses proportional to N. Therefore, the relative effect of a single spike on synaptic potentiation grows as √N. This leverage effect requires precise spike timing. Thus, the large number of synapses onto cortical neurons allows fast learning with very small synaptic changes. Significance statement: Long-term memory is thought to rely on the strengthening of coactive synapses. This physiological mechanism is generally considered to be very gradual, and yet new sensory stimuli can be learned with just a few presentations. Here we show theoretically that this apparent paradox can be solved when there is a tight balance between excitatory and inhibitory input. In this case, small synaptic modifications applied to the many synapses onto a given neuron disrupt that balance and produce a large effect even for modifications induced by a single stimulus. This effect makes fast learning possible with small synaptic changes and reconciles physiological and behavioral observations. PMID:26424883

  14. A Postsynaptic AMPK→p21-Activated Kinase Pathway Drives Fasting-Induced Synaptic Plasticity in AgRP Neurons.

    PubMed

    Kong, Dong; Dagon, Yossi; Campbell, John N; Guo, Yikun; Yang, Zongfang; Yi, Xinchi; Aryal, Pratik; Wellenstein, Kerry; Kahn, Barbara B; Sabatini, Bernardo L; Lowell, Bradford B

    2016-07-01

    AMP-activated protein kinase (AMPK) plays an important role in regulating food intake. The downstream AMPK substrates and neurobiological mechanisms responsible for this, however, are ill defined. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus regulate hunger. Their firing increases with fasting, and once engaged they cause feeding. AgRP neuron activity is regulated by state-dependent synaptic plasticity: fasting increases dendritic spines and excitatory synaptic activity; feeding does the opposite. The signaling mechanisms underlying this, however, are also unknown. Using neuron-specific approaches to measure and manipulate kinase activity specifically within AgRP neurons, we establish that fasting increases AMPK activity in AgRP neurons, that increased AMPK activity in AgRP neurons is both necessary and sufficient for fasting-induced spinogenesis and excitatory synaptic activity, and that the AMPK phosphorylation target mediating this plasticity is p21-activated kinase. This provides a signaling and neurobiological basis for both AMPK regulation of energy balance and AgRP neuron state-dependent plasticity. PMID:27321921

  15. Voluntary running depreciates the requirement of Ca2+-stimulated cAMP signaling in synaptic potentiation and memory formation.

    PubMed

    Zheng, Fei; Zhang, Ming; Ding, Qi; Sethna, Ferzin; Yan, Lily; Moon, Changjong; Yang, Miyoung; Wang, Hongbing

    2016-08-01

    Mental health and cognitive functions are influenced by both genetic and environmental factors. Although having active lifestyle with physical exercise improves learning and memory, how it interacts with the specific key molecular regulators of synaptic plasticity is largely unknown. Here, we examined the effects of voluntary running on long-term potentiation (LTP) and memory formation in mice lacking type 1 adenylyl cyclase (AC1), a neurospecific synaptic enzyme that contributes to Ca(2+)-stimulated cAMP production. Following 1 mo of voluntary running-wheel exercise, the impaired LTP and object recognition memory in AC1 knockout (KO) mice were significantly attenuated. Running up-regulated exon II mRNA level of BDNF (brain-derived neurotrophic factor), though it failed to increase exon I and IV mRNAs in the hippocampus of AC1 KO mice. Intrahippocampal infusion of recombinant BDNF was sufficient to rescue LTP and object recognition memory defects in AC1 KO mice. Therefore, voluntary running and exogenous BDNF application overcome the defective Ca(2+)-stimulated cAMP signaling. Our results also demonstrate that alteration in Ca(2+)-stimulated cAMP can affect the molecular outcome of physical exercise. PMID:27421897

  16. Synaptic dysfunction in Parkinson's disease.

    PubMed

    Bagetta, Vincenza; Ghiglieri, Veronica; Sgobio, Carmelo; Calabresi, Paolo; Picconi, Barbara

    2010-04-01

    In neuronal circuits, memory storage depends on activity-dependent modifications in synaptic efficacy, such as LTD (long-term depression) and LTP (long-term potentiation), the two main forms of synaptic plasticity in the brain. In the nucleus striatum, LTD and LTP represent key cellular substrates for adaptive motor control and procedural memory. It has been suggested that their impairment could account for the onset and progression of motor symptoms of PD (Parkinson's disease), a neurodegenerative disorder characterized by the massive degeneration of dopaminergic neurons projecting to the striatum. In fact, a peculiar aspect of striatal plasticity is the modulation exerted by DA (dopamine) on LTP and LTD. Our understanding of these maladaptive forms of plasticity has mostly come from the electrophysiological, molecular and behavioural analyses of experimental animal models of PD. In PD, a host of cellular and synaptic changes occur in the striatum in response to the massive loss of DA innervation. Chronic L-dopa therapy restores physiological synaptic plasticity and behaviour in treated PD animals, but most of them, similarly to patients, exhibit a reduction in the efficacy of the drug and disabling AIMs (abnormal involuntary movements) defined, as a whole, as L-dopa-induced dyskinesia. In those animals experiencing AIMs, synaptic plasticity is altered and is paralleled by modifications in the postsynaptic compartment. In particular, dysfunctions in trafficking and subunit composition of NMDARs [NMDA (N-methyl-D-aspartate) receptors] on striatal efferent neurons result from chronic non-physiological dopaminergic stimulation and contribute to the pathogenesis of dyskinesias. According to these pathophysiological concepts, therapeutic strategies targeting signalling proteins coupled to NMDARs within striatal spiny neurons could represent new pharmaceutical interventions for PD and L-dopa-induced dyskinesia. PMID:20298209

  17. Priming of Short-Term Potentiation and Synaptic Tagging/Capture Mechanisms by Ryanodine Receptor Activation in Rat Hippocampal CA1

    ERIC Educational Resources Information Center

    Sajikumar, Sreedharan; Li, Qin; Abraham, Wickliffe C.; Xiao, Zhi Cheng

    2009-01-01

    Activity-dependent changes in synaptic strength such as long-term potentiation (LTP) and long-term depression (LTD) are considered to be cellular mechanisms underlying learning and memory. Strengthening of a synapse for a few seconds or minutes is termed short-term potentiation (STP) and is normally unable to take part in the processes of synaptic…

  18. Increased Spinal Cord Na+-K+-2Cl− Cotransporter-1 (NKCC1) Activity Contributes to Impairment of Synaptic Inhibition in Paclitaxel-induced Neuropathic Pain*

    PubMed Central

    Chen, Shao-Rui; Zhu, Lihong; Chen, Hong; Wen, Lei; Laumet, Geoffroy; Pan, Hui-Lin

    2014-01-01

    Microtubule-stabilizing agents, such as paclitaxel (Taxol), are effective chemotherapy drugs for treating many cancers, and painful neuropathy is a major dose-limiting adverse effect. Cation-chloride cotransporters, such as Na+-K+-2Cl− cotransporter-1 (NKCC1) and K+-Cl− cotransporter-2 (KCC2), critically influence spinal synaptic inhibition by regulating intracellular chloride concentrations. Here we show that paclitaxel treatment in rats significantly reduced GABA-induced membrane hyperpolarization and caused a depolarizing shift in GABA reversal potential of dorsal horn neurons. However, paclitaxel had no significant effect on AMPA or NMDA receptor-mediated glutamatergic input from primary afferents to dorsal horn neurons. Paclitaxel treatment significantly increased protein levels, but not mRNA levels, of NKCC1 in spinal cords. Inhibition of NKCC1 with bumetanide reversed the paclitaxel effect on GABA-mediated hyperpolarization and GABA reversal potentials. Also, intrathecal bumetanide significantly attenuated hyperalgesia and allodynia induced by paclitaxel. Co-immunoprecipitation revealed that NKCC1 interacted with β-tubulin and β-actin in spinal cords. Remarkably, paclitaxel increased NKCC1 protein levels at the plasma membrane and reduced NKCC1 levels in the cytosol of spinal cords. In contrast, treatment with an actin-stabilizing agent had no significant effect on NKCC1 protein levels in the plasma membrane or cytosolic fractions of spinal cords. In addition, inhibition of the motor protein dynein blocked paclitaxel-induced subcellular redistribution of NKCC1, whereas inhibition of kinesin-5 mimicked the paclitaxel effect. Our findings suggest that increased NKCC1 activity contributes to diminished spinal synaptic inhibition and neuropathic pain caused by paclitaxel. Paclitaxel disrupts intracellular NKCC1 trafficking by interfering with microtubule dynamics and associated motor proteins. PMID:25253692

  19. Hippocampal Synaptic Expansion Induced by Spatial Experience in Rats Correlates with Improved Information Processing in the Hippocampus

    PubMed Central

    Carasatorre, Mariana; Ochoa-Alvarez, Adrian; Velázquez-Campos, Giovanna; Lozano-Flores, Carlos; Díaz-Cintra, Sofía Y.; Ramírez-Amaya, Víctor

    2015-01-01

    Spatial water maze (WM) overtraining induces hippocampal mossy fiber (MF) expansion, and it has been suggested that spatial pattern separation depends on the MF pathway. We hypothesized that WM experience inducing MF expansion in rats would improve spatial pattern separation in the hippocampal network. We first tested this by using the the delayed non-matching to place task (DNMP), in animals that had been previously trained on the water maze (WM) and found that these animals, as well as animals treated as swim controls (SC), performed better than home cage control animals the DNMP task. The “catFISH” imaging method provided neurophysiological evidence that hippocampal pattern separation improved in animals treated as SC, and this improvement was even clearer in animals that experienced the WM training. Moreover, these behavioral treatments also enhance network reliability and improve partial pattern separation in CA1 and pattern completion in CA3. By measuring the area occupied by synaptophysin staining in both the stratum oriens and the stratun lucidum of the distal CA3, we found evidence of structural synaptic plasticity that likely includes MF expansion. Finally, the measures of hippocampal network coding obtained with catFISH correlate significantly with the increased density of synaptophysin staining, strongly suggesting that structural synaptic plasticity in the hippocampus induced by the WM and SC experience is related to the improvement of spatial information processing in the hippocampus. PMID:26244549

  20. Pharmacological Rescue of Cortical Synaptic and Network Potentiation in a Mouse Model for Fragile X Syndrome

    PubMed Central

    Chen, Tao; Lu, Jing-Shan; Song, Qian; Liu, Ming-Gang; Koga, Kohei; Descalzi, Giannina; Li, Yun-Qing; Zhuo, Min

    2014-01-01

    Fragile X syndrome, caused by the mutation of the Fmr1 gene, is characterized by deficits of attention and learning ability. In the hippocampus of Fmr1 knockout mice (KO), long-term depression is enhanced whereas long-term potentiation (LTP) including late-phase LTP (L-LTP) is reduced or unaffected. Here we examined L-LTP in the anterior cingulate cortex (ACC) in Fmr1 KO mice by using a 64-electrode array recording system. In wild-type mice, theta-burst stimulation induced L-LTP that does not occur in all active electrodes/channels within the cingulate circuit and is typically detected in ∼75% of active channels. Furthermore, L-LTP recruited new responses from previous inactive channels. Both L-LTP and the recruitment of inactive responses were blocked in the ACC slices of Fmr1 KO mice. Bath application of metabotropic glutamate receptor 5 (mGluR5) antagonist or glycogen synthase kinase-3 (GSK3) inhibitors rescued the L-LTP and network recruitment. Our results demonstrate that loss of FMRP will greatly impair L-LTP and recruitment of cortical network in the ACC that can be rescued by pharmacological inhibition of mGluR5 or GSK3. This study is the first report of the network properties of L-LTP in the ACC, and provides basic mechanisms for future treatment of cortex-related cognitive defects in fragile X patients. PMID:24553731

  1. Differential proteomics analysis of synaptic proteins identifies potential cellular targets and protein mediators of synaptic neuroprotection conferred by the slow Wallerian degeneration (Wlds) gene

    PubMed Central

    Wishart, Thomas M.; Paterson, Janet M.; Short, Duncan M.; Meredith, Sara; Robertson, Kevin A.; Sutherland, Calum; Cousin, Michael A.; Dutia, Mayank B.; Gillingwater, Thomas H.

    2007-01-01

    SUMMARY Non-somatic synaptic and axonal compartments of neurons are primary pathological targets in many neurodegenerative conditions, ranging from Alzheimer's disease through to motor neuron disease. Axons and synapses are protected from degeneration by the slow Wallerian degeneration (Wlds) gene. Significantly, the molecular mechanisms through which this spontaneous genetic mutation delays degeneration remain controversial and the downstream protein targets of Wlds resident in non-somatic compartments remain unknown. Here we have used differential proteomic analysis to identify proteins whose expression levels were significantly altered in isolated synaptic preparations from the striatum of Wlds mice. 8 of the 16 proteins we identified as having modified expression levels in Wlds synapses are known regulators of mitochondrial stability and degeneration (including VDAC1, Aralar1 and mitofilin). Subsequent analyses demonstrated that other key mitochondrial proteins, not identified in our initial screen, are also modified in Wlds synapses. Of the non-mitochondrial proteins identified, several have been implicated in neurodegenerative diseases where synapses and axons are primary pathological targets (including DRP-2 and Rab GDI beta). In addition, we show that downstream protein changes can be identified in pathways corresponding to both Ube4b (including UBE1) and Nmnat1 (including VDAC1 and Aralar1) components of the chimeric Wlds gene, suggesting that full-length Wlds protein is required to elicit maximal changes in synaptic proteins. We conclude that altered mitochondrial responses to degenerative stimuli are likely to play an important role in the neuroprotective Wlds phenotype and that targeting proteins identified in the current study may lead to novel therapies for the treatment of neurodegenerative diseases in humans. PMID:17470424

  2. Measuring Ca2+-Induced Structural Changes in Lipid Monolayers: Implications for Synaptic Vesicle Exocytosis

    PubMed Central

    Ghosh, Sajal Kumar; Castorph, Simon; Konovalov, Oleg; Salditt, Tim; Jahn, Reinhard; Holt, Matthew

    2012-01-01

    Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons. Although tremendous progress has been made in understanding the protein machinery that drives fusion of SVs with the presynaptic membrane, little progress has been made in understanding changes in the membrane structure that accompany this process. We used lipid monolayers of defined composition to mimic biological membranes, which were probed by x-ray reflectivity and grazing incidence x-ray diffraction. These techniques allowed us to successfully monitor structural changes in the membranes at molecular level, both in response to injection of SVs in the subphase below the monolayer, as well as to physiological cues involved in neurotransmitter release, such as increases in the concentration of the membrane lipid PIP2, or addition of physiological levels of Ca2+. Such structural changes may well modulate vesicle fusion in vivo. PMID:22455922

  3. Modulation of swimming behavior in the medicinal leech. IV. Serotonin-induced alteration of synaptic interactions between neurons of the swim circuit.

    PubMed

    Mangan, P S; Cometa, A K; Friesen, W O

    1994-12-01

    Serotonin enhances the expression of swimming in the medicinal leech Hirudo medicinalis. These two reports examine the physiological causes underlying this modulation. The initial paper (Mangan et al. 1994) demonstrated that serotonin enhanced the participation of inhibitory swim motor neurons (MNs) in the generation of the swimming rhythm in the isolated nerve cord. In experiments reported here, we examined whether synaptic interactions between neurons of the swim circuit are altered by serotonin. Following exposure to 50 microM serotonin, pairwise intracellular recording revealed the presence of a time-dependent synaptic decrement. Synaptic decrement was characterized by: 1) a substantial decline in synaptic inhibition (half-decay time about 0.4 s) during constant presynaptic excitation; 2) a reduced half-time of recovery from synaptic inhibition; and 3) a strong dependence on the presynaptic neuron's membrane potential. We found little alteration in the physiology of synaptic transmission involving MNs following amine depletion in leech nerve cords. We propose that alterations in synaptic interactions resulting from exposure to elevated serotonin levels, coupled with the changes in MN cellular properties described earlier, are crucial to the increased efficacy of MNs in participating in generating and expressing the leech swimming rhythm. PMID:7807416

  4. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats

    SciTech Connect

    Krueger, Katharina Repges, Hendrik; Hippler, Joerg; Hartmann, Louise M.; Hirner, Alfred V.; Straub, Heidrun; Binding, Norbert; Musshoff, Ulrich

    2007-11-15

    In this study, the effects of pentavalent dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and trivalent dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) on synaptic transmission generated by the excitatory Schaffer collateral-CA1 synapse were tested in hippocampal slices of young (14-21 day-old) and adult (2-4 month-old) rats. Both compounds were applied in concentrations of 1 to 100 {mu}mol/l. DMA{sup V} had no effect on the amplitudes of evoked fEPSPs or the induction of LTP recorded from the CA1 dendritic region either in adult or in young rats. However, application of DMA{sup III} significantly reduced the amplitudes of evoked fEPSPs in a concentration-dependent manner with a total depression following application of 100 {mu}mol/l DMA{sup III} in adult and 10 {mu}mol/l DMA{sup III} in young rats. Moreover, DMA{sup III} significantly affected the LTP-induction. Application of 10 {mu}mol/l DMA{sup III} resulted in a complete failure of the postsynaptic potentiation of the fEPSP amplitudes in slices taken both from adult and young rats. The depressant effect was not reversible after a 30-min washout of the DMA{sup III}. In slices of young rats, the depressant effects of DMA{sup III} were more pronounced than in those taken from adult ones. Compared to the (absent) effect of DMA{sup V} on synaptic transmission, the trivalent compound possesses a considerably higher neurotoxic potential.

  5. Spaceflight induces changes in the synaptic circuitry of the postnatal developing neocortex

    NASA Technical Reports Server (NTRS)

    DeFelipe, J.; Arellano, J. I.; Merchan-Perez, A.; Gonzalez-Albo, M. C.; Walton, K.; Llinas, R.

    2002-01-01

    The establishment of the adult pattern of neocortical circuitry depends on various intrinsic and extrinsic factors, whose modification during development can lead to alterations in cortical organization and function. We report the effect of 16 days of spaceflight [Neurolab mission; from postnatal day 14 (P14) to P30] on the neocortical representation of the hindlimb synaptic circuitry in rats. As a result, we show, for the first time, that development in microgravity leads to changes in the number and morphology of cortical synapses in a laminar-specific manner. In the layers II/III and Va, the synaptic cross-sectional lengths were significantly larger in flight animals than in ground control animals. Flight animals also showed significantly lower synaptic densities in layers II/III, IV and Va. The greatest difference was found in layer II/III, where there was a difference of 344 million synapses per mm(3) (15.6% decrease). Furthermore, after a 4 month period of re-adaptation to terrestrial gravity, some changes disappeared (i.e. the alterations were transient), while conversely, some new differences also appeared. For example, significant differences in synaptic density in layers II/III and Va after re-adaptation were no longer observed, whereas in layer IV the density of synapses increased notably in flight animals (a difference of 185 million synapses per mm(3) or 13.4%). In addition, all the changes observed only affected asymmetrical synapses, which are known to be excitatory. These results indicates that terrestrial gravity is a necessary environmental parameter for normal cortical synaptogenesis. These findings are fundamental in planning future long-term spaceflights.

  6. Salicylate-Induced Hearing Loss Trigger Structural Synaptic Modifications in the Ventral Cochlear Nucleus of Rats via Medial Olivocochlear (MOC) Feedback Circuit.

    PubMed

    Fang, Lian; Fu, YaoYao; Zhang, Tian-Yu

    2016-06-01

    Lesion-induced cochlear damage can result in synaptic outgrowth in the ventral cochlear nucleus (VCN). Tinnitus may be associated with the synaptic outgrowth and hyperactivity in the VCN. However, it remains unclear how hearing loss triggers structural synaptic modifications in the VCN of rats subjected to salicylate-induced tinnitus. To address this issue, we evaluated tinnitus-like behavior in rats after salicylate treatment and compared the amplitude of the distortion product evoked otoacoustic emission (DPOAE) and auditory brainstem response (ABR) between control and treated rats. Moreover, we observed the changes in the synaptic ultrastructure and in the expression levels of growth-associated protein (GAP-43), brain-derived neurotrophic factor (BDNF), the microglial marker Iba-1 and glial fibrillary acidic protein (GFAP) in the VCN. After salicylate treatment (300 mg/kg/day for 4 and 8 days), analysis of the gap prepulse inhibition of the acoustic startle showed that the rats were experiencing tinnitus. The changes in the DPOAE and ABR amplitude indicated an improvement in cochlear sensitivity and a reduction in auditory input following salicylate treatment. The treated rats displayed more synaptic vesicles and longer postsynaptic density in the VCN than the control rats. We observed that the GAP-43 expression, predominantly from medial olivocochlear (MOC) neurons, was significantly up-regulated, and that BDNF- and Iba-1-immunoreactive cells were persistently decreased after salicylate administration. Furthermore, GFAP-immunoreactive astrocytes, which is associated with synaptic regrowth, was significantly increased in the treated groups. Our study revealed that reduced auditory nerve activity triggers synaptic outgrowth and hyperactivity in the VCN via a MOC neural feedback circuit. Structural synaptic modifications may be a reflexive process that compensates for the reduced auditory input after salicylate administration. However, massive increases in

  7. Oridonin Attenuates Synaptic Loss and Cognitive Deficits in an Aβ1–42-Induced Mouse Model of Alzheimer’s Disease

    PubMed Central

    Yang, Hui; Li, Chaosheng; Hui, Zhen; Xu, Yun; Zhu, Xiaolei

    2016-01-01

    Synaptic loss induced by beta-amyloid (Aβ) plays a critical role in the pathophysiology of Alzheimer’s disease (AD), but the mechanisms underlying this process remain unknown. In this study, we found that oridonin (Ori) rescued synaptic loss induced by Aβ1–42 in vivo and in vitro and attenuated the alterations in dendritic structure and spine density observed in the hippocampus of AD mice. In addition, Ori increased the expression of PSD-95 and synaptophysin and promoted mitochondrial activity in the synaptosomes of AD mice. Ori also activated the BDNF/TrkB/CREB signaling pathway in the hippocampus of AD mice. Furthermore, in the Morris water maze test, Ori reduced latency and searching distance and increased the number of platform crosses in AD mice. These data suggest that Ori might prevent synaptic loss and improve behavioral symptoms in Aβ1–42-induced AD mice. PMID:26974541

  8. SCRAPPER regulates the thresholds of long-term potentiation/depression, the bidirectional synaptic plasticity in hippocampal CA3-CA1 synapses.

    PubMed

    Takagi, Hiroshi; Setou, Mitsutoshi; Ito, Seiji; Yao, Ikuko

    2012-01-01

    SCRAPPER, which is an F-box protein encoded by FBXL20, regulates the frequency of the miniature excitatory synaptic current through the ubiquitination of Rab3-interacting molecule 1. Here, we recorded the induction of long-term potentiation/depression (LTP/LTD) in CA3-CA1 synapses in E3 ubiquitin ligase SCRAPPER-deficient hippocampal slices. Compared to wild-type mice, Scrapper-knockout mice exhibited LTDs with smaller magnitudes after induction with low-frequency stimulation and LTPs with larger magnitudes after induction with tetanus stimulation. These findings suggest that SCRAPPER regulates the threshold of bidirectional synaptic plasticity and, therefore, metaplasticity. PMID:23316391

  9. MAGUKs, Synaptic Development, and Synaptic Plasticity

    PubMed Central

    Zheng, Chan-Ying; Seabold, Gail K.; Horak, Martin; Petralia, Ronald S.

    2011-01-01

    MAGUKs are proteins that act as key scaffolds in surface complexes containing receptors, adhesion proteins, and various signaling molecules. These complexes evolved prior to the appearance of multicellular animals and play key roles in cell-cell intercommunication. A major example of this is the neuronal synapse, which contains several presynaptic and postsynaptic MAGUKs including PSD-95, SAP102, SAP97, PSD-93, CASK, and MAGIs. Here, they play roles in both synaptic development and in later synaptic plasticity events. During development, MAGUKs help to organize the postsynaptic density via associations with other scaffolding proteins, such as Shank, and the actin cytoskeleton. They affect the clustering of glutamate receptors and other receptors, and these associations change with development. MAGUKs are involved in long-term potentiation and depression (e.g., via their phosphorylation by kinases and phosphorylation of other proteins associated with MAGUKs). Importantly, synapse development and function are dependent on the kind of MAGUK present. For example, SAP102 shows high mobility and is present in early synaptic development. Later, much of SAP102 is replaced by PSD-95, a more stable synaptic MAGUK; this is associated with changes in glutamate receptor types that are characteristic of synaptic maturation. PMID:21498811

  10. Activity-induced synaptic delivery of the GluN2A-containing NMDA receptor is dependent on endoplasmic reticulum chaperone Bip and involved in fear memory.

    PubMed

    Zhang, Xiao-min; Yan, Xun-yi; Zhang, Bin; Yang, Qian; Ye, Mao; Cao, Wei; Qiang, Wen-bin; Zhu, Li-jun; Du, Yong-lan; Xu, Xing-xing; Wang, Jia-sheng; Xu, Fei; Lu, Wei; Qiu, Shuang; Yang, Wei; Luo, Jian-hong

    2015-07-01

    The N-methyl-D-aspartate receptor (NMDAR) in adult forebrain is a heterotetramer mainly composed of two GluN1 subunits and two GluN2A and/or GluN2B subunits. The synaptic expression and relative numbers of GluN2A- and GluN2B-containing NMDARs play critical roles in controlling Ca(2+)-dependent signaling and synaptic plasticity. Previous studies have suggested that the synaptic trafficking of NMDAR subtypes is differentially regulated, but the precise molecular mechanism is not yet clear. In this study, we demonstrated that Bip, an endoplasmic reticulum (ER) chaperone, selectively interacted with GluN2A and mediated the neuronal activity-induced assembly and synaptic incorporation of the GluN2A-containing NMDAR from dendritic ER. Furthermore, the GluN2A-specific synaptic trafficking was effectively disrupted by peptides interrupting the interaction between Bip and GluN2A. Interestingly, fear conditioning in mice was disrupted by intraperitoneal injection of the interfering peptide before training. In summary, we have uncovered a novel mechanism for the activity-dependent supply of synaptic GluN2A-containing NMDARs, and demonstrated its relevance to memory formation. PMID:26088419

  11. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis.

    PubMed

    Davari, S; Talaei, S A; Alaei, H; Salami, M

    2013-06-14

    Diabetes mellitus-induced metabolic disturbances underlie the action of many systems including some higher functions of the brain such as learning and memory. Plenty of evidence supports the effects of probiotics on the function of many systems including the nervous system. Here we report the effect of probiotics treatment on the behavioral and electrophysiological aspects of learning and memory disorders. Diabetic rats were made through intraperitoneal injection of streptozocin. The control and diabetic rats were fed with either normal regimen (control rats recieving normal regimen (CO) and diabetics rats receiving normal regimen (DC), respectively) or normal regimen plus probiotic supplementation for 2months (control rats receiving probiotic supplementation (CP) and diabetics rats recieving probiotic supplementation (DP), respectively). The animals were first introduced to spatial learning task in the Morris water maze. Then, in electrophysiological experiments, stimulating the Schaffer collaterals the basic and potentiated excitatory postsynaptic potential (EPSPs) were recorded in the CA1 area of the hippocampus. Finally, the serum levels of glucose, insulin, superoxide dismutase and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. We found that probiotics administration considerably improved the impaired spatial memory in the diabetic animals. The probiotics supplementation in the diabetic rats recovered the declined basic synaptic transmission and further restored the hippocampal long-term potentiation (LTP). While the probiotics administration enhanced the activation of superoxide dismutase and increased the insulin level of serum it decreased both the glucose level of serum and the 8-OHdG factor. From the present results we concluded that probiotics efficiently reverse deteriorated brain functions in the levels of cognitive performances and their proposed synaptic mechanisms in diabetes mellitus. These considerations imply on the necessity of an optimal

  12. Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination

    PubMed Central

    Sahel, Aurélia; Ortiz, Fernando C.; Kerninon, Christophe; Maldonado, Paloma P.; Angulo, María Cecilia; Nait-Oumesmar, Brahim

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While OPCs are innervated by unmyelinated axons in the normal brain, the fate of such synaptic contacts after demyelination is still unclear. By combining electrophysiology and immunostainings in different transgenic mice expressing fluorescent reporters, we studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the lesion was revealed by the presence of AMPA receptor-mediated synaptic currents, VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1 and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early after demyelination that was not caused by an impaired conduction of compound action potentials. A reduction in synaptic connectivity was confirmed by the lack of VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of spontaneous synaptic currents did not reach control levels. In conclusion, our results demonstrate that newly-generated OPCs do not receive synaptic inputs during their active proliferation after demyelination, but gain synapses during the remyelination process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation and might have a physiopathological relevance in demyelinating disorders. PMID:25852473

  13. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor

    PubMed Central

    Ghitani, Nima; Bayguinov, Peter O.; Ma, Yihe

    2014-01-01

    Genetically encoded voltage sensors expand the optogenetics toolkit into the important realm of electrical recording, enabling researchers to study the dynamic activity of complex neural circuits in real time. However, these probes have thus far performed poorly when tested in intact neural circuits. Hybrid voltage sensors (hVOS) enable the imaging of voltage by harnessing the resonant energy transfer that occurs between a genetically encoded component, a membrane-tethered fluorescent protein that serves as a donor, and a small charged molecule, dipicrylamine, which serves as an acceptor. hVOS generates optical signals as a result of voltage-induced changes in donor-acceptor distance. We expressed the hVOS probe in mouse brain by in utero electroporation and in transgenic mice with a neuronal promoter. Under conditions favoring sparse labeling we could visualize single-labeled neurons. hVOS imaging reported electrically evoked fluorescence changes from individual neurons in slices from entorhinal cortex, somatosensory cortex, and hippocampus. These fluorescence signals tracked action potentials in individual neurons in a single trial with excellent temporal fidelity, producing changes that exceeded background noise by as much as 16-fold. Subthreshold synaptic potentials were detected in single trials in multiple distinct cells simultaneously. We followed signal propagation between different cells within one field of view and between dendrites and somata of the same cell. hVOS imaging thus provides a tool for high-resolution recording of electrical activity from genetically targeted cells in intact neuronal circuits. PMID:25411462

  14. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor.

    PubMed

    Ghitani, Nima; Bayguinov, Peter O; Ma, Yihe; Jackson, Meyer B

    2015-02-15

    Genetically encoded voltage sensors expand the optogenetics toolkit into the important realm of electrical recording, enabling researchers to study the dynamic activity of complex neural circuits in real time. However, these probes have thus far performed poorly when tested in intact neural circuits. Hybrid voltage sensors (hVOS) enable the imaging of voltage by harnessing the resonant energy transfer that occurs between a genetically encoded component, a membrane-tethered fluorescent protein that serves as a donor, and a small charged molecule, dipicrylamine, which serves as an acceptor. hVOS generates optical signals as a result of voltage-induced changes in donor-acceptor distance. We expressed the hVOS probe in mouse brain by in utero electroporation and in transgenic mice with a neuronal promoter. Under conditions favoring sparse labeling we could visualize single-labeled neurons. hVOS imaging reported electrically evoked fluorescence changes from individual neurons in slices from entorhinal cortex, somatosensory cortex, and hippocampus. These fluorescence signals tracked action potentials in individual neurons in a single trial with excellent temporal fidelity, producing changes that exceeded background noise by as much as 16-fold. Subthreshold synaptic potentials were detected in single trials in multiple distinct cells simultaneously. We followed signal propagation between different cells within one field of view and between dendrites and somata of the same cell. hVOS imaging thus provides a tool for high-resolution recording of electrical activity from genetically targeted cells in intact neuronal circuits. PMID:25411462

  15. The neurotrophin receptor p75 mediates gp120-induced loss of synaptic spines in aging mice.

    PubMed

    Bachis, Alessia; Wenzel, Erin; Boelk, Allyssia; Becker, Jodi; Mocchetti, Italo

    2016-10-01

    Human immunodeficiency virus 1 and its envelope protein gp120 reduce synaptodendritic complexity. However, the mechanisms contributing to this pathological feature are still not understood. The proneurotrophin brain-derived neurotrophic factor promotes synaptic simplification through the activation of the p75 neurotrophin receptor (p75NTR). Here, we have used gp120 transgenic (gp120tg) mice to investigate whether p75NTR has a role in gp120-mediated neurotoxicity. Old (∼10 months) gp120tg mice exhibited an increase in proneurotrophin brain-derived neurotrophic factor levels in the hippocampus as well as a decrease in the number of dendritic spines when compared to age-matched wild type. These effects were not observed in 3- or 6-month-old mice. To test if the reduction in spine density and morphology is caused by the activation of p75NTR, we crossed gp120tg mice with p75NTR null mice. We found that deletion of only 1 copy of the p75NTR gene in gp120tg mice is sufficient to normalize the number of hippocampal spines, strongly suggesting that the neurotoxic effect of gp120 is mediated by p75NTR. These data indicate that p75NTR antagonists could provide an adjunct therapy against synaptic simplification caused by human immunodeficiency virus 1. PMID:27498053

  16. Ischemia-induced synaptic plasticity drives sustained expression of calcium-permeable AMPA receptors in the hippocampus.

    PubMed

    Dias, Raquel B; Rombo, Diogo M; Ribeiro, Joaquim A; Sebastião, Ana M

    2013-02-01

    Long lasting enhancement of synaptic transmission can be triggered by brief bursts of afferent stimulation, underlying long-term potentiation (LTP), and also by brief ischemia in a process known as i-LTP. The extent to which LTP and i-LTP rely on comparable cellular mechanisms remains unclear. Under physiological conditions, LTP induction drives transient expression of calcium-permeable AMPARs (CP-AMPARs) at synapses, whose ability to undergo plasticity is primed by endogenous activation of adenosine A(2A) receptors (A(2A)Rs). The present work thus addressed the contribution of CP-AMPARs and A(2A)Rs to i-LTP, which was induced in rat hippocampal slices by brief (10 min) oxygen/glucose deprivation (OGD). The amplitude of afferent-evoked excitatory postsynaptic currents (EPSCs) recorded from CA1 pyramidal neurons was decreased during OGD but gradually recovered toward values significantly above (157 ± 17%) the baseline (100%) 40-50 min after re-oxygenation. This i-LTP was precluded by CP-AMPAR blockade (internal spermine (500 μM) or extracellular NASPM (20 μM) application) as well as by A(2A)R blockade with a selective antagonist (SCH 58261, 100 nM). OGD prompted sustained (>70 min) facilitation of mEPSC amplitude and frequency, and decreased mEPSC decay time, all of which were prevented by SCH 58261 (100 nM). The ability of NASPM (20 μM) to acutely inhibit EPSCs 1 h after OGD, but not in control conditions nor in OGD-challenged slices when in the presence of SCH 58261 (100 nM), further supports sustained CP-AMPAR recruitment by i-LTP in an A(2A)R-dependent way. We propose that although i-LTP may initially mimic LTP, failure of auto-regulated CP-AMPAR removal from synapses could constitute an early divergent event between these forms of plasticity. PMID:23041538

  17. Prenatal Stress Enhances Excitatory Synaptic Transmission and Impairs Long-Term Potentiation in the Frontal Cortex of Adult Offspring Rats

    PubMed Central

    Sowa, Joanna; Bobula, Bartosz; Glombik, Katarzyna; Slusarczyk, Joanna; Basta-Kaim, Agnieszka; Hess, Grzegorz

    2015-01-01

    The effects of prenatal stress procedure were investigated in 3 months old male rats. Prenatally stressed rats showed depressive-like behavior in the forced swim test, including increased immobility, decreased mobility and decreased climbing. In ex vivo frontal cortex slices originating from prenatally stressed animals, the amplitude of extracellular field potentials (FPs) recorded in cortical layer II/III was larger, and the mean amplitude ratio of pharmacologically-isolated NMDA to the AMPA/kainate component of the field potential—smaller than in control preparations. Prenatal stress also resulted in a reduced magnitude of long-term potentiation (LTP). These effects were accompanied by an increase in the mean frequency, but not the mean amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in layer II/III pyramidal neurons. These data demonstrate that stress during pregnancy may lead not only to behavioral disturbances, but also impairs the glutamatergic transmission and long-term synaptic plasticity in the frontal cortex of the adult offspring. PMID:25749097

  18. AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future

    PubMed Central

    Bowers, M. Scott; Chen, Billy T.; Bonci, Antonello

    2010-01-01

    Experience-dependent plasticity at excitatory synapses of the mesocorticolimbic system is a fundamental brain mechanism that enables adaptation to an ever-changing environment. These synaptic responses are critical for the planning and execution of adaptive behaviors that maximize survival. The mesocorticolimbic system mediates procurement of positive reinforcers such as food and sex; however, drugs of abuse re-sculpt this crucial circuitry to promote compulsive drug-seeking behavior. This review will discuss the long-term changes in glutamatergic neurotransmission that occur within the mesolimbic system following cocaine exposure. In addition, we will examine how these long-lasting neuroadaptations may drive the pathology of psychostimulant addiction. Finally, we review clinical trials that highlight antagonists at excitatory AMPA receptors as promising targets against cocaine abuse. PMID:20624588

  19. ESP-102, a Combined Herbal Extract of Angelica gigas, Saururus chinensis, and Schisandra chinensis, Changes Synaptic Plasticity and Attenuates Scopolamine-Induced Memory Impairment in Rat Hippocampus Tissue

    PubMed Central

    Kim, Hyun-Bum; Hwang, Eun-Sang; Choi, Ga-Young; Lee, Seok; Park, Tae-Suk; Lee, Cheol-Won; Lee, Eun-Suk; Kim, Young-Choong; Kim, Sang Seong; Lee, Sung-Ok; Park, Ji-Ho

    2016-01-01

    ESP-102, an extract from Angelica gigas, Saururus chinensis, and Schisandra chinensis, has been used as herbal medicine and dietary supplement in Korea. Despite the numerous bioactivities in vitro and in vivo studies, its effects on neuronal networks remain elusive. To address the neuronal effect, we examined synaptic plasticity in organotypic hippocampal slice culture with multielectrode array. Our results showed an increase in excitatory postsynaptic potential (EPSP), indicating the induction of long-term potentiation (LTP), in the presence of ESP-102. In addition, the neuroprotective effect of ESP-102 was also tested by application of scopolamine to the hippocampal slice. Interestingly, ESP-102 competitively antagonized the preventative LTP effect induced by scopolamine. The scopolamine-induced reduction in brain-derived neurotrophic factor (BDNF) and GluR-2 expression was also rescued by ESP-102. In terms of mode of action, ESP-102 appears to act on the presynaptic region independent of AMPA/NMDA receptors. Based on these findings, ESP-102 can be suggested as a novel herbal ingredient with memory enhancing as well as neuroprotective effects. PMID:27298627

  20. Activin Controls Ethanol Potentiation of Inhibitory Synaptic Transmission Through GABAA Receptors and Concomitant Behavioral Sedation.

    PubMed

    Zheng, Fang; Puppel, Anne; Huber, Sabine E; Link, Andrea S; Eulenburg, Volker; van Brederode, Johannes F; Müller, Christian P; Alzheimer, Christian

    2016-07-01

    Activin, a member of the transforming growth factor-β family, exerts multiple functions in the nervous system. Originally identified as a neurotrophic and -protective agent, increasing evidence implicates activin also in the regulation of glutamatergic and GABAergic neurotransmission in brain regions associated with cognitive and affective functions. To explore how activin impacts on ethanol potentiation of GABA synapses and related behavioral paradigms, we used an established transgenic model of disrupted activin receptor signaling, in which mice express a dominant-negative activin receptor IB mutant (dnActRIB) under the control of the CaMKIIα promoter. Comparison of GABAA receptor currents in hippocampal neurons from dnActRIB mice and wild-type mice showed that all concentrations of ethanol tested (30-150 mM) produced much stronger potentiation of phasic inhibition in the mutant preparation. In dentate granule cells of dnActRIB mice, tonic GABA inhibition was more pronounced than in wild-type neurons, but remained insensitive to low ethanol (30 mM) in both preparations. The heightened ethanol sensitivity of phasic inhibition in mutant hippocampi resulted from both pre- and postsynaptic mechanisms, the latter probably involving PKCɛ. At the behavioral level, ethanol produced significantly stronger sedation in dnActRIB mice than in wild-type mice, but did not affect consumption of ethanol or escalation after withdrawal. We link the abnormal narcotic response of dnActRIB mice to ethanol to the excessive potentiation of inhibitory neurotransmission. Our study suggests that activin counteracts oversedation from ethanol by curtailing its augmenting effect at GABA synapses. PMID:26717882

  1. Insulin-Like Growth Factor I Produces an Antidepressant-Like Effect and Elicits N-Methyl-D-Aspartate Receptor Independent Long-Term Potentiation of Synaptic Transmission in Medial Prefrontal Cortex and Hippocampus

    PubMed Central

    Zhang, Xiao-lei; Colechio, Elizabeth M.; Ghoreishi-Haack, Nayereh; Gross, Amanda; Kroes, Roger A.; Stanton, Patric K.; Moskal, Joseph R.

    2016-01-01

    Background: Growth factors play an important role in regulating neurogenesis and synapse formation and may be involved in regulating the antidepressant response to conventional antidepressants. To date, Insulin-like growth factor I (IGFI) is the only growth factor that has shown antidepressant properties in human clinical trials. However, its mechanism of action remains unclear. Methods: The antidepressant-like effect of a single IV dose of IGFI was determined using a chronic unpredictable stress paradigm in the rat Porsolt, sucrose preference, novelty-induced hypophagia, and ultrasonic vocalization models. The dependence of the medial prefrontal cortex for these effects was determined by direct medial prefrontal cortex injection followed by Porsolt testing as well as IGFI receptor activation in the medial prefrontal cortex following an optimal IV antidepressant-like dose of IGFI. The effect of IGFI on synaptic transmission and long-term potentiation (LTP) of synaptic strength was assessed in the hippocampus and medial prefrontal cortex. The dependence of these effects on IGFI and AMPA receptor activation and protein synthesis were also determined. Results: IGFI produced a rapid-acting and long-lasting antidepressant-like effect in each of the depression models. These effects were blocked by IGFI and AMPA receptor antagonists, and medial prefrontal cortex was localized. IGFI robustly increased synaptic strength in the hippocampus and medial prefrontal cortex and these effects were IGFI receptor and protein synthesis-dependent but N-methyl-d-aspartate receptor independent. IGFI also robustly facilitated hippocampal metaplasticity 24 hours postdosing. Conclusions: These data support the conclusion that the antidepressant-like effects of IGFI are mediated by a persistent, LTP-like enhancement of synaptic strength requiring both IGFIR activation and ongoing protein synthesis. PMID:26374350

  2. Differences Between Synaptic Plasticity Thresholds Result in New Timing Rules for Maximizing Long-Term Potentiation

    PubMed Central

    Lynch, Gary; Kramár, Enikö A.; Babayan, Alex H.; Rumbaugh, Gavin; Gall, Christine M.

    2012-01-01

    The fundamental observation that the temporal spacing of learning episodes plays a critical role in the efficiency of memory encoding has had little effect on either research on long-term potentiation (LTP) or efforts to develop cognitive enhancers. Here we review recent findings describing a spaced trials phenomenon for LTP that appears to be related to recent evidence that plasticity thresholds differ between synapses in the adult hippocampus. Results of tests with one memory enhancing drug suggest that the compound potently facilitates LTP via effects on high threshold synapses and thus alters the temporally extended timing rules. Possible implications of these results for our understanding of LTP substrates, neurobiological contributors to the distributed practice effect, and the consequences of memory enhancement are discussed. PMID:22820276

  3. Mitochondria-Targeted Antioxidant SS31 Prevents Amyloid Beta-Induced Mitochondrial Abnormalities and Synaptic Degeneration in Alzheimer's Disease.

    PubMed

    Calkins, Marcus J; Manczak, Maria; Reddy, P Hemachandra

    2012-01-01

    In neuronal systems, the health and activity of mitochondria and synapses are tightly coupled. For this reason, it has been postulated that mitochondrial abnormalities may, at least in part, drive neurodegeneration in conditions such as Alzheimer's disease (AD). Mounting evidence from multiple Alzheimer's disease cell and mouse models and postmortem brains suggest that loss of mitochondrial integrity may be a key factor that mediates synaptic loss. Therefore, the prevention or rescue of mitochondrial dysfunction may help delay or altogether prevent AD-associated neurodegeneration. Since mitochondrial health is heavily dependent on antioxidant defenses, researchers have begun to explore the use of mitochondria-targeted antioxidants as therapeutic tools to prevent neurodegenerative diseases. This review will highlight advances made using a model mitochondria-targeted antioxidant peptide, SS31, as a potential treatment for AD. PMID:23226091

  4. Mutation of Drosophila Focal Adhesion Kinase Induces Bang-Sensitive Behavior and Disrupts Glial Function, Axonal Conduction and Synaptic Transmission

    PubMed Central

    Ueda, Atsushi; Grabbe, Caroline; Lee, Jihye; Lee, Jisue; Palmer, Ruth H.; Wu, Chun-Fang

    2009-01-01

    The role of the conserved Focal Adhesion Kinase (FAK) family of protein tyrosine kinases (PTKs) in the development and physiological functions of the CNS has long been an area of interest among neuroscientists. In this report, we observe that Drosophila mutants lacking Fak56 exhibit a decreased life span, accompanied by a bang-sensitive phenotype, which is characterised by sensitivity to mechanical and high-frequency electrical stimulation. Fak56 mutant animals display lower thresholds and higher rates of seizures in response to electroconvulsive stimuli, and direct measurements of action potential conduction in larval segmental nerves demonstrate a slowed propagation speed and failure during high-frequency nerve stimulation. In addition, neuromuscular junctions in Fak56 mutant animals display transmission blockade during high-frequency activity as a result of action potential failure. Endogenous Fak56 protein is abundant in glial cells ensheathing the axon bundles, and structural alterations of segmental nerve bundles can be observed in mutants. Manipulation of Fak56 function specifically in glial cells also disrupts action potential conduction and neurotransmission, suggesting a glial component in the Fak56 bang-sensitive phenotype. Furthermore, we show that increased intracellular calcium levels result in the dephosphorylation of endogenous Fak56 protein in Drosophila cell lines, in parallel with our observations of highly variable synaptic potentials at a higher Ca2+ level in Fak56 mutant larvae. Together these findings suggest that modulation of Fak56 function is important for action potential propagation and Ca2+-regulated neuromuscular transmission in vivo. PMID:18540882

  5. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    PubMed Central

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  6. Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus

    PubMed Central

    Park, Chul-Kyu

    2015-01-01

    In the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ). Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified macrophage-derived mediator of inflammation resolution, is a potent analgesic for somatic inflammatory pain without noticeable side effects in mice and a potent endogenous inhibitor of transient receptor potential vanilloid 1 (TRPV1) in the somatic system. However, the molecular mechanisms underlying the analgesic actions of maresin 1 on TMJ pain are unclear in the trigeminal system. Here, by performing TMJ injection of a retrograde labeling tracer DiI (a fluorescent dye), I showed that maresin 1 potently inhibits capsaicin-induced TRPV1 currents and neuronal activity via Gαi-coupled G-protein coupled receptors in DiI-labeled trigeminal nociceptive neurons. Further, maresin 1 blocked TRPV1 agonist-evoked increases in spontaneous excitatory postsynaptic current frequency and abolished TMJ inflammation-induced synaptic plasticity in the trigeminal nucleus. These results demonstrate the potent actions of maresin 1 in regulating TRPV1 in the trigeminal system. Thus, maresin 1 may serve as a novel endogenous inhibitor for treating TMJ-inflammatory pain in the orofacial region. PMID:26617436

  7. Hydrogen Sulfide Ameliorates Homocysteine-Induced Alzheimer's Disease-Like Pathology, Blood-Brain Barrier Disruption, and Synaptic Disorder.

    PubMed

    Kamat, Pradip K; Kyles, Philip; Kalani, Anuradha; Tyagi, Neetu

    2016-05-01

    Elevated plasma total homocysteine (Hcy) level is associated with an increased risk of Alzheimer's disease (AD). During transsulfuration pathways, Hcy is metabolized into hydrogen sulfide (H2S), which is a synaptic modulator, as well as a neuro-protective agent. However, the role of hydrogen sulfide, as well as N-methyl-D-aspartate receptor (NMDAR) activation, in hyperhomocysteinemia (HHcy) induced blood-brain barrier (BBB) disruption and synaptic dysfunction, leading to AD pathology is not clear. Therefore, we hypothesized that the inhibition of neuronal NMDA-R by H2S and MK801 mitigate the Hcy-induced BBB disruption and synapse dysfunction, in part by decreasing neuronal matrix degradation. Hcy intracerebral (IC) treatment significantly impaired cerebral blood flow (CBF), and cerebral circulation and memory function. Hcy treatment also decreases the expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) in the brain along with increased expression of NMDA-R (NR1) and synaptosomal Ca(2+) indicating excitotoxicity. Additionally, we found that Hcy treatment increased protein and mRNA expression of intracellular adhesion molecule 1 (ICAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 and also increased MMP-2 and MMP-9 activity in the brain. The increased expression of ICAM-1, glial fibrillary acidic protein (GFAP), and the decreased expression of vascular endothelial (VE)-cadherin and claudin-5 indicates BBB disruption and vascular inflammation. Moreover, we also found decreased expression of microtubule-associated protein 2 (MAP-2), postsynaptic density protein 95 (PSD-95), synapse-associated protein 97 (SAP-97), synaptosomal-associated protein 25 (SNAP-25), synaptophysin, and brain-derived neurotrophic factor (BDNF) showing synapse dysfunction in the hippocampus. Furthermore, NaHS and MK801 treatment ameliorates BBB disruption, CBF, and synapse functions in the mice brain. These results demonstrate a neuro-protective effect of H2S over Hcy-induced

  8. NMDA-Receptor Activation but Not Ion Flux Is Required for Amyloid-Beta Induced Synaptic Depression

    PubMed Central

    Tamburri, Albert; Dudilot, Anthony; Licea, Sara; Bourgeois, Catherine; Boehm, Jannic

    2013-01-01

    Alzheimer disease is characterized by a gradual decrease of synaptic function and, ultimately, by neuronal loss. There is considerable evidence supporting the involvement of oligomeric amyloid-beta (Aβ) in the etiology of Alzheimer’s disease. Historically, AD research has mainly focused on the long-term changes caused by Aβ rather than analyzing its immediate effects. Here we show that acute perfusion of hippocampal slice cultures with oligomeric Aβ depresses synaptic transmission within 20 minutes. This depression is dependent on synaptic stimulation and the activation of NMDA-receptors, but not on NMDA-receptor mediated ion flux. It, therefore, appears that Aβ dependent synaptic depression is mediated through a use-dependent metabotropic-like mechanism of the NMDA-receptor, but does not involve NMDA-receptor mediated synaptic transmission, i.e. it is independent of calcium flux through the NMDA-receptor. PMID:23750255

  9. Synchronization of action potentials during low-magnesium-induced bursting

    PubMed Central

    Johnson, Sarah E.; Hudson, John L.

    2015-01-01

    The relationship between mono- and polysynaptic strength and action potential synchronization was explored using a reduced external Mg2+ model. Single and dual whole cell patch-clamp recordings were performed in hippocampal cultures in three concentrations of external Mg2+. In decreased Mg2+ medium, the individual cells transitioned to spontaneous bursting behavior. In lowered Mg2+ media the larger excitatory synaptic events were observed more frequently and fewer transmission failures occurred, suggesting strengthened synaptic transmission. The event synchronization was calculated for the neural action potentials of the cell pairs, and it increased in media where Mg2+ concentration was lowered. Analysis of surrogate data where bursting was present, but no direct or indirect connections existed between the neurons, showed minimal action potential synchronization. This suggests the synchronization of action potentials is a product of the strengthening synaptic connections within neuronal networks. PMID:25609103

  10. Activation of Exchange Protein Activated by Cyclic-AMP Enhances Long-Lasting Synaptic Potentiation in the Hippocampus

    ERIC Educational Resources Information Center

    Gelinas, Jennifer N.; Banko, Jessica L.; Peters, Melinda M.; Klann, Eric; Weeber, Edwin J.; Nguyen, Peter V.

    2008-01-01

    cAMP is a critical second messenger implicated in synaptic plasticity and memory in the mammalian brain. Substantial evidence links increases in intracellular cAMP to activation of cAMP-dependent protein kinase (PKA) and subsequent phosphorylation of downstream effectors (transcription factors, receptors, protein kinases) necessary for long-term…

  11. Chronic Stress Impairs α1-Adrenoceptor-Induced Endocannabinoid-Dependent Synaptic Plasticity in the Dorsal Raphe Nucleus

    PubMed Central

    Shen, Roh-Yu

    2014-01-01

    Alpha 1-adrenergic receptors (α1-ARs) control the activity of dorsal raphe nucleus (DRn) serotonin (5-HT) neurons and play crucial role in the regulation of arousal and stress homoeostasis. However, the precise role of these receptors in regulating glutamate synapses of rat DRn 5-HT neurons and whether chronic stress exposure alters such regulation remain unknown. In the present study, we examined the impact of chronic restraint stress on α1-AR-mediated regulation of glutamate synapses onto DRn 5-HT neurons. We found that, in the control condition, activation of α1-ARs induced an inward current and long-term depression (LTD) of glutamate synapses of DRn 5-HT neurons. The α1-AR LTD was initiated by postsynaptic α1-ARs but mediated by a decrease in glutamate release. The presynaptic expression of the α1-AR LTD was signaled by retrograde endocannabinoids (eCBs). Importantly, we found that chronic exposure to restraint stress profoundly reduced the magnitude of α1-AR LTD but had no effect on the amplitude of α1-AR-induced inward current. Chronic restraint stress also reduced the CB1 receptor-mediated inhibition of EPSC and the eCB-mediated depolarization-induced suppression of excitation. Collectively, these results indicate that chronic restraint stress impairs the α1-AR LTD by reducing the function of presynaptic CB1 receptors and reveal a novel mechanism by which noradrenaline controls synaptic strength and plasticity in the DRn. They also provide evidence that chronic stress impairs eCB signaling in the DRn, which may contribute, at least in part, to the dysregulation of the stress homeostasis. PMID:25355210

  12. Synaptic devices based on purely electronic memristors

    NASA Astrophysics Data System (ADS)

    Pan, Ruobing; Li, Jun; Zhuge, Fei; Zhu, Liqiang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Cao, Hongtao; Fu, Bing; Li, Kang

    2016-01-01

    Memristive devices have been widely employed to emulate biological synaptic behavior. In these cases, the memristive switching generally originates from electrical field induced ion migration or Joule heating induced phase change. In this letter, the Ti/ZnO/Pt structure was found to show memristive switching ascribed to a carrier trapping/detrapping of the trap sites (e.g., oxygen vacancies or zinc interstitials) in ZnO. The carrier trapping/detrapping level can be controllably adjusted by regulating the current compliance level or voltage amplitude. Multi-level conductance states can, therefore, be realized in such memristive device. The spike-timing-dependent plasticity, an important Hebbian learning rule, has been implemented in this type of synaptic device. Compared with filamentary-type memristive devices, purely electronic memristors have potential to reduce their energy consumption and work more stably and reliably, since no structural distortion occurs.

  13. Translational control of nicotine-evoked synaptic potentiation in mice and neuronal responses in human smokers by eIF2α

    PubMed Central

    Placzek, Andon N; Molfese, David L; Khatiwada, Sanjeev; Viana Di Prisco, Gonzalo; Huang, Wei; Sidrauski, Carmela; Krnjević, Krešimir; Amos, Christopher L; Ray, Russell; Dani, John A; Walter, Peter; Salas, Ramiro; Costa-Mattioli, Mauro

    2016-01-01

    Adolescents are particularly vulnerable to nicotine, the principal addictive component driving tobacco smoking. In a companion study, we found that reduced activity of the translation initiation factor eIF2α underlies the hypersensitivity of adolescent mice to the effects of cocaine. Here we report that nicotine potentiates excitatory synaptic transmission in ventral tegmental area dopaminergic neurons more readily in adolescent mice compared to adults. Adult mice with genetic or pharmacological reduction in p-eIF2α-mediated translation are more susceptible to nicotine’s synaptic effects, like adolescents. When we investigated the influence of allelic variability of the Eif2s1 gene (encoding eIF2α) on reward-related neuronal responses in human smokers, we found that a single nucleotide polymorphism in the Eif2s1 gene modulates mesolimbic neuronal reward responses in human smokers. These findings suggest that p-eIF2α regulates synaptic actions of nicotine in both mice and humans, and that reduced p-eIF2α may enhance susceptibility to nicotine (and other drugs of abuse) during adolescence. DOI: http://dx.doi.org/10.7554/eLife.12056.001 PMID:26928076

  14. The origin of glutamatergic synaptic inputs controls synaptic plasticity and its modulation by alcohol in mice nucleus accumbens.

    PubMed

    Ji, Xincai; Saha, Sucharita; Martin, Gilles E

    2015-01-01

    It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens (NAc), a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the NAc receives glutamatergic inputs from distinct brain regions (e.g., the prefrontal cortex (PFCx), the amygdala and the hippocampus), each region providing different information (e.g., spatial, emotional and cognitive). Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD) and long-term potentiation (LTP) and long-term potentiation (tLTP) and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute Ethyl Alcohol (EtOH) has little effects on higher order information coming from the PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength. PMID:26257641

  15. Astrocyte-derived Adenosine and A1 Receptor Activity Contribute to Sleep Loss-Induced Deficits in Hippocampal Synaptic Plasticity and Memory in Mice

    PubMed Central

    Florian, Cédrick; Vecsey, Christopher G.; Halassa, Michael M.; Haydon, Philip G.; Abel, Ted

    2011-01-01

    Sleep deprivation (SD) can have a negative impact on cognitive function, but the mechanism(s) by which SD modulates memory remain unclear. We have previously shown that astrocyte-derived adenosine is a candidate molecule involved in the cognitive deficits following a brief period of SD (Halassa et al., 2009). In this study, we examined whether genetic disruption of SNARE-dependent exocytosis in astrocytes (dnSNARE mice) or pharmacological blockade of A1 receptor signaling using an adenosine A1 receptor (A1R) antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) could prevent the negative effects of 6 hours of SD on hippocampal late-phase long-term potentiation (L-LTP) and hippocampus-dependent spatial object recognition memory. We found that SD impaired L-LTP in wild-type mice but not in dnSNARE mice. Similarly, this deficit in L-LTP resulting from SD was prevented by a chronic infusion of CPT. Consistent with these results, we found that hippocampus-dependent memory deficits produced by SD were rescued in dnSNARE mice and CPT-treated mice. These data provide the first evidence that astrocytic ATP and adenosine A1R activity contribute to the effects of SD on hippocampal synaptic plasticity and hippocampus-dependent memory, and suggest a new therapeutic target to reverse the hippocampus-related cognitive deficits induced by sleep loss. PMID:21562257

  16. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity.

    PubMed

    Sanz-García, Ancor; Knafo, Shira; Pereda-Pérez, Inmaculada; Esteban, José A; Venero, César; Armario, Antonio

    2016-09-01

    Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc. PMID:27068341

  17. Urinary Metabolomics on the Biochemical Profiles in Diet-Induced Hyperlipidemia Rat Using Ultraperformance Liquid Chromatography Coupled with Quadrupole Time-of-Flight SYNAPT High-Definition Mass Spectrometry

    PubMed Central

    Miao, Hua; Chen, Hua; Zhang, Xu; Yin, Lu; Chen, Dan-Qian; Cheng, Xian-Long; Bai, Xu; Wei, Feng

    2014-01-01

    Ultraperformance liquid chromatography coupled with quadrupole time-of-flight synapt high-definition mass spectrometry metabolomics was used to characterize the urinary metabolic profiling of diet-induced hyperlipidaemia in a rat model. Analysis was done by orthogonal partial least squares discriminant analysis, correlation analysis, heat map analysis, and KEGG pathways analysis. Potential biomarkers were chosen by S-plot and were identified by accurate mass, isotopic pattern, and MS/MS fragments information. Significant differences in fatty acid, amino acid, nucleoside, and bile acid were observed, indicating the perturbations of fatty acid, amino acid, nucleoside, and bile acid metabolisms in diet-induced hyperlipidaemia rats. This study provides further insight into the metabolic profiling across a wide range of biochemical pathways in response to diet-induced hyperlipidaemia. PMID:24757578

  18. Erythropoietin-induced changes in brain gene expression reveal induction of synaptic plasticity genes in experimental stroke

    PubMed Central

    Mengozzi, Manuela; Cervellini, Ilaria; Villa, Pia; Erbayraktar, Zübeyde; Gökmen, Necati; Yilmaz, Osman; Erbayraktar, Serhat; Manohasandra, Mathini; Van Hummelen, Paul; Vandenabeele, Peter; Chernajovsky, Yuti; Annenkov, Alexander; Ghezzi, Pietro

    2012-01-01

    Erythropoietin (EPO) is a neuroprotective cytokine in models of ischemic and nervous system injury, where it reduces neuronal apoptosis and inflammatory cytokines and increases neurogenesis and angiogenesis. EPO also improves cognition in healthy volunteers and schizophrenic patients. We studied the effect of EPO administration on the gene-expression profile in the ischemic cortex of rats after cerebral ischemia at early time points (2 and 6 h). EPO treatment up-regulated genes already increased by ischemia. Hierarchical clustering and analysis of overrepresented functional categories identified genes implicated in synaptic plasticity—Arc, BDNF, Egr1, and Egr2, of which Egr2 was the most significantly regulated. Up-regulation of Arc, BDNF, Dusp5, Egr1, Egr2, Egr4, and Nr4a3 was confirmed by quantitative PCR. We investigated the up-regulation of Egr2/Krox20 further because of its role in neuronal plasticity. Its elevation by EPO was confirmed in an independent in vivo experiment of cerebral ischemia in rats. Using the rat neuroblastoma B104, we found that wild-type cells that do not express EPO receptor (EPOR) do not respond to EPO by inducing Egr2. However, EPOR-expressing B104 cells induce Egr2 early upon incubation with EPO, indicating that Egr2 induction is a direct effect of EPO and that EPOR mediates this effect. Because these changes occur in vivo before decreased inflammatory cytokines or neuronal apoptosis is evident, these findings provide a molecular mechanism for the neuroreparative effects of cytokines and suggest a mechanism of neuroprotection by which promotion of a plastic phenotype results in decreased inflammation and neuronal death. PMID:22645329

  19. Genistein Inhibits Aβ25-35-Induced Synaptic Toxicity and Regulates CaMKII/CREB Pathway in SH-SY5Y Cells.

    PubMed

    Xi, Yuan-Di; Zhang, Dan-Di; Ding, Juan; Yu, Huan-Ling; Yuan, Lin-Hong; Ma, Wei-Wei; Han, Jing; Xiao, Rong

    2016-10-01

    Genistein (Gen), as a functional food in human diet, has shown many beneficial effects on neurodegenerative diseases such as Alzheimer's disease (AD). But the neuroprotective mechanism of Gen is not clear. Because synaptic failure is considered as the earliest phase in the pathogenesis of AD, we try to validate our hypothesis that synapse may be one target of Gen on protecting neurons. In this study, SH-SY5Y cells were pre-incubated with or without Gen for 2 h followed by the incubation with Aβ25-35 (25 μmol/L) for another 24 h. Flow cytometry, Western Blots, and RT-PCR analysis were used to test the synaptic factors. The data showed that Gen pre-treatment could reverse the Aβ25-35-induced down-regulation of synaptophysin and postsynaptic marker postsynaptic density-95. In addition, the down-regulation of NR1 and NR2B induced by Aβ25-35 which are subunits of N-methyl-D-aspartate receptor also could be antagonized by pre-treatment of Gen. Moreover, the factors of CaMKII/CREB signaling pathway were detected. The results showed that mRNA and protein expressions of (Ca(2+))/calmodulin(CaM), CaMKII/pCaMKII, and CREB/pCREB were significantly down-regulated by Aβ25-35, but they were all restored by the pre-treatment of Gen. Furthermore, Gen also maintained the intracellular Ca(2+) concentration which was disturbed by Aβ25-35. In conclusion, these results suggested that Gen could protect synaptic dysfunction induced by Aβ, and the mechanism might be associated with the regulation of synaptic markers and Ca(2+) level through activating CaM/CaMK/CREB signaling pathway. PMID:26658733

  20. EphB3 signaling propagates synaptic dysfunction in the traumatic injured brain.

    PubMed

    Perez, Enmanuel J; Cepero, Maria L; Perez, Sebastian U; Coyle, Joseph T; Sick, Thomas J; Liebl, Daniel J

    2016-10-01

    Traumatic brain injury (TBI), ranging from mild concussion to severe penetrating wounds, can involve brain regions that contain damaged or lost synapses in the absence of neuronal death. These affected regions significantly contribute to sensory, motor and/or cognitive deficits. Thus, studying the mechanisms responsible for synaptic instability and dysfunction is important for protecting the nervous system from the consequences of progressive TBI. Our controlled cortical impact (CCI) injury produces ~20% loss of synapses and mild changes in synaptic protein levels in the CA3-CA1 hippocampus without neuronal losses. These synaptic changes are associated with functional deficits, indicated by >50% loss in synaptic plasticity and impaired learning behavior. We show that the receptor tyrosine kinase EphB3 participates in CCI injury-induced synaptic damage, where EphB3(-/-) mice show preserved long-term potentiation and hippocampal-dependent learning behavior as compared with wild type (WT) injured mice. Improved synaptic function in the absence of EphB3 results from attenuation in CCI injury-induced synaptic losses and reduced d-serine levels compared with WT injured mice. Together, these findings suggest that EphB3 signaling plays a deleterious role in synaptic stability and plasticity after TBI. PMID:27317833

  1. GSK-3β inhibitors reverse cocaine-induced synaptic transmission dysfunction in the nucleus accumbens.

    PubMed

    Zhao, Rui; Chen, Jiaojiao; Ren, Zhaoxiang; Shen, Hui; Zhen, Xuechu

    2016-11-01

    Nucleus accumbens receives glutamatergic projection from the prefrontal cortex (PFC) and dopaminergic input from the Ventral tegmental area (VTA). Recent studies have suggested a critical role for serine/threonine kinase glycogen synthase kinase 3β (GSK3β) in cocaine-induced hyperactivity; however, the effect of GSK3β on the modulation of glutamatergic and dopaminergic afferents is unclear. In this study, we found that the GSK3 inhibitors, LiCl (100 mg/kg, i.p.) or SB216763 (2.5 mg/kg, i.p.), blocked the cocaine-induced hyperlocomotor activity in rats. By employing single-unit recordings in vivo, we found that pretreatment with either SB216763 or LiCl for 15 min reversed the cocaine-inhibited firing frequency of medium spiny neuron (MSN) in the nucleus accumbens (NAc). Preperfusion of SB216763 (5 μM) ameliorated the inhibitory effect of cocaine on both the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (up to 99 ± 6.8% inhibition) and N-methyl-D-aspartic acid receptor (NMDAR)-mediate EPSC (up to 73 ± 9.7% inhibition) in the NAc in brain slices. The effect of cocaine on AMPA and NMDA receptor-mediate excitatory postsynaptic current (EPSC) were mimicked by the D1 -like receptor agonist SKF 38393 and blocked by the D1 -like receptor antagonist SCH 23390, whereas D2 -like receptor agonist or antagonist failed to mimic or to block the action of cocaine. Preperfusion of SB216763 for 5 min also ameliorated the inhibitory effect of SKF38393 on both AMPA and NMDA receptor-mediated components of EPSC, indicate the effect of SB216763 on cocaine was via the D1 -like receptor. Moreover, cocaine inhibited the presynaptic release of glutamate in the NAc, and SB216763 reversed this effect. In conclusion, D1 receptor-GSK3β pathway, which mediates glutamatergic transmission in the NAc core through a presynaptic mechanism, plays an important role in acute cocaine-induced hyperlocomotion. PMID:27377051

  2. Effects of hypoxic preconditioning on synaptic ultrastructure in mice.

    PubMed

    Liu, Yi; Sun, Zhishan; Sun, Shufeng; Duan, Yunxia; Shi, Jingfei; Qi, Zhifeng; Meng, Ran; Sun, Yongxin; Zeng, Xianwei; Chui, Dehua; Ji, Xunming

    2015-01-01

    Hypoxic preconditioning (HPC) elicits resistance to more drastic subsequent insults, which potentially provide neuroprotective therapeutic strategy, but the underlying mechanisms remain to be fully elucidated. Here, we examined the effects of HPC on synaptic ultrastructure in olfactory bulb of mice. Mice underwent up to five cycles of repeated HPC treatments, and hypoxic tolerance was assessed with a standard gasp reflex assay. As expected, HPC induced an increase in tolerance time. To assess synaptic responses, Western blots were used to quantify protein levels of representative markers for glia, neuron, and synapse, and transmission electron microscopy was used to examine synaptic ultrastructure and mitochondrial density. HPC did not significantly alter the protein levels of astroglial marker (GFAP), neuron-specific markers (GAP43, Tuj-1, and OMP), synaptic number markers (synaptophysin and SNAP25) or the percentage of excitatory synapses versus inhibitory synapses. However, HPC significantly affected synaptic curvature and the percentage of synapses with presynaptic mitochondria, which showed concomitant change pattern. These findings demonstrate that HPC is associated with changes in synaptic ultrastructure. PMID:25155519

  3. Modulation of Long-Term Potentiation of Cortico-Amygdala Synaptic Responses and Auditory Fear Memory by Dietary Polyunsaturated Fatty Acid.

    PubMed

    Yamada, Daisuke; Wada, Keiji; Sekiguchi, Masayuki

    2016-01-01

    Converging evidence suggests that an imbalance of ω3 to ω6 polyunsaturated fatty acid (PUFA) in the brain is involved in mental illnesses such as anxiety disorders. However, the underlying mechanism is unknown. We previously reported that the dietary ratio of ω3 to ω6 PUFA alters this ratio in the brain, and influences contextual fear memory. In addition to behavioral change, enhancement of cannabinoid CB1 receptor-mediated short-term synaptic plasticity and facilitation of the agonist sensitivity of CB1 receptors have been observed in excitatory synaptic responses in the basolateral nucleus of the amygdala (BLA). However, it is not known whether long-term synaptic plasticity in the amygdala is influenced by the dietary ratio of ω3 to ω6 PUFA. In the present study, we examined long-term potentiation (LTP) of optogenetically-evoked excitatory synaptic responses in synapses between the terminal of the projection from the auditory cortex (ACx) and the pyramidal cells in the lateral nucleus of the amygdala. We found that LTP in this pathway was attenuated in mice fed with a high ω3 to ω6 PUFA ratio diet (0.97), compared with mice fed with a low ω3 to ω6 PUFA ratio diet (0.14). Furthermore, mice in the former condition showed reduced fear responses in an auditory fear conditioning test, compared with mice in the latter condition. In both electrophysiological and behavioral experiments, the effect of a diet with a high ω3 to ω6 PUFA diet ratio was completely blocked by treatment with a CB1 receptor antagonist. Furthermore, a significant reduction was observed in cholesterol content, but not in the level of an endogenous CB1 receptor agonist, 2-arachidonoylglycerol (2-AG), in brain samples containing the amygdala. These results suggest that the balance of ω3 to ω6 PUFA has an impact on fear memory and cortico-amygdala synaptic plasticity, both in a CB1 receptor-dependent manner. PMID:27601985

  4. Modulation of Long-Term Potentiation of Cortico-Amygdala Synaptic Responses and Auditory Fear Memory by Dietary Polyunsaturated Fatty Acid

    PubMed Central

    Yamada, Daisuke; Wada, Keiji; Sekiguchi, Masayuki

    2016-01-01

    Converging evidence suggests that an imbalance of ω3 to ω6 polyunsaturated fatty acid (PUFA) in the brain is involved in mental illnesses such as anxiety disorders. However, the underlying mechanism is unknown. We previously reported that the dietary ratio of ω3 to ω6 PUFA alters this ratio in the brain, and influences contextual fear memory. In addition to behavioral change, enhancement of cannabinoid CB1 receptor-mediated short-term synaptic plasticity and facilitation of the agonist sensitivity of CB1 receptors have been observed in excitatory synaptic responses in the basolateral nucleus of the amygdala (BLA). However, it is not known whether long-term synaptic plasticity in the amygdala is influenced by the dietary ratio of ω3 to ω6 PUFA. In the present study, we examined long-term potentiation (LTP) of optogenetically-evoked excitatory synaptic responses in synapses between the terminal of the projection from the auditory cortex (ACx) and the pyramidal cells in the lateral nucleus of the amygdala. We found that LTP in this pathway was attenuated in mice fed with a high ω3 to ω6 PUFA ratio diet (0.97), compared with mice fed with a low ω3 to ω6 PUFA ratio diet (0.14). Furthermore, mice in the former condition showed reduced fear responses in an auditory fear conditioning test, compared with mice in the latter condition. In both electrophysiological and behavioral experiments, the effect of a diet with a high ω3 to ω6 PUFA diet ratio was completely blocked by treatment with a CB1 receptor antagonist. Furthermore, a significant reduction was observed in cholesterol content, but not in the level of an endogenous CB1 receptor agonist, 2-arachidonoylglycerol (2-AG), in brain samples containing the amygdala. These results suggest that the balance of ω3 to ω6 PUFA has an impact on fear memory and cortico-amygdala synaptic plasticity, both in a CB1 receptor–dependent manner. PMID:27601985

  5. Phasic Dopamine Modifies Sensory-Driven Output of Striatal Neurons through Synaptic Plasticity.

    PubMed

    Wieland, Sebastian; Schindler, Sebastian; Huber, Cathrin; Köhr, Georg; Oswald, Manfred J; Kelsch, Wolfgang

    2015-07-01

    Animals are facing a complex sensory world in which only few stimuli are relevant to guide behavior. Value has to be assigned to relevant stimuli such as odors to select them over concurring information. Phasic dopamine is involved in the value assignment to stimuli in the ventral striatum. The underlying cellular mechanisms are incompletely understood. In striatal projection neurons of the ventral striatum in adult mice, we therefore examined the features and dynamics of phasic dopamine-induced synaptic plasticity and how this plasticity may modify the striatal output. Phasic dopamine is predicted to tag inputs that occur in temporal proximity. Indeed, we observed D1 receptor-dependent synaptic potentiation only when odor-like bursts and optogenetically evoked phasic dopamine release were paired within a time window of <1 s. Compatible with predictions of dynamic value assignment, the synaptic potentiation persisted after the phasic dopamine signal had ceased, but gradually reversed when odor-like bursts continued to be presented. The synaptic plasticity depended on the sensory input rate and was input specific. Importantly, synaptic plasticity amplified the firing response to a given olfactory input as the dendritic integration and the firing threshold remained unchanged during synaptic potentiation. Thus, phasic dopamine-induced synaptic plasticity can change information transfer through dynamic increases of the output of striatal projection neurons to specific sensory inputs. This plasticity may provide a neural substrate for dynamic value assignment in the striatum. PMID:26156995

  6. LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction

    PubMed Central

    Penney, Jay; Tsurudome, Kazuya; Liao, Edward H.; Kauwe, Grant; Gray, Lindsay; Yanagiya, Akiko; R. Calderon, Mario; Sonenberg, Nahum; Haghighi, A. Pejmun

    2016-01-01

    Parkinson's disease gene leucine-rich repeat kinase 2 (LRRK2) has been implicated in a number of processes including the regulation of mitochondrial function, autophagy and endocytic dynamics; nevertheless, we know little about its potential role in the regulation of synaptic plasticity. Here we demonstrate that postsynaptic knockdown of the fly homologue of LRRK2 thwarts retrograde, homeostatic synaptic compensation at the larval neuromuscular junction. Conversely, postsynaptic overexpression of either the fly or human LRRK2 transgene induces a retrograde enhancement of presynaptic neurotransmitter release by increasing the size of the release ready pool of vesicles. We show that LRRK2 promotes cap-dependent translation and identify Furin 1 as its translational target, which is required for the synaptic function of LRRK2. As the regulation of synaptic homeostasis plays a fundamental role in ensuring normal and stable synaptic function, our findings suggest that aberrant function of LRRK2 may lead to destabilization of neural circuits. PMID:27432119

  7. The role of gamma-aminobutyric acid/glycinergic synaptic transmission in mediating bilirubin-induced hyperexcitation in developing auditory neurons.

    PubMed

    Yin, Xin-Lu; Liang, Min; Shi, Hai-Bo; Wang, Lu-Yang; Li, Chun-Yan; Yin, Shan-Kai

    2016-01-01

    Hyperbilirubinemia is a common clinical phenomenon observed in human newborns. A high level of bilirubin can result in severe jaundice and bilirubin encephalopathy. However, the cellular mechanisms underlying bilirubin excitotoxicity are unclear. Our previous studies showed the action of gamma-aminobutyric acid (GABA)/glycine switches from excitatory to inhibitory during development in the ventral cochlear nucleus (VCN), one of the most sensitive auditory nuclei to bilirubin toxicity. In the present study, we investigated the roles of GABAA/glycine receptors in the induction of bilirubin hyperexcitation in early developing neurons. Using the patch clamp technique, GABAA/glycine receptor-mediated spontaneous inhibitory synaptic currents (sIPSCs) were recorded from bushy and stellate cells in acute brainstem slices from young mice (postnatal day 2-6). Bilirubin significantly increased the frequency of sIPSCs, and this effect was prevented by pretreatments of slices with either fast or slow Ca(2+) chelators BAPTA-AM and EGTA-AM suggesting that bilirubin can increase the release of GABA/glycine via Ca(2+)-dependent mechanisms. Using cell-attached recording configuration, we found that antagonists of GABAA and glycine receptors strongly attenuated spontaneous spiking firings in P2-6 neurons but produced opposite effect in P15-19 neurons. Furthermore, these antagonists reversed bilirubin-evoked hyperexcitability in P2-6 neurons, indicating that excitatory action of GABA/glycinergic transmission specifically contribute to bilirubin-induced hyperexcitability in the early stage of development. Our results suggest that bilirubin-induced enhancement of presynaptic release GABA/Glycine via Ca(2+)-dependent mechanisms may play a critical role in mediating neuronal hyperexcitation associated with jaundice, implicating potential new strategies for predicting, preventing, and treating bilirubin neurotoxicity. PMID:26476400

  8. Role of Synaptic Structural Plasticity in Impairments of Spatial Learning and Memory Induced by Developmental Lead Exposure in Wistar Rats

    PubMed Central

    Han, Xiaojie; Hu, Xiaoxia; Gu, Huaiyu; Chen, Yilin; Wei, Qing; Hu, Qiansheng

    2014-01-01

    Lead (Pb) is found to impair cognitive function. Synaptic structural plasticity is considered to be the physiological basis of synaptic functional plasticity and has been recently found to play important roles in learning and memory. To study the effect of Pb on spatial learning and memory at different developmental stages, and its relationship with alterations of synaptic structural plasticity, postnatal rats were randomly divided into three groups: Control; Pre-weaning Pb (Parents were exposed to 2 mM PbCl2 3 weeks before mating until weaning of pups); Post-weaning Pb (Weaned pups were exposed to 2 mM PbCl2 for 9 weeks). The spatial learning and memory of rats was measured by Morris water maze (MWM) on PND 85–90. Rat pups in Pre-weaning Pb and Post-weaning Pb groups performed significantly worse than those in Control group (p<0.05). However, there was no significant difference in the performance of MWM between the two Pb-exposure groups. Before MWM (PND 84), the number of neurons and synapses significantly decreased in Pre-weaning Pb group, but not in Post-weaning Pb group. After MWM (PND 91), the number of synapses in Pre-weaning Pb group increased significantly, but it was still less than that of Control group (p<0.05); the number of synapses in Post-weaning Pb group was also less than that of Control group (p<0.05), although the number of synapses has no differences between Post-weaning Pb and Control groups before MWM. In both Pre-weaning Pb and Post-weaning Pb groups, synaptic structural parameters such as thickness of postsynaptic density (PSD), length of synaptic active zone and synaptic curvature increased significantly while width of synaptic cleft decreased significantly compared to Control group (p<0.05). Our data demonstrated that both early and late developmental Pb exposure impaired spatial learning and memory as well as synaptic structural plasticity in Wistar rats. PMID:25536363

  9. Synaptic contacts impaired by styrene-7,8-oxide toxicity

    SciTech Connect

    Corsi, P. D'Aprile, A.; Nico, B.; Costa, G.L.; Assennato, G.

    2007-10-01

    Styrene-7,8-oxide (SO), a chemical compound widely used in industrial applications, is a potential hazard for humans, particularly in occupational settings. Neurobehavioral changes are consistently observed in occupationally exposed individuals and alterations of neurotransmitters associated with neuronal loss have been reported in animal models. Although the toxic effects of styrene have been extensively documented, the molecular mechanisms responsible for SO-induced neurotoxicity are still unclear. A possible dopamine-mediated effect of styrene neurotoxicity has been previously demonstrated, since styrene oxide alters dopamine neurotransmission in the brain. Thus, the present study hypothesizes that styrene neurotoxicity may involve synaptic contacts. Primary striatal neurons were exposed to styrene oxide at different concentrations (0.1-1 mM) for different time periods (8, 16, and 24 h) to evaluate the dose able to induce synaptic impairments. The expression of proteins crucial for synaptic transmission such as Synapsin, Synaptophysin, and RAC-1 were considered. The levels of Synaptophysin and RAC-1 decreased in a dose-dependent manner. Accordingly, morphological alterations, observed at the ultrastructural level, primarily involved the pre-synaptic compartment. In SO-exposed cultures, the biochemical cascade of caspases was activated affecting the cytoskeleton components as their target. Thus the impairments in synaptic contacts observed in SO-exposed cultures might reflect a primarily morphological alteration of neuronal cytoskeleton. In addition, our data support the hypothesis developed by previous authors of reactive oxygen species (ROS) initiating events of SO cytotoxicity.

  10. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats

    PubMed Central

    Cifani, Carlo; Koya, Eisuke; Navarre, Brittany M.; Calu, Donna J.; Baumann, Michael H.; Marchant, Nathan J.; Liu, Qing-Rong; Khuc, Thi; Pickel, James; Lupica, Carl R.; Shaham, Yavin; Hope, Bruce T.

    2012-01-01

    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express green fluorescent protein (GFP) in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5–2 mg/kg) or pellet priming (1–4 non-contingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and non-activated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPAR/NMDAR current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. Together, while ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavior. PMID:22723688

  11. Adenylyl cyclase subtype 1 is essential for late-phase long term potentiation and spatial propagation of synaptic responses in the anterior cingulate cortex of adult mice.

    PubMed

    Chen, Tao; O'Den, Gerile; Song, Qian; Koga, Kohei; Zhang, Ming-Ming; Zhuo, Min

    2014-01-01

    Long-term potentiation (LTP) is a key cellular mechanism for pathological pain in the central nervous system. LTP contains at least two different phases: early-phase LTP (E-LTP) and late-phase LTP (L-LTP). Among several major cortical areas, the anterior cingulate cortex (ACC) is a critical brain region for pain perception and its related emotional changes. Periphery tissue or nerve injuries cause LTP of excitatory synaptic transmission in the ACC. Our previous studies have demonstrated that genetic deletion of calcium-stimulated adenylyl cyclase 1 (AC1) or pharmacological application of a selective AC1 inhibitor NB001 blocked E-LTP in the ACC. However, the effect of AC1 on L-LTP, which requires new protein synthesis and is important for the process of chronic pain, has not been investigated. Here we tested the effects of NB001 on the ACC L-LTP and found that bath application of NB001 (0.1 μM) totally blocked the induction of L-LTP and recruitment of cortical circuitry without affecting basal excitatory transmission. In contrast, gabapentin, a widely used analgesic drug for neuropathic pain, did not block the induction of L-LTP and circuitry recruitment even at a high concentration (100 μM). Gabapentin non-selectively decreased basal synaptic transmission. Our results provide strong evidence that the selective AC1 inhibitor NB001 can be used to inhibit pain-related cortical L-LTP without affecting basal synaptic transmission. It also provides basic mechanisms for possible side effects of gabapentin in the central nervous system and its ineffectiveness in some patients with neuropathic pain. PMID:25304256

  12. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    PubMed

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. PMID:27103520

  13. Molecular underpinnings of synaptic vesicle pool heterogeneity.

    PubMed

    Crawford, Devon C; Kavalali, Ege T

    2015-04-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling. PMID:25620674

  14. Molecular Underpinnings of Synaptic Vesicle Pool Heterogeneity

    PubMed Central

    Crawford, Devon C.; Kavalali, Ege T.

    2015-01-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling. PMID:25620674

  15. Hippocampal CA1 Kindling but Not Long-Term Potentiation Disrupts Spatial Memory Performance

    ERIC Educational Resources Information Center

    Leung, L. Stan; Shen, Bixia

    2006-01-01

    Long-term synaptic enhancement in the hippocampus has been suggested to cause deficits in spatial performance. Synaptic enhancement has been reported after hippocampal kindling that induced repeated electrographic seizures or afterdischarges (ADs) and after long-term potentiation (LTP) defined as synaptic enhancement without ADs. We studied…

  16. Depression-like Behavior Induced by Nesfatin-1 in Rats: Involvement of Increased Immune Activation and Imbalance of Synaptic Vesicle Proteins

    PubMed Central

    Ge, Jin-Fang; Xu, Ya-Yun; Qin, Gan; Peng, Yao-Nan; Zhang, Chao-Feng; Liu, Xing-Rui; Liang, Li-Chuan; Wang, Zhong-Zheng; Chen, Fei-Hu

    2015-01-01

    Depression is a multicausal disorder and has been associated with metabolism regulation and immuno-inflammatory reaction. The anorectic molecule nesfatin-1 has recently been characterized as a potential mood regulator, but its precise effect on depression and the possible mechanisms remain unknown, especially when given peripherally. In the present study, nesfatin-1 was intraperitoneally injected to the rats and the depression-like behavior and activity of the hypothalamic-pituitary-adrenal (HPA) axis were evaluated. The plasma concentrations of nesfatin-1, interleukin 6 (IL-6), and C-reactive protein (CRP); and the hypothalamic expression levels of nesfatin-1, synapsin I, and synaptotagmin I mRNA were evaluated in nesfatin-1 chronically treated rats. The results showed that both acute and chronic administration of nesfatin-1 increased immobility in the forced swimming test (FST), and resulted in the hyperactivity of HPA axis, as indicated by the increase of plasma corticosterone concentration and hypothalamic expression of corticotropin-releasing hormone (CRH) mRNA. Moreover, after chronic nesfatin-1 administration, the rats exhibited decreased activity and exploratory behavior in the open field test (OFT) and increased mRNA expression of synapsin I and synaptotagmin I in the hypothalamus. Furthermore, chronic administration of nesfatin-1 elevated plasma concentrations of IL-6 and CRP, which were positively correlated with despair behavior, plasma corticosterone level, and the hypothalamic mRNA expression of synapsin I and synaptotagmin I. These results indicated that exogenous nesfatin-1 could induce the immune-inflammatory activation, which might be a central hug linking the depression-like behavior and the imbalanced mRNA expression of synaptic vesicle proteins in the hypothalamus. PMID:26617482

  17. Botulinum and Tetanus Neurotoxin-Induced Blockade of Synaptic Transmission in Networked Cultures of Human and Rodent Neurons.

    PubMed

    Beske, Phillip H; Bradford, Aaron B; Grynovicki, Justin O; Glotfelty, Elliot J; Hoffman, Katie M; Hubbard, Kyle S; Tuznik, Kaylie M; McNutt, Patrick M

    2016-02-01

    Clinical manifestations of tetanus and botulism result from an intricate series of interactions between clostridial neurotoxins (CNTs) and nerve terminal proteins that ultimately cause proteolytic cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins and functional blockade of neurotransmitter release. Although detection of cleaved SNARE proteins is routinely used as a molecular readout of CNT intoxication in cultured cells, impaired synaptic function is the pathophysiological basis of clinical disease. Work in our laboratory has suggested that the blockade of synaptic neurotransmission in networked neuron cultures offers a phenotypic readout of CNT intoxication that more closely replicates the functional endpoint of clinical disease. Here, we explore the value of measuring spontaneous neurotransmission frequencies as novel and functionally relevant readouts of CNT intoxication. The generalizability of this approach was confirmed in primary neuron cultures as well as human and mouse stem cell-derived neurons exposed to botulinum neurotoxin serotypes A-G and tetanus neurotoxin. The sensitivity and specificity of synaptic activity as a reporter of intoxication was evaluated in assays representing the principal clinical and research purposes of in vivo studies. Our findings confirm that synaptic activity offers a novel and functionally relevant readout for the in vitro characterizations of CNTs. They further suggest that the analysis of synaptic activity in neuronal cell cultures can serve as a surrogate for neuromuscular paralysis in the mouse lethal assay, and therefore is expected to significantly reduce the need for terminal animal use in toxin studies and facilitate identification of candidate therapeutics in cell-based screening assays. PMID:26615023

  18. Methamphetamine-induced enhancement of hippocampal long-term potentiation is modulated by NMDA and GABA receptors in the shell-accumbens.

    PubMed

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Hosseinmardi, Narges; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Khoshbouei, Habibeh

    2016-08-01

    Addictive drugs modulate synaptic transmission in the meso-corticolimbic system by hijacking normal adaptive forms of experience-dependent synaptic plasticity. Psychostimulants such as METH have been shown to affect hippocampal synaptic plasticity, albeit with a less understood synaptic mechanism. METH is one of the most addictive drugs that elicit long-term alterations in the synaptic plasticity in brain areas involved in reinforcement learning and reward processing. Dopamine transporter (DAT) is one of the main targets of METH. As a substrate for DAT, METH decreases dopamine uptake and increases dopamine efflux via the transporter in the target brain regions such as nucleus accumbens (NAc) and hippocampus. Due to cross talk between NAc and hippocampus, stimulation of NAc has been shown to alter hippocampal plasticity. In this study, we tested the hypothesis that manipulation of glutamatergic and GABA-ergic systems in the shell-NAc modulates METH-induced enhancement of long term potentiation (LTP) in the hippocampus. Rats treated with METH (four injections of 5 mg/kg) exhibited enhanced LTP as compared to saline-treated animals. Intra-NAc infusion of muscimol (GABA receptor agonist) decreased METH-induced enhancement of dentate gyrus (DG)-LTP, while infusion of AP5 (NMDA receptor antagonist) prevented METH-induced enhancement of LTP. These data support the interpretation that reducing NAc activity can ameliorate METH-induced hippocampal LTP through a hippocampus-NAc-VTA circuit loop. Synapse 70:325-335, 2016. © 2016 Wiley Periodicals, Inc. PMID:27029021

  19. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    PubMed Central

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP) when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis). Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons). Neurons (including the post-synaptic neuron) in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV) induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV) induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1) synchronous firing and burstiness tend to increase DiffV, (2) heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3) heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our work

  20. Synaptic plasticity and phosphorylation

    PubMed Central

    Lee, Hey-Kyoung

    2009-01-01

    A number of neuronal functions, including synaptic plasticity, depend on proper regulation of synaptic proteins, many of which can be rapidly regulated by phosphorylation. Neuronal activity controls the function of these synaptic proteins by exquisitely regulating the balance of various protein kinase and protein phosphatase activity. Recent understanding of synaptic plasticity mechanisms underscores important roles that these synaptic phosphoproteins play in regulating both pre- and post-synaptic functions. This review will focus on key postsynaptic phosphoproteins that have been implicated to play a role in synaptic plasticity. PMID:16904750

  1. Synaptic plasticity in the auditory system: a review.

    PubMed

    Friauf, Eckhard; Fischer, Alexander U; Fuhr, Martin F

    2015-07-01

    Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at

  2. Membrane-derived phospholipids control synaptic neurotransmission and plasticity.

    PubMed

    García-Morales, Victoria; Montero, Fernando; González-Forero, David; Rodríguez-Bey, Guillermo; Gómez-Pérez, Laura; Medialdea-Wandossell, María Jesús; Domínguez-Vías, Germán; García-Verdugo, José Manuel; Moreno-López, Bernardo

    2015-05-01

    Synaptic communication is a dynamic process that is key to the regulation of neuronal excitability and information processing in the brain. To date, however, the molecular signals controlling synaptic dynamics have been poorly understood. Membrane-derived bioactive phospholipids are potential candidates to control short-term tuning of synaptic signaling, a plastic event essential for information processing at both the cellular and neuronal network levels in the brain. Here, we showed that phospholipids affect excitatory and inhibitory neurotransmission by different degrees, loci, and mechanisms of action. Signaling triggered by lysophosphatidic acid (LPA) evoked rapid and reversible depression of excitatory and inhibitory postsynaptic currents. At excitatory synapses, LPA-induced depression depended on LPA1/Gαi/o-protein/phospholipase C/myosin light chain kinase cascade at the presynaptic site. LPA increased myosin light chain phosphorylation, which is known to trigger actomyosin contraction, and reduced the number of synaptic vesicles docked to active zones in excitatory boutons. At inhibitory synapses, postsynaptic LPA signaling led to dephosphorylation, and internalization of the GABAAγ2 subunit through the LPA1/Gα12/13-protein/RhoA/Rho kinase/calcineurin pathway. However, LPA-induced depression of GABAergic transmission was correlated with an endocytosis-independent reduction of GABAA receptors, possibly by GABAAγ2 dephosphorylation and subsequent increased lateral diffusion. Furthermore, endogenous LPA signaling, mainly via LPA1, mediated activity-dependent inhibitory depression in a model of experimental synaptic plasticity. Finally, LPA signaling, most likely restraining the excitatory drive incoming to motoneurons, regulated performance of motor output commands, a basic brain processing task. We propose that lysophospholipids serve as potential local messengers that tune synaptic strength to precedent activity of the neuron. PMID:25996636

  3. Potentiation of Acetylcholine-Mediated Facilitation of Inhibitory Synaptic Transmission by an Azaindolizione Derivative, ZSET1446 (ST101), in the Rat Hippocampus.

    PubMed

    Takeda, Kentaro; Yamaguchi, Yoshimasa; Hino, Masataka; Kato, Fusao

    2016-02-01

    The integrity of the hippocampal network depends on the coordination of excitatory and inhibitory signaling, which are under dynamic control by various regulatory influences such as the cholinergic systems. ZSET1446 (ST101; spiro[imidazo[1,2-a]pyridine-3,2-indan]-2(3H)-one) is a newly synthesized azaindolizinone derivative that significantly improves learning deficits in various types of Alzheimer disease (AD) models in rats. We examined the effect of ZSET1446 on the nicotinic acetylcholine (ACh) receptor (nAChR)-mediated regulation of synaptic transmission in hippocampal slices of rats. ZSET1446 significantly potentiated the facilitatory effect of nicotine and ACh on the frequency of spontaneous postsynaptic currents (sPSCs) recorded in CA1 pyramidal neurons with a maximum effect at 100 pM (tested range, 10 pM-1000 pM). The basal sPSC frequency without ACh was not affected. Such potentiation by ZSET1446 was observed in both the pharmacologic isolations of inhibitory and excitatory sPSCs and markedly reduced by blockade of either α7 or α4β2 nAChRs. ZSET1446 did not affect ACh-activated inward currents or depolarization of interneurons in the stratum radiatum and the lacunosum moleculare. These results indicate that ZSET1446 potentiates the nicotine-mediated enhancement of synaptic transmission in the hippocampal neurons without affecting nAChRs themselves, providing a novel possible mechanism of procognitive action that might improve learning deficits in clinical therapy. PMID:26578264

  4. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex

    PubMed Central

    Glovaci, Iulia; Chapman, C. Andrew

    2015-01-01

    The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI)-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3) receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36) completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is likely dependent

  5. Synaptic Activation of Ribosomal Protein S6 Phosphorylation Occurs Locally in Activated Dendritic Domains

    ERIC Educational Resources Information Center

    Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald

    2016-01-01

    Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6)…

  6. Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2

    PubMed Central

    Diao, Jiajie; Burré, Jacqueline; Vivona, Sandro; Cipriano, Daniel J; Sharma, Manu; Kyoung, Minjoung; Südhof, Thomas C; Brunger, Axel T

    2013-01-01

    α-Synuclein is a presynaptic protein that is implicated in Parkinson's and other neurodegenerative diseases. Physiologically, native α-synuclein promotes presynaptic SNARE-complex assembly, but its molecular mechanism of action remains unknown. Here, we found that native α-synuclein promotes clustering of synaptic-vesicle mimics, using a single-vesicle optical microscopy system. This vesicle-clustering activity was observed for both recombinant and native α-synuclein purified from mouse brain. Clustering was dependent on specific interactions of native α-synuclein with both synaptobrevin-2/VAMP2 and anionic lipids. Out of the three familial Parkinson's disease-related point mutants of α-synuclein, only the lipid-binding deficient mutation A30P disrupted clustering, hinting at a possible loss of function phenotype for this mutant. α-Synuclein had little effect on Ca2+-triggered fusion in our reconstituted single-vesicle system, consistent with in vivo data. α-Synuclein may therefore lead to accumulation of synaptic vesicles at the active zone, providing a ‘buffer’ of synaptic vesicles, without affecting neurotransmitter release itself. DOI: http://dx.doi.org/10.7554/eLife.00592.001 PMID:23638301

  7. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    SciTech Connect

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-08-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated f

  8. Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules

    PubMed Central

    Sacramento, João; Wichert, Andreas; van Rossum, Mark C. W.

    2015-01-01

    It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L 1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum. PMID:26046817

  9. PROPYLTHIOURACIL (PTU)-INDUCED HYPOTHYROIDISM: EFFECTS ON SYNAPTIC TRANSMISSION AND LONG TERM POTENTIATION IN HIPPOCAMPAL SLICES.

    EPA Science Inventory

    Concern has been raised over endocrine effects of some classes of environmental chemicals. Severe hypothyroidism during critical periods of brain developmental leads to alterations in hippocampal structure, learning deficits, yet neurophysiological properties of the hippocampus...

  10. Calcineurin Mediates Synaptic Scaling Via Synaptic Trafficking of Ca2+-Permeable AMPA Receptors

    PubMed Central

    Kim, Seonil; Ziff, Edward B.

    2014-01-01

    Homeostatic synaptic plasticity is a negative-feedback mechanism for compensating excessive excitation or inhibition of neuronal activity. When neuronal activity is chronically suppressed, neurons increase synaptic strength across all affected synapses via synaptic scaling. One mechanism for this change is alteration of synaptic AMPA receptor (AMPAR) accumulation. Although decreased intracellular Ca2+ levels caused by chronic inhibition of neuronal activity are believed to be an important trigger of synaptic scaling, the mechanism of Ca2+-mediated AMPAR-dependent synaptic scaling is not yet understood. Here, we use dissociated mouse cortical neurons and employ Ca2+ imaging, electrophysiological, cell biological, and biochemical approaches to describe a novel mechanism in which homeostasis of Ca2+ signaling modulates activity deprivation-induced synaptic scaling by three steps: (1) suppression of neuronal activity decreases somatic Ca2+ signals; (2) reduced activity of calcineurin, a Ca2+-dependent serine/threonine phosphatase, increases synaptic expression of Ca2+-permeable AMPARs (CPARs) by stabilizing GluA1 phosphorylation; and (3) Ca2+ influx via CPARs restores CREB phosphorylation as a homeostatic response by Ca2+-induced Ca2+ release from the ER. Therefore, we suggest that synaptic scaling not only maintains neuronal stability by increasing postsynaptic strength but also maintains nuclear Ca2+ signaling by synaptic expression of CPARs and ER Ca2+ propagation. PMID:24983627