Science.gov

Sample records for synaptic vesicle formation

  1. Synaptic Vesicle Endocytosis

    PubMed Central

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  2. Synaptic vesicle fusion

    PubMed Central

    Rizo, Josep; Rosenmund, Christian

    2008-01-01

    The core of the neurotransmitter release machinery is formed by SNARE complexes, which bring the vesicle and plasma membranes together and are key for fusion, and by Munc18-1, which controls SNARE-complex formation and may also have a direct role in fusion. In addition, SNARE complex assembly is likely orchestrated by Munc13s and RIMs, active-zone proteins that function in vesicle priming and diverse forms of presynaptic plasticity. Synaptotagmin-1 mediates triggering of release by Ca2+, probably through interactions with SNAREs and both membranes, as well as through a tight interplay with complexins. Elucidation of the release mechanism will require a full understanding of the network of interactions among all these proteins and the membranes. PMID:18618940

  3. SYNAPTIC VESICLE PROTEIN TRAFFICKING AT THE GLUTAMATE SYNAPSE

    PubMed Central

    Santos, Magda S.; Li, Haiyan; Voglmaier, Susan M.

    2009-01-01

    Expression of the integral and associated proteins of synaptic vesicles is subject to regulation over time, by region, and in response to activity. The process by which changes in protein levels and isoforms result in different properties of neurotransmitter release involves protein trafficking to the synaptic vesicle. How newly synthesized proteins are incorporated into synaptic vesicles at the presynaptic bouton is poorly understood. During synaptogenesis, synaptic vesicle proteins sort through the secretory pathway and are transported down the axon in precursor vesicles that undergo maturation to form synaptic vesicles. Changes in protein content of synaptic vesicles could involve the formation of new vesicles that either mix with the previous complement of vesicles or replace them, presumably by their degradation or inactivation. Alternatively, new proteins could individually incorporate into existing synaptic vesicles, changing their functional properties. Glutamatergic vesicles likely express many of the same integral membrane proteins and share certain common mechanisms of biogenesis, recycling, and degradation with other synaptic vesicles. However, glutamatergic vesicles are defined by their ability to package glutamate for release, a property conferred by the expression of a vesicular glutamate transporter (VGLUT). VGLUTs are subject to regional, developmental, and activity-dependent changes in expression. In addition, VGLUT isoforms differ in their trafficking, which may target them to different pathways during biogenesis or after recycling, which may in turn sort them to different vesicle pools. Emerging data indicate that differences in the association of VGLUTs and other synaptic vesicle proteins with endocytic adaptors may influence their trafficking. These observations indicate that independent regulation of synaptic vesicle protein trafficking has the potential to influence synaptic vesicle protein composition, the maintenance of synaptic vesicle

  4. Cholesterol and synaptic vesicle exocytosis

    PubMed Central

    Fratangeli, Alessandra

    2010-01-01

    Lipids may affect synaptic function in at least two ways: by acting as ligands for effector proteins [e.g., phosphatidylinositol (4,5) bisphosphate, diacylglycerol-mediated signaling] or by modifying the physicochemical properties and molecular organization of synaptic membranes. One that acts in the latter manner is cholesterol, an essential structural component of plasma membranes that is largely enriched in the membranes of synapses and synaptic vesicles, in which it may be involved in lipid-lipid and protein-lipid interactions. Cholesterol is an important constituent of the “membrane rafts” that may play a role in recruiting and organizing the specific proteins of the exocytic pathways. Furthermore, many synaptic proteins bind directly to cholesterol. The regulation of cholesterol and lipid levels may therefore influence the specific interactions and activity of synaptic proteins, and have a strong impact on synaptic functions. PMID:20798824

  5. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I

    PubMed Central

    Koch, Dennis; Spiwoks-Becker, Isabella; Sabanov, Victor; Sinning, Anne; Dugladze, Tamar; Stellmacher, Anne; Ahuja, Rashmi; Grimm, Julia; Schüler, Susann; Müller, Anke; Angenstein, Frank; Ahmed, Tariq; Diesler, Alexander; Moser, Markus; tom Dieck, Susanne; Spessert, Rainer; Boeckers, Tobias Maria; Fässler, Reinhard; Hübner, Christian Andreas; Balschun, Detlef; Gloveli, Tengis; Kessels, Michael Manfred; Qualmann, Britta

    2011-01-01

    Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs. PMID:21926968

  6. Synaptic vesicle pools: an update.

    PubMed

    Denker, Annette; Rizzoli, Silvio O

    2010-01-01

    During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or "pools". We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are "fixed". Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool. PMID:21423521

  7. Synaptic Vesicle Pools: An Update

    PubMed Central

    Denker, Annette; Rizzoli, Silvio O.

    2010-01-01

    During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or “pools”. We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are “fixed”. Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool. PMID:21423521

  8. Clathrin regenerates synaptic vesicles from endosomes

    PubMed Central

    Watanabe, Shigeki; Trimbuch, Thorsten; Camacho-Pérez, Marcial; Rost, Benjamin R.; Brokowski, Bettina; Söhl-Kielczynski, Berit; Felies, Annegret; Davis, M. Wayne; Rosenmund, Christian; Jorgensen, Erik M.

    2014-01-01

    Summary Ultrafast endocytosis can retrieve a single large endocytic vesicle as fast as 50-100 ms after synaptic vesicle fusion. However, the fate of the large endocytic vesicles is not known. Here we demonstrate that these vesicles transition to a synaptic endosome about one second after stimulation. The endosome is resolved into coated vesicles after 3 seconds, which in turn become small-diameter synaptic vesicles 5-6 seconds after stimulation. We disrupted clathrin function using RNAi and found that clathrin is not required for ultrafast endocytosis but is required to generate synaptic vesicles from the endosome. Ultrafast endocytosis fails when actin polymerization is disrupted, or when neurons are stimulated at room temperature instead of physiological temperature. In the absence of ultrafast endocytosis, synaptic vesicles are retrieved directly from the plasma membrane by clathrin-mediated endocytosis. These results explain in large part discrepancies among published experiments concerning the role of clathrin in synaptic vesicle endocytosis. PMID:25296249

  9. Molecular underpinnings of synaptic vesicle pool heterogeneity.

    PubMed

    Crawford, Devon C; Kavalali, Ege T

    2015-04-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling. PMID:25620674

  10. Molecular Underpinnings of Synaptic Vesicle Pool Heterogeneity

    PubMed Central

    Crawford, Devon C.; Kavalali, Ege T.

    2015-01-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling. PMID:25620674

  11. Spontaneous vesicle recycling in the synaptic bouton

    PubMed Central

    Truckenbrodt, Sven; Rizzoli, Silvio O.

    2014-01-01

    The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs) rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs) responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover. PMID:25538561

  12. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  13. Synaptic vesicle distribution by conveyor belt.

    PubMed

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-01

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. PMID:22385955

  14. Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons.

    PubMed

    Verderio, C; Coco, S; Bacci, A; Rossetto, O; De Camilli, P; Montecucco, C; Matteoli, M

    1999-08-15

    Recycling synaptic vesicles are already present in isolated axons of developing neurons (Matteoli et al., Zakharenko et al., 1999). This vesicle recycling is distinct from the vesicular traffic implicated in axon outgrowth. Formation of synaptic contacts coincides with a clustering of synaptic vesicles at the contact site and with a downregulation of their basal rate of exo-endocytosis (Kraszewski et al, 1995; Coco et al., 1998) We report here that tetanus toxin-mediated cleavage of synaptobrevin/vesicle-associated membrane protein (VAMP2), previously shown not to affect axon outgrowth, also does not inhibit synaptic vesicle exocytosis in isolated axons, despite its potent blocking effect on their exocytosis at synapses. This differential effect of tetanus toxin could be seen even on different branches of a same neuron. In contrast, botulinum toxins A and E [which cleave synaptosome-associated protein of 25 kDa. (SNAP-25)] and F (which cleaves synaptobrevin/VAMP1 and 2) blocked synaptic vesicle exocytosis both in isolated axons and at synapses, strongly suggesting that this process is dependent on "classical" synaptic SNAP receptor (SNARE) complexes both before and after synaptogenesis. A tetanus toxin-resistant form of synaptic vesicle recycling, which proceeds in the absence of external stimuli and is sensitive to botulinum toxin F, E, and A, persists at mature synapses. These data suggest the involvement of a tetanus toxin-resistant, but botulinum F-sensitive, isoform of synaptobrevin/VAMP in synaptic vesicle exocytosis before synapse formation and the partial persistence of this form of exocytosis at mature synaptic contacts. PMID:10436029

  15. Synaptic vesicle recycling: steps and principles

    PubMed Central

    Rizzoli, Silvio O

    2014-01-01

    Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle. PMID:24596248

  16. Optogenetic Acidification of Synaptic Vesicles and Lysosomes

    PubMed Central

    Grauel, M. Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J.; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2016-01-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes. PMID:26551543

  17. Probing the interior of synaptic vesicles with internalized nanoparticles

    NASA Astrophysics Data System (ADS)

    Gadd, Jennifer C.; Budzinski, Kristi L.; Chan, Yang-Hsiang; Ye, Fangmao; Chiu, Daniel T.

    2012-03-01

    Synaptic vesicles are subcellular organelles that are found in the synaptic bouton and are responsible for the propagation of signals between neurons. Synaptic vesicles undergo endo- and exocytosis with the neuronal membrane to load and release neurotransmitters. Here we discuss how we utilize this property to load nanoparticles as a means of probing the interior of synaptic vesicles. To probe the intravesicular region of synaptic vesicles, we have developed a highly sensitive pH-sensing polymer dot. We feel the robust nature of the pH-sensing polymer dot will provide insight into the dynamics of proton loading into synaptic vesicles.

  18. Alignment of Synaptic Vesicle Macromolecules with the Macromolecules in Active Zone Material that Direct Vesicle Docking

    PubMed Central

    Xu, Jing; Jung, Jae Hoon; Marshall, Robert M.; McMahan, Uel J.

    2013-01-01

    Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron’s axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle’s luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly’s chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly’s shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for

  19. Probing Rotational Viscosity in Synaptic Vesicles

    PubMed Central

    Zeigler, Maxwell B.; Allen, Peter B.; Chiu, Daniel T.

    2011-01-01

    The synaptic vesicle (SV) is a central organelle in neurotransmission, and previous studies have suggested that SV protein 2 (SV2) may be responsible for forming a gel-like matrix within the vesicle. Here we measured the steady-state rotational anisotropy of the fluorescent dye, Oregon Green, within individual SVs. By also measuring the fluorescence lifetime of Oregon Green in SVs, we determined the mean rotational viscosity to be 16.49 ± 0.12 cP for wild-type (WT) empty mice vesicles (i.e., with no neurotransmitters), 11.21 ± 0.12 cP for empty vesicles from SV2 knock-out mice, and 11.40 ± 0.65 cP for WT mice vesicles loaded with the neurotransmitter glutamate (Glu). This measurement shows that SV2 is an important determinant of viscosity within the vesicle lumen, and that the viscosity decreases when the vesicles are filled with Glu. The viscosities of both empty SV2 knock-out vesicles and Glu-loaded WT vesicles were significantly different from that of empty WT SVs (p < 0.05). This measurement represents the smallest enclosed volume in which rotational viscosity has been measured thus far. PMID:21641331

  20. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy.

    PubMed

    Ceccaldi, P E; Grohovaz, F; Benfenati, F; Chieregatti, E; Greengard, P; Valtorta, F

    1995-03-01

    Synapsin I is a synaptic vesicle-associated protein which inhibits neurotransmitter release, an effect which is abolished upon its phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Based on indirect evidence, it was suggested that this effect on neurotransmitter release may be achieved by the reversible anchoring of synaptic vesicles to the actin cytoskeleton of the nerve terminal. Using video-enhanced microscopy, we have now obtained experimental evidence in support of this model: the presence of dephosphorylated synapsin I is necessary for synaptic vesicles to bind actin; synapsin I is able to promote actin polymerization and bundling of actin filaments in the presence of synaptic vesicles; the ability to cross-link synaptic vesicles and actin is specific for synapsin I and is not shared by other basic proteins; the cross-linking between synaptic vesicles and actin is specific for the membrane of synaptic vesicles and does not reflect either a non-specific binding of membranes to the highly surface active synapsin I molecule or trapping of vesicles within the thick bundles of actin filaments; the formation of the ternary complex is virtually abolished when synapsin I is phosphorylated by CaM kinase II. The data indicate that synapsin I markedly affects synaptic vesicle traffic and cytoskeleton assembly in the nerve terminal and provide a molecular basis for the ability of synapsin I to regulate the availability of synaptic vesicles for exocytosis and thereby the efficiency of neurotransmitter release. PMID:7876313

  1. Cholesterol reduction impairs exocytosis of synaptic vesicles.

    PubMed

    Linetti, Anna; Fratangeli, Alessandra; Taverna, Elena; Valnegri, Pamela; Francolini, Maura; Cappello, Valentina; Matteoli, Michela; Passafaro, Maria; Rosa, Patrizia

    2010-02-15

    Cholesterol and sphingolipids are abundant in neuronal membranes, where they help the organisation of the membrane microdomains involved in major roles such as axonal and dendritic growth, and synapse and spine stability. The aim of this study was to analyse their roles in presynaptic physiology. We first confirmed the presence of proteins of the exocytic machinery (SNARES and Ca(v)2.1 channels) in the lipid microdomains of cultured neurons, and then incubated the neurons with fumonisin B (an inhibitor of sphingolipid synthesis), or with mevastatin or zaragozic acid (two compounds that affect the synthesis of cholesterol by inhibiting HMG-CoA reductase or squalene synthase). The results demonstrate that fumonisin B and zaragozic acid efficiently decrease sphingolipid and cholesterol levels without greatly affecting the viability of neurons or the expression of synaptic proteins. Electron microscopy showed that the morphology and number of synaptic vesicles in the presynaptic boutons of cholesterol-depleted neurons were similar to those observed in control neurons. Zaragozic acid (but not fumonisin B) treatment impaired synaptic vesicle uptake of the lipophilic dye FM1-43 and an antibody directed against the luminal epitope of synaptotagmin-1, effects that depended on the reduction in cholesterol because they were reversed by cholesterol reloading. The time-lapse confocal imaging of neurons transfected with ecliptic SynaptopHluorin showed that cholesterol depletion affects the post-depolarisation increase in fluorescence intensity. Taken together, these findings show that reduced cholesterol levels impair synaptic vesicle exocytosis in cultured neurons. PMID:20103534

  2. Abnormal Synaptic Vesicle Biogenesis in Drosophila Synaptogyrin Mutants

    PubMed Central

    Stevens, Robin J.; Akbergenova, Yulia; Jorquera, Ramon A.; Littleton, J. Troy

    2012-01-01

    Sustained neuronal communication relies on the coordinated activity of multiple proteins that regulate synaptic vesicle biogenesis and cycling within the presynaptic terminal. Synaptogyrin and synaptophysin are conserved MARVEL domain-containing transmembrane proteins that are among the most abundant synaptic vesicle constituents, although their role in the synaptic vesicle cycle has remained elusive. To further investigate the function of these proteins, we generated and characterized a synaptogyrin (gyr) null mutant in Drosophila, whose genome encodes a single synaptogyrin isoform and lacks a synaptophysin homolog. We demonstrate that Drosophila synaptogyrin plays a modulatory role in synaptic vesicle biogenesis at larval neuromuscular junctions. Drosophila lacking synaptogyrin are viable and fertile and have no overt deficits in motor function. However, ultrastructural analysis of gyr larvae revealed increased synaptic vesicle diameter and enhanced variability in the size of synaptic vesicles. In addition, the resolution of endocytic cisternae into synaptic vesicles in response to strong stimulation is defective in gyr mutants. Electrophysiological analysis demonstrated an increase in quantal size and a concomitant decrease in quantal content, suggesting functional consequences for transmission caused by the loss of synaptogyrin. Furthermore, high-frequency stimulation resulted in increased facilitation and a delay in recovery from synaptic depression, indicating that synaptic vesicle exo-endocytosis is abnormally regulated during intense stimulation conditions. These results suggest that synaptogyrin modulates the synaptic vesicle exo-endocytic cycle and is required for the proper biogenesis of synaptic vesicles at nerve terminals. PMID:23238721

  3. Synapsin Isoforms and Synaptic Vesicle Trafficking

    PubMed Central

    Song, Sang-Ho; Augustine, George J.

    2015-01-01

    Synapsins were the first presynaptic proteins identified and have served as the flagship of the presynaptic protein field. Here we review recent studies demonstrating that different members of the synapsin family play different roles at presynaptic terminals employing different types of synaptic vesicles. The structural underpinnings for these functions are just beginning to be understood and should provide a focus for future efforts. PMID:26627875

  4. Variable priming of a docked synaptic vesicle

    PubMed Central

    Jung, Jae Hoon; Szule, Joseph A.; Marshall, Robert M.; McMahan, Uel J.

    2016-01-01

    The priming of a docked synaptic vesicle determines the probability of its membrane (VM) fusing with the presynaptic membrane (PM) when a nerve impulse arrives. To gain insight into the nature of priming, we searched by electron tomography for structural relationships correlated with fusion probability at active zones of axon terminals at frog neuromuscular junctions. For terminals fixed at rest, the contact area between the VM of docked vesicles and PM varied >10-fold with a normal distribution. There was no merging of the membranes. For terminals fixed during repetitive evoked synaptic transmission, the normal distribution of contact areas was shifted to the left, due in part to a decreased number of large contact areas, and there was a subpopulation of large contact areas where the membranes were hemifused, an intermediate preceding complete fusion. Thus, fusion probability of a docked vesicle is related to the extent of its VM–PM contact area. For terminals fixed 1 h after activity, the distribution of contact areas recovered to that at rest, indicating the extent of a VM–PM contact area is dynamic and in equilibrium. The extent of VM–PM contact areas in resting terminals correlated with eccentricity in vesicle shape caused by force toward the PM and with shortness of active zone material macromolecules linking vesicles to PM components, some thought to include Ca2+ channels. We propose that priming is a variable continuum of events imposing variable fusion probability on each vesicle and is regulated by force-generating shortening of active zone material macromolecules in dynamic equilibrium. PMID:26858418

  5. Vesicular glutamate transporter 1 orchestrates recruitment of other synaptic vesicle cargo proteins during synaptic vesicle recycling.

    PubMed

    Pan, Ping-Yue; Marrs, Julia; Ryan, Timothy A

    2015-09-11

    A long standing question in synaptic physiology is how neurotransmitter-filled vesicles are rebuilt after exocytosis. Among the first steps in this process is the endocytic retrieval of the transmembrane proteins that are enriched in synaptic vesicles (SVs). At least six types of transmembrane proteins must be recovered, but the rules for how this multiple cargo selection is accomplished are poorly understood. Among these SV cargos is the vesicular glutamate transporter (vGlut). We show here that vGlut1 has a strong influence on the kinetics of retrieval of half of the known SV cargos and that specifically impairing the endocytosis of vGlut1 in turn slows down other SV cargos, demonstrating that cargo retrieval is a collective cargo-driven process. Finally, we demonstrate that different cargos can be retrieved in the same synapse with different kinetics, suggesting that additional post-endocytic sorting steps likely occur in the nerve terminal. PMID:26224632

  6. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses.

    PubMed

    Kyung, Jae Won; Bae, Jae Ryul; Kim, Dae-Hwan; Song, Woo Keun; Kim, Sung Hyun

    2016-01-01

    Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the "endocytic capacity") was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. PMID:27557559

  7. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses

    PubMed Central

    Kyung, Jae Won; Bae, Jae Ryul; Kim, Dae-Hwan; Song, Woo Keun; Kim, Sung Hyun

    2016-01-01

    Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the “endocytic capacity”) was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. PMID:27557559

  8. APP is cleaved by Bace1 in pre-synaptic vesicles and establishes a pre-synaptic interactome, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicles functions.

    PubMed

    Del Prete, Dolores; Lombino, Franco; Liu, Xinran; D'Adamio, Luciano

    2014-01-01

    Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central functional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/β/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles. PMID:25247712

  9. APP Is Cleaved by Bace1 in Pre-Synaptic Vesicles and Establishes a Pre-Synaptic Interactome, via Its Intracellular Domain, with Molecular Complexes that Regulate Pre-Synaptic Vesicles Functions

    PubMed Central

    Del Prete, Dolores; Lombino, Franco; Liu, Xinran; D'Adamio, Luciano

    2014-01-01

    Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central funtional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/β/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles. PMID:25247712

  10. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    PubMed

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483

  11. Concurrent Imaging of Synaptic Vesicle Recycling and Calcium Dynamics

    PubMed Central

    Li, Haiyan; Foss, Sarah M.; Dobryy, Yuriy L.; Park, C. Kevin; Hires, Samuel Andrew; Shaner, Nathan C.; Tsien, Roger Y.; Osborne, Leslie C.; Voglmaier, Susan M.

    2011-01-01

    Synaptic transmission involves the calcium dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2), and a presynaptically localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3) with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Reacidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released. PMID:22065946

  12. Synaptic vesicles are “primed” for fast clathrin-mediated endocytosis at the ribbon synapse

    PubMed Central

    Pelassa, Ilaria; Zhao, CongJian; Pasche, Mathias; Odermatt, Benjamin; Lagnado, Leon

    2014-01-01

    Retrieval of synaptic vesicles can occur 1–10 s after fusion, but the role of clathrin during this process has been unclear because the classical mode of clathrin-mediated endocytosis (CME) is an order of magnitude slower, as during retrieval of surface receptors. Classical CME is thought to be rate-limited by the recruitment of clathrin, which raises the question: how is clathrin recruited during synaptic vesicle recycling? To investigate this question we applied total internal reflection fluorescence microscopy (TIRFM) to the synaptic terminal of retinal bipolar cells expressing fluorescent constructs of clathrin light-chain A. Upon calcium influx we observed a fast accumulation of clathrin within 100 ms at the periphery of the active zone. The subsequent loss of clathrin from these regions reflected endocytosis because the application of a potent clathrin inhibitor Pitstop2 dramatically slowed down this phase by ~3 fold. These results indicate that clathrin-dependent retrieval of synaptic vesicles is unusually fast, most probably because of a “priming” step involving a state of association of clathrin with the docked vesicle and with the endosomes and cisternae surrounding the ribbons. Fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) showed that the majority of clathrin is moving with the same kinetics as synaptic vesicle proteins. Together, these results indicate that the fast endocytic mechanism operating to retrieve synaptic vesicles differs substantially from the classical mode of CME operating via formation of a coated pit. PMID:25520613

  13. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport

    SciTech Connect

    Gracz, L.M.; Wang, W.; Parsons, S.M.

    1988-07-12

    Crude cholinergic synaptic vesicles from a homogenate of the electric organ of Torpedo californica were centrifuged to equilibrium in an isosmotic sucrose density gradient. The classical VP/sub 1/ synaptic vesicles banding at 1.055 g/mL actively transported (/sup 3/H)acetylcholine (AcCh). An organelle banding at about 1.071 g/mL transported even more (/sup 3/H)AcCh. Transport by both organelles was inhibited by the known AcCh storage blockers trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol, formerly AH5183) and nigericin. Relative to VP/sub 1/ vesicles the denser organelle was slightly smaller as shown by size-exclusion chromatography. It is concluded that the denser organelle corresponds to the recycling VP/sub 2/ synaptic vesicle originally described in intact Torpedo marmorata electric organ. The properties of the receptor for vesamicol were studied by measuring binding of (/sup 3/H)vesamicol, and the amount of SV2 antigen characteristic of secretory vesicles was assayed with a monoclonal antibody directed against it. Relative to VP/sub 1/ vesicles the VP/sub 2/ vesicles had a ratio of (/sup 3/H)AcCh transport activity to vesamicol receptor concentration that typically was 4-7-fold higher, whereas the ratio of SV2 antigen concentration to vesamicol receptor concentration was about 2-fold higher. The Hill coefficients ..cap alpha../sub H/ and equilibrium dissociation constants K for vesamicol binding to VP/sub 1/ and VP/sub 2/ vesicles were essentially the same. The positive Hill coefficient suggests that the vesamicol receptor exists as a homotropic oligomeric complex. The results demonstrate that VP/sub 1/ and VP/sub 2/ synaptic vesicles exhibit functional differences in the AcCh transport system, presumably as a result of regulatory phenomena.

  14. Examination of Synaptic Vesicle Recycling Using FM Dyes During Evoked, Spontaneous, and Miniature Synaptic Activities

    PubMed Central

    Iwabuchi, Sadahiro; Kakazu, Yasuhiro; Koh, Jin-Young; Goodman, Kirsty M.; Harata, N. Charles

    2014-01-01

    Synaptic vesicles in functional nerve terminals undergo exocytosis and endocytosis. This synaptic vesicle recycling can be effectively analyzed using styryl FM dyes, which reveal membrane turnover. Conventional protocols for the use of FM dyes were designed for analyzing neurons following stimulated (evoked) synaptic activity. Recently, protocols have become available for analyzing the FM signals that accompany weaker synaptic activities, such as spontaneous or miniature synaptic events. Analysis of these small changes in FM signals requires that the imaging system is sufficiently sensitive to detect small changes in intensity, yet that artifactual changes of large amplitude are suppressed. Here we describe a protocol that can be applied to evoked, spontaneous, and miniature synaptic activities, and use cultured hippocampal neurons as an example. This protocol also incorporates a means of assessing the rate of photobleaching of FM dyes, as this is a significant source of artifacts when imaging small changes in intensity. PMID:24747983

  15. VAMP-1: a synaptic vesicle-associated integral membrane protein.

    PubMed

    Trimble, W S; Cowan, D M; Scheller, R H

    1988-06-01

    Several proteins are associated with, or are integral components of, the lipid bilayer that forms the delineating membrane of neuronal synaptic vesicles. To characterize these molecules, we used a polyclonal antiserum raised against purified cholinergic synaptic vesicles from Torpedo to screen a cDNA expression library constructed from mRNA of the electromotor nucleus. One clone encodes VAMP-1 (vesicle-associated membrane protein 1), a nervous-system-specific protein of 120 amino acids whose primary sequence can be divided into three domains: a proline-rich amino terminus, a highly charged internal region, and a hydrophobic carboxyl-terminal domain that is predicted to comprise a membrane anchor. Tryptic digestion of intact and lysed vesicles suggests that the protein faces the cytoplasm, where it may play a role in packaging, transport, or release of neurotransmitters. PMID:3380805

  16. An endophilin–dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling

    PubMed Central

    Sundborger, Anna; Soderblom, Cynthia; Vorontsova, Olga; Evergren, Emma; Hinshaw, Jenny E.; Shupliakov, Oleg

    2011-01-01

    Clathrin-mediated vesicle recycling in synapses is maintained by a unique set of endocytic proteins and interactions. We show that endophilin localizes in the vesicle pool at rest and in spirals at the necks of clathrin-coated pits (CCPs) during activity in lamprey synapses. Endophilin and dynamin colocalize at the base of the clathrin coat. Protein spirals composed of these proteins on lipid tubes in vitro have a pitch similar to the one observed at necks of CCPs in living synapses, and lipid tubules are thinner than those formed by dynamin alone. Tubulation efficiency and the amount of dynamin recruited to lipid tubes are dramatically increased in the presence of endophilin. Blocking the interactions of the endophilin SH3 domain in situ reduces dynamin accumulation at the neck and prevents the formation of elongated necks observed in the presence of GTPγS. Therefore, endophilin recruits dynamin to a restricted part of the CCP neck, forming a complex, which promotes budding of new synaptic vesicles. PMID:21172823

  17. High- and Low-Mobility Stages in the Synaptic Vesicle Cycle

    PubMed Central

    Kamin, Dirk; Lauterbach, Marcel A.; Westphal, Volker; Keller, Jan; Schönle, Andreas; Hell, Stefan W.; Rizzoli, Silvio O.

    2010-01-01

    Abstract Synaptic vesicles need to be mobile to reach their release sites during synaptic activity. We investigated vesicle mobility throughout the synaptic vesicle cycle using both conventional and subdiffraction-resolution stimulated emission depletion fluorescence microscopy. Vesicle tracking revealed that recently endocytosed synaptic vesicles are highly mobile for a substantial time period after endocytosis. They later undergo a maturation process and integrate into vesicle clusters where they exhibit little mobility. Despite the differences in mobility, both recently endocytosed and mature vesicles are exchanged between synapses. Electrical stimulation does not seem to affect the mobility of the two types of vesicles. After exocytosis, the vesicle material is mobile in the plasma membrane, although the movement appears to be somewhat limited. Increasing the proportion of fused vesicles (by stimulating exocytosis while simultaneously blocking endocytosis) leads to substantially higher mobility. We conclude that both high- and low-mobility states are characteristic of synaptic vesicle movement. PMID:20643088

  18. Sphingosine Facilitates SNARE Complex Assembly and Activates Synaptic Vesicle Exocytosis

    PubMed Central

    Darios, Frédéric; Wasser, Catherine; Shakirzyanova, Anastasia; Giniatullin, Artur; Goodman, Kerry; Munoz-Bravo, Jose L.; Raingo, Jesica; Jorgačevski, Jernej; Kreft, Marko; Zorec, Robert; Rosa, Juliana M.; Gandia, Luis; Gutiérrez, Luis M.; Binz, Thomas; Giniatullin, Rashid; Kavalali, Ege T.; Davletov, Bazbek

    2009-01-01

    Summary Synaptic vesicles loaded with neurotransmitters fuse with the plasma membrane to release their content into the extracellular space, thereby allowing neuronal communication. The membrane fusion process is mediated by a conserved set of SNARE proteins: vesicular synaptobrevin and plasma membrane syntaxin and SNAP-25. Recent data suggest that the fusion process may be subject to regulation by local lipid metabolism. Here, we have performed a screen of lipid compounds to identify positive regulators of vesicular synaptobrevin. We show that sphingosine, a releasable backbone of sphingolipids, activates synaptobrevin in synaptic vesicles to form the SNARE complex implicated in membrane fusion. Consistent with the role of synaptobrevin in vesicle fusion, sphingosine upregulated exocytosis in isolated nerve terminals, neuromuscular junctions, neuroendocrine cells and hippocampal neurons, but not in neurons obtained from synaptobrevin-2 knockout mice. Further mechanistic insights suggest that sphingosine acts on the synaptobrevin/phospholipid interface, defining a novel function for this important lipid regulator. PMID:19524527

  19. Functional Nanoscale Imaging of Synaptic Vesicle Cycling with Superfast Fixation.

    PubMed

    Schikorski, Thomas

    2016-01-01

    Functional imaging is the measurement of structural changes during an ongoing physiological process over time. In many cases, functional imaging has been implemented by tracking a fluorescent signal in live imaging sessions. Electron microscopy, however, excludes live imaging which has hampered functional imaging approaches on the ultrastructural level. This barrier was broken with the introduction of superfast fixation. Superfast fixation is capable of stopping and fixing membrane traffic at sufficient speed to capture a physiological process at a distinct functional state. Applying superfast fixation at sequential time points allows tracking of membrane traffic in a step-by-step fashion.This technique has been applied to track labeled endocytic vesicles at central synapses as they pass through the synaptic vesicle cycle. At synapses, neurotransmitter is released from synaptic vesicles (SVs) via fast activity-dependent exocytosis. Exocytosis is coupled to fast endocytosis that retrieves SVs components from the plasma membrane shortly after release. Fluorescent FM dyes that bind to the outer leaflet of the plasma membrane enter the endocytic vesicle during membrane retrieval and remain trapped in endocytic vesicles have been widely used to study SV exo-endocytic cycling in live imaging sessions. FM dyes can also be photoconverted into an electron-dense diaminobenzidine polymer which allows the investigation of SV cycling in the electron microscope. The combination of FM labeling with superfast fixation made it possible to track the fine structure of endocytic vesicles at 1 s intervals. Because this combination is not specialized to SV cycling, many other cellular processes can be studied. Furthermore, the technique is easy to set up and cost effective.This chapter describes activity-dependent FM dye labeling of SVs in cultured hippocampal neurons, superfast microwave-assisted fixation, photoconversion of the fluorescent endocytic vesicles, and the analysis of

  20. Dysregulations of Synaptic Vesicle Trafficking in Schizophrenia.

    PubMed

    Egbujo, Chijioke N; Sinclair, Duncan; Hahn, Chang-Gyu

    2016-08-01

    Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia. PMID:27371030

  1. Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins

    PubMed Central

    Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker

    2015-01-01

    Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. PMID:26399746

  2. Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins

    NASA Astrophysics Data System (ADS)

    Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker

    2015-09-01

    Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier.

  3. Botulinum neurotoxin type-A enters a non-recycling pool of synaptic vesicles

    PubMed Central

    Harper, Callista B.; Papadopulos, Andreas; Martin, Sally; Matthews, Daniel R.; Morgan, Garry P.; Nguyen, Tam H.; Wang, Tong; Nair, Deepak; Choquet, Daniel; Meunier, Frederic A.

    2016-01-01

    Neuronal communication relies on synaptic vesicles undergoing regulated exocytosis and recycling for multiple rounds of fusion. Whether all synaptic vesicles have identical protein content has been challenged, suggesting that their recycling ability may differ greatly. Botulinum neurotoxin type-A (BoNT/A) is a highly potent neurotoxin that is internalized in synaptic vesicles at motor nerve terminals and induces flaccid paralysis. Recently, BoNT/A was also shown to undergo retrograde transport, suggesting it might enter a specific pool of synaptic vesicles with a retrograde trafficking fate. Using high-resolution microscopy techniques including electron microscopy and single molecule imaging, we found that the BoNT/A binding domain is internalized within a subset of vesicles that only partially co-localize with cholera toxin B-subunit and have markedly reduced VAMP2 immunoreactivity. Synaptic vesicles loaded with pHrodo-BoNT/A-Hc exhibited a significantly reduced ability to fuse with the plasma membrane in mouse hippocampal nerve terminals when compared with pHrodo-dextran-containing synaptic vesicles and pHrodo-labeled anti-GFP nanobodies bound to VAMP2-pHluorin or vGlut-pHluorin. Similar results were also obtained at the amphibian neuromuscular junction. These results reveal that BoNT/A is internalized in a subpopulation of synaptic vesicles that are not destined to recycle, highlighting the existence of significant molecular and functional heterogeneity between synaptic vesicles. PMID:26805017

  4. Botulinum neurotoxin type-A enters a non-recycling pool of synaptic vesicles.

    PubMed

    Harper, Callista B; Papadopulos, Andreas; Martin, Sally; Matthews, Daniel R; Morgan, Garry P; Nguyen, Tam H; Wang, Tong; Nair, Deepak; Choquet, Daniel; Meunier, Frederic A

    2016-01-01

    Neuronal communication relies on synaptic vesicles undergoing regulated exocytosis and recycling for multiple rounds of fusion. Whether all synaptic vesicles have identical protein content has been challenged, suggesting that their recycling ability may differ greatly. Botulinum neurotoxin type-A (BoNT/A) is a highly potent neurotoxin that is internalized in synaptic vesicles at motor nerve terminals and induces flaccid paralysis. Recently, BoNT/A was also shown to undergo retrograde transport, suggesting it might enter a specific pool of synaptic vesicles with a retrograde trafficking fate. Using high-resolution microscopy techniques including electron microscopy and single molecule imaging, we found that the BoNT/A binding domain is internalized within a subset of vesicles that only partially co-localize with cholera toxin B-subunit and have markedly reduced VAMP2 immunoreactivity. Synaptic vesicles loaded with pHrodo-BoNT/A-Hc exhibited a significantly reduced ability to fuse with the plasma membrane in mouse hippocampal nerve terminals when compared with pHrodo-dextran-containing synaptic vesicles and pHrodo-labeled anti-GFP nanobodies bound to VAMP2-pHluorin or vGlut-pHluorin. Similar results were also obtained at the amphibian neuromuscular junction. These results reveal that BoNT/A is internalized in a subpopulation of synaptic vesicles that are not destined to recycle, highlighting the existence of significant molecular and functional heterogeneity between synaptic vesicles. PMID:26805017

  5. The active zone protein CAST regulates synaptic vesicle recycling and quantal size in the mouse hippocampus.

    PubMed

    Kobayashi, Shizuka; Hida, Yamato; Ishizaki, Hiroyoshi; Inoue, Eiji; Tanaka-Okamoto, Miki; Yamasaki, Miwako; Miyazaki, Taisuke; Fukaya, Masahiro; Kitajima, Isao; Takai, Yoshimi; Watanabe, Masahiko; Ohtsuka, Toshihisa; Manabe, Toshiya

    2016-09-01

    Synaptic efficacy is determined by various factors, including the quantal size, which is dependent on the amount of neurotransmitters in synaptic vesicles at the presynaptic terminal. It is essential for stable synaptic transmission that the quantal size is kept within a constant range and that synaptic efficacy during and after repetitive synaptic activation is maintained by replenishing release sites with synaptic vesicles. However, the mechanisms for these fundamental properties have still been undetermined. We found that the active zone protein CAST (cytomatrix at the active zone structural protein) played pivotal roles in both presynaptic regulation of quantal size and recycling of endocytosed synaptic vesicles. In the CA1 region of hippocampal slices of the CAST knockout mice, miniature excitatory synaptic responses were increased in size, and synaptic depression after prolonged synaptic activation was larger, which was attributable to selective impairment of synaptic vesicle trafficking via the endosome in the presynaptic terminal likely mediated by Rab6. Therefore, CAST serves as a key molecule that regulates dynamics and neurotransmitter contents of synaptic vesicles in the excitatory presynaptic terminal in the central nervous system. PMID:27422015

  6. Superpriming of synaptic vesicles as a common basis for intersynapse variability and modulation of synaptic strength

    PubMed Central

    Taschenberger, Holger; Woehler, Andrew; Neher, Erwin

    2016-01-01

    Glutamatergic synapses show large variations in strength and short-term plasticity (STP). We show here that synapses displaying an increased strength either after posttetanic potentiation (PTP) or through activation of the phospholipase-C–diacylglycerol pathway share characteristic properties with intrinsically strong synapses, such as (i) pronounced short-term depression (STD) during high-frequency stimulation; (ii) a conversion of that STD into a sequence of facilitation followed by STD after a few conditioning stimuli at low frequency; (iii) an equalizing effect of such conditioning stimulation, which reduces differences among synapses and abolishes potentiation; and (iv) a requirement of long periods of rest for reconstitution of the original STP pattern. These phenomena are quantitatively described by assuming that a small fraction of “superprimed” synaptic vesicles are in a state of elevated release probability (p ∼ 0.5). This fraction is variable in size among synapses (typically about 30%), but increases after application of phorbol ester or during PTP. The majority of vesicles, released during repetitive stimulation, have low release probability (p ∼ 0.1), are relatively uniform in number across synapses, and are rapidly recruited. In contrast, superprimed vesicles need several seconds to be regenerated. They mediate enhanced synaptic strength at the onset of burst-like activity, the impact of which is subject to modulation by slow modulatory transmitter systems. PMID:27432975

  7. Synucleins Regulate the Kinetics of Synaptic Vesicle Endocytosis

    PubMed Central

    Vargas, Karina J.; Makani, Sachin; Davis, Taylor; Westphal, Christopher H.; Castillo, Pablo E.

    2014-01-01

    Genetic and pathological studies link α-synuclein to the etiology of Parkinson's disease (PD), but the normal function of this presynaptic protein remains unknown. α-Synuclein, an acidic lipid binding protein, shares high sequence identity with β- and γ-synuclein. Previous studies have implicated synucleins in synaptic vesicle (SV) trafficking, although the precise site of synuclein action continues to be unclear. Here we show, using optical imaging, electron microscopy, and slice electrophysiology, that synucleins are required for the fast kinetics of SV endocytosis. Slowed endocytosis observed in synuclein null cultures can be rescued by individually expressing mouse α-, β-, or γ-synuclein, indicating they are functionally redundant. Through comparisons to dynamin knock-out synapses and biochemical experiments, we suggest that synucleins act at early steps of SV endocytosis. Our results categorize α-synuclein with other familial PD genes known to regulate SV endocytosis, implicating this pathway in PD. PMID:25009269

  8. A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis

    PubMed Central

    Li, Hongmei; Alavian, Kambiz N.; Lazrove, Emma; Mehta, Nabil; Jones, Adrienne; Zhang, Ping; Licznerski, Pawel; Graham, Morven; Uo, Takuma; Guo, Junhua; Rahner, Christoph; Duman, Ronald S.; Morrison, Richard S.; Jonas, Elizabeth A.

    2013-01-01

    Following exocytosis, the rate of recovery of neurotransmitter release is determined by vesicle retrieval from the plasma membrane and by recruitment of vesicles from reserve pools within the synapse, the latter of which is dependent on mitochondrial ATP. The Bcl-2 family protein Bcl-xL, in addition to its role in cell death, regulates neurotransmitter release and recovery in part by increasing ATP availability from mitochondria. We now find, however, that, Bcl-xL directly regulates endocytotic vesicle retrieval in hippocampal neurons through protein/protein interaction with components of the clathrin complex. Our evidence suggests that, during synaptic stimulation, Bcl-xL translocates to clathrin-coated pits in a calmodulin-dependent manner and forms a complex of proteins with the GTPase Drp1, Mff and clathrin. Depletion of Drp1 produces misformed endocytotic vesicles. Mutagenesis studies suggest that formation of the Bcl-xL-Drp1 complex is necessary for the enhanced rate of vesicle endocytosis produced by Bcl-xL, thus providing a mechanism for presynaptic plasticity. PMID:23792689

  9. Imaging Exocytosis of Single Synaptic Vesicles at a Fast CNS Presynaptic Terminal.

    PubMed

    Midorikawa, Mitsuharu; Sakaba, Takeshi

    2015-11-01

    Synaptic vesicles are tethered to the active zone where they are docked/primed so that they can fuse rapidly upon Ca(2+) influx. To directly study these steps at a CNS presynaptic terminal, we used total internal reflection fluorescence (TIRF) microscopy at the live isolated calyx of Held terminal and measured the movements of single synaptic vesicle just beneath the plasma membrane. Only a subset of vesicles within the TIRF field underwent exocytosis. Following exocytosis, new vesicles (newcomers) approached the membrane and refilled the release sites slowly with a time constant of several seconds. Uniform elevation of the intracellular Ca(2+) using flash photolysis elicited an exocytotic burst followed by the sustained component, representing release of the readily releasable vesicles and vesicle replenishment, respectively. Surprisingly, newcomers were not released within a second of high Ca(2+). Instead, already-tethered vesicles became release-ready and mediated the replenishment. Our results reveal an important feature of conventional synapses. PMID:26539890

  10. A Biochemical and Functional Protein Complex Involving Dopamine Synthesis and Transport into Synaptic Vesicles

    PubMed Central

    Cartier, Etienne A.; Parra, Leonardo A.; Baust, Tracy B.; Quiroz, Marisol; Salazar, Gloria; Faundez, Victor; Egaña, Loreto; Torres, Gonzalo E.

    2010-01-01

    Synaptic transmission depends on neurotransmitter pools stored within vesicles that undergo regulated exocytosis. In the brain, the vesicular monoamine transporter-2 (VMAT2) is responsible for the loading of dopamine (DA) and other monoamines into synaptic vesicles. Prior to storage within vesicles, DA synthesis occurs at the synaptic terminal in a two-step enzymatic process. First, the rate-limiting enzyme tyrosine hydroxylase (TH) converts tyrosine to di-OH-phenylalanine. Aromatic amino acid decarboxylase (AADC) then converts di-OH-phenylalanine into DA. Here, we provide evidence that VMAT2 physically and functionally interacts with the enzymes responsible for DA synthesis. In rat striata, TH and AADC co-immunoprecipitate with VMAT2, whereas in PC 12 cells, TH co-immunoprecipitates with the closely related VMAT1 and with overexpressed VMAT2. GST pull-down assays further identified three cytosolic domains of VMAT2 involved in the interaction with TH and AADC. Furthermore, in vitro binding assays demonstrated that TH directly interacts with VMAT2. Additionally, using fractionation and immunoisolation approaches, we demonstrate that TH and AADC associate with VMAT2-containing synaptic vesicles from rat brain. These vesicles exhibited specific TH activity. Finally, the coupling between synthesis and transport of DA into vesicles was impaired in the presence of fragments involved in the VMAT2/TH/AADC interaction. Taken together, our results indicate that DA synthesis can occur at the synaptic vesicle membrane, where it is physically and functionally coupled to VMAT2-mediated transport into vesicles. PMID:19903816

  11. A syntaxin-SNAP 25-VAMP complex is formed without docking of synaptic vesicles.

    PubMed

    Morel, N; Taubenblatt, P; Synguelakis, M; Shiff, G

    1998-01-01

    We show herein that syntaxin is already associated with SNAP 25 and VAMP during fast axonal transport, and in isolated synaptic vesicles, before docking of these secretory organelles at the active zones. PMID:9789843

  12. Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone

    PubMed Central

    Vaithianathan, Thirumalini; Henry, Diane; Akmentin, Wendy; Matthews, Gary

    2016-01-01

    The cytomatrix at the active zone (CAZ) is a macromolecular complex that facilitates the supply of release-ready synaptic vesicles to support neurotransmitter release at synapses. To reveal the dynamics of this supply process in living synapses, we used super-resolution imaging to track single vesicles at voltage-clamped presynaptic terminals of retinal bipolar neurons, whose CAZ contains a specialized structure—the synaptic ribbon—that supports both fast, transient and slow, sustained modes of transmission. We find that the synaptic ribbon serves a dual function as a conduit for diffusion of synaptic vesicles and a platform for vesicles to fuse distal to the plasma membrane itself, via compound fusion. The combination of these functions allows the ribbon-type CAZ to achieve the continuous transmitter release required by synapses of neurons that carry tonic, graded visual signals in the retina. DOI: http://dx.doi.org/10.7554/eLife.13245.001 PMID:26880547

  13. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    PubMed Central

    Zhang, Jifeng; Tan, Minghui; Yin, Yichen; Ren, Bingyu; Jiang, Nannan; Guo, Guoqing; Chen, Yuan

    2015-01-01

    Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV) endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons. PMID:26682072

  14. The Vesicle Protein SAM-4 Regulates the Processivity of Synaptic Vesicle Transport

    PubMed Central

    Zheng, Qun; Ahlawat, Shikha; Schaefer, Anneliese; Mahoney, Tim; Koushika, Sandhya P.; Nonet, Michael L.

    2014-01-01

    Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport. PMID:25329901

  15. Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion

    PubMed Central

    Zhou, Peng; Pang, Zhiping P; Yang, Xiaofei; Zhang, Yingsha; Rosenmund, Christian; Bacaj, Taulant; Südhof, Thomas C

    2013-01-01

    Among SNARE proteins mediating synaptic vesicle fusion, syntaxin-1 uniquely includes an N-terminal peptide (‘N-peptide') that binds to Munc18-1, and a large, conserved Habc-domain that also binds to Munc18-1. Previous in vitro studies suggested that the syntaxin-1 N-peptide is functionally important, whereas the syntaxin-1 Habc-domain is not, but limited information is available about the in vivo functions of these syntaxin-1 domains. Using rescue experiments in cultured syntaxin-deficient neurons, we now show that the N-peptide and the Habc-domain of syntaxin-1 perform distinct and independent roles in synaptic vesicle fusion. Specifically, we found that the N-peptide is essential for vesicle fusion as such, whereas the Habc-domain regulates this fusion, in part by forming the closed syntaxin-1 conformation. Moreover, we observed that deletion of the Habc-domain but not deletion of the N-peptide caused a loss of Munc18-1 which results in a decrease in the readily releasable pool of vesicles at a synapse, suggesting that Munc18 binding to the Habc-domain stabilizes Munc18-1. Thus, the N-terminal syntaxin-1 domains mediate different functions in synaptic vesicle fusion, probably via formation of distinct Munc18/SNARE-protein complexes. PMID:23188083

  16. Tissue-type plasminogen activator induces synaptic vesicle endocytosis in cerebral cortical neurons.

    PubMed

    Yepes, M; Wu, F; Torre, E; Cuellar-Giraldo, D; Jia, D; Cheng, L

    2016-04-01

    The release of the serine proteinase tissue-type plasminogen activator (tPA) from the presynaptic terminal of cerebral cortical neurons plays a central role in the development of synaptic plasticity, adaptation to metabolic stress and neuronal survival. Our earlier studies indicate that by inducing the recruitment of the cytoskeletal protein βII-spectrin and voltage-gated calcium channels to the active zone, tPA promotes Ca(2+)-dependent translocation of synaptic vesicles (SVs) to the synaptic release site where they release their load of neurotransmitters into the synaptic cleft. Here we used a combination of in vivo and in vitro experiments to investigate whether this effect leads to depletion of SVs in the presynaptic terminal. Our data indicate that tPA promotes SV endocytosis via a mechanism that does not require the conversion of plasminogen into plasmin. Instead, we show that tPA induces calcineurin-mediated dynamin I dephosphorylation, which is followed by dynamin I-induced recruitment of the actin-binding protein profilin II to the presynaptic membrane, and profilin II-induced F-actin formation. We report that this tPA-induced sequence of events leads to the association of newly formed SVs with F-actin clusters in the endocytic zone. In summary, the data presented here indicate that following the exocytotic release of neurotransmitters tPA activates the mechanism whereby SVs are retrieved from the presynaptic membrane and endocytosed to replenish the pool of vesicles available for a new cycle of exocytosis. Together, these results indicate that in murine cerebral cortical neurons tPA plays a central role coupling SVs exocytosis and endocytosis. PMID:26820595

  17. Regulation of Synaptic Vesicle Docking by Different Classes of Macromolecules in Active Zone Material

    PubMed Central

    Szule, Joseph A.; Harlow, Mark L.; Jung, Jae Hoon; De-Miguel, Francisco F.; Marshall, Robert M.; McMahan, Uel J.

    2012-01-01

    The docking of synaptic vesicles at active zones on the presynaptic plasma membrane of axon terminals is essential for their fusion with the membrane and exocytosis of their neurotransmitter to mediate synaptic impulse transmission. Dense networks of macromolecules, called active zone material, (AZM) are attached to the presynaptic membrane next to docked vesicles. Electron tomography has shown that some AZM macromolecules are connected to docked vesicles, leading to the suggestion that AZM is somehow involved in the docking process. We used electron tomography on the simply arranged active zones at frog neuromuscular junctions to characterize the connections of AZM to docked synaptic vesicles and to search for the establishment of such connections during vesicle docking. We show that each docked vesicle is connected to 10–15 AZM macromolecules, which fall into four classes based on several criteria including their position relative to the presynaptic membrane. In activated axon terminals fixed during replacement of docked vesicles by previously undocked vesicles, undocked vesicles near vacated docking sites on the presynaptic membrane have connections to the same classes of AZM macromolecules that are connected to docked vesicles in resting terminals. The number of classes and the total number of macromolecules to which the undocked vesicles are connected are inversely proportional to the vesicles’ distance from the presynaptic membrane. We conclude that vesicle movement toward and maintenance at docking sites on the presynaptic membrane are directed by an orderly succession of stable interactions between the vesicles and distinct classes of AZM macromolecules positioned at different distances from the membrane. Establishing the number, arrangement and sequence of association of AZM macromolecules involved in vesicle docking provides an anatomical basis for testing and extending concepts of docking mechanisms provided by biochemistry. PMID:22438915

  18. Inhibition of protein kinase C affects on mode of synaptic vesicle exocytosis due to cholesterol depletion

    SciTech Connect

    Petrov, Alexey M. Zakyrjanova, Guzalija F. Yakovleva, Anastasia A. Zefirov, Andrei L.

    2015-01-02

    Highlights: • We examine the involvement of PKC in MCD induced synaptic vesicle exocytosis. • PKC inhibitor does not decrease the effect MCD on MEPP frequency. • PKC inhibitor prevents MCD induced FM1-43 unloading. • PKC activation may switch MCD induced exocytosis from kiss-and-run to a full mode. • Inhibition of phospholipase C does not lead to similar change in exocytosis. - Abstract: Previous studies demonstrated that depletion of membrane cholesterol by 10 mM methyl-beta-cyclodextrin (MCD) results in increased spontaneous exocytosis at both peripheral and central synapses. Here, we investigated the role of protein kinase C in the enhancement of spontaneous exocytosis at frog motor nerve terminals after cholesterol depletion using electrophysiological and optical methods. Inhibition of the protein kinase C by myristoylated peptide and chelerythrine chloride prevented MCD-induced increases in FM1-43 unloading, whereas the frequency of spontaneous postsynaptic events remained enhanced. The increase in FM1-43 unloading still could be observed if sulforhodamine 101 (the water soluble FM1-43 quencher that can pass through the fusion pore) was added to the extracellular solution. This suggests a possibility that exocytosis of synaptic vesicles under these conditions could occur through the kiss-and-run mechanism with the formation of a transient fusion pore. Inhibition of phospholipase C did not lead to similar change in MCD-induced exocytosis.

  19. Increased Expression of Alpha-Synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering After Endocytosis

    PubMed Central

    Nemani, Venu M.; Lu, Wei; Berge, Victoria; Nakamura, Ken; Onoa, Bibiana; Lee, Michael K.; Chaudhry, Farrukh A.; Nicoll, Roger A.; Edwards, Robert H.

    2011-01-01

    Summary The protein α-synuclein accumulates in the brain of patients with sporadic Parkinson’s disease (PD), and increased gene dosage causes a severe, dominantly inherited form of PD, but we know little about the effects of synuclein that precede degeneration. α-Synuclein localizes to the nerve terminal, but the knockout has little if any effect on synaptic transmission. In contrast, we now find that the modest over-expression of α-synuclein, in the range predicted for gene multiplication and in the absence of overt toxicity, markedly inhibits neurotransmitter release. The mechanism, elucidated by direct imaging of the synaptic vesicle cycle, involves a specific reduction in size of the synaptic vesicle recycling pool. Ultrastructural analysis demonstrates reduced synaptic vesicle density at the active zone, and imaging further reveals a defect in the reclustering of synaptic vesicles after endocytosis. Increased levels of α-synuclein thus produce a specific, physiological defect in synaptic vesicle recycling that precedes detectable neuropathology. PMID:20152114

  20. Gastrointestinal stromal tumors regularly express synaptic vesicle proteins: evidence of a neuroendocrine phenotype.

    PubMed

    Bümming, Per; Nilsson, Ola; Ahlman, Håkan; Welbencer, Anna; Andersson, Mattias K; Sjölund, Katarina; Nilsson, Bengt

    2007-09-01

    Gastrointestinal stromal tumors (GISTs) are thought to originate from the interstitial cells of Cajal, which share many properties with neurons of the gastrointestinal tract. Recently, we demonstrated expression of the hormone ghrelin in GIST. The aim of the present study was therefore to evaluate a possible neuroendocrine phenotype of GIST. Specimens from 41 GISTs were examined for the expression of 12 different synaptic vesicle proteins. Expression of synaptic-like microvesicle proteins, e.g., Synaptic vesicle protein 2 (SV2), synaptobrevin, synapsin 1, and amphiphysin was demonstrated in a majority of GISTs by immunohistochemistry, western blotting, and quantitative reversetranscriptase PCR. One-third of the tumors also expressed the large dense core vesicle protein vesicular monoamine transporter 1. Presence of microvesicles and dense core vesicles in GIST was confirmed by electron microscopy. The expression of synaptic-like microvesicle proteins in GIST was not related to risk profile or to KIT/platelet derived growth factor alpha (PDGFRA) mutational status. Thus, GISTs regularly express a subset of synaptic-like microvesicle proteins necessary for the regulated secretion of neurotransmitters and hormones. Expression of synaptic-like micro-vesicle proteins, ghrelin and peptide hormone receptors in GIST indicate a neuroendocrine phenotype and suggest novel possibilities to treat therapy-resistant GIST. PMID:17914114

  1. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    PubMed Central

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian

    2015-01-01

    The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846

  2. Acute increase of α-synuclein inhibits synaptic vesicle recycling evoked during intense stimulation

    PubMed Central

    Busch, David J.; Oliphint, Paul A.; Walsh, Rylie B.; Banks, Susan M. L.; Woods, Wendy S.; George, Julia M.; Morgan, Jennifer R.

    2014-01-01

    Parkinson's disease is associated with multiplication of the α-synuclein gene and abnormal accumulation of the protein. In animal models, α-synuclein overexpression broadly impairs synaptic vesicle trafficking. However, the exact steps of the vesicle trafficking pathway affected by excess α-synuclein and the underlying molecular mechanisms remain unknown. Therefore we acutely increased synuclein levels at a vertebrate synapse and performed a detailed ultrastructural analysis of the effects on presynaptic membranes. At stimulated synapses (20 Hz), excess synuclein caused a loss of synaptic vesicles and an expansion of the plasma membrane, indicating an impairment of vesicle recycling. The N-terminal domain (NTD) of synuclein, which folds into an α-helix, was sufficient to reproduce these effects. In contrast, α-synuclein mutants with a disrupted N-terminal α-helix (T6K and A30P) had little effect under identical conditions. Further supporting this model, another α-synuclein mutant (A53T) with a properly folded NTD phenocopied the synaptic vesicle recycling defects observed with wild type. Interestingly, the vesicle recycling defects were not observed when the stimulation frequency was reduced (5 Hz). Thus excess α-synuclein impairs synaptic vesicle recycling evoked during intense stimulation via a mechanism that requires a properly folded N-terminal α-helix. PMID:25273557

  3. Synaptophysin I controls the targeting of VAMP2/synaptobrevin II to synaptic vesicles.

    PubMed

    Pennuto, Maria; Bonanomi, Dario; Benfenati, Fabio; Valtorta, Flavia

    2003-12-01

    Synaptic vesicle (SV) proteins are synthesized at the level of the cell body and transported down the axon in membrane precursors of SVs. To investigate the mechanisms underlying sorting of proteins to SVs, fluorescent chimeras of vesicle-associated membrane protein (VAMP) 2, its highly homologous isoform VAMP1 and synaptotagmin I (SytI) were expressed in hippocampal neurons in culture. Interestingly, the proteins displayed a diffuse component of distribution along the axon. In addition, VAMP2 was found to travel in vesicles that constitutively fuse with the plasma membrane. Coexpression of VAMP2 with synaptophysin I (SypI), a major resident of SVs, restored the correct sorting of VAMP2 to SVs. The effect of SypI on VAMP2 sorting was dose dependent, being reversed by increasing VAMP2 expression levels, and highly specific, because the sorting of the SV proteins VAMP1 and SytI was not affected by SypI. The cytoplasmic domain of VAMP2 was found to be necessary for both the formation of VAMP2-SypI hetero-dimers and for VAMP2 sorting to SVs. These data support a role for SypI in directing the correct sorting of VAMP2 in neurons and demonstrate that a direct interaction between the two proteins is required for SypI in order to exert its effect. PMID:14528015

  4. Improved signaling as a result of randomness in synaptic vesicle release

    PubMed Central

    Zhang, Calvin; Peskin, Charles S.

    2015-01-01

    The probabilistic nature of neurotransmitter release in synapses is believed to be one of the most significant sources of noise in the central nervous system. We show how p0, the probability of release per docked vesicle when an action potential arrives, affects the dynamics of the rate of vesicle release in response to changes in the rate of arrival of action potentials. Furthermore, we examine the theoretical capability of a synapse in the estimation of desired signals using information from the stochastic vesicle release events under the framework of optimal linear filter theory. We find that a small p0, such as 0.1, reduces the error in the reconstruction of the input, or in the reconstruction of the time derivative of the input, from the time series of vesicle release events. Our results imply that the probabilistic nature of synaptic vesicle release plays a direct functional role in synaptic transmission. PMID:26627245

  5. Binding contribution between synaptic vesicle membrane and plasma membrane proteins in neurons: an AFM study.

    PubMed

    Sritharan, K C; Quinn, A S; Taatjes, D J; Jena, B P

    1998-01-01

    The final step in the exocytotic process is the docking and fusion of membrane-bound secretory vesicles at the cell plasma membrane. This docking and fusion is brought about by several participating vesicle membrane, plasma membrane and soluble cytosolic proteins. A clear understanding of the interactions between these participating proteins giving rise to vesicle docking and fusion is essential. In this study, the binding force profiles between synaptic vesicle membrane and plasma membrane proteins have been examined for the first time using the atomic force microscope. Binding force contributions of a synaptic vesicle membrane protein VAMP1, and the plasma membrane proteins SNAP-25 and syntaxin, are also implicated from these studies. Our study suggests that these three proteins are the major, if not the only contributors to the interactive binding force that exist between the two membranes. PMID:10452835

  6. A synaptic vesicle antigen is restricted to the junctional region of the presynaptic plasma membrane.

    PubMed Central

    Buckley, K M; Schweitzer, E S; Miljanich, G P; Clift-O'Grady, L; Kushner, P D; Reichardt, L F; Kelly, R B

    1983-01-01

    The plasma membrane of electric organ nerve terminals has two domains that can be distinguished by monoclonal antibodies. A library of 111 mouse monoclonal antibodies raised to nerve terminals from Torpedo californica contains 4 antibodies that bind specifically to the outside of intact synaptosomes. The distribution of the binding sites of these monoclonal antibodies on the outside of intact nerve terminals was examined by immunofluorescence and immunoelectron microscopy. The binding sites of 3 (tor23, 25, and 132) are distributed uniformly over nerve trunks and fine terminal branches. The binding site of the fourth (tor70) is restricted to synaptic junctional regions. This antibody, but not the other 3, recognizes a major component of synaptic vesicles, a proteoglycan associated with the inner surface of the vesicle membrane. The difference in the pattern of binding of these monoclonal antibodies suggests that the region of the plasma membrane containing active zones is antigenically distinguishable from other nerve terminal plasma membrane. We suggest that the antigen recognized by tor70 is externalized by exocytosis of synaptic vesicles while other plasma antigens take a different route to the surface. The unexpected observation that the vesicle antigen remains on the surface after exocytosis and is prevented from diffusion from the synaptic junctional region would be consistent with an interaction between the vesicle proteoglycan and elements of the synaptic cleft. Images PMID:6359167

  7. Presynaptic Calcium Channel Localization and Calcium Dependent Synaptic Vesicle Exocytosis Regulated by the Fuseless Protein

    PubMed Central

    Long, A. Ashleigh; Kim, Eunju; Leung, Hung-Tat; Woodruff, Elvin; An, Lingling; Doerge, R. W.; Pak, William L.; Broadie, Kendal

    2009-01-01

    Summary A systematic forward genetic Drosophila screen for electroretinogram mutants lacking synaptic transients identified the fuseless (fusl) gene, which encodes a predicted 8-pass transmembrane protein in the presynaptic membrane. Null fusl mutants display >75% reduction in evoked synaptic transmission but, conversely, a ~3-fold increase in the frequency and amplitude of spontaneous synaptic vesicle fusion events. These neurotransmission defects are rescued by a wildtype fusl transgene targeted only to the presynaptic cell, demonstrating a strictly presynaptic requirement for Fusl function. Defects in FM dye turnover at the synapse show a severely impaired exo-endo synaptic vesicle cycling pool. Consistently, ultrastructural analyses reveal accumulated vesicles arrested in clustered and docked pools at presynaptic active zones. In the absence of Fusl, calcium-dependent neurotransmitter release is dramatically compromised and there is little enhancement of synaptic efficacy with elevated external Ca2+ concentrations. These defects are causally linked with severe loss of the Cacophony voltage-gated Ca2+ channels, which fail to localize normally at presynaptic active zone domains in the absence of Fusl. These data indicate that Fusl regulates assembly of the presynaptic active zone Ca2+ channel domains required for efficient coupling of the Ca2+ influx and synaptic vesicle exocytosis during neurotransmission. PMID:18385325

  8. Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis?

    PubMed

    Valtorta, Flavia; Pennuto, Maria; Bonanomi, Dario; Benfenati, Fabio

    2004-04-01

    Synaptophysin (Syp) was the first synaptic vesicle (SV) protein to be cloned. Since its discovery in 1985, it has been used by us and by many laboratories around the world as an invaluable marker to study the distribution of synapses in the brain and to uncover the basic features of the life cycle of SVs. Although single gene ablation of Syp does not lead to an overt phenotype, a large body of experimental data both in vitro and in vivo indicate that Syp (alone or in association with homologous proteins) is involved in multiple, important aspects of SV exo-endocytosis, including regulation of SNARE assembly into the fusion core complex, formation of the fusion pore initiating neurotransmitter release, activation of SV endocytosis and SV biogenesis. In this article, we summarise the main results of the studies on Syp carried out by our and other laboratories, and explain why we believe that Syp plays a major role in SV trafficking. PMID:15057942

  9. Deleterious effects of soluble amyloid-β oligomers on multiple steps of synaptic vesicle trafficking.

    PubMed

    Park, Joohyun; Jang, Mirye; Chang, Sunghoe

    2013-07-01

    Growing evidence supports a role for soluble amyloid-β oligomer intermediates in the synaptic dysfunction associated with Alzheimer's disease (AD), but the molecular mechanisms underlying this effect remain unclear. We found that acute treatment of cultured rat hippocampal neurons with nanomolar concentrations of Aβ oligomers reduced the recycling pool and increased the resting pool of synaptic vesicles. Endocytosis of synaptic vesicles and the regeneration of fusion-competent vesicles were also severely impaired. Furthermore, the release probability of the readily-releasable pool (RRP) was increased, and recovery of the RRP was delayed. All these effects were prevented by antibody against Aβ. Moreover reduction of the pool size was prevented by inhibiting calpain or CDK5, while the defects in endocytosis were averted by overexpressing phosphatidylinositol-4-phosphate-5-kinase type I-γ, indicating that these two downstream pathways are involved in Aβ oligomers-induced presynaptic dysfunction. PMID:23523634

  10. The role of non-canonical SNAREs in synaptic vesicle recycling

    PubMed Central

    Ramirez, Denise M.O.; Kavalali, Ege T.

    2012-01-01

    An increasing number of studies suggest that distinct pools of synaptic vesicles drive specific forms of neurotransmission. Interspersed with these functional studies are analyses of the synaptic vesicle proteome which have consistently detected the presence of so-called “non-canonical” SNAREs that typically function in fusion and trafficking of other subcellular structures within the neuron. The recent identification of certain non-canonical vesicular SNAREs driving spontaneous (e.g., VAMP7 and vti1a) or evoked asynchronous (e.g., VAMP4) release integrates and corroborates existing data from functional and proteomic studies and implies that at least some complement of non-canonical SNAREs resident on synaptic vesicles function in neurotransmission. Here, we discuss the specific roles in neurotransmission of proteins homologous to each member of the classical neuronal SNARE complex consisting of synaptobrevin2, syntaxin-1 and SNAP-25. PMID:22645707

  11. Ral-GTPase influences the regulation of the readily releasable pool of synaptic vesicles.

    PubMed

    Polzin, Atsuko; Shipitsin, Michail; Goi, Takanori; Feig, Larry A; Turner, Timothy J

    2002-03-01

    The Ral proteins are members of the Ras superfamily of GTPases. Because they reside in synaptic vesicles, we used transgenic mice expressing a dominant inhibitory form of Ral to investigate the role of Ral in neurosecretion. Using a synaptosomal secretion assay, we found that while K(+)-evoked secretion of glutamate was normal, protein kinase C-mediated enhancement of glutamate secretion was suppressed in the mutant mice. Since protein kinase C effects on secretion have been shown to be due to enhancement of the size of the readily releasable pool of synaptic vesicles docked at the plasma membrane, we directly measured the refilling of this readily releasable pool of synaptic vesicles after Ca(2+)-triggered exocytosis. Refilling of the readily releasable pool was suppressed in synaptosomes from mice expressing dominant inhibitory Ral. Moreover, we found that protein kinase C and calcium-induced phosphorylation of proteins thought to influence synaptic vesicle function, such as MARCKS, synapsin, and SNAP-25, were all reduced in synaptosomes from these transgenic mice. Concomitant with these studies, we searched for new functions of Ral by detecting proteins that specifically bind to it in cells. Consistent with the phenotype of the transgenic mice described above, we found that active but not inactive RalA binds to the Sec6/8 (exocyst) complex, whose yeast counterpart is essential for targeting exocytic vesicles to specific docking sites on the plasma membrane. These findings demonstrate a role for Ral-GTPase signaling in the modulation of the readily releasable pool of synaptic vesicles and suggest the possible involvement of Ral-Sec6/8 (exocyst) binding in modulation of synaptic strength. PMID:11865051

  12. Imaging single synaptic vesicles in Mammalian central synapses with quantum dots.

    PubMed

    Zhang, Qi

    2013-01-01

    This protocol describes a sensitive and rigorous method to monitor the movement and turnover of single synaptic vesicles in live presynaptic terminals of mammalian central nervous system. This technique makes use of Photoluminescent semiconductor nanocrystals, quantum dots (Qdots), by their nanometer size, superior photoproperties, and pH-sensitivity. In comparison with previous fluorescent probes like styryl dyes and pH-sensitive fluorescent proteins, Qdots offer strict loading ratio, multi-modality detection, single vesicle precision, and most importantly distinctive signals for different modes of vesicle fusion. Qdots are spectrally compatible with existing fluorescent probes for synaptic vesicles and thus allow multichannel -imaging. With easy modification, this technique can be applied to other types of synapses and cells. PMID:23494380

  13. Okadaic acid disrupts synaptic vesicle trafficking in a ribbon-type synapse

    PubMed Central

    Guatimosim, Cristina; Hull, Court; von Gersdorff, Henrique; Prado, Marco A. M.

    2013-01-01

    Protein phosphorylation plays an essential role in regulating synaptic transmission and plasticity. However, regulation of vesicle trafficking towards and away from the plasma membrane is poorly understood. Furthermore, the extent to which phosphorylation modulates ribbon-type synapses is unknown. Using the phosphatase inhibitor okadaic acid (OA), we investigated the influence of persistent phosphorylation on vesicle cycling in goldfish bipolar cells. We followed uptake of FM1-43 during vesicle recycling in control and OA-treated cells. FM1-43 fluorescence spread to the center of control synaptic terminals after depolarization elicited Ca2+ influx. However, OA (1–50 nM) impaired this spatial spread of FM1-43 in a dose-dependent manner. Capacitance measurements revealed that OA (50 nM) did not modify either the amount or kinetics of exocytosis and endocytosis evoked by depolarizing pulses. The extremely low concentrations of OA (1–5 nM) sufficient to observe the inhibition of vesicle mobility implicate phosphatase 2A (PP2A) as a major regulator of vesicle trafficking after endocytosis. These results contrast with those at the neuromuscular junction where OA enhances lateral movement of vesicles between distinct vesicle clusters. Thus, our results suggest that phosphatases regulate vesicle translocation at ribbon synapses in a different manner than conventional active zones. PMID:12358752

  14. Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle

    PubMed Central

    Südhof, Thomas C.

    2013-01-01

    During an action potential, Ca2+ entering a presynaptic terminal triggers synaptic vesicle exocytosis and neurotransmitter release in less than a millisecond. How does Ca2+ stimulate release so rapidly and precisely? Work over the last decades revealed that Ca2+-binding to synaptotagmin triggers release by stimulating synaptotagmin-binding to a core machinery composed of SNARE and SM proteins that mediates membrane fusion during exocytosis. Complexin adaptor proteins assist synaptotagmin by activating and clamping this core fusion machinery. Synaptic vesicles containing synaptotagmin are positioned at the active zone, the site of vesicle fusion, by a protein complex containing RIM proteins. RIM proteins simultaneously activate docking and priming of synaptic vesicles and recruit Ca2+-channels to active zones, thereby connecting in a single complex primed synaptic vesicles to Ca2+-channels. This architecture allows direct flow of Ca2+-ions from Ca2+-channels to synaptotagmin, which then triggers fusion, thus mediating tight millisecond coupling of an action potential to neurotransmitter release. PMID:24183019

  15. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles.

    PubMed

    Aubrey, Karin R

    2016-09-01

    In mammals, fast inhibitory neurotransmission is carried out by two amino acid transmitters, γ-aminobutyric acid (GABA) and glycine. The higher brain uses only GABA, but in the spinal cord and brain stem both GABA and glycine act as inhibitory signals. In some cases GABA and glycine are co-released from the same neuron where they are co-packaged into synaptic vesicles by a shared vesicular inhibitory amino acid transporter, VIAAT (also called vGAT). The vesicular content of all other classical neurotransmitters (eg. glutamate, monoamines, acetylcholine) is determined by the presence of a specialized vesicular transporter. Because VIAAT is non-specific, the phenotype of inhibitory synaptic vesicles is instead predicted to be dependent on the relative concentration of GABA and glycine in the cytosol of the presynaptic terminal. This predicts that changes in GABA or glycine supply should be reflected in vesicle transmitter content but as yet, the mechanisms that control GABA versus glycine uptake into synaptic vesicles and their potential for modulation are not clearly understood. This review summarizes the most relevant experimental data that examines the link between GABA and glycine accumulation in the presynaptic cytosol and the inhibitory vesicle phenotype. The accumulated evidence challenges the hypothesis that vesicular phenotype is determined simply by the competition of inhibitory transmitter for VIAAT and instead suggest that the GABA/glycine balance in vesicles is dynamically regulated. PMID:27296116

  16. A role for vesicular glutamate transporter 1 in synaptic vesicle clustering and mobility.

    PubMed

    Siksou, Léa; Silm, Kätlin; Biesemann, Christoph; Nehring, Ralf B; Wojcik, Sonja M; Triller, Antoine; El Mestikawy, Salah; Marty, Serge; Herzog, Etienne

    2013-05-01

    Synaptic vesicles (SVs) from excitatory synapses carry vesicular glutamate transporters (VGLUTs) that fill the vesicles with neurotransmitter. Although the essential function of VGLUTs as glutamate transporters has been well established, the evidence for additional cell-biological functions is more controversial. Both VGLUT1 and VGLUT2 disruptions in mice result in a reduced number of SVs away from release sites, flattening of SVs, and the appearance of tubular structures. Therefore, we analysed the morphology, biochemical composition and trafficking of SVs at synapses of VGLUT1(-/-) mice in order to test for a function of VGLUTs in the formation or clustering of SVs. Analyses with high-pressure freezing immobilisation and electron tomography pointed to a role of VGLUT1 transport function in the tonicity of excitatory SVs, explaining the aldehyde-induced flattening of SVs observed in VGLUT1(-/-) synapses. We confirmed the steep reduction in the number of SVs previously observed in VGLUT1(-/-) presynaptic terminals, but did not observe accumulation of endocytotic intermediates. Furthermore, SV proteins of adult VGLUT1(-/-) mouse brain tissue were expressed at normal levels in all subcellular fractions, suggesting that they were not displaced to another organelle. We thus assessed the mobility of the recently documented superpool of SVs. Synaptobrevin2-enhanced green fluorescent protein time lapse experiments revealed an oversized superpool of SVs in VGLUT1(-/-) neurons. Our results support the idea that, beyond glutamate loading, VGLUT1 enhances the tonicity of excitatory SVs and stabilises SVs at presynaptic terminals. PMID:23581566

  17. 38,000-DALTON MEMBRANE PROTEIN (P38) PRESENT IN SYNAPTIC VESICLES

    EPA Science Inventory

    A protein with an apparent molecular mass of 38,000 daltons designated p38 was found in synaptic vesicles from rat brain. The subcellular distribution of p38 and some of its properties were determined with the aid of polyclonal and monoclonal antibodies. The subcellular distribut...

  18. A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons.

    PubMed

    Hayashi, Yukari; Nishimune, Hiroshi; Hozumi, Katsuto; Saga, Yumiko; Harada, Akihiro; Yuzaki, Michisuke; Iwatsubo, Takeshi; Kopan, Raphael; Tomita, Taisuke

    2016-01-01

    Notch signaling plays crucial roles for cellular differentiation during development through γ-secretase-dependent intramembrane proteolysis followed by transcription of target genes. Although recent studies implicate that Notch regulates synaptic plasticity or cognitive performance, the molecular mechanism how Notch works in mature neurons remains uncertain. Here we demonstrate that a novel Notch signaling is involved in expression of synaptic proteins in postmitotic neurons. Levels of several synaptic vesicle proteins including synaptophysin 1 and VGLUT1 were increased when neurons were cocultured with Notch ligands-expressing NIH3T3 cells. Neuron-specific deletion of Notch genes decreased these proteins, suggesting that Notch signaling maintains the expression of synaptic vesicle proteins in a cell-autonomous manner. Unexpectedly, cGMP-dependent protein kinase (PKG) inhibitor, but not γ-secretase inhibitor, abolished the elevation of synaptic vesicle proteins, suggesting that generation of Notch intracellular domain is dispensable for this function. These data uncover a ligand-dependent, but γ-secretase-independent, non-canonical Notch signaling involved in presynaptic protein expression in postmitotic neurons. PMID:27040987

  19. A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons

    PubMed Central

    Hayashi, Yukari; Nishimune, Hiroshi; Hozumi, Katsuto; Saga, Yumiko; Harada, Akihiro; Yuzaki, Michisuke; Iwatsubo, Takeshi; Kopan, Raphael; Tomita, Taisuke

    2016-01-01

    Notch signaling plays crucial roles for cellular differentiation during development through γ-secretase-dependent intramembrane proteolysis followed by transcription of target genes. Although recent studies implicate that Notch regulates synaptic plasticity or cognitive performance, the molecular mechanism how Notch works in mature neurons remains uncertain. Here we demonstrate that a novel Notch signaling is involved in expression of synaptic proteins in postmitotic neurons. Levels of several synaptic vesicle proteins including synaptophysin 1 and VGLUT1 were increased when neurons were cocultured with Notch ligands-expressing NIH3T3 cells. Neuron-specific deletion of Notch genes decreased these proteins, suggesting that Notch signaling maintains the expression of synaptic vesicle proteins in a cell-autonomous manner. Unexpectedly, cGMP-dependent protein kinase (PKG) inhibitor, but not γ-secretase inhibitor, abolished the elevation of synaptic vesicle proteins, suggesting that generation of Notch intracellular domain is dispensable for this function. These data uncover a ligand-dependent, but γ-secretase-independent, non-canonical Notch signaling involved in presynaptic protein expression in postmitotic neurons. PMID:27040987

  20. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V

    2016-02-01

    The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with

  1. The nonsense-mediated decay pathway maintains synapse architecture and synaptic vesicle cycle efficacy

    PubMed Central

    Long, A. Ashleigh; Mahapatra, Cecon T.; Woodruff, Elvin A.; Rohrbough, Jeff; Leung, Hung-Tat; Shino, Shikoh; An, Lingling; Doerge, Rebecca W.; Metzstein, Mark M.; Pak, William L.; Broadie, Kendal

    2010-01-01

    A systematic Drosophila forward genetic screen for photoreceptor synaptic transmission mutants identified no-on-and-no-off transient C (nonC) based on loss of retinal synaptic responses to light stimulation. The cloned gene encodes phosphatidylinositol-3-kinase-like kinase (PIKK) Smg1, a regulatory kinase of the nonsense-mediated decay (NMD) pathway. The Smg proteins act in an mRNA quality control surveillance mechanism to selectively degrade transcripts containing premature stop codons, thereby preventing the translation of truncated proteins with dominant-negative or deleterious gain-of-function activities. At the neuromuscular junction (NMJ) synapse, an extended allelic series of Smg1 mutants show impaired structural architecture, with decreased terminal arbor size, branching and synaptic bouton number. Functionally, loss of Smg1 results in a ~50% reduction in basal neurotransmission strength, as well as progressive transmission fatigue and greatly impaired synaptic vesicle recycling during high-frequency stimulation. Mutation of other NMD pathways genes (Upf2 and Smg6) similarly impairs neurotransmission and synaptic vesicle cycling. These findings suggest that the NMD pathway acts to regulate proper mRNA translation to safeguard synapse morphology and maintain the efficacy of synaptic function. PMID:20826458

  2. Haloarchaea and the Formation of Gas Vesicles

    PubMed Central

    Pfeifer, Felicitas

    2015-01-01

    Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes. PMID:25648404

  3. Haloarchaea and the formation of gas vesicles.

    PubMed

    Pfeifer, Felicitas

    2015-01-01

    Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes. PMID:25648404

  4. Epileptic encephalopathy-causing mutations in DNM1 impair synaptic vesicle endocytosis

    PubMed Central

    Dhindsa, Ryan S.; Bradrick, Shelton S.; Yao, Xiaodi; Heinzen, Erin L.; Petrovski, Slave; Krueger, Brian J.; Johnson, Michael R.; Frankel, Wayne N.; Petrou, Steven; Boumil, Rebecca M.

    2015-01-01

    Objective: To elucidate the functional consequences of epileptic encephalopathy–causing de novo mutations in DNM1 (A177P, K206N, G359A), which encodes a large mechanochemical GTPase essential for neuronal synaptic vesicle endocytosis. Methods: HeLa and COS-7 cells transfected with wild-type and mutant DNM1 constructs were used for transferrin assays, high-content imaging, colocalization studies, Western blotting, and electron microscopy (EM). EM was also conducted on the brain sections of mice harboring a middle-domain Dnm1 mutation (Dnm1Ftfl). Results: We demonstrate that the expression of each mutant protein decreased endocytosis activity in a dominant-negative manner. One of the G-domain mutations, K206N, decreased protein levels. The G359A mutation, which occurs in the middle domain, disrupted higher-order DNM1 oligomerization. EM of mutant DNM1-transfected HeLa cells and of the Dnm1Ftfl mouse brain revealed vesicle defects, indicating that the mutations likely interfere with DNM1's vesicle scission activity. Conclusion: Together, these data suggest that the dysfunction of vesicle scission during synaptic vesicle endocytosis can lead to serious early-onset epilepsies. PMID:27066543

  5. Specific Stimulated Uptake of Acetylcholine by Torpedo Electric Organ Synaptic Vesicles

    NASA Astrophysics Data System (ADS)

    Parsons, Stanley M.; Koenigsberger, Robert

    1980-10-01

    The specificity of acetylcholine uptake by synaptic vesicles isolated from the electric organ of Torpedo californica was studied. In the absence of cofactors, [3H]acetylcholine was taken up identically to [14C]choline in the same solution (passive uptake), and the equilibrium concentration achieved inside the vesicles was equal to the concentration outside. In the presence of MgATP, [3H]acetylcholine and [14C]choline in the same solution were taken up identically, except only about half as much of each was taken up (suppressed uptake). [3H]Acetylcholine uptake was stimulated by MgATP and HCO3 about 4-fold relative to suppressed uptake, for a net concentrative uptake of about 2:1 (stimulated uptake). Uptake of [14C]choline in the same solution remained at the suppressed level. [3H]Acetylcholine taken up under stimulated conditions migrated with vesicles containing [14C]mannitol on analytical glycerol density gradients during centrifugation. Vesicles were treated with nine protein modification reagents under mild conditions. Two reagents had no effect on, dithiothreitol potentiated, and six reagents strongly inhibited subsequent stimulated uptake of [3H]acetylcholine. The results indicate that uptake of acetylcholine is conditionally specific for the transported substrate, is carried out by the synaptic vesicles rather than a contaminant of the preparation, and requires a functional protein system containing a critical sulfhydryl group.

  6. Botulinum neurotoxin type A inhibits synaptic vesicle 2 expression in breast cancer cell lines

    PubMed Central

    Bandala, C; Cortés-Algara, AL; Mejía-Barradas, CM; Ilizaliturri-Flores, I; Dominguez-Rubio, R; Bazán-Méndez, CI; Floriano-Sánchez, E; Luna-Arias, JP; Anaya-Ruiz, M; Lara-Padilla, E

    2015-01-01

    Aim: It is known that botulinum neurotoxin type A (BoNTA) improves some kinds of cancer (e.g. prostate) and that synaptic vesicle glycoprotein 2 (SV2) is the molecular target of this neurotoxin. Besides having potential therapeutic value, this glycoprotein has recently been proposed as a molecular marker for several types of cancer. Although the mechanisms of cancer development and the improvement found with botulinum treatment are not well understood, the formation of the botulinum-SV2 complex may influence the presence and distribution of SV2 and the function of vesicles. To date, there are no reports on the possible effect of botulinum on breast cancer of unknown causes, which have a great impact on women’s health. Thus we determined the presence of SV2 in three breast cancer cell lines and the alterations found with botulinum application. Materials and methods: With and without adding 10 units of botulinum, SV2 protein expression was determined by optical densitometry in T47D, MDA-MB-231 and MDA-MB-453 cell lines and the distribution of SV2 was observed with immunochemistry (hematoxylin staining). Results: The SV2 protein was abundant in the cancer cells herein tested, and maximally so in T47D. In all three cancer cell lines botulinum diminished SV2 expression, which was found mostly in the cell periphery. Conclusion: SV2 could be a molecular marker in breast cancer. Its expression and distribution is regulated by botulinum, suggesting an interesting control mechanism for SV2 expression and a possible alternative therapy. Further studies are needed in this sense. PMID:26339411

  7. Measuring Ca2+-Induced Structural Changes in Lipid Monolayers: Implications for Synaptic Vesicle Exocytosis

    PubMed Central

    Ghosh, Sajal Kumar; Castorph, Simon; Konovalov, Oleg; Salditt, Tim; Jahn, Reinhard; Holt, Matthew

    2012-01-01

    Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons. Although tremendous progress has been made in understanding the protein machinery that drives fusion of SVs with the presynaptic membrane, little progress has been made in understanding changes in the membrane structure that accompany this process. We used lipid monolayers of defined composition to mimic biological membranes, which were probed by x-ray reflectivity and grazing incidence x-ray diffraction. These techniques allowed us to successfully monitor structural changes in the membranes at molecular level, both in response to injection of SVs in the subphase below the monolayer, as well as to physiological cues involved in neurotransmitter release, such as increases in the concentration of the membrane lipid PIP2, or addition of physiological levels of Ca2+. Such structural changes may well modulate vesicle fusion in vivo. PMID:22455922

  8. Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons.

    PubMed

    Li, Lin; Wu, Xiaomei; Yue, Hai-Yuan; Zhu, Yong-Chuan; Xu, Jianhua

    2016-07-01

    At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as

  9. The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles.

    PubMed

    Matkovic, Tanja; Siebert, Matthias; Knoche, Elena; Depner, Harald; Mertel, Sara; Owald, David; Schmidt, Manuela; Thomas, Ulrich; Sickmann, Albert; Kamin, Dirk; Hell, Stefan W; Bürger, Jörg; Hollmann, Christina; Mielke, Thorsten; Wichmann, Carolin; Sigrist, Stephan J

    2013-08-19

    Synaptic vesicles (SVs) fuse at a specialized membrane domain called the active zone (AZ), covered by a conserved cytomatrix. How exactly cytomatrix components intersect with SV release remains insufficiently understood. We showed previously that loss of the Drosophila melanogaster ELKS family protein Bruchpilot (BRP) eliminates the cytomatrix (T bar) and declusters Ca(2+) channels. In this paper, we explored additional functions of the cytomatrix, starting with the biochemical identification of two BRP isoforms. Both isoforms alternated in a circular array and were important for proper T-bar formation. Basal transmission was decreased in isoform-specific mutants, which we attributed to a reduction in the size of the readily releasable pool (RRP) of SVs. We also found a corresponding reduction in the number of SVs docked close to the remaining cytomatrix. We propose that the macromolecular architecture created by the alternating pattern of the BRP isoforms determines the number of Ca(2+) channel-coupled SV release slots available per AZ and thereby sets the size of the RRP. PMID:23960145

  10. The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles

    PubMed Central

    Matkovic, Tanja; Siebert, Matthias; Knoche, Elena; Depner, Harald; Mertel, Sara; Owald, David; Schmidt, Manuela; Thomas, Ulrich; Sickmann, Albert; Kamin, Dirk; Hell, Stefan W.; Bürger, Jörg; Hollmann, Christina; Mielke, Thorsten

    2013-01-01

    Synaptic vesicles (SVs) fuse at a specialized membrane domain called the active zone (AZ), covered by a conserved cytomatrix. How exactly cytomatrix components intersect with SV release remains insufficiently understood. We showed previously that loss of the Drosophila melanogaster ELKS family protein Bruchpilot (BRP) eliminates the cytomatrix (T bar) and declusters Ca2+ channels. In this paper, we explored additional functions of the cytomatrix, starting with the biochemical identification of two BRP isoforms. Both isoforms alternated in a circular array and were important for proper T-bar formation. Basal transmission was decreased in isoform-specific mutants, which we attributed to a reduction in the size of the readily releasable pool (RRP) of SVs. We also found a corresponding reduction in the number of SVs docked close to the remaining cytomatrix. We propose that the macromolecular architecture created by the alternating pattern of the BRP isoforms determines the number of Ca2+ channel-coupled SV release slots available per AZ and thereby sets the size of the RRP. PMID:23960145

  11. Inhibition of protein kinase C affects on mode of synaptic vesicle exocytosis due to cholesterol depletion.

    PubMed

    Petrov, Alexey M; Zakyrjanova, Guzalija F; Yakovleva, Anastasia A; Zefirov, Andrei L

    2015-01-01

    Previous studies demonstrated that depletion of membrane cholesterol by 10mM methyl-beta-cyclodextrin (MCD) results in increased spontaneous exocytosis at both peripheral and central synapses. Here, we investigated the role of protein kinase C in the enhancement of spontaneous exocytosis at frog motor nerve terminals after cholesterol depletion using electrophysiological and optical methods. Inhibition of the protein kinase C by myristoylated peptide and chelerythrine chloride prevented MCD-induced increases in FM1-43 unloading, whereas the frequency of spontaneous postsynaptic events remained enhanced. The increase in FM1-43 unloading still could be observed if sulforhodamine 101 (the water soluble FM1-43 quencher that can pass through the fusion pore) was added to the extracellular solution. This suggests a possibility that exocytosis of synaptic vesicles under these conditions could occur through the kiss-and-run mechanism with the formation of a transient fusion pore. Inhibition of phospholipase C did not lead to similar change in MCD-induced exocytosis. PMID:25446113

  12. A Stem Cell-Derived Platform for Studying Single Synaptic Vesicles in Dopaminergic Synapses

    PubMed Central

    Gu, Haigang; Lazarenko, Roman M.; Koktysh, Dmitry; Iacovitti, Lorraine

    2015-01-01

    The exocytotic release of dopamine is one of the most characteristic but also one of the least appreciated processes in dopaminergic neurotransmission. Fluorescence imaging has yielded rich information about the properties of synaptic vesicles and the release of neurotransmitters in excitatory and inhibitory neurons. In contrast, imaging-based studies for in-depth understanding of synaptic vesicle behavior in dopamine neurons are lagging largely because of a lack of suitable preparations. Midbrain culture has been one of the most valuable preparations for the subcellular investigation of dopaminergic transmission; however, the paucity and fragility of cultured dopaminergic neurons limits their use for live cell imaging. Recent developments in stem cell technology have led to the successful production of dopamine neurons from embryonic or induced pluripotent stem cells. Although the dopaminergic identity of these stem cell-derived neurons has been characterized in different ways, vesicle-mediated dopamine release from their axonal terminals has been barely assessed. We report a more efficient procedure to reliably generate dopamine neurons from embryonic stem cells, and it yields more dopamine neurons with more dopaminergic axon projections than midbrain culture does. Using a collection of functional measurements, we show that stem cell-derived dopamine neurons are indistinguishable from those in midbrain culture. Taking advantage of this new preparation, we simultaneously tracked the turnover of hundreds of synaptic vesicles individually using pH-sensitive quantum dots. By doing so, we revealed distinct fusion kinetics of the dopamine-secreting vesicles, which is consistent within both preparations. Significance For the use of stem cell-derived neurons in clinical applications, improved differentiation efficiency and more careful characterization of resultant cells are needed. A procedure has been refined for differentiation of mouse embryonic stem cells into

  13. Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling.

    PubMed

    Baker, Kate; Gordon, Sarah L; Grozeva, Detelina; van Kogelenberg, Margriet; Roberts, Nicola Y; Pike, Michael; Blair, Edward; Hurles, Matthew E; Chong, W Kling; Baldeweg, Torsten; Kurian, Manju A; Boyd, Stewart G; Cousin, Michael A; Raymond, F Lucy

    2015-04-01

    Synaptotagmin-1 (SYT1) is a calcium-binding synaptic vesicle protein that is required for both exocytosis and endocytosis. Here, we describe a human condition associated with a rare variant in SYT1. The individual harboring this variant presented with an early onset dyskinetic movement disorder, severe motor delay, and profound cognitive impairment. Structural MRI was normal, but EEG showed extensive neurophysiological disturbances that included the unusual features of low-frequency oscillatory bursts and enhanced paired-pulse depression of visual evoked potentials. Trio analysis of whole-exome sequence identified a de novo SYT1 missense variant (I368T). Expression of rat SYT1 containing the equivalent human variant in WT mouse primary hippocampal cultures revealed that the mutant form of SYT1 correctly localizes to nerve terminals and is expressed at levels that are approximately equal to levels of endogenous WT protein. The presence of the mutant SYT1 slowed synaptic vesicle fusion kinetics, a finding that agrees with the previously demonstrated role for I368 in calcium-dependent membrane penetration. Expression of the I368T variant also altered the kinetics of synaptic vesicle endocytosis. Together, the clinical features, electrophysiological phenotype, and in vitro neuronal phenotype associated with this dominant negative SYT1 mutation highlight presynaptic mechanisms that mediate human motor control and cognitive development. PMID:25705886

  14. Syntaxin Opening by the MUN Domain Underlies the Function of Munc13 in Synaptic Vesicle Priming

    PubMed Central

    Yang, Xiaoyu; Wang, Shen; Sheng, Yi; Zhang, Mingshu; Zou, Wenjuan; Wu, Lijie; Kang, Lijun; Rizo, Josep; Zhang, Rongguang; Xu, Tao; Ma, Cong

    2016-01-01

    UNC-13-Munc13s play a central function in synaptic vesicle priming through their MUN domains. However, it is unclear whether this function arises from the ability of the MUN domain to mediate the transition from the Munc18-1–closed syntaxin-1 complex to the SNARE complex in vitro. The crystal structure of rat Munc13-1 MUN domain now reveals an elongated, arch-shaped architecture formed by α-helical bundles, with a highly conserved hydrophobic pocket in the middle. Mutation of two residues (NF) in this pocket abolishes the stimulation caused by the Munc13-1 MUN domain on SNARE complex assembly and on SNARE-dependent proteoliposome fusion in vitro. Moreover, the same mutation in UNC-13 abrogates synaptic vesicle priming in C. elegans neuromuscular junctions. These results strongly support the notion that orchestration of syntaxin-1 opening and SNARE complex assembly underlies the central role of UNC-13-Munc13s in synaptic vesicle priming. PMID:26030875

  15. Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling

    PubMed Central

    Baker, Kate; Gordon, Sarah L.; Grozeva, Detelina; van Kogelenberg, Margriet; Roberts, Nicola Y.; Pike, Michael; Blair, Edward; Hurles, Matthew E.; Chong, W. Kling; Baldeweg, Torsten; Kurian, Manju A.; Boyd, Stewart G.; Cousin, Michael A.; Raymond, F. Lucy

    2015-01-01

    Synaptotagmin-1 (SYT1) is a calcium-binding synaptic vesicle protein that is required for both exocytosis and endocytosis. Here, we describe a human condition associated with a rare variant in SYT1. The individual harboring this variant presented with an early onset dyskinetic movement disorder, severe motor delay, and profound cognitive impairment. Structural MRI was normal, but EEG showed extensive neurophysiological disturbances that included the unusual features of low-frequency oscillatory bursts and enhanced paired-pulse depression of visual evoked potentials. Trio analysis of whole-exome sequence identified a de novo SYT1 missense variant (I368T). Expression of rat SYT1 containing the equivalent human variant in WT mouse primary hippocampal cultures revealed that the mutant form of SYT1 correctly localizes to nerve terminals and is expressed at levels that are approximately equal to levels of endogenous WT protein. The presence of the mutant SYT1 slowed synaptic vesicle fusion kinetics, a finding that agrees with the previously demonstrated role for I368 in calcium-dependent membrane penetration. Expression of the I368T variant also altered the kinetics of synaptic vesicle endocytosis. Together, the clinical features, electrophysiological phenotype, and in vitro neuronal phenotype associated with this dominant negative SYT1 mutation highlight presynaptic mechanisms that mediate human motor control and cognitive development. PMID:25705886

  16. Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals

    PubMed Central

    Fassio, Anna; Fadda, Manuela; Benfenati, Fabio

    2016-01-01

    The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission. PMID:27242505

  17. Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals.

    PubMed

    Fassio, Anna; Fadda, Manuela; Benfenati, Fabio

    2016-01-01

    The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission. PMID:27242505

  18. Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering

    PubMed Central

    Fernández-Busnadiego, Rubén; Asano, Shoh; Oprisoreanu, Ana-Maria; Sakata, Eri; Doengi, Michael; Kochovski, Zdravko; Zürner, Magdalena; Stein, Valentin; Schoch, Susanne; Baumeister, Wolfgang

    2013-01-01

    Synaptic vesicles are embedded in a complex filamentous network at the presynaptic terminal. Before fusion, vesicles are linked to the active zone (AZ) by short filaments (tethers). The identity of the molecules that form and regulate tethers remains unknown, but Rab3-interacting molecule (RIM) is a prominent candidate, given its central role in AZ organization. In this paper, we analyzed presynaptic architecture of RIM1α knockout (KO) mice by cryo–electron tomography. In stark contrast to previous work on dehydrated, chemically fixed samples, our data show significant alterations in vesicle distribution and AZ tethering that could provide a structural basis for the functional deficits of RIM1α KO synapses. Proteasome inhibition reversed these structural defects, suggesting a functional recovery confirmed by electrophysiological recordings. Altogether, our results not only point to the ubiquitin–proteasome system as an important regulator of presynaptic architecture and function but also show that the tethering machinery plays a critical role in exocytosis, converging into a structural model of synaptic vesicle priming by RIM1α. PMID:23712261

  19. Reduced expression of the vesicular acetylcholine transporter and neurotransmitter content affects synaptic vesicle distribution and shape in mouse neuromuscular junction.

    PubMed

    Rodrigues, Hermann A; Fonseca, Matheus de C; Camargo, Wallace L; Lima, Patrícia M A; Martinelli, Patrícia M; Naves, Lígia A; Prado, Vânia F; Prado, Marco A M; Guatimosim, Cristina

    2013-01-01

    In vertebrates, nerve muscle communication is mediated by the release of the neurotransmitter acetylcholine packed inside synaptic vesicles by a specific vesicular acetylcholine transporter (VAChT). Here we used a mouse model (VAChT KD(HOM)) with 70% reduction in the expression of VAChT to investigate the morphological and functional consequences of a decreased acetylcholine uptake and release in neuromuscular synapses. Upon hypertonic stimulation, VAChT KD(HOM) mice presented a reduction in the amplitude and frequency of miniature endplate potentials, FM 1-43 staining intensity, total number of synaptic vesicles and altered distribution of vesicles within the synaptic terminal. In contrast, under electrical stimulation or no stimulation, VAChT KD(HOM) neuromuscular junctions did not differ from WT on total number of vesicles but showed altered distribution. Additionally, motor nerve terminals in VAChT KD(HOM) exhibited small and flattened synaptic vesicles similar to that observed in WT mice treated with vesamicol that blocks acetylcholine uptake. Based on these results, we propose that decreased VAChT levels affect synaptic vesicle biogenesis and distribution whereas a lower ACh content affects vesicles shape. PMID:24260111

  20. Complexin has opposite effects on two modes of synaptic vesicle fusion

    PubMed Central

    Martin, Jesse A.; Hu, Zhitao; Fenz, Katherine M.; Fernandez, Joel; Dittman, Jeremy S.

    2010-01-01

    Summary Background Synaptic transmission can occur in a binary or graded fashion depending on whether transmitter release is triggered by action potentials or by gradual changes in membrane potential. Molecular differences of these two types of fusion events and their differential regulation in a physiological context have yet to be addressed. Complexin is a conserved SNARE-binding protein that has been proposed to regulate both spontaneous and stimulus-evoked synaptic vesicle (SV) fusion. Results Here, we examine complexin function at a graded synapse in C. elegans. Null complexin (cpx-1) mutants are viable although nervous system function is significantly impaired. Loss of CPX-1 results in a 3-fold increase in the rate of tonic synaptic transmission at the neuromuscular junction while stimulus-evoked SV fusion is decreased 10-fold. A truncated CPX-1 missing its C-terminal domain can rescue stimulus-evoked synaptic vesicle exocytosis but fails to suppress tonic activity, demonstrating that these two modes of exocytosis can be distinguished at the molecular level. A CPX-1 variant with impaired SNARE-binding also rescues evoked but not tonic neurotransmitter release. Finally, tonic but not evoked release can be rescued in a syntaxin point mutant by removing CPX-1. Rescue of either form of exocytosis partially restores locomotory behavior indicating that both types of synaptic transmission are relevant. Conclusion These observations suggest a dual role for CPX-1: suppressing SV exocytosis driven by low levels of endogenous neural activity while promoting synchronous fusion of SVs driven by a depolarizing stimulus. Thus, patterns of synaptic activity regulate complexin's inhibitory and permissive roles at a graded synapse. PMID:21215634

  1. High-Throughput All-Optical Analysis of Synaptic Transmission and Synaptic Vesicle Recycling in Caenorhabditis elegans

    PubMed Central

    Wabnig, Sebastian; Liewald, Jana Fiona; Yu, Szi-chieh; Gottschalk, Alexander

    2015-01-01

    Synaptic vesicles (SVs) undergo a cycle of biogenesis and membrane fusion to release transmitter, followed by recycling. How exocytosis and endocytosis are coupled is intensively investigated. We describe an all-optical method for identification of neurotransmission genes that can directly distinguish SV recycling factors in C. elegans, by motoneuron photostimulation and muscular RCaMP Ca2+ imaging. We verified our approach on mutants affecting synaptic transmission. Mutation of genes affecting SV recycling (unc-26 synaptojanin, unc-41 stonin, unc-57 endophilin, itsn-1 intersectin, snt-1 synaptotagmin) showed a distinct ‘signature’ of muscle Ca2+ dynamics, induced by cholinergic motoneuron photostimulation, i.e. faster rise, and earlier decrease of the signal, reflecting increased synaptic fatigue during ongoing photostimulation. To facilitate high throughput, we measured (3–5 times) ~1000 nematodes for each gene. We explored if this method enables RNAi screening for SV recycling genes. Previous screens for synaptic function genes, based on behavioral or pharmacological assays, allowed no distinction of the stage of the SV cycle in which a protein might act. We generated a strain enabling RNAi specifically only in cholinergic neurons, thus resulting in healthier animals and avoiding lethal phenotypes resulting from knockdown elsewhere. RNAi of control genes resulted in Ca2+ measurements that were consistent with results obtained in the respective genomic mutants, albeit to a weaker extent in most cases, and could further be confirmed by opto-electrophysiological measurements for mutants of some of the genes, including synaptojanin. We screened 95 genes that were previously implicated in cholinergic transmission, and several controls. We identified genes that clustered together with known SV recycling genes, exhibiting a similar signature of their Ca2+ dynamics. Five of these genes (C27B7.7, erp-1, inx-8, inx-10, spp-10) were further assessed in respective

  2. The non-specific ion channel in Torpedo ocellata fused synaptic vesicles.

    PubMed Central

    Yakir, N; Rahamimoff, R

    1995-01-01

    1. Synaptic vesicles were isolated and fused into large structures with a diameter of more than 20 microns to characterize their ionic channels. The 'cell'-attached and inside-out configurations of the patch clamp technique were used. 2. Two types of ion channels were most frequently observed: a low conductance chloride channel and a high conductance non-specific channel. 3. The non-specific channel has a main conducting state and a substate. The main conducting state has a slope conductance of 246 +/- 15 pS (+/- S.E.M., n = 15), in the presence of different combinations of KCl and potassium glutamate. 4. From the reversal potentials of the current-voltage (I-V) relation, it was concluded that this channel conducts both Cl- and K+. 5. The non-specific channel is highly voltage dependent: under steady-state voltages it has a high open probability near 0 mV and does not inactivate; when the membrane is hyperpolarized (pipette side more positive), the open probability decreases dramatically. 6. Voltage pulses showed that upon hyperpolarization (from holding potentials between -20 and + 20 mV), the channels deactivated; when the membrane was stepped back to the holding potential, the channels reactivated rapidly. 7. In a number of experiments, when the pipette side was made more negative than the bath, the open probability also decreased. 8. Frequently, a substate with a conductance of about 44 +/- 4% (+/- S.E.M., n = 3) of the main state was detected. 9. We speculate that this non-specific ion channel may have different roles at the various stages of the life cycle of the synaptic vesicle. When the synaptic vesicle is an intracellular structure, it might help its transmitter-concentrating capacity by dissipating the polarization. After fusion with the surface membrane, it might constitute an additional conductance pathway, taking part in frequency modulation of synaptic transmission. PMID:7562610

  3. Individual synaptic vesicles from the electroplaque of Torpedo californica, a classic cholinergic synapse, also contain transporters for glutamate and ATP

    PubMed Central

    Li, Huinan; Harlow, Mark L.

    2014-01-01

    Abstract The type of neurotransmitter secreted by a neuron is a product of the vesicular transporters present on its synaptic vesicle membranes and the available transmitters in the local cytosolic environment where the synaptic vesicles reside. Synaptic vesicles isolated from electroplaques of the marine ray, Torpedo californica, have served as model vesicles for cholinergic neurotransmission. Many lines of evidence support the idea that in addition to acetylcholine, additional neurotransmitters and/or neuromodulators are also released from cholinergic synapses. We identified the types of vesicular neurotransmitter transporters present at the electroplaque using immunoblot and immunofluoresence techniques with antibodies against the vesicle acetylcholine transporter (VAChT), the vesicular glutamate transporters (VGLUT1, 2, and 3), and the vesicular nucleotide transporter (VNUT). We found that VAChT, VNUT, VGLUT 1 and 2, but not 3 were present by immunoblot, and confirmed that the antibodies were specific to proteins of the axons and terminals of the electroplaque. We used a single‐vesicle imaging technique to determine whether these neurotransmitter transporters were present on the same or different populations of synaptic vesicles. We found that greater than 85% of vesicles that labeled for VAChT colabeled with VGLUT1 or VGLUT2, and approximately 70% colabeled with VNUT. Based upon confidence intervals, at least 52% of cholinergic vesicles isolated are likely to contain all four transporters. The presence of multiple types of neurotransmitter transporters – and potentially neurotransmitters – in individual synaptic vesicles raises fundamental questions about the role of cotransmitter release and neurotransmitter synergy at cholinergic synapses. PMID:24744885

  4. Electrical synapse formation disrupts calcium-dependent exocytosis, but not vesicle mobilization.

    PubMed

    Neunuebel, Joshua P; Zoran, Mark J

    2005-06-01

    Electrical coupling exists prior to the onset of chemical connectivity at many developing and regenerating synapses. At cholinergic synapses in vitro, trophic factors facilitated the formation of electrical synapses and interfered with functional neurotransmitter release in response to photolytic elevations of intracellular calcium. In contrast, neurons lacking trophic factor induction and electrical coupling possessed flash-evoked transmitter release. Changes in cytosolic calcium and postsynaptic responsiveness to acetylcholine were not affected by electrical coupling. These data indicate that transient electrical synapse formation delayed chemical synaptic transmission by imposing a functional block between the accumulation of presynaptic calcium and synchronized, vesicular release. Despite the inability to release neurotransmitter, neurons that had possessed strong electrical coupling recruited secretory vesicles to sites of synaptic contact. These results suggest that the mechanism by which neurotransmission is disrupted during electrical synapse formation is downstream of both calcium influx and synaptic vesicle mobilization. Therefore, electrical synaptogenesis may inhibit synaptic vesicles from acquiring a readily releasable state. We hypothesize that gap junctions might negatively interact with exocytotic processes, thereby diminishing chemical neurotransmission. PMID:15765535

  5. LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex.

    PubMed

    Cirnaru, Maria D; Marte, Antonella; Belluzzi, Elisa; Russo, Isabella; Gabrielli, Martina; Longo, Francesco; Arcuri, Ludovico; Murru, Luca; Bubacco, Luigi; Matteoli, Michela; Fedele, Ernesto; Sala, Carlo; Passafaro, Maria; Morari, Michele; Greggio, Elisa; Onofri, Franco; Piccoli, Giovanni

    2014-01-01

    Mutations in Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains executing several functions, including GTP hydrolysis, kinase activity, and protein binding. Robust evidence suggests that LRRK2 acts at the synaptic site as a molecular hub connecting synaptic vesicles to cytoskeletal elements via a complex panel of protein-protein interactions. Here we investigated the impact of pharmacological inhibition of LRRK2 kinase activity on synaptic function. Acute treatment with LRRK2 inhibitors reduced the frequency of spontaneous currents, the rate of synaptic vesicle trafficking and the release of neurotransmitter from isolated synaptosomes. The investigation of complementary models lacking LRRK2 expression allowed us to exclude potential off-side effects of kinase inhibitors on synaptic functions. Next we studied whether kinase inhibition affects LRRK2 heterologous interactions. We found that the binding among LRRK2, presynaptic proteins and synaptic vesicles is affected by kinase inhibition. Our results suggest that LRRK2 kinase activity influences synaptic vesicle release via modulation of LRRK2 macro-molecular complex. PMID:24904275

  6. The evolutionarily conserved gene LNP-1 is required for synaptic vesicle trafficking and synaptic transmission.

    PubMed

    Ghila, Luiza; Gomez, Marie

    2008-02-01

    The control of vesicle-mediated transport in nerve cells is of great importance in the function, development and maintenance of synapse. In this paper, we characterize the new Caenorhabditis elegans gene, lnp-1. The lnp-1 gene is broadly distributed in many neuronal structures and its localization is dependent of the UNC-104/kinesin protein. Deletion mutations in lnp-1 result in increased resistance to aldicarb, an acetylcholinesterase inhibitor, and in locomotor defects. However, sensitivity to levamisole, a nicotinic agonist which, unlike aldicarb, only affects postsynaptic function, was similar to that of wild-type animals, suggesting a presynaptic function for LNP-1 in neurotransmission. The mislocalization of presynaptic proteins, such as synaptobrevin-1 or RAB-3, in lnp-1 mutants further supports this hypothesis. In summary, our studies suggest that LNP-1 plays a role in synaptogenesis by regulating vesicular transport or localization. PMID:18279315

  7. Individual Neuronal Subtypes Exhibit Diversity in CNS Myelination Mediated by Synaptic Vesicle Release.

    PubMed

    Koudelka, Sigrid; Voas, Matthew G; Almeida, Rafael G; Baraban, Marion; Soetaert, Jan; Meyer, Martin P; Talbot, William S; Lyons, David A

    2016-06-01

    Regulation of myelination by oligodendrocytes in the CNS has important consequences for higher-order nervous system function (e.g., [1-4]), and there is growing consensus that neuronal activity regulates CNS myelination (e.g., [5-9]) through local axon-oligodendrocyte synaptic-vesicle-release-mediated signaling [10-12]. Recent analyses have indicated that myelination along axons of distinct neuronal subtypes can differ [13, 14], but it is not known whether regulation of myelination by activity is common to all neuronal subtypes or only some. This limits insight into how specific neurons regulate their own conduction. Here, we use a novel fluorescent fusion protein reporter to study myelination along the axons of distinct neuronal subtypes over time in zebrafish. We find that the axons of reticulospinal and commissural primary ascending (CoPA) neurons are among the first myelinated in the zebrafish CNS. To investigate how activity regulates myelination by different neuronal subtypes, we express tetanus toxin (TeNT) in individual reticulospinal or CoPA neurons to prevent synaptic vesicle release. We find that the axons of individual tetanus toxin expressing reticulospinal neurons have fewer myelin sheaths than controls and that their myelin sheaths are 50% shorter than controls. In stark contrast, myelination along tetanus-toxin-expressing CoPA neuron axons is entirely normal. These results indicate that while some neuronal subtypes modulate myelination by synaptic vesicle release to a striking degree in vivo, others do not. These data have implications for our understanding of how different neurons regulate myelination and thus their own function within specific neuronal circuits. PMID:27161502

  8. Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles

    USGS Publications Warehouse

    Linkous, D.H.; Flinn, J.M.; Koh, J.Y.; Lanzirotti, A.; Bertsch, P.M.; Jones, B.F.; Giblin, L.J.; Frederickson, C.J.

    2008-01-01

    The ZNT3 protein decorates the presynaptic vesicles of central neurons harboring vesicular zinc, and deletion of this protein removes staining for zinc. However, it has been unclear whether only histochemically reactive zinc is lacking or if, indeed, total elemental zinc is missing from neurons lacking the Slc30a3 gene, which encodes the ZNT3 protein. The limitations of conventional histochemical procedures have contributed to this enigma. However, a novel technique, microprobe synchrotron X-ray fluorescence, reveals that the normal 2- to 3-fold elevation of zinc concentration normally present in the hippocampal mossy fibers is absent in Slc30a3 knockout (ZNT3) mice. Thus, the ZNT3 protein evidently controls not only the "stainability" but also the actual mass of zinc in mossy-fiber synaptic vesicles. This work thus confirms the metal-transporting role of the ZNT3 protein in the brain. ?? The Histochemical Society, Inc.

  9. Evidence That the ZNT3 Protein Controls the Total Amount of Elemental Zinc in Synaptic Vesicles

    SciTech Connect

    Linkous,D.; Flinn, J.; Koh, J.; Lanzirotti, A.; Bertsch, P.; Jones, B.; Giblin, L.; Fredrickson, C.

    2008-01-01

    The ZNT3 protein decorates the presynaptic vesicles of central neurons harboring vesicular zinc, and deletion of this protein removes staining for zinc. However, it has been unclear whether only histochemically reactive zinc is lacking or if, indeed, total elemental zinc is missing from neurons lacking the Slc30a3 gene, which encodes the ZNT3 protein. The limitations of conventional histochemical procedures have contributed to this enigma. However, a novel technique, microprobe synchrotron X-ray fluorescence, reveals that the normal 2- to 3-fold elevation of zinc concentration normally present in the hippocampal mossy fibers is absent in Slc30a3 knockout (ZNT3) mice. Thus, the ZNT3 protein evidently controls not only the 'stainability' but also the actual mass of zinc in mossy-fiber synaptic vesicles. This work thus confirms the metal-transporting role of the ZNT3 protein in the brain.

  10. SAD-B Phosphorylation of CAST Controls Active Zone Vesicle Recycling for Synaptic Depression.

    PubMed

    Mochida, Sumiko; Hida, Yamato; Tanifuji, Shota; Hagiwara, Akari; Hamada, Shun; Abe, Manabu; Ma, Huan; Yasumura, Misato; Kitajima, Isao; Sakimura, Kenji; Ohtsuka, Toshihisa

    2016-09-13

    Short-term synaptic depression (STD) is a common form of activity-dependent plasticity observed widely in the nervous system. Few molecular pathways that control STD have been described, but the active zone (AZ) release apparatus provides a possible link between neuronal activity and plasticity. Here, we show that an AZ cytomatrix protein CAST and an AZ-associated protein kinase SAD-B coordinately regulate STD by controlling reloading of the AZ with release-ready synaptic vesicles. SAD-B phosphorylates the N-terminal serine (S45) of CAST, and S45 phosphorylation increases with higher firing rate. A phosphomimetic CAST (S45D) mimics CAST deletion, which enhances STD by delaying reloading of the readily releasable pool (RRP), resulting in a pool size decrease. A phosphonegative CAST (S45A) inhibits STD and accelerates RRP reloading. Our results suggest that the CAST/SAD-B reaction serves as a brake on synaptic transmission by temporal calibration of activity and synaptic depression via RRP size regulation. PMID:27626661

  11. Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A.

    PubMed

    Strotmeier, Jasmin; Mahrhold, Stefan; Krez, Nadja; Janzen, Constantin; Lou, Jianlong; Marks, James D; Binz, Thomas; Rummel, Andreas

    2014-04-01

    Botulinum neurotoxins (BoNTs) inhibit neurotransmitter release by hydrolysing SNARE proteins. The most important serotype BoNT/A employs the synaptic vesicle glycoprotein 2 (SV2) isoforms A-C as neuronal receptors. Here, we identified their binding site by blocking SV2 interaction using monoclonal antibodies with characterised epitopes within the cell binding domain (HC). The site is located on the backside of the conserved ganglioside binding pocket at the interface of the HCC and HCN subdomains. The dimension of the binding pocket was characterised in detail by site directed mutagenesis allowing the development of potent inhibitors as well as modifying receptor binding properties. PMID:24583011

  12. Effects of 5α-cholestan-3-one on the synaptic vesicle cycle at the mouse neuromuscular junction.

    PubMed

    Kasimov, M R; Giniatullin, A R; Zefirov, A L; Petrov, A M

    2015-05-01

    We have investigated the effects of 5α-cholesten-3-one (5Ch3, 200 nM) on synaptic transmission in mouse diaphragm. 5Ch3 had no impact on the amplitude or frequency of miniature endplate currents (MEPCs, spontaneous secretion), but decreased the amplitude of EPCs (evoked secretion) triggered by single action potentials. Treatment with 5Ch3 increased the depression of EPC amplitude and slowed the unloading of the dye FM1-43 from synaptic vesicles (exocytosis rate) during high-frequency stimulation. The estimated recycling time of vesicles did not change, suggesting that the decline of synaptic efficiency was due to the reduction in the size of the population of vesicles involved in release. The effects of 5Ch3 on synaptic transmission may be related to changes in the phase properties of the membrane. We have found that 5Ch3 reduces the staining of synaptic regions with the B-subunit of cholera toxin (a marker of lipid rafts) and increases the fluorescence of 22-NBD-cholesterol, indicating a phase change within the membrane. Manipulations of membrane cholesterol (saturation or depletion) strongly reduced the influence of 5Ch3 on both FM1-43 dye unloading and staining with the B-subunit of cholera toxin. Thus, 5Ch3 reduces the number of vesicles which are actively recruited during synaptic transmission and alters membrane properties. These effects of 5Ch3 depend on membrane cholesterol. PMID:25725358

  13. Tension-induced pore formation and leakage in adhering vesicles

    NASA Astrophysics Data System (ADS)

    Lenz, P.; Johnson, J. M.; Chan, Y.-H. M.; Boxer, S. G.

    2006-08-01

    The influence of inclusion-induced tension on pore formation is studied theoretically and experimentally. It is shown that fluorescently labeled lipids can enhance pore formation and induce leakage of adhering vesicles. These effects are more pronounced for smaller vesicles. The theoretical predictions are confirmed by experimental two-color fluorescent data. Finally, the influence of the pore formation dynamics on rupture processes of vesicles is analyzed yielding a new picture of the transition to bilayer disks.

  14. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo.

    PubMed

    García-Morales, Victoria; Montero, Fernando; Moreno-López, Bernardo

    2015-05-01

    Impairment of motor skills is one of the most common acute adverse effects of cannabis. Related studies have focused mainly on psychomotor alterations, and little is known about the direct impact of cannabinoids (CBs) on motoneuron physiology. As key modulators of synaptic function, CBs regulate multiple neuronal functions and behaviors. Presynaptic CB1 mediates synaptic strength depression by inhibiting neurotransmitter release, via a poorly understood mechanism. The present study examined the effect of CB agonists on excitatory synaptic inputs incoming to hypoglossal motoneurons (HMNs) in vitro and in vivo. The endocannabinoid anandamide (AEA) and the synthetic CB agonist WIN 55,212-2 rapidly and reversibly induced short-term depression (STD) of glutamatergic synapses on motoneurons by a presynaptic mechanism. Presynaptic effects were fully reversed by the CB1-selective antagonist AM281. Electrophysiological and electron microscopy analysis showed that WIN 55,212-2 reduced the number of synaptic vesicles (SVs) docked to active zones in excitatory boutons. Given that AM281 fully abolished depolarization-induced depression of excitation, motoneurons can be feasible sources of CBs, which in turn act as retrograde messengers regulating synaptic function. Finally, microiontophoretic application of the CB agonist O-2545 reversibly depressed, presumably via CB1, glutamatergic inspiratory-related activity of HMNs in vivo. Therefore, evidence support that CBs, via presynaptic CB1, induce excitatory STD by reducing the readily releasable pool of SVs at excitatory synapses, then attenuating motoneuron activity. These outcomes contribute a possible mechanistic basis for cannabis-associated motor performance disturbances such as ataxia, dysarthria and dyscoordination. PMID:25595101

  15. Calcineurin Aγ is a Functional Phosphatase That Modulates Synaptic Vesicle Endocytosis.

    PubMed

    Cottrell, Jeffrey R; Li, Bing; Kyung, Jae Won; Ashford, Crystle J; Mann, James J; Horvath, Tamas L; Ryan, Timothy A; Kim, Sung Hyun; Gerber, David J

    2016-01-22

    Variation in PPP3CC, the gene that encodes the γ isoform of the calcineurin catalytic subunit, has been reported to be associated with schizophrenia. Because of its low expression level in most tissues, there has been little research devoted to the specific function of the calcineurin Aγ (CNAγ) versus the calcineurin Aα (CNAα) and calcineurin Aβ (CNAβ) catalytic isoforms. Consequently, we have a limited understanding of the role of altered CNAγ function in psychiatric disease. In this study, we demonstrate that CNAγ is present in the rodent and human brain and dephosphorylates a presynaptic substrate of calcineurin. Through a combination of immunocytochemistry and immuno-EM, we further show that CNAγ is localized to presynaptic terminals in hippocampal neurons. Critically, we demonstrate that RNAi-mediated knockdown of CNAγ leads to a disruption of synaptic vesicle cycling in cultured rat hippocampal neurons. These data indicate that CNAγ regulates a critical aspect of synaptic vesicle cycling and suggest that variation in PPP3CC may contribute to psychiatric disease by altering presynaptic function. PMID:26627835

  16. The iTRAPs: Guardians of Synaptic Vesicle Cargo Retrieval During Endocytosis

    PubMed Central

    Gordon, Sarah L.; Cousin, Michael A.

    2016-01-01

    The reformation of synaptic vesicles (SVs) during endocytosis is essential for the maintenance of neurotransmission in central nerve terminals. Newly formed SVs must be generated with the correct protein cargo in the correct stoichiometry to be functional for exocytosis. Classical clathrin adaptor protein complexes play a key role in sorting and clustering synaptic vesicle cargo in this regard. However it is becoming increasingly apparent that additional “fail-safe” mechanisms exist to ensure the accurate retrieval of essential cargo molecules. For example, the monomeric adaptor proteins AP180/CALM and stonin-2 are required for the efficient retrieval of synaptobrevin II (sybII) and synaptotagmin-1 respectively. Furthermore, recent studies have revealed that sybII and synaptotagmin-1 interact with other SV cargoes to ensure a high fidelity of retrieval. These cargoes are synaptophysin (for sybII) and SV2A (for synaptotagmin-1). In this review, we summarize current knowledge regarding the retrieval mechanisms for both sybII and synaptotagmin-1 during endocytosis. We also define and set criteria for a new functional group of SV molecules that facilitate the retrieval of their interaction partners. We have termed these molecules intrinsic trafficking partners (iTRAPs) and we discuss how the function of this group impacts on presynaptic performance in both health and disease. PMID:26903854

  17. ATM protein is located on presynaptic vesicles and its deficit leads to failures in synaptic plasticity.

    PubMed

    Vail, Graham; Cheng, Aifang; Han, Yu Ray; Zhao, Teng; Du, Shengwang; Loy, Michael M T; Herrup, Karl; Plummer, Mark R

    2016-07-01

    Ataxia telangiectasia is a multisystemic disorder that includes a devastating neurodegeneration phenotype. The ATM (ataxia-telangiectasia mutated) protein is well-known for its role in the DNA damage response, yet ATM is also found in association with cytoplasmic vesicular structures: endosomes and lysosomes, as well as neuronal synaptic vesicles. In keeping with this latter association, electrical stimulation of the Schaffer collateral pathway in hippocampal slices from ATM-deficient mice does not elicit normal long-term potentiation (LTP). The current study was undertaken to assess the nature of this deficit. Theta burst-induced LTP was reduced in Atm(-/-) animals, with the reduction most pronounced at burst stimuli that included 6 or greater trains. To assess whether the deficit was associated with a pre- or postsynaptic failure, we analyzed paired-pulse facilitation and found that it too was significantly reduced in Atm(-/-) mice. This indicates a deficit in presynaptic function. As further evidence that these synaptic effects of ATM deficiency were presynaptic, we used stochastic optical reconstruction microscopy. Three-dimensional reconstruction revealed that ATM is significantly more closely associated with Piccolo (a presynaptic marker) than with Homer1 (a postsynaptic marker). These results underline how, in addition to its nuclear functions, ATM plays an important functional role in the neuronal synapse where it participates in the regulation of presynaptic vesicle physiology. PMID:27075534

  18. The iTRAPs: Guardians of Synaptic Vesicle Cargo Retrieval During Endocytosis.

    PubMed

    Gordon, Sarah L; Cousin, Michael A

    2016-01-01

    The reformation of synaptic vesicles (SVs) during endocytosis is essential for the maintenance of neurotransmission in central nerve terminals. Newly formed SVs must be generated with the correct protein cargo in the correct stoichiometry to be functional for exocytosis. Classical clathrin adaptor protein complexes play a key role in sorting and clustering synaptic vesicle cargo in this regard. However it is becoming increasingly apparent that additional "fail-safe" mechanisms exist to ensure the accurate retrieval of essential cargo molecules. For example, the monomeric adaptor proteins AP180/CALM and stonin-2 are required for the efficient retrieval of synaptobrevin II (sybII) and synaptotagmin-1 respectively. Furthermore, recent studies have revealed that sybII and synaptotagmin-1 interact with other SV cargoes to ensure a high fidelity of retrieval. These cargoes are synaptophysin (for sybII) and SV2A (for synaptotagmin-1). In this review, we summarize current knowledge regarding the retrieval mechanisms for both sybII and synaptotagmin-1 during endocytosis. We also define and set criteria for a new functional group of SV molecules that facilitate the retrieval of their interaction partners. We have termed these molecules intrinsic trafficking partners (iTRAPs) and we discuss how the function of this group impacts on presynaptic performance in both health and disease. PMID:26903854

  19. Vesicular Monoamine and Glutamate Transporters Select Distinct Synaptic Vesicle Recycling Pathways

    PubMed Central

    Onoa, Bibiana; Li, Haiyan; Gagnon-Bartsch, Johann A.; Elias, Laura A. B.; Edwards, Robert H.

    2011-01-01

    Previous work has characterized the properties of neurotransmitter release at excitatory and inhibitory synapses, but we know remarkably little about the properties of monoamine release because these neuromodulators do not generally produce a fast ionotropic response. Since dopamine and serotonin neurons can also release glutamate in vitro and in vivo, we have used the vesicular monoamine transporter VMAT2 and the vesicular glutamate transporter VGLUT1 to compare the localization and recycling of synaptic vesicles that store, respectively, monoamines and glutamate. First, VMAT2 segregates partially from VGLUT1 in the boutons of midbrain dopamine neurons, indicating the potential for distinct release sites. Second, endocytosis after stimulation is slower for VMAT2 than VGLUT1. During the stimulus, however, the endocytosis of VMAT2 (but not VGLUT1) accelerates dramatically in midbrain dopamine but not hippocampal neurons, indicating a novel, cell-specific mechanism to sustain high rates of release. On the other hand, we find that in both midbrain dopamine and hippocampal neurons, a substantially smaller proportion of VMAT2 than VGLUT1 is available for evoked release, and VMAT2 shows considerably more dispersion along the axon after exocytosis than VGLUT1. Even when expressed in the same neuron, the two vesicular transporters thus target to distinct populations of synaptic vesicles, presumably due to their selection of distinct recycling pathways. PMID:20534840

  20. Synaptic-like vesicles and candidate transduction channels in mechanosensory terminals

    PubMed Central

    Bewick, Guy S

    2015-01-01

    This article summarises progress to date over an exciting and very enjoyable first 15 years of collaboration with Bob Banks. Our collaboration began when I contacted him with (to me) an unexpected observation that a dye used to mark recycling synaptic vesicle membrane at efferent terminals also labelled muscle spindle afferent terminals. This observation led to the re-discovery of a system of small clear vesicles present in all vertebrate primary mechanosensory nerve terminals. These synaptic-like vesicles (SLVs) have been, and continue to be, the major focus of our work. This article describes our characterisation of the properties and functional significance of these SLVs, combining our complementary skills: Bob’s technical expertise and encyclopaedic knowledge of mechanosensation with my experience of synaptic vesicles and the development of the styryl pyridinium dyes, of which the most widely used is FM1-43. On the way we have found that SLVs seem to be part of a constitutive glutamate secretory system necessary to maintain the stretch-sensitivity of spindle endings. The glutamate activates a highly unusual glutamate receptor linked to phospholipase D activation, which we have termed the PLD-mGluR. It has a totally distinct pharmacology first described in the hippocampus nearly 20 years ago but, like the SLVs that were first described over 50 years ago, has since been little researched. Yet, our evidence and literature searches suggest this glutamate/SLV/PLD-mGluR system is a ubiquitous feature of mechanosensory endings and, at least for spindles, is essential for maintaining mechanosensory function. This article summarises how this system integrates with the classical model of mechanosensitive channels in spindles and other mechanosensory nerve terminals, including hair follicle afferents and baroreceptors controlling blood pressure. Finally, in this time when there is an imperative to show translational relevance, I describe how this fascinating system

  1. Synaptic-like vesicles and candidate transduction channels in mechanosensory terminals.

    PubMed

    Bewick, Guy S

    2015-08-01

    This article summarises progress to date over an exciting and very enjoyable first 15 years of collaboration with Bob Banks. Our collaboration began when I contacted him with (to me) an unexpected observation that a dye used to mark recycling synaptic vesicle membrane at efferent terminals also labelled muscle spindle afferent terminals. This observation led to the re-discovery of a system of small clear vesicles present in all vertebrate primary mechanosensory nerve terminals. These synaptic-like vesicles (SLVs) have been, and continue to be, the major focus of our work. This article describes our characterisation of the properties and functional significance of these SLVs, combining our complementary skills: Bob's technical expertise and encyclopaedic knowledge of mechanosensation with my experience of synaptic vesicles and the development of the styryl pyridinium dyes, of which the most widely used is FM1-43. On the way we have found that SLVs seem to be part of a constitutive glutamate secretory system necessary to maintain the stretch-sensitivity of spindle endings. The glutamate activates a highly unusual glutamate receptor linked to phospholipase D activation, which we have termed the PLD-mGluR. It has a totally distinct pharmacology first described in the hippocampus nearly 20 years ago but, like the SLVs that were first described over 50 years ago, has since been little researched. Yet, our evidence and literature searches suggest this glutamate/SLV/PLD-mGluR system is a ubiquitous feature of mechanosensory endings and, at least for spindles, is essential for maintaining mechanosensory function. This article summarises how this system integrates with the classical model of mechanosensitive channels in spindles and other mechanosensory nerve terminals, including hair follicle afferents and baroreceptors controlling blood pressure. Finally, in this time when there is an imperative to show translational relevance, I describe how this fascinating system might

  2. Measurement of quantal secretion induced by ouabain and its correlation with depletion of synaptic vesicles.

    PubMed

    Haimann, C; Torri-Tarelli, F; Fesce, R; Ceccarelli, B

    1985-11-01

    Ouabain (0.1 and 0.05 mM) was applied to frog cutaneous pectoris nerve-muscle preparations bathed in modified Ringer's solution containing either 1.8 mM Ca2+ (and 4 mM Mg2+) or no added Ca2+ (4 mM Mg2+ and 1 mM EGTA). During the intense quantal release of acetylcholine (ACh) induced by ouabain, the parameters of the miniature endplate potentials (mepps) were deduced from the variance, skew, and power spectra of the endplate recordings by applying a recently described modification of classical fluctuation analysis. Often the high frequency of mepps is not stationary; therefore, the signal was high-pass filtered (time constant of the resistance-capacitance filter of 2 ms) to remove the errors introduced by nonstationarity. When ouabain was applied in the presence of Ca2+, mepp frequency started to rise exponentially after a lag of 1.5-2 h, reached an average peak frequency of 1,300/s in approximately 30 min, and then suddenly subsided to low level (10/s). In Ca2+-free solution, after a shorter lag (1-1.5 h), mepp frequency rose to peak rate of 700/s in approximately 20 min and then gradually subsided. In spite of the different time course of secretion in the two experimental conditions, the cumulative quantal release was not significantly different (7.4 +/- 1.3 X 10(5) in Ca2+-containing and 8.8 +/- 2.7 X 10(5) in Ca2+-free solutions). 60 min after the peak secretion, the muscles were fixed for observation in the electron microscope. Morphometric analysis on micrographs of neuromuscular junctions revealed in both cases a profound depletion of synaptic vesicles and deep infoldings of presynaptic membrane. This rapid depletion and the lack of uptake of horseradish peroxidase suggest that ouabain impairs the recycling process that tends to conserve the vesicle population during intense secretion of neurotransmitter. The good correlation observed between the reduction in the store of synaptic vesicles and the total number of quanta of ACh secreted in the absence of a

  3. Lead-dependent deposits in diverse synaptic vesicles: suggestive evidence for the presence of anionic binding sites

    SciTech Connect

    Sulzer, D.; Piscopo, I.; Ungar, F.; Holtzman, E.

    1987-09-01

    We have observed electron dense deposits dependent on incubation of aldehyde-fixed tissues with lead ions within synaptic vesicles of several types of neurons that differ in the neurotransmitters utilized and in the secretory granules of the adrenal medulla. Evidently, vesicle components that can interact with lead ions are widespread. A plausible explanation for the occurrence of the deposits is the presence of anionic binding sites within the vesicles. This would agree well with other biochemical, cytochemical, and immunocytochemical evidence, such as that indicating the presence of sulfated macromolecules in certain synaptic vesicles. Anionic binding sites could play significant roles by participating in processes such as Ca/sup 2 +/ storage, stabilization of pH gradients, or the control of osmotic phenomena.

  4. Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling epileptogenesis via GABAergic neurotransmission

    PubMed Central

    Tokudome, Kentaro; Okumura, Takahiro; Shimizu, Saki; Mashimo, Tomoji; Takizawa, Akiko; Serikawa, Tadao; Terada, Ryo; Ishihara, Shizuka; Kunisawa, Naofumi; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is a prototype synaptic vesicle protein regulating action potential-dependent neurotransmitters release. SV2A also serves as a specific binding site for certain antiepileptics and is implicated in the treatment of epilepsy. Here, to elucidate the role of SV2A in modulating epileptogenesis, we generated a novel rat model (Sv2aL174Q rat) carrying a Sv2a-targeted missense mutation (L174Q) and analyzed its susceptibilities to kindling development. Although animals homozygous for the Sv2aL174Q mutation exhibited normal appearance and development, they are susceptible to pentylenetetrazole (PTZ) seizures. In addition, development of kindling associated with repeated PTZ treatments or focal stimulation of the amygdala was markedly facilitated by the Sv2aL174Q mutation. Neurochemical studies revealed that the Sv2aL174Q mutation specifically reduced depolarization-induced GABA, but not glutamate, release in the hippocampus without affecting basal release or the SV2A expression level in GABAergic neurons. In addition, the Sv2aL174Q mutation selectively reduced the synaptotagmin1 (Syt1) level among the exocytosis-related proteins examined. The present results demonstrate that dysfunction of SV2A due to the Sv2aL174Q mutation impairs the synaptic GABA release by reducing the Syt1 level and facilitates the kindling development, illustrating the crucial role of SV2A-GABA system in modulating kindling epileptogenesis. PMID:27265781

  5. Isoflurane inhibits synaptic vesicle exocytosis through reduced Ca2+ influx, not Ca2+-exocytosis coupling

    PubMed Central

    Baumgart, Joel P.; Zhou, Zhen-Yu; Hara, Masato; Cook, Daniel C.; Hoppa, Michael B.; Ryan, Timothy A.; Hemmings, Hugh C.

    2015-01-01

    Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippocampal neurons through inhibition of presynaptic Ca2+ influx without significantly altering the Ca2+ sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca2+]i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca2+ ([Ca2+]e). Lowering external Ca2+ to match the isoflurane-induced reduction in Ca2+ entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca2+ entry without significant direct effects on Ca2+-exocytosis coupling or on the SV fusion machinery. Isoflurane inhibition of exocytosis and Ca2+ influx was greater in glutamatergic compared with GABAergic nerve terminals, consistent with selective inhibition of excitatory synaptic transmission. Such alteration in the balance of excitatory to inhibitory transmission could mediate reduced neuronal interactions and network-selective effects observed in the anesthetized central nervous system. PMID:26351670

  6. Isoflurane inhibits synaptic vesicle exocytosis through reduced Ca2+ influx, not Ca2+-exocytosis coupling.

    PubMed

    Baumgart, Joel P; Zhou, Zhen-Yu; Hara, Masato; Cook, Daniel C; Hoppa, Michael B; Ryan, Timothy A; Hemmings, Hugh C

    2015-09-22

    Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippocampal neurons through inhibition of presynaptic Ca(2+) influx without significantly altering the Ca(2+) sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca(2+)]i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca(2+) ([Ca(2+)]e). Lowering external Ca(2+) to match the isoflurane-induced reduction in Ca(2+) entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca(2+) entry without significant direct effects on Ca(2+)-exocytosis coupling or on the SV fusion machinery. Isoflurane inhibition of exocytosis and Ca(2+) influx was greater in glutamatergic compared with GABAergic nerve terminals, consistent with selective inhibition of excitatory synaptic transmission. Such alteration in the balance of excitatory to inhibitory transmission could mediate reduced neuronal interactions and network-selective effects observed in the anesthetized central nervous system. PMID:26351670

  7. Synaptic Vesicle Recycling Is Unaffected in the Ts65Dn Mouse Model of Down Syndrome

    PubMed Central

    Marland, Jamie R. K.; Smillie, Karen J.; Cousin, Michael A.

    2016-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability, and arises from trisomy of human chromosome 21. Accumulating evidence from studies of both DS patient tissue and mouse models has suggested that synaptic dysfunction is a key factor in the disorder. The presence of several genes within the DS trisomy that are either directly or indirectly linked to synaptic vesicle (SV) endocytosis suggested that presynaptic dysfunction could underlie some of these synaptic defects. Therefore we determined whether SV recycling was altered in neurons from the Ts65Dn mouse, the best characterised model of DS to date. We found that SV exocytosis, the size of the SV recycling pool, clathrin-mediated endocytosis, activity-dependent bulk endocytosis and SV generation from bulk endosomes were all unaffected by the presence of the Ts65Dn trisomy. These results were obtained using battery of complementary assays employing genetically-encoded fluorescent reporters of SV cargo trafficking, and fluorescent and morphological assays of fluid-phase uptake in primary neuronal culture. The absence of presynaptic dysfunction in central nerve terminals of the Ts65Dn mouse suggests that future research should focus on the established alterations in excitatory / inhibitory balance as a potential route for future pharmacotherapy. PMID:26808141

  8. SUMOylation of synapsin Ia maintains synaptic vesicle availability and is reduced in an autism mutation

    PubMed Central

    Tang, Leo T. -H.; Craig, Tim J.; Henley, Jeremy M.

    2015-01-01

    Synapsins are key components of the presynaptic neurotransmitter release machinery. Their main role is to cluster synaptic vesicles (SVs) to each other and anchor them to the actin cytoskeleton to establish the reserve vesicle pool, and then release them in response to appropriate membrane depolarization. Here we demonstrate that SUMOylation of synapsin Ia (SynIa) at K687 is necessary for SynIa function. Replacement of endogenous SynIa with a non-SUMOylatable mutant decreases the size of the releasable vesicle pool and impairs stimulated SV exocytosis. SUMOylation enhances SynIa association with SVs to promote the efficient reclustering of SynIa following neuronal stimulation and maintain its presynaptic localization. The A548T mutation in SynIa is strongly associated with autism and epilepsy and we show that it leads to defective SynIa SUMOylation. These results identify SUMOylation as a fundamental regulator of SynIa function and reveal a novel link between reduced SUMOylation of SynIa and neurological disorders. PMID:26173895

  9. A Novel Synaptic Vesicle Fusion Path in the Rat Cerebral Cortex: The “Saddle” Point Hypothesis

    PubMed Central

    Zampighi, Guido A.; Serrano, Raul; Vergara, Julio L.

    2014-01-01

    We improved freeze-fracture electron microscopy to study synapses in the neuropil of the rat cerebral cortex at ∼2 nm resolution and in three-dimensions. In the pre-synaptic axon, we found that “rods” assembled from short filaments protruding from the vesicle and the plasma membrane connects synaptic vesicles to the membrane of the active zone. We equated these “connector rods” to protein complexes involved in “docking” and “priming” vesicles to the active zone. Depending on their orientation, the “rods” define two synaptic vesicle-fusion paths: When parallel to the plasma membrane, the vesicles hemi-fuse anywhere (“randomly”) in the active zone following the conventional path anticipated by the SNARE hypothesis. When perpendicular to the plasma membrane, the vesicles hemi-fuse at the base of sharp crooks, called “indentations,” that are spaced 75–85 nm center-to-center, arranged in files and contained within gutters. They result from primary and secondary membrane curvatures that intersect at stationary inflection (“saddle”) points. Computer simulations indicate that this novel vesicle-fusion path evokes neurotransmitter concentration domains on the post-synaptic spine that are wider, shallower, and that reach higher average concentrations than the more conventional vesicle fusion path. In the post-synaptic spine, large (∼9× ∼15 nm) rectangular particles at densities of 72±10/ µm2 (170–240/spine) match the envelopes of the homotetrameric GluR2 AMPA-sensitive receptor. While these putative receptors join clusters, called the “post-synaptic domains,” the overwhelming majority of the rectangular particles formed bands in the “non-synaptic” plasma membrane of the spine. In conclusion, in the neuropil of the rat cerebral cortex, curvatures of the plasma membrane define a novel vesicle-fusion path that preconditions specific regions of the active zone for neurotransmitter release. We hypothesize that a change in the

  10. Anaerobiosis inhibits gas vesicle formation in halophilic Archaea.

    PubMed

    Hechler, Torsten; Pfeifer, Felicitas

    2009-01-01

    The effect of anaerobiosis on the gas vesicle formation was investigated in three Halobacterium salinarum strains, Haloferax mediterranei and in Haloferax volcanii transformants. All these strains significantly reduced gas vesicle formation or lacked these structures under anoxic conditions. When grown by arginine fermentation, Hbt. salinarum PHH4 lacked gas vesicles, whereas Hbt. salinarum PHH1 and NRC-1 contained 5-20 small gas vesicles arranged in two to three aggregates per cell instead of the 30-80 gas vesicles present under oxic conditions. The enlargement presumably stopped due to a depletion of Gvp proteins. Also Hfx. mediterranei and Hfx. volcanii transformants lacked gas vesicles under anoxic growth and yielded a 10-fold reduced gvp transcription. Even the gas vesicle-overproducing DeltaD transformants did not form gas vesicles under anoxic conditions, demonstrating that the repressing protein GvpD was not involved. The presence of large amounts of GvpA implied that the assembly of the gas vesicles was inhibited. When Hbt. salinarum PHH1 and NRC-1 were grown with dimethyl sulphoxide or trimethylamine N-oxid under anoxic conditions the number but not the size of gas vesicles was reduced. This was in contrast to the previously reported overproduction of gas vesicles in NRC-1 that turned out to depend on the citrate-containing medium used for growth. PMID:19007418

  11. Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2

    PubMed Central

    Diao, Jiajie; Burré, Jacqueline; Vivona, Sandro; Cipriano, Daniel J; Sharma, Manu; Kyoung, Minjoung; Südhof, Thomas C; Brunger, Axel T

    2013-01-01

    α-Synuclein is a presynaptic protein that is implicated in Parkinson's and other neurodegenerative diseases. Physiologically, native α-synuclein promotes presynaptic SNARE-complex assembly, but its molecular mechanism of action remains unknown. Here, we found that native α-synuclein promotes clustering of synaptic-vesicle mimics, using a single-vesicle optical microscopy system. This vesicle-clustering activity was observed for both recombinant and native α-synuclein purified from mouse brain. Clustering was dependent on specific interactions of native α-synuclein with both synaptobrevin-2/VAMP2 and anionic lipids. Out of the three familial Parkinson's disease-related point mutants of α-synuclein, only the lipid-binding deficient mutation A30P disrupted clustering, hinting at a possible loss of function phenotype for this mutant. α-Synuclein had little effect on Ca2+-triggered fusion in our reconstituted single-vesicle system, consistent with in vivo data. α-Synuclein may therefore lead to accumulation of synaptic vesicles at the active zone, providing a ‘buffer’ of synaptic vesicles, without affecting neurotransmitter release itself. DOI: http://dx.doi.org/10.7554/eLife.00592.001 PMID:23638301

  12. A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis

    PubMed Central

    Wu, Yumei; O'Toole, Eileen T; Girard, Martine; Ritter, Brigitte; Messa, Mirko; Liu, Xinran; McPherson, Peter S; Ferguson, Shawn M; De Camilli, Pietro

    2014-01-01

    The exocytosis of synaptic vesicles (SVs) elicited by potent stimulation is rapidly compensated by bulk endocytosis of SV membranes leading to large endocytic vacuoles (‘bulk’ endosomes). Subsequently, these vacuoles disappear in parallel with the reappearance of new SVs. We have used synapses of dynamin 1 and 3 double knock-out neurons, where clathrin-mediated endocytosis (CME) is dramatically impaired, to gain insight into the poorly understood mechanisms underlying this process. Massive formation of bulk endosomes was not defective, but rather enhanced, in the absence of dynamin 1 and 3. The subsequent conversion of bulk endosomes into SVs was not accompanied by the accumulation of clathrin coated buds on their surface and this process proceeded even after further clathrin knock-down, suggesting its independence of clathrin. These findings support the existence of a pathway for SV reformation that bypasses the requirement for clathrin and dynamin 1/3 and that operates during intense synaptic activity. DOI: http://dx.doi.org/10.7554/eLife.01621.001 PMID:24963135

  13. Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A

    NASA Astrophysics Data System (ADS)

    Benoit, Roger M.; Frey, Daniel; Hilbert, Manuel; Kevenaar, Josta T.; Wieser, Mara M.; Stirnimann, Christian U.; McMillan, David; Ceska, Tom; Lebon, Florence; Jaussi, Rolf; Steinmetz, Michel O.; Schertler, Gebhard F. X.; Hoogenraad, Casper C.; Capitani, Guido; Kammerer, Richard A.

    2014-01-01

    Botulinum neurotoxin A (BoNT/A) belongs to the most dangerous class of bioweapons. Despite this, BoNT/A is used to treat a wide range of common medical conditions such as migraines and a variety of ocular motility and movement disorders. BoNT/A is probably best known for its use as an antiwrinkle agent in cosmetic applications (including Botox and Dysport). BoNT/A application causes long-lasting flaccid paralysis of muscles through inhibiting the release of the neurotransmitter acetylcholine by cleaving synaptosomal-associated protein 25 (SNAP-25) within presynaptic nerve terminals. Two types of BoNT/A receptor have been identified, both of which are required for BoNT/A toxicity and are therefore likely to cooperate with each other: gangliosides and members of the synaptic vesicle glycoprotein 2 (SV2) family, which are putative transporter proteins that are predicted to have 12 transmembrane domains, associate with the receptor-binding domain of the toxin. Recently, fibroblast growth factor receptor 3 (FGFR3) has also been reported to be a potential BoNT/A receptor. In SV2 proteins, the BoNT/A-binding site has been mapped to the luminal domain, but the molecular details of the interaction between BoNT/A and SV2 are unknown. Here we determined the high-resolution crystal structure of the BoNT/A receptor-binding domain (BoNT/A-RBD) in complex with the SV2C luminal domain (SV2C-LD). SV2C-LD consists of a right-handed, quadrilateral β-helix that associates with BoNT/A-RBD mainly through backbone-to-backbone interactions at open β-strand edges, in a manner that resembles the inter-strand interactions in amyloid structures. Competition experiments identified a peptide that inhibits the formation of the complex. Our findings provide a strong platform for the development of novel antitoxin agents and for the rational design of BoNT/A variants with improved therapeutic properties.

  14. Formation and structural characteristics of thermosensitive multiblock copolymer vesicles.

    PubMed

    Ma, Shiying; Xiao, Mengying; Wang, Rong

    2013-12-23

    The spontaneous vesicle formation of ABABA-type amphiphilic multiblock copolymers bearing thermosensitive hydrophilic A-block in a selective solvent is studied using dissipative particle dynamics (DPD) approach. The formation process of vesicle through nucleation and growth pathway is observed by varying the temperature. The simulation results show that spherical micelle takes shape at high temperature. As temperature decreases, vesicles with small aqueous cavity appear and the cavity expands as well as the membrane thickness decreases with the temperature further decreasing. This finding is in agreement with the experimental observation. Furthermore, by continuously varying the temperature and the length of the hydrophobic block, a phase diagram is constructed, which can indicate the thermodynamically stable region for vesicles. The morphological phase diagram shows that vesicles can form in a larger parameter scope. The relationship between the hydrophilic and hydrophobic block length versus the aqueous cavity size and vesicle size are revealed. Simulation results demonstrate that the copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in A-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. PMID:24304193

  15. A presynaptic role for the cytomatrix protein GIT in synaptic vesicle recycling.

    PubMed

    Podufall, Jasmin; Tian, Rui; Knoche, Elena; Puchkov, Dmytro; Walter, Alexander M; Rosa, Stefanie; Quentin, Christine; Vukoja, Anela; Jung, Nadja; Lampe, Andre; Wichmann, Carolin; Böhme, Mathias; Depner, Harald; Zhang, Yong Q; Schmoranzer, Jan; Sigrist, Stephan J; Haucke, Volker

    2014-06-12

    Neurotransmission involves the exo-endocytic cycling of synaptic vesicles (SVs) within nerve terminals. Exocytosis is facilitated by a cytomatrix assembled at the active zone (AZ). The precise spatial and functional relationship between exocytic fusion of SVs at AZ membranes and endocytic SV retrieval is unknown. Here, we identify the scaffold G protein coupled receptor kinase 2 interacting (GIT) protein as a component of the AZ-associated cytomatrix and as a regulator of SV endocytosis. GIT1 and its D. melanogaster ortholog, dGIT, are shown to directly associate with the endocytic adaptor stonin 2/stoned B. In Drosophila dgit mutants, stoned B and synaptotagmin levels are reduced and stoned B is partially mislocalized. Moreover, dgit mutants show morphological and functional defects in SV recycling. These data establish a presynaptic role for GIT in SV recycling and suggest a connection between the AZ cytomatrix and the endocytic machinery. PMID:24882013

  16. Analysis of synaptic vesicle endocytosis in synaptosomes by high-content screening.

    PubMed

    Daniel, James A; Malladi, Chandra S; Kettle, Emma; McCluskey, Adam; Robinson, Phillip J

    2012-08-01

    Small molecules modulating synaptic vesicle endocytosis (SVE) may ultimately be useful for diseases where pathological neurotransmission is implicated. Only a small number of specific SVE modulators have been identified to date. Slow progress is due to the laborious nature of traditional approaches to study SVE, in which nerve terminals are identified and studied in cultured neurons, typically yielding data from 10-20 synapses per experiment. We provide a protocol for a quantitative, high-throughput method for studying SVE in thousands of nerve terminals. Rat forebrain synaptosomes are attached to 96-well microplates and depolarized; SVE is then quantified by uptake of the dye FM4-64, which is imaged by high-content screening. Synaptosomes that have been frozen and stored can be used in place of fresh synaptosomes, reducing the experimental time and animal numbers required. With a supply of frozen synaptosomes, the assay can be performed within a day, including data analysis. PMID:22767087

  17. Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission

    PubMed Central

    Bal, Manjot; Leitz, Jeremy; Reese, Austin L.; Ramirez, Denise M.O.; Durakoglugil, Murat; Herz, Joachim; Monteggia, Lisa M.; Kavalali, Ege T.

    2013-01-01

    Summary Reelin is a glycoprotein that is critical for proper layering of neocortex during development as well as dynamic regulation of glutamatergic postsynaptic signaling in mature synapses. Here we show that Reelin also acts presynaptically, resulting in robust rapid enhancement of spontaneous neurotransmitter release without affecting properties of evoked neurotransmission. This effect of Reelin requires a modest but significant increase in presynaptic Ca2+ initiated via ApoER2 signaling. The specificity of Reelin action on spontaneous neurotransmitter release is encoded at the level of vesicular SNARE machinery as it requires VAMP7 and SNAP-25 but not synaptobrevin2, VAMP4 or vti1a. These results uncover a novel presynaptic regulatory pathway that utilizes the heterogeneity of synaptic vesicle associated SNAREs and selectively augments action potential-independent neurotransmission. PMID:24210904

  18. Fractional vesamicol receptor occupancy and acetylcholine active transport inhibition in synaptic vesicles.

    PubMed

    Kaufman, R; Rogers, G A; Fehlmann, C; Parsons, S M

    1989-09-01

    Vesamicol [(-)-(trans)-2-(4-phenylpiperidino)cyclohexanol] receptor binding and inhibition of acetylcholine (AcCh) active transport by cholinergic synaptic vesicles that were isolated from Torpedo electric organ were studied for 23 vesamicol enantiomers, analogues, and other drugs. Use of trace [3H]vesamicol and [14C]AcCh allowed simultaneous determination of the concentrations of enantiomer, analogue, or drug required to half-saturate the vesamicol receptor (Ki) and to half-inhibit transport (IC50), respectively. Throughout a wide range of potencies for different compounds, the Ki/IC50 ratios varied from 1.5 to 24. Compounds representative of the diverse structures studied, namely deoxyvesamicol, chloroquine, and levorphanol, were competitive inhibitors of vesamicol binding. It is concluded that many drugs can bind to the vesamicol receptor and binding to only a small fraction of the receptors can result in AcCh active transport inhibition. Possible mechanisms for this effect are discussed. PMID:2550778

  19. Platelet Activating Factor Enhances Synaptic Vesicle Exocytosis Via PKC, Elevated Intracellular Calcium, and Modulation of Synapsin 1 Dynamics and Phosphorylation

    PubMed Central

    Hammond, Jennetta W.; Lu, Shao-Ming; Gelbard, Harris A.

    2016-01-01

    Platelet activating factor (PAF) is an inflammatory phospholipid signaling molecule implicated in synaptic plasticity, learning and memory and neurotoxicity during neuroinflammation. However, little is known about the intracellular mechanisms mediating PAF’s physiological or pathological effects on synaptic facilitation. We show here that PAF receptors are localized at the synapse. Using fluorescent reporters of presynaptic activity we show that a non-hydrolysable analog of PAF (cPAF) enhances synaptic vesicle release from individual presynaptic boutons by increasing the size or release of the readily releasable pool and the exocytosis rate of the total recycling pool. cPAF also activates previously silent boutons resulting in vesicle release from a larger number of terminals. The underlying mechanism involves elevated calcium within presynaptic boutons and protein kinase C activation. Furthermore, cPAF increases synapsin I phosphorylation at sites 1 and 3, and increases dispersion of synapsin I from the presynaptic compartment during stimulation, freeing synaptic vesicles for subsequent release. These findings provide a conceptual framework for how PAF, regardless of its cellular origin, can modulate synapses during normal and pathologic synaptic activity. PMID:26778968

  20. Analysis of shape and spatial interaction of synaptic vesicles using data from focused ion beam scanning electron microscopy (FIB-SEM)

    PubMed Central

    Khanmohammadi, Mahdieh; Waagepetersen, Rasmus P.; Sporring, Jon

    2015-01-01

    The spatial interactions of synaptic vesicles in synapses were assessed after a detailed characterization of size, shape, and orientation of the synaptic vesicles. We hypothesized that shape and orientation of the synaptic vesicles are influenced by their movement toward the active zone causing deviations from spherical shape and systematic trends in their orientation. We studied three-dimensional representations of synapses obtained by manual annotation of focused ion beam scanning electron microscopy (FIB-SEM) images of male mouse brain. The configurations of synaptic vesicles were regarded as marked point patterns, where the points are the centers of the vesicles, and the mark of a vesicle is given by its size, shape, and orientation characteristics. Statistics for marked point processes were employed to study spatial interactions between vesicles. We found that the synaptic vesicles in excitatory synapses appeared to be of oblate ellipsoid shape and in inhibitory synapses appeared to be of cigar ellipsoid shape, and followed a systematic pattern regarding their orientation toward the active zone. Moreover, there was strong evidence of spatial alignment in the orientations of pairs of synaptic vesicles, and of repulsion between them only in excitatory synapses, beyond that caused by their physical extent. PMID:26388743

  1. Botulinum Neurotoxins Can Enter Cultured Neurons Independent of Synaptic Vesicle Recycling

    PubMed Central

    Pellett, Sabine; Tepp, William H.; Scherf, Jacob M.; Johnson, Eric A.

    2015-01-01

    Botulinum neurotoxins (BoNTs) are the causative agent of the severe and long-lasting disease botulism. At least seven different serotypes of BoNTs (denoted A-G) have been described. All BoNTs enter human or animal neuronal cells via receptor mediated endocytosis and cleave cytosolic SNARE proteins, resulting in a block of synaptic vesicle exocytosis, leading to the flaccid paralysis characteristic of botulism. Previous data have indicated that once a neuronal cell has been intoxicated by a BoNT, further entry of the same or other BoNTs is prevented due to disruption of synaptic vesicle recycling. However, it has also been shown that cultured neurons exposed to BoNT/A are still capable of taking up BoNT/E. In this report we show that in general BoNTs can enter cultured human or mouse neuronal cells that have previously been intoxicated with another BoNT serotype. Quantitative analysis of cell entry by assessing SNARE cleavage revealed none or only a minor difference in the efficiency of uptake of BoNTs into previously intoxicated neurons. Examination of the endocytic entry pathway by specific endocytosis inhibitors indicated that BoNTs are taken up by clathrin coated pits in both non pre-exposed and pre-exposed neurons. LDH release assays indicated that hiPSC derived neurons exposed consecutively to two different BoNT serotypes remained viable and healthy except in the case of BoNT/E or combinations of BoNT/E with BoNT/B, /D, or /F. Overall, our data indicate that previous intoxication of neuronal cells with BoNT does not inhibit further uptake of BoNTs. PMID:26207366

  2. Botulinum Neurotoxins Can Enter Cultured Neurons Independent of Synaptic Vesicle Recycling.

    PubMed

    Pellett, Sabine; Tepp, William H; Scherf, Jacob M; Johnson, Eric A

    2015-01-01

    Botulinum neurotoxins (BoNTs) are the causative agent of the severe and long-lasting disease botulism. At least seven different serotypes of BoNTs (denoted A-G) have been described. All BoNTs enter human or animal neuronal cells via receptor mediated endocytosis and cleave cytosolic SNARE proteins, resulting in a block of synaptic vesicle exocytosis, leading to the flaccid paralysis characteristic of botulism. Previous data have indicated that once a neuronal cell has been intoxicated by a BoNT, further entry of the same or other BoNTs is prevented due to disruption of synaptic vesicle recycling. However, it has also been shown that cultured neurons exposed to BoNT/A are still capable of taking up BoNT/E. In this report we show that in general BoNTs can enter cultured human or mouse neuronal cells that have previously been intoxicated with another BoNT serotype. Quantitative analysis of cell entry by assessing SNARE cleavage revealed none or only a minor difference in the efficiency of uptake of BoNTs into previously intoxicated neurons. Examination of the endocytic entry pathway by specific endocytosis inhibitors indicated that BoNTs are taken up by clathrin coated pits in both non pre-exposed and pre-exposed neurons. LDH release assays indicated that hiPSC derived neurons exposed consecutively to two different BoNT serotypes remained viable and healthy except in the case of BoNT/E or combinations of BoNT/E with BoNT/B, /D, or /F. Overall, our data indicate that previous intoxication of neuronal cells with BoNT does not inhibit further uptake of BoNTs. PMID:26207366

  3. Structure Parameters of Synaptic Vesicles Quantified by Small-Angle X-Ray Scattering

    PubMed Central

    Castorph, Simon; Riedel, Dietmar; Arleth, Lise; Sztucki, Michael; Jahn, Reinhard; Holt, Matthew; Salditt, Tim

    2010-01-01

    Synaptic vesicles (SVs) are small, membrane-bound organelles that are found in the synaptic terminal of neurons, and which are crucial in neurotransmission. After a rise in internal [Ca2+] during neuronal stimulation, SVs fuse with the plasma membrane releasing their neurotransmitter content, which then signals neighboring neurons. SVs are subsequently recycled and refilled with neurotransmitter for further rounds of release. Recently, tremendous progress has been made in elucidating the molecular composition of SVs, as well as putative protein-protein interactions. However, what is lacking is an empirical description of SV structure at the supramolecular level—which is necessary to enable us to fully understand the processes of membrane fusion, retrieval, and recycling. Using small-angle x-ray scattering, we have directly investigated the size and structure of purified SVs. From this information, we deduced detailed size and density parameters for the protein layers responsible for SV function, as well as information about the lipid bilayer. To achieve a convincing model fit, a laterally anisotropic structure for the protein shell is needed, as a rotationally symmetric density profile does not explain the data. Not only does our model confirm many of the preexisting ideas concerning SV structure, but also for the first time, to our knowledge, it indicates structural refinements, such as the presence of protein microdomains. PMID:20371319

  4. Temperature-sensitive paralytic mutants: insights into the synaptic vesicle cycle.

    PubMed

    Vijayakrishnan, N; Broadie, K

    2006-02-01

    Forward genetic screens have identified numerous proteins with critical roles in neurotransmission. One particularly fruitful screening target in Drosophila has been TS (temperature-sensitive) paralytic mutants, which have revealed proteins acutely required in neuronal signalling. In the present paper, we review recent insights and current questions from one recently cloned TS paralytic mutant, rbo (rolling blackout). The rbo mutant identifies a putative integral lipase of the pre-synaptic plasma membrane that is required for the SV (synaptic vesicle) cycle. Identification of this mutant adds to a growing body of evidence that lipid-modifying enzymes locally control specialized lipid microenvironments and lipid signalling pathways with key functions regulating neurotransmission strength. The RBO protein is absolutely required for phospholipase C signalling in phototransduction. We posit that RBO might be required to regulate the availability of fusogenic lipids such as phosphatidylinositol 4,5-bisphosphate and diacylglycerol that may directly modify membrane properties and/or activate lipid-binding fusogenic proteins mediating SV exocytosis. PMID:16417488

  5. Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2.

    PubMed

    Jung, Nadja; Wienisch, Martin; Gu, Mingyu; Rand, James B; Müller, Sebastian L; Krause, Gerd; Jorgensen, Erik M; Klingauf, Jürgen; Haucke, Volker

    2007-12-31

    Synaptic transmission depends on clathrin-mediated recycling of synaptic vesicles (SVs). How select SV proteins are targeted for internalization has remained elusive. Stonins are evolutionarily conserved adaptors dedicated to endocytic sorting of the SV protein synaptotagmin. Our data identify the molecular determinants for recognition of synaptotagmin by stonin 2 or its Caenorhabditis elegans orthologue UNC-41B. The interaction involves the direct association of clusters of basic residues on the surface of the cytoplasmic domain of synaptotagmin 1 and a beta strand within the mu-homology domain of stonin 2. Mutation of K783, Y784, and E785 to alanine within this stonin 2 beta strand results in failure of the mutant stonin protein to associate with synaptotagmin, to accumulate at synapses, and to facilitate synaptotagmin internalization. Synaptotagmin-binding-defective UNC-41B is unable to rescue paralysis in C. elegans stonin mutant animals, suggesting that the mechanism of stonin-mediated SV cargo recognition is conserved from worms to mammals. PMID:18166656

  6. The Molecular Physiology of Activity-Dependent Bulk Endocytosis of Synaptic Vesicles

    PubMed Central

    Clayton, Emma L.; Cousin, Michael A.

    2010-01-01

    Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Since maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions single SV retrieval modes such as clathrin-mediated endocytosis (CME) predominate. However during increased neuronal activity additional SV retrieval capacity is required, which is provided by activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mechanism during elevated neuronal activity. It is a high capacity SV retrieval mode that is immediately triggered during such stimulation conditions. This review will summarise the current knowledge regarding the molecular mechanism of ADBE, including molecules required for its triggering and subsequent steps, including SV budding from bulk endosomes. The molecular relationship between ADBE and the SV reserve pool will also be discussed. It is becoming clear that an understanding of the molecular physiology of ADBE will be of critical importance in attempts to modulate both normal and abnormal synaptic function during intense neuronal activity. PMID:19765184

  7. The synaptic vesicle protein synaptophysin: purification and characterization of its channel activity.

    PubMed Central

    Gincel, Dan; Shoshan-Barmatz, Varda

    2002-01-01

    The synaptic vesicle protein synaptophysin was solubilized from rat brain synaptosomes with a relatively low concentration of Triton X-100 (0.2%) and was highly purified (above 95%) using a rapid single chromatography step on hydroxyapatite/celite resin. Purified synaptophysin was reconstituted into a planar lipid bilayer and the channel activity of synaptophysin was characterized. In asymmetric KCl solutions (cis 300 mM/trans 100 mM), synaptophysin formed a fast-fluctuating channel with a conductance of 414 +/- 13 pS at +60 mV. The open probability of synaptophysin channels was decreased upon depolarization, and channels were found to be cation-selective. Synaptophysin channels showed higher selectivity for K(+) over Cl(-) (P(K(+))/P(Cl(-)) > 8) and preferred K(+) over Li(+), Na(+), Rb(+), Cs(+), or choline(+). The synaptophysin channel is impermeable to Ca(2+), which has no effect on its channel activity. This study is the second demonstration of purified synaptophysin channel activity, but the first biophysical characterization of its channel properties. The availability of large amounts of purified synaptophysin and of its characteristic channel properties might help to establish the role of synaptophysin in synaptic transmission. PMID:12496091

  8. Micrometer-size vesicle formation triggered by UV light.

    PubMed

    Shima, Tatsuya; Muraoka, Takahiro; Hamada, Tsutomu; Morita, Masamune; Takagi, Masahiro; Fukuoka, Hajime; Inoue, Yuichi; Sagawa, Takashi; Ishijima, Akihiko; Omata, Yuki; Yamashita, Takashi; Kinbara, Kazushi

    2014-07-01

    Vesicle formation is a fundamental kinetic process related to the vesicle budding and endocytosis in a cell. In the vesicle formation by artificial means, transformation of lamellar lipid aggregates into spherical architectures is a key process and known to be prompted by e.g. heat, infrared irradiation, and alternating electric field induction. Here we report UV-light-driven formation of vesicles from particles consisting of crumpled phospholipid multilayer membranes involving a photoactive amphiphilic compound composed of 1,4-bis(4-phenylethynyl)benzene (BPEB) units. The particles can readily be prepared from a mixture of these components, which is casted on the glass surface followed by addition of water under ultrasonic radiation. Interestingly, upon irradiation with UV light, micrometer-size vesicles were generated from the particles. Neither infrared light irradiation nor heating prompted the vesicle formation. Taking advantage of the benefits of light, we successfully demonstrated micrometer-scale spatiotemporal control of single vesicle formation. It is also revealed that the BPEB units in the amphiphile are essential for this phenomenon. PMID:24898450

  9. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice.

    PubMed

    Yonekawa, Y; Harada, A; Okada, Y; Funakoshi, T; Kanai, Y; Takei, Y; Terada, S; Noda, T; Hirokawa, N

    1998-04-20

    The nerve axon is a good model system for studying the molecular mechanism of organelle transport in cells. Recently, the new kinesin superfamily proteins (KIFs) have been identified as candidate motor proteins involved in organelle transport. Among them KIF1A, a murine homologue of unc-104 gene of Caenorhabditis elegans, is a unique monomeric neuron- specific microtubule plus end-directed motor and has been proposed as a transporter of synaptic vesicle precursors (Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. Cell. 81:769-780). To elucidate the function of KIF1A in vivo, we disrupted the KIF1A gene in mice. KIF1A mutants died mostly within a day after birth showing motor and sensory disturbances. In the nervous systems of these mutants, the transport of synaptic vesicle precursors showed a specific and significant decrease. Consequently, synaptic vesicle density decreased dramatically, and clusters of clear small vesicles accumulated in the cell bodies. Furthermore, marked neuronal degeneration and death occurred both in KIF1A mutant mice and in cultures of mutant neurons. The neuronal death in cultures was blocked by coculture with wild-type neurons or exposure to a low concentration of glutamate. These results in cultures suggested that the mutant neurons might not sufficiently receive afferent stimulation, such as neuronal contacts or neurotransmission, resulting in cell death. Thus, our results demonstrate that KIF1A transports a synaptic vesicle precursor and that KIF1A-mediated axonal transport plays a critical role in viability, maintenance, and function of neurons, particularly mature neurons. PMID:9548721

  10. In vitro study of interaction of synaptic vesicles with lipid membranes

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.; Castorph, S.; Konovalov, O.; Jahn, R.; Holt, M.; Salditt, T.

    2010-10-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane in neurons is a crucial step in the release of neurotransmitters, which are responsible for carrying signals between nerve cells. While many of the molecular players involved in this fusion process have been identified, a precise molecular description of their roles in the process is still lacking. A case in point is the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Although PIP2 is known to be essential for vesicle fusion, its precise role in the process remains unclear. We have re-investigated the role of this lipid in membrane structure and function using the complementary experimental techniques of x-ray reflectivity, both on lipid monolayers at an air-water interface and bilayers on a solid support, and grazing incidence x-ray diffraction on lipid monolayers. These techniques provide unprecedented access to structural information at the molecular level, and detail the profound structural changes that occur in a membrane following PIP2 incorporation. Further, we also confirm and extend previous findings that the association of SVs with membranes is enhanced by PIP2 incorporation, and reveal the structural changes that underpin this phenomenon. Further, the association is further intensified by a physiologically relevant amount of Ca2+ ions in the subphase of the monolayer, as revealed by the increase in interfacial pressure seen with the lipid monolayer system. Finally, a theoretical calculation concerning the products arising from the fusion of these SVs with proteoliposomes is presented, with which we aim to illustrate the potential future uses of this system.

  11. Visualizing synaptic vesicle turnover and pool refilling driven by calcium nanodomains at presynaptic active zones of ribbon synapses.

    PubMed

    Vaithianathan, Thirumalini; Matthews, Gary

    2014-06-10

    Ribbon synapses of photoreceptor cells and second-order bipolar neurons in the retina are specialized to transmit graded signals that encode light intensity. Neurotransmitter release at ribbon synapses exhibits two kinetically distinct components, which serve different sensory functions. The faster component is depleted within milliseconds and generates transient postsynaptic responses that emphasize changes in light intensity. Despite the importance of this fast release for processing temporal and spatial contrast in visual signals, the physiological basis for this component is not precisely known. By imaging synaptic vesicle turnover and Ca(2+) signals at single ribbons in zebrafish bipolar neurons, we determined the locus of fast release, the speed and site of Ca(2+) influx driving rapid release, and the location where new vesicles are recruited to replenish the fast pool after it is depleted. At ribbons, Ca(2+) near the membrane rose rapidly during depolarization to levels >10 µM, whereas Ca(2+) at nonribbon locations rose more slowly to the lower level observed globally, consistent with selective positioning of Ca(2+) channels near ribbons. The local Ca(2+) domain drove rapid exocytosis of ribbon-associated synaptic vesicles nearest the plasma membrane, accounting for the fast component of neurotransmitter release. However, new vesicles replacing those lost arrived selectively at the opposite pole of the ribbon, distal to the membrane. Overall, the results suggest a model for fast release in which nanodomain Ca(2+) triggers exocytosis of docked vesicles, which are then replaced by more distant ribbon-attached vesicles, creating opportunities for new vesicles to associate with the ribbon at membrane-distal sites. PMID:24912160

  12. The Molecular Chaperone Hsc70 Interacts with Tyrosine Hydroxylase to Regulate Enzyme Activity and Synaptic Vesicle Localization.

    PubMed

    Parra, Leonardo A; Baust, Tracy B; Smith, Amanda D; Jaumotte, Juliann D; Zigmond, Michael J; Torres, Soledad; Leak, Rehana K; Pino, Jose A; Torres, Gonzalo E

    2016-08-19

    We previously reported that the vesicular monoamine transporter 2 (VMAT2) is physically and functionally coupled with Hsc70 as well as with the dopamine synthesis enzymes tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase, providing a novel mechanism for dopamine homeostasis regulation. Here we expand those findings to demonstrate that Hsc70 physically and functionally interacts with TH to regulate the enzyme activity and synaptic vesicle targeting. Co-immunoprecipitation assays performed in brain tissue and heterologous cells demonstrated that Hsc70 interacts with TH and aromatic amino acid decarboxylase. Furthermore, in vitro binding assays showed that TH directly binds the substrate binding and carboxyl-terminal domains of Hsc70. Immunocytochemical studies indicated that Hsc70 and TH co-localize in midbrain dopaminergic neurons. The functional significance of the Hsc70-TH interaction was then investigated using TH activity assays. In both dopaminergic MN9D cells and mouse brain synaptic vesicles, purified Hsc70 facilitated an increase in TH activity. Neither the closely related protein Hsp70 nor the unrelated Hsp60 altered TH activity, confirming the specificity of the Hsc70 effect. Overexpression of Hsc70 in dopaminergic MN9D cells consistently resulted in increased TH activity whereas knockdown of Hsc70 by short hairpin RNA resulted in decreased TH activity and dopamine levels. Finally, in cells with reduced levels of Hsc70, the amount of TH associated with synaptic vesicles was decreased. This effect was rescued by addition of purified Hsc70. Together, these data demonstrate a novel interaction between Hsc70 and TH that regulates the activity and localization of the enzyme to synaptic vesicles, suggesting an important role for Hsc70 in dopamine homeostasis. PMID:27365397

  13. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone.

    PubMed

    Körber, Christoph; Kuner, Thomas

    2016-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ. PMID:26973506

  14. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone

    PubMed Central

    Körber, Christoph; Kuner, Thomas

    2016-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ. PMID:26973506

  15. Monitoring Synaptic Vesicle Protein Sorting with Enhanced Horseradish Peroxidase in the Electron Microscope.

    PubMed

    Schikorski, Thomas

    2016-01-01

    Protein sorting is the fundamental cellular process that creates and maintains cell organelles and subcellular structures. The synaptic vesicle (SV) is a unique cell organelle that contains a plethora of specific SV proteins and its protein composition is crucial for its function. Thus understanding the mechanisms that sort proteins to SVs and other cell organelles is central to neuroscience and cell biology.While in the past protein sorting was studied in the fluorescence and confocal microscope, we here present a protocol that reveals SV protein trafficking and sorting in the electron microscope (EM). The protocol exploits tagging SV proteins with a new genetically encoded label for EM: enhanced horseradish peroxidase (eHRP). eHRP gained its high sensitivity through direct evolution of its catalytic activity and is detectable in the EM and LM after expression in neurons and other mammalian cells. The protocol describes the use of eHRP, labeling of SVs in cultured hippocampal neurons, and analysis via serial section reconstruction. PMID:27515091

  16. Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals*

    PubMed Central

    Marland, Jamie Roslin Keynes; Hasel, Philip; Bonnycastle, Katherine; Cousin, Michael Alan

    2016-01-01

    Presynaptic calcium influx triggers synaptic vesicle (SV) exocytosis and modulates subsequent SV endocytosis. A number of calcium clearance mechanisms are present in central nerve terminals that regulate intracellular free calcium levels both during and after stimulation. During action potential stimulation, mitochondria rapidly accumulate presynaptic calcium via the mitochondrial calcium uniporter (MCU). The role of mitochondrial calcium uptake in modulating SV recycling has been debated extensively, but a definitive conclusion has not been achieved. To directly address this question, we manipulated the expression of the MCU channel subunit in primary cultures of neurons expressing a genetically encoded reporter of SV turnover. Knockdown of MCU resulted in ablation of activity-dependent mitochondrial calcium uptake but had no effect on the rate or extent of SV exocytosis. In contrast, the rate of SV endocytosis was increased in the absence of mitochondrial calcium uptake and slowed when MCU was overexpressed. MCU knockdown did not perturb activity-dependent increases in presynaptic free calcium, suggesting that SV endocytosis may be controlled by calcium accumulation and efflux from mitochondria in their immediate vicinity. PMID:26644474

  17. Active transport of. gamma. -aminobutyric acid and glycine into synaptic vesicles

    SciTech Connect

    Kish, P.E.; Fischer-Bovenkerk, C.; Ueda, T. )

    1989-05-01

    Although {gamma}-aminobutyric acid (GABA) and glycine are recognized as major amino acid inhibitory neurotransmitters in the central nervous system, their storage is poorly understood. In this study the authors have characterized vesicular GABA and glycine uptakes in the cerebrum and spinal cord, respectively. They present evidence that GABA and glycine are each taken up into isolated synaptic vesicles in an ATP-dependent manner and that the uptake is driven by an electrochemical proton gradient. Uptake for both amino acids exhibited kinetics with low affinity similar to a vesicular glutamate uptake. The ATP-dependent GABA uptake was not inhibited by the putative amino acid neurotransmitters glycine, taurine, glutamate, or aspartate or by GABA analogs, agonists, and antagonists. Similarly, ATP-dependent glycine uptake was hardly affected by GABA, taurine, glutamate, or aspartate or by glycine analogs or antagonists. The GABA uptake was not affected by chloride, which is in contrast to the uptake of the excitatory neurotransmitter glutamate, whereas the glycine uptake was slightly stimulated by low concentrations of chloride. Tissue distribution studies indicate that the vesicular uptake systems for GABA, glycine, and glutamate are distributed in different proportions in the cerebrum and spinal cord. These results suggest that the vesicular uptake systems for GABA, glycine, and glutamate are distinct from each other.

  18. Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals.

    PubMed

    Marland, Jamie Roslin Keynes; Hasel, Philip; Bonnycastle, Katherine; Cousin, Michael Alan

    2016-01-29

    Presynaptic calcium influx triggers synaptic vesicle (SV) exocytosis and modulates subsequent SV endocytosis. A number of calcium clearance mechanisms are present in central nerve terminals that regulate intracellular free calcium levels both during and after stimulation. During action potential stimulation, mitochondria rapidly accumulate presynaptic calcium via the mitochondrial calcium uniporter (MCU). The role of mitochondrial calcium uptake in modulating SV recycling has been debated extensively, but a definitive conclusion has not been achieved. To directly address this question, we manipulated the expression of the MCU channel subunit in primary cultures of neurons expressing a genetically encoded reporter of SV turnover. Knockdown of MCU resulted in ablation of activity-dependent mitochondrial calcium uptake but had no effect on the rate or extent of SV exocytosis. In contrast, the rate of SV endocytosis was increased in the absence of mitochondrial calcium uptake and slowed when MCU was overexpressed. MCU knockdown did not perturb activity-dependent increases in presynaptic free calcium, suggesting that SV endocytosis may be controlled by calcium accumulation and efflux from mitochondria in their immediate vicinity. PMID:26644474

  19. Vesicle Size Regulates Nanotube Formation in the Cell

    PubMed Central

    Su, Qian Peter; Du, Wanqing; Ji, Qinghua; Xue, Boxin; Jiang, Dong; Zhu, Yueyao; Lou, Jizhong; Yu, Li; Sun, Yujie

    2016-01-01

    Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100–200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500–1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling. PMID:27052881

  20. Vesicle Size Regulates Nanotube Formation in the Cell.

    PubMed

    Su, Qian Peter; Du, Wanqing; Ji, Qinghua; Xue, Boxin; Jiang, Dong; Zhu, Yueyao; Lou, Jizhong; Yu, Li; Sun, Yujie

    2016-01-01

    Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100-200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500-1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling. PMID:27052881

  1. Effects of diet on synaptic vesicle release in dynactin complex mutants: a mechanism for improved vitality during motor disease

    PubMed Central

    Rawson, Joel M.; Kreko, Tabita; Davison, Holly; Mahoney, Rebekah; Bokov, Alex; Chang, Leo; Gelfond, Jon; Macleod, Greg T.; Eaton, Benjamin A.

    2012-01-01

    Summary Synaptic dysfunction is considered the primary substrate for the functional declines observed within the nervous system during age-related neurodegenerative disease. Dietary restriction (DR), which extends lifespan in numerous species, has been shown to have beneficial effects on many neurodegenerative disease models. Existing data sets suggest that the effects of DR during disease include the amelioration of synaptic dysfunction but evidence of the beneficial effects of diet on the synapse is lacking. Dynactin mutant flies have significant increases in mortality rates and exhibit progressive loss of motor function. Using a novel fly motor disease model, we demonstrate that mutant flies raised on a low calorie diet have enhanced motor function and improved survival compared to flies on a high calorie diet. Neurodegeneration in this model is characterized by an early impairment of neurotransmission that precedes the deterioration of neuromuscular junction (NMJ) morphology. In mutant flies, low calorie diet increases neurotransmission, but has little effect on morphology, supporting the hypothesis that enhanced neurotransmission contributes to the effects of diet on motor function. Importantly, the effects of diet on the synapse are not due to the reduction of mutant pathologies, but by the increased release of synaptic vesicles during activity. The generality of this effect is demonstrated by the observation that diet can also increase synaptic vesicle release at wild type NMJs. These studies reveal a novel presynaptic mechanism of diet that may contribute to the improved vigor observed in mutant flies raised on low calorie diet. PMID:22268717

  2. Tetraspanins in extracellular vesicle formation and function.

    PubMed

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted. PMID:25278937

  3. Tetraspanins in Extracellular Vesicle Formation and Function

    PubMed Central

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted. PMID:25278937

  4. Functional reconstitution of the. gamma. -aminobutyric acid transporter from synaptic vesicles using artificial ion gradients

    SciTech Connect

    Hell, J.W.; Edelmann, L.; Hartinger, J.; Jahn, R. )

    1991-12-24

    The {gamma}-aminobutyric acid transporter of rat brain synaptic vesicles was reconstituted in proteoliposomes, and its activity was studied in response to artificially created membrane potentials or proton gradients. Changes of the membrane potential were monitored using the dyes oxonol VI and 3,3{prime}-diisopropylthiodicarbocyanine iodide, and changes of the H{sup +} gradient were followed using acridine orange. An inside positive membrane potential was generated by the creation of an inwardly directed K{sup +} gradient and the subsequent addition of valinomycin. Under these conditions, valinomycin evoked uptake of ({sup 3}H)GABA which was saturable. Similarly, ({sup 3}H)glutamate uptake was stimulated by valinomycin, indicating that both transporters can be driven by the membrane potential. Proton gradients were generated by the incubation of K{sup +}-loaded proteoliposomes in a buffer free of K{sup +} or Na{sup +} ions and the subsequent addition of nigericin. Proton gradients were also generated via the endogenous H{sup +} ATPase by incubation of K{sup +}-loaded proteoliposomes in equimolar K{sup +} buffer in the presence of valinomycin. These proton gradients evoked nonspecific, nonsaturable uptake of GABA and {beta}-alanine but not of glycine in proteoliposomes as well as protein-free liposomes. Therefore, transporter activity was monitored using glycine as an alternative substrate. Proton gradients generated by both methods elicited saturable glycine uptake in proteoliposomes. Together, these data confirm that the vesicular GABA transporter can be energized by both the membrane potential and the pH gradient and show that transport can be achieved by artificial gradients independently of the endogenous proton ATPase.

  5. Single calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling

    PubMed Central

    Stanley, Elise F

    2015-01-01

    At fast-transmitting presynaptic terminals Ca2+ enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca2+ that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular junction (NMJ), the SV sensors are located sufficiently close to individual CaVs to be gated by single nanodomains. However, at others, such as the mature rodent calyx of Held (calyx of Held), the physiology is more complex with evidence that CaVs that are both close and distant from the SV sensor and it is argued that release is gated primarily by the overlapping Ca2+ nanodomains from many CaVs. We devised a 'graphic modeling' method to sum Ca2+ from individual CaVs located at varying distances from the SV-sensor to determine the SV release probability and also the fraction of that probability that can be attributed to single domain gating. This method was applied first to simplified, low and high CaV density model release sites and then to published data on the contrasting frog NMJ and the rodent calyx of Held native synapses. We report 3 main predictions: the SV-sensor is positioned very close to the point at which the SV fuses with the membrane; single domain-release gating predominates even at synapses where the SV abuts a large cluster of CaVs, and even relatively remote CaVs can contribute significantly to single domain-based gating. PMID:26457441

  6. A Missense Mutation of the Gene Encoding Synaptic Vesicle Glycoprotein 2A (SV2A) Confers Seizure Susceptibility by Disrupting Amygdalar Synaptic GABA Release.

    PubMed

    Tokudome, Kentaro; Okumura, Takahiro; Terada, Ryo; Shimizu, Saki; Kunisawa, Naofumi; Mashimo, Tomoji; Serikawa, Tadao; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is specifically expressed in the membranes of synaptic vesicles and modulates action potential-dependent neurotransmitter release. To explore the role of SV2A in the pathogenesis of epileptic disorders, we recently generated a novel rat model (Sv2a(L174Q) rat) carrying a missense mutation of the Sv2a gene and showed that the Sv2a(L174Q) rats were hypersensitive to kindling development (Tokudome et al., 2016). Here, we further conducted behavioral and neurochemical studies to clarify the pathophysiological mechanisms underlying the seizure vulnerability in Sv2a(L174Q) rats. Sv2a(L174Q) rats were highly susceptible to pentylenetetrazole (PTZ)-induced seizures, yielding a significantly higher seizure scores and seizure incidence than the control animals. Brain mapping analysis of Fos expression, a biological marker of neural excitation, revealed that the seizure threshold level of PTZ region-specifically elevated Fos expression in the amygdala in Sv2a(L174Q) rats. In vivo microdialysis study showed that the Sv2a(L174Q) mutation preferentially reduced high K(+) (depolarization)-evoked GABA release, but not glutamate release, in the amygdala. In addition, specific control of GABA release by SV2A was supported by its predominant expression in GABAergic neurons, which were co-stained with antibodies against SV2A and glutamate decarboxylase 1. The present results suggest that dysfunction of SV2A by the missense mutation elevates seizure susceptibility in rats by preferentially disrupting synaptic GABA release in the amygdala, illustrating the crucial role of amygdalar SV2A-GABAergic system in epileptogenesis. PMID:27471467

  7. A Missense Mutation of the Gene Encoding Synaptic Vesicle Glycoprotein 2A (SV2A) Confers Seizure Susceptibility by Disrupting Amygdalar Synaptic GABA Release

    PubMed Central

    Tokudome, Kentaro; Okumura, Takahiro; Terada, Ryo; Shimizu, Saki; Kunisawa, Naofumi; Mashimo, Tomoji; Serikawa, Tadao; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is specifically expressed in the membranes of synaptic vesicles and modulates action potential-dependent neurotransmitter release. To explore the role of SV2A in the pathogenesis of epileptic disorders, we recently generated a novel rat model (Sv2aL174Q rat) carrying a missense mutation of the Sv2a gene and showed that the Sv2aL174Q rats were hypersensitive to kindling development (Tokudome et al., 2016). Here, we further conducted behavioral and neurochemical studies to clarify the pathophysiological mechanisms underlying the seizure vulnerability in Sv2aL174Q rats. Sv2aL174Q rats were highly susceptible to pentylenetetrazole (PTZ)-induced seizures, yielding a significantly higher seizure scores and seizure incidence than the control animals. Brain mapping analysis of Fos expression, a biological marker of neural excitation, revealed that the seizure threshold level of PTZ region-specifically elevated Fos expression in the amygdala in Sv2aL174Q rats. In vivo microdialysis study showed that the Sv2aL174Q mutation preferentially reduced high K+ (depolarization)-evoked GABA release, but not glutamate release, in the amygdala. In addition, specific control of GABA release by SV2A was supported by its predominant expression in GABAergic neurons, which were co-stained with antibodies against SV2A and glutamate decarboxylase 1. The present results suggest that dysfunction of SV2A by the missense mutation elevates seizure susceptibility in rats by preferentially disrupting synaptic GABA release in the amygdala, illustrating the crucial role of amygdalar SV2A-GABAergic system in epileptogenesis. PMID:27471467

  8. Vesicle formation and endocytosis: function, machinery, mechanisms, and modeling.

    PubMed

    Parkar, Nihal S; Akpa, Belinda S; Nitsche, Ludwig C; Wedgewood, Lewis E; Place, Aaron T; Sverdlov, Maria S; Chaga, Oleg; Minshall, Richard D

    2009-06-01

    Vesicle formation provides a means of cellular entry for extracellular substances and for recycling of membrane constituents. Mechanisms governing the two primary endocytic pathways (i.e., caveolae- and clathrin-mediated endocytosis, as well as newly emerging vesicular pathways) have become the focus of intense investigation to improve our understanding of nutrient, hormone, and drug delivery, as well as opportunistic invasion of pathogens. In this review of endocytosis, we broadly discuss the structural and signaling proteins that compose the molecular machinery governing endocytic vesicle formation (budding, invagination, and fission from the membrane), with some regard for the specificity observed in certain cell types and species. Important biochemical functions of endocytosis and diseases caused by their disruption also are discussed, along with the structures of key components of endocytic pathways and their known mechanistic contributions. The mechanisms by which principal components of the endocytic machinery are recruited to the plasma membrane, where they interact to induce vesicle formation, are discussed, together with computational approaches used to simulate simplified versions of endocytosis with the hope of clarifying aspects of vesicle formation that may be difficult to determine experimentally. Finally, we pose several unanswered questions intended to stimulate further research interest in the cell biology and modeling of endocytosis. PMID:19113823

  9. Vesicle Formation and Endocytosis: Function, Machinery, Mechanisms, and Modeling

    PubMed Central

    Parkar, Nihal S.; Akpa, Belinda S.; Nitsche, Ludwig C.; Wedgewood, Lewis E.; Place, Aaron T.; Sverdlov, Maria S.; Chaga, Oleg

    2009-01-01

    Abstract Vesicle formation provides a means of cellular entry for extracellular substances and for recycling of membrane constituents. Mechanisms governing the two primary endocytic pathways (i.e., caveolae- and clathrin-mediated endocytosis, as well as newly emerging vesicular pathways) have become the focus of intense investigation to improve our understanding of nutrient, hormone, and drug delivery, as well as opportunistic invasion of pathogens. In this review of endocytosis, we broadly discuss the structural and signaling proteins that compose the molecular machinery governing endocytic vesicle formation (budding, invagination, and fission from the membrane), with some regard for the specificity observed in certain cell types and species. Important biochemical functions of endocytosis and diseases caused by their disruption also are discussed, along with the structures of key components of endocytic pathways and their known mechanistic contributions. The mechanisms by which principal components of the endocytic machinery are recruited to the plasma membrane, where they interact to induce vesicle formation, are discussed, together with computational approaches used to simulate simplified versions of endocytosis with the hope of clarifying aspects of vesicle formation that may be difficult to determine experimentally. Finally, we pose several unanswered questions intended to stimulate further research interest in the cell biology and modeling of endocytosis. Antioxid. Redox Signal. 11, 1301–1312. PMID:19113823

  10. Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila Complexins orchestrates synaptic vesicle exocytosis

    PubMed Central

    Xue, Mingshan; Lin, Yong Qi; Pan, Hongling; Reim, Kerstin; Deng, Hui; Bellen, Hugo J.; Rosenmund, Christian

    2009-01-01

    Summary SNARE-mediated synaptic exocytosis is orchestrated by facilitatory and inhibitory mechanisms. Genetic ablations of Complexins, a family of SNARE complex–binding proteins, in mice and Drosophila cause apparently opposite effects on neurotransmitter release, leading to contradictory hypotheses of Complexin function. Reconstitution experiments with different fusion assays and Complexins also yield conflicting results. We therefore performed cross-species rescue experiments to compare the functions of murine and Drosophila Complexins in both mouse and fly synapses. We found that murine and Drosophila Complexins employ conserved mechanisms to regulate exocytosis despite their strikingly different overall effects on neurotransmitter release. Both Complexins contain distinct domains that facilitate or inhibit synaptic vesicle fusion, and the strength of each facilitatory or inhibitory function differs significantly between murine and Drosophila Complexins. Our results show that a relative shift in the balance of facilitatory and inhibitory functions results in differential regulation of neurotransmitter release by murine and Drosophila Complexins in vivo, reconciling previous incompatible findings. PMID:19914185

  11. Working memory impairment in calcineurin knock-out mice is associated with alterations in synaptic vesicle cycling and disruption of high-frequency synaptic and network activity in prefrontal cortex.

    PubMed

    Cottrell, Jeffrey R; Levenson, Jonathan M; Kim, Sung Hyun; Gibson, Helen E; Richardson, Kristen A; Sivula, Michael; Li, Bing; Ashford, Crystle J; Heindl, Karen A; Babcock, Ryan J; Rose, David M; Hempel, Chris M; Wiig, Kjesten A; Laeng, Pascal; Levin, Margaret E; Ryan, Timothy A; Gerber, David J

    2013-07-01

    Working memory is an essential component of higher cognitive function, and its impairment is a core symptom of multiple CNS disorders, including schizophrenia. Neuronal mechanisms supporting working memory under normal conditions have been described and include persistent, high-frequency activity of prefrontal cortical neurons. However, little is known about the molecular and cellular basis of working memory dysfunction in the context of neuropsychiatric disorders. To elucidate synaptic and neuronal mechanisms of working memory dysfunction, we have performed a comprehensive analysis of a mouse model of schizophrenia, the forebrain-specific calcineurin knock-out mouse. Biochemical analyses of cortical tissue from these mice revealed a pronounced hyperphosphorylation of synaptic vesicle cycling proteins known to be necessary for high-frequency synaptic transmission. Examination of the synaptic vesicle cycle in calcineurin-deficient neurons demonstrated an impairment of vesicle release enhancement during periods of intense stimulation. Moreover, brain slice and in vivo electrophysiological analyses showed that loss of calcineurin leads to a gene dose-dependent disruption of high-frequency synaptic transmission and network activity in the PFC, correlating with selective working memory impairment. Finally, we showed that levels of dynamin I, a key presynaptic protein and calcineurin substrate, are significantly reduced in prefrontal cortical samples from schizophrenia patients, extending the disease relevance of our findings. Our data provide support for a model in which impaired synaptic vesicle cycling represents a critical node for disease pathologies underlying the cognitive deficits in schizophrenia. PMID:23825400

  12. CAPS1 stabilizes the state of readily releasable synaptic vesicles to fusion competence at CA3–CA1 synapses in adult hippocampus

    PubMed Central

    Shinoda, Yo; Ishii, Chiaki; Fukazawa, Yugo; Sadakata, Tetsushi; Ishii, Yuki; Sano, Yoshitake; Iwasato, Takuji; Itohara, Shigeyoshi; Furuichi, Teiichi

    2016-01-01

    Calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles in neuroendocrine cells and of synaptic vesicles in neurons. However, the synaptic function of CAPS1 in the mature brain is unclear because Caps1 knockout (KO) results in neonatal death. Here, using forebrain-specific Caps1 conditional KO (cKO) mice, we demonstrate, for the first time, a critical role of CAPS1 in adult synapses. The amplitude of synaptic transmission at CA3–CA1 synapses was strongly reduced, and paired-pulse facilitation was significantly increased, in acute hippocampal slices from cKO mice compared with control mice, suggesting a perturbation in presynaptic function. Morphological analysis revealed an accumulation of synaptic vesicles in the presynapse without any overall morphological change. Interestingly, however, the percentage of docked vesicles was markedly decreased in the Caps1 cKO. Taken together, our findings suggest that CAPS1 stabilizes the state of readily releasable synaptic vesicles, thereby enhancing neurotransmitter release at hippocampal synapses. PMID:27545744

  13. Endosome-mediated endocytic mechanism replenishes the majority of synaptic vesicles at mature CNS synapses in an activity-dependent manner.

    PubMed

    Park, Joohyun; Cho, Oh Yeon; Kim, Jung Ah; Chang, Sunghoe

    2016-01-01

    Whether synaptic vesicles (SVs) are recovered via endosome-mediated pathways is a matter of debate; however, recent evidence suggests that clathrin-independent bulk endocytosis (CIE) via endosomes is functional and preferentially replenishes SV pools during strong stimulation. Here, using brefeldin-A (BFA) to block CIE, we found that CIE retrieved a minority of SVs at developing CNS synapses during strong stimulation, but its contribution increased up to 61% at mature CNS synapses. Contrary to previous views, BFA not only blocked SV formation from the endosome but also blocked the endosome formation at the plasma membrane. Adaptor protein 1 and 3 (AP-1/3) have key roles in SV reformation from endosomes during CIE, and AP-1 also affects bulk endosome formation from the plasma membrane. Finally, temporary blocking of chronic or acute neuronal activity with tetrodotoxin in mature neurons redirected most SV retrieval to endosome-independent pathways. These results show that during high neuronal activity, CIE becomes the major endocytic pathway at mature CNS synapses. Moreover, mature neurons use clathrin-mediated endocytosis and the CIE pathway to different extents depending on their previous activity; this may result in activity-dependent alterations of the SV composition which ultimately influence transmitter release and contribute to synaptic plasticity. PMID:27534442

  14. Endosome-mediated endocytic mechanism replenishes the majority of synaptic vesicles at mature CNS synapses in an activity-dependent manner

    PubMed Central

    Park, Joohyun; Cho, Oh Yeon; Kim, Jung Ah; Chang, Sunghoe

    2016-01-01

    Whether synaptic vesicles (SVs) are recovered via endosome-mediated pathways is a matter of debate; however, recent evidence suggests that clathrin-independent bulk endocytosis (CIE) via endosomes is functional and preferentially replenishes SV pools during strong stimulation. Here, using brefeldin-A (BFA) to block CIE, we found that CIE retrieved a minority of SVs at developing CNS synapses during strong stimulation, but its contribution increased up to 61% at mature CNS synapses. Contrary to previous views, BFA not only blocked SV formation from the endosome but also blocked the endosome formation at the plasma membrane. Adaptor protein 1 and 3 (AP-1/3) have key roles in SV reformation from endosomes during CIE, and AP-1 also affects bulk endosome formation from the plasma membrane. Finally, temporary blocking of chronic or acute neuronal activity with tetrodotoxin in mature neurons redirected most SV retrieval to endosome-independent pathways. These results show that during high neuronal activity, CIE becomes the major endocytic pathway at mature CNS synapses. Moreover, mature neurons use clathrin-mediated endocytosis and the CIE pathway to different extents depending on their previous activity; this may result in activity-dependent alterations of the SV composition which ultimately influence transmitter release and contribute to synaptic plasticity. PMID:27534442

  15. Synaptic clustering within dendrites: an emerging theory of memory formation

    PubMed Central

    Kastellakis, George; Cai, Denise J.; Mednick, Sara C.; Silva, Alcino J.; Poirazi, Panayiota

    2015-01-01

    It is generally accepted that complex memories are stored in distributed representations throughout the brain, however the mechanisms underlying these representations are not understood. Here, we review recent findings regarding the subcellular mechanisms implicated in memory formation, which provide evidence for a dendrite-centered theory of memory. Plasticity-related phenomena which affect synaptic properties, such as synaptic tagging and capture, synaptic clustering, branch strength potentiation and spinogenesis provide the foundation for a model of memory storage that relies heavily on processes operating at the dendrite level. The emerging picture suggests that clusters of functionally related synapses may serve as key computational and memory storage units in the brain. We discuss both experimental evidence and theoretical models that support this hypothesis and explore its advantages for neuronal function. PMID:25576663

  16. The effects of JM-20 on the glutamatergic system in synaptic vesicles, synaptosomes and neural cells cultured from rat brain.

    PubMed

    Nuñez-Figueredo, Yanier; Pardo Andreu, Gilberto L; Oliveira Loureiro, Samanta; Ganzella, Marcelo; Ramírez-Sánchez, Jeney; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Delgado-Hernández, René; Souza, Diogo O

    2015-02-01

    JM-20 (3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-4,11-dihydro-1H-pyrido[2,3-b][1,5]benzodiazepine) is a novel benzodiazepine dihydropyridine hybrid molecule, which has been shown to be a neuroprotective agent in brain disorders involving glutamate receptors. However, the effect of JM-20 on the functionality of the glutamatergic system has not been investigated. In this study, by using different in vitro preparations, we investigated the effects of JM-20 on (i) rat brain synaptic vesicles (L-[(3)H]-glutamate uptake, proton gradient built-up and bafilomycin-sensitive H(+)-ATPase activity), (ii) rat brain synaptosomes (glutamate release) and (iii) primary cultures of rat cortical neurons, astrocytes and astrocyte-neuron co-cultures (L-[(3)H]-glutamate uptake and glutamate release). We observed here that JM-20 impairs H(+)-ATPase activity and consequently reduces vesicular glutamate uptake. This molecule also inhibits glutamate release from brain synaptosomes and markedly increases glutamate uptake in astrocytes alone, and co-cultured neurons and astrocytes. The impairment of vesicular glutamate uptake by inhibition of the H(+)-ATPase caused by JM-20 could decrease the amount of the transmitter stored in synaptic vesicles, increase the cytosolic levels of glutamate, and will thus down-regulate neurotransmitter release. Together, these results contribute to explain the anti-excitotoxic effect of JM-20 and its strong neuroprotective effect observed in different in vitro and in vivo models of brain ischemia. PMID:25617730

  17. Cognitive impairment in Gdi1-deficient mice is associated with altered synaptic vesicle pools and short-term synaptic plasticity, and can be corrected by appropriate learning training

    PubMed Central

    Bianchi, Veronica; Farisello, Pasqualina; Baldelli, Pietro; Meskenaite, Virginia; Milanese, Marco; Vecellio, Matteo; Mühlemann, Sven; Lipp, Hans Peter; Bonanno, Giambattista; Benfenati, Fabio; Toniolo, Daniela; D'Adamo, Patrizia

    2009-01-01

    The GDI1 gene, responsible in human for X-linked non-specific mental retardation, encodes αGDI, a regulatory protein common to all GTPases of the Rab family. Its alteration, leading to membrane accumulation of different Rab GTPases, may affect multiple steps in neuronal intracellular traffic. Using electron microscopy and electrophysiology, we now report that lack of αGDI impairs several steps in synaptic vesicle (SV) biogenesis and recycling in the hippocampus. Alteration of the SV reserve pool (RP) and a 50% reduction in the total number of SV in adult synapses may be dependent on a defective endosomal-dependent recycling and may lead to the observed alterations in short-term plasticity. As predicted by the synaptic characteristics of the mutant mice, the short-term memory deficit, observed when using fear-conditioning protocols with short intervals between trials, disappeared when the Gdi1 mutants were allowed to have longer intervals between sessions. Likewise, previously observed deficits in radial maze learning could be corrected by providing less challenging pre-training. This implies that an intact RP of SVs is necessary for memory processing under challenging conditions in mice. The possibility to correct the learning deficit in mice may have clinical implication for future studies in human. PMID:18829665

  18. Vesicles

    MedlinePlus

    ... pox Contact dermatitis (may be caused by poison ivy) Herpes simplex (cold sores, genital herpes ) Herpes zoster ( ... for certain conditions that cause vesicles, including poison ivy and cold sores.

  19. Characterization of a Synaptic Vesicle Binding Motif on the Distal CaV2.2 Channel C-terminal

    PubMed Central

    Gardezi, Sabiha R.; Nath, Arup R.; Li, Qi; Stanley, Elise F.

    2016-01-01

    Neurotransmitter is released from synaptic vesicles (SVs) that are gated to fuse with the presynaptic membrane by calcium ions that enter through voltage-gated calcium channels (CaVs). There is compelling evidence that SVs associate closely with the CaVs but the molecular linking mechanisms remain poorly understood. Using a cell-free, synaptic vesicle-pull-down assay method (SV-PD) we have recently demonstrated that SVs can bind both to the intact CaV2.2 channel and also to a fusion protein comprising the distal third, C3 segment, of its long C-terminal. This site was localized to a 49 amino acid region just proximal to the C-terminal tip. To further restrict the SV binding site we generated five, 10 amino acid mimetic blocking peptides spanning this region. Of these, HQARRVPNGY effectively inhibited SV-PD and also inhibited SV recycling when cryoloaded into chick brain nerve terminals (synaptosomes). Further, SV-PD was markedly reduced using a C3 fusion protein that lacked the HQARRVPNGY sequence, C3HQless. We zeroed in on the SV binding motif within HQARRVPNGY by means of a palette of mutant blocking peptides. To our surprise, peptides that lacked the highly conserved VPNGY sequence still blocked SV-PD. However, substitution of the HQ and RR amino acids markedly reduced block. Of these, the RR pair was essential but not sufficient as the full block was not observed without H suggesting a CaV2.2 SV binding motif of HxxRR. Interestingly, CaV2.1, the other primary presynaptic calcium channel, exhibits a similar motif, RHxRR, that likely serves the same function. Bioinformatic analysis showed that variations of this binding motif, +(+) xRR (where + is a positively charged aa H or R), are conserved from lung-fish to man. Further studies will be necessary to identify the C terminal motif binding partner on the SV itself and to determine the role of this molecular interaction in synaptic transmission. We hypothesize that the distal C-terminal participates in the capture

  20. Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing.

    PubMed

    Jung, SangYong; Maritzen, Tanja; Wichmann, Carolin; Jing, Zhizi; Neef, Andreas; Revelo, Natalia H; Al-Moyed, Hanan; Meese, Sandra; Wojcik, Sonja M; Panou, Iliana; Bulut, Haydar; Schu, Peter; Ficner, Ralf; Reisinger, Ellen; Rizzoli, Silvio O; Neef, Jakob; Strenzke, Nicola; Haucke, Volker; Moser, Tobias

    2015-11-01

    Active zones (AZs) of inner hair cells (IHCs) indefatigably release hundreds of vesicles per second, requiring each release site to reload vesicles at tens per second. Here, we report that the endocytic adaptor protein 2μ (AP-2μ) is required for release site replenishment and hearing. We show that hair cell-specific disruption of AP-2μ slows IHC exocytosis immediately after fusion of the readily releasable pool of vesicles, despite normal abundance of membrane-proximal vesicles and intact endocytic membrane retrieval. Sound-driven postsynaptic spiking was reduced in a use-dependent manner, and the altered interspike interval statistics suggested a slowed reloading of release sites. Sustained strong stimulation led to accumulation of endosome-like vacuoles, fewer clathrin-coated endocytic intermediates, and vesicle depletion of the membrane-distal synaptic ribbon in AP-2μ-deficient IHCs, indicating a further role of AP-2μ in clathrin-dependent vesicle reformation on a timescale of many seconds. Finally, we show that AP-2 sorts its IHC-cargo otoferlin. We propose that binding of AP-2 to otoferlin facilitates replenishment of release sites, for example, via speeding AZ clearance of exocytosed material, in addition to a role of AP-2 in synaptic vesicle reformation. PMID:26446278

  1. Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity.

    PubMed

    Zeng, Menglong; Shang, Yuan; Araki, Yoichi; Guo, Tingfeng; Huganir, Richard L; Zhang, Mingjie

    2016-08-25

    Postsynaptic densities (PSDs) are membrane semi-enclosed, submicron protein-enriched cellular compartments beneath postsynaptic membranes, which constantly exchange their components with bulk aqueous cytoplasm in synaptic spines. Formation and activity-dependent modulation of PSDs is considered as one of the most basic molecular events governing synaptic plasticity in the nervous system. In this study, we discover that SynGAP, one of the most abundant PSD proteins and a Ras/Rap GTPase activator, forms a homo-trimer and binds to multiple copies of PSD-95. Binding of SynGAP to PSD-95 induces phase separation of the complex, forming highly concentrated liquid-like droplets reminiscent of the PSD. The multivalent nature of the SynGAP/PSD-95 complex is critical for the phase separation to occur and for proper activity-dependent SynGAP dispersions from the PSD. In addition to revealing a dynamic anchoring mechanism of SynGAP at the PSD, our results also suggest a model for phase-transition-mediated formation of PSD. PMID:27565345

  2. Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain.

    PubMed

    Freyberg, Zachary; Sonders, Mark S; Aguilar, Jenny I; Hiranita, Takato; Karam, Caline S; Flores, Jorge; Pizzo, Andrea B; Zhang, Yuchao; Farino, Zachary J; Chen, Audrey; Martin, Ciara A; Kopajtic, Theresa A; Fei, Hao; Hu, Gang; Lin, Yi-Ying; Mosharov, Eugene V; McCabe, Brian D; Freyberg, Robin; Wimalasena, Kandatege; Hsin, Ling-Wei; Sames, Dalibor; Krantz, David E; Katz, Jonathan L; Sulzer, David; Javitch, Jonathan A

    2016-01-01

    Amphetamines elevate extracellular dopamine, but the underlying mechanisms remain uncertain. Here we show in rodents that acute pharmacological inhibition of the vesicular monoamine transporter (VMAT) blocks amphetamine-induced locomotion and self-administration without impacting cocaine-induced behaviours. To study VMAT's role in mediating amphetamine action in dopamine neurons, we have used novel genetic, pharmacological and optical approaches in Drosophila melanogaster. In an ex vivo whole-brain preparation, fluorescent reporters of vesicular cargo and of vesicular pH reveal that amphetamine redistributes vesicle contents and diminishes the vesicle pH-gradient responsible for dopamine uptake and retention. This amphetamine-induced deacidification requires VMAT function and results from net H(+) antiport by VMAT out of the vesicle lumen coupled to inward amphetamine transport. Amphetamine-induced vesicle deacidification also requires functional dopamine transporter (DAT) at the plasma membrane. Thus, we find that at pharmacologically relevant concentrations, amphetamines must be actively transported by DAT and VMAT in tandem to produce psychostimulant effects. PMID:26879809

  3. Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain

    PubMed Central

    Freyberg, Zachary; Sonders, Mark S.; Aguilar, Jenny I.; Hiranita, Takato; Karam, Caline S.; Flores, Jorge; Pizzo, Andrea B.; Zhang, Yuchao; Farino, Zachary J.; Chen, Audrey; Martin, Ciara A.; Kopajtic, Theresa A.; Fei, Hao; Hu, Gang; Lin, Yi-Ying; Mosharov, Eugene V.; McCabe, Brian D.; Freyberg, Robin; Wimalasena, Kandatege; Hsin, Ling-Wei; Sames, Dalibor; Krantz, David E.; Katz, Jonathan L.; Sulzer, David; Javitch, Jonathan A.

    2016-01-01

    Amphetamines elevate extracellular dopamine, but the underlying mechanisms remain uncertain. Here we show in rodents that acute pharmacological inhibition of the vesicular monoamine transporter (VMAT) blocks amphetamine-induced locomotion and self-administration without impacting cocaine-induced behaviours. To study VMAT's role in mediating amphetamine action in dopamine neurons, we have used novel genetic, pharmacological and optical approaches in Drosophila melanogaster. In an ex vivo whole-brain preparation, fluorescent reporters of vesicular cargo and of vesicular pH reveal that amphetamine redistributes vesicle contents and diminishes the vesicle pH-gradient responsible for dopamine uptake and retention. This amphetamine-induced deacidification requires VMAT function and results from net H+ antiport by VMAT out of the vesicle lumen coupled to inward amphetamine transport. Amphetamine-induced vesicle deacidification also requires functional dopamine transporter (DAT) at the plasma membrane. Thus, we find that at pharmacologically relevant concentrations, amphetamines must be actively transported by DAT and VMAT in tandem to produce psychostimulant effects. PMID:26879809

  4. Synaptic vesicle exocytosis and increased cytosolic calcium are both necessary but not sufficient for activity-dependent bulk endocytosis.

    PubMed

    Morton, Andrew; Marland, Jamie R K; Cousin, Michael A

    2015-08-01

    Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. By definition this mode is triggered by neuronal activity; however, key questions regarding its mechanism of activation remain unaddressed. To determine the basic requirements for ADBE triggering in central nerve terminals, we decoupled SV fusion events from activity-dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. ADBE was monitored both optically and morphologically by observing uptake of the fluid phase markers tetramethylrhodamine-dextran and horse radish peroxidase respectively. Ablation of SV fusion with tetanus toxin resulted in the arrest of ADBE, but had no effect on other calcium-dependent events such as activity-dependent dynamin I dephosphorylation, indicating that SV exocytosis is necessary for triggering. Furthermore, the calcium chelator EGTA abolished ADBE while leaving SV exocytosis intact, demonstrating that ADBE is triggered by intracellular free calcium increases outside the active zone. Activity-dependent dynamin I dephosphorylation was also arrested in EGTA-treated neurons, consistent with its proposed role in triggering ADBE. Thus, SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient individually to trigger ADBE. Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. To determine the minimal requirements for ADBE triggering, we decoupled SV fusion events from activity-dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. We found that SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient to trigger ADBE. PMID:25913068

  5. Structural and Genetic Studies Demonstrate Neurologic Dysfunction in Triosephosphate Isomerase Deficiency Is Associated with Impaired Synaptic Vesicle Dynamics

    PubMed Central

    Roland, Bartholomew P.; Zeccola, Alison M.; Larsen, Samantha B.; Amrich, Christopher G.; Talsma, Aaron D.; Stuchul, Kimberly A.; Heroux, Annie; Levitan, Edwin S.; VanDemark, Andrew P.; Palladino, Michael J.

    2016-01-01

    Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches to demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. The present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface. PMID:27031109

  6. Autophagy modulates articular cartilage vesicle formation in primary articular chondrocytes.

    PubMed

    Rosenthal, Ann K; Gohr, Claudia M; Mitton-Fitzgerald, Elizabeth; Grewal, Rupinder; Ninomiya, James; Coyne, Carolyn B; Jackson, William T

    2015-05-22

    Chondrocyte-derived extracellular organelles known as articular cartilage vesicles (ACVs) participate in non-classical protein secretion, intercellular communication, and pathologic calcification. Factors affecting ACV formation and release remain poorly characterized; although in some cell types, the generation of extracellular vesicles is associated with up-regulation of autophagy. We sought to determine the role of autophagy in ACV production by primary articular chondrocytes. Using an innovative dynamic model with a light scatter nanoparticle counting apparatus, we determined the effects of autophagy modulators on ACV number and content in conditioned medium from normal adult porcine and human osteoarthritic chondrocytes. Healthy articular chondrocytes release ACVs into conditioned medium and show significant levels of ongoing autophagy. Rapamycin, which promotes autophagy, increased ACV numbers in a dose- and time-dependent manner associated with increased levels of autophagy markers and autophagosome formation. These effects were suppressed by pharmacologic autophagy inhibitors and short interfering RNA for ATG5. Caspase-3 inhibition and a Rho/ROCK inhibitor prevented rapamycin-induced increases in ACV number. Osteoarthritic chondrocytes, which are deficient in autophagy, did not increase ACV number in response to rapamycin. SMER28, which induces autophagy via an mTOR-independent mechanism, also increased ACV number. ACVs induced under all conditions had similar ecto-enzyme specific activities and types of RNA, and all ACVs contained LC3, an autophagosome-resident protein. These findings identify autophagy as a critical participant in ACV formation, and augment our understanding of ACVs in cartilage disease and repair. PMID:25869133

  7. Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour

    PubMed Central

    Hernández-Hernández, Oscar; Guiraud-Dogan, Céline; Sicot, Géraldine; Huguet, Aline; Luilier, Sabrina; Steidl, Esther; Saenger, Stefanie; Marciniak, Elodie; Obriot, Hélène; Chevarin, Caroline; Nicole, Annie; Revillod, Lucile; Charizanis, Konstantinos; Lee, Kuang-Yung; Suzuki, Yasuhiro; Kimura, Takashi; Matsuura, Tohru; Cisneros, Bulmaro; Swanson, Maurice S.; Trovero, Fabrice; Buisson, Bruno; Bizot, Jean-Charles; Hamon, Michel; Humez, Sandrine; Bassez, Guillaume; Metzger, Friedrich; Buée, Luc; Munnich, Arnold; Sergeant, Nicolas; Gourdon, Geneviève

    2013-01-01

    Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology. PMID:23404338

  8. Photoinduced Vesicle Formation via the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction.

    PubMed

    Konetski, Danielle; Gong, Tao; Bowman, Christopher N

    2016-08-16

    Synthetic vesicles have a wide range of applications from drug and cosmetic delivery to artificial cell and membrane studies, making simple and controlled formation of vesicles a large focus of the field today. Here, we report the use of the photoinitiated copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction using visible light to introduce spatiotemporal control into the formation of vesicles. Upon the establishment of the spatiotemporal control over vesicle formation, it became possible to adjust initiation conditions to modulate vesicle sizes resulting in the formation of controllably small or large vesicles based on light intensity or giant vesicles when the formation was initiated in flow-free conditions. Additionally, this photoinitiated method enables vesicle formation at a density 400-fold higher than initiation using sodium ascorbate as the catalyst. Together, these advances enable the formation of high-density, controlled size vesicles using low-energy wavelengths while producing enhanced control over the formation characteristics of the vesicle. PMID:27443396

  9. Distinct actions of strontium on mineral formation in matrix vesicles

    SciTech Connect

    Bechkoff, Geraldine; Radisson, Jacqueline; Bessueille, Laurence; Bouchekioua-Bouzaghou, Katia; Buchet, Rene

    2008-08-29

    Matrix vesicles (MVs) are involved in the initial step of mineralization in skeletal tissues and provide an easily model to analyze the hydroxyapatite (HA) formation. Sr stimulates bone formation and its effect was tested on MVs. Sr{sup 2+} (15-50 {mu}M) in the mineralization medium containing MVs, 2 mM Ca{sup 2+} and 3.42 mM P{sub i}, retarded HA formation. Sr{sup 2+} (1-5 mM) in the same medium-induced other types of mineral than HA and cancelled the ATP-, ADP- or PP{sub i}-induced retardation in the mineral formation. Our findings suggest that the beneficial effect of Sr{sup 2+} at a low dose (15-50 {mu}M) is rather an inhibitor of bone resorption than an activator of mineral formation, while at high Sr{sup 2+} concentration (1-5 mM), mineral formation, especially other types of mineral than HA, is favored.

  10. Identification of the antiepileptic racetam binding site in the synaptic vesicle protein 2A by molecular dynamics and docking simulations

    PubMed Central

    Correa-Basurto, José; Cuevas-Hernández, Roberto I.; Phillips-Farfán, Bryan V.; Martínez-Archundia, Marlet; Romo-Mancillas, Antonio; Ramírez-Salinas, Gema L.; Pérez-González, Óscar A.; Trujillo-Ferrara, José; Mendoza-Torreblanca, Julieta G.

    2015-01-01

    Synaptic vesicle protein 2A (SV2A) is an integral membrane protein necessary for the proper function of the central nervous system and is associated to the physiopathology of epilepsy. SV2A is the molecular target of the anti-epileptic drug levetiracetam and its racetam analogs. The racetam binding site in SV2A and the non-covalent interactions between racetams and SV2A are currently unknown; therefore, an in silico study was performed to explore these issues. Since SV2A has not been structurally characterized with X-ray crystallography or nuclear magnetic resonance, a three-dimensional (3D) model was built. The model was refined by performing a molecular dynamics simulation (MDS) and the interactions of SV2A with the racetams were determined by docking studies. A reliable 3D model of SV2A was obtained; it reached structural equilibrium during the last 15 ns of the MDS (50 ns) with remaining structural motions in the N-terminus and long cytoplasmic loop. The docking studies revealed that hydrophobic interactions and hydrogen bonds participate importantly in ligand recognition within the binding site. Residues T456, S665, W666, D670 and L689 were important for racetam binding within the trans-membrane hydrophilic core of SV2A. Identifying the racetam binding site within SV2A should facilitate the synthesis of suitable radio-ligands to study treatment response and possibly epilepsy progression. PMID:25914622

  11. Overlapping functions of stonin 2 and SV2 in sorting of the calcium sensor synaptotagmin 1 to synaptic vesicles

    PubMed Central

    Kaempf, Natalie; Kochlamazashvili, Gaga; Puchkov, Dmytro; Maritzen, Tanja; Bajjalieh, Sandra M.; Kononenko, Natalia L.; Haucke, Volker

    2015-01-01

    Neurotransmission involves the calcium-regulated exocytic fusion of synaptic vesicles (SVs) and the subsequent retrieval of SV membranes followed by reformation of properly sized and shaped SVs. An unresolved question is whether each SV protein is sorted by its own dedicated adaptor or whether sorting is facilitated by association between different SV proteins. We demonstrate that endocytic sorting of the calcium sensor synaptotagmin 1 (Syt1) is mediated by the overlapping activities of the Syt1-associated SV glycoprotein SV2A/B and the endocytic Syt1-adaptor stonin 2 (Stn2). Deletion or knockdown of either SV2A/B or Stn2 results in partial Syt1 loss and missorting of Syt1 to the neuronal surface, whereas deletion of both SV2A/B and Stn2 dramatically exacerbates this phenotype. Selective missorting and degradation of Syt1 in the absence of SV2A/B and Stn2 impairs the efficacy of neurotransmission at hippocampal synapses. These results indicate that endocytic sorting of Syt1 to SVs is mediated by the overlapping activities of SV2A/B and Stn2 and favor a model according to which SV protein sorting is guarded by both cargo-specific mechanisms as well as association between SV proteins. PMID:26015569

  12. Mutations in the Drosophila pushover gene confer increased neuronal excitability and spontaneous synaptic vesicle fusion

    SciTech Connect

    Richards, S.; Hillman, T.; Stern, M.

    1996-04-01

    We describe the identification of a gene called pushover (push), which affects both behavior and synaptic transmission at the neuromuscular junction. Adults carrying either of two mutations in push exhibit sluggishness, uncoordination, a defective escape response, and male sterility. Larvae defective in push exhibit increased release of transmitter at the neuromuscular junction. In particular, the frequency of spontaneous transmitter release and the amount of transmitter release evoked by nerve stimulation are each increased two- to threefold in push mutants at the lowest external [(Ca{sup 2+})] tested (0.15 mM). Furthermore, these mutants are more sensitive than wild type to application of the potassium channel-blocking drug quinidine: following quinidine application, push mutants, but not wild-type, display repetitive firing of the motor axon, leading to repetitive muscle postsynaptic potentials. The push gene thus might affect both neuronal excitability and the transmitter release process. Complementation tests and recombinational mapping suggest that the push mutations are allelic to a previously identified P-element-induced mutation, which also causes behavorial abnormalities and male sterility. 43 refs., 5 figs., 1 tab.

  13. LPS Remodeling Triggers Formation of Outer Membrane Vesicles in Salmonella

    PubMed Central

    Elhenawy, Wael; Bording-Jorgensen, Michael; Valguarnera, Ezequiel; Haurat, M. Florencia; Wine, Eytan

    2016-01-01

    ABSTRACT Outer membrane vesicles (OMV) are proposed to mediate multiple functions during pathogenesis and symbiosis. However, the mechanisms responsible for OMV formation remain poorly understood. It has been shown in eukaryotic membranes that lipids with an inverted-cone shape favor the formation of positive membrane curvatures. Based on these studies, we formulated the hypothesis that lipid A deacylation might impose shape modifications that result in the curvature of the outer membrane (OM) and subsequent OMV formation. We tested the effect of lipid A remodeling on OMV biogenesis employing Salmonella enterica serovar Typhimurium as a model organism. Expression of the lipid A deacylase PagL resulted in increased vesiculation, without inducing an envelope stress response. Mass spectrometry analysis revealed profound differences in the patterns of lipid A in OM and OMV, with accumulation of deacylated lipid A forms exclusively in OMV. OMV biogenesis by intracellular bacteria upon macrophage infection was drastically reduced in a pagL mutant strain. We propose a novel mechanism for OMV biogenesis requiring lipid A deacylation in the context of a multifactorial process that involves the orchestrated remodeling of the outer membrane. PMID:27406567

  14. Structure formation in binary mixtures of lipids and detergents: Self-assembly and vesicle division

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2013-01-01

    Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation.

  15. Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.

    PubMed

    Noguchi, Hiroshi

    2013-01-14

    Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation. PMID:23320721

  16. Sec6 is localized to the plasma membrane of mature synaptic terminals and is transported with secretogranin II-containing vesicles.

    PubMed

    Vik-Mo, E O; Oltedal, L; Hoivik, E A; Kleivdal, H; Eidet, J; Davanger, S

    2003-01-01

    The sec6/8 (exocyst) complex is implicated in targeting of vesicles for regulated exocytosis in various cell types and is believed to play a role in synaptogenesis and brain development. We show that the subunits sec6 and sec8 are present at significant levels in neurons of adult rat brain, and that immunoreactivity for the two subunits has a differential subcellular distribution. We show that in developing as well as mature neurons sec6 is concentrated at the inside of the presynaptic plasma membrane, while sec8 immunoreactivity shows a diffuse cytoplasmic distribution. Among established, strongly synaptophysin-positive neuronal boutons, sec6 displays highly differential concentrations, indicating a role for the complex independent of the ongoing synaptic-vesicle release activity. Sec6 is transported along neurites on secretogranin II-positive vesicles, while sec6-negative/secretogranin II-positive vesicles stay in the cell body. In PC12 cells, sec6-positive vesicles accumulate at the plasma membrane at sites of cell-cell contact. Neuronal induction of the PC12 cells with nerve growth factor shows that sec8 is not freely soluble, but may probably interact with cytoskeletal elements. The complex may facilitate the targeting of membrane material to presynaptic sites and may possibly shuttle vesicles from the cytoskeletal transport machinery to presynaptic membrane sites. Thus, we suggest that the exocyst complex serves to modulate exocytotic activity, by targeting membrane material to its presynaptic destination. PMID:12763070

  17. Prebiotic Vesicle Formation and the Necessity of Salts.

    PubMed

    Maurer, Sarah E; Nguyen, Gunarso

    2016-06-01

    Self-assembly is considered one of the driving forces behind abiogenesis and would have been affected by the environmental conditions of early Earth. The formation of membranes is a key step in this process, and unlike large dialkyl membranes of modern cells the first membranes were likely formed from small single-chain amphiphiles, which are environment-sensitive. Fatty acids and their derivatives have been previously characterized in this role without concern for the concentrations of ionic solutes in the suspension. We determined the critical vesicle concentration (CVC) for three single-chain amphiphiles with increasing concentrations of NaCl. All amphiphile species had decreasing CVCs correlated to increasing NaCl concentrations. Decanoic acid and oleic acid were impacted more strongly than monoacylglycerol, likely because of electric shielding of the negatively charged headgroups in the presence of salt. There was no impact on the salt species as 100 mM NaBr, NaCl, and KCl all exhibited the same effect on CVC. This research shows the importance of salt in both the formation of life and in experimental design for aggregation experiments. PMID:26590931

  18. Prebiotic Vesicle Formation and the Necessity of Salts

    NASA Astrophysics Data System (ADS)

    Maurer, Sarah E.; Nguyen, Gunarso

    2016-06-01

    Self-assembly is considered one of the driving forces behind abiogenesis and would have been affected by the environmental conditions of early Earth. The formation of membranes is a key step in this process, and unlike large dialkyl membranes of modern cells the first membranes were likely formed from small single-chain amphiphiles, which are environment-sensitive. Fatty acids and their derivatives have been previously characterized in this role without concern for the concentrations of ionic solutes in the suspension. We determined the critical vesicle concentration (CVC) for three single-chain amphiphiles with increasing concentrations of NaCl. All amphiphile species had decreasing CVCs correlated to increasing NaCl concentrations. Decanoic acid and oleic acid were impacted more strongly than monoacylglycerol, likely because of electric shielding of the negatively charged headgroups in the presence of salt. There was no impact on the salt species as 100 mM NaBr, NaCl, and KCl all exhibited the same effect on CVC. This research shows the importance of salt in both the formation of life and in experimental design for aggregation experiments.

  19. Milk extracellular vesicles accelerate osteoblastogenesis but impair bone matrix formation.

    PubMed

    Oliveira, Marina C; Arntz, Onno J; Blaney Davidson, Esmeralda N; van Lent, Peter L E M; Koenders, Marije I; van der Kraan, Peter M; van den Berg, Wim B; Ferreira, Adaliene V M; van de Loo, Fons A J

    2016-04-01

    The claimed beneficial effect of milk on bone is still a matter for debate. Recently extracellular vesicles (EVs) that contain proteins and RNA were discovered in milk, but their effect on bone formation has not yet been determined. We demonstrated previously that bovine milk-derived EVs (BMEVs) have immunoregulatory properties. Our aim was to evaluate the effect of BMEVs on osteogenesis by mice and human mesenchymal stem cells (hMSCs). Oral delivery of two concentrations of BMEVs to female DBA/1J mice during 7weeks did not alter the tibia trabecular bone area; however, the osteocytes number increased. In addition, the highest dose of BMEVs markedly increased the woven bone tissue, which is more brittle. The exposure of hMSCs to BMEVs during 21days resulted in less mineralization but higher cell proliferation. Interestingly BMEVs reduced the collagen production, but enhanced the expression of genes characteristic for immature osteoblasts. A kinetic study showed that BMEVs up-regulated many osteogenic genes within the first 4days. However, the production of type I collagen and expression of its genes (COL1A1 and COL1A2) were markedly reduced at days 21 and 28. At day 28, BMEVs again lead to higher proliferation, but mineralization was significantly increased. This was associated with increased expression of sclerostin, a marker for osteocytes, and reduced osteonectin, which is associated to bone matrix formation. Our study adds BMEVs to the list of milk components that can affect bone formation and may shed new light on the contradictory claims of milk on bone formation. PMID:27012623

  20. [Investigation vesicle cycle in nerve formations in somatic muscle of the earthworm Lumbricus terrestris].

    PubMed

    Volkov, M E; Petrov, A M; Volkov, E M; Zefirov, A L

    2011-01-01

    Luminous spots with a diameter of 1-2 microm, which are clusters of "synaptic buds", were revealed in the muscular wall of the earthworm using endocytotic fluorescent dyes FM1-43, FM2-10 and FM4-64. Application of the membrane probe Dil that is capable of being subjected to anterograde axonal transport to abdominal ganglia of the nervous chain, and subsequent (in a day) staining of nerve formations by endocytotic dye FM4-64 showed complete imposition of the emission data of the dyes that fluoresce in different parts of the spectrum. Using fluorescent marker DiBAC4(3) showed an increased emission of neural elements with increasing concentration of K+ in the extracellular environment. Application of FM2-10 showed that the higher concentration of K+ in solution, and hence the depolarization of the nerve cells, the faster the upload of the dye, and vice versa, the process slowed down in the absence of K+ in the medium. The seizure and removal of FM2-10 were blocked in calcium-free solutions in the presence of Ca2+ buffers, BABTA or BABTA-AM, but only after a preliminary 40 min incubation. The processes of exo- and endocytosis occurred in the clusters of synaptic "buds" and were preserved in conditions of "rest". This vesicle cycle depends on membrane potential and concentration of K+ and Ca2+, and, it is very likely that the calcium sensor operates on the principle "all or nothing". PMID:22232936

  1. Formation and structural properties of multi-block copolymer vesicles

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Ma, Shiying

    2014-03-01

    Due to the unique structure, vesicles have attracted considerable attention for their potential applications, such as gene and drug delivery, microcapsules, nanoreactors, cell membrane mimetic, synthetic organelles, etc. By using dissipative particle dynamics, we studied the self-assembly of amphiphilic multi-block copolymer. The phase diagram was constructed by varying the interaction parameters and the composition of the block copolymers. The results show that the vesicles are stable in a large region which is different from the diblock copolymer or triblock copolymer. The structural properties of vesicles can be controlled by varying the interaction parameters and the length of the hydrophobic block. The relationship between the hydrophilic and hydrophobic block length vs the aqueous cavity size and vesicle size are revealed. The copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in hydrophobic-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. Acknowledgments. This work has been supported by NNSFC (No. 21074053) and NBRPC (No. 2010CB923303).

  2. Formation of Kinetically Trapped Nanoscopic Unilamellar Vesicles from Metastable Nanodiscs

    SciTech Connect

    Nieh, Mu-Ping; Dolinar, Paul; Kucerka, Norbert; Kline, Steven R.; Debeer-Schmitt, Lisa M; Littrell, Ken; Katsaras, John

    2011-01-01

    Zwitterionic long-chain lipids (e.g., dimyristoyl phosphatidylcholine, DMPC) spontaneously form onion-like, thermodynamically stable structures in aqueous solutions (commonly known as multilamellar vesicles, or MLVs). It has also been reported that the addition of zwitterionic short-chain (i.e., dihexanoyl phosphatidylcholine, DHPC) and charged long-chain (i.e., dimyristoyl phosphatidylglycerol, DMPG) lipids to zwitterionic long-chain lipid solutions results in the formation of unilamellar vesicles (ULVs). Here, we report a kinetic study on lipid mixtures composed of DMPC, DHPC, and DMPG. Two membrane charge densities (i.e., [DMPG]/[DMPC] = 0.01 and 0.001) and two solution salinities (i.e., [NaCl] = 0 and 0.2 M) are investigated. Upon dilution of the high-concentration samples at 50 C, thermodynamically stable MLVs are formed, in the case of both weakly charged and high salinity solution mixtures, implying that the electrostatic interactions between bilayers are insufficient to cause MLVs to unbind. Importantly, in the case of these samples small angle neutron scattering (SANS) data show that, initially, nanodiscs (also known as bicelles) or bilayered ribbons form at low temperatures (i.e., 10 C), but transform into uniform size, nanoscopic ULVs after incubation at 10 C for 20 h, indicating that the nanodisc is a metastable structure. The instability of nanodiscs may be attributed to low membrane rigidity due to a reduced charge density and high salinity. Moreover, the uniform-sized ULVs persist even after being heated to 50 C, where thermodynamically stable MLVs are observed. This result clearly demonstrates that these ULVs are kinetically trapped, and that the mechanical properties (e.g., bending rigidity) of 10 C nanodiscs favor the formation of nanoscopic ULVs over that of MLVs. From a practical point of view, this method of forming uniform-sized ULVs may lend itself to their mass production, thus making them economically feasible for medical applications that

  3. Glucose inhibits the formation of gas vesicles in Haloferax volcanii transformants.

    PubMed

    Hechler, Torsten; Frech, Miriam; Pfeifer, Felicitas

    2008-01-01

    The effect of glucose on the formation of gas vesicles was investigated in Haloferax mediterranei and Hfx.volcanii transformants containing the mc-gvp gene cluster of Hfx. mediterranei (mc-vac transformants). Increasing amounts of glucose in the medium resulted in a successive decrease in the amount of gas vesicles in both species, with a complete inhibition of their formation at glucose concentrations of > 70 mM in mc-vac transformants, and 100 mM in Hfx. mediterranei. Maltose and sucrose imposed a similar inhibitory effect, whereas xylose, arabinose, lactose, pyruvate and 2-deoxy-glucose had no influence on the gas vesicle formation in mc-vac transformants. The activities of the two mc-vac promoters were strongly reduced in mc-vac transformants grown in the presence of > 50 mM glucose. The gas vesicle overproducing Delta D transformant (lacking the repressing protein GvpD) also showed a glucose-induced lack of gas vesicles, indicating that GvpD is not involved in the repression. The addition of glucose was useful to block gas vesicle formation at a certain stage during growth, and vice versa, gas vesicle synthesis could be induced when a glucose-grown culture was shifted to medium lacking glucose. Both procedures will enable the investigation of defined stages during gas vesicle formation. PMID:18211264

  4. Templated formation of giant polymer vesicles with controlled size distributions

    NASA Astrophysics Data System (ADS)

    Howse, Jonathan R.; Jones, Richard A. L.; Battaglia, Giuseppe; Ducker, Robert E.; Leggett, Graham J.; Ryan, Anthony J.

    2009-06-01

    Unilamellar polymer vesicles are formed when a block copolymer self-assembles to form a single bilayer structure, with a hydrophobic core and hydrophilic surfaces, and the resulting membrane folds over and rearranges by connecting its edges to enclose a space. The physics of self-assembly tightly specifies the wall thickness of the resulting vesicle, but, both for polymer vesicles and phospholipids, no mechanism strongly selects for the overall size, so the size distribution of vesicles tends to be very polydisperse. We report a method for the production of controlled size distributions of micrometre-sized (that is, giant) vesicles combining the `top-down' control of micrometre-sized features (vesicle diameter) by photolithography and dewetting with the `bottom-up' control of nanometre-sized features (membrane thickness) by molecular self-assembly. It enables the spontaneous creation of unilamellar vesicles with a narrow size distribution that could find applications in drug and gene delivery, nano- and micro-reactors, substrates for macromolecular crystallography and model systems for studies of membrane function.

  5. Formation of secretory vesicles in permeabilized cells: a salt extract from yeast membranes promotes budding of nascent secretory vesicles from the trans-Golgi network of endocrine cells.

    PubMed Central

    Ling, W L; Shields, D

    1996-01-01

    The mechanism of secretory-vesicle formation from the trans-Golgi network (TGN) of endocrine cells is poorly understood. To identify cytosolic activities that facilitate the formation and fission of nascent secretory vesicles, we treated permeabilized pituitary GH3 cells with high salt to remove endogenous budding factors. Using this cell preparation, secretory-vesicle budding from the TGN required addition of exogenous cytosol and energy. Mammalian cytosols (GH3 cells and bovine brain) promoted post-TGN vesicle formation. Most significantly, a salt extract of membranes from the yeast Saccharomyces cerevisiae, a cell lacking a regulated secretory pathway, stimulated secretory vesicle budding in the absence of mammalian cytosolic factors. These results demonstrate that the factors which promote secretory-vesicle release from the TGN are conserved between yeast and mammalian cells. PMID:8615761

  6. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA)

    PubMed Central

    Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S.; Harlow, Mark L.

    2015-01-01

    Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5′ ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission. PMID:26446566

  7. The Immediately Releasable Pool of Mouse Chromaffin Cell Vesicles Is Coupled to P/Q-Type Calcium Channels via the Synaptic Protein Interaction Site

    PubMed Central

    Álvarez, Yanina D.; Belingheri, Ana Verónica; Perez Bay, Andrés E.; Javis, Scott E.; Tedford, H. William; Zamponi, Gerald; Marengo, Fernando D.

    2013-01-01

    It is generally accepted that the immediately releasable pool is a group of readily releasable vesicles that are closely associated with voltage dependent Ca2+ channels. We have previously shown that exocytosis of this pool is specifically coupled to P/Q Ca2+ current. Accordingly, in the present work we found that the Ca2+ current flowing through P/Q-type Ca2+ channels is 8 times more effective at inducing exocytosis in response to short stimuli than the current carried by L-type channels. To investigate the mechanism that underlies the coupling between the immediately releasable pool and P/Q-type channels we transiently expressed in mouse chromaffin cells peptides corresponding to the synaptic protein interaction site of Cav2.2 to competitively uncouple P/Q-type channels from the secretory vesicle release complex. This treatment reduced the efficiency of Ca2+ current to induce exocytosis to similar values as direct inhibition of P/Q-type channels via ω-agatoxin-IVA. In addition, the same treatment markedly reduced immediately releasable pool exocytosis, but did not affect the exocytosis provoked by sustained electric or high K+ stimulation. Together, our results indicate that the synaptic protein interaction site is a crucial factor for the establishment of the functional coupling between immediately releasable pool vesicles and P/Q-type Ca2+ channels. PMID:23382986

  8. The 4p16.3 Parkinson Disease Risk Locus Is Associated with GAK Expression and Genes Involved with the Synaptic Vesicle Membrane

    PubMed Central

    Nagle, Michael W.; Latourelle, Jeanne C.; Labadorf, Adam; Dumitriu, Alexandra; Hadzi, Tiffany C.; Beach, Thomas G.; Myers, Richard H.

    2016-01-01

    Genome-wide association studies (GWAS) have identified the GAK/DGKQ/IDUA region on 4p16.3 among the top three risk loci for Parkinson’s disease (PD), but the specific gene and risk mechanism are unclear. Here, we report transcripts containing the 3’ clathrin-binding domain of GAK identified by RNA deep-sequencing in post-mortem human brain tissue as having increased expression in PD. Furthermore, carriers of 4p16.3 PD GWAS risk SNPs show decreased expression of one of these transcripts, GAK25 (Gencode Transcript 009), which correlates with the expression of genes functioning in the synaptic vesicle membrane. Together, these findings provide strong evidence for GAK clathrin-binding- and J-domain transcripts’ influence on PD pathogenicity, and for a role for GAK in regulating synaptic function in PD. PMID:27508417

  9. Gel-Assisted Formation of Giant Unilamellar Vesicles

    PubMed Central

    Weinberger, Andreas; Tsai, Feng-Ching; Koenderink, Gijsje H.; Schmidt, Thais F.; Itri, Rosângela; Meier, Wolfgang; Schmatko, Tatiana; Schröder, André; Marques, Carlos

    2013-01-01

    Giant unilamellar vesicles or GUVs are systems of choice as biomimetic models of cellular membranes. Although a variety of procedures exist for making single walled vesicles of tens of microns in size, the range of lipid compositions that can be used to grow GUVs by the conventional methods is quite limited, and many of the available methods involve energy input that can damage the lipids or other molecules present in the growing solution for embedment in the membrane or in the vesicle interior. Here, we show that a wide variety of lipids or lipid mixtures can grow into GUVs by swelling lipid precursor films on top of a dried polyvinyl alcohol gel surface in a swelling buffer that can contain diverse biorelevant molecules. Moreover, we show that the encapsulation potential of this method can be enhanced by combining polyvinyl alcohol-mediated growth with inverse-phase methods, which allow (bio)molecule complexation with the lipids. PMID:23823234

  10. Spontaneous vesicle formation in a deep eutectic solvent.

    PubMed

    Bryant, Saffron J; Atkin, Rob; Warr, Gregory G

    2016-02-14

    Solvent penetration experiments and small-angle X-ray scattering reveal that phospholipids dissolved in a deep eutectic solvent (DES) spontaneously self-assemble into vesicles above the lipid chain melting temperature. This means DESs are one of the few nonaqueous solvents that mediate amphiphile self-assembly, joining a select set of H-bonding molecular solvents and ionic liquids. PMID:26701210

  11. Neural activity selects myosin IIB and VI with a specific time window in distinct dynamin isoform-mediated synaptic vesicle reuse pathways.

    PubMed

    Hayashida, Michikata; Tanifuji, Shota; Ma, Huan; Murakami, Noriko; Mochida, Sumiko

    2015-06-10

    Presynaptic nerve terminals must maintain stable neurotransmissions via synaptic vesicle (SV) resupply despite encountering wide fluctuations in the number and frequency of incoming action potentials (APs). However, the molecular mechanism linking variation in neural activity to SV resupply is unknown. Myosins II and VI are actin-based cytoskeletal motors that drive dendritic actin dynamics and membrane transport, respectively, at brain synapses. Here we combined genetic knockdown or molecular dysfunction and direct physiological measurement of fast synaptic transmission from paired rat superior cervical ganglion neurons in culture to show that myosins IIB and VI work individually in SV reuse pathways, having distinct dependency and time constants with physiological AP frequency. Myosin VI resupplied the readily releasable pool (RRP) with slow kinetics independently of firing rates but acted quickly within 50 ms after AP. Under high-frequency AP firing, myosin IIB resupplied the RRP with fast kinetics in a slower time window of 200 ms. Knockdown of both myosin and dynamin isoforms by mixed siRNA microinjection revealed that myosin IIB-mediated SV resupply follows amphiphysin/dynamin-1-mediated endocytosis, while myosin VI-mediated SV resupply follows dynamin-3-mediated endocytosis. Collectively, our findings show how distinct myosin isoforms work as vesicle motors in appropriate SV reuse pathways associated with specific firing patterns. PMID:26063922

  12. Structural Basis of Vesicle Formation at the Inner Nuclear Membrane

    PubMed Central

    Hagen, Christoph; Dent, Kyle C.; Zeev-Ben-Mordehai, Tzviya; Grange, Michael; Bosse, Jens B.; Whittle, Cathy; Klupp, Barbara G.; Siebert, C. Alistair; Vasishtan, Daven; Bäuerlein, Felix J.B.; Cheleski, Juliana; Werner, Stephan; Guttmann, Peter; Rehbein, Stefan; Henzler, Katja; Demmerle, Justin; Adler, Barbara; Koszinowski, Ulrich; Schermelleh, Lothar; Schneider, Gerd; Enquist, Lynn W.; Plitzko, Jürgen M.; Mettenleiter, Thomas C.; Grünewald, Kay

    2015-01-01

    Summary Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM. PMID:26687357

  13. Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A2A receptors and redistribution of synaptic vesicles.

    PubMed

    Oliveira, L; Costa, A C; Noronha-Matos, J B; Silva, I; Cavalcante, W L G; Timóteo, M A; Corrado, A P; Dal Belo, C A; Ambiel, C R; Alves-do-Prado, W; Correia-de-Sá, P

    2015-02-01

    The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A2A receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [(3)H]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A2A receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (0.3 mM)-induced transmitter release facilitation, because its effect was prevented by the A2A receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M2 and A1 receptors blocked by methoctramine (0.1 μM) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A2A receptors by endogenous adenosine leading to synaptic

  14. Stimulation of Synaptic Vesicle Exocytosis by the Mental Disease Gene DISC1 is Mediated by N-Type Voltage-Gated Calcium Channels

    PubMed Central

    Tang, Willcyn; Thevathasan, Jervis Vermal; Lin, Qingshu; Lim, Kim Buay; Kuroda, Keisuke; Kaibuchi, Kozo; Bilger, Marcel; Soong, Tuck Wah; Fivaz, Marc

    2016-01-01

    Lesions and mutations of the DISC1 (Disrupted-in-schizophrenia-1) gene have been linked to major depression, schizophrenia, bipolar disorder and autism, but the influence of DISC1 on synaptic transmission remains poorly understood. Using two independent genetic approaches—RNAi and a DISC1 KO mouse—we examined the impact of DISC1 on the synaptic vesicle (SV) cycle by population imaging of the synaptic tracer vGpH in hippocampal neurons. DISC1 loss-of-function resulted in a marked decrease in SV exocytic rates during neuronal stimulation and was associated with reduced Ca2+ transients at nerve terminals. Impaired SV release was efficiently rescued by elevation of extracellular Ca2+, hinting at a link between DISC1 and voltage-gated Ca2+ channels. Accordingly, blockade of N-type Cav2.2 channels mimics and occludes the effect of DISC1 inactivation on SV exocytosis, and overexpression of DISC1 in a heterologous system increases Cav2.2 currents. Collectively, these results show that DISC1-dependent enhancement of SV exocytosis is mediated by Cav2.2 and point to aberrant glutamate release as a probable endophenotype of major psychiatric disorders. PMID:27378904

  15. Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation

    PubMed Central

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin

    2013-01-01

    Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling – a slow process usually associated with the maintenance of activity homeostasis – combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes. PMID:24204240

  16. Membrane curvature induced by Arf1-GTP is essential for vesicle formation

    PubMed Central

    Beck, Rainer; Sun, Zhe; Adolf, Frank; Rutz, Chistoph; Bassler, Jochen; Wild, Klemens; Sinning, Irmgard; Hurt, Ed; Brügger, Britta; Béthune, Julien; Wieland, Felix

    2008-01-01

    The GTPase Arf1 is considered as a molecular switch that regulates binding and release of coat proteins that polymerize on membranes to form transport vesicles. Here, we show that Arf1-GTP induces positive membrane curvature and find that the small GTPase can dimerize dependent on GTP. Investigating a possible link between Arf dimerization and curvature formation, we isolated an Arf1 mutant that cannot dimerize. Although it was capable of exerting the classical role of Arf1 as a coat receptor, it could not mediate the formation of COPI vesicles from Golgi-membranes and was lethal when expressed in yeast. Strikingly, this mutant was not able to deform membranes, suggesting that GTP-induced dimerization of Arf1 is a critical step inducing membrane curvature during the formation of coated vesicles. PMID:18689681

  17. Only the complex N559-glycan in the synaptic vesicle glycoprotein 2C mediates high affinity binding to botulinum neurotoxin serotype A1.

    PubMed

    Mahrhold, Stefan; Bergström, Tomas; Stern, Daniel; Dorner, Brigitte G; Åstot, Crister; Rummel, Andreas

    2016-09-01

    The extraordinary potency of botulinum neurotoxins (BoNTs) is mediated by their high neurospecificity, targeting peripheral cholinergic motoneurons leading to flaccid paralysis and successive respiratory failure. Complex polysialo gangliosides accumulate BoNTs on the plasma membrane and facilitate subsequent binding to synaptic vesicle membrane proteins which results in toxin endocytosis. The luminal domain 4 (LD4) of the three synaptic vesicle glycoprotein 2 (SV2) isoforms A-C mediates uptake of the clinically most relevant serotype BoNT/A1. SV2C-LD4 exhibits the strongest protein-protein interaction and comprises five putative N-glycosylation sites (PNG sites). Here, we expressed human SV2C-LD4 fused to human IgG-Fc in prokaryotic and eukaryotic expression systems to analyse the effect of N-glycosylation of SV2C on the interaction with BoNT/A1. Mass spectrometric analysis of gSV2CLD-Fc demonstrates glycosylation of N534, N559 and N565, the latter two residing at the BoNT/A interface. Mutational analysis demonstrates that only the N559-glycan, but not N565-glycan increases affinity of BoNT/A for human gSV2C-LD4. The N559-glycan was characterised as a complex core-fucosylated type with a heterogeneity ranging up to tetra-antennary structure with bisecting N-acetylglucosamine which can establish extensive interactions with BoNT/A. The mutant gSV2CLD-Fc N559A displayed a 50-fold increased dissociation rate kd resulting in an overall 12-fold decreased binding affinity in surface plasmon resonance (SPR) experiments. The delayed dissociation might provide BoNT/A more time for endocytosis into synaptic vesicles. In conclusion, we show the importance of the complex N559-glycan of SV2C-LD4, adding a third anchor point beside a ganglioside and the SV2C-LD4 peptide, for BoNT/A neuronal cell surface binding and uptake. PMID:27313224

  18. Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles

    PubMed Central

    Burré, Jacqueline; Malenka, Robert C.; Liu, Xinran; Südhof, Thomas C.

    2015-01-01

    In forebrain neurons, Ca2+ triggers exocytosis of readily releasable vesicles by binding to synaptotagmin-1 and -7, thereby inducing fast and slow vesicle exocytosis, respectively. Loss-of-function of synaptotagmin-1 or -7 selectively impairs the fast and slow phase of release, respectively, but does not change the size of the readily-releasable pool (RRP) of vesicles as measured by stimulation of release with hypertonic sucrose, or alter the rate of vesicle priming into the RRP. Here we show, however, that simultaneous loss-of-function of both synaptotagmin-1 and -7 dramatically decreased the capacity of the RRP, again without altering the rate of vesicle priming into the RRP. Either synaptotagmin-1 or -7 was sufficient to rescue the RRP size in neurons lacking both synaptotagmin-1 and -7. Although maintenance of RRP size was Ca2+-independent, mutations in Ca2+-binding sequences of synaptotagmin-1 or synaptotagmin-7—which are contained in flexible top-loop sequences of their C2 domains—blocked the ability of these synaptotagmins to maintain the RRP size. Both synaptotagmins bound to SNARE complexes; SNARE complex binding was reduced by the top-loop mutations that impaired RRP maintenance. Thus, synaptotagmin-1 and -7 perform redundant functions in maintaining the capacity of the RRP in addition to nonredundant functions in the Ca2+ triggering of different phases of release. PMID:26437117

  19. Energy transduction inside vesicles, photocatalysis by titanium dioxide and formation of NADH

    NASA Astrophysics Data System (ADS)

    Summers, David; Noveron, Juan; Rodoni, David; Basa, Ranor

    /protocells suitable either for simple prebiotic systems and/or for more complex "protobiochemical" systems. It could act as a precursor to metabolic systems and provide a model of how metabolism could have developed prebiotically in a vesicle based "protocell origin of life". It can provide a source of prebiotic compounds inside vesicles, an environment considered to be of great importance for the origin of life. An energy transduction system that is simple enough to have formed at an early stage of the origin of life (even before the formation of enzymatic or ribozymal activity) makes an autotrophic origin of life easier to envision.

  20. Protein mutated in paroxysmal dyskinesia interacts with the active zone protein RIM and suppresses synaptic vesicle exocytosis

    PubMed Central

    Shen, Yiguo; Ge, Woo-Ping; Li, Yulong; Hirano, Arisa; Lee, Hsien-Yang; Rohlmann, Astrid; Missler, Markus; Tsien, Richard W.; Jan, Lily Yeh; Fu, Ying-Hui; Ptáček, Louis J.

    2015-01-01

    Paroxysmal nonkinesigenic dyskinesia (PNKD) is an autosomal dominant episodic movement disorder precipitated by coffee, alcohol, and stress. We previously identified the causative gene but the function of the encoded protein remains unknown. We also generated a PNKD mouse model that revealed dysregulated dopamine signaling in vivo. Here, we show that PNKD interacts with synaptic active zone proteins Rab3-interacting molecule (RIM)1 and RIM2, localizes to synapses, and modulates neurotransmitter release. Overexpressed PNKD protein suppresses release, and mutant PNKD protein is less effective than wild-type at inhibiting exocytosis. In PNKD KO mice, RIM1/2 protein levels are reduced and synaptic strength is impaired. Thus, PNKD is a novel synaptic protein with a regulatory role in neurotransmitter release. PMID:25730884

  1. Retardation of Abeta fibril formation by phospholipid vesicles depends on membrane phase behavior.

    PubMed

    Hellstrand, Erik; Sparr, Emma; Linse, Sara

    2010-05-19

    An increasing amount of evidence suggests that in several amyloid diseases, the fibril formation in vivo and the mechanism of toxicity both involve membrane interactions. We have studied Alzheimer's disease related amyloid beta peptide (Abeta). Recombinant Abeta(M1-40) and Abeta(M1-42) produced in Escherichia coli, allows us to carry out large scale kinetics assays with good statistics. The amyloid formation process is followed in means of thioflavin T fluorescence at relatively low (down to 380 nM) peptide concentration approaching the physiological range. The lipid membranes are introduced in the system as large and small unilamellar vesicles. The aggregation lagtime increases in the presence of lipid vesicles for all situations investigated and the phase behavior of the membrane in the vesicles has a large effect on the aggregation kinetics. By comparing vesicles with different membrane phase behavior we see that the solid gel phase dipalmitoylphosphatidylcholine bilayers cause the largest retardation of Abeta fibril formation. The membrane-induced retardation reaches saturation and is present when the vesicles are added during the lag time up to the nucleation point. No significant difference is detected in lag time when increasing amount of negative charge is incorporated into the membrane. PMID:20483329

  2. SNC1, a yeast homolog of the synaptic vesicle-associated membrane protein/synaptobrevin gene family: genetic interactions with the RAS and CAP genes.

    PubMed Central

    Gerst, J E; Rodgers, L; Riggs, M; Wigler, M

    1992-01-01

    SNC1, a gene from the yeast Saccharomyces cerevisiae, encodes a homolog of vertebrate synaptic vesicle-associated membrane proteins (VAMPs) or synaptobrevins. SNC1 was isolated by its ability to suppress the loss of CAP function in S. cerevisiae strains possessing an activated allele of RAS2. CAP is a component of the RAS-responsive S. cerevisiae adenylyl cyclase complex. The N-terminal domain of CAP is required for full cellular responsiveness to activated RAS proteins. The C-terminal domain of CAP is required for normal cellular morphology and responsiveness to nutrient extremes. Multicopy plasmids expressing SNC1 suppress only the loss of the C-terminal functions of CAP and only in the presence of activated RAS2. Images PMID:1316605

  3. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density

    NASA Astrophysics Data System (ADS)

    Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.

    2014-04-01

    Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.

  4. Modification of a Hydrophobic Layer by a Point Mutation in Syntaxin 1A Regulates the Rate of Synaptic Vesicle Fusion

    PubMed Central

    Lagow, Robert D; Bao, Hong; Cohen, Evan N; Daniels, Richard W; Zuzek, Aleksej; Williams, Wade H; Macleod, Gregory T; Sutton, R. Bryan; Zhang, Bing

    2007-01-01

    Both constitutive secretion and Ca2+-regulated exocytosis require the assembly of the soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes. At present, little is known about how the SNARE complexes mediating these two distinct pathways differ in structure. Using the Drosophila neuromuscular synapse as a model, we show that a mutation modifying a hydrophobic layer in syntaxin 1A regulates the rate of vesicle fusion. Syntaxin 1A molecules share a highly conserved threonine in the C-terminal +7 layer near the transmembrane domain. Mutation of this threonine to isoleucine results in a structural change that more closely resembles those found in syntaxins ascribed to the constitutive secretory pathway. Flies carrying the I254 mutant protein have increased levels of SNARE complexes and dramatically enhanced rate of both constitutive and evoked vesicle fusion. In contrast, overexpression of the T254 wild-type protein in neurons reduces vesicle fusion only in the I254 mutant background. These results are consistent with molecular dynamics simulations of the SNARE core complex, suggesting that T254 serves as an internal brake to dampen SNARE zippering and impede vesicle fusion, whereas I254 favors fusion by enhancing intermolecular interaction within the SNARE core complex. PMID:17341138

  5. Zebrafish sp7:EGFP: a transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration

    PubMed Central

    DeLaurier, April; Eames, B. Frank; Blanco-Sánchez, Bernardo; Peng, Gang; He, Xinjun; Swartz, Mary E.; Ullmann, Bonnie; Westerfield, Monte; Kimmel, Charles B.

    2010-01-01

    Summary We report the expression pattern and construction of a transgenic zebrafish line for a transcription factor involved in otic vesicle formation and skeletogenesis. The zinc finger transcription factor sp7 (formerly called osterix) is reported as a marker of osteoblasts. Using bacterial artificial chromosome (BAC)-mediated transgenesis, we generated a zebrafish transgenic line for studying skeletal development, Tg(sp7:EGFP)b1212. Using a zebrafish BAC, EGFP was introduced downstream of the regulatory regions of sp7 and injected into 1 cell-stage embryos. In this transgenic line, GFP expression reproduces endogenous sp7 gene expression in the otic placode and vesicle, and in forming skeletal structures. GFP-positive cells were also detected in adult fish, and were found associated with regenerating fin rays post-amputation. This line provides an essential tool for the further study of zebrafish otic vesicle formation and the development and regeneration of the skeleton. PMID:20506187

  6. Chibby promotes ciliary vesicle formation and basal body docking during airway cell differentiation.

    PubMed

    Burke, Michael C; Li, Feng-Qian; Cyge, Benjamin; Arashiro, Takeshi; Brechbuhl, Heather M; Chen, Xingwang; Siller, Saul S; Weiss, Matthew A; O'Connell, Christopher B; Love, Damon; Westlake, Christopher J; Reynolds, Susan D; Kuriyama, Ryoko; Takemaru, Ken-Ichi

    2014-10-13

    Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their differentiation process remains poorly understood. Mice lacking the basal body component Chibby (Cby) exhibit impaired mucociliary transport caused by defective ciliogenesis, resulting in chronic airway infection. In this paper, using primary cultures of mouse tracheal epithelial cells, we show that Cby facilitates basal body docking to the apical cell membrane through proper formation of ciliary vesicles at the distal appendage during the early stages of ciliogenesis. Cby is recruited to the distal appendages of centrioles via physical interaction with the distal appendage protein CEP164. Cby then associates with the membrane trafficking machinery component Rabin8, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rab8, to promote recruitment of Rab8 and efficient assembly of ciliary vesicles. Thus, our study identifies Cby as a key regulator of ciliary vesicle formation and basal body docking during the differentiation of airway ciliated cells. PMID:25313408

  7. Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice

    PubMed Central

    Lee, Joo-Yong; Cole, Toby B.; Palmiter, Richard D.; Suh, Sang Won; Koh, Jae-Young

    2002-01-01

    Endogenous metals may contribute to the accumulation of amyloid plaques in Alzheimer's disease. To specifically examine the role of synaptic zinc in the plaque accumulation, Tg2576 (also called APP2576) transgenic mice (hAPP+) expressing cerebral amyloid plaque pathology were crossed with mice lacking zinc transporter 3 (ZnT3−/−), which is required for zinc transport into synaptic vesicles. With aging, female hAPP+:ZnT3+/+ mice manifested higher levels of synaptic zinc, insoluble amyloid β, and plaques than males; these sex differences disappeared in hAPP+:ZnT3−/− mice. Both sexes of hAPP+:ZnT3−/− mice had markedly reduced plaque load and less insoluble amyloid β compared with hAPP+:ZnT3+/+ mice. Hence, of endogenous metals, synaptic zinc contributes predominantly to amyloid deposition in hAPP+ mice. PMID:12032347

  8. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation

    PubMed Central

    Suzuki, Sho W.; Yamamoto, Hayashi; Oikawa, Yu; Kondo-Kakuta, Chika; Kimura, Yayoi; Hirano, Hisashi; Ohsumi, Yoshinori

    2015-01-01

    During autophagosome formation, autophagosome-related (Atg) proteins are recruited hierarchically to organize the preautophagosomal structure (PAS). Atg13, which plays a central role in the initial step of PAS formation, consists of two structural regions, the N-terminal HORMA (from Hop1, Rev7, and Mad2) domain and the C-terminal disordered region. The C-terminal disordered region of Atg13, which contains the binding sites for Atg1 and Atg17, is essential for the initiation step in which the Atg1 complex is formed to serve as a scaffold for the PAS. The N-terminal HORMA domain of Atg13 is also essential for autophagy, but its molecular function has not been established. In this study, we searched for interaction partners of the Atg13 HORMA domain and found that it binds Atg9, a multispanning membrane protein that exists on specific cytoplasmic vesicles (Atg9 vesicles). After the Atg1 complex is formed, Atg9 vesicles are recruited to the PAS and become part of the autophagosomal membrane. HORMA domain mutants, which are unable to interact with Atg9, impaired the PAS localization of Atg9 vesicles and exhibited severe defects in starvation-induced autophagy. Thus, Atg9 vesicles are recruited to the PAS via the interaction with the Atg13 HORMA domain. Based on these findings, we propose that the two distinct regions of Atg13 play crucial roles in distinct steps of autophagosome formation: In the first step, Atg13 forms a scaffold for the PAS via its C-terminal disordered region, and subsequently it recruits Atg9 vesicles via its N-terminal HORMA domain. PMID:25737544

  9. SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth

    PubMed Central

    Corradi, Anna; Fadda, Manuela; Piton, Amélie; Patry, Lysanne; Marte, Antonella; Rossi, Pia; Cadieux-Dion, Maxime; Gauthier, Julie; Lapointe, Line; Mottron, Laurent; Valtorta, Flavia; Rouleau, Guy A.; Fassio, Anna; Benfenati, Fabio; Cossette, Patrick

    2014-01-01

    An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This ‘synaptic autism pathway’ notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2  knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2  as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD. PMID:23956174

  10. SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth.

    PubMed

    Corradi, Anna; Fadda, Manuela; Piton, Amélie; Patry, Lysanne; Marte, Antonella; Rossi, Pia; Cadieux-Dion, Maxime; Gauthier, Julie; Lapointe, Line; Mottron, Laurent; Valtorta, Flavia; Rouleau, Guy A; Fassio, Anna; Benfenati, Fabio; Cossette, Patrick

    2014-01-01

    An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This 'synaptic autism pathway' notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2  knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2  as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD. PMID:23956174

  11. Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Ito, Seya; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-01-01

    Mannosylerythritol lipids (MELs) are secreted by yeasts and are promising glycolipid biosurfactants. In our study on the non-aqueous phase behaviors of MEL homologues, we found that MEL-D (4-O-[2',3'-di-O-alka(e)noyl-β-D-mannopyranosyl]-(2R,3S)-erythritol) forms aggregates in decane. The microscopic observation and the X-ray scattering measurement of these aggregates revealed that they are reverse vesicles that consist of bilayers whose hydrophilic domains are located in the interior of the bilayers. In addition, MEL-D formed reverse vesicles without co-surfactants and co-solvents in various oily solutions, such as n-alkanes, cyclohexane, squalane, squalene, and silicone oils at a concentration below 10 mM. This is the first report on the reverse vesicle formation from biosurfactants. PMID:22531056

  12. A Single Herpesvirus Protein Can Mediate Vesicle Formation in the Nuclear Envelope*

    PubMed Central

    Lorenz, Michael; Vollmer, Benjamin; Unsay, Joseph D.; Klupp, Barbara G.; García-Sáez, Ana J.; Mettenleiter, Thomas C.; Antonin, Wolfram

    2015-01-01

    Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission. PMID:25605719

  13. Periodic Vesicle Formation in Tectonic Fault Zones--an Ideal Scenario for Molecular Evolution.

    PubMed

    Mayer, Christian; Schreiber, Ulrich; Dávila, María J

    2015-06-01

    Tectonic fault systems in the continental crust offer huge networks of interconnected channels and cavities. Filled mainly with water and carbon dioxide (CO2), containing a wide variety of hydrothermal chemistry and numerous catalytic surfaces, they may offer ideal reaction conditions for prebiotic chemistry. In these systems, an accumulation zone for organic compounds will develop at a depth of approximately 1 km where CO2 turns sub-critical and dissolved components precipitate. At this point, periodic pressure changes caused for example by tidal influences or geyser activity may generate a cyclic process involving repeated phase transitions of carbon dioxide. In the presence of amphiphilic compounds, this will necessarily lead to the transient formation of coated water droplets in the gas phase and corresponding vesicular structures in the aqueous environment. During this process, the concentration of organic components inside the droplets and vesicles would be drastically increased, allowing for favorable reaction conditions and, in case of the vesicles generated, large trans-membrane concentration gradients. Altogether, the process of periodic formation and destruction of vesicles could offer a perfect environment for molecular evolution in small compartments and for the generation of protocells. The basic process of vesicle formation is reproduced experimentally with a lipid in a water/CO2 system. PMID:25716918

  14. Periodic Vesicle Formation in Tectonic Fault Zones—an Ideal Scenario for Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Mayer, Christian; Schreiber, Ulrich; Dávila, María J.

    2015-06-01

    Tectonic fault systems in the continental crust offer huge networks of interconnected channels and cavities. Filled mainly with water and carbon dioxide (CO2), containing a wide variety of hydrothermal chemistry and numerous catalytic surfaces, they may offer ideal reaction conditions for prebiotic chemistry. In these systems, an accumulation zone for organic compounds will develop at a depth of approximately 1 km where CO2 turns sub-critical and dissolved components precipitate. At this point, periodic pressure changes caused for example by tidal influences or geyser activity may generate a cyclic process involving repeated phase transitions of carbon dioxide. In the presence of amphiphilic compounds, this will necessarily lead to the transient formation of coated water droplets in the gas phase and corresponding vesicular structures in the aqueous environment. During this process, the concentration of organic components inside the droplets and vesicles would be drastically increased, allowing for favorable reaction conditions and, in case of the vesicles generated, large trans-membrane concentration gradients. Altogether, the process of periodic formation and destruction of vesicles could offer a perfect environment for molecular evolution in small compartments and for the generation of protocells. The basic process of vesicle formation is reproduced experimentally with a lipid in a water/CO2 system.

  15. Nucleation in mesoscopic systems under transient conditions: Peptide-induced pore formation in vesicles

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.; Höök, Fredrik

    2013-04-01

    Attachment of lytic peptides to the lipid membrane of virions or bacteria is often accompanied by their aggregation and pore formation, resulting eventually in membrane rupture and pathogen neutralization. The membrane rupture may occur gradually via formation of many pores or abruptly after the formation of the first pore. In academic studies, this process is observed during interaction of peptides with lipid vesicles. We present an analytical model and the corresponding Monte Carlo simulations focused on the pore formation in such situations. Specifically, we calculate the time of the first nucleation-limited pore-formation event and show the distribution of this time in the regime when the fluctuations of the number of peptides attached to a vesicle are appreciable. The results obtained are used to clarify the mechanism of the pore formation and membrane destabilization observed recently during interaction of highly active α-helical peptide with sub-100-nm lipid vesicles that mimic enveloped viruses with nanoscale membrane curvature. The model proposed and the analysis presented are generic and may be applicable to other meso- and nanosystems.

  16. Spontaneous formation of biocompatible vesicles in aqueous mixtures of amino acid-based cationic surfactants and SDS/SDBS.

    PubMed

    Shome, Anshupriya; Kar, Tanmoy; Das, Prasanta K

    2011-02-01

    The spontaneous formation of vesicles by six amino acid-based cationic surfactants and two anionic surfactants (sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS)) is reported. The head-group structure of the cationic surfactants is minutely altered to understand their effect on vesicle formation. To establish the regulatory role of the aromatic group in self-aggregation, both aliphatic and aromatic side-chain-substituted amino acid-based cationic surfactants are used. The presence of aromaticity in any one of the constituents favors the formation of vesicles by cationic/anionic surfactant mixtures. The formation of vesicles is primarily dependent on the balance between the hydrophobicity and hydrophilicity of both cationic and anionic surfactants. Vesicle formation is characterized by surface tension, fluorescence anisotropy, transmission electron microscopy, dynamic light scattering, and phase diagrams. These vesicles are thermally stable up to 65 °C, determined by temperature-dependent fluorescence anisotropy. According to the MTT assay, these catanionic vesicles are nontoxic to NIH3T3 cells, thus indicating their wider applicability as delivery vehicles to cells. Among the six cationic surfactants examined, tryptophan- and tyrosine-based surfactants have the ability to reduce HAuCl(4) to gold nanoparticles (GNPs), which is utilized to obtain in-situ-synthesized GNPs entrapped in vesicles without the need for any external reducing agent. PMID:21275029

  17. Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses.

    PubMed

    Verstegen, Anne M J; Tagliatti, Erica; Lignani, Gabriele; Marte, Antonella; Stolero, Tamar; Atias, Merav; Corradi, Anna; Valtorta, Flavia; Gitler, Daniel; Onofri, Franco; Fassio, Anna; Benfenati, Fabio

    2014-05-21

    Cyclin-dependent kinase-5 (Cdk5) was reported to downscale neurotransmission by sequestering synaptic vesicles (SVs) in the release-reluctant resting pool, but the molecular targets mediating this activity remain unknown. Synapsin I (SynI), a major SV phosphoprotein involved in the regulation of SV trafficking and neurotransmitter release, is one of the presynaptic substrates of Cdk5, which phosphorylates it in its C-terminal region at Ser(549) (site 6) and Ser(551) (site 7). Here we demonstrate that Cdk5 phosphorylation of SynI fine tunes the recruitment of SVs to the active recycling pool and contributes to the Cdk5-mediated homeostatic responses. Phosphorylation of SynI by Cdk5 is physiologically regulated and enhances its binding to F-actin. The effects of Cdk5 inhibition on the size and depletion kinetics of the recycling pool, as well as on SV distribution within the nerve terminal, are virtually abolished in mouse SynI knock-out (KO) neurons or in KO neurons expressing the dephosphomimetic SynI mutants at sites 6,7 or site 7 only. The observation that the single site-7 mutant phenocopies the effects of the deletion of SynI identifies this site as the central switch in mediating the synaptic effects of Cdk5 and demonstrates that SynI is necessary and sufficient for achieving the effects of the kinase on SV trafficking. The phosphorylation state of SynI by Cdk5 at site 7 is regulated during chronic modification of neuronal activity and is an essential downstream effector for the Cdk5-mediated homeostatic scaling. PMID:24849359

  18. PTEN regulates retinal interneuron morphogenesis and synaptic layer formation

    PubMed Central

    Sakagami, Kiyo; Chen, Bryan; Nusinowitz, Steven; Wu, Hong; Yang, Xian-Jie

    2011-01-01

    The lipid phosphatase PTEN is a critical negative regulator of extracellular signal-induced PI3K activities, yet the roles of PTEN in the neural retina remain poorly understood. Here, we investigate the function of PTEN during retinal development. Deletion of Pten at the onset of neurogenesis in retinal progenitors results in the reduction of retinal ganglion cells and rod photoreceptors, but increased Müller glial genesis. In addition, PTEN deficiency leads to elevated phosphorylation of Akt, especially in the developing inner plexiform layer, where high levels of PTEN are normally expressed. In Pten mutant retinas, various subtypes of amacrine cells show severe dendritic overgrowth, causing specific expansion of the inner plexiform layer. However, the outer plexiform layer remains relatively undisturbed in the Pten deficient retina. Physiological analysis detects reduced rod function and augmented oscillatory potentials originating from amacrine cells in Pten mutants. Furthermore, deleting Pten or elevating Akt activity in individual amacrine cells is sufficient to disrupt dendritic arborization, indicating that Pten activity is required cell autonomously to control neuronal morphology. Moreover, inhibiting endogenous Akt activity attenuates inner plexiform layer formation in vitro. Together, these findings demonstrate that suppression of PI3K/Akt signaling by PTEN is crucial for proper neuronal differentiation and normal retinal network formation. PMID:22155156

  19. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins

    PubMed Central

    Klupp, Barbara G.; Granzow, Harald; Fuchs, Walter; Keil, Günther M.; Finke, Stefan; Mettenleiter, Thomas C.

    2007-01-01

    Although the nuclear envelope is a dynamic structure that disassembles and reforms during mitosis, the formation of membranous vesicles derived from the nuclear envelope has not yet been described in noninfected cells. However, during herpesvirus maturation, intranuclear capsids initiate transit to the cytosol for final maturation by budding at the inner nuclear membrane. Two conserved herpesvirus proteins are required for this primary envelopment, designated in the alphaherpesviruses as pUL31 and pUL34. Here, we show that simultaneous expression of pUL31 and pUL34 of the alphaherpesvirus pseudorabies virus in stably transfected rabbit kidney cells resulted in the formation of vesicles in the perinuclear space that resemble primary envelopes without a nucleocapsid. They contain pUL31 and pUL34 as shown by immunolabeling and are derived from the nuclear envelope. Thus, coexpression of only two conserved herpesvirus proteins without any other viral factor is sufficient to induce the formation of vesicles from the nuclear membrane. This argues for the contribution of cellular factors in this process either recruited from their natural cytoplasmic location or not yet identified as components of the nuclear compartment. PMID:17426144

  20. Structural Ensembles of Membrane-bound α-Synuclein Reveal the Molecular Determinants of Synaptic Vesicle Affinity

    PubMed Central

    Fusco, Giuliana; De Simone, Alfonso; Arosio, Paolo; Vendruscolo, Michele; Veglia, Gianluigi; Dobson, Christopher M.

    2016-01-01

    A detailed characterisation of the molecular determinants of membrane binding by α-synuclein (αS), a 140-residue protein whose aggregation is associated with Parkinson’s disease, is of fundamental significance to clarify the manner in which the balance between functional and dysfunctional processes are regulated for this protein. Despite its biological relevance, the structural nature of the membrane-bound state αS remains elusive, in part because of the intrinsically dynamic nature of the protein and also because of the difficulties in studying this state in a physiologically relevant environment. In the present study we have used solid-state NMR and restrained MD simulations to refine structure and topology of the N-terminal region of αS bound to the surface of synaptic-like membranes. This region has fundamental importance in the binding mechanism of αS as it acts as to anchor the protein to lipid bilayers. The results enabled the identification of the key elements for the biological properties of αS in its membrane-bound state. PMID:27273030

  1. Structural Ensembles of Membrane-bound α-Synuclein Reveal the Molecular Determinants of Synaptic Vesicle Affinity.

    PubMed

    Fusco, Giuliana; De Simone, Alfonso; Arosio, Paolo; Vendruscolo, Michele; Veglia, Gianluigi; Dobson, Christopher M

    2016-01-01

    A detailed characterisation of the molecular determinants of membrane binding by α-synuclein (αS), a 140-residue protein whose aggregation is associated with Parkinson's disease, is of fundamental significance to clarify the manner in which the balance between functional and dysfunctional processes are regulated for this protein. Despite its biological relevance, the structural nature of the membrane-bound state αS remains elusive, in part because of the intrinsically dynamic nature of the protein and also because of the difficulties in studying this state in a physiologically relevant environment. In the present study we have used solid-state NMR and restrained MD simulations to refine structure and topology of the N-terminal region of αS bound to the surface of synaptic-like membranes. This region has fundamental importance in the binding mechanism of αS as it acts as to anchor the protein to lipid bilayers. The results enabled the identification of the key elements for the biological properties of αS in its membrane-bound state. PMID:27273030

  2. Multilamellar vesicle formation from a planar lamellar phase under shear flow.

    PubMed

    Gentile, Luigi; Behrens, Manja A; Porcar, Lionel; Butler, Paul; Wagner, Norman J; Olsson, Ulf

    2014-07-22

    The formation of multilamellar vesicles (MLVs) from the lamellar phase of nonionic surfactant system C12E5/D2O under shear flow is studied by time-resolved small angle neutron and light scattering during shear flow. A novel small angle neutron scattering sample environment enables the tracking of the lamellae alignment in the velocity-velocity gradient (1-2) plane during MLV formation, which was tracked independently using flow small angle light scattering commensurate with rheology. During the lamellar-to-multilamellar vesicle transition, the primary Bragg peak from the lamellar ordering was observed to tilt, and this gradually increased with time, leading to an anisotropic pattern with a primary axis oriented at ∼25° relative to the flow direction. This distorted pattern persists under flow after MLV formation. A critical strain and critical capillary number based on the MLV viscosity are demonstrated for MLV formation, which is shown to be robust for other systems as well. These novel measurements provide fundamentally new information about the flow orientation of lamellae in the plane of flow that cannot be anticipated from the large body of previous literature showing nearly isotropic orientation in the 2,3 and 1,3 planes of flow. These observations are consistent with models for buckling-induced MLV formation but suggest that the instability is three-dimensional, thereby identifying the mechanism of MLV formation in simple shear flow. PMID:24983325

  3. Molecular Motors and Synaptic Assembly

    PubMed Central

    Cai, Qian; Sheng, Zu-Hang

    2016-01-01

    Proper synaptic function requires the seamless integration of the transport, assembly, and regulation of synaptic components and structures. Inasmuch as the synapse is often distant from the neuronal cell body, newly synthesized synaptic proteins, the precursors of synaptic vesicles, active zone compartments, channels and receptors, and mitochondria, must be transported along lengthy neuronal processes to participate in synaptogenesis. Neuronal transport is mediated by motor proteins that associate with their cargoes via adaptors (or receptors) and that travel along the cytoskeleton network within the neuronal processes. Thus, the identity of membranous protein cargoes and the specificity of motor-cargo interactions are critical for correctly targeting cargoes and properly assembling synapses in developing neurons and in remodeling synapses of mature neurons in response to neuronal activity. In this article, the authors review recent progress in characterizing microtubule- and actin-based motor proteins that are involved in delivering synaptic components and discuss potential mechanisms underlying the formation of motor- receptor-cargo complexes that contribute to synaptogenesis and activity-induced synaptic plasticity. PMID:19218232

  4. Interaction between zwitterionic and anionic surfactants: spontaneous formation of zwitanionic vesicles.

    PubMed

    Ghosh, Sampad; Khatua, Dibyendu; Dey, Joykrishna

    2011-05-01

    The physicochemical properties, such as critical micelle concentration (cmc), surface tension at cmc (γ(cmc)), and surface activity parameters of the mixtures of a new amino acid-based zwitterionic surfactant, N-(n-dodecyl-2-aminoethanoyl)-glycine (C(12)Gly) and an anionic surfactant, sodium dodecyl sulfate (SDS) at different molar fractions, X(1) (= [C(12)Gly]/([C(12)Gly] + [SDS])) of C(12)Gly were studied. A synergistic interaction was observed between the surfactants in mixtures of different X(1). The self-organization of the mixtures at different molar fractions, concentrations, and pH was investigated. Fluorescence depolarization studies in combination with dynamic light scattering, and transmission electron microscopic and confocal fluorescence microscopic images suggested the formation of bilayer vesicles in dilute solutions of SDS rich mixtures with X(1) ≤ 0.17 in the pH range 7.0 to 9.0. However, the electronic micrographs showed structures with fingerprint-like texture in moderately dilute to concentrated C(12)Gly/SDS mixture at X(1) = 0.50. The vesicles were observed to transform into small micelles upon lowering the solution pH and upon increase of total surfactant concentration in mixtures with X(1) ≤ 0.17. However, decrease of SDS content transformed vesicles into wormlike micelles. The structural transitions were correlated with bulk viscosity of the binary mixtures. PMID:21462963

  5. Structure of yeast Ape1 and its role in autophagic vesicle formation.

    PubMed

    Su, Ming-Yuan; Peng, Wen-Hsin; Ho, Meng-Ru; Su, Shih-Chieh; Chang, Yuan-Chih; Chen, Guang-Chao; Chang, Chung-I

    2015-01-01

    In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, sequesters precursor aminopeptidase I (prApe1) dodecamers in the form of a large complex into a Cvt vesicle using autophagic machinery, targeting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo critical for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex formation and autophagic receptor recognition. Here we report the X-ray crystal structure of Ape1 at 2.5 Å resolution and reveal its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis demonstrates that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar targeting in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, we found that 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is essential for the assembly of the Cvt vesicle for vacuolar delivery. This study describes a molecular framework for understanding the mechanism of Cvt or autophagosomal biogenesis in selective macroautophagy. PMID:26208681

  6. Structure of yeast Ape1 and its role in autophagic vesicle formation

    PubMed Central

    Su, Ming-Yuan; Peng, Wen-Hsin; Ho, Meng-Ru; Su, Shih-Chieh; Chang, Yuan-Chih; Chen, Guang-Chao; Chang, Chung-I

    2015-01-01

    In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, sequesters precursor aminopeptidase I (prApe1) dodecamers in the form of a large complex into a Cvt vesicle using autophagic machinery, targeting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo critical for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex formation and autophagic receptor recognition. Here we report the X-ray crystal structure of Ape1 at 2.5 Å resolution and reveal its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis demonstrates that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar targeting in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, we found that 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is essential for the assembly of the Cvt vesicle for vacuolar delivery. This study describes a molecular framework for understanding the mechanism of Cvt or autophagosomal biogenesis in selective macroautophagy. PMID:26208681

  7. The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences

    PubMed Central

    Fauth, Michael; Wörgötter, Florentin; Tetzlaff, Christian

    2015-01-01

    Cortical connectivity emerges from the permanent interaction between neuronal activity and synaptic as well as structural plasticity. An important experimentally observed feature of this connectivity is the distribution of the number of synapses from one neuron to another, which has been measured in several cortical layers. All of these distributions are bimodal with one peak at zero and a second one at a small number (3–8) of synapses. In this study, using a probabilistic model of structural plasticity, which depends on the synaptic weights, we explore how these distributions can emerge and which functional consequences they have. We find that bimodal distributions arise generically from the interaction of structural plasticity with synaptic plasticity rules that fulfill the following biological realistic constraints: First, the synaptic weights have to grow with the postsynaptic activity. Second, this growth curve and/or the input-output relation of the postsynaptic neuron have to change sub-linearly (negative curvature). As most neurons show such input-output-relations, these constraints can be fulfilled by many biological reasonable systems. Given such a system, we show that the different activities, which can explain the layer-specific distributions, correspond to experimentally observed activities. Considering these activities as working point of the system and varying the pre- or postsynaptic stimulation reveals a hysteresis in the number of synapses. As a consequence of this, the connectivity between two neurons can be controlled by activity but is also safeguarded against overly fast changes. These results indicate that the complex dynamics between activity and plasticity will, already between a pair of neurons, induce a variety of possible stable synaptic distributions, which could support memory mechanisms. PMID:25590330

  8. A new method of vesicle formation by salting-out and its application to the reconstitution of sarcoplasmic reticulum.

    PubMed

    Taguchi, T; Kasai, M

    1983-04-01

    This paper describes a new method of forming membrane vesicles. It was found that the addition of salt such as KCl into a solution containing lipid (asolectin) and a non-ionic surfactant, Triton X-114, led to the formation of closed membrane vesicles. The vesicles were separated from Triton X-114 by hydrophobic interaction chromatography. Electron microscopy revealed that the mean diameter of the vesicles was 110 nm +/- 69 nm (S.D.). Measurement of osmotic volume change showed that the permeability of the vesicle was very low to salts, sugar (glucose) and amphoteric ion (glycine), but very high to glycerol, ethylene glycol and water. Vesicle formation by this 'salting-out' method is very useful for reconstitution of transport systems in biomembranes because of its advantages: completion within a short time; high yield; and the possibility of utilizing samples in non-ionic surfactant solution. When we applied the method to the reconstitution of sarcoplasmic reticulum, Ca2+-ATPase was incorporated into the reconstituted vesicles and was enzymatically active in the membrane. PMID:6830789

  9. Depression-like Behavior Induced by Nesfatin-1 in Rats: Involvement of Increased Immune Activation and Imbalance of Synaptic Vesicle Proteins

    PubMed Central

    Ge, Jin-Fang; Xu, Ya-Yun; Qin, Gan; Peng, Yao-Nan; Zhang, Chao-Feng; Liu, Xing-Rui; Liang, Li-Chuan; Wang, Zhong-Zheng; Chen, Fei-Hu

    2015-01-01

    Depression is a multicausal disorder and has been associated with metabolism regulation and immuno-inflammatory reaction. The anorectic molecule nesfatin-1 has recently been characterized as a potential mood regulator, but its precise effect on depression and the possible mechanisms remain unknown, especially when given peripherally. In the present study, nesfatin-1 was intraperitoneally injected to the rats and the depression-like behavior and activity of the hypothalamic-pituitary-adrenal (HPA) axis were evaluated. The plasma concentrations of nesfatin-1, interleukin 6 (IL-6), and C-reactive protein (CRP); and the hypothalamic expression levels of nesfatin-1, synapsin I, and synaptotagmin I mRNA were evaluated in nesfatin-1 chronically treated rats. The results showed that both acute and chronic administration of nesfatin-1 increased immobility in the forced swimming test (FST), and resulted in the hyperactivity of HPA axis, as indicated by the increase of plasma corticosterone concentration and hypothalamic expression of corticotropin-releasing hormone (CRH) mRNA. Moreover, after chronic nesfatin-1 administration, the rats exhibited decreased activity and exploratory behavior in the open field test (OFT) and increased mRNA expression of synapsin I and synaptotagmin I in the hypothalamus. Furthermore, chronic administration of nesfatin-1 elevated plasma concentrations of IL-6 and CRP, which were positively correlated with despair behavior, plasma corticosterone level, and the hypothalamic mRNA expression of synapsin I and synaptotagmin I. These results indicated that exogenous nesfatin-1 could induce the immune-inflammatory activation, which might be a central hug linking the depression-like behavior and the imbalanced mRNA expression of synaptic vesicle proteins in the hypothalamus. PMID:26617482

  10. New effects of GABAB receptor allosteric modulator rac-BHFF on ambient GABA, uptake/release, Em and synaptic vesicle acidification in nerve terminals.

    PubMed

    Pozdnyakova, N; Dudarenko, M; Borisova, T

    2015-09-24

    Positive allosteric modulators of GABAB receptors have great therapeutic potential for medications of anxiety, depression, etc. The effects of recently discovered modulator rac-BHFF on the key characteristics of GABAergic neurotransmission were investigated in cortical and hippocampal presynaptic nerve terminals of rats (synaptosomes). The ambient level of [(3)H]GABA that is a balance between release and uptake of the neurotransmitter increased significantly in the presence of rac-BHFF (at concentrations 10-30μM). The initial velocity of synaptosomal [(3)H]GABA uptake was suppressed by the modulator. In the presence of GABA transporter blocker NO-711, it was shown that rac-BHFF increased tonic release of [(3)H]GABA from synaptosomes (at concentrations 3-30μM). Rac-BHFF within the concentration range of 0.3-30μM did not enhance inhibiting effect of (±)-baclofen on depolarization-induced exocytotic release of [(3)H]GABA. Rac-BHFF (0.3-30μM) caused dose-dependent depolarization of the plasma membrane and dissipation of the proton gradient of synaptic vesicles in synaptosomes that was shown in the absence/presence of GABAB receptor antagonist saclofen using fluorescent dyes rhodamine 6G and acridine orange, respectively, and so, the above effects of rac-BHFF were not associated with the modulation of presynaptic GABAB receptors. Therefore, drug development strategy of positive allosteric modulation of GABAB receptors is to eliminate the above side effects of rac-BHFF in presynapse, and vice versa, these new properties of rac-BHFF may be exploited appropriately. PMID:26197223