Sample records for synthetic aperture radar

  1. Future of synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  2. A SEASAT-A synthetic aperture imaging radar system

    NASA Technical Reports Server (NTRS)

    Jordan, R. L.; Rodgers, D. H.

    1975-01-01

    The SEASAT, a synthetic aperture imaging radar system is the first radar system of its kind designed for the study of ocean wave patterns from orbit. The basic requirement of this system is to generate continuous radar imagery with a 100 km swath with 25m resolution from an orbital altitude of 800 km. These requirements impose unique system design problems. The end to end data system described including interactions of the spacecraft, antenna, sensor, telemetry link, and data processor. The synthetic aperture radar system generates a large quantity of data requiring the use of an analog link with stable local oscillator encoding. The problems associated in telemetering the radar information with sufficient fidelity to synthesize an image on the ground is described as well as the selected solutions to the problems.

  3. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    This paper first gives a heuristic description of the sensitivity of Interferometric Synthetic Aperture Radar to vertical vegetation distributions and underlying surface topography. A parameter estimation scenario is then described in which the Interferometric Synthetic Aperture Radar cross-correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous-layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of Interferometric Synthetic Aperture Radar observations for single-baseline, single-frequency, single-incidence-angle, single-polarization Interferometric Synthetic Aperture Radar. Using ancillary ground-truth data to compensate for the underdetermination of the parameters, forest depths are estimated from the INSAR data. A recently-analyzed multibaseline data set is also discussed and the potential for stand-alone Interferometric Synthetic Aperture Radar parameter estimation is assessed. The potential of combining the information content of Interferometric Synthetic Aperture Radar with that of infrared/optical remote sensing data is briefly discussed.

  4. Space shuttle search and rescue experiment using synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.; Larson, R. W.; Zelenka, J. S.

    1977-01-01

    The feasibility of a synthetic aperture radar for search and rescue applications was demonstrated with aircraft experiments. One experiment was conducted using the ERIM four-channel radar and several test sites in the Michigan area. In this test simple corner-reflector targets were successfully imaged. Results from this investigation were positive and indicate that the concept can be used to investigate new approaches focused on the development of a global search and rescue system. An orbital experiment to demonstrate the application of synthetic aperture radar to search and rescue is proposed using the space shuttle.

  5. Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrove, Cameron

    For synthetic aperture radars radio frequency interference from sources external to the radar system and techniques to mitigate the interference can degrade the quality of the image products. Usually the radar system designer will try to balance the amount of mitigation for an acceptable amount of interference to optimize the image quality. This dissertation examines the effect of interference mitigation upon coherent data products of fine resolution, high frequency synthetic aperture radars using stretch processing. Novel interference mitigation techniques are introduced that operate on single or multiple apertures of data that increase average coherence compared to existing techniques. New metricsmore » are applied to evaluate multiple mitigation techniques for image quality and average coherence. The underlying mechanism for interference mitigation techniques that affect coherence is revealed.« less

  6. Synthetic aperture radar target simulator

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Held, D. N.; Goldstein, R. M.; Bickler, T. C.

    1984-01-01

    A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal.

  7. Multibeam synthetic aperture radar for global oceanography

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1979-01-01

    A single-frequency multibeam synthetic aperture radar concept for large swath imaging desired for global oceanography is evaluated. Each beam iilluminates a separate range and azimuth interval, and images for different beams may be separated on the basis of the Doppler spectrum of the beams or their spatial azimuth separation in the image plane of the radar processor. The azimuth resolution of the radar system is selected so that the Doppler spectrum of each beam does not interfere with the Doppler foldover due to the finite pulse repetition frequency of the radar system.

  8. Ionospheric effects on synthetic aperture radar at VHF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, T.J.

    1997-02-01

    Synthetic aperture radars (SAR) operated from airplanes have been used at VHF because of their enhanced foliage and ground penetration compared to radars operated at UHF. A satellite-borne VHF SAR would have considerable utility but in order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. The presence of the ionosphere in the propagation path of the radar will cause a deterioration of the imaging because of dispersion over the bandwidth and group path changes in the imaged area over the collection aperture. In this paper we present calculations ofmore » the effects of a deterministic ionosphere on SAR imaging for a radar operated with a 100 MHz bandwidth centered at 250 MHz and over an angular aperture of 23{degrees}. The ionosphere induces a point spread function with an approximate half-width of 150 m in the slant-range direction and of 25 m in the cross-range direction compared to the nominal resolution of 1.5 m in both directions.« less

  9. Hughes integrated synthetic aperture radar: High performance at low cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayma, R.W.

    1996-11-01

    This paper describes the background and development of the low cost high-performance Hughes Integrated Synthetic Aperture Radar (HISAR{trademark}) which has a full range of capabilities for real-time reconnaissance, surveillance and earth resource mapping. HISAR uses advanced Synthetic Aperture Radar (SAR) technology to make operationally effective images of near photo quality, day or night and in all weather conditions. This is achieved at low cost by maximizing the use of commercially available radar and signal-processing equipment in the fabrication. Furthermore, HISAR is designed to fit into an executive-class aircraft making it available for a wide range of users. 4 refs., 8more » figs.« less

  10. Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung; Curlander, John C.

    1991-01-01

    Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.

  11. Next Generation P-Band Planetary Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel

    2016-01-01

    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple DecadalSurvey Science Goals.

  12. Next Generation P-Band Planetary Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel

    2017-01-01

    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple Decadal Survey Science Goals.

  13. Processing for spaceborne synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Lybanon, M.

    1973-01-01

    The data handling and processing in using synthetic aperture radar as a satellite-borne earth resources remote sensor is considered. The discussion covers the nature of the problem, the theory, both conventional and potential advanced processing techniques, and a complete computer simulation. It is shown that digital processing is a real possibility and suggests some future directions for research.

  14. Addendum to proceedings of the 1978 Synthetic Aperture Radar Technology Conference

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Various research projects on synthetic aperture radar are reported, including SAR calibration techniques. Slot arrays, sidelobe suppression, and wide swaths on satellite-borne radar were examined. The SAR applied to remote sensing was also considered.

  15. Application of synthetic aperture radars for the ground displacement monitoring in mineral mining areas

    NASA Astrophysics Data System (ADS)

    Dobrynchenko, VV; Kokorinand, IS; Shebalkova, LV

    2018-03-01

    The authors discuss applicability of synthesized aperture radars to monitorthe ground surface displacement in mineral mining areas in terms of a synthesized-aperture interferometric radar. The operation principle of the interferometric method is demonstrated on studies of the ground surface displacements in areas of oil and gas reservoirs. The advantages of the synthetic aperture radar are substantiated.

  16. Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Constaninides, N. J.; Bicknell, T. J. (Inventor)

    1980-01-01

    A method and apparatus for correcting Doppler shifts in synthetic aperture radar data is described. An optical correlator for synthetic aperture radar data has a means for directing a laser beam at a signal film having radar return pulse intensity information recorded on it. A resultant laser beam passes through a range telescope, an azimuth telescope, and a Fourier transform filter located between the range and azimuth telescopes, and forms an image for recording on an image film. A compensation means for Doppler shift in the radar return pulse intensity information includes a beam splitter for reflecting the modulated laser beam, after having passed through the Fourier transform filter, to a detection screen having two photodiodes mounted on it.

  17. Interferometric synthetic aperture radar imagery of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.

    1993-01-01

    The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.

  18. Bistatic Synthetic Aperture Radar, TIF - Report (Phase 1)

    DTIC Science & Technology

    2004-11-01

    Cette recherche permet d’obtenir une compr6hension en profondeur des capacit6s et des difficult6s associ6es aux concepts du ROS bistatique et...Radar (SAR) Bistatic SAR Performance Analysis Defence R&D Canada R & D pour la defense Canada Canada’s Leader in Defence Chef de file au Canada en ...I 1f1 Defence Research and Recherche et developpement Development Canada pour la defense Canada DEFENCE DEFENSE Bistatic Synthetic Aperture Radar TIF

  19. Synthetic aperture radar/LANDSAT MSS image registration

    NASA Technical Reports Server (NTRS)

    Maurer, H. E. (Editor); Oberholtzer, J. D. (Editor); Anuta, P. E. (Editor)

    1979-01-01

    Algorithms and procedures necessary to merge aircraft synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) imagery were determined. The design of a SAR/LANDSAT data merging system was developed. Aircraft SAR images were registered to the corresponding LANDSAT MSS scenes and were the subject of experimental investigations. Results indicate that the registration of SAR imagery with LANDSAT MSS imagery is feasible from a technical viewpoint, and useful from an information-content viewpoint.

  20. Differential Optical Synthetic Aperture Radar

    DOEpatents

    Stappaerts, Eddy A.

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  1. Synthetic aperture radar range - Azimuth ambiguity design and constraints

    NASA Technical Reports Server (NTRS)

    Mehlis, J. G.

    1980-01-01

    Problems concerning the design of a system for mapping a planetary surface with a synthetic aperture radar (SAR) are considered. Given an ambiguity level, resolution, and swath width, the problems are related to the determination of optimum antenna apertures and the most suitable pulse repetition frequency (PRF). From the set of normalized azimuth ambiguity ratio curves, the designer can arrive at the azimuth antenna length, and from the sets of normalized range ambiguity ratio curves, he can arrive at the range aperture length or pulse repetition frequency. A procedure based on this design method is shown in an example. The normalized curves provide results for a SAR using a uniformly or cosine weighted rectangular antenna aperture.

  2. A perspective of synthetic aperture radar for remote sensing

    NASA Technical Reports Server (NTRS)

    Skolnik, M. I.

    1978-01-01

    The characteristics and capabilities of synthetic aperture radar are discussed so as to identify those features particularly unique to SAR. The SAR and Optical images were compared. The SAR is an example of radar that provides more information about a target than simply its location. It is the spatial resolution and imaging capability of SAR that has made its application of interest, especially from spaceborne platforms. However, for maximum utility to remote sensing, it was proposed that other information be extracted from SAR data, such as the cross section with frequency and polarization.

  3. Determining Snow Depth Using Airborne Multi-Pass Interferometric Synthetic Aperture Radar

    DTIC Science & Technology

    2013-09-01

    relatively low resolution 10m DEM of the survey area was obtained from the USDA NAIP and then geocorrected to match the SAR image area. Centered on...Propulsion Laboratory LiDAR Light Detection and Ranging METAR Meteorological reporting observations medivac Medical Evacuation NASA National...Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X- SAR) mission was a joint National Aeronautical and Space Administration ( NASA

  4. Joint synthetic aperture radar plus ground moving target indicator from single-channel radar using compressive sensing

    DOEpatents

    Thompson, Douglas; Hallquist, Aaron; Anderson, Hyrum

    2017-10-17

    The various embodiments presented herein relate to utilizing an operational single-channel radar to collect and process synthetic aperture radar (SAR) and ground moving target indicator (GMTI) imagery from a same set of radar returns. In an embodiment, data is collected by randomly staggering a slow-time pulse repetition interval (PRI) over a SAR aperture such that a number of transmitted pulses in the SAR aperture is preserved with respect to standard SAR, but many of the pulses are spaced very closely enabling movers (e.g., targets) to be resolved, wherein a relative velocity of the movers places them outside of the SAR ground patch. The various embodiments of image reconstruction can be based on compressed sensing inversion from undersampled data, which can be solved efficiently using such techniques as Bregman iteration. The various embodiments enable high-quality SAR reconstruction, and high-quality GMTI reconstruction from the same set of radar returns.

  5. Operational Use of Civil Space-Based Synthetic Aperture Radar (SAR)

    NASA Technical Reports Server (NTRS)

    Montgomery, Donald R. (Editor)

    1996-01-01

    Synthetic Aperture Radar (SAR) is a remote-sensing technology which uses the motion of the aircraft or spacecraft carrying the radar to synthesize an antenna aperture larger than the physical antenna to yield a high-spatial resolution imaging capability. SAR systems can thus obtain high-spatial resolution geophysical measurements of the Earth over wide surface areas, under all-weather, day/night conditions. This report was prepared to document the results of a six-month study by an Ad Hoc Interagency Working Group on the Operational Use of Civil (i.e., non-military) Space-based Synthetic Aperture Radar (SAR). The Assistant Administrator of NOAA for Satellite and Information Services convened this working group and chaired three meetings of the group over a six-month period. This action was taken in response to a request by the Associate Administrator of NASA for Mission to Planet Earth for an assessment of operational applications of SAR to be accomplished in parallel with a separate study requested of the Committee on Earth Studies of the Space Studies Board of the National Research Council on the scientific results of SAR research missions. The representatives of participating agencies are listed following the Preface. There was no formal charter for the working group or long term plans for future meetings. However, the working group may be reconstituted in the future as a coordination body for multiagency use of operational SAR systems.

  6. Synthetic aperture radar and digital processing: An introduction

    NASA Technical Reports Server (NTRS)

    Dicenzo, A.

    1981-01-01

    A tutorial on synthetic aperture radar (SAR) is presented with emphasis on digital data collection and processing. Background information on waveform frequency and phase notation, mixing, Q conversion, sampling and cross correlation operations is included for clarity. The fate of a SAR signal from transmission to processed image is traced in detail, using the model of a single bright point target against a dark background. Some of the principal problems connected with SAR processing are also discussed.

  7. Antenna dimensions of synthetic aperture radar systems on satellites

    NASA Technical Reports Server (NTRS)

    Richter, K. R.

    1973-01-01

    Design of a synthetic aperture radar (SAR) for a satellite must take into account the limitation in weight and dimensions of the antenna. The lower limits of the antenna area are derived from the conditions of unambiguity of the SAR system. This result is applied to estimate the antenna requirements for SARs on satellites in circular orbits of various altitudes around Earth and Venus.

  8. Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J. (Editor)

    1991-01-01

    The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.

  9. Real-time multiple-look synthetic aperture radar processor for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Wu, C.; Tyree, V. C. (Inventor)

    1981-01-01

    A spaceborne synthetic aperture radar (SAR) having pipeline multiple-look data processing is described which makes use of excessive azimuth bandwidth in radar echo signals to produce multiple-looking images. Time multiplexed single-look image lines from an azimuth correlator go through an energy analyzer which analyzes the mean energy in each separate look to determine the radar antenna electric boresight for use in generating the correct reference functions for the production of high quality SAR images. The multiplexed single look image lines also go through a registration delay to produce multi-look images.

  10. A user's manual for the NASA/JPL synthetic aperture radar and the NASA/JPL L and C band scatterometers

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1983-01-01

    Airborne synthetic aperture radars and scatterometers are operated with the goals of acquiring data to support shuttle imaging radars and support ongoing basic active microwave remote sensing research. The aircraft synthetic aperture radar is an L-band system at the 25-cm wavelength and normally operates on the CV-990 research aircraft. This radar system will be upgraded to operate at both the L-band and C-band. The aircraft scatterometers are two independent radar systems that operate at 6.3-cm and 18.8-cm wavelengths. They are normally flown on the C-130 research aircraft. These radars will be operated on 10 data flights each year to provide data to NASA-approved users. Data flights will be devoted to Shuttle Imaging Radar-B (SIR-B) underflights. Standard data products for the synthetic aperture radars include both optical and digital images. Standard data products for the scatterometers include computer compatible tapes with listings of radar cross sections (sigma-nought) versus angle of incidence. An overview of these radars and their operational procedures is provided by this user's manual.

  11. The SEASAT-A synthetic aperture radar design and implementation

    NASA Technical Reports Server (NTRS)

    Jordan, R. L.

    1978-01-01

    The SEASAT-A synthetic aperture imaging radar system is the first imaging radar system intended to be used as a scientific instrument designed for orbital use. The requirement of the radar system is to generate continuous radar imagery with a 100 kilometer swath with 25 meter resolution from an orbital altitude of 800 kilometers. These requirements impose unique system design problems and a description of the implementation is given. The end-to-end system is described, including interactions of the spacecraft, antenna, sensor, telemetry link, recording subsystem, and data processor. Some of the factors leading to the selection of critical system parameters are listed. The expected error sources leading to degradation of image quality are reported as well as estimate given of the expected performance from data obtained during a ground testing of the completed subsystems.

  12. Synthetic aperture radar images with composite azimuth resolution

    DOEpatents

    Bielek, Timothy P; Bickel, Douglas L

    2015-03-31

    A synthetic aperture radar (SAR) image is produced by using all phase histories of a set of phase histories to produce a first pixel array having a first azimuth resolution, and using less than all phase histories of the set to produce a second pixel array having a second azimuth resolution that is coarser than the first azimuth resolution. The first and second pixel arrays are combined to produce a third pixel array defining a desired SAR image that shows distinct shadows of moving objects while preserving detail in stationary background clutter.

  13. Motion measurement for synthetic aperture radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision andmore » accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.« less

  14. A data compression technique for synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Minden, G. J.

    1986-01-01

    A data compression technique is developed for synthetic aperture radar (SAR) imagery. The technique is based on an SAR image model and is designed to preserve the local statistics in the image by an adaptive variable rate modification of block truncation coding (BTC). A data rate of approximately 1.6 bit/pixel is achieved with the technique while maintaining the image quality and cultural (pointlike) targets. The algorithm requires no large data storage and is computationally simple.

  15. Forest-cover-type separation using RADARSAT-1 synthetic aperture radar imagery

    Treesearch

    Mark D. Nelson; Kathleen T. Ward; Marvin E. Bauer

    2009-01-01

    RADARSAT-1 synthetic aperture radar data, speckle reduction, and texture measures provided for separation among forest types within the Twin Cities metropolitan area, MN, USA. The highest transformed divergence values for 16-bit data resulted from speckle filtering while the highest values for 8-bit data resulted from the orthorectified image, before and after...

  16. Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn; hide

    2016-01-01

    Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.

  17. NASA L-SAR instrument for the NISAR (NASA-ISRO) Synthetic Aperture Radar mission

    NASA Astrophysics Data System (ADS)

    Hoffman, James P.; Shaffer, Scott; Perkovic-Martin, Dragana

    2016-05-01

    The National Aeronautics and Space Administration (NASA) in the United States and the Indian Space Research Organization (ISRO) have partnered to develop an Earth-orbiting science and applications mission that exploits synthetic aperture radar to map Earth's surface every 12 days or less. To meet demanding coverage, sampling, and accuracy requirements, the system was designed to achieve over 240 km swath at fine resolution, and using full polarimetry where needed. To address the broad range of disciplines and scientific study areas of the mission, a dual-frequency system was conceived, at L-band (24 cm wavelength) and S-band (10 cm wavelength). To achieve these observational characteristics, a reflector-feed system is considered, whereby the feed aperture elements are individually sampled to allow a scan-on-receive ("SweepSAR") capability at both L-band and S-band. The instrument leverages the expanding capabilities of on-board digital processing to enable real-time calibration and digital beamforming. This paper describes the mission characteristics, current status of the L-band Synthetic Aperture Radar (L-SAR) portion of the instrument, and the technology development efforts in the United States that are reducing risk on the key radar technologies needed to ensure proper SweepSAR operations.

  18. SEASAT synthetic-aperture radar data user's manual

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Huneycutt, B.; Holt, B. M.; Held, D. N.

    1983-01-01

    The SEASAT Synthetic-Aperture Radar (SAR) system, the data processors, the extent of the image data set, and the means by which a user obtains this data are described and the data quality is evaluated. The user is alerted to some potential problems with the existing volume of SEASAT SAR image data, and allows him to modify his use of that data accordingly. Secondly, the manual focuses on the ultimate focuses on the ultimate capabilities of the raw data set and evaluates the potential of this data for processing into accurately located, amplitude-calibrated imagery of high resolution. This allows the user to decide whether his needs require special-purpose data processing of the SAR raw data.

  19. Interferometric synthetic aperture radar (InSAR)—its past, present and future

    USGS Publications Warehouse

    Lu, Zhong; Kwoun, Oh-Ig; Rykhus, R.P.

    2007-01-01

    Very simply, interferometric synthetic aperture radar (InSAR) involves the use of two or more synthetic aperture radar (SAR) images of the same area to extract landscape topography and its deformation patterns. A SAR system transmits electromagnetic waves at a wavelength that can range from a few millimeters to tens of centimeters and therefore can operate during day and night under all-weather conditions. Using SAR processing technique (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) radar signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image that represents the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets. InSAR imaging utilizes the interaction of electromagnetic waves, referred to as interference, to measure precise distances between the satellite antenna and ground resolution elements to derive landscape topography and its subtle change in elevation.

  20. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  1. Mapping Ocean Surface Topography with a Synthetic-Aperture Interferometry Radar

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Rodriguez, Ernesto

    2006-01-01

    We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology. and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.

  2. YSAR: a compact low-cost synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Thompson, Douglas G.; Arnold, David V.; Long, David G.; Miner, Gayle F.; Karlinsey, Thomas W.; Robertson, Adam E.

    1997-09-01

    The Brigham Young University Synthetic Aperture Radar (YSAR) is a compact, inexpensive SAR system which can be flown on a small aircraft. The system has exhibited a resolution of approximately 0.8 m by 0.8 m in test flights in calm conditions. YSAR has been used to collect data over archeological sites in Israel. Using a relatively low frequency (2.1 GHz), we hope to be able to identify walls or other archeological features to assist in excavation. A large data set of radar and photographic data have been collected over sites at Tel Safi, Qumran, Tel Micnah, and the Zippori National Forest in Israel. We show sample images from the archeological data. We are currently working on improved autofocus algorithms for this data and are developing a small, low-cost interferometric SAR system (YINSAR) for operation from a small aircraft.

  3. Development of a synthetic aperture radar design approach for wide-swath implementation

    NASA Technical Reports Server (NTRS)

    Jean, B. R.

    1981-01-01

    The first phase of a study program to develop an advanced synthetic aperture radar design concept is presented. Attributes of particular importance for the system design include wide swath coverage, reduced power requirements, and versatility in the selection of frequency, polarization and incident angle. The multiple beam configuration provides imaging at a nearly constant angle of incidence and offers the potential of realizing a wide range of the attributes desired for an orbital imaging radar for Earth resources applications.

  4. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  5. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories.

    PubMed

    Yarman, Can Evren; Yazici, Birsen; Cheney, Margaret

    2008-01-01

    In this paper, we present an analytic, filtered backprojection (FBP) type inversion method for bistatic synthetic aperture radar (BISAR). We consider a BISAR system where a scene of interest is illuminated by electromagnetic waves that are transmitted, at known times, from positions along an arbitrary, but known, flight trajectory and the scattered waves are measured from positions along a different flight trajectory which is also arbitrary, but known. We assume a single-scattering model for the radar data, and we assume that the ground topography is known but not necessarily flat. We use microlocal analysis to develop the FBP-type reconstruction method. We analyze the computational complexity of the numerical implementation of the method and present numerical simulations to demonstrate its performance.

  6. Understanding Volcanic Inflation of Long Valley Caldera, California, from Differential Synthetic Aperture Radar observations

    NASA Technical Reports Server (NTRS)

    Webb, F.; Hensley, S.; Rosen, P.; Langbein, J.

    1994-01-01

    The results using interferometric synthetic aperture radar(SAR) to measure the co-seismic displacement from the June 28, 1992 Landers earthquake suggest that this technique may be applicable to other problems in crustal deformation.

  7. Shuttle synthetic aperture radar implementation study, volume 1. [flight instrument and ground data processor system for collecting raw imaged radar data

    NASA Technical Reports Server (NTRS)

    Mehlis, J. G.

    1976-01-01

    Results of an implementation study for a synthetic aperture radar for the space shuttle orbiter are described. The overall effort was directed toward the determination of the feasibility and usefulness of a multifrequency, multipolarization imaging radar for the shuttle orbiter. The radar is intended for earth resource monitoring as well as oceanographic and marine studies.

  8. Onboard Data Compression of Synthetic Aperture Radar Data: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew A.; Moision, Bruce

    2008-01-01

    Synthetic aperture radar (SAR) instruments on spacecraft are capable of producing huge quantities of data. Onboard lossy data compression is commonly used to reduce the burden on the communication link. In this paper an overview is given of various SAR data compression techniques, along with an assessment of how much improvement is possible (and practical) and how to approach the problem of obtaining it. Synthetic aperture radar (SAR) instruments on spacecraft are capable of acquiring huge quantities of data. As a result, the available downlink rate and onboard storage capacity can be limiting factors in mission design for spacecraft with SAR instruments. This is true both for Earth-orbiting missions and missions to more distant targets such as Venus, Titan, and Europa. (Of course for missions beyond Earth orbit downlink rates are much lower and thus potentially much more limiting.) Typically spacecraft with SAR instruments use some form of data compression in order to reduce the storage size and/or downlink rate necessary to accommodate the SAR data. Our aim here is to give an overview of SAR data compression strategies that have been considered, and to assess the prospects for additional improvements.

  9. Apodized RFI filtering of synthetic aperture radar images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFImore » Filtering (ARF).« less

  10. Multistatic synthetic aperture radar image formation.

    PubMed

    Krishnan, V; Swoboda, J; Yarman, C E; Yazici, B

    2010-05-01

    In this paper, we consider a multistatic synthetic aperture radar (SAR) imaging scenario where a swarm of airborne antennas, some of which are transmitting, receiving or both, are traversing arbitrary flight trajectories and transmitting arbitrary waveforms without any form of multiplexing. The received signal at each receiving antenna may be interfered by the scattered signal due to multiple transmitters and additive thermal noise at the receiver. In this scenario, standard bistatic SAR image reconstruction algorithms result in artifacts in reconstructed images due to these interferences. In this paper, we use microlocal analysis in a statistical setting to develop a filtered-backprojection (FBP) type analytic image formation method that suppresses artifacts due to interference while preserving the location and orientation of edges of the scene in the reconstructed image. Our FBP-type algorithm exploits the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square sense. We present numerical simulations to demonstrate the performance of our multistatic SAR image formation algorithm with the FBP-type bistatic SAR image reconstruction algorithm. While we mainly focus on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging.

  11. Complex phase error and motion estimation in synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Soumekh, M.; Yang, H.

    1991-06-01

    Attention is given to a SAR wave equation-based system model that accurately represents the interaction of the impinging radar signal with the target to be imaged. The model is used to estimate the complex phase error across the synthesized aperture from the measured corrupted SAR data by combining the two wave equation models governing the collected SAR data at two temporal frequencies of the radar signal. The SAR system model shows that the motion of an object in a static scene results in coupled Doppler shifts in both the temporal frequency domain and the spatial frequency domain of the synthetic aperture. The velocity of the moving object is estimated through these two Doppler shifts. It is shown that once the dynamic target's velocity is known, its reconstruction can be formulated via a squint-mode SAR geometry with parameters that depend upon the dynamic target's velocity.

  12. An acceleration framework for synthetic aperture radar algorithms

    NASA Astrophysics Data System (ADS)

    Kim, Youngsoo; Gloster, Clay S.; Alexander, Winser E.

    2017-04-01

    Algorithms for radar signal processing, such as Synthetic Aperture Radar (SAR) are computationally intensive and require considerable execution time on a general purpose processor. Reconfigurable logic can be used to off-load the primary computational kernel onto a custom computing machine in order to reduce execution time by an order of magnitude as compared to kernel execution on a general purpose processor. Specifically, Field Programmable Gate Arrays (FPGAs) can be used to accelerate these kernels using hardware-based custom logic implementations. In this paper, we demonstrate a framework for algorithm acceleration. We used SAR as a case study to illustrate the potential for algorithm acceleration offered by FPGAs. Initially, we profiled the SAR algorithm and implemented a homomorphic filter using a hardware implementation of the natural logarithm. Experimental results show a linear speedup by adding reasonably small processing elements in Field Programmable Gate Array (FPGA) as opposed to using a software implementation running on a typical general purpose processor.

  13. Origin of storm footprints on the sea seen by synthetic aperture radar.

    PubMed

    Atlas, D

    1994-11-25

    Spaceborne synthetic aperture radar can detect storm footprints on the sea. Coastal weather radar from Cape Hatteras provides evidence that the echo-free hole at the footprint core is the result of wave damping by rain. The increased radar cross section of the sea surrounding the echo-free hole results from the divergence of the precipitation-forced downdraft impacting the sea. The footprint boundary is the gust front; its oriention is aligned with the direction of the winds aloft, which are transported down with the downdraft, and its length implies downdraft impact 1 hour earlier at a quasi-stationary impact spot. The steady, localized nature of the storm remains a mystery.

  14. Theory and design of interferometric synthetic aperture radars

    NASA Technical Reports Server (NTRS)

    Rodriguez, E.; Martin, J. M.

    1992-01-01

    A derivation of the signal statistics, an optimal estimator of the interferometric phase, and the expression necessary to calculate the height-error budget are presented. These expressions are used to derive methods of optimizing the parameters of the interferometric synthetic aperture radar system (InSAR), and are then employed in a specific design example for a system to perform high-resolution global topographic mapping with a one-year mission lifetime, subject to current technological constraints. A Monte Carlo simulation of this InSAR system is performed to evaluate its performance for realistic topography. The results indicate that this system has the potential to satisfy the stringent accuracy and resolution requirements for geophysical use of global topographic data.

  15. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR)

    PubMed Central

    Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander

    2008-01-01

    The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments. PMID:27879759

  16. Synthetic aperture radar target detection, feature extraction, and image formation techniques

    NASA Technical Reports Server (NTRS)

    Li, Jian

    1994-01-01

    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.

  17. SEASAT views oceans and sea ice with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1982-01-01

    Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.

  18. Performance of Scattering Matrix Decomposition and Color Spaces for Synthetic Aperture Radar Imagery

    DTIC Science & Technology

    2010-03-01

    Color Spaces and Synthetic Aperture Radar (SAR) Multicolor Imaging. 15 2.3.1 Colorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2...III. Decomposition Techniques on SAR Polarimetry and Colorimetry applied to SAR Imagery...space polarimetric SAR systems. Colorimetry is also introduced in this chapter, presenting the fundamentals of the RGB and CMY color spaces, defined for

  19. Information extraction and transmission techniques for spaceborne synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Yurovsky, L.; Watson, E.; Townsend, K.; Gardner, S.; Boberg, D.; Watson, J.; Minden, G. J.; Shanmugan, K. S.

    1984-01-01

    Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively.

  20. Modeling L-band synthetic aperture radar observations through dielectric changes in soil moisture and vegetation over shrublands

    USDA-ARS?s Scientific Manuscript database

    L-band airborne synthetic aperture radar observations were made over California shrublands to better understand the effects by soil and vegetation parameters on backscatter. Temporal changes in radar backscattering coefficient (s0) of up to 3 dB were highly correlated to surface soil moisture but no...

  1. Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrove, Cameron

    2014-05-01

    For synthetic aperture radar image products interference can degrade the quality of the images while techniques to mitigate the interference also reduce the image quality. Usually the radar system designer will try to balance the amount of mitigation for the amount of interference to optimize the image quality. This may work well for many situations, but coherent data products derived from the image products are more sensitive than the human eye to distortions caused by interference and mitigation of interference. This dissertation examines the e ect that interference and mitigation of interference has upon coherent data products. An improvement tomore » the standard notch mitigation is introduced, called the equalization notch. Other methods are suggested to mitigation interference while improving the quality of coherent data products over existing methods.« less

  2. A VLSI implementation for synthetic aperture radar image processing

    NASA Technical Reports Server (NTRS)

    Premkumar, A.; Purviance, J.

    1990-01-01

    A simple physical model for the Synthetic Aperture Radar (SAR) is presented. This model explains the one dimensional and two dimensional nature of the received SAR signal in the range and azimuth directions. A time domain correlator, its algorithm, and features are explained. The correlator is ideally suited for VLSI implementation. A real time SAR architecture using these correlators is proposed. In the proposed architecture, the received SAR data is processed using one dimensional correlators for determining the range while two dimensional correlators are used to determine the azimuth of a target. The architecture uses only three different types of custom VLSI chips and a small amount of memory.

  3. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures

    NASA Astrophysics Data System (ADS)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2013-05-01

    An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.

  4. Spaceborne Synthetic Aperture Radar Survey of Subsidence in Hampton Roads, Virginia (USA).

    PubMed

    Bekaert, D P S; Hamlington, B D; Buzzanga, B; Jones, C E

    2017-11-07

    Over the past century, the Hampton Roads area of the Chesapeake Bay region has experienced one of the highest rates of relative sea level rise on the Atlantic coast of the United States. This rate of relative sea level rise results from a combination of land subsidence, which has long been known to be present in the region, and rising seas associated with global warming on long timescales and exacerbated by shifts in ocean dynamics on shorter timescales. An understanding of the current-day magnitude of each component is needed to create accurate projections of future relative sea level rise upon which to base planning efforts. The objective of this study is to estimate the land component of relative sea level rise using interferometric synthetic aperture radar (InSAR) analysis applied to ALOS-1 synthetic aperture radar data acquired during 2007-2011 to generate high-spatial resolution (20-30 m) estimates of vertical land motion. Although these results are limited by the uncertainty associated with the small set of available historical SAR data, they highlight both localized rates of high subsidence and a significant spatial variability in subsidence, emphasizing the need for further measurement, which could be done with Sentinel-1 and NASA's upcoming NISAR mission.

  5. Synthetic aperture integration (SAI) algorithm for SAR imaging

    DOEpatents

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  6. Remote sensing with spaceborne synthetic aperture imaging radars: A review

    NASA Technical Reports Server (NTRS)

    Cimino, J. B.; Elachi, C.

    1983-01-01

    A review is given of remote sensing with Spaceborne Synthetic Aperture Radars (SAR's). In 1978, a spaceborne SA was flown on the SEASAT satellite. It acquired high resulution images over many regions in North America and the North Pacific. The acquired data clearly demonstrate the capability of spaceborne SARs to: image and track polar ice floes; image ocean surface patterns including swells, internal waves, current boundaries, weather boundaries and vessels; and image land features which are used to acquire information about the surface geology and land cover. In 1981, another SAR was flown on the second shuttle flight. This Shuttle Imaging Radar (SIR-A) acquired land and ocean images over many areas around the world. The emphasis of the SIR-A experiment was mainly toward geologic mapping. Some of the key results of the SIR-A experiment are given.

  7. ImSyn: photonic image synthesis applied to synthetic aperture radar, microscopy, and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Turpin, Terry M.; Lafuse, James L.

    1993-02-01

    ImSynTM is an image synthesis technology, developed and patented by Essex Corporation. ImSynTM can provide compact, low cost, and low power solutions to some of the most difficult image synthesis problems existing today. The inherent simplicity of ImSynTM enables the manufacture of low cost and reliable photonic systems for imaging applications ranging from airborne reconnaissance to doctor's office ultrasound. The initial application of ImSynTM technology has been to SAR processing; however, it has a wide range of applications such as: image correlation, image compression, acoustic imaging, x-ray tomographic (CAT, PET, SPECT), magnetic resonance imaging (MRI), microscopy, range- doppler mapping (extended TDOA/FDOA). This paper describes ImSynTM in terms of synthetic aperture microscopy and then shows how the technology can be extended to ultrasound and synthetic aperture radar. The synthetic aperture microscope (SAM) enables high resolution three dimensional microscopy with greater dynamic range than real aperture microscopes. SAM produces complex image data, enabling the use of coherent image processing techniques. Most importantly SAM produces the image data in a form that is easily manipulated by a digital image processing workstation.

  8. Indoor imagery with a 3D through-wall synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Fournier, Jonathan

    2012-06-01

    Through-wall radar imaging is an emerging technology with great interest to military and police forces operating in an urban environment. A through-wall imaging radar can potentially provide interior room layouts as well as detection and localization of targets of interest within a building. In this paper, we present our through-wall radar system mounted on the side of a vehicle and driven along a path in front of a building of interest. The vehicle is equipped with a LIDAR (Light Detection and Ranging) and motion sensors that provide auxiliary information. The radar uses an ultra wideband frequency-modulated continuous wave (FMCW) waveform to obtain high range resolution. Our system is composed of a vertical linear receive array to discriminate targets in elevation, and two transmit elements operated in a slow multiple-input multiple output (MIMO) configuration to increase the achievable elevation resolution. High resolution in the along-track direction is obtained through synthetic aperture radar (SAR) techniques. We present experimental results that demonstrate the 3-D capability of the radar. We further demonstrate target detection behind challenging walls, and imagery of internal wall features. Finally, we discuss future work.

  9. Spatially variant apodization for squinted synthetic aperture radar images.

    PubMed

    Castillo-Rubio, Carlos F; Llorente-Romano, Sergio; Burgos-García, Mateo

    2007-08-01

    Spatially variant apodization (SVA) is a nonlinear sidelobe reduction technique that improves sidelobe level and preserves resolution at the same time. This method implements a bidimensional finite impulse response filter with adaptive taps depending on image information. Some papers that have been previously published analyze SVA at the Nyquist rate or at higher rates focused on strip synthetic aperture radar (SAR). This paper shows that traditional SVA techniques are useless when the sensor operates with a squint angle. The reasons for this behaviour are analyzed, and a new implementation that largely improves the results is presented. The algorithm is applied to simulated SAR images in order to demonstrate the good quality achieved along with efficient computation.

  10. An atlas of November 1978 synthetic aperture radar digitized imagery for oil spill studies

    NASA Technical Reports Server (NTRS)

    Maurer, H. E.; Oderman, W.; Crosswell, W. F.

    1982-01-01

    A data set is described which consists of digitized synthetic aperture radar (SAR) imagery plus correlative data and some preliminary analysis results. This data set should be of value to experimenters who are interested in the SAR instrument and its application to the detection and monitoring of oil on water and other distributed targets.

  11. The Monitoring Case of Ground-Based Synthetic Aperture Radar with Frequency Modulated Continuous Wave System

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.

    2017-09-01

    The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.

  12. Analysis of synthetic aperture radar data acquired over a variety of land cover

    NASA Technical Reports Server (NTRS)

    Wu, S.-T.

    1984-01-01

    The results of Synthetic Aperture Radar (SAR) measurements over Kershaw County, South Carolina, using HH, HV, and VV polarization and two-incidence angle X-band airborne SAR system and over Baldwin County, Alabama, using HH polarization L-band Shuttle Imaging Radar (SIR-A) are presented. The X-band data indicate higher HH than VV radar return for cypress forest with standing water. Multipolarization (HH, HV, and VV) data help delineate several land-cover types that are difficult to delineate by the single polarization (HH) data. The L-band data indicate that radar return signal strength is highly correlated with tree height or age for three types of pine forest. It is found that delineation of urban/residential from deciduous forest is significantly improved by the inclusion of Landsat multispectral scanner data.

  13. Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites

    DTIC Science & Technology

    2014-09-30

    Constellation of Synthetic Aperture Radar Satellites RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...fax: (305) 421-4696 email: pminnett@rsmas.miami.edu Award Number: N00014-12-1-0448 LONG-TERM GOALS Utilize a constellation of satellite...OBJECTIVES a) Provide daily Arctic situational awareness from the CSTARS SAR satellite constellation . b) Develop a Neural Network algorithm for ice-type

  14. Experiment in Onboard Synthetic Aperture Radar Data Processing

    NASA Technical Reports Server (NTRS)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  15. Comparison of three different detectors applied to synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Ranney, Kenneth I.; Khatri, Hiralal; Nguyen, Lam H.

    2002-08-01

    The U.S. Army Research Laboratory has investigated the relative performance of three different target detection paradigms applied to foliage penetration (FOPEN) synthetic aperture radar (SAR) data. The three detectors - a quadratic polynomial discriminator (QPD), Bayesian neural network (BNN) and a support vector machine (SVM) - utilize a common collection of statistics (feature values) calculated from the fully polarimetric FOPEN data. We describe the parametric variations required as part of the algorithm optimizations, and we present the relative performance of the detectors in terms of probability of false alarm (Pfa) and probability of detection (Pd).

  16. Integrating polarimetric synthetic aperture radar and imaging spectrometry for wildland fuel mapping in southern California

    Treesearch

    P.E. Dennison; D.A. Roberts; J. Regelbrugge; S.L. Ustin

    2000-01-01

    Polarimetric synthetic aperture radar (SAR) and imaging spectrometry exemplify advanced technologies for mapping wildland fuels in chaparral ecosystems. In this study, we explore the potential of integrating polarimetric SAR and imaging spectrometry for mapping wildland fuels. P-band SAR and ratios containing P-band polarizations are sensitive to variations in stand...

  17. Moving receive beam method and apparatus for synthetic aperture radar

    DOEpatents

    Kare, Jordin T.

    2001-01-01

    A method and apparatus for improving the performance of Synthetic Aperture Radar (SAR) systems by reducing the effect of "edge losses" associated with nonuniform receiver antenna gain. By moving the receiver antenna pattern in synchrony with the apparent motion of the transmitted pulse along the ground, the maximum available receiver antenna gain can be used at all times. Also, the receiver antenna gain for range-ambiguous return signals may be reduced, in some cases, by a large factor. The beam motion can be implemented by real-time adjustment of phase shifters in an electronically-steered phased-array antenna or by electronic switching of feed horns in a reflector antenna system.

  18. Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR)

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Suzuoki, Yukihiro; Jones, Cathleen E.

    2011-01-01

    The National Aeronautics and Space Administration's airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  19. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    PubMed

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  20. Interferometric synthetic aperture radar: Building tomorrow's tools today

    USGS Publications Warehouse

    Lu, Zhong

    2006-01-01

    A synthetic aperture radar (SAR) system transmits electromagnetic (EM) waves at a wavelength that can range from a few millimeters to tens of centimeters. The radar wave propagates through the atmosphere and interacts with the Earth’s surface. Part of the energy is reflected back to the SAR system and recorded. Using a sophisticated image processing technique, called SAR processing (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image representing the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets, slowing of the signal by the atmosphere, and the interaction of EM waves with ground surface. Interferometric SAR (InSAR) imaging, a recently developed remote sensing technique, utilizes the interaction of EM waves, referred to as interference, to measure precise distances. Very simply, InSAR involves the use of two or more SAR images of the same area to extract landscape topography and its deformation patterns.

  1. PTBS segmentation scheme for synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Friedland, Noah S.; Rothwell, Brian J.

    1995-07-01

    The Image Understanding Group at Martin Marietta Technologies in Denver, Colorado has developed a model-based synthetic aperture radar (SAR) automatic target recognition (ATR) system using an integrated resource architecture (IRA). IRA, an adaptive Markov random field (MRF) environment, utilizes information from image, model, and neighborhood resources to create a discrete, 2D feature-based world description (FBWD). The IRA FBWD features are peak, target, background and shadow (PTBS). These features have been shown to be very useful for target discrimination. The FBWD is used to accrue evidence over a model hypothesis set. This paper presents the PTBS segmentation process utilizing two IRA resources. The image resource (IR) provides generic (the physics of image formation) and specific (the given image input) information. The neighborhood resource (NR) provides domain knowledge of localized FBWD site behaviors. A simulated annealing optimization algorithm is used to construct a `most likely' PTBS state. Results on simulated imagery illustrate the power of this technique to correctly segment PTBS features, even when vehicle signatures are immersed in heavy background clutter. These segmentations also suppress sidelobe effects and delineate shadows.

  2. Science Results from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR): Progress Report

    NASA Technical Reports Server (NTRS)

    Evans, Diane L. (Editor); Plaut, Jeffrey (Editor)

    1996-01-01

    The Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is the most advanced imaging radar system to fly in Earth orbit. Carried in the cargo bay of the Space Shuttle Endeavour in April and October of 1994, SIR-C/X-SAR simultaneously recorded SAR data at three wavelengths (L-, C-, and X-bands; 23.5, 5.8, and 3.1 cm, respectively). The SIR-C/X-SAR Science Team consists of 53 investigator teams from more than a dozen countries. Science investigations were undertaken in the fields of ecology, hydrology, ecology, and oceanography. This report contains 44 investigator team reports and several additional reports from coinvestigators and other researchers.

  3. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  4. Performance limits for maritime Inverse Synthetic Aperture Radar (ISAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2013-11-01

    The performance of an Inverse Synthetic Aperture Radar (ISAR) system depends on a variety of factors, many which are interdependent in some manner. In this report we specifically examine ISAR as applied to maritime targets (e.g. ships). It is often difficult to get your arms around the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall ISAR system. While themore » information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the seek time.« less

  5. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.

  6. Synthetic Aperture Acoustic Imaging of Non-Metallic Cords

    DTIC Science & Technology

    2012-04-01

    Washington Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302...collected with a research prototype synthetic aperture acoustic ( SAA ) imaging system. SAA imaging is an emerging technique that can serve as an...inexpensive alternative or logical complement to synthetic aperture radar (SAR). The SAA imaging system uses an acoustic transceiver (speaker and

  7. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  8. Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Durden, S. L.; Smith, M. P.; Napolitano, D. A.

    1984-01-01

    The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface.

  9. Target deception jamming method against spaceborne synthetic aperture radar using electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Qingyang; Shu, Ting; Tang, Bin; Yu, Wenxian

    2018-01-01

    A method is proposed to perform target deception jamming against spaceborne synthetic aperture radar. Compared with the traditional jamming methods using deception templates to cover the target or region of interest, the proposed method aims to generate a verisimilar deceptive target in various attitude with high fidelity using the electromagnetic (EM) scattering. Based on the geometrical model for target deception jamming, the EM scattering data from the deceptive target was first simulated by applying an EM calculation software. Then, the proposed jamming frequency response (JFR) is calculated offline by further processing. Finally, the deception jamming is achieved in real time by a multiplication between the proposed JFR and the spectrum of intercepted radar signals. The practical implementation is presented. The simulation results prove the validity of the proposed method.

  10. Measurement of hurricane winds and waves with a synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Shemdin, O. H.; King, D. B.

    1979-01-01

    An analysis of data collected in a hurricane research program is presented. The data were collected with a Synthetic Aperture Radar (SAR) during five aircraft flights in the Atlantic in August and September, 1976. Work was conducted in two areas. The first is an analysis of the L-band SAR data in a scatterometer mode to determine the surface windspeeds in hurricanes, in a similar manner to that done by an X-band scatterometer. The second area was to use the SAR to examine the wave patterns in hurricanes. The wave patterns in all of the storms are similar and show a marked radial asymmetry.

  11. Optimal sampling and quantization of synthetic aperture radar signals

    NASA Technical Reports Server (NTRS)

    Wu, C.

    1978-01-01

    Some theoretical and experimental results on optimal sampling and quantization of synthetic aperture radar (SAR) signals are presented. It includes a description of a derived theoretical relationship between the pixel signal to noise ratio of processed SAR images and the number of quantization bits per sampled signal, assuming homogeneous extended targets. With this relationship known, a solution may be realized for the problem of optimal allocation of a fixed data bit-volume (for specified surface area and resolution criterion) between the number of samples and the number of bits per sample. The results indicate that to achieve the best possible image quality for a fixed bit rate and a given resolution criterion, one should quantize individual samples coarsely and thereby maximize the number of multiple looks. The theoretical results are then compared with simulation results obtained by processing aircraft SAR data.

  12. Target-adaptive polarimetric synthetic aperture radar target discrimination using maximum average correlation height filters.

    PubMed

    Sadjadi, Firooz A; Mahalanobis, Abhijit

    2006-05-01

    We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.

  13. Reduction and coding of synthetic aperture radar data with Fourier transforms

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  14. Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1982-01-01

    A single-frequency multibeam synthetic aperture radar for large swath imaging is disclosed. Each beam illuminates a separate ""footprint'' (i.e., range and azimuth interval). The distinct azimuth intervals for the separate beams produce a distinct Doppler frequency spectrum for each beam. After range correlation of raw data, an optical processor develops image data for the different beams by spatially separating the beams to place each beam of different Doppler frequency spectrum in a different location in the frequency plane as well as the imaging plane of the optical processor. Selection of a beam for imaging may be made in the frequency plane by adjusting the position of an aperture, or in the image plane by adjusting the position of a slit. The raw data may also be processed in digital form in an analogous manner.

  15. Characterization of steel rebar spacing using synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Tang, Qixiang; Twumasi, Jones Owusu; Yu, Tzuyang

    2018-03-01

    Steel rebars is a vital component in reinforced concrete (RC) and prestressed concrete structures since they provide mechanical functions to those structures. Damages occurred to steel rebars can lead to the premature failure of concrete structures. Characterization of steel rebars using nondestructive evaluation (NDE) offers engineers and decision makers important information for effective/good repair of aging concrete structures. Among existing NDE techniques, microwave/radar NDE has been proven to be a promising technique for surface and subsurface sensing of concrete structures. The objective of this paper is to use microwave/radar NDE to characterize steel rebar grids in free space, as a basis for the subsurface sensing of steel rebars inside RC structures. A portable 10-GHz radar system based on synthetic aperture radar (SAR) imaging was used in this paper. Effect of rebar grid spacing was considered and used to define subsurface steel rebar grids. Five rebar grid spacings were used; 12.7 cm (5 in.), 17.78 cm (7 in.), 22.86 cm (9 in.), 27.94 cm (11 in.), and 33.02 cm (13 in.) # 3 rebars were used in all grid specimens. All SAR images were collected inside an anechoic chamber. It was found that SAR images can successfully capture the change of rebar grid spacing and used for quantifying the spacing of rebar grids. Empirical models were proposed to estimate actual rebar spacing and contour area using SAR images.

  16. A New Method of Synthetic Aperture Radar Image Reconstruction Using Modified Convolution Back-Projection Algorithm.

    DTIC Science & Technology

    1986-08-01

    SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTIONAVAILABILITY OF REPORT N/A \\pproved for public release, 21b. OECLASS FI) CAT ) ON/OOWNGRAOING SCMEOLLE...from this set of projections. The Convolution Back-Projection (CBP) algorithm is widely used technique in Computer Aide Tomography ( CAT ). In this work...University of Illinois at Urbana-Champaign. 1985 Ac % DTICEl_ FCTE " AUG 1 11986 Urbana. Illinois U,) I A NEW METHOD OF SYNTHETIC APERTURE RADAR IMAGE

  17. Battlefield radar imaging through airborne millimetric wave SAR (Synthetic Aperture Radar)

    NASA Astrophysics Data System (ADS)

    Carletti, U.; Daddio, E.; Farina, A.; Morabito, C.; Pangrazi, R.; Studer, F. A.

    Airborne synthetic aperture radar (SAR), operating in the millimetric-wave (mmw) region, is discussed with reference to a battlefield surveillance application. The SAR system provides high resolution real-time imaging of the battlefield and moving target detection, under adverse environmental conditions (e.g., weather, dust, smoke, obscurants). The most relevant and original aspects of the system are the band of operation (i.e., mmw in lieu of the more traditional microwave region) and the use of an unmanned platform. The former implies reduced weight and size requirements, thus allowing use of small unmanned platforms. The latter enchances the system operational effectiveness by permitting accomplishment of recognition missions in depth beyond the FEBA. An overall system architecture based on the onboard sensor, the platform, the communication equipment, and a mobile ground station is described. The main areas of ongoing investigation are presented: the simulation of the end-to-end system, and the critical technological issues such as mmw antenna, transmitter, signal processor for image formation and platform attitude errors compensation and detection and imaging of moving targets.

  18. Generation of topographic terrain models utilizing synthetic aperture radar and surface level data

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L. (Inventor)

    1991-01-01

    Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage.

  19. UHF Microstrip Antenna Array for Synthetic- Aperture Radar

    NASA Technical Reports Server (NTRS)

    Thomas, Robert F.; Huang, John

    2003-01-01

    An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.

  20. Interferometric inverse synthetic aperture radar imaging for space targets based on wideband direct sampling using two antennas

    NASA Astrophysics Data System (ADS)

    Tian, Biao; Liu, Yang; Xu, Shiyou; Chen, Zengping

    2014-01-01

    Interferometric inverse synthetic aperture radar (InISAR) imaging provides complementary information to monostatic inverse synthetic aperture radar (ISAR) imaging. This paper proposes a new InISAR imaging system for space targets based on wideband direct sampling using two antennas. The system is easy to realize in engineering since the motion trajectory of space targets can be known in advance, which is simpler than that of three receivers. In the preprocessing step, high speed movement compensation is carried out by designing an adaptive matched filter containing speed that is obtained from the narrow band information. Then, the coherent processing and keystone transform for ISAR imaging are adopted to reserve the phase history of each antenna. Through appropriate collocation of the system, image registration and phase unwrapping can be avoided. Considering the situation not to be satisfied, the influence of baseline variance is analyzed and compensation method is adopted. The corresponding size can be achieved by interferometric processing of the two complex ISAR images. Experimental results prove the validity of the analysis and the three-dimensional imaging algorithm.

  1. Synthetic aperture radar interferometry of Okmok volcano, Alaska: radar observations

    USGS Publications Warehouse

    Lu, Zhong; Mann, Dörte; Freymueller, Jeffrey T.; Meyer, David

    2000-01-01

    ERS-1/ERS-2 synthetic aperture radar interferometry was used to study the 1997 eruption of Okmok volcano in Alaska. First, we derived an accurate digital elevation model (DEM) using a tandem ERS-1/ERS-2 image pair and the preexisting DEM. Second, by studying changes in interferometric coherence we found that the newly erupted lava lost radar coherence for 5-17 months after the eruption. This suggests changes in the surface backscattering characteristics and was probably related to cooling and compaction processes. Third, the atmospheric delay anomalies in the deformation interferograms were quantitatively assessed. Atmospheric delay anomalies in some of the interferograms were significant and consistently smaller than one to two fringes in magnitude. For this reason, repeat observations are important to confidently interpret small geophysical signals related to volcanic activities. Finally, using two-pass differential interferometry, we analyzed the preemptive inflation, coeruptive deflation, and posteruptive inflation and confirmed the observations using independent image pairs. We observed more than 140 cm of subsidence associated with the 1997 eruption. This subsidence occurred between 16 months before the eruption and 5 months after the eruption, was preceded by ∼18 cm of uplift between 1992 and 1995 centered in the same location, and was followed by ∼10 cm of uplift between September 1997 and 1998. The best fitting model suggests the magma reservoir resided at 2.7 km depth beneath the center of the caldera, which was ∼5 km from the eruptive vent. We estimated the volume of the erupted material to be 0.055 km3 and the average thickness of the erupted lava to be ∼7.4 m. Copyright 2000 by the American Geophysical Union.

  2. The rapid terrain visualization interferometric synthetic aperture radar sensor

    NASA Astrophysics Data System (ADS)

    Graham, Robert H.; Bickel, Douglas L.; Hensley, William H.

    2003-11-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.

  3. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  4. 3D Imaging Millimeter Wave Circular Synthetic Aperture Radar

    PubMed Central

    Zhang, Renyuan; Cao, Siyang

    2017-01-01

    In this paper, a new millimeter wave 3D imaging radar is proposed. The user just needs to move the radar along a circular track, and high resolution 3D imaging can be generated. The proposed radar uses the movement of itself to synthesize a large aperture in both the azimuth and elevation directions. It can utilize inverse Radon transform to resolve 3D imaging. To improve the sensing result, the compressed sensing approach is further investigated. The simulation and experimental result further illustrated the design. Because a single transceiver circuit is needed, a light, affordable and high resolution 3D mmWave imaging radar is illustrated in the paper. PMID:28629140

  5. Rapid, Repeat-sample Monitoring of Crustal Deformations and Environmental Phenomena with the Uninhabited Aerial Vehicle Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Smith, Robert C.

    2006-01-01

    The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR) mission being developed by the Jet Propulsion Laboratory and the Dryden Flight Research Center in support of NASA s Science Mission Directorate. UAVSAR's unique ability to fly a repeatable flight path, along with an electronically steerable array, allows interferometric data to be obtained with accuracies measured in millimeters. Deploying the radar on an airborne platform will also allow for radar images to be collected and compared with images from the same area taken hours or even years later - providing for long-term trending and near real-time notification of changes and deformations. UAVSAR s data processing algorithms will provide for near-real time data reduction providing disaster planning and response teams with highly accurate data to aid in the prediction of, and response to, natural phenomena. UAVSAR data can be applied to increasing our understanding of the processes behind solid earth, cryosphere, carbon cycle and other areas of interest in earth science. Technologies developed for UAVSAR may also be applicable to a future earth-orbiting InSAR mission and possibly for missions to the Moon or Mars. The UAVSAR is expected to fly on a Gulfstream III aircraft this winter, followed by a flight test program lasting until the second half of 2007. Following radar calibration and data reduction activities, the platform will be ready for science users in the summer of 2008.

  6. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Werner, Marian U.

    1993-01-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  7. Measurements of the radar cross section and Inverse Synthetic Aperture Radar (ISAR) images of a Piper Navajo at 9.5 GHz and 49 GHz

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.

    1993-01-01

    Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).

  8. Sea Ice Movements from Synthetic Aperture Radar

    DTIC Science & Technology

    1981-12-01

    correlating these components. B-l8 These correlations are also plotted in figure l1. 5.3.3.2 AUlications of the space correlation. The spatial...aperture radar. To appear in J. of Geophys. Res. Hastings, A. D. Jr., 1971. Surface climate of the Arctic Basin. Report ETL- TR-71-5, Earth Sciences Division...Administration Grant NA50-AA-D-00015, which was funded in part by the Global Atmospheric Research Program and the Office of Climate Dynarics, Divisic

  9. Earthquake Building Damage Mapping Based on Feature Analyzing Method from Synthetic Aperture Radar Data

    NASA Astrophysics Data System (ADS)

    An, L.; Zhang, J.; Gong, L.

    2018-04-01

    Playing an important role in gathering information of social infrastructure damage, Synthetic Aperture Radar (SAR) remote sensing is a useful tool for monitoring earthquake disasters. With the wide application of this technique, a standard method, comparing post-seismic to pre-seismic data, become common. However, multi-temporal SAR processes, are not always achievable. To develop a post-seismic data only method for building damage detection, is of great importance. In this paper, the authors are now initiating experimental investigation to establish an object-based feature analysing classification method for building damage recognition.

  10. Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar

    DOEpatents

    Doerry, Armin W [Albuquerque, NM; Heard, Freddie E [Albuquerque, NM; Cordaro, J Thomas [Albuquerque, NM

    2008-06-24

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  11. Flood Extent Mapping Using Dual-Polarimetric SENTINEL-1 Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Jo, M.-J.; Osmanoglu, B.; Zhang, B.; Wdowinski, S.

    2018-04-01

    Rapid generation of synthetic aperture radar (SAR) based flood extent maps provide valuable data in disaster response efforts thanks to the cloud penetrating ability of microwaves. We present a method using dual-polarimetric SAR imagery acquired on Sentinel-1a/b satellites. A false-colour map is generated using pre- and post- disaster imagery, allowing operators to distinguish between existing standing water pre-flooding, and recently flooded areas. The method works best in areas of standing water and provides mixed results in urban areas. A flood depth map is also estimated by using an external DEM. We will present the methodology, it's estimated accuracy as well as investigations into improving the response in urban areas.

  12. A parametric study of rate of advance and area coverage rate performance of synthetic aperture radar.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, Ann Marie; William H. Hensley, Jr.; Burns, Bryan L.

    2014-11-01

    The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage ratemore » performance.« less

  13. On the extraction of directional sea-wave spectra from synthetic- aperture radar-signal arrays without matched filtering.

    USGS Publications Warehouse

    Wildey, R.L.

    1980-01-01

    An economical method of digitally extracting sea-wave spectra from synthetic-aperture radar-signal records, which can be performed routinely in real or near-real time with the reception of telemetry from Seasat satellites, would be of value to a variety of scientific disciplines. This paper explores techniques for such data extraction and concludes that the mere fact that the desired result is devoid of phase information does not, of itself, lead to a simplification in data processing because of the nature of the modulation performed on the radar pulse by the backscattering surface. -from Author

  14. Extending interferometric synthetic aperture radar measurements from one to two dimensions

    NASA Astrophysics Data System (ADS)

    Bechor, Noah

    Interferometric synthetic aperture radar (InSAR), a very effective technique for measuring crustal deformation, provides measurements in only one dimension, along the radar line of sight. Imaging radar measurements from satellite-based systems are sensitive to both vertical and across-track displacements, but insensitive to along-track displacement. Multiple observations can resolve the first two components, but the along-track component remains elusive. The best existing method to obtain the along-track displacement involves pixel-level azimuth cross-correlation. The measurements are quite coarse (typically 15 cm precision), and they require large computation times. In contrast, across-track and vertical InSAR measurements can reach centimeter-level precision and are readily derived. We present a new method to extract along-track displacements from InSAR data. The new method, multiple aperture InSAR (MAI), is based on split-beam processing of InSAR data to create forward- and backward-looking interferograms. The phase difference between the two modified interferograms provides the along-track displacement component. Thus, from each conventional InSAR pair we extract two components of the displacement vector: one along the line of sight, the other in the along-track direction. Multiple MAI observations, either at two look angles or from the ascending and descending radar passes, then yield the three-dimensional displacement field. We analyze precision of our method by comparing our solution to GPS and offset-derived along-track displacements from interferograms of the M7.1 1999, Hector Mine earthquake. The RMS error between GPS displacements and our results ranges from 5 to 8.8cm. Our method is consistent with along-track displacements derived by pixel-offsets, themselves limited to 12-15cm precision. The theoretical MAI precision depends on SNR and coherence. For SNR=100 the expected precision is 3, 11cm for coherence of 0.8, 0.4, respectively. Finally, we

  15. Monitoring deformation at the Geysers Geothermal Field, California using C-band and X-band interferometric synthetic aperture radar

    DOE PAGES

    Vasco, D. W.; Rutqvist, Jonny; Ferretti, Alessandro; ...

    2013-06-07

    In this study, we resolve deformation at The Geysers Geothermal Field using two distinct sets of interferometric synthetic aperture radar (InSAR) data. The first set of observations utilize archived European Space Agency C-band synthetic aperture radar data from 1992 through 1999 to image the long-term and large-scale subsidence at The Geysers. The peak range velocity of approximately 50 mm/year agrees with previous estimates from leveling and global positioning system observations. Data from a second set of measurements, acquired by TerraSAR-X satellites, extend from May 2011 until April 2012 and overlap the C-band data spatially but not temporally. These X-band data,more » analyzed using a combined permanent and distributed scatterer algorithm, provide a higher density of scatterers (1122 per square kilometer) than do the C-band data (12 per square kilometer). The TerraSAR-X observations resolve 1 to 2 cm of deformation due to water injection into a Northwest Geysers enhanced geothermal system well, initiated on October 2011. Lastly, the temporal variation of the deformation is compatible with estimates from coupled numerical modeling.« less

  16. New formulation for interferometric synthetic aperture radar for terrain mapping

    NASA Astrophysics Data System (ADS)

    Jakowatz, Charles V., Jr.; Wahl, Daniel E.; Eichel, Paul H.; Thompson, Paul A.

    1994-06-01

    The subject of interferometric synthetic aperture radar (IFSAR) for high-accuracy terrain elevation mapping continues to gain importance in the arena of radar signal processing. Applications to problems in precision terrain-aided guidance and automatic target recognition, as well as a variety of civil applications, are being studied by a number of researchers. Not unlike many other areas of SAR processing, the subject of IFSAR can, at first glance, appear to be somewhat mysterious. In this paper we show how the mathematics of IFSAR for terrain elevation mapping using a pair of spotlight mode SAR collections can be derived in a very straightforward manner. Here, we employ an approach that relies entirely on Fourier transforms, and utilizes no reference to range equations or Doppler concepts. The result is a simplified explanation of the fundamentals of interferometry, including an easily-seen link between image domain phase difference and terrain elevation height. The derivation builds upon previous work by the authors in which a framework for spotlight mode SAR image formation based on an analogy to 3D computerized axial tomography (CAT) was developed. After outlining the major steps in the mathematics, we show how a computer simulator which utilizes 3D Fourier transforms can be constructed that demonstrates all of the major aspects of IFSAR from spotlight mode collections.

  17. Early development in synthetic aperture lidar sensing and processing for on-demand high resolution imaging

    NASA Astrophysics Data System (ADS)

    Bergeron, Alain; Turbide, Simon; Terroux, Marc; Marchese, Linda; Harnisch, Bernd

    2017-11-01

    The quest for real-time high resolution is of prime importance for surveillance applications specially in disaster management and rescue mission. Synthetic aperture radar provides meter-range resolution images in all weather conditions. Often installed on satellites the revisit time can be too long to support real-time operations on the ground. Synthetic aperture lidar can be lightweight and offers centimeter-range resolution. Onboard airplane or unmanned air vehicle this technology would allow for timelier reconnaissance. INO has developed a synthetic aperture radar table prototype and further used a real-time optronic processor to fulfill image generation on-demand. The early positive results using both technologies are presented in this paper.

  18. Electromagnetic characterization of white spruce at different moisture contents using synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Ingemi, Christopher M.; Owusu Twumasi, Jones; Yu, Tzuyang

    2018-03-01

    Detection and quantification of moisture content inside wood (timber) is key to ensuring safety and reliability of timber structures. Moisture inside wood attracts insects and fosters the development of fungi to attack the timber, causing significant damages and reducing the load bearing capacity during their design life. The use of non-destructive evaluation (NDE) techniques (e.g., microwave/radar, ultrasonic, stress wave, and X-ray) for condition assessment of timber structures is a good choice. NDE techniques provide information about the level of deterioration and material properties of timber structures without obstructing their functionality. In this study, microwave/radar NDE technique was selected for the characterization of wood at different moisture contents. A 12 in-by-3.5 in-by-1.5 in. white spruce specimen (picea glauca) was imaged at different moisture contents using a 10 GHz synthetic aperture radar (SAR) sensor inside an anechoic chamber. The presence of moisture was found to increase the SAR image amplitude as expected. Additionally, integrated SAR amplitude was found beneficial in modeling the moisture content inside the wood specimen.

  19. Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode.

    PubMed

    Shen, Shijian; Nie, Xin; Zhang, Xinggan

    2018-02-03

    Gaofen-3 (GF-3) is China' first C-band multi-polarization synthetic aperture radar (SAR) satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP) and PFA (Polar Format Algorithm) imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.

  20. Mathematical Problems in Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Klein, Jens

    2010-10-01

    This thesis is concerned with problems related to Synthetic Aperture Radar (SAR). The thesis is structured as follows: The first chapter explains what SAR is, and the physical and mathematical background is illuminated. The following chapter points out a problem with a divergent integral in a common approach and proposes an improvement. Numerical comparisons are shown that indicate that the improvements allow for a superior image quality. Thereafter the problem of limited data is analyzed. In a realistic SAR-measurement the data gathered from the electromagnetic waves reflected from the surface can only be collected from a limited area. However the reconstruction formula requires data from an infinite distance. The chapter gives an analysis of the artifacts which can obscure the reconstructed images due to this problem. Additionally, some numerical examples are shown that point to the severity of the problem. In chapter 4 the fact that data is available only from a limited area is used to propose a new inversion formula. This inversion formula has the potential to make it easier to suppress artifacts due to limited data and, depending on the application, can be refined to a fast reconstruction formula. In the penultimate chapter a solution to the problem of left-right ambiguity is presented. This problem exists since the invention of SAR and is caused by the geometry of the measurements. This leads to the fact that only symmetric images can be obtained. With the solution from this chapter it is possible to reconstruct not only the even part of the reflectivity function, but also the odd part, thus making it possible to reconstruct asymmetric images. Numerical simulations are shown to demonstrate that this solution is not affected by stability problems as other approaches have been. The final chapter develops some continuative ideas that could be pursued in the future.

  1. Effect of external digital elevation model on monitoring of mine subsidence by two-pass differential interferometric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Tao, Qiuxiang; Gao, Tengfei; Liu, Guolin; Wang, Zhiwei

    2017-04-01

    The external digital elevation model (DEM) error is one of the main factors that affect the accuracy of mine subsidence monitored by two-pass differential interferometric synthetic aperture radar (DInSAR), which has been widely used in monitoring mining-induced subsidence. The theoretical relationship between external DEM error and monitored deformation error is derived based on the principles of interferometric synthetic aperture radar (DInSAR) and two-pass DInSAR. Taking the Dongtan and Yangcun mine areas of Jining as test areas, the difference and accuracy of 1:50000, ASTER GDEM V2, and SRTM DEMs are compared and analyzed. Two interferometric pairs of Advanced Land Observing Satellite Phased Array L-band SAR covering the test areas are processed using two-pass DInSAR with three external DEMs to compare and analyze the effect of three external DEMs on monitored mine subsidence in high- and low-coherence subsidence regions. Moreover, the reliability and accuracy of the three DInSAR-monitored results are compared and verified with leveling-measured subsidence values. Results show that the effect of external DEM on mine subsidence monitored by two-pass DInSAR is not only related to radar look angle, perpendicular baseline, slant range, and external DEM error, but also to the ground resolution of DEM, the magnitude of subsidence, and the coherence of test areas.

  2. Method and apparatus for reducing range ambiguity in synthetic aperture radar

    DOEpatents

    Kare, Jordin T.

    1999-10-26

    A modified Synthetic Aperture Radar (SAR) system with reduced sensitivity to range ambiguities, and which uses secondary receiver channels to detect the range ambiguous signals and subtract them from the signal received by the main channel. Both desired and range ambiguous signals are detected by a main receiver and by one or more identical secondary receivers. All receivers are connected to a common antenna with two or more feed systems offset in elevation (e.g., a reflector antenna with multiple feed horns or a phased array with multiple phase shift networks. The secondary receiver output(s) is (are) then subtracted from the main receiver output in such a way as to cancel the ambiguous signals while only slightly attenuating the desired signal and slightly increasing the noise in the main channel, and thus does not significantly affect the desired signal. This subtraction may be done in real time, or the outputs of the receivers may be recorded separately and combined during signal processing.

  3. New inverse synthetic aperture radar algorithm for translational motion compensation

    NASA Astrophysics Data System (ADS)

    Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.

    1991-10-01

    Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.

  4. Glacier and snow hydrology investigation in the Upper Indus Basin using Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Jouvet, G.; Stastny, T.; Oettershagen, P.; Hugentobler, M.; Mantel, T.; Melzer, A.; Weidmann, Y.; Funk, M.; Siegwart, R.; Lund, J.; Forster, R. R.; Burgess, E. W.

    2017-12-01

    The flows of the Indus River are a vital resource for food security, ecosystem services, hydropower and economy for China, India and Pakistan. Glaciers of the Karakoram Mountains are the largest drivers of discharge in the Upper Indus Basin, and combined with snowmelt constitute the majority of runoff. While recently verified in near balance, the glaciers of the Karakoram exhibit substantial variation both spatially and temporally. Complex climatology, coupled with the challenges of field study in this rugged range, illicit notable uncertainties in observation and prediction of glacial status. Satellite-borne radar sensors acquire imagery regardless of cloud cover or time of day, and offer unique insights into physical processes due to their wavelength. Here we utilize Sentinel-1 synthetic aperture radar (SAR) imagery to track transient snow lines on glaciers of the Shigar watershed throughout multiple ablation seasons, and discuss the utility of this information in relation to snow and glacier mass balance. As the Sentinel-1 sensor ascending and descending passes capture morning and evening imagery in this region, diurnal radar variations will also be explored as indicators of melt-refreeze cycles and their correlation with peak runoff.

  5. Oil Slick Characterization Using Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Breivik, O.; Brekke, C.; Skrunes, S.; Holt, B.

    2015-12-01

    Oil spills are a hazard worldwide with potential of causing high impact disasters, and require an active oil spill response capability to protect personnel, the ecosystem, and the energy supply. As the amount of oil in traditionally accessible reserves decline, there will be increasing oil extraction from the Arctic and deep-water wells, both new sources with high risk and high cost for monitoring and response. Although radar has long been used for mapping the spatial extent of oil slicks, it is only since the Deepwater Horizon spill that synthetic aperture radar (SAR) has been shown capable of characterizing oil properties within a slick, and therefore useful for directing response to the recoverable thicker slicks or emulsions. Here we discuss a 2015 Norwegian oil-on-water spill experiment in which emulsions of known quantity and water-to-oil ratio along with a look-alike slick of plant oil were released in the North Sea and imaged with polarimetric SAR (PolSAR) by NASA's UAVSAR instrument for several hours following release. During the experiment, extensive in situ measurements were made from ship or aircraft with meteorological instruments, released drift buoys, and optical/IR imagers. The experiment was designed to provide validation data for development of a physical model relating polarization-dependent electromagnetic scattering to the dielectric properties of oil mixed with ocean water, which is the basis for oil characterization with SAR. Data were acquired with X-, C-, and L-band satellite-based SARs to enable multi-frequency comparison of characterization capabilities. In addition, the data are used to develop methods to differentiate mineral slicks from biogenic look-alikes, and to better understand slick weathering and dispersion. The results will provide a basis for modeling oil-in-ice spills, currently a high priority for nations involved in Arctic oil exploration. Here we discuss the Norwegian experiment, the validation data, and the results of

  6. Footprints of storms on the sea: A view from spaceborne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Atlas, David

    1994-01-01

    Synthetic aperture radar (SAR) on board Seasat observed images of stormlike echoes on the sea in 1978. The core of these images is usually an echo-free hole which is attributed to the damping of the short (30-cm) radar detectable gravity waves by the intense rain in the storm core. Although 'the beating down of waves by rain' is consistent with observations by seafarers and with the first scientific explanation of the phenomenon by Reynolds (1875), neither theory nor experiment has provided definitive support. One experiment appears to provide the key; it shows that the kenetic energy of the rain produces sufficient turbulence in a thin fresh water layer to damp 30-cm waves in 10-20 s, thus producing the echo-free hole. A sequence of positive feedbacks then serves to damp the longer waves. The angular dependence of the sea surface echo cross sections seen by Seasat SAR outside the echo-free hole indicates winds diverging from the downdraft induced by the intense rain core. The wind-generated waves and associated echoes extend out to a sharply defined gust front. The sea surface footprint thus mimics the features of a storm microburst. The variations in surface radar cross section due to a combination of rain and wind effects impacts spaceborne measurements of surface winds by scatterometry and rainfall measurements by radar. Portions of this synthesis remain speculative but serve as hypotheses for further research.

  7. Modified retrieval algorithm for three types of precipitation distribution using x-band synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Xie, Yanan; Zhou, Mingliang; Pan, Dengke

    2017-10-01

    The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.

  8. High-resolution inverse synthetic aperture radar imaging for large rotation angle targets based on segmented processing algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan

    2017-01-01

    In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.

  9. An all-optronic synthetic aperture lidar

    NASA Astrophysics Data System (ADS)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Babin, François; Bergeron, Alain

    2012-09-01

    Synthetic Aperture Radar (SAR) is a mature technology that overcomes the diffraction limit of an imaging system's real aperture by taking advantage of the platform motion to coherently sample multiple sections of an aperture much larger than the physical one. Synthetic Aperture Lidar (SAL) is the extension of SAR to much shorter wavelengths (1.5 μm vs 5 cm). This new technology can offer higher resolution images in day or night time as well as in certain adverse conditions. It could be a powerful tool for Earth monitoring (ship detection, frontier surveillance, ocean monitoring) from aircraft, unattended aerial vehicle (UAV) or spatial platforms. A continuous flow of high-resolution images covering large areas would however produce a large amount of data involving a high cost in term of post-processing computational time. This paper presents a laboratory demonstration of a SAL system complete with image reconstruction based on optronic processing. This differs from the more traditional digital approach by its real-time processing capability. The SAL system is discussed and images obtained from a non-metallic diffuse target at ranges up to 3m are shown, these images being processed by a real-time optronic SAR processor origiinally designed to reconstruct SAR images from ENVISAT/ASAR data.

  10. Tropical Cyclone Boundary Layer Rolls in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Huang, Lanqing; Li, Xiaofeng; Liu, Bin; Zhang, Jun A.; Shen, Dongliang; Zhang, Zenghui; Yu, Wenxian

    2018-04-01

    Marine atmospheric boundary layer (MABL) roll plays an important role in the turbulent exchange of momentum, sensible heat, and moisture throughout MABL of tropical cyclone (TC). Hence, rolls are believed to be closely related to TC's development, intensification, and decay processes. Spaceborne synthetic aperture radar (SAR) provides a unique capability to image the sea surface imprints of quasi-linear streaks induced by the MABL rolls within a TC. In this study, sixteen SAR images, including three images acquired during three major hurricanes: Irma, Jose, and Maria in the 2017 Atlantic hurricane season, were utilized to systematically map the distribution and wavelength of MABL rolls under the wide range of TC intensities. The images were acquired by SAR onboard RADARSAT-1/2, ENVISAT, and SENTINEL-1 satellites. Our findings are in agreement with the previous one case study of Hurricane Katrina (2005), showing the roll wavelengths are between 600 and 1,600 m. We also find that there exist roll imprints in eyewall and rainbands, although the boundary layer heights are shallower there. Besides, the spatial distribution of roll wavelengths is asymmetrical. The roll wavelengths are found to be the shortest around the storm center, increase and then decrease with distance from storm center, reaching the peak values in the range of d∗-2d∗, where d∗ is defined as the physical location to TC centers normalized by the radius of maximum wind. These MABL roll characteristics cannot be derived using conventional aircraft and land-based Doppler radar observations.

  11. Manmade target extraction based on multistage decision and its application for change detection in polarimetric synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Cong, Runmin; Han, Ping; Li, Chongyi; He, Jiaji; Zhang, Zaiji

    2016-09-01

    Targets of interest are different in various applications in which manmade targets, such as aircraft, ships, and buildings, are given more attention. Manmade target extraction methods using synthetic aperture radar (SAR) images are designed in response to various demands, which include civil uses, business purposes, and military industries. This plays an increasingly vital role in monitoring, military reconnaissance, and precision strikes. Achieving accurate and complete results through traditional methods is becoming more challenging because of the scattered complexity of polarization in polarimetric synthetic aperture radar (PolSAR) image. A multistage decision-based method is proposed composed of power decision, dominant scattering mechanism decision, and reflection symmetry decision. In addition, the theories of polarimetric contrast enhancement, generalized Y decomposition, and maximum eigenvalue ratio are applied to assist the decision. Fully PolSAR data are adopted to evaluate and verify the approach. Experimental results show that the method can achieve an effective result with a lower false alarm rate and clear contours. Finally, on this basis, a universal framework of change detection for manmade targets is presented as an application of our method. Two sets of measured data are also used to evaluate and verify the effectiveness of the change-detection algorithm.

  12. Digital Beamforming Synthetic Aperture Radar (DBSAR): Performance Analysis During the Eco-3D 2011 and Summer 2012 Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing

    2014-01-01

    The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.

  13. A-Differential Synthetic Aperture Radar Interferometry analysis of a Deep Seated Gravitational Slope Deformation occurring at Bisaccia (Italy).

    PubMed

    Di Martire, Diego; Novellino, Alessandro; Ramondini, Massimo; Calcaterra, Domenico

    2016-04-15

    This paper presents the results of an investigation on a Deep Seated Gravitational Slope Deformation (DSGSD), previously only hypothesized by some authors, affecting Bisaccia, a small town located in Campania region, Italy. The study was conducted through the integration of conventional methods (geological-geomorphological field survey, air-photo interpretation) and an Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) technique. The DSGSD involves a brittle lithotype (conglomerates of the Ariano Irpino Supersynthem) resting over a Structurally Complex Formation (Varycoloured Clays of Calaggio Formation). At Bisaccia, probably as a consequence of post-cyclic recompression phenomena triggered by reiterated seismic actions, the rigid plate made up of conglomeratic sediments resulted to be split in five portions, showing different rates of displacements, whose deformations are in the order of some centimeter/year, thus inducing severe damage to the urban settlement. A-DInSAR techniques confirmed to be a reliable tool in monitoring slow-moving landslides. In this case 96 ENVIronmental SATellite-Advanced Synthetic Aperture Radar (ENVISAT-ASAR) images, in ascending and descending orbits, have been processed using SUBSOFT software, developed by the Remote Sensing Laboratory (RSLab) group from the Universitat Politècnica de Catalunya (UPC). The DInSAR results, coupled with field survey, supported the analysis of the instability mechanism and confirmed the historical record of the movements already available for the town. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Exploiting Synthetic Aperture Radar data to map and observe landslides

    NASA Astrophysics Data System (ADS)

    Bekaert, D. P.; Agram, P. S.; Fattahi, H.; Kirschbaum, D.; Amatya, P. M.; Stanley, T.

    2017-12-01

    Synthetic Aperture Radar instruments onboard satellites or airborne platforms are a powerful means to study landslides. How to best exploit the data and which techniques to apply strongly depend on the region of study and the landslide type which occurs. The amount of vegetation, snowfall, and steepness of the terrain, as well the shadowing effects of the mountain will determine if SAR is suitable to map a given landslide. Fast moving landslides occurring over a large area (e.g. >100 m) could benefit from pixel or feature tracking, while for slower moving landslides Interferometric SAR could be a more favorable approach. However, neither of those methods would work for critical landslide failures which do not preserve surface features. This type of slides would benefit from a change detection approach. Here we look at these three different cases and utilize Sentinel-1 space-borne SAR data and state-of-the-art processing techniques to map multiple landslides along the California State Route 1 and the Trishuli highway in the Langtang valley of Nepal. Our findings correlate with existing landslide catalogues and also identify landslides in regions earlier mapped to be dormant.

  15. Flight test of a synthetic aperture radar antenna using STEP

    NASA Technical Reports Server (NTRS)

    Zimcik, D. G.; Vigeron, F. R.; Ahmed, S.

    1984-01-01

    To establish confidence in its overall performance, credible information on the synthetic aperture radar antenna's mechanical properties in orbit must be obtained. However, the antenna's size, design, and operating environment make it difficult to simulate operating conditions under 1-g Earth conditions. The Space Technology Experiments Platform (STEP) offers a timely opportunity to mechanically qualify and characterize the antenna design in a representative environment. The proposed experimental configuration would employ a half-system of the full-scale RADARSAT antenna which would be mounted on the STEP platform in the orbiter cargo bay such that it could be deployed and retracted in orbit (as shown in this figure). The antenna would be subjected to typical environmental exposures while an array of targets and sensors on the antenna support structure and reflecting surface are observed and monitored. In particular, the typical environments would include deployment and retraction, dynamic response to vehicle thruster or base exciter inputs, and thermal soak and transient effects upon entering or exiting Earth eclipse. The proposed experiment would also provide generic information on the properties of large space structures in space and on techniques to obtain the desired information.

  16. Characterization of the range effect in synthetic aperture radar images of concrete specimens for width estimation

    NASA Astrophysics Data System (ADS)

    Alzeyadi, Ahmed; Yu, Tzuyang

    2018-03-01

    Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.

  17. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  18. Fine Resolution Topographic Mapping of the Jovian Moons: A Ka-Band High Resolution Topographic Mapping Interferometric Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Madsen, S. N.; Carsey, F. D.; Turtle, E. P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  19. Contribution of multitemporal polarimetric synthetic aperture radar data for monitoring winter wheat and rapeseed crops

    NASA Astrophysics Data System (ADS)

    Betbeder, Julie; Fieuzal, Remy; Philippets, Yannick; Ferro-Famil, Laurent; Baup, Frederic

    2016-04-01

    This paper aims to evaluate the contribution of multitemporal polarimetric synthetic aperture radar (SAR) data for winter wheat and rapeseed crops parameters [height, leaf area index, and dry biomass (DB)] estimation, during their whole vegetation cycles in comparison to backscattering coefficients and optical data. Angular sensitivities and dynamics of polarimetric indicators were also analyzed following the growth stages of these two common crop types using, in total, 14 radar images (Radarsat-2), 16 optical images (Formosat-2, Spot-4/5), and numerous ground data. The results of this study show the importance of correcting the angular effect on SAR signals especially for copolarized signals and polarimetric indicators associated to single-bounce scattering mechanisms. The analysis of the temporal dynamic of polarimetric indicators has shown their high potential to detect crop growth changes. Moreover, this study shows the high interest of using SAR parameters (backscattering coefficients and polarimetric indicators) for crop parameters estimation during the whole vegetation cycle instead of optical vegetation index. They particularly revealed their high potential for rapeseed height and DB monitoring [i.e., Shannon entropy polarimetry (r2=0.70) and radar vegetation index (r2=0.80), respectively].

  20. Variance based joint sparsity reconstruction of synthetic aperture radar data for speckle reduction

    NASA Astrophysics Data System (ADS)

    Scarnati, Theresa; Gelb, Anne

    2018-04-01

    In observing multiple synthetic aperture radar (SAR) images of the same scene, it is apparent that the brightness distributions of the images are not smooth, but rather composed of complicated granular patterns of bright and dark spots. Further, these brightness distributions vary from image to image. This salt and pepper like feature of SAR images, called speckle, reduces the contrast in the images and negatively affects texture based image analysis. This investigation uses the variance based joint sparsity reconstruction method for forming SAR images from the multiple SAR images. In addition to reducing speckle, the method has the advantage of being non-parametric, and can therefore be used in a variety of autonomous applications. Numerical examples include reconstructions of both simulated phase history data that result in speckled images as well as the images from the MSTAR T-72 database.

  1. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

    PubMed

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-08

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  2. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing

    PubMed Central

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-01

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4× speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration. PMID:28075343

  3. Digital elevation model generation from satellite interferometric synthetic aperture radar: Chapter 5

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Lei; Lee, Wonjin; Lee, Chang-Wook

    2012-01-01

    An accurate digital elevation model (DEM) is a critical data set for characterizing the natural landscape, monitoring natural hazards, and georeferencing satellite imagery. The ideal interferometric synthetic aperture radar (InSAR) configuration for DEM production is a single-pass two-antenna system. Repeat-pass single-antenna satellite InSAR imagery, however, also can be used to produce useful DEMs. DEM generation from InSAR is advantageous in remote areas where the photogrammetric approach to DEM generation is hindered by inclement weather conditions. There are many sources of errors in DEM generation from repeat-pass InSAR imagery, for example, inaccurate determination of the InSAR baseline, atmospheric delay anomalies, and possible surface deformation because of tectonic, volcanic, or other sources during the time interval spanned by the images. This chapter presents practical solutions to identify and remove various artifacts in repeat-pass satellite InSAR images to generate a high-quality DEM.

  4. Advanced Land Observing Satellite (ALOS) Phased Array Type L-Band Synthetic Aperture Radar (PALSAR) mosaic for the Kahiltna terrane, Alaska, 2007-2010

    USGS Publications Warehouse

    Cole, Christopher J.; Johnson, Michaela R.; Graham, Garth E.

    2015-01-01

    The USGS has compiled a continuous, cloud-free 12.5-meter resolution radar mosaic of SAR data of approximately 212,000 square kilometers to examine the suitability of this technology for geologic mapping. This mosaic was created from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data collected from 2007 to 2010 spanning the Kahiltna terrane and the surrounding area. Interpretation of these data may help geologists understand past geologic processes and identify areas with potential for near-surface mineral resources for further ground-based geological and geochemical investigations.

  5. Synthetic-Aperture Coherent Imaging From A Circular Path

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1995-01-01

    Imaging algorithms based on exact point-target responses. Developed for use in reconstructing image of target from data gathered by radar, sonar, or other transmitting/receiving coherent-signal sensory apparatus following circular observation path around target. Potential applications include: Wide-beam synthetic-aperture radar (SAR) from aboard spacecraft in circular orbit around target planet; SAR from aboard airplane flying circular course at constant elevation around central ground point, toward which spotlight radar beam pointed; Ultrasonic reflection tomography in medical setting, using one transducer moving in circle around patient or else multiple transducers at fixed positions on circle around patient; and Sonar imaging of sea floor to high resolution, without need for large sensory apparatus.

  6. SAR-EDU - An education initiative for applied Synthetic Aperture Radar remote sensing

    NASA Astrophysics Data System (ADS)

    Eckardt, Robert; Richter, Nicole; Auer, Stefan; Eineder, Michael; Roth, Achim; Hajnsek, Irena; Walter, Diana; Braun, Matthias; Motagh, Mahdi; Pathe, Carsten; Pleskachevsky, Andrey; Thiel, Christian; Schmullius, Christiane

    2013-04-01

    Since the 1970s, radar remote sensing techniques have evolved rapidly and are increasingly employed in all fields of earth sciences. Applications are manifold and still expanding due to the continuous development of new instruments and missions as well as the availability of very high-quality data. The trend worldwide is towards operational employment of the various algorithms and methods that have been developed. However, the utilization of operational services does not keep up yet with the rate of technical developments and the improvements in sensor technology. With the enhancing availability and variety of space borne Synthetic Aperture Radar (SAR) data and a growing number of analysis algorithms the need for a vital user community is increasing. Therefore the German Aerospace Center (DLR) together with the Friedrich-Schiller-University Jena (FSU) and the Technical University Munich (TUM) launched the education initiative SAR-EDU. The aim of the project is to facilitate access to expert knowledge in the scientific field of radar remote sensing. Within this effort a web portal will be created to provide seminar material on SAR basics, methods and applications to support both, lecturers and students. The overall intension of the project SAR-EDU is to provide seminar material for higher education in radar remote sensing covering the topic holistically from the very basics to the most advanced methods and applications that are available. The principles of processing and interpreting SAR data are going to be taught using test data sets and open-source as well as commercial software packages. The material that is provided by SAR-EDU will be accessible at no charge from a DLR web portal. The educational tool will have a modular structure, consisting of separate modules that broach the issue of a particular topic. The aim of the implementation of SAR-EDU as application-oriented radar remote sensing educational tool is to advocate the development and wider use of

  7. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    PubMed Central

    Nitti, Davide O.; Bovenga, Fabio; Chiaradia, Maria T.; Greco, Mario; Pinelli, Gianpaolo

    2015-01-01

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimate UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system. PMID:26225977

  8. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    PubMed

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  9. Surface soil moisture retrieval using the L-band synthetic aperture radar onboard the Soil Moisture Active Passive satellite and evaluation at core validation sites

    USDA-ARS?s Scientific Manuscript database

    This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture ...

  10. An earth remote sensing satellite- 1 Synthetic Aperture Radar Mosaic of the Tanana River Basin in Alaska

    USGS Publications Warehouse

    Wivell, Charles E.; Olmsted, Coert; Steinwand, Daniel R.; Taylor, Christopher

    1993-01-01

    Because the pixel location in a line of Synthetic Aperture Radar (SAR) image data is directly related to the distance the pixel is from the radar, terrain elevations cause large displacement errors in the geo-referenced location of the pixel. This is especially true for radar systems with small angles between the nadir and look vectors. Thus, to geo-register a SAR image accurately, the terrain of the area must be taken into account. (Curlander et al., 1987; Kwok et al., 1987, Schreier et al., 1990; Wivell et al., 1992). As part of the 1992 National Aeronautics and Space Administration's Earth Observing System Version 0 activities, a prototype SAR geocod-. ing and terrain correction system was developed at the US. Geological Survey's (USGS) E~os Data Center (EDC) in Sioux Falls, South Dakota. Using this system with 3-arc-second digital elevation models (DEMs) mosaicked at the ED^ Alaska Field Office, 21 ERS-I s.4~ scenes acquired at the Alaska SAR Facility were automatically geocoded, terrain corrected, and mosaicked. The geo-registered scenes were mosaicked using a simple concatenation.

  11. Deep feature extraction and combination for synthetic aperture radar target classification

    NASA Astrophysics Data System (ADS)

    Amrani, Moussa; Jiang, Feng

    2017-10-01

    Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.

  12. Synthetic aperture radar imagery of airports and surrounding areas: Philadelphia Airport

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Gineris, Denise J.

    1990-01-01

    The statistical description of ground clutter at an airport and in the surrounding area is addressed. These data are being utilized in a program to detect microbursts. Synthetic Aperture Radar (SAR) data were collected at the Philadelphia Airport. These data and the results of the clutter study are described. This 13 km x 10 km scene was imaged at 9.38 GHz and HH-polarization and contained airport grounds and facilities (6 percent), industrial (14 percent), residential (14 percent), fields (10 percent), forest (8 percent), and water (33 percent). Incidence angles ranged from 40 to 84 deg. Even at the smallest incidence angles, the distributed targets such as forest, fields, water, and residential rarely had mean scattering coefficients greater than -10 dB. Eighty-seven percent of the image had scattering coefficients less than -17.5 dB. About 1 percent of the scattering coefficients exceeded 0 dB, with about 0.1 percent above 10 dB. Sources which produced the largest cross sections were largely confined to the airport grounds and areas highly industrialized. The largest cross sections were produced by observing broadside large buildings surrounded by smooth surfaces.

  13. Spaceborne synthetic aperture radar signal processing using FPGAs

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yohei; Ozawa, Satoru; Inaba, Noriyasu

    2017-10-01

    Synthetic Aperture Radar (SAR) imagery requires image reproduction through successive signal processing of received data before browsing images and extracting information. The received signal data records of the ALOS-2/PALSAR-2 are stored in the onboard mission data storage and transmitted to the ground. In order to compensate the storage usage and the capacity of transmission data through the mission date communication networks, the operation duty of the PALSAR-2 is limited. This balance strongly relies on the network availability. The observation operations of the present spaceborne SAR systems are rigorously planned by simulating the mission data balance, given conflicting user demands. This problem should be solved such that we do not have to compromise the operations and the potential of the next-generation spaceborne SAR systems. One of the solutions is to compress the SAR data through onboard image reproduction and information extraction from the reproduced images. This is also beneficial for fast delivery of information products and event-driven observations by constellation. The Emergence Studio (Sōhatsu kōbō in Japanese) with Japan Aerospace Exploration Agency is developing evaluation models of FPGA-based signal processing system for onboard SAR image reproduction. The model, namely, "Fast L1 Processor (FLIP)" developed in 2016 can reproduce a 10m-resolution single look complex image (Level 1.1) from ALOS/PALSAR raw signal data (Level 1.0). The processing speed of the FLIP at 200 MHz results in twice faster than CPU-based computing at 3.7 GHz. The image processed by the FLIP is no way inferior to the image processed with 32-bit computing in MATLAB.

  14. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography

    PubMed Central

    Holloway, Jason; Wu, Yicheng; Sharma, Manoj K.; Cossairt, Oliver; Veeraraghavan, Ashok

    2017-01-01

    Synthetic aperture radar is a well-known technique for improving resolution in radio imaging. Extending these synthetic aperture techniques to the visible light domain is not straightforward because optical receivers cannot measure phase information. We propose to use macroscopic Fourier ptychography (FP) as a practical means of creating a synthetic aperture for visible imaging to achieve subdiffraction-limited resolution. We demonstrate the first working prototype for macroscopic FP in a reflection imaging geometry that is capable of imaging optically rough objects. In addition, a novel image space denoising regularization is introduced during phase retrieval to reduce the effects of speckle and improve perceptual quality of the recovered high-resolution image. Our approach is validated experimentally where the resolution of various diffuse objects is improved sixfold. PMID:28439550

  15. Space based topographic mapping experiment using Seasat synthetic aperture radar and LANDSAT 3 return beam vidicon imagery

    NASA Technical Reports Server (NTRS)

    Mader, G. L.

    1981-01-01

    A technique for producing topographic information is described which is based on same side/same time viewing using a dissimilar combination of radar imagery and photographic images. Common geographic areas viewed from similar space reference locations produce scene elevation displacements in opposite direction and proper use of this characteristic can yield the perspective information necessary for determination of base to height ratios. These base to height ratios can in turn be used to produce a topographic map. A test area covering the Harrisburg, Pennsylvania region was observed by synthetic aperture radar on the Seasat satellite and by return beam vidicon on by the LANDSAT - 3 satellite. The techniques developed for the scaling re-orientation and common registration of the two images are presented along with the topographic determination data. Topographic determination based exclusively on the images content is compared to the map information which is used as a performance calibration base.

  16. Intercomparison of synthetic- and real-aperture radar observations of Arctic sea ice during winter MIZEX '87

    NASA Technical Reports Server (NTRS)

    Schuchmann, R. A.; Onstott, R. G.; Sutherland, L. L.; Wackerman, C. C.

    1988-01-01

    Active microwave measurements were made of various sea ice forms in March and April 1987 during the Marginal Ice Zone Experiment, at 1, 5, 10, 18, and 35 GHz using a synthetic aperture radar (SAR) and helicopter and ship-based scatterometers. The X-band (9.8 GHz) SAR data were compared to the scatterometer data and it was determined that for 5 GHz and higher frequencies both the SAR and scatterometers can differentiate open water, new ice (5 to 30 cm), first-year ice with rubble (0.60 -1.5 m), and multiyear ice. The analysis further confirmed that the C-band (5 GHz) SAR's flying on ESA ERS-1 and Radarsat will differentiate the mentioned ice types.

  17. An Autonomous Cryobot Synthetic Aperture Radar for Subsurface Exploration of Europa

    NASA Astrophysics Data System (ADS)

    Pradhan, O.; Gasiewski, A. J.

    2015-12-01

    We present the design and field testing of a forward-looking end-fire synthetic aperture radar (SAR) for the 'Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. Results proving the feasibility of an end-fire SAR system for vehicle guidance and obstacle avoidance in a sub-surface ice environment will be presented. Data collected by the SAR will also be used for constructing sub-surface images of the glacier which can be used for: (i) mapping of englacial features such as crevasses, moulins, and embedded liquid water and (ii) ice-depth and glacier bed analysis to construct digital elevation models (DEM) that can help in the selection of crybot trajectories and future drill sites for extracting long-term climate records. The project consists of three parts, (i) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form agile radiating elements, (ii) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (iii) field testing of the SAR in melt holes. The antennas have been designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar system was also designed and integrated at CET utilizing rugged RF components and FPGA based digital processing. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. The antennas are designed to operate inside ice while being immersed in a thin layer of surrounding low-conductivity melt water. Small holes in the corners of the cavities allow flooding of these cavities with the same melt-water thus allowing for quarter-wavelength cavity-backed reflection. Testing of

  18. Elastic rebound following the Kocaeli earthquake, Turkey, recorded using synthetic aperture radar interferometry

    USGS Publications Warehouse

    Mayer, Larry; Lu, Zhong

    2001-01-01

    A basic model incorporating satellite synthetic aperture radar (SAR) interferometry of the fault rupture zone that formed during the Kocaeli earthquake of August 17, 1999, documents the elastic rebound that resulted from the concomitant elastic strain release along the North Anatolian fault. For pure strike-slip faults, the elastic rebound function derived from SAR interferometry is directly invertible from the distribution of elastic strain on the fault at criticality, just before the critical shear stress was exceeded and the fault ruptured. The Kocaeli earthquake, which was accompanied by as much as ∼5 m of surface displacement, distributed strain ∼110 km around the fault prior to faulting, although most of it was concentrated in a narrower and asymmetric 10-km-wide zone on either side of the fault. The use of SAR interferometry to document the distribution of elastic strain at the critical condition for faulting is clearly a valuable tool, both for scientific investigation and for the effective management of earthquake hazard.

  19. Method and apparatus for Delta Kappa synthetic aperture radar measurement of ocean current

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1985-01-01

    A synthetic aperture radar (SAR) employed for delta k measurement of ocean current from a spacecraft without the need for a narrow beam and long observation times. The SAR signal is compressed to provide image data for different sections of the chirp band width, equivalent to frequencies and a common area for the separate image fields is selected. The image for the selected area at each frequency is deconvolved to obtain the image signals for the different frequencies and the same area. A product of pairs of signals is formed, Fourier transformed and squared. The spectrum thus obtained from different areas for the same pair of frequencies are added to provide an improved signal to noise ratio. The shift of the peak from the center of the spectrum is measured and compared to the expected shift due to the phase velocity of the Bragg scattering wave. Any difference is a measure of current velocity v sub o (delta k).

  20. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    Drawing from recently submitted work, this paper first gives a heuristic description of the sensitivity of interferometric synthetic aperture radar (INSAR) to vertical vegetation distribution and under laying surface topography. A parameter estimation scenario is then described in which the INSAR cross correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of INSAR observations for single baseline, single frequency, single incidence-angle, single polarization INSAR. Using ancillary ground truth data to compensate for the under determination of the parameters, forest depths are estimated from the INSAR data. A recently analyzed multi-baseline data set is also discussed and the potential for stand alone INSAR parameter estimation is assessed. The potential of combining the information content of INSAR with that of infrared/optical remote sensing data is briefly discussed.

  1. Sea ice type maps from Alaska synthetic aperture radar facility imagery: An assessment

    NASA Technical Reports Server (NTRS)

    Fetterer, Florence M.; Gineris, Denise; Kwok, Ronald

    1994-01-01

    Synthetic aperture radar (SAR) imagery received at the Alaskan SAR Facility is routinely and automatically classified on the Geophysical Processor System (GPS) to create ice type maps. We evaluated the wintertime performance of the GPS classification algorithm by comparing ice type percentages from supervised classification with percentages from the algorithm. The root mean square (RMS) difference for multiyear ice is about 6%, while the inconsistency in supervised classification is about 3%. The algorithm separates first-year from multiyear ice well, although it sometimes fails to correctly classify new ice and open water owing to the wide distribution of backscatter for these classes. Our results imply a high degree of accuracy and consistency in the growing archive of multiyear and first-year ice distribution maps. These results have implications for heat and mass balance studies which are furthered by the ability to accurately characterize ice type distributions over a large part of the Arctic.

  2. Nonrigid synthetic aperture radar and optical image coregistration by combining local rigid transformations using a Kohonen network.

    PubMed

    Salehpour, Mehdi; Behrad, Alireza

    2017-10-01

    This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.

  3. Sources of Artefacts in Synthetic Aperture Radar Interferometry Data Sets

    NASA Astrophysics Data System (ADS)

    Becek, K.; Borkowski, A.

    2012-07-01

    In recent years, much attention has been devoted to digital elevation models (DEMs) produced using Synthetic Aperture Radar Interferometry (InSAR). This has been triggered by the relative novelty of the InSAR method and its world-famous product—the Shuttle Radar Topography Mission (SRTM) DEM. However, much less attention, if at all, has been paid to sources of artefacts in SRTM. In this work, we focus not on the missing pixels (null pixels) due to shadows or the layover effect, but rather on outliers that were undetected by the SRTM validation process. The aim of this study is to identify some of the causes of the elevation outliers in SRTM. Such knowledge may be helpful to mitigate similar problems in future InSAR DEMs, notably the ones currently being developed from data acquired by the TanDEM-X mission. We analysed many cross-sections derived from SRTM. These cross-sections were extracted over the elevation test areas, which are available from the Global Elevation Data Testing Facility (GEDTF) whose database contains about 8,500 runways with known vertical profiles. Whenever a significant discrepancy between the known runway profile and the SRTM cross-section was detected, a visual interpretation of the high-resolution satellite image was carried out to identify the objects causing the irregularities. A distance and a bearing from the outlier to the object were recorded. Moreover, we considered the SRTM look direction parameter. A comprehensive analysis of the acquired data allows us to establish that large metallic structures, such as hangars or car parking lots, are causing the outliers. Water areas or plain wet terrains may also cause an InSAR outlier. The look direction and the depression angle of the InSAR system in relation to the suspected objects influence the magnitude of the outliers. We hope that these findings will be helpful in designing the error detection routines of future InSAR or, in fact, any microwave aerial- or space-based survey. The

  4. Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: The 1997 eruption of Okmok Volcano, Alaska

    USGS Publications Warehouse

    Lu, Z.; Fielding, E.; Patrick, M.R.; Trautwein, C.M.

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of extrusion at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the 1997 eruption. The posteruption DEM is generated using airborne topographic synthetic aperture radar (TOPSAR) data where a three-dimensional affine transformation is used to account for the misalignments between different DEM patches. The preeruption DEM is produced using repeat-pass European Remote Sensing satellite data; multiple interferograms are combined to reduce errors due to atmospheric variations, and deformation rates are estimated independently and removed from the interferograms used for DEM generation. The extrusive flow volume associated with the 1997 eruption of Okmok volcano is 0.154 ?? 0.025 km3. The thickest portion is approximately 50 m, although field measurements of the flow margin's height do not exceed 20 m. The in situ measurements at lava edges are not representative of the total thickness, and precise DEM data are absolutely essential to calculate eruption volume based on lava thickness estimations. This study is an example that demonstrates how InSAR will play a significant role in studying volcanoes in remote areas.

  5. Spatial Estimation of Soil Moisture Using Synthetic Aperture Radar in Alaska

    NASA Astrophysics Data System (ADS)

    Meade, N. G.; Hinzman, L. D.; Kane, D. L.

    1999-01-01

    A spatially distributed Model of Arctic Thermal and Hydrologic processes (MATH) has been developed. One of the attributes of this model is the spatial and temporal prediction of soil moisture in the active layer. The spatially distributed output from this model required verification data obtained through remote sensing to assess performance at the watershed scale independently. Therefore, a neural network was trained to predict soil moisture contents near the ground surface. The input to train the neural network is synthetic aperture radar (SAR) pixel value, and field measurements of soil moisture, and vegetation, which were used as a surrogate for surface roughness. Once the network was trained, soil moisture predictions were made based on SAR pixel value and vegetation. These results were then used for comparison with results from the hydrologic model. The quality of neural network input was less than anticipated. Our digital elevation model (DEM) was not of high enough resolution to allow exact co-registration with soil moisture measurements; therefore, the statistical correlations were not as good as hoped. However, the spatial pattern of the SAR derived soil moisture contents compares favorably with the hydrologic MATH model results. Primary surface parameters that effect SAR include topography, surface roughness, vegetation cover and soil texture. Single parameters that are considered to influence SAR include incident angle of the radar, polarization of the radiation, signal strength and returning signal integration, to name a few. These factors influence the reflectance, but if one adequately quantifies the influences of terrain and roughness, it is considered possible to extract information on soil moisture from SAR imagery analysis and in turn use SAR imagery to validate hydrologic models

  6. Foldbelt exploration with synthetic aperture radar (SAR) in Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, J.M.; Pruett, F.D.

    1987-05-01

    Synthetic aperture radar (SAR) is being successfully used within the southern fold and thrust belt of Papua New Guinea to map surface structure and stratigraphy and to help plan a hydrocarbon exploration program. The airborne SAR imagery, along with other surface data, is used as a primary exploration tool because acquisition of acceptable seismic data is extremely costly due to extensive outcrops of Tertiary Darai Limestone which develops rugged karst topography. Most anticlines in the licenses are capped with this deeply karstified limestone. The region is ideally suited to geologic analysis using remote sensing technology. The area is seldom cloudmore » free and is covered with tropical rain forest, and geologic field studies are limited. The widespread karst terrain is exceedingly dangerous, if not impossible, to traverse on the ground. SAR is used to guide ongoing field work, modeling of subsurface structure, and selection of well locations. SAR provides their explorationists with an excellent data base because (1) structure is enhanced with low illumination, (2) resolution is 6 x 12 m, (3) digital reprocessing is possible, (4) clouds are penetrated by the SAR, and (5) the survey was designed for stereoscopic photogeology. Landsat images and vertical aerial photographs complement SAR but provide subdued structural information because of minimal shadowing (due to high sun angles) and the jungle cover. SAR imagery reveals large-scale mass wasting that has led to a reevaluation of previously acquired field data. Lithologies can be recognized by textural and tonal changes on the SAR images despite near-continuous canopy of jungle. Reprocessing and contrast stretching of the digital radar imagery provide additional geologic information.« less

  7. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar

    PubMed Central

    Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco

    2008-01-01

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale. PMID:27879932

  8. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  9. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar.

    PubMed

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-03-16

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

  10. Preliminary determination of geothermal working area based on Thermal Infrared and Synthetic Aperture Radar (SAR) remote sensing

    NASA Astrophysics Data System (ADS)

    Agoes Nugroho, Indra; Kurniawahidayati, Beta; Syahputra Mulyana, Reza; Saepuloh, Asep

    2017-12-01

    Remote sensing is one of the methods for geothermal exploration. This method can be used to map the geological structures, manifestations, and predict the geothermal potential area. The results from remote sensing were used as guidance for the next step exploration. Analysis of target in remote sensing is an efficient method to delineate geothermal surface manifestation without direct contact to the object. The study took a place in District Merangin, Jambi Province, Indonesia. The area was selected due to existing of Merangin volcanic complex composed by Mounts Sumbing and Hulunilo with surface geothermal manifestations presented by hot springs and hot pools. The location of surface manifestations could be related with local and regional structures of Great Sumatra Fault. The methods used in this study were included identification of volcanic products, lineament extraction, and lineament density quantification. The objective of this study is to delineate the potential zones for sitting the geothermal working site based on Thermal Infrared and Synthetic Aperture Radar (SAR) sensors. The lineament-related to geological structures, was aimed for high lineament density, is using ALOS - PALSAR (Advanced Land Observing Satellite - The Phased Array type L-band Synthetic Aperture Radar) level 1.1. The Normalized Difference Vegetation Index (NDVI) analysis was used to predict the vegetation condition using Landsat 8 OLI-TIRS (The Operational Land Imager - Thermal Infrared Sensor). The brightness temperature was extracted from TIR band to estimate the surface temperature. Geothermal working area identified based on index overlay method from extracted parameter of remote sensing data was located at the western part of study area (Graho Nyabu area). This location was identified because of the existence of high surface temperature about 30°C, high lineament density about 4 - 4.5 km/km2 and low NDVI values less than 0.3.

  11. Simulation of noise involved in synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Grandchamp, Myriam; Cavassilas, Jean-Francois

    1996-08-01

    The synthetic aperture radr (SAR) returns from a linear distribution of scatterers are simulated and processed in order to estimate the reflectivity coefficients of the ground. An original expression of this estimate is given, which establishes the relation between the terms of signal and noise. Both are compared. One application of this formulation consists of detecting a surface ship wake on a complex SAR image. A smoothing is first accomplished on the complex image. The choice of the integration area is determined by the preceding mathematical formulation. Then a differential filter is applied, and results are shown for two parts of the wake.

  12. The influence on the interferometry due to the instability of ground-based synthetic aperture radar work platform

    NASA Astrophysics Data System (ADS)

    Tao, Gang; Wei, Guohua; Wang, Xu; Kong, Ming

    2018-03-01

    There has been increased interest over several decades for applying ground-based synthetic aperture radar (GB-SAR) for monitoring terrain displacement. GB-SAR can achieve multitemporal surface deformation maps of the entire terrain with high spatial resolution and submilimetric accuracy due to the ability of continuous monitoring a certain area day and night regardless of the weather condition. The accuracy of the interferometric measurement result is very important. In this paper, the basic principle of InSAR is expounded, the influence of the platform's instability on the interferometric measurement results are analyzed. The error sources of deformation detection estimation are analyzed using precise geometry of imaging model. Finally, simulation results demonstrates the validity of our analysis.

  13. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  14. Agricultural crop harvest progress monitoring by fully polarimetric synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Zhao, Chunjiang; Yang, Guijun; Li, Zengyuan; Chen, Erxue; Yuan, Lin; Yang, Xiaodong; Xu, Xingang

    2015-01-01

    Dynamic mapping and monitoring of crop harvest on a large spatial scale will provide critical information for the formulation of optimal harvesting strategies. This study evaluates the feasibility of C-band polarimetric synthetic aperture radar (PolSAR) for monitoring the harvesting progress of oilseed rape (Brassica napus L.) fields. Five multitemporal, quad-pol Radarsat-2 images and one optical ZY-1 02C image were acquired over a farmland area in China during the 2013 growing season. Typical polarimetric signatures were obtained relying on polarimetric decomposition methods. Temporal evolutions of these signatures of harvested fields were compared with the ones of unharvested fields in the context of the entire growing cycle. Significant sensitivity was observed between the specific polarimetric parameters and the harvest status of oilseed rape fields. Based on this sensitivity, a new method that integrates two polarimetric features was devised to detect the harvest status of oilseed rape fields using a single image. The validation results are encouraging even for the harvested fields covered with high residues. This research demonstrates the capability of PolSAR remote sensing in crop harvest monitoring, which is a step toward more complex applications of PolSAR data in precision agriculture.

  15. Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna

    NASA Astrophysics Data System (ADS)

    Boyarsky, Michael; Sleasman, Timothy; Pulido-Mancera, Laura; Imani, Mohammadreza F.; Reynolds, Matthew S.; Smith, David R.

    2017-05-01

    Synthetic aperture radar (SAR) systems conventionally rely on mechanically-actuated reflector dishes or large phased arrays for generating steerable directive beams. While these systems have yielded high-resolution images, the hardware suffers from considerable weight, high cost, substantial power consumption, and moving parts. Since these disadvantages are particularly relevant in airborne and spaceborne systems, a flat, lightweight, and low-cost solution is a sought-after goal. Dynamic metasurface antennas have emerged as a recent technology for generating waveforms with desired characteristics. Metasurface antennas consist of an electrically-large waveguide loaded with numerous subwavelength radiators which selectively leak energy from a guided wave into free space to form various radiation patterns. By tuning each radiating element, we can modulate the aperture's overall radiation pattern to generate steered directive beams, without moving parts or phase shifters. Furthermore, by using established manufacturing methods, these apertures can be made to be lightweight, low-cost, and planar, while maintaining high performance. In addition to their hardware benefits, dynamic metasurfaces can leverage their dexterity and high switching speeds to enable alternative SAR modalities for improved performance. In this work, we briefly discuss how dynamic metasurfaces can conduct existing SAR modalities with similar performance as conventional systems from a significantly simpler hardware platform. We will also describe two additional modalities which may achieve improved performance as compared to traditional modalities. These modalities, enhanced resolution stripmap and diverse pattern stripmap, offer the ability to circumvent the trade-off between resolution and region-of-interest size that exists within stripmap and spotlight. Imaging results with a simulated dynamic metasurface verify the benefits of these modalities and a discussion of implementation considerations

  16. Single-Pol Synthetic Aperture Radar Terrain Classification using Multiclass Confidence for One-Class Classifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Mark William; Steinbach, Ryan Matthew; Moya, Mary M

    2015-10-01

    Except in the most extreme conditions, Synthetic aperture radar (SAR) is a remote sensing technology that can operate day or night. A SAR can provide surveillance over a long time period by making multiple passes over a wide area. For object-based intelligence it is convenient to segment and classify the SAR images into objects that identify various terrains and man-made structures that we call “static features.” In this paper we introduce a novel SAR image product that captures how different regions decorrelate at different rates. Using superpixels and their first two moments we develop a series of one-class classification algorithmsmore » using a goodness-of-fit metric. P-value fusion is used to combine the results from different classes. We also show how to combine multiple one-class classifiers to get a confidence about a classification. This can be used by downstream algorithms such as a conditional random field to enforce spatial constraints.« less

  17. Terrain feature recognition for synthetic aperture radar (SAR) imagery employing spatial attributes of targets

    NASA Astrophysics Data System (ADS)

    Iisaka, Joji; Sakurai-Amano, Takako

    1994-08-01

    This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.

  18. Three dimensional surface displacement of the Sichuan earthquake (Mw 7.9, China) from Synthetic Aperture Radar.

    NASA Astrophysics Data System (ADS)

    de Michele, Marcello; Raucoules, Daniel; de Sigoyer, Julia; Pubellier, Manuel; Lasserre, Cecile; Pathier, Erwan; Klinger, Yann; van der Woerd, Jerome; Chamot-Rooke, Nicolas

    2010-05-01

    The Sichuan earthquake, Mw 7.9, struck the Longmen Shan range front, in the western Sichuan province, China, on 12 May 2008. It severely affected an area where little historical seismicity and little or no significant active shortening were reported before the earthquake (e.g. Gu et al., 1989; Chen et al., 1994; Gan et al., 2007). The Longmen Shan thrust system bounds the eastern margin of the Tibetan plateau and is considered as a transpressive zone since Triassic time that was reactivated during the India-Asia collision (e.g., Tapponnier and Molnar, 1977, Chen and Wilson 1996; Arne et al., 1997, Godard et al., 2009). However, contrasting geological evidences of sparse thrusting and marked dextral strike-slip faulting during the Quaternary along with high topography (Burchfiel et al., 1995; Densmore et al., 2007) have led to models of dynamically driven and sustained topography (Royden et al., 1997) limiting the role of earthquakes in relief building and leaving the mechanism of long term strain distribution in this area as an open question. Here we combine C and L band Synthetic Aperture Radar (SAR) offsets data from ascending and descending paths to retrieve the three dimensional surface displacement distribution all along the earthquake ruptures of the Sichuan earthquake. For the first time on this earthquake we present near field 3D co-seismic surface displacement, which is an important datum for constraining modelled fault geometry at depth. Our results complement other Interferometric Synthetic Aperture Radar (InSAR) and field analyses in indicating that crustal shortening is one of the main drivers for topography building in the Longmen Shan (Liu-Zeng, 2009; Shen et al., 2009; Hubbard and Shaw, 2009). Moreover, our results put into evidence a small but significant amount of displacement in the range front that we interpret as due to slip at depth on a blind structure. We verify this hypothesis by inverting the data against a simple elastic dislocation model

  19. Speckle-reducing scale-invariant feature transform match for synthetic aperture radar image registration

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Li, Bo; Xu, Qizhi

    2016-07-01

    The anisotropic scale space (ASS) is often used to enhance the performance of a scale-invariant feature transform (SIFT) algorithm in the registration of synthetic aperture radar (SAR) images. The existing ASS-based methods usually suffer from unstable keypoints and false matches, since the anisotropic diffusion filtering has limitations in reducing the speckle noise from SAR images while building the ASS image representation. We proposed a speckle reducing SIFT match method to obtain stable keypoints and acquire precise matches for the SAR image registration. First, the keypoints are detected in a speckle reducing anisotropic scale space constructed by the speckle reducing anisotropic diffusion, so that speckle noise is greatly reduced and prominent structures of the images are preserved, consequently the stable keypoints can be derived. Next, the probabilistic relaxation labeling approach is employed to establish the matches of the keypoints then the correct match rate of the keypoints is significantly increased. Experiments conducted on simulated speckled images and real SAR images demonstrate the effectiveness of the proposed method.

  20. Ocean-ice interaction in the marginal ice zone using synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Weingartner, Thomas J.

    1994-01-01

    Ocean-ice interaction processes in the marginal ice zone (MIZ) by wind, waves, and mesoscale features, such as up/downwelling and eddies are studied using Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) images and an ocean-ice interaction model. A sequence of seven SAR images of the MIZ in the Chukchi Sea with 3 or 6 days interval are investigated for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea, as well as the Barrow wind record, are used to interpret the MIZ dynamics. SAR spectra of waves in ice and ocean waves in the Bering and Chukchi Sea are compared for the study of wave propagation and dominant SAR imaging mechanism. By using the SAR-observed ice edge configuration and wind and wave field in the Chukchi Sea as inputs, a numerical simulation has been performed with the ocean-ice interaction model. After 3 days of wind and wave forcing the resulting ice edge configuration, eddy formation, and flow velocity field are shown to be consistent with SAR observations.

  1. Estimating snow water equivalent (SWE) using interferometric synthetic aperture radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Deeb, Elias J.

    Since the early 1990s, radar interferometry and interferometric synthetic aperture radar (InSAR) have been used extensively to measure changes in the Earth's surface. Previous research has presented theory for estimating snow properties, including potential for snow water equivalent (SWE) retrieval, using InSAR. The motivation behind using remote sensing to estimate SWE is to provide a more complete, continuous set of "observations" to assist in water management operations, climate change studies, and flood hazard forecasting. The research presented here primarily investigates the feasibility of using the InSAR technique at two different wavelengths (C-Band and L-Band) for SWE retrieval of dry snow within the Kuparuk watershed, North Slope, Alaska. Estimating snow distribution around meteorological towers on the coastal plain using a three-day repeat orbit of C-Band InSAR data was successful (Chapter 2). A longer wavelength L-band SAR is evaluated for SWE retrievals (Chapter 3) showing the ability to resolve larger snow accumulation events over a longer period of time. Comparisons of InSAR estimates and late spring manual sampling of SWE show a R2 = 0.61 when a coherence threshold is used to eliminate noisy SAR data. Qualitative comparisons with a high resolution digital elevation model (DEM) highlight areas of scour on windward slopes and areas of deposition on leeward slopes. When compared to a mid-winter transect of manually sampled snow depths, the InSAR SWE estimates yield a RMSE of 2.21cm when a bulk snow density is used and corrections for bracketing the satellite acquisition timing is performed. In an effort to validate the interaction of radar waves with a snowpack, the importance of the "dry snow" assumption for the estimation of SWE using InSAR is tested with an experiment in Little Cottonwood Canyon, Alta, Utah (Chapter 5). Snow wetness is shown to have a significant effect on the velocity of propagation within the snowpack. Despite the radar

  2. A study of image quality for radar image processing. [synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    King, R. W.; Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.

    1982-01-01

    Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics.

  3. Strain Partitioning and Localization within Dobe Graben Using Differential Interferometric Synthetic Aperture Radar (D-INSAR) and Shuttle Radar Terrain Model

    NASA Astrophysics Data System (ADS)

    Demissie, Z. S.; Abdelsalam, M. G.; Byrnes, J. M.; Bridges, D.

    2014-12-01

    The Dobe graben is a northwestern trending, Quaternary continental rift found within the east-central block of the Afar Depression (AD), Ethiopia. The AD is one of only few places where three active tectonic rift arms meet on land. Extensional rifting is ongoing in the Dobe graben as evident by the 1989 swarm of intermediate magnitude (5.7 < Ms < 6.3) earthquakes. Dobe graben extension occurs on steeply dipping faults, where the maximum displacement, fault length, heave and spacing spans in three orders of magnitude. Crustal deformation within the graben was measured through ascending and descending interferograms using the Advanced Synthetic Aperture Radar (ASAR), C- Band (l = 5.6 cm) of the ENVISAT satellite. Results from the Differential Interferometric Synthetic Aperture Radar (D-INSAR) over a period of four years (05/20/2005 to 03/05/2010) suggests that the vertical component of deformation is distributed along a 50 km long NW trending zone in the Dobe graben. The vertical component of deformation is -0.5 to -0.3 cm along the graben axial rift floor likely representing subsidence due to riftingand +0.6 cm to 0.9 cm at the middle of the Dobe relay zone due to uplifting along the border escarpment faults. An estimate for the extension rate has been calculated from twelve traverses across the Dobe graben using Shuttle Rader Terrain Model (SRTM). Results show a deformation elongation (e) value ranging from 0.225 to 0.348. A fractal dimension of 0.03 from the graben floor was obtained for the measured population of fault throws (n= 162) in 12 traverses totaling 172 km. This value is interpreted to represent the dominant contribution to extension from faults with large throw. Moreover, frequency distribution of a natural fault population along the graben floor revealed a negative exponential law distribution indicating a strong strain partitioning within the active axial graben floor. A fractal dimension of 0.01 from the graben shoulder escarpment was obtained for

  4. Mobile high-performance computing (HPC) for synthetic aperture radar signal processing

    NASA Astrophysics Data System (ADS)

    Misko, Joshua; Kim, Youngsoo; Qi, Chenchen; Sirkeci, Birsen

    2018-04-01

    The importance of mobile high-performance computing has emerged in numerous battlespace applications at the tactical edge in hostile environments. Energy efficient computing power is a key enabler for diverse areas ranging from real-time big data analytics and atmospheric science to network science. However, the design of tactical mobile data centers is dominated by power, thermal, and physical constraints. Presently, it is very unlikely to achieve required computing processing power by aggregating emerging heterogeneous many-core processing platforms consisting of CPU, Field Programmable Gate Arrays and Graphic Processor cores constrained by power and performance. To address these challenges, we performed a Synthetic Aperture Radar case study for Automatic Target Recognition (ATR) using Deep Neural Networks (DNNs). However, these DNN models are typically trained using GPUs with gigabytes of external memories and massively used 32-bit floating point operations. As a result, DNNs do not run efficiently on hardware appropriate for low power or mobile applications. To address this limitation, we proposed for compressing DNN models for ATR suited to deployment on resource constrained hardware. This proposed compression framework utilizes promising DNN compression techniques including pruning and weight quantization while also focusing on processor features common to modern low-power devices. Following this methodology as a guideline produced a DNN for ATR tuned to maximize classification throughput, minimize power consumption, and minimize memory footprint on a low-power device.

  5. Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France)

    PubMed Central

    Baghdadi, Nicolas; Aubert, Maelle; Cerdan, Olivier; Franchistéguy, Laurent; Viel, Christian; Martin, Eric; Zribi, Mehrez; Desprats, Jean François

    2007-01-01

    Soil moisture is a key parameter in different environmental applications, such as hydrology and natural risk assessment. In this paper, surface soil moisture mapping was carried out over a basin in France using satellite synthetic aperture radar (SAR) images acquired in 2006 and 2007 by C-band (5.3 GHz) sensors. The comparison between soil moisture estimated from SAR data and in situ measurements shows good agreement, with a mapping accuracy better than 3%. This result shows that the monitoring of soil moisture from SAR images is possible in operational phase. Moreover, moistures simulated by the operational Météo-France ISBA soil-vegetation-atmosphere transfer model in the SIM-Safran-ISBA-Modcou chain were compared to radar moisture estimates to validate its pertinence. The difference between ISBA simulations and radar estimates fluctuates between 0.4 and 10% (RMSE). The comparison between ISBA and gravimetric measurements of the 12 March 2007 shows a RMSE of about 6%. Generally, these results are very encouraging. Results show also that the soil moisture estimated from SAR images is not correlated with the textural units defined in the European Soil Geographical Database (SGDBE) at 1:1000000 scale. However, dependence was observed between texture maps and ISBA moisture. This dependence is induced by the use of the texture map as an input parameter in the ISBA model. Even if this parameter is very important for soil moisture estimations, radar results shown that the textural map scale at 1:1000000 is not appropriate to differentiate moistures zones. PMID:28903238

  6. Surface Ruptures and Building Damage of the 2003 Bam, Iran, Earthquake Mapped by Satellite Synthetic Aperture Radar Interferometric Correlation

    NASA Technical Reports Server (NTRS)

    Fielding, Eric J.; Talebian, M.; Rosen, P. A.; Nazari, H.; Jackson, J. A.; Ghorashi, M.; Walker, R.

    2005-01-01

    We use the interferometric correlation from Envisat synthetic aperture radar (SAR) images to map the details of the surface ruptures related to the 26 December 2003 earthquake that devastated Bam, Iran. The main strike-slip fault rupture south of the city of Bam has a series of four segments with left steps shown by a narrow line of low correlation in the coseismic interferogram. This also has a clear expression in the field because of the net extension across the fault. Just south of the city limits, the surface strain becomes distributed over a width of about 500 m, probably because of a thicker layer of soft sedimentary material.

  7. Observation of sea-ice dynamics using synthetic aperture radar images: Automated analysis

    NASA Technical Reports Server (NTRS)

    Vesecky, John F.; Samadani, Ramin; Smith, Martha P.; Daida, Jason M.; Bracewell, Ronald N.

    1988-01-01

    The European Space Agency's ERS-1 satellite, as well as others planned to follow, is expected to carry synthetic-aperture radars (SARs) over the polar regions beginning in 1989. A key component in utilization of these SAR data is an automated scheme for extracting the sea-ice velocity field from a time sequence of SAR images of the same geographical region. Two techniques for automated sea-ice tracking, image pyramid area correlation (hierarchical correlation) and feature tracking, are described. Each technique is applied to a pair of Seasat SAR sea-ice images. The results compare well with each other and with manually tracked estimates of the ice velocity. The advantages and disadvantages of these automated methods are pointed out. Using these ice velocity field estimates it is possible to construct one sea-ice image from the other member of the pair. Comparing the reconstructed image with the observed image, errors in the estimated velocity field can be recognized and a useful probable error display created automatically to accompany ice velocity estimates. It is suggested that this error display may be useful in segmenting the sea ice observed into regions that move as rigid plates of significant ice velocity shear and distortion.

  8. Extraction of advanced geospatial intelligence (AGI) from commercial synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Kanberoglu, Berkay; Frakes, David

    2017-04-01

    The extraction of objects from advanced geospatial intelligence (AGI) products based on synthetic aperture radar (SAR) imagery is complicated by a number of factors. For example, accurate detection of temporal changes represented in two-color multiview (2CMV) AGI products can be challenging because of speckle noise susceptibility and false positives that result from small orientation differences between objects imaged at different times. These cases of apparent motion can result in 2CMV detection, but they obviously differ greatly in terms of significance. In investigating the state-of-the-art in SAR image processing, we have found that differentiating between these two general cases is a problem that has not been well addressed. We propose a framework of methods to address these problems. For the detection of the temporal changes while reducing the number of false positives, we propose using adaptive object intensity and area thresholding in conjunction with relaxed brightness optical flow algorithms that track the motion of objects across time in small regions of interest. The proposed framework for distinguishing between actual motion and misregistration can lead to more accurate and meaningful change detection and improve object extraction from a SAR AGI product. Results demonstrate the ability of our techniques to reduce false positives up to 60%.

  9. Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas.

    PubMed

    Boyarsky, Michael; Sleasman, Timothy; Pulido-Mancera, Laura; Diebold, Aaron V; Imani, Mohammadreza F; Smith, David R

    2018-05-20

    Through aperture synthesis, an electrically small antenna can be used to form a high-resolution imaging system capable of reconstructing three-dimensional (3D) scenes. However, the large spectral bandwidth typically required in synthetic aperture radar systems to resolve objects in range often requires costly and complex RF components. We present here an alternative approach based on a hybrid imaging system that combines a dynamically reconfigurable aperture with synthetic aperture techniques, demonstrating the capability to resolve objects in three dimensions (3D), with measurements taken at a single frequency. At the core of our imaging system are two metasurface apertures, both of which consist of a linear array of metamaterial irises that couple to a common waveguide feed. Each metamaterial iris has integrated within it a diode that can be biased so as to switch the element on (radiating) or off (non-radiating), such that the metasurface antenna can produce distinct radiation profiles corresponding to different on/off patterns of the metamaterial element array. The electrically large size of the metasurface apertures enables resolution in range and one cross-range dimension, while aperture synthesis provides resolution in the other cross-range dimension. The demonstrated imaging capabilities of this system represent a step forward in the development of low-cost, high-performance 3D microwave imaging systems.

  10. Linear Frequency Modulated Signals VS Orthogonal Frequency Division Multiplexing Signals for Synthetic Aperture Radar Systems

    DTIC Science & Technology

    2014-06-01

    antenna beamwidth and R is the range distance. Antenna beam width  is proportional to the real aperture size and is given as antennaL ...18) where  is the wavelength and antennaL is the physical length of the radar antenna; therefore, cross-range resolution for a real aperture... antennaL R  (20) A value of 50 meters for cross-range resolution is rather high and signifies poor resolution. Under these conditions, obtaining

  11. Change detection for synthetic aperture radar images based on pattern and intensity distinctiveness analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Gao, Feng; Dong, Junyu; Qi, Qiang

    2018-04-01

    Synthetic aperture radar (SAR) image is independent on atmospheric conditions, and it is the ideal image source for change detection. Existing methods directly analysis all the regions in the speckle noise contaminated difference image. The performance of these methods is easily affected by small noisy regions. In this paper, we proposed a novel change detection framework for saliency-guided change detection based on pattern and intensity distinctiveness analysis. The saliency analysis step can remove small noisy regions, and therefore makes the proposed method more robust to the speckle noise. In the proposed method, the log-ratio operator is first utilized to obtain a difference image (DI). Then, the saliency detection method based on pattern and intensity distinctiveness analysis is utilized to obtain the changed region candidates. Finally, principal component analysis and k-means clustering are employed to analysis pixels in the changed region candidates. Thus, the final change map can be obtained by classifying these pixels into changed or unchanged class. The experiment results on two real SAR images datasets have demonstrated the effectiveness of the proposed method.

  12. Convolutional neural networks based on augmented training samples for synthetic aperture radar target recognition

    NASA Astrophysics Data System (ADS)

    Yan, Yue

    2018-03-01

    A synthetic aperture radar (SAR) automatic target recognition (ATR) method based on the convolutional neural networks (CNN) trained by augmented training samples is proposed. To enhance the robustness of CNN to various extended operating conditions (EOCs), the original training images are used to generate the noisy samples at different signal-to-noise ratios (SNRs), multiresolution representations, and partially occluded images. Then, the generated images together with the original ones are used to train a designed CNN for target recognition. The augmented training samples can contrapuntally improve the robustness of the trained CNN to the covered EOCs, i.e., the noise corruption, resolution variance, and partial occlusion. Moreover, the significantly larger training set effectively enhances the representation capability for other conditions, e.g., the standard operating condition (SOC), as well as the stability of the network. Therefore, better performance can be achieved by the proposed method for SAR ATR. For experimental evaluation, extensive experiments are conducted on the Moving and Stationary Target Acquisition and Recognition dataset under SOC and several typical EOCs.

  13. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California

    USGS Publications Warehouse

    Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.E.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P.A.

    1998-01-01

    Interferometric synthetic aperture radar (InSAR) has great potential to detect and quantify land subsidence caused by aquifer system compaction. InSAR maps with high spatial detail and resolution of range displacement (±10 mm in change of land surface elevation) were developed for a groundwater basin (∼103 km2) in Antelope Valley, California, using radar data collected from the ERS-1 satellite. These data allow comprehensive comparison between recent (1993–1995) subsidence patterns and those detected historically (1926–1992) by more traditional methods. The changed subsidence patterns are generally compatible with recent shifts in land and water use. The InSAR-detected patterns are generally consistent with predictions based on a coupled model of groundwater flow and aquifer system compaction. The minor inconsistencies may reflect our imperfect knowledge of the distribution and properties of compressible sediments. When used in conjunction with coincident measurements of groundwater levels and other geologic information, InSAR data may be useful for constraining parameter estimates in simulations of aquifer system compaction.

  14. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    NASA Astrophysics Data System (ADS)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can

  15. Developing an Automated Machine Learning Marine Oil Spill Detection System with Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Pinales, J. C.; Graber, H. C.; Hargrove, J. T.; Caruso, M. J.

    2016-02-01

    Previous studies have demonstrated the ability to detect and classify marine hydrocarbon films with spaceborne synthetic aperture radar (SAR) imagery. The dampening effects of hydrocarbon discharges on small surface capillary-gravity waves renders the ocean surface "radar dark" compared with the standard wind-borne ocean surfaces. Given the scope and impact of events like the Deepwater Horizon oil spill, the need for improved, automated and expedient monitoring of hydrocarbon-related marine anomalies has become a pressing and complex issue for governments and the extraction industry. The research presented here describes the development, training, and utilization of an algorithm that detects marine oil spills in an automated, semi-supervised manner, utilizing X-, C-, or L-band SAR data as the primary input. Ancillary datasets include related radar-borne variables (incidence angle, etc.), environmental data (wind speed, etc.) and textural descriptors. Shapefiles produced by an experienced human-analyst served as targets (validation) during the training portion of the investigation. Training and testing datasets were chosen for development and assessment of algorithm effectiveness as well as optimal conditions for oil detection in SAR data. The algorithm detects oil spills by following a 3-step methodology: object detection, feature extraction, and classification. Previous oil spill detection and classification methodologies such as machine learning algorithms, artificial neural networks (ANN), and multivariate classification methods like partial least squares-discriminant analysis (PLS-DA) are evaluated and compared. Statistical, transform, and model-based image texture techniques, commonly used for object mapping directly or as inputs for more complex methodologies, are explored to determine optimal textures for an oil spill detection system. The influence of the ancillary variables is explored, with a particular focus on the role of strong vs. weak wind forcing.

  16. Comparing range data across the slow-time dimension to correct motion measurement errors beyond the range resolution of a synthetic aperture radar

    DOEpatents

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-08-17

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  17. Remote sensing of atmospheric water vapor from synthetic aperture radar interferometry: case studies in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Liu, Min; Guo, Lixin; He, Xiufeng; Gao, Guoping

    2016-10-01

    The estimation of atmospheric water vapor with high resolution is important for operational weather forecasting, climate monitoring, atmospheric research, and numerous other applications. The 40 m×40 m and 30 m×30 m differential precipitable water vapor (ΔPWV) maps are generated with C- and L-band synthetic aperture radar interferometry (InSAR) images over Shanghai, China, respectively. The ΔPWV maps are accessed via comparisons with the spatiotemporally synchronized PWV measurements from the European Centre for Medium-Range Weather Forecasts Interim reanalysis at the finest resolution and global positioning system observations, respectively. Results reveal that the ΔPWV maps can be estimated from both C- and L-band InSAR images with an accuracy of better than 2.0 mm, which, therefore, demonstrates the ability of InSAR observations at both C- and L-band to detect the water vapor distribution with high spatial resolution.

  18. Doppler synthetic aperture radar interferometry: a novel SAR interferometry for height mapping using ultra-narrowband waveforms

    NASA Astrophysics Data System (ADS)

    Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.

    2018-05-01

    This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.

  19. Towards Snowpack Characterization using C-band Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Park, J.; Forman, B. A.

    2017-12-01

    Sentinel 1A and 1B, operated by the European Space Agency (ESA), carries a C-band synthetic aperture radar (SAR) sensor that can be used to monitor terrestrial snow properties. This study explores the relationship between terrestrial snow-covered area, snow depth, and snow water equivalent with Sentinel 1 backscatter observations in order to better characterize snow mass. Ground-based observations collected by the National Oceanic and Atmospheric Administration - Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) in Caribou, Maine in the United States are also used in the comparative analysis. Sentinel 1 Ground Range Detected (GRD) imagery with Interferometric Wide swath (IW) were preprocessed through a series of steps accounting for thermal noise, sensor orbit, radiometric calibration, speckle filtering, and terrain correction using ESA's Sentinel Application Platform (SNAP) software package, which is an open-source module written in Python. Comparisons of dual-polarized backscatter coefficients (i.e., σVV and σVH) with in-situ measurements of snow depth and SWE suggest that cross-polarized backscatter observations exhibit a modest correlation between both snow depth and SWE. In the case of the snow-covered area, a multi-temporal change detection method was used. Results using Sentinel 1 yield similar spatial patterns as when using hyperspectral observations collected by the MODerate Resolution Imaging Spectroradiometer (MODIS). These preliminary results suggest the potential application of Sentinel 1A/1B backscatter coefficients towards improved discrimination of snow cover, snow depth, and SWE. One goal of this research is to eventually merge C-band SAR backscatter observations with other snow information (e.g., passive microwave brightness temperatures) as part of a multi-sensor snow assimilation framework.

  20. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  1. Land subsidence detection using synthetic aperture radar (SAR) in Sidoarjo Mudflow area

    NASA Astrophysics Data System (ADS)

    Yulyta, Sendy Ayu; Taufik, Muhammad; Hayati, Noorlaila

    2016-05-01

    According to BPLS (Badan Penanggulangan Lumpur Sidoarjo) which is the Sidoarjo Mudflow Management Agency, land subsidence occurred in Porong, Sidoarjo was caused by the rocks bearing capacity decreasing which led by the mud outpouring since 2006. The subsidence varies in many ways depends on the radius of location from the mud flow center point and the geological structure. One of the most efficient technologies to monitor this multi temporal phenomenon is using the Synthetic Aperture Radar (SAR) as an applicative Spatial Geodesy. This study used 4 (four) times series L-Band ALOS PALSAR from 2008 to 2011 Fine Beam Single data (February 2008, January 2009 and February 2010 and January 2011) which then processed by the Differential SAR Interferometry (DInSAR) method to obtain the deformation vector at a radius of 1.5 km from the center of mudflow. The result showed that there was a significant subsidence which annually occurred on southern and western area of Sidoarjo mud flow. The deformation vector that occurred in the year 2008-2011 was up to 20 cm/year or 0.05 cm/day. For verification purpose, we also compared the result obtained from the SAR detection with the data measured by Global Position System (GPS) and some deformation monitoring results obtained from another researchs. The comparison showed a correlation that the subsidence occurred on the same location.

  2. Multiscale-Driven approach to detecting change in Synthetic Aperture Radar (SAR) imagery

    NASA Astrophysics Data System (ADS)

    Gens, R.; Hogenson, K.; Ajadi, O. A.; Meyer, F. J.; Myers, A.; Logan, T. A.; Arnoult, K., Jr.

    2017-12-01

    Detecting changes between Synthetic Aperture Radar (SAR) images can be a useful but challenging exercise. SAR with its all-weather capabilities can be an important resource in identifying and estimating the expanse of events such as flooding, river ice breakup, earthquake damage, oil spills, and forest growth, as it can overcome shortcomings of optical methods related to cloud cover. However, detecting change in SAR imagery can be impeded by many factors including speckle, complex scattering responses, low temporal sampling, and difficulty delineating boundaries. In this presentation we use a change detection method based on a multiscale-driven approach. By using information at different resolution levels, we attempt to obtain more accurate change detection maps in both heterogeneous and homogeneous regions. Integrated within the processing flow are processes that 1) improve classification performance by combining Expectation-Maximization algorithms with mathematical morphology, 2) achieve high accuracy in preserving boundaries using measurement level fusion techniques, and 3) combine modern non-local filtering and 2D-discrete stationary wavelet transform to provide robustness against noise. This multiscale-driven approach to change detection has recently been incorporated into the Alaska Satellite Facility (ASF) Hybrid Pluggable Processing Pipeline (HyP3) using radiometrically terrain corrected SAR images. Examples primarily from natural hazards are presented to illustrate the capabilities and limitations of the change detection method.

  3. Reservoir monitoring and characterization using satellite geodetic data: Interferometric Synthetic Aperture Radar observations from the Krechba field, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio

    2008-05-01

    Deformation in the material overlying an active reservoir is used to monitor pressure change at depth. A sequence of pressure field estimates, eleven in all, allow us to construct a measure of diffusive travel time throughout the reservoir. The dense distribution of travel time values means that we can construct an exactly linear inverse problem for reservoir flow properties. Application to Interferometric Synthetic Aperture Radar (InSAR) data gathered over a CO{sub 2} injection in Algeria reveals pressure propagation along two northwest trending corridors. An inversion of the travel times indicates the existence of two northwest-trending high permeability zones. The highmore » permeability features trend in the same direction as the regional fault and fracture zones. Model parameter resolution estimates indicate that the features are well resolved.« less

  4. Use of Seasat synthetic aperture radar and Landsat multispectral scanner subsystem data for Alaskan glaciology studies

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Ormsby, J. P.

    1983-01-01

    Three Seasat synthetic aperture radar (SAR) and three Landsat multispectral scanner subsystem (MSS) scenes of three areas of Alaska were analyzed for hydrological information. The areas were: the Dease Inlet in northern Alaska and its oriented or thaw lakes, the Ruth and Tokositna valley glaciers in south central Alaska, and the Malaspina piedmont glacier on Alaska's southern coast. Results for the first area showed that the location and identification of some older remnant lake basins were more easily determined in the registered data using an MSS/SAR overlay than in either SAR or MSS data alone. Separately, both SAR and MSS data were useful for determination of surging glaciers based on their distinctive medial moraines, and Landsat data were useful for locating the glacier firn zone. For the Malaspina Glacier scenes, the SAR data were useful for locating heavily crevassed ice beneath glacial debris, and Landsat provided data concerning the extent of the debris overlying the glacier.

  5. The evolution of convective storms from their footprints on the sea as viewed by synthetic aperture radar from space

    NASA Technical Reports Server (NTRS)

    Atlas, David; Black, Peter G.

    1994-01-01

    SEASAT synthetic aperture radar (SAR) echoes from the sea have previously been shown to be the result of rain and winds produced by convective stroms; rain damps the surface waves and causes ech-free holes, while the diverging winds associated with downdraft generate waves and associated echoes surrounding the holes. Gust fronts are also evident. Such a snapshot from 8 July 1978 has been examined in conjunction with ground-based radar. This leads to the conclusion that the SAR storm footprints resulted from storm processes that occurred up to an hour or more prior to the snapshot. A sequence of events is discerned from the SAR imagery in which new cell growth is triggered in between the converging outflows of two preexisting cells. In turn, the new cell generates a mini-squall line along its expanding gust front. While such phenomena are well known over land, the spaceborne SAR now allows important inferences to be made about the nature and frequency of convective storms over the oceans. The storm effects on the sea have significant implications for spaceborne wind scatterometry and rainfall measurements. Some of the findings herein remain speculative because of the great distance to the Miami weather radar-the only source of corroborative data.

  6. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering.

    PubMed

    Gong, Maoguo; Zhou, Zhiqiang; Ma, Jingjing

    2012-04-01

    This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.

  7. Synthetic aperture lidar as a future tool for earth observation

    NASA Astrophysics Data System (ADS)

    Turbide, Simon; Marchese, Linda; Terroux, Marc; Bergeron, Alain

    2017-11-01

    Synthetic aperture radar (SAR) is a tool of prime importance for Earth observation; it provides day and night capabilities in various weather conditions. State-of-the-art satellite SAR systems are a few meters in height and width and achieve resolutions of less than 1 m with revisit times on the order of days. Today's Earth observation needs demand higher resolution imaging together with timelier data collection within a compact low power consumption payload. Such needs are seen in Earth Observation applications such as disaster management of earthquakes, landslides, forest fires, floods and others. In these applications the availability of timely reliable information is critical to assess the extent of the disaster and to rapidly and safely deploy rescue teams. Synthetic aperture lidar (SAL) is based on the same basic principles as SAR. Both rely on the acquisition of multiple electromagnetic echoes to emulate a large antenna aperture providing the ability to produce high resolution images. However, in SAL, much shorter optical wavelengths (1.5 μm) are used instead of radar ones (wavelengths around 3 cm). Resolution being related to the wavelength, multiple orders of magnitude of improvement could be theoretically expected. Also, the sources, the detector, and the components are much smaller in optical domain than those for radar. The resulting system can thus be made compact opening the door to deployment onboard small satellites, airborne platforms and unmanned air vehicles. This has a strong impact on the time required to develop, deploy and use a payload. Moreover, in combination with airborne deployment, revisit times can be made much smaller and accessibility to the information can become almost in real-time. Over the last decades, studies from different groups have been done to validate the feasibility of a SAL system for 2D imagery and more recently for 3D static target imagery. In this paper, an overview of the advantages of this emerging technology will

  8. Radar studies related to the earth resources program. [remote sensing programs

    NASA Technical Reports Server (NTRS)

    Holtzman, J.

    1972-01-01

    The radar systems research discussed is directed toward achieving successful application of radar to remote sensing problems in such areas as geology, hydrology, agriculture, geography, forestry, and oceanography. Topics discussed include imaging radar and evaluation of its modification, study of digital processing for synthetic aperture system, digital simulation of synthetic aperture system, averaging techniques studies, ultrasonic modeling of panchromatic system, panchromatic radar/radar spectrometer development, measuring octave-bandwidth response of selected targets, scatterometer system analysis, and a model Fresnel-zone processor for synthetic aperture imagery.

  9. Condition assessment of corroded steel rebar in free space using synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Ingemi, Christopher M.; Owusu Twumasi, Jones; Litt, Swinderjit; Yu, Tzuyang

    2017-04-01

    Synthetic aperture radar (SAR) imaging of construction materials offers civil engineers an opportunity to better assess the condition of aging civil infrastructures such as reinforced concrete (RC) structures. Corrosion of steel rebar in RC structures is a major problem responsible for their premature failure and unexpected collapse. In this paper, SAR imaging is applied to the quantitative assessment of corroded steel rebar in free space as the first step toward the use of SAR imaging for subsurface sensing of aging RC structures. A 10 GHz stripmap SAR system was used inside an anechoic chamber. The bandwidth of the radar system was 1.5 GHz. Steel rebar specimens were artificially corroded to different levels by regularly applying a mist of 5% NaCl solution for different durations of time in order to simulate the condition of natural corrosion. Two sizes (No. 3 and No. 4) of steel rebar were used in this research. Different orientations of steel rebar were considered. Corrosion level was determined by measuring the mass loss of corroded steel rebar specimens. From our results, feasibility of SAR images for the condition assessment of corroded steel rebar was experimentally demonstrated. It was found that the presence of surface rust on corroded steel rebar reduces the amplitude in SAR images. The SAR image of corroded steel rebar also exhibited a distribution of SAR amplitudes different from the one of intact steel rebar. In addition, it was also found that there is an optimal range for the condition assessment of corroded steel rebar in free space. In our experiment, the optimal range was determined to be 30.4 cm.

  10. Development of a ground signal processor for digital synthetic array radar data

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.

  11. Wave-current interaction study in the Gulf of Alaska for detection of eddies by synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Schumacher, James D.

    1994-01-01

    High resolution Esa Remote Sensing Satellite-1 (ERS-1) Synthetic Aperture Radar (SAR) images are used to detect a mesoscale eddy. Such features limit dispersal of pollock larvae and therefore likely influence recruitment of fish in the Gulf of Alaska. During high sea states and high winds, the direct surface signature of the eddy was not clearly visible, but the wave refraction in the eddy area was observed. The rays of the wave field are traced out directly from the SAR image. The ray pattern gives information on the refraction pattern and on the relative variation of the wave energy along a ray through wave current interaction. These observations are simulated by a ray-tracing model which incorporates a surface current field associated with the eddy. The numerical results of the model show that the waves are refracted and diverge in the eddy field with energy density decreasing. The model-data comparison for each ray shows the model predictions are in good agreement with the SAR data.

  12. Three dimensional surface slip partitioning of the Sichuan earthquake from Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    de Michele, M.; Raucoules, D.; de Sigoyer, J.; Pubellier, M.; Lasserre, C.; Pathier, E.; Klinger, Y.; van der Woerd, J.

    2009-12-01

    The Sichuan earthquake, Mw 7.9, struck the Longmen Shan range front, in the western Sichuan province, China, on 12 May 2008. It severely affected an area where little historical seismicity and little or no significant active shortening were reported before the earthquake (e.g. Gu et al., 1989; Chen et al., 1994; Gan et al., 2007). The Longmen Shan thrust system bounds the eastern margin of the Tibetan plateau and is considered as a transpressive zone since Triassic time that was reactivated during the India-Asia collision (e.g., Tapponnier and Molnar, 1977, Chen and Wilson 1996; Arne et al., 1997, Godard et al., 2009). However, contrasting geological evidences of sparse thrusting and marked dextral strike-slip faulting during the Quaternary along with high topography (Burchfiel et al., 1995; Densmore et al., 2007) have led to models of dynamically driven and sustained topography (Royden et al., 1997) limiting the role of earthquakes in relief building and leaving the mechanism of long term strain distribution in this area as an open question. Here we combine C and L band Synthetic Aperture Radar (SAR) offsets data from ascending and descending paths to retrieve the three dimensional surface slips distribution all along the earthquake ruptures of the Sichuan earthquake. We show a quantitative assessment of the amount of co-seismic slip and its partitioning at the surface.

  13. Design of a Forward Looking Synthetic Aperture Radar for an Autonomous Cryobot for Subsurface Exploration of Europa and Enceladus

    NASA Astrophysics Data System (ADS)

    Pradhan, O.; Gasiewski, A. J.; Stone, W.

    2017-12-01

    We present the design, analyses and field testing of a forward-looking endfire synthetic aperture radar (SAR) for the `Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. The project consists of (1) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form the radiating elements, (2) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (3) field testing of the SAR system. The antennas were designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar analog and digital system were also designed and integrated at CET utilizing rugged RF components and FPGA based digital waveform generation. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. In this presentation we will describe in detail the following aspects pertaining to the design, analysis and testing of the endfire SAR system; (1) Waveform generation capability of the radar as well as transmit and receive channel calibration (2) Theoretical analysis of the radial resolution improvement made possible by using the radar in an endfire SAR mode along with the free space radar tests performed to validate the proposed endfire SAR system (3) A method for azimuth ambiguity resolution by operating the endfire SAR in a bistatic mode (4) Modal analysis of the layered cylindrical LPFSA antenna structure and a forward model of the wave propagation path through planar layered ice medium and (5) Analysis and interpretation of the in-situ measurements of the antennas and endfire SAR operation on the Matanuska glacier.

  14. Phase correction system for automatic focusing of synthetic aperture radar

    DOEpatents

    Eichel, Paul H.; Ghiglia, Dennis C.; Jakowatz, Jr., Charles V.

    1990-01-01

    A phase gradient autofocus system for use in synthetic aperture imaging accurately compensates for arbitrary phase errors in each imaged frame by locating highlighted areas and determining the phase disturbance or image spread associated with each of these highlight areas. An estimate of the image spread for each highlighted area in a line in the case of one dimensional processing or in a sector, in the case of two-dimensional processing, is determined. The phase error is determined using phase gradient processing. The phase error is then removed from the uncorrected image and the process is iteratively performed to substantially eliminate phase errors which can degrade the image.

  15. Wetlands and Malaria in the Amazon: Guidelines for the Use of Synthetic Aperture Radar Remote-Sensing

    PubMed Central

    Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Dessay, Nadine

    2018-01-01

    The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field. PMID:29518988

  16. Wetlands and Malaria in the Amazon: Guidelines for the Use of Synthetic Aperture Radar Remote-Sensing.

    PubMed

    Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Gurgel, Helen; Mangeas, Morgan; Seyler, Frédérique; Dessay, Nadine

    2018-03-07

    The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field.

  17. Detecting emergence, growth, and senescence of wetland vegetation with polarimetric synthetic aperture radar (SAR) data

    USGS Publications Warehouse

    Gallant, Alisa L.; Kaya, Shannon G.; White, Lori; Brisco, Brian; Roth, Mark F.; Sadinski, Walter J.; Rover, Jennifer

    2014-01-01

    Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR) data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  18. Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random fields by graph cuts

    NASA Astrophysics Data System (ADS)

    Zhou, Lifan; Chai, Dengfeng; Xia, Yu; Ma, Peifeng; Lin, Hui

    2018-01-01

    Phase unwrapping (PU) is one of the key processes in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) data. It is known that two-dimensional (2-D) PU problems can be formulated as maximum a posteriori estimation of Markov random fields (MRFs). However, considering that the traditional MRF algorithm is usually defined on a rectangular grid, it fails easily if large parts of the wrapped data are dominated by noise caused by large low-coherence area or rapid-topography variation. A PU solution based on sparse MRF is presented to extend the traditional MRF algorithm to deal with sparse data, which allows the unwrapping of InSAR data dominated by high phase noise. To speed up the graph cuts algorithm for sparse MRF, we designed dual elementary graphs and merged them to obtain the Delaunay triangle graph, which is used to minimize the energy function efficiently. The experiments on simulated and real data, compared with other existing algorithms, both confirm the effectiveness of the proposed MRF approach, which suffers less from decorrelation effects caused by large low-coherence area or rapid-topography variation.

  19. Mangrove vegetation structure in Southeast Brazil from phased array L-band synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    de Souza Pereira, Francisca Rocha; Kampel, Milton; Cunha-Lignon, Marilia

    2016-07-01

    The potential use of phased array type L-band synthetic aperture radar (PALSAR) data for discriminating distinct physiographic mangrove types with different forest structure developments in a subtropical mangrove forest located in Cananéia on the Southern coast of São Paulo, Brazil, is investigated. The basin and fringe physiographic types and the structural development of mangrove vegetation were identified with the application of the Kruskal-Wallis statistical test to the SAR backscatter values of 10 incoherent attributes. The best results to separate basin to fringe types were obtained using copolarized HH, cross-polarized HV, and the biomass index (BMI). Mangrove structural parameters were also estimated using multiple linear regressions. BMI and canopy structure index were used as explanatory variables for canopy height, mean height, and mean diameter at breast height regression models, with significant R2=0.69, 0.73, and 0.67, respectively. The current study indicates that SAR L-band images can be used as a tool to discriminate physiographic types and to characterize mangrove forests. The results are relevant considering the crescent availability of freely distributed SAR images that can be more utilized for analysis, monitoring, and conservation of the mangrove ecosystem.

  20. Synthetic aperture imaging in astronomy and aerospace: introduction.

    PubMed

    Creech-Eakman, Michelle J; Carney, P Scott; Buscher, David F; Shao, Michael

    2017-05-01

    Aperture synthesis methods allow the reconstruction of images with the angular resolutions exceeding that of extremely large monolithic apertures by using arrays of smaller apertures together in combination. In this issue we present several papers with techniques relevant to amplitude interferometry, laser radar, and intensity interferometry applications.

  1. Efficient moving target analysis for inverse synthetic aperture radar images via joint speeded-up robust features and regular moment

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Su, Fulin

    2018-01-01

    We propose a moving target analysis algorithm using speeded-up robust features (SURF) and regular moment in inverse synthetic aperture radar (ISAR) image sequences. In our study, we first extract interest points from ISAR image sequences by SURF. Different from traditional feature point extraction methods, SURF-based feature points are invariant to scattering intensity, target rotation, and image size. Then, we employ a bilateral feature registering model to match these feature points. The feature registering scheme can not only search the isotropic feature points to link the image sequences but also reduce the error matching pairs. After that, the target centroid is detected by regular moment. Consequently, a cost function based on correlation coefficient is adopted to analyze the motion information. Experimental results based on simulated and real data validate the effectiveness and practicability of the proposed method.

  2. Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska

    USGS Publications Warehouse

    Lu, Z.; Freymueller, J.T.

    1998-01-01

    The feasibility of measuring volcanic deformation or monitoring deformation of active volcanoes using space-borne synthetic aperture radar (SAR) interferometry depends on the ability to maintain phase coherence over appropriate time intervals. Using ERS 1 C band (λ=5.66 cm) SAR imagery, we studied the seasonal and temporal changes of the interferometric SAR coherence for fresh lava, weathered lava, tephra with weak water reworking, tephra with strong water reworking, and fluvial deposits representing the range of typical volcanic surface materials in the Katmai volcano group, Alaska. For interferograms based on two passes with 35 days separation taken during the same summer season, we found that coherence increases after early June, reaches a peak between the middle of July and the middle of September, and finally decreases until the middle of November when coherence is completely lost for all five sites. Fresh lava has the highest coherence, followed by either weathered lava or fluvial deposits. These surfaces maintain relatively high levels of coherence for periods up to the length of the summer season. Coherence degrades more rapidly with time for surfaces covered with tephra. For images taken in different summers, only the lavas maintained coherence well enough to provide useful interferometric images, but we found only a small reduction in coherence after the first year for surfaces with lava. Measurement of volcanic deformation is possible using summer images spaced a few years apart, as long as the surface is dominated by lavas. Our studies suggest that in order to make volcanic monitoring feasible along the Aleutian arc or other regions with similar climatic conditions, observation intervals of the satellite with C band SAR should be at least every month from July through September, every week during the late spring/early summer or late fall, and every 2–3 days during the winter.

  3. Synthetic Aperture Radar Imagery of Airports and Surrounding Areas: Denver Stapleton International Airport

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Gineris, Denise J.

    1990-01-01

    This is the third in a series of three reports which address the statistical description of ground clutter at an airport and in the surrounding area. These data are being utilized in a program to detect microbursts. Synthetic aperture radar (SAR) data were collected at the Denver Stapleton Airport using a set of parameters which closely match those which are anticipated to be utilized by an aircraft on approach to an airport. These data and the results of the clutter study are described. Scenes of 13 x 10 km were imaged at 9.38 GHz and HH-, VV-, and HV-polarizations, and contain airport grounds and facilities (up to 14 percent), cultural areas (more than 50 percent), and rural areas (up to 6 percent). Incidence angles range from 40 to 84 deg. At the largest depression angles the distributed targets, such as forest, fields, water, and residential, rarely had mean scattering coefficients greater than -10 dB. From 30 to 80 percent of an image had scattering coefficients less than -20 dB. About 1 to 10 percent of the scattering coefficients exceeded 0 dB, and from 0 to 1 percent above 10 dB. In examining the average backscatter coefficients at large angles, the clutter types cluster according to the following groups: (1) terminals (-3 dB), (2) city and industrial (-7 dB), (3) warehouse (-10 dB), (4) urban and residential (-14 dB), and (5) grass (-24 dB).

  4. Full Polarimetric Synthetic Aperture Radar (SAR) Data for ionosphere observation - A comparative study

    NASA Astrophysics Data System (ADS)

    Mohanty, S.; Singh, G.

    2017-12-01

    Ionosphere, predominantly, govern the propagation of radio waves, especially at L-band and lower frequencies. Small-scale, rapid fluctuations in the electron density, termed as scintillation phenomenon, cause rapid variations in signal amplitude and phase. Scintillation studies have been done using ground-based radio transmitter and beacon GPS signals. In this work, attempt has been made to utilize full polarimetric synthetic aperture radar (SAR) satellite signal at L-band (1.27 GHz) to develop a new measurement index for SAR signal intensity fluctuation. Datasets acquired from Japan's latest Advanced Land Observation Satellite (ALOS)-2 over the Indian subcontinent on two different dates, with varying ionospheric activities, have been utilized to compare the index. A 20% increase in the index values for a scintillation-affected day has been observed. The result coincides with the nature of ionospheric scintillation pattern typically observed over the equatorial belt. Total electron content values, for the two dates of acquisition, obtained from freely available Ionosphere Exchange (IONEX) data have been used to validate the varying ionospheric activities as well as the trend in index results. Another interesting finding of the paper is the demarcation of the equatorial anomaly belt. The index values are comparatively higher at these latitudes on a scintillation-affected day. Furthermore, the SAR signal intensity fluctuation index has great potential in being used as a preliminary measurement index to identify low frequency SAR data affected by ionospheric scintillation.

  5. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.

    PubMed

    Singha, Suman; Vespe, Michele; Trieschmann, Olaf

    2013-08-15

    Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. 3D synthetic aperture for controlled-source electromagnetics

    NASA Astrophysics Data System (ADS)

    Knaak, Allison

    Locating hydrocarbon reservoirs has become more challenging with smaller, deeper or shallower targets in complicated environments. Controlled-source electromagnetics (CSEM), is a geophysical electromagnetic method used to detect and derisk hydrocarbon reservoirs in marine settings, but it is limited by the size of the target, low-spatial resolution, and depth of the reservoir. To reduce the impact of complicated settings and improve the detecting capabilities of CSEM, I apply synthetic aperture to CSEM responses, which virtually increases the length and width of the CSEM source by combining the responses from multiple individual sources. Applying a weight to each source steers or focuses the synthetic aperture source array in the inline and crossline directions. To evaluate the benefits of a 2D source distribution, I test steered synthetic aperture on 3D diffusive fields and view the changes with a new visualization technique. Then I apply 2D steered synthetic aperture to 3D noisy synthetic CSEM fields, which increases the detectability of the reservoir significantly. With more general weighting, I develop an optimization method to find the optimal weights for synthetic aperture arrays that adapts to the information in the CSEM data. The application of optimally weighted synthetic aperture to noisy, simulated electromagnetic fields reduces the presence of noise, increases detectability, and better defines the lateral extent of the target. I then modify the optimization method to include a term that minimizes the variance of random, independent noise. With the application of the modified optimization method, the weighted synthetic aperture responses amplifies the anomaly from the reservoir, lowers the noise floor, and reduces noise streaks in noisy CSEM responses from sources offset kilometers from the receivers. Even with changes to the location of the reservoir and perturbations to the physical properties, synthetic aperture is still able to highlight targets

  7. Synthetic aperture radar operator tactical target acquisition research

    NASA Technical Reports Server (NTRS)

    Hershberger, M. L.; Craig, D. W.

    1978-01-01

    A radar target acquisition research study was conducted to access the effects of two levels of 13 radar sensor, display, and mission parameters on operator tactical target acquisition. A saturated fractional-factorial screening design was employed to examine these parameters. Data analysis computed ETA squared values for main and second-order effects for the variables tested. Ranking of the research parameters in terms of importance to system design revealed four variables (radar coverage, radar resolution/multiple looks, display resolution, and display size) accounted for 50 percent of the target acquisition probability variance.

  8. Revolutionary astrophysics using an incoherent synthetic optical aperture

    NASA Astrophysics Data System (ADS)

    Rafanelli, Gerard L.; Cosner, Christopher M.; Spencer, Susan B.; Wolfe, Douglas; Newman, Arthur; Polidan, Ronald; Chakrabarti, Supriya

    2017-09-01

    We describe a paradigm shift for astronomical observatories that would replace circular apertures with rotating synthetic apertures. Rotating Synthetic Aperture (RSA) observatories can enable high value science measurements for the lowest mass to orbit, have superior performance relative to all sparse apertures, can provide resolution of 20m to 30m apertures having the collecting area of 8m to 12m telescopes with much less mass, risk, schedule, and cost. RSA is based on current, or near term technology and can be launched on a single, current launch vehicle to L2. Much larger apertures are possible using the NASA Space Launch System.

  9. Revolutionary Astrophysics using an Incoherent Synthetic Optical Aperture

    NASA Astrophysics Data System (ADS)

    Rafanelli, Gerard L.; Cosner, Christopher M.; Spencer, Susan B.; Wolfe, Douglas w.; Newman, Arthur M.; Polidan, Ronald S.; Chakrabarti, Supriya

    2018-01-01

    We describe a paradigm shift for astronomical observatories that would replace circular apertures with rotating synthetic apertures. Rotating Synthetic Aperture (RSA) observatories can enable high value science measurements for the lowest mass to orbit, have superior performance relative to all sparse apertures, can provide resolution of 20m to 30m apertures having the collecting area of 8m to 12m telescopes with much less mass, risk, schedule, and cost. RSA is based on current, or near term technology and can be launched on a single, current launch vehicle to L2. Much larger apertures are possible using the NASA Space Launch System.

  10. In-situ data collection for oil palm tree height determination using synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Loong, C. K.

    2016-04-01

    The oil palm is recognized as the “golden crop,” producing the highest oil yield among oil seed crops. Malaysia, the world's second largest producer of palm oil, has 16 per cent of its territory planted with oil palms. To cope with the increasing global demand on edible oil, additional areas of oil palm are forecast to increase globally by 12 to 19 million hectares by 2050. Due to the limited land bank in Malaysia, new strategies have to be developed to avoid unauthorized clearing of primary forest for the use of oil palm cultivation. Microwave remote sensing could play a part by providing relevant, timely and accurate information for a plantation monitoring system. The use of synthetic aperture radar (SAR) has the advantage of daylight- and weather-independence, a criterion that is very relevant in constantly cloud-covered tropical regions, such as Malaysia. Using interferometric SAR, (InSAR) topographical and tree height profiles of oil palm plantations can be created; such information is useful for mapping oil palm age profiles of the plantations in the country. This paper reports on the use of SAR and InSAR in a multisensory context to provide up-to-date information at plantation level. Remote sensing and in-situ data collection for tree height determination are described. Further research to be carried out over the next two years is outlined.

  11. The need for separate operational and engineering user interfaces for command and control of airborne synthetic aperture radar systems

    NASA Astrophysics Data System (ADS)

    Klein, Laura M.; McNamara, Laura A.

    2017-05-01

    In this paper, we address the needed components to create usable engineering and operational user interfaces (UIs) for airborne Synthetic Aperture Radar (SAR) systems. As airborne SAR technology gains wider acceptance in the remote sensing and Intelligence, Surveillance, and Reconnaissance (ISR) communities, the need for effective and appropriate UIs to command and control these sensors has also increased. However, despite the growing demand for SAR in operational environments, the technology still faces an adoption roadblock, in large part due to the lack of effective UIs. It is common to find operational interfaces that have barely grown beyond the disparate tools engineers and technologists developed to demonstrate an initial concept or system. While sensor usability and utility are common requirements to engineers and operators, their objectives for interacting with the sensor are different. As such, the amount and type of information presented ought to be tailored to the specific application.

  12. Experimental demonstration of tri-aperture Differential Synthetic Aperture Ladar

    NASA Astrophysics Data System (ADS)

    Zhao, Zhilong; Huang, Jianyu; Wu, Shudong; Wang, Kunpeng; Bai, Tao; Dai, Ze; Kong, Xinyi; Wu, Jin

    2017-04-01

    A tri-aperture Differential Synthetic Aperture Ladar (DSAL) is demonstrated in laboratory, which is configured by using one common aperture to transmit the illuminating laser and another two along-track receiving apertures to collect back-scattered laser signal for optical heterodyne detection. The image formation theory on this tri-aperture DSAL shows that there are two possible methods to reconstruct the azimuth Phase History Data (PHD) for aperture synthesis by following standard DSAL principle, either method resulting in a different matched filter as well as an azimuth image resolution. The experimental setup of the tri-aperture DSAL adopts a frequency chirped laser of about 40 mW in 1550 nm wavelength range as the illuminating source and an optical isolator composed of a polarizing beam-splitter and a quarter wave plate to virtually line the three apertures in the along-track direction. Various DSAL images up to target distance of 12.9 m are demonstrated using both PHD reconstructing methods.

  13. Millimeter Wave and Terahertz Synthetic Aperture Radar for Locating Metallic Scatterers Embedded in Scattering Media

    NASA Astrophysics Data System (ADS)

    Richard, Jonathan T.; Everitt, Henry O.

    2017-11-01

    A rail-mounted synthetic aperture radar has been constructed to operate at W-band (75 - 110 GHz) and a THz band (325 - 500 GHz) in order to ascertain its ability to locate isolated small, visually obscured metallic scatterers embedded in highly scattering dielectric hosts that are either semi-transparent or opaque. A top view 2D algorithm was used to reconstruct scenes from the acquired data, locating metallic scatterers at W-band with high range and cross-range resolution of 4.3 and 2 mm, respectively, and with improved range resolution of 0.86 mm at the THz band. Millimeter-sized metallic scatterers were easily located when embedded in semi-transparent, highly scattering target hosts of Styrofoam and waxy packing foam but were more difficult to locate when embedded in relatively opaque, highly scattering Celotex panels. Although the THz band provided the expected greater spatial resolution, it required the target to be moved closer to the rail and had a more limited field of view that prevented some targets from being identified. Techniques for improving the signal to noise ratio are discussed. This work establishes a path for developing techniques to render a complete 3D reconstruction of a scene.

  14. Time-frequency analysis-based time-windowing algorithm for the inverse synthetic aperture radar imaging of ships

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Zhang, Xi; Sun, Weifeng; Dai, Yongshou; Wan, Yong

    2018-01-01

    An algorithm based on time-frequency analysis is proposed to select an imaging time window for the inverse synthetic aperture radar imaging of ships. An appropriate range bin is selected to perform the time-frequency analysis after radial motion compensation. The selected range bin is that with the maximum mean amplitude among the range bins whose echoes are confirmed to be contributed by a dominant scatter. The criterion for judging whether the echoes of a range bin are contributed by a dominant scatter is key to the proposed algorithm and is therefore described in detail. When the first range bin that satisfies the judgment criterion is found, a sequence composed of the frequencies that have the largest amplitudes in every moment's time-frequency spectrum corresponding to this range bin is employed to calculate the length and the center moment of the optimal imaging time window. Experiments performed with simulation data and real data show the effectiveness of the proposed algorithm, and comparisons between the proposed algorithm and the image contrast-based algorithm (ICBA) are provided. Similar image contrast and lower entropy are acquired using the proposed algorithm as compared with those values when using the ICBA.

  15. Analysis of data acquired by synthetic aperture radar over Dade County, Florida, and Acadia Parish, Louisiana

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1983-01-01

    Results of digital processing of airborne X-band synthetic aperture radar (SAR) data acquired over Dade County, Florida, and Acadia Parish, Louisiana are presented. The goal was to investigate the utility of SAR data for land cover mapping and area estimation under the AgRISTARS Domestic Crops and Land Cover Project. In the case of the Acadia Paris study area, LANDSAT multispectral scanner (MSS) data were also used to form a combined SAR and MSS data set. The results of accuracy evaluation for the SAR, MSS, and SAR/MSS data using supervised classification show that the combined SAR/MSS data set results in an improved classification accuracy of the five land cover classes as compared with SAR-only and MSS-only data sets. In the case of the Dade County study area, the results indicate that both HH and VV polarization data are highly responsive to the row orientation of the row crop but not to the specific vegetation which forms the row structure. On the other hand, the HV polarization data are relatively insensitive to the orientation of row crop. Therefore, the HV polarization data may be used to discriminate the specific vegetation that forms the row structure.

  16. Rupture parameters of the 2003 Zemmouri (Mw 6.8), Algeria, earthquake from joint inversion of interferometric synthetic aperture radar, coastal uplift, and GPS

    USGS Publications Warehouse

    Belabbes, S.; Wicks, Charles; Cakir, Z.; Meghraoui, M.

    2009-01-01

    We study the surface deformation associated with the 21 May 2003 (M w = 6.8) Zemmouri (Algeria) earthquake, the strongest seismic event felt in the Algiers region since 1716. The thrust earthquake mechanism and related surface deformation revealed an average 0.50 m coastal uplift along ??55-km-long coastline. We obtain coseismic interferograms using Envisat advanced synthetic aperture radar (ASAR) (IS2) and RADARSAT standard beam (ST4) data from both the ascending and descending orbits of Envisat satellite, whereas the RADARSAT data proved useful only in the descending mode. While the two RADARSAT interferograms cover the earthquake area, Envisat data cover only the western half of the rupture zone. Although the interferometric synthetic aperture radar (InSAR) coherence in the epicenter area is poor, deformation fringes are observed along the coast in different patches. In the Boumerdes area, the maximum coseismic deformation is indicated by the high gradient of fringes visible in all interferograms in agreement with field measurements (tape, differential GPS, leveling, and GPS). To constrain the earthquake rupture parameters, we model the interferograms and uplift measurements using elastic dislocations on triangular fault patches in an elastic and homogeneous half-space. We invert the coseismic slip using first, a planar surface and second, a curved fault, both constructed from triangular elements using Poly3Dinv program that uses a damped least square minimization. The best fit of InSAR, coastal uplift, and GPS data corresponds to a 65-km-long fault rupture dipping 40?? to 50?? SE, located at 8 to 13 km offshore with a change in strike west of Boumerdes from N60??-65?? to N95??-105??. The inferred rupture geometry at depth correlates well with the seismological results and may have critical implications for the seismic hazard assessment of the Algiers region. Copyright 2009 by the American Geophysical Union.

  17. Interferometric Synthetic Aperture Radar to capture spatial variability of local land-based subsidence

    NASA Astrophysics Data System (ADS)

    Bekaert, D. P.; Hamlington, B.; Buzzanga, B. A.; Jones, C. E.

    2017-12-01

    The rate of relative sea level rise results from a combination of land subsidence and rising seas associated with global warming on long timescales and exacerbated by shifts in ocean dynamics on shorter timescales. An understanding of the current-day magnitude of each component is needed to create accurate projections of future relative sea level rise upon which to base planning efforts. Current day land-based subsidence rates derived from GPS often lack the spatial resolution to capture the local spatial variability needed when assessing the impact of relative sea-level rise. Interferometric Synthetic Aperture Radar (InSAR) is an attractive technique that has the potential to provide a measurement every 20-30m when good signal coherence is maintained. In practice, coastal regions are challenging for InSAR due to variable vegetation cover and soil moisture, which can be in part mitigated by applying advanced time-series InSAR techniques. After applying time-series InSAR, derived rates need to be combined with GPS to tie relative subsidence rates into a geodetic reference frame. Given the need to make projections of relative sea-level rise it is particularly important to propagate all uncertainties during the different processing stages. Here we provide results from ALOS and Sentinel-1 over Hampton Roads area in the Chesapeake Bay region, which is experiencing one of the highest rates of relative sea level rise on the Atlantic coast of the United States. Although the current derived subsidence rates have large uncertainties, it is expected that this will improve with the decadal observations from Sentinel-1.

  18. Deep Learning of Post-Wildfire Vegetation Loss using Bitemporal Synthetic Aperture Radar Images

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Glasscoe, M. T.; Parker, J. W.

    2017-12-01

    Wildfire events followed by heavy precipitation have been proven causally related to breakouts of mudflow or debris flow, which, can demand rapid evacuation and threaten residential communities and civil infrastructure. For example, in the case of the city of Glendora, California, it was first afflicted by a severe wildfire in 1968 and then the flooding caused mudslides and debris flow in 1969 killed 34 people. Therefore, burn area or vegetation loss mapping due to wildfire is critical to agencies for preparing for secondary hazards, particularly flooding and flooding induced mudflow. However, rapid post-wildfire mapping of vegetation loss mapping is not readily obtained by regular remote sensing methods, e.g. various optical methods, due to the presence of smoke, haze, and rainy/cloudy conditions that often follow a wildfire event. In this paper, we will introduce and develop a deep learning-based framework that uses Synthetic Aperture Radar images collected prior to and after a wildfire event. A convolutional neural network (CNN) approach will be used that replaces traditional principle component analysis (PCA) based differencing for non-supervised change feature extraction. Using a small sample of human-labeled burned vegetation, normal vegetation, and urban built-up pixels, we will compare the performance of deep learning and PCA-based feature extraction. The 2014 Coby Fire event, which affected the downstream city of Glendora, was used to evaluate the proposed framework. The NASA's UAVSAR data (https://uavsar.jpl.nasa.gov/) will be utilized for mapping the vegetation damage due to the Coby Fire event.

  19. Hydrologic modeling of Guinale River Basin using HEC-HMS and synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Bien, Ferdinand E.; Plopenio, Joanaviva C.

    2017-09-01

    This paper presents the methods and results of hydrologic modeling of Guinale river basin through the use of HEC-HMS software and Synthetic Aperture Radar Digital Elevation Model (SAR DEM). Guinale River Basin is located in the province of Albay, Philippines which is one of the river basins covered by the Ateneo de Naga University (ADNU) Phil-LiDAR 1. This research project was funded by the Department of Science and Technology (DOST) through the Philippine Council for Industry, Energy and Emerging Technology Research and Development (PCIEERD). Its objectives are to simulate the hydrologic model of Guinale River basin using HEC-HMS software and SAR DEM. Its basin covers an area of 165.395 sq.km. and the hydrologic model was calibrated using the storm event typhoon Nona (international name Melor). Its parameter had undergone a series of optimization processes of HEC-HMS software in order to produce an acceptable level of model efficiency. The Nash-Sutcliffe (E), Percent Bias and Standard Deviation Ratio were used to measure the model efficiency, giving values of 0.880, 0.260 and 0.346 respectively which resulted to a "very good" performance rating of the model. The flood inundation model was simulated using Legazpi Rainfall Intensity Duration Frequency Curves (RIDF) and HEC-RAS software developed by the US Army corps of Engineers (USACE). This hydrologic model will provide the Municipal Disaster Risk Reduction Management Office (MDRRMO), Local Government units (LGUs) and the community a tool for the prediction of runoff in the area.

  20. Rapid Damage Mapping for the 2015 M7.8 Gorkha Earthquake using Synthetic Aperture Radar Data from COSMO-SkyMed and ALOS-2 Satellites

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Hudnut, K. W.; Owen, S. E.; Webb, F.; Simons, M.; Macdonald, A.; Sacco, P.; Gurrola, E. M.; Manipon, G.; Liang, C.; Fielding, E. J.; Milillo, P.; Hua, H.; Coletta, A.

    2015-12-01

    The April 25, 2015 M7.8 Gorkha earthquake caused more than 8,000 fatalities and widespread building damage in central Nepal. Four days after the earthquake, the Italian Space Agency's (ASI's) COSMO-SkyMed Synthetic Aperture Radar (SAR) satellite acquired data over Kathmandu area. Nine days after the earthquake, the Japan Aerospace Exploration Agency's (JAXA's) ALOS-2 SAR satellite covered larger area. Using these radar observations, we rapidly produced damage proxy maps derived from temporal changes in Interferometric SAR (InSAR) coherence. These maps were qualitatively validated through comparison with independent damage analyses by National Geospatial-Intelligence Agency (NGA) and the UNITAR's (United Nations Institute for Training and Research's) Operational Satellite Applications Programme (UNOSAT), and based on our own visual inspection of DigitalGlobe's WorldView optical pre- vs. post-event imagery. Our maps were quickly released to responding agencies and the public, and used for damage assessment, determining inspection/imaging priorities, and reconnaissance fieldwork.

  1. Rapid damage mapping for the 2015 M7.8 Gorkha earthquake using synthetic aperture radar data from COSMO-SkyMed and ALOS-2 satellites

    USGS Publications Warehouse

    Yun, Sang-Ho; Hudnut, Kenneth W.; Owen, Susan; Webb, Frank; Simons, Mark; Sacco, Patrizia; Gurrola, Eric; Manipon, Gerald; Liang, Cunren; Fielding, Eric; Milillo, Pietro; Hua, Hook; Coletta, Alessandro

    2015-01-01

    The 25 April 2015 Mw 7.8 Gorkha earthquake caused more than 8000 fatalities and widespread building damage in central Nepal. The Italian Space Agency’s COSMO–SkyMed Synthetic Aperture Radar (SAR) satellite acquired data over Kathmandu area four days after the earthquake and the Japan Aerospace Exploration Agency’s Advanced Land Observing Satellite-2 SAR satellite for larger area nine days after the mainshock. We used these radar observations and rapidly produced damage proxy maps (DPMs) derived from temporal changes in Interferometric SAR coherence. Our DPMs were qualitatively validated through comparison with independent damage analyses by the National Geospatial-Intelligence Agency and the United Nations Institute for Training and Research’s United Nations Operational Satellite Applications Programme, and based on our own visual inspection of DigitalGlobe’s WorldView optical pre- versus postevent imagery. Our maps were quickly released to responding agencies and the public, and used for damage assessment, determining inspection/imaging priorities, and reconnaissance fieldwork.

  2. Synthetic aperture radar imagery of airports and surrounding areas: Study of clutter at grazing angles and their polarimetric properties

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Gineris, Denise J.; Clinthorne, James T.

    1991-01-01

    The statistical description of ground clutter at an airport and in the surrounding area is addressed. These data are being utilized in a program to detect microbursts. Synthetic aperture radar data were collected at the Denver Stapleton Airport. Mountain terrain data were examined to determine if they may potentially contribute to range ambiguity problems and degrade microburst detection. Results suggest that mountain clutter may not present a special problem source. The examination of clutter at small grazing angles was continued by examining data collected at especially low altitudes. Cultural objects such as buildings produce strong sources of backscatter at angles of about 85 deg, with responses of 30 dB to 60 dB above the background. Otherwise there are a few sources which produce significant scatter. The polarization properties of hydrospheres and clutter were examined with the intent of determining the optimum polarization. This polarization was determined to be dependent upon the ratio of VV and HH polarizations of both rain and ground clutter.

  3. Multitask saliency detection model for synthetic aperture radar (SAR) image and its application in SAR and optical image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Chunhui; Zhang, Duona; Zhao, Xintao

    2018-03-01

    Saliency detection in synthetic aperture radar (SAR) images is a difficult problem. This paper proposed a multitask saliency detection (MSD) model for the saliency detection task of SAR images. We extract four features of the SAR image, which include the intensity, orientation, uniqueness, and global contrast, as the input of the MSD model. The saliency map is generated by the multitask sparsity pursuit, which integrates the multiple features collaboratively. Detection of different scale features is also taken into consideration. Subjective and objective evaluation of the MSD model verifies its effectiveness. Based on the saliency maps obtained by the MSD model, we apply the saliency map of the SAR image to the SAR and color optical image fusion. The experimental results of real data show that the saliency map obtained by the MSD model helps to improve the fusion effect, and the salient areas in the SAR image can be highlighted in the fusion results.

  4. Surface water classification and monitoring using polarimetric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data

  5. Fisheries imaging radar surveillance test /FIRST/ - Bering Sea test

    NASA Technical Reports Server (NTRS)

    Woods, E. G.; Ivey, J. H.

    1977-01-01

    A joint NOAA, U.S. Coast Guard and NASA program is being conducted to determine if a synthetic aperture radar (SAR) system, such as planned for NASA's SEASAT, can be useful in monitoring fishing vessels within the newly established 200-mile fishing limit. As part of this program, data gathering field operations were conducted over concentrations of foreign fishing vessels in the Bering Sea off Alaska in April 1976. The Jet Propulsion Laboratory developed synthetic aperture L-band radar which was flown aboard the NASA Convair 990 aircraft, with a Coast Guard cutter and C-130 aircraft simultaneously gathering data to provide both radar imagery and sea truth information on the vessels being imaged. Results indicate that synthetic aperture radar systems have potential for all weather detection, enumeration and classification of fishing vessels.

  6. Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Wei, Xiangfei; Wang, Xiaoqing; Chong, Jinsong

    2018-01-01

    Ships on synthetic aperture radar (SAR) images will be severely defocused and their energy will disperse into numerous resolution cells under long SAR integration time. Therefore, the image intensity of ships is weak and sometimes even overwhelmed by sea clutter on SAR image. Consequently, it is hard to detect the ships from SAR intensity images. A ship detection method based on local region power spectrum of SAR complex image is proposed. Although the energies of the ships are dispersed on SAR intensity images, their spectral energies are rather concentrated or will cause the power spectra of local areas of SAR images to deviate from that of sea surface background. Therefore, the key idea of the proposed method is to detect ships via the power spectra distortion of local areas of SAR images. The local region power spectrum of a moving target on SAR image is analyzed and the way to obtain the detection threshold through the probability density function (pdf) of the power spectrum is illustrated. Numerical P- and L-band airborne SAR ocean data are utilized and the detection results are also illustrated. Results show that the proposed method can well detect the unfocused ships, with a detection rate of 93.6% and a false-alarm rate of 8.6%. Moreover, by comparing with some other algorithms, it indicates that the proposed method performs better under long SAR integration time. Finally, the applicability of the proposed method and the way of parameters selection are also discussed.

  7. Validating high-resolution California coastal flood modeling with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR)

    NASA Astrophysics Data System (ADS)

    O'Neill, A.

    2015-12-01

    The Coastal Storm Modeling System (CoSMoS) is a numerical modeling scheme used to predict coastal flooding due to sea level rise and storms influenced by climate change, currently in use in central California and in development for Southern California (Pt. Conception to the Mexican border). Using a framework of circulation, wave, analytical, and Bayesian models at different geographic scales, high-resolution results are translated as relevant hazards projections at the local scale that include flooding, wave heights, coastal erosion, shoreline change, and cliff failures. Ready access to accurate, high-resolution coastal flooding data is critical for further validation and refinement of CoSMoS and improved coastal hazard projections. High-resolution Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provides an exceptional data source as appropriately-timed flights during extreme tides or storms provide a geographically-extensive method for determining areas of inundation and flooding extent along expanses of complex and varying coastline. Landward flood extents are numerically identified via edge-detection in imagery from single flights, and can also be ascertained via change detection using additional flights and imagery collected during average wave/tide conditions. The extracted flooding positions are compared against CoSMoS results for similar tide, water level, and storm-intensity conditions, allowing for robust testing and validation of CoSMoS and providing essential feedback for supporting regional and local model improvement.

  8. Computer simulation of a multiple-aperture coherent laser radar

    NASA Astrophysics Data System (ADS)

    Gamble, Kevin J.; Weeks, Arthur R.

    1996-06-01

    This paper presents the construction of a 2D multiple aperture coherent laser radar simulation that is capable of including the effects of the time evolution of speckle on the laser radar output. Every portion of a laser radar system is modeled in software, including quarter and half wave plates, beamsplitters (polarizing and non-polarizing), the detector, the laser source, and all necessary lenses. Free space propagation is implemented using the Rayleigh- Sommerfeld integral for both orthogonal polarizations. Atmospheric turbulence is also included in the simulation and is modeled using time correlated Kolmogorov phase screens. The simulation itself can be configured to simulate both monostatic and bistatic systems. The simulation allows the user to specify component level parameters such as extinction ratios for polarizing beam splitters, detector sizes and shapes. orientation of the slow axis for quarter/half wave plates and other components used in the system. This is useful from a standpoint of being a tool in the design of a multiple aperture laser radar system.

  9. Design and implementation of a Synthetic Aperture Radar for Open Skies (SAROS) aboard a C-135 aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, D.W.; Murphy, M.; Rimmel, G.

    1994-08-01

    NATO and former Warsaw Pact nations have agreed to allow overflights of their countries in the interest of easing world tension. The United States has decided to implement two C-135 aircraft with a Synthetic Aperture Radar (SAR) that has a 3-meter resolution. This work is being sponsored by the Defense Nuclear Agency (DNA) and will be operational in Fall 1995. Since the SAR equipment must be exportable to foreign nations, a 20-year-old UPD-8 analog SAR system was selected as the front-end and refurbished for this application by Loral Defense Systems. Data processing is being upgraded to a currently exportable digitalmore » design by Sandia National Laboratories. Amplitude and phase histories will be collected during these overflights and digitized on VHS cassettes. Ground stations will use reduction algorithms to process the data and convert it to magnitude-detected images for member nations. System Planning Corporation is presently developing a portable ground station for use on the demonstration flights. Aircraft integration into the C-135 aircraft is being done by the Air Force at Wright-Patterson AFB, Ohio.« less

  10. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Dong, Junyu; Li, Bo; Xu, Qizhi; Xie, Cui

    2016-10-01

    Change detection is of high practical value to hazard assessment, crop growth monitoring, and urban sprawl detection. A synthetic aperture radar (SAR) image is the ideal information source for performing change detection since it is independent of atmospheric and sunlight conditions. Existing SAR image change detection methods usually generate a difference image (DI) first and use clustering methods to classify the pixels of DI into changed class and unchanged class. Some useful information may get lost in the DI generation process. This paper proposed an SAR image change detection method based on neighborhood-based ratio (NR) and extreme learning machine (ELM). NR operator is utilized for obtaining some interested pixels that have high probability of being changed or unchanged. Then, image patches centered at these pixels are generated, and ELM is employed to train a model by using these patches. Finally, pixels in both original SAR images are classified by the pretrained ELM model. The preclassification result and the ELM classification result are combined to form the final change map. The experimental results obtained on three real SAR image datasets and one simulated dataset show that the proposed method is robust to speckle noise and is effective to detect change information among multitemporal SAR images.

  11. The observation of ocean surface phenomena using imagery from the SEASAT synthetic aperture radar: An assessment

    NASA Astrophysics Data System (ADS)

    Vesecky, John F.; Stewart, Robert H.

    1982-04-01

    Over the period July 4 to October 10, 1978, the SEASAT synthetic aperture radar (SAR) gathered 23 cm wavelength radar images of some 108 km2 of the earth's surface, mainly of ocean areas, at 25-40 m resolution. Our assessment is in terms of oceanographic and ocean monitoring objectives and is directed toward discovering the proper role of SAR imagery in these areas of interest. In general, SAR appears to have two major and somewhat overlapping roles: first, quantitative measurement of ocean phenomena, like long gravity waves and wind fields, as well as measurement of ships; second, exploratory observations of large-scale ocean phenomena, such as the Gulf Stream and its eddies, internal waves, and ocean fronts. These roles are greatly enhanced by the ability of 23 cm SAR to operate day or night and through clouds. To begin we review some basics of synthetic aperture radar and its implementation on the SEASAT spacecraft. SEASAT SAR imagery of the ocean is fundamentally a map of the radar scattering characteristics of ˜30 cm wavelength ocean waves, distorted in some cases by ocean surface motion. We discuss how wind stress, surface currents, long gravity waves, and surface films modulate the scattering properties of these resonant waves with particular emphasis on the mechanisms that could produce images of long gravity waves. Doppler effects by ocean motion are also briefly described. Measurements of long (wavelength ≳100 m) gravity waves, using SEASAT SAR imagery, are compared with surface measurements during several experiments. Combining these results we find that dominant wavelength and direction are measured by SEASAT SAR within ±12% and ±15°, respectively. However, we note that ocean waves are not always visible in SAR images and discuss detection criteria in terms of wave height, length, and direction. SAR estimates of omnidirectional wave height spectra made by assuming that SAR image intensity is proportional to surface height fluctuations are more

  12. Radar systems for a polar mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  13. Small-scale loess landslide monitoring with small baseline subsets interferometric synthetic aperture radar technique-case study of Xingyuan landslide, Shaanxi, China

    NASA Astrophysics Data System (ADS)

    Zhao, Chaoying; Zhang, Qin; He, Yang; Peng, Jianbing; Yang, Chengsheng; Kang, Ya

    2016-04-01

    Small baseline subsets interferometric synthetic aperture radar technique is analyzed to detect and monitor the loess landslide in the southern bank of the Jinghe River, Shaanxi province, China. Aiming to achieve the accurate preslide time-series deformation results over small spatial scale and abrupt temporal deformation loess landslide, digital elevation model error, coherence threshold for phase unwrapping, and quality of unwrapping interferograms must be carefully checked in advance. In this experience, land subsidence accompanying a landslide with the distance <1 km is obtained, which gives a sound precursor for small-scale loess landslide detection. Moreover, the longer and continuous land subsidence has been monitored while deformation starting point for the landslide is successfully inverted, which is key to monitoring the similar loess landslide. In addition, the accelerated landslide deformation from one to two months before the landslide can provide a critical clue to early warning of this kind of landslide.

  14. Radar systems for the water resources mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined.

  15. Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico

    USGS Publications Warehouse

    Heywood, Charles E.; Galloway, Devin L.; Stork, Sylvia V.

    2002-01-01

    Six synthetic aperture radar (SAR) images were processed to form five unwrapped interferometric (InSAR) images of the greater metropolitan area in the Albuquerque Basin. Most interference patterns in the images were caused by range displacements resulting from changes in land-surface elevation. Loci of land- surface elevation changes correlate with changes in aquifer-system water levels and largely result from the elastic response of the aquifer-system skeletal material to changes in pore-fluid pressure. The magnitude of the observed land-surface subsidence and rebound suggests that aquifer-system deformation resulting from ground-water withdrawals in the Albuquerque area has probably remained in the elastic (recoverable) range from July 1993 through September 1999. Evidence of inelastic (permanent) land subsidence in the Rio Rancho area exists, but its relation to compaction of the aquifer system is inconclusive because of insufficient water-level data. Patterns of elastic deformation in both Albuquerque and Rio Rancho suggest that intrabasin faults impede ground- water-pressure diffusion at seasonal time scales and that these faults are probably important in controlling patterns of regional ground-water flow.

  16. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    USGS Publications Warehouse

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  17. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-05-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  18. Observation of wave refraction at an ice edge by synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.

    1991-01-01

    In this note the refraction of waves at the ice edge is studied by using aircraft synthesis aperture radar (SAR). Penetration of a dominant swell from open ocean into the ice cover was observed by SAR during the Labrador Ice Margin Experiment (LIMEX), conducted on the marginal ice zone (MIZ) off the east coast of Newfoundland, Canada, in March 1987. At an ice edge with a large curvature, the dominant swell component disappeared locally in the SAR imagery. Six subscenes of waves in the MIZ from the SAR image have been processed, revealing total reflection, refraction, and energy reduction of the ocean waves by the ice cover. The observed variations of wave spectra from SAR near the ice edge are consistent with the model prediction of wave refraction at the ice edge due to the change of wave dispersion relation in ice developed by Liu and Mollo-Christensen (1988).

  19. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by Synthetic Aperture Radar Interferometry

    USGS Publications Warehouse

    Hoffmann, Jörn; Zebker, Howard A.; Galloway, Devin L.; Amelung, Falk

    2001-01-01

    Analyses of areal variations in the subsidence and rebound occurring over stressed aquifer systems, in conjunction with measurements of the hydraulic head fluctuations causing these displacements, can yield valuable information about the compressibility and storage properties of the aquifer system. Historically, stress‐strain relationships have been derived from paired extensometer/piezometer installations, which provide only point source data. Because of the general unavailability of spatially detailed deformation data, areal stress‐strain relations and their variability are not commonly considered in constraining conceptual and numerical models of aquifer systems. Interferometric synthetic aperture radar (InSAR) techniques can map ground displacements at a spatial scale of tens of meters over 100 km wide swaths. InSAR has been used previously to characterize larger magnitude, generally permanent aquifer system compaction and land subsidence at yearly and longer timescales, caused by sustained drawdown of groundwater levels that produces intergranular stresses consistently greater than the maximum historical stress. We present InSAR measurements of the typically small‐magnitude, generally recoverable deformations of the Las Vegas Valley aquifer system occurring at seasonal timescales. From these we derive estimates of the elastic storage coefficient for the aquifer system at several locations in Las Vegas Valley. These high‐resolution measurements offer great potential for future investigations into the mechanics of aquifer systems and the spatial heterogeneity of aquifer system structure and material properties as well as for monitoring ongoing aquifer system compaction and land subsidence.

  20. Coastal flood inundation monitoring with Satellite C-band and L-band Synthetic Aperture Radar data

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri

    2013-01-01

    Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm- and tidal-related flooding of spatially extensive coastal marshes within the north-central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L-Band SAR (PALSAR) (L-band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C-band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006-2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR- and ASAR-based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference-scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR-based inundation accuracies averaged 84% (n = 160), while ASAR-based mapping accuracies averaged 62% (n = 245).

  1. Surface Water Detection Using Fused Synthetic Aperture Radar, Airborne LiDAR and Optical Imagery

    NASA Astrophysics Data System (ADS)

    Braun, A.; Irwin, K.; Beaulne, D.; Fotopoulos, G.; Lougheed, S. C.

    2016-12-01

    Each remote sensing technique has its unique set of strengths and weaknesses, but by combining techniques the classification accuracy can be increased. The goal of this project is to underline the strengths and weaknesses of Synthetic Aperture Radar (SAR), LiDAR and optical imagery data and highlight the opportunities where integration of the three data types can increase the accuracy of identifying water in a principally natural landscape. The study area is located at the Queen's University Biological Station, Ontario, Canada. TerraSAR-X (TSX) data was acquired between April and July 2016, consisting of four single polarization (HH) staring spotlight mode backscatter intensity images. Grey-level thresholding is used to extract surface water bodies, before identifying and masking zones of radar shadow and layover by using LiDAR elevation models to estimate the canopy height and applying simple geometry algorithms. The airborne LiDAR survey was conducted in June 2014, resulting in a discrete return dataset with a density of 1 point/m2. Radiometric calibration to correct for range and incidence angle is applied, before classifying the points as water or land based on corrected intensity, elevation, roughness, and intensity density. Panchromatic and multispectral (4-band) imagery from Quickbird was collected in September 2005 at spatial resolutions of 0.6m and 2.5m respectively. Pixel-based classification is applied to identify and distinguish water bodies from land. A classification system which inputs SAR-, LiDAR- and optically-derived water presence models in raster formats is developed to exploit the strengths and weaknesses of each technique. The total percentage of water detected in the sample area for SAR backscatter, LiDAR intensity, and optical imagery was 27%, 19% and 18% respectively. The output matrix of the classification system indicates that in over 72% of the study area all three methods agree on the classification. Analysis was specifically targeted

  2. NASA-ISRO synthetic aperture radar (NISAR) for temporal tracking of iceberg calving events in the Antarctica

    NASA Astrophysics Data System (ADS)

    Jawak, S. D.; Luis, A. J.

    2017-12-01

    Estimating mass loss of the Antarctic ice sheet caused by iceberg calving is a challenging job. Antarctica is surrounded by a variety of large, medium and small sized ice shelves, glacier tongues and coastal areas without offshore floating ice masses. It is possible to monitor surface structures on the continental ice and the ice shelves as well as calved icebergs using NASA-ISRO synthetic aperture radar (NISAR) satellite images in future. The NISAR, which is planned to be launched in 2020, can be used as an all-weather and all-season system to classify the coastline of Antarctica to map patterns of surface structures close to the calving front. Additionally, classifying patterns and density of surface structures distributed over the ice shelves and ice tongues can be a challenging research where NISAR can be of a great advantage. So this work explores use of NISAR to map surface structures visible on ice shelves which can provide advisories to field teams. The ice shelf fronts has been categorized into various classes based on surface structures relative to the calving front within a 30 km-wide seaward strip. The resulting map of the classified calving fronts around Antarctica and their description would provide a detailed representation of crevasse formation and dominant iceberg in the southern ocean which pose a threat to navigation of Antarctic bound ships.

  3. The Joint Experiment for Crop Assessment and Monitoring (JECAM): Synthetic Aperture Radar (SAR) Inter-Comparison Experiment

    NASA Astrophysics Data System (ADS)

    Dingle Robertson, L.; Hosseini, M.; Davidson, A. M.; McNairn, H.

    2017-12-01

    The Joint Experiment for Crop Assessment and Monitoring (JECAM) is the research and development branch of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring), a G20 initiative to improve the global monitoring of agriculture through the use of Earth Observation (EO) data and remote sensing. JECAM partners represent a diverse network of researchers collaborating towards a set of best practices and recommendations for global agricultural analysis using EO data, with well monitored test sites covering a wide range of agriculture types, cropping systems and climate regimes. Synthetic Aperture Radar (SAR) for crop inventory and condition monitoring offers many advantages particularly the ability to collect data under cloudy conditions. The JECAM SAR Inter-Comparison Experiment is a multi-year, multi-partner project that aims to compare global methods for (1) operational SAR & optical; multi-frequency SAR; and compact polarimetry methods for crop monitoring and inventory, and (2) the retrieval of Leaf Area Index (LAI) and biomass estimations using models such as the Water Cloud Model (WCM) employing single frequency SAR; multi-frequency SAR; and compact polarimetry. The results from these activities will be discussed along with an examination of the requirements of a global experiment including best-date determination for SAR data acquisition, pre-processing techniques, in situ data sharing, model development and statistical inter-comparison of the results.

  4. Synthetic aperture imaging in ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.

    2014-03-01

    Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica­ tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu­ rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.

  5. Central obscuration effects on optical synthetic aperture imaging

    NASA Astrophysics Data System (ADS)

    Wang, Xue-wen; Luo, Xiao; Zheng, Li-gong; Zhang, Xue-jun

    2014-02-01

    Due to the central obscuration problem exists in most optical synthetic aperture systems, it is necessary to analyze its effects on their image performance. Based on the incoherent diffraction limited imaging theory, a Golay-3 type synthetic aperture system was used to study the central obscuration effects on the point spread function (PSF) and the modulation transfer function (MTF). It was found that the central obscuration does not affect the width of the central peak of the PSF and the cutoff spatial frequency of the MTF, but attenuate the first sidelobe of the PSF and the midfrequency of the MTF. The imaging simulation of a Golay-3 type synthetic aperture system with central obscuration proved this conclusion. At last, a Wiener Filter restoration algorithm was used to restore the image of this system, the images were obviously better.

  6. The Synthetic Aperture Radar Science Data Processing Foundry Concept for Earth Science

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Hua, H.; Norton, C. D.; Little, M. M.

    2015-12-01

    Since 2008, NASA's Earth Science Technology Office and the Advanced Information Systems Technology Program have invested in two technology evolutions to meet the needs of the community of scientists exploiting the rapidly growing database of international synthetic aperture radar (SAR) data. JPL, working with the science community, has developed the InSAR Scientific Computing Environment (ISCE), a next-generation interferometric SAR processing system that is designed to be flexible and extensible. ISCE currently supports many international space borne data sets but has been primarily focused on geodetic science and applications. A second evolutionary path, the Advanced Rapid Imaging and Analysis (ARIA) science data system, uses ISCE as its core science data processing engine and produces automated science and response products, quality assessments and metadata. The success of this two-front effort has been demonstrated in NASA's ability to respond to recent events with useful disaster support. JPL has enabled high-volume and low latency data production by the re-use of the hybrid cloud computing science data system (HySDS) that runs ARIA, leveraging on-premise cloud computing assets that are able to burst onto the Amazon Web Services (AWS) services as needed. Beyond geodetic applications, needs have emerged to process large volumes of time-series SAR data collected for estimation of biomass and its change, in such campaigns as the upcoming AfriSAR field campaign. ESTO is funding JPL to extend the ISCE-ARIA model to a "SAR Science Data Processing Foundry" to on-ramp new data sources and to produce new science data products to meet the needs of science teams and, in general, science community members. An extension of the ISCE-ARIA model to support on-demand processing will permit PIs to leverage this Foundry to produce data products from accepted data sources when they need them. This paper will describe each of the elements of the SAR SDP Foundry and describe their

  7. Radar Image of Galapagos Island

    NASA Image and Video Library

    1996-10-23

    This is an image showing part of Isla Isabella in the western Galapagos Islands. It was taken by the L-band radar in HH polarization from the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar on the 40th orbit of NASA’s space shuttle Endeavour.

  8. Integrated Optical Synthetic Aperture Radar Processor.

    DTIC Science & Technology

    1987-09-01

    acoustooptic cell was employed to input each radar return into a time-and-space integrating optical architecture comprised of several lenses, a CCD area array...acoustooptic cell and parallel rib waveguide structure. During the course of the literature survey, we became aware of an elegant and poten- tially profound...wave.) scatterer at (f , A(t) is the far-field pattern of the antenna. From the geometry of Si. 1. R can be written as [I-2R,/c - nT1 r(t) = A(nT) rectj

  9. Spaceborne synthetic aperture radar pilot study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A pilot study of a spaceborne sidelooking radar is summarized. The results of the system trade studies are given along with the electrical parameters for the proposed subsystems. The mechanical aspects, packaging, thermal control and dynamics of the proposed design are presented. Details of the data processor are given. A system is described that allows the data from a pass over the U. S. to be in hard copy form within two hours. Also included are the proposed schedule, work breakdown structure, and cost estimate.

  10. Synthetic Aperture Radar Interferometry Analysis of Ground Deformation within the Coso Geothermal Site, California

    NASA Astrophysics Data System (ADS)

    Brawner, Erik

    Earth's surface movement may cause as a potential hazard to infrastructure and people. Associated earthquake hazards pose a potential side effect of geothermal activity. Modern remote sensing techniques known as Interferometric Synthetic Aperture Radar (InSAR) can measure surface change with a high degree of precision to mm scale movements. Previous work has identified a deformation anomaly within the Coso Geothermal site in eastern California. Surface changes have not been analyzed since the 1990s, allowing a decade of geothermal production impact to occur since previously assessed. In this study, InSAR data was acquired and analyzed between the years 2005 and 2010. Acquired by the ENVISAT satellite from both ascending and descending modes. This provides an independent dataset from previous work. Incorporating data generated from a new sensor covering a more modern temporal study period. Analysis of this time period revealed a subsidence anomaly in correlation with the extents of the geothermal production area under current operation. Maximum subsidence rates in the region reached approximately 3.8 cm/yr. A similar rate assessed from previous work throughout the 1990s. The correlation of subsidence patterns suggests a linear source of deformation from measurements spanning multiple decades. Regions of subsidence branch out from the main anomaly to the North-Northeast and to the South where additional significant peaks of subsidence occurring. The extents of the deformation anomaly directly correlate with the dispersal of geothermal production well site locations. Depressurization within the geothermal system provides a leading cause to surface subsidence from excessive extraction of hydrothermal fluids. As a result of minimal reinjection of production fluids.

  11. Simulations of Aperture Synthesis Imaging Radar for the EISCAT_3D Project

    NASA Astrophysics Data System (ADS)

    La Hoz, C.; Belyey, V.

    2012-12-01

    EISCAT_3D is a project to build the next generation of incoherent scatter radars endowed with multiple 3-dimensional capabilities that will replace the current EISCAT radars in Northern Scandinavia. Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. To demonstrate the feasibility of the antenna configurations and the imaging inversion algorithms a simulation of synthetic incoherent scattering data has been performed. The simulation algorithm incorporates the ability to control the background plasma parameters with non-homogeneous, non-stationary components over an extended 3-dimensional space. Control over the positions of a number of separated receiving antennas, their signal-to-noise-ratios and arriving phases allows realistic simulation of a multi-baseline interferometric imaging radar system. The resulting simulated data is fed into various inversion algorithms. This simulation package is a powerful tool to evaluate various antenna configurations and inversion algorithms. Results applied to realistic design alternatives of EISCAT_3D will be described.

  12. An Iterative Learning Algorithm to Map Oil Palm Plantations from Synthetic Aperture Radar and Crowdsourcing

    NASA Astrophysics Data System (ADS)

    Pinto, N.; Zhang, Z.; Perger, C.; Aguilar-Amuchastegui, N.; Almeyda Zambrano, A. M.; Broadbent, E. N.; Simard, M.; Banerjee, S.

    2017-12-01

    The oil palm Elaeis spp. grows exclusively in the tropics and provides 30% of the world's vegetable oil. While oil palm-derived biodiesel can reduce carbon emissions from fossil fuels, plantation establishment may be associated with peat fires and deforestation. The ability to monitor plantation establishment and their expansion over carbon-rich tropical forests is critical for quantifying the net impact of oil palm commodities on carbon fluxes. Our objective is to develop a robust methodology to map oil palm plantations in tropical biomes, based on Synthetic Aperture Radar (SAR) from Sentinel-1, ALOS/PALSAR2, and UAVSAR. The C- and L-band signal from these instruments are sensitive to vegetation parameters such as canopy volume, trunk shape, and trunk spatial arrangement, that are critical to differentiate crops from forests and native palms. Based on Bayesian statistics, the learning algorithm employed here adapts to growing knowledge as sites and trainning points are added. We will present an iterative approach wherein a model is initially built at the site with the most training points - in our case, Costa Rica. Model posteriors from Costa Rica, depicting polarimetric signatures of oil palm plantations, are then used as priors in a classification exercise taking place in South Kalimantan. Results are evaluated by local researchers using the LACO Wiki interface. All validation points, including missclassified sites, are used in an additional iteration to improve model results to >90% overall accuracy. We report on the impact of plantation age on polarimetric signatures, and we also compare model performance with and without L-band data.

  13. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  14. Modeling Collapse Chimney and Spall Zone Settlement as a Source of Post-Shot Subsidence Detected by Synthetic Aperture Radar Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxwall, W.

    2000-07-24

    Ground surface subsidence resulting from the March 1992 JUNCTION underground nuclear test at the Nevada Test Site (NTS) imaged by satellite synthetic aperture radar interferometry (InSAR) wholly occurred during a period of several months after the shot (Vincent et al., 1999) and after the main cavity collapse event. A significant portion of the subsidence associated with the small (less than 20 kt) GALENA and DIVIDER tests probably also occurred after the shots, although the deformation detected in these cases contains additional contributions from coseismic processes, since the radar scenes used to construct the deformation interferogram bracketed these two later events,more » The dimensions of the seas of subsidence resulting from all three events are too large to be solely accounted for by processes confined to the damage zone in the vicinity of the shot point or the collapse chimney. Rather, the subsidence closely corresponds to the span dimensions predicted by Patton's (1990) empirical relationship between spall radius and yield. This suggests that gravitational settlement of damaged rock within the spall zone is an important source of post-shot subsidence, in addition to settlement of the rubble within the collapse chimney. These observations illustrate the potential power of InSAR as a tool for Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring and on-site inspection in that the relatively broad ({approx} 100 m to 1 km) subsidence signatures resulting from small shots detonated at normal depths of burial (or even significantly overburied) are readily detectable within large geographical areas (100 km x 100 km) under favorable observing conditions. Furthermore, the present results demonstrate the flexibility of the technique in that the two routinely gathered satellite radar images used to construct the interferogram need not necessarily capture the event itself, but can cover a time period up to several months following the shot.« less

  15. High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR).

    PubMed

    Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing

    2017-01-09

    Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method.

  16. Using temporarily coherent point interferometric synthetic aperture radar for land subsidence monitoring in a mining region of western China

    NASA Astrophysics Data System (ADS)

    Fan, Hongdong; Xu, Qiang; Hu, Zhongbo; Du, Sen

    2017-04-01

    Yuyang mine is located in the semiarid western region of China where, due to serious land subsidence caused by underground coal exploitation, the local ecological environment has become more fragile. An advanced interferometric synthetic aperture radar (InSAR) technique, temporarily coherent point InSAR, is applied to measure surface movements caused by different mining conditions. Fifteen high-resolution TerraSAR-X images acquired between October 2, 2012, and March 27, 2013, were processed to generate time-series data for ground deformation. The results show that the maximum accumulated values of subsidence and velocity were 86 mm and 162 mm/year, respectively; these measurements were taken above the fully mechanized longwall caving faces. Based on the dynamic land subsidence caused by the exploitation of one working face, the land subsidence range was deduced to have increased 38 m in the mining direction with 11 days' coal extraction. Although some mining faces were ceased in 2009, they could also have contributed to a small residual deformation of overlying strata. Surface subsidence of the backfill mining region was quite small, the maximum only 21 mm, so backfill exploitation is an effective method for reducing the land subsidence while coal is mined.

  17. Forest height estimation from mountain forest areas using general model-based decomposition for polarimetric interferometric synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi

    2014-01-01

    The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.

  18. Analysis of urban area land cover using SEASAT Synthetic Aperture Radar data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M. (Principal Investigator)

    1980-01-01

    Digitally processed SEASAT synthetic aperture raar (SAR) imagery of the Denver, Colorado urban area was examined to explore the potential of SAR data for mapping urban land cover and the compatability of SAR derived land cover classes with the United States Geological Survey classification system. The imagery is examined at three different scales to determine the effect of image enlargement on accuracy and level of detail extractable. At each scale the value of employing a simplistic preprocessing smoothing algorithm to improve image interpretation is addressed. A visual interpretation approach and an automated machine/visual approach are employed to evaluate the feasibility of producing a semiautomated land cover classification from SAR data. Confusion matrices of omission and commission errors are employed to define classification accuracies for each interpretation approach and image scale.

  19. Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Gabriel, Andrew K. (Inventor); Goldstein, Richard M. (Inventor); Zebker, Howard A. (Inventor)

    1990-01-01

    A technique based on synthetic aperture radar (SAR) interferometry is used to measure very small (1 cm or less) surface deformations with good resolution (10 m) over large areas (50 km). It can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual, vertical and lateral displacements from seismic events, and prevolcanic swelling. Two SAR images are made of a scene by two spaced antennas and a difference interferogram of the scene is made. After unwrapping phases of pixels of the difference interferogram, surface motion or deformation changes of the surface are observed. A second interferogram of the same scene is made from a different pair of images, at least one of which is made after some elapsed time. The second interferogram is then compared with the first interferogram to detect changes in line of sight position of pixels. By resolving line of sight observations into their vector components in other sets of interferograms along at least one other direction, lateral motions may be recovered in their entirety. Since in general, the SAR images are made from flight tracks that are separated, it is not possible to distinguish surface changes from the parallax caused by topography. However, a third image may be used to remove the topography and leave only the surface changes.

  20. Synthetic aperture design for increased SAR image rate

    DOEpatents

    Bielek, Timothy P [Albuquerque, NM; Thompson, Douglas G [Albuqerque, NM; Walker, Bruce C [Albuquerque, NM

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  1. Monitoring flooding and vegetation on seasonally inundated floodplains with multifrequency polarimetric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Hess, Laura Lorraine

    The ability of synthetic aperture radar to detect flooding and vegetation structure was evaluated for three seasonally inundated floodplain sites supporting a broad variety of wetland and upland vegetation types: two reaches of the Solimoes floodplain in the central Amazon, and the Magela Creek floodplain in Northern Territory, Australia. For each site, C- and L-band polarimetric Shuttle Imaging Radar-C (SIR-C) data was obtained at both high- and low-water stages. Inundation status and vegetation structure were documented simultaneous with the SIR-C acquisitions using low-altitude videography and ground measurements. SIR-C images were classified into cover states defined by vegetation physiognomy and presence of standing water, using a decision-tree model with backscattering coefficients at HH, VV, and HV polarizations as input variables. Classification accuracy was assessed using user's accuracy, producer's accuracy, and kappa coefficient for a test population of pixels. At all sites, both C- and L-band were necessary to accurately classify cover types with two dates. HH polarization was most. useful for distinguishing flooded from non-flooded vegetation (C-HH for macrophyte versus pasture, L-HH for flooded versus non-flooded forest), and cross-polarized L-band data provided the best separation between woody and non-woody vegetation. Increases in L-HH backscattering due to flooding were on the order of 3--4 dB for closed-canopy varzea and igapo forest, and 4--7 dB, for open Melaleuca woodland. The broad range of physiognomies and stand structures found in both herbaceous and woody wetland communities, combined with the variation in the amount of emergent canopy caused by water level fluctuations and phenologic changes, resulted in a large range in backscattering characteristics of wetland communities both within and between sites. High accuracies cannot be achieved for these communities using single-date, single-band, single-polarization data, particularly in the

  2. Synthetic aperture radar image formation for the moving-target and near-field bistatic cases

    NASA Astrophysics Data System (ADS)

    Ding, Yu

    This dissertation addresses topics in two areas of synthetic aperture radar (SAR) image formation: time-frequency based SAR imaging of moving targets and a fast backprojection (BP) algorithm for near-field bistatic SAR imaging. SAR imaging of a moving target is a challenging task due to unknown motion of the target. We approach this problem in a theoretical way, by analyzing the Wigner-Ville distribution (WVD) based SAR imaging technique. We derive approximate closed-form expressions for the point-target response of the SAR imaging system, which quantify the image resolution, and show how the blurring in conventional SAR imaging can be eliminated, while the target shift still remains. Our analyses lead to accurate prediction of the target position in the reconstructed images. The derived expressions also enable us to further study additional aspects of WVD-based SAR imaging. Bistatic SAR imaging is more involved than the monostatic SAR case, because of the separation of the transmitter and the receiver, and possibly the changing bistatic geometry. For near-field bistatic SAR imaging, we develop a novel fast BP algorithm, motivated by a newly proposed fast BP algorithm in computer tomography. First we show that the BP algorithm is the spatial-domain counterpart of the benchmark o -- k algorithm in bistatic SAR imaging, yet it avoids the frequency-domain interpolation in the o -- k algorithm, which may cause artifacts in the reconstructed image. We then derive the band-limited property for BP methods in both monostatic and bistatic SAR imaging, which is the basis for developing the fast BP algorithm. We compare our algorithm with other frequency-domain based algorithms, and show that it achieves better reconstructed image quality, while having the same computational complexity as that of the frequency-domain based algorithms.

  3. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  4. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  5. Chosen results of field tests of synthetic aperture radar system installed on board UAV

    NASA Astrophysics Data System (ADS)

    Kaniewski, Piotr; Komorniczak, Wojciech; Lesnik, Czeslaw; Cyrek, Jacek; Serafin, Piotr; Labowski, Michal; Wajszczyk, Bronislaw

    2017-04-01

    The paper presents a synthetic information on a UAV-based radar terrain imaging system, its purpose, structure and working principle as well as terrain images obtained from flight experiments. A SAR technology demonstrator has been built as a result of a research project conducted by the Military University of Technology and WB Electronics S.A. under the name WATSAR. The developed system allows to obtain high resolution radar images, both in on-line and off-line modes, independently of the light conditions over the observed area. The software developed for the system allows to determine geographic coordinates of the imaged objects with high accuracy. Four LFM-CW radar sensors were built during the project: two for S band and two for Ku band, working with different signal bandwidths. Acquired signals were processed with the TDC algorithm, which allowed for a number of analyses in order to evaluate the performance of the system. The impact of the navigational corrections on a SAR image quality was assessed as well. The research methodology of the in-flight experiments of the system is presented in the paper. The projects results show that the developed system may be implemented as an aid to tactical C4ISR systems.

  6. Radar signal pre-processing to suppress surface bounce and multipath

    DOEpatents

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  7. Inundation Mapping for Heterogeneous Land Covers with Synthetic Aperture Radar and Auxiliary Data

    NASA Astrophysics Data System (ADS)

    Aristizabal, F.; Judge, J.

    2017-12-01

    Synthetic Aperture Radar (SAR) has been widely used to detect surface water inundation and provides an advantage over multi-spectral instruments due to cloud penetration and higher spatial resolutions. However, detecting inundation for densely vegetated and urban areas with SAR remains a challenge due to corner reflection and diffuse scattering. Additionally, flat urban surfaces such as roads exhibit similar backscatter coefficients as urban surface water. Differences between inundated and non-inundated backscatter over vegetated land covers of static spatial domains have been demonstrated in previous studies. However, these backscatter differences are sensitive to changes in water depth, soil moisture, SAR sensor parameters, terrain, and vegetation properties. These factors tend to make accurate inundation mapping of heterogeneous regions across varying spatial and temporal extents difficult with exclusive use of SAR. This study investigates the utility of auxiliary data specifically high-resolution (10m) terrain information in conjunction with SAR (10m) for detecting inundated areas. Digital elevation models provide an absolute elevation which could enhance inundation mapping given a limited study extent with similar topography. To counter this limitation, a hydrologically relevant terrain index is proposed known as the Height Above Nearest Drainage (HAND) which normalizes topography to the local relative elevation of the nearest point along the relevant drainage line. HAND has been used for assisting remote sensing inundation mapping in the pre-processing stage as a terrain correction tool and as a post-processing mask that eliminates areas of low inundation risk. While the latter technique is useful for reduction of commission errors, it does not employ HAND for reducing omission errors that can occur from dense vegetation, spectral noise, and urban features. Sentinel-1 dual-pol SAR as well as auxiliary HAND will be used as predictors by various supervised and

  8. Space Radar Image of Manaus, Brazil

    NASA Image and Video Library

    1999-01-27

    This false-color L-band image of the Manaus region of Brazil was acquired by NASA Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar SIR-C/X-SAR aboard the space shuttle Endeavour on orbit 46 of the mission.

  9. Space Radar Image of Kilauea, Hawaii

    NASA Image and Video Library

    1999-01-27

    This color composite C-band and L-band image of the Kilauea volcano on the Big Island of Hawaii was acquired by NASA Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar SIR-C/X-SAR flying on space shuttle Endeavour.

  10. Analysis of data acquired by synthetic aperture radar and LANDSAT Multispectral Scanner over Kershaw County, South Carolina, during the summer season

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1983-01-01

    Data acquired by synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) were processed and analyzed to derive forest-related resources inventory information. The SAR data were acquired by using the NASA aircraft X-band SAR with linear (HH, VV) and cross (HV, VH) polarizations and the SEASAT L-band SAR. After data processing and data quality examination, the three polarization (HH, HV, and VV) data from the aircraft X-band SAR were used in conjunction with LANDSAT MSS for multisensor data classification. The results of accuracy evaluation for the SAR, MSS and SAR/MSS data using supervised classification show that the SAR-only data set contains low classification accuracy for several land cover classes. However, the SAR/MSS data show that significant improvement in classification accuracy is obtained for all eight land cover classes. These results suggest the usefulness of using combined SAR/MSS data for forest-related cover mapping. The SAR data also detect several small special surface features that are not detectable by MSS data.

  11. Spaceborne synthetic aperture radar: Current status and future directions. A report to the Committee on Earth Sciences, Space Studies Board, National Research Council

    NASA Technical Reports Server (NTRS)

    Evans, D. L. (Editor); Apel, J.; Arvidson, R.; Bindschadler, R.; Carsey, F.; Dozier, J.; Jezek, K.; Kasischke, E.; Li, F.; Melack, J.

    1995-01-01

    This report provides a context in which questions put forth by NASA's Office of Mission to Planet Earth (OMPTE) regarding the next steps in spaceborne synthetic aperture radar (SAR) science and technology can be addressed. It summarizes the state-of-the-art in theory, experimental design, technology, data analysis, and utilization of SAR data for studies of the Earth, and describes potential new applications. The report is divided into five science chapters and a technology assessment. The chapters summarize the value of existing SAR data and currently planned SAR systems, and identify gaps in observational capabilities needing to be filled to address the scientific questions. Cases where SAR provides complementary data to other (non-SAR) measurement techniques are also described. The chapter on technology assessment outlines SAR technology development which is critical not only to NASA's providing societally relevant geophysical parameters but to maintaining competitiveness in SAR technology, and promoting economic development.

  12. Synthetic Aperture Radar (SAR)-based paddy rice monitoring system: Development and application in key rice producing areas in Tropical Asia

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.; Holecz, F.; Khan, N. I.; Barbieri, M.; Quicho, E.; Collivignarelli, F.; Maunahan, A.; Gatti, L.; Romuga, G. C.

    2017-01-01

    Reliable and regular rice information is essential part of many countries’ national accounting process but the existing system may not be sufficient to meet the information demand in the context of food security and policy. Synthetic Aperture Radar (SAR) imagery is highly suitable for detecting lowland paddy rice, especially in tropical region where pervasive cloud cover in the rainy seasons limits the use of optical imagery. This study uses multi-temporal X-band and C-band SAR imagery, automated image processing, rule-based classification and field observations to classify rice in multiple locations across Tropical Asia and assimilate the information into ORYZA Crop Growth Simulation model (CGSM) to generate high resolution yield maps. The resulting cultivated rice area maps had classification accuracies above 85% and yield estimates were within 81-93% agreement against district level reported yields. The study sites capture much of the diversity in water management, crop establishment and rice maturity durations and the study demonstrates the feasibility of rice detection, yield monitoring, and damage assessment in case of climate disaster at national and supra-national scales using multi-temporal SAR imagery combined with CGSM and automated methods.

  13. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  14. A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging

    NASA Astrophysics Data System (ADS)

    Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.

    2016-11-01

    Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.

  15. From on High: Utilizing Multi-Temporal Atmospheric and Synthetic Aperture Radar Satellites for Land Management Decisions

    NASA Astrophysics Data System (ADS)

    Hall, M.

    2016-12-01

    The Black Rock Field Office (BRFO) of the Bureau of Land Management manages nearly 2 million acres of public land in NW Nevada. Approximately 1.2 million acres area a National Conservation Area (NCA), and over 700,000 acres are formally designated Wilderness Areas. While imagery from Landsat and MODIS assist in monitoring and making land management decisions, multi-temporal data from atmospheric monitoring and synthetic aperture radar (SAR) satellites are also utilized. The Burning Man Festival since 2007 creates a temporary city of 50,000 to 70,000 people in the NCA. Public concern is being expressed over the event's physical and greenhouse gas footprints. Sub-set L2 and L3 CO2 data were obtained from the ACOS, AQUA (AIRS platform) and OCO-2 satellites. These data sets cover both daily and monthly CO2 concentrations between 2007 and 2015. Each data set was analyzed separately using Bayesian time series methods. While there were statistically significant changes in the CO2concentration in a calendar year, none of the increases coincided with the Burning Man Festival. The ALOS-PALSAR and Sentinel-1 SAR data archives have also been utilized. Interferograms, false-color composites (FCC) of coherence images, and FCC of the processed backscattered images are all useful in monitoring surface changes. Case study summaries will illustrate the seasonal changes at critical riparian areas in the NCA; the post-event recovery of the Burning Man Festival footprint; dune formation on the Black Rock playa, and landscape changes associated with open-pit mining in the BRFO.

  16. Three Dimensional Inverse Synthetic Aperture Radar Imaging

    DTIC Science & Technology

    1995-12-01

    unfortunately produces a blurred image. To correct this problem, a deblurring filter must be applied to the data. It is preferred in some applications to...when the pulse is an impulse in time. So in order to get a high degree of downrange resolution directly it would be necessary to transmit the entire...bandwidth of frequencies simultaneously such as in an Impulse Radar. This would prove to be extremely difficult if not impossible. Luckily, the same

  17. High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR)

    PubMed Central

    Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing

    2017-01-01

    Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method. PMID:28075367

  18. The laboratory demonstration and signal processing of the inverse synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Gao, Si; Zhang, ZengHui; Xu, XianWen; Yu, WenXian

    2017-10-01

    This paper presents a coherent inverse synthetic-aperture imaging ladar(ISAL)system to obtain high resolution images. A balanced coherent optics system in laboratory is built with binary phase coded modulation transmit waveform which is different from conventional chirp. A whole digital signal processing solution is proposed including both quality phase gradient autofocus(QPGA) algorithm and cubic phase function(CPF) algorithm. Some high-resolution well-focused ISAL images of retro-reflecting targets are shown to validate the concepts. It is shown that high resolution images can be achieved and the influences from vibrations of platform involving targets and radar can be automatically compensated by the distinctive laboratory system and digital signal process.

  19. High-rate synthetic aperture communications in shallow water.

    PubMed

    Song, H C; Hodgkiss, W S; Kuperman, W A; Akal, T; Stevenson, M

    2009-12-01

    Time reversal communication exploits spatial diversity to achieve spatial and temporal focusing in complex ocean environments. Spatial diversity can be provided easily by a vertical array in a waveguide. Alternatively, spatial diversity can be obtained from a virtual horizontal array generated by two elements, a transmitter and a receiver, due to relative motion between them, referred to as a synthetic aperture. This paper presents coherent synthetic aperture communication results from at-sea experiments conducted in two different frequency bands: (1) 2-4 kHz and (2) 8-20 kHz. Case (1) employs binary-phase shift-keying modulation, while case (2) involves up to eight-phase shift keying modulation with a data rate of 30 kbits/s divided by the number of transmissions (diversity) to be accumulated. The receiver utilizes time reversal diversity combining followed by a single channel equalizer, with frequent channel updates to accommodate the time-varying channel due to coupling of space and time in the presence of motion. Two to five consecutive transmissions from a source moving at 4 kts over 3-6 km range in shallow water are combined successfully after Doppler compensation, confirming the feasibility of coherent synthetic aperture communications using time reversal.

  20. Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques

    NASA Technical Reports Server (NTRS)

    Case, Joseph Tobias

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).

  1. Randomly iterated search and statistical competency as powerful inversion tools for deformation source modeling: Application to volcano interferometric synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.; Walter, T. R.

    2009-10-01

    Modern geodetic techniques provide valuable and near real-time observations of volcanic activity. Characterizing the source of deformation based on these observations has become of major importance in related monitoring efforts. We investigate two random search approaches, simulated annealing (SA) and genetic algorithm (GA), and utilize them in an iterated manner. The iterated approach helps to prevent GA in general and SA in particular from getting trapped in local minima, and it also increases redundancy for exploring the search space. We apply a statistical competency test for estimating the confidence interval of the inversion source parameters, considering their internal interaction through the model, the effect of the model deficiency, and the observational error. Here, we present and test this new randomly iterated search and statistical competency (RISC) optimization method together with GA and SA for the modeling of data associated with volcanic deformations. Following synthetic and sensitivity tests, we apply the improved inversion techniques to two episodes of activity in the Campi Flegrei volcanic region in Italy, observed by the interferometric synthetic aperture radar technique. Inversion of these data allows derivation of deformation source parameters and their associated quality so that we can compare the two inversion methods. The RISC approach was found to be an efficient method in terms of computation time and search results and may be applied to other optimization problems in volcanic and tectonic environments.

  2. Data volume reduction for imaging radar polarimetry

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A. (Inventor); Held, Daniel N. (Inventor); Vanzyl, Jakob J. (Inventor); Dubois, Pascale C. (Inventor); Norikane, Lynne (Inventor)

    1988-01-01

    Two alternative methods are presented for digital reduction of synthetic aperture multipolarized radar data using scattering matrices, or using Stokes matrices, of four consecutive along-track pixels to produce averaged data for generating a synthetic polarization image.

  3. Data volume reduction for imaging radar polarimetry

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A. (Inventor); Held, Daniel N. (Inventor); van Zul, Jakob J. (Inventor); Dubois, Pascale C. (Inventor); Norikane, Lynne (Inventor)

    1989-01-01

    Two alternative methods are disclosed for digital reduction of synthetic aperture multipolarized radar data using scattering matrices, or using Stokes matrices, of four consecutive along-track pixels to produce averaged data for generating a synthetic polarization image.

  4. Synthetic aperture radar for a crop information system: A multipolarization and multitemporal approach

    NASA Astrophysics Data System (ADS)

    Ban, Yifang

    Acquisition of timely information is a critical requirement for successful management of an agricultural monitoring system. Crop identification and crop-area estimation can be done fairly successfully using satellite sensors operating in the visible and near-infrared (VIR) regions of the spectrum. However, data collection can be unreliable due to problems of cloud cover at critical stages of the growing season. The all-weather capability of synthetic aperture radar (SAR) imagery acquired from satellites provides data over large areas whenever crop information is required. At the same time, SAR is sensitive to surface roughness and should be able to provide surface information such as tillage-system characteristics. With the launch of ERS-1, the first long-duration SAR system became available. The analysis of airborne multipolarization SAR data, multitemporal ERS-1 SAR data, and their combinations with VIR data, is necessary for the development of image-analysis methodologies that can be applied to RADARSAT data for extracting agricultural crop information. The overall objective of this research is to evaluate multipolarization airborne SAR data, multitemporal ERS-1 SAR data, and combinations of ERS-1 SAR and satellite VIR data for crop classification using non-conventional algorithms. The study area is situated in Norwich Township, an agricultural area in Oxford County, southern Ontario, Canada. It has been selected as one of the few representative agricultural 'supersites' across Canada at which the relationships between radar data and agriculture are being studied. The major field crops are corn, soybeans, winter wheat, oats, barley, alfalfa, hay, and pasture. Using airborne C-HH and C-HV SAR data, it was found that approaches using contextual information, texture information and per-field classification for improving agricultural crop classification proved to be effective, especially the per-field classification method. Results show that three of the four best

  5. APQ-102 imaging radar digital image quality study

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1982-01-01

    A modified APQ-102 sidelooking radar collected synthetic aperture radar (SAR) data which was digitized and recorded on wideband magnetic tape. These tapes were then ground processed into computer compatible tapes (CCT's). The CCT's may then be processed into high resolution radar images by software on the CYBER computer.

  6. Improved measurements of mean sea surface velocity in the Nordic Seas from synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Wergeland Hansen, Morten; Johnsen, Harald; Engen, Geir; Øie Nilsen, Jan Even

    2017-04-01

    The warm and saline surface Atlantic Water (AW) flowing into the Nordic Seas across the Greenland-Scotland ridge transports heat into the Arctic, maintaining the ice-free oceans and regulating sea-ice extent. The AW influences the region's relatively mild climate and is the northern branch of the global thermohaline overturning circulation. Heat loss in the Norwegian Sea is key for both heat transport and deep water formation. In general, the ocean currents in the Nordic Seas and the North Atlantic Ocean is a complex system of topographically steered barotropic and baroclinic currents of which the wind stress and its variability is a driver of major importance. The synthetic aperture radar (SAR) Doppler centroid shift has been demonstrated to contain geophysical information about sea surface wind, waves and current at an accuracy of 5 Hz and pixel spacing of 3.5 - 9 × 8 km2. This corresponds to a horizontal surface velocity of about 20 cm/s at 35° incidence angle. The ESA Prodex ISAR project aims to implement new and improved SAR Doppler shift processing routines to enable reprocessing of the wide swath acquisitions available from the Envisat ASAR archive (2002-2012) at higher resolution and better accuracy than previously obtained, allowing combined use with Sentinel-1 and Radarsat-2 retrievals to build timeseries of the sea surface velocity in the Nordic Seas. Estimation of the geophysical Doppler shift from new SAR Doppler centroid shift retrievals will be demonstrated, addressing key issues relating to geometric (satellite orbit and attitude) and electronic (antenna mis-pointing) contributions and corrections. Geophysical Doppler shift retrievals from one month of data in January 2010 and the inverted surface velocity in the Nordic Seas are then addressed and compared to other direct and indirect estimates of the upper ocean current, in particular those obtained in the ESA GlobCurrent project.

  7. Integration of Synthetic Aperture Radar (SAR) Imagery and Derived Products into Severe Weather Disaster Response

    NASA Astrophysics Data System (ADS)

    Schultz, L. A.; Molthan, A.; Nicoll, J. B.; Bell, J. R.; Gens, R.; Meyer, F. J.

    2017-12-01

    Disaster response efforts leveraging imagery from NASA, USGS, NOAA, and the European Space Agency (ESA) have continued to expand as satellite imagery and derived products offer an enhanced overview of the affected areas, especially in remote areas where terrain and the scale of the damage can inhibit response efforts. NASA's Short-term Prediction Research and Transition (SPoRT) Center has been supporting the NASA Earth Science Disaster Response Program by providing both optical and SAR imagery products to the NWS and FEMA to assist during domestic response efforts. Although optical imagery has dominated, the availability of ESA's Synthetic Aperture Radar (SAR) data from the Sentinel 1-A/B satellites offers a unique perspective to the damage response community as SAR imagery can be collected regardless of the time of day or the presence of clouds, two major hindrances to the use of satellite optical imagery. Through a partnership with the University of Alaska Fairbanks (UAF) and the collocated Alaska Satellite Facility (ASF), NASA's SAR Distributed Active Archive Center (DAAC), SPoRT has been investigating the use of SAR imagery products to support storm damage surveys conducted by the National Weather Service after any severe weather event. Additionally, products are also being developed and tested for FEMA and the National Guard Bureau. This presentation will describe how SAR data from the Sentinel 1A/B satellites are processed and developed into products. Examples from multiple tornado and hail events will be presented highlighting both the strengths and weaknesses of SAR imagery and how it integrates and compliments more traditional optical imagery collected post-event. Specific case study information from a large hail event in South Dakota and a long track tornado near Clear Lake, Wisconsin will be discussed as well as an overview of the work being done to support FEMA and the National Guard.

  8. User guide to the Magellan synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Wall, Stephen D.; Mcconnell, Shannon L.; Leff, Craig E.; Austin, Richard S.; Beratan, Kathi K.; Rokey, Mark J.

    1995-01-01

    The Magellan radar-mapping mission collected a large amount of science and engineering data. Now available to the general scientific community, this data set can be overwhelming to someone who is unfamiliar with the mission. This user guide outlines the mission operations and data set so that someone working with the data can understand the mapping and data-processing techniques used in the mission. Radar-mapping parameters as well as data acquisition issues are discussed. In addition, this user guide provides information on how the data set is organized and where specific elements of the set can be located.

  9. Ultrafast Synthetic Transmit Aperture Imaging Using Hadamard-Encoded Virtual Sources With Overlapping Sub-Apertures.

    PubMed

    Ping Gong; Pengfei Song; Shigao Chen

    2017-06-01

    The development of ultrafast ultrasound imaging offers great opportunities to improve imaging technologies, such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, there are tradeoffs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Various approaches have been proposed to solve this tradeoff, such as multiplane wave imaging or the attempts of implementing synthetic transmit aperture imaging. In this paper, we propose an ultrafast synthetic transmit aperture (USTA) imaging technique using Hadamard-encoded virtual sources with overlapping sub-apertures to enhance both image SNR and resolution without sacrificing frame rate. This method includes three steps: 1) create virtual sources using sub-apertures; 2) encode virtual sources using Hadamard matrix; and 3) add short time intervals (a few microseconds) between transmissions of different virtual sources to allow overlapping sub-apertures. The USTA was tested experimentally with a point target, a B-mode phantom, and in vivo human kidney micro-vessel imaging. Compared with standard coherent diverging wave compounding with the same frame rate, improvements on image SNR, lateral resolution (+33%, with B-mode phantom imaging), and contrast ratio (+3.8 dB, with in vivo human kidney micro-vessel imaging) have been achieved. The f-number of virtual sources, the number of virtual sources used, and the number of elements used in each sub-aperture can be flexibly adjusted to enhance resolution and SNR. This allows very flexible optimization of USTA for different applications.

  10. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  11. UAVSAR Radar Imagery of Boreal Forests Around Quebec City, Canada

    NASA Image and Video Library

    2009-09-01

    JPL Uninhabited Aerial Vehicle Synthetic Aperture Radar collected this composite radar image around Québec City, Canada, during an 11-day campaign to study the structure of temperate and boreal forests.

  12. Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms

    PubMed Central

    Kashter, Yuval; Rivenson, Yair; Stern, Adrian; Rosen, Joseph

    2015-01-01

    Creating a large-scale synthetic aperture makes it possible to break the resolution boundaries dictated by the wave nature of light of common optical systems. However, their implementation is challenging, since the generation of a large size continuous mosaic synthetic aperture composed of many patterns is complicated in terms of both phase matching and time-multiplexing duration. In this study we present an advanced configuration for an incoherent holographic imaging system with super resolution qualities that creates a partial synthetic aperture. The new system, termed sparse synthetic aperture with Fresnel elements (S-SAFE), enables significantly decreasing the number of the recorded elements, and it is free from positional constrains on their location. Additionally, in order to obtain the best image quality we propose an optimal mosaicking structure derived on the basis of physical and numerical considerations, and introduce three reconstruction approaches which are compared and discussed. The super-resolution capabilities of the proposed scheme and its limitations are analyzed, numerically simulated and experimentally demonstrated. PMID:26367947

  13. Rapid Ice Loss at Vatnajokull,Iceland Since Late 1990s Constrained by Synthetic Aperture Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Amelung, F.; Dixon, T. H.; Wdowinski, S.

    2012-12-01

    Synthetic aperture radar interferometry time series is applied over Vatnajokull, Iceland by using 15 years ERS data. Ice loss at Vatnajokull accelerates since late 1990s especially after 21th century. Clear uplift signal due to ice mass loss is detected. The rebound signal is generally linear and increases a little bit after 2000. The relative annual velocity (GPS station 7485 as reference) is about 12 mm/yr at the ice cap edge, which matches the previous studies using GPS. The standard deviation compared to 11 GPS stations in this area is about 2 mm/yr. A relative-value modeling method ignoring the effect of viscous flow is chosen assuming elastic half space earth. The final ice loss estimation - 83 cm/yr - matches the climatology model with ground observations. Small Baseline Subsets is applied for time series analysis. Orbit error coupling with long wavelength phase trend due to horizontal plate motion is removed based on a second polynomial model. For simplicity, we do not consider atmospheric delay in this area because of no complex topography and small-scale turbulence is eliminated well after long-term average when calculating the annual mean velocity. Some unwrapping error still exits because of low coherence. Other uncertainties can be the basic assumption of ice loss pattern and spatial variation of the elastic parameters. It is the first time we apply InSAR time series for ice mass balance study and provide detailed error and uncertainty analysis. The successful of this application proves InSAR as an option for mass balance study and it is also important for validation of different ice loss estimation techniques.

  14. Fault Creep along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking

    NASA Technical Reports Server (NTRS)

    Lyons, Suzanne; Sandwell, David

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

  15. Airborne synthetic aperture radar tracking of internal waves in the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Richez, Claude

    As part of the International “Gibraltar Experiment”, we realized, on June 22 and 24, 1986, two surveys of the Strait of Gibraltar, on board an aircraft equipped with a Synthetic Aperture Radar. Our objective was to observe, at Spring tides, and during two twelve-hour tidal cycles, at 24 h interval, the generation of internal wave trains, linked to the hydraulic jump formed west of the sill during the westward phase of the tidal current, and their eastward propagation in the Strait. The speed of propagation of these waves and the effect of the diurnal component of the tide on their generation and propagation could then be determined. Our results suggest that two solitary waves of equal amplitude propagated eastwards in the strait on June 22 (the tidal coefficient being equal to 92), with a speed, relative to the ground, of 2.1 to 2.6 m s -1. 24 h later, during the second survey, on June 24 (tidal coefficient 90), we observed the propagation of a train of non-linear waves, the speed of the leading wave of which being about 1.9 ms -1. Our data show that other waves pass over the Camarinal Sill after the release of the bore, and “secondary” internal wave trains are shown to propagate eastwards from there. Although our SAR data show the appearance of waves west of the northern sill at about 4 h after High Water (HW), the mechanism leading to their generation is not clear. These waves could propagate eastwards, all along the strait, and/or northwestwards along the western Spanish coast. They could be responsible for the solitary-type events observed at the eastern entrance of the strait, at about 7 h after HW, by ZIEGENBEIN (1969, 1970). These events are noticeable in the hydrological parameters time series of ARMI and FARMER (1988) and in the high rate current data (2-min apart) from their April 1986 cruise. Besides these alongstrait waves, our SAR data show the existence of cross-strait waves, and give an idea of their wavelength and speed of propagation. Their

  16. Application of Lipschitz Regularity and Multiscale Techniques for the Automatic Detection of Oil Spills in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.; Tello, M.

    2015-12-01

    This research presents a promising new method for the detection and tracking of oil spills from Synthetic Aperture Radar (SAR) data. The method presented here combines a number of advanced image processing techniques in order to overcome some common performance limitations of SAR-based oil spill detection. Principal among these limitations are: (1) the radar cross section of the ocean surface strongly depends on wind and wave activities and is therefore highly variable; (2) the radar cross section of oil covered waters is often indistinguishable from other dark ocean features such as low wind areas or oil lookalikes, leading to ambiguities in oil spill detection. In this paper, we introduce two novel image analysis techniques to largely mitigate the aforementioned performance limitations, namely Lipschitz regularity (LR) and Wavelet transforms. We used LR, an image texture parameter akin to the slope of the local power spectrum, in our approach to mitigate these limitations. We show that the LR parameter is much less sensitive to variations of wind and waves than the original image amplitude, lending itself well for normalizing image content. Beyond its benefit for image normalization, we also show that the LR transform enhances the contrast between oil-covered and oil-free ocean surfaces and therefore improves overall spill detection performance. To calculate LR, the SAR images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), which are furthermore transformed into Holder space to measure LR. Finally, we demonstrate that the implementation of wavelet transforms provide additional benefits related to the adaptive reduction of speckle noise. We show how LR and CWT are integrated into our image analysis workflow for application to oil spill detection. To describe the performance of this approach under controlled conditions, we applied our method to simulated SAR data of wind driven oceans containing oil spills of various properties. We also

  17. Effects of changing environmental conditions on synthetic aperture radar backscattering coefficient, scattering mechanisms, and class separability in a forest area

    NASA Astrophysics Data System (ADS)

    Mahdavi, Sahel; Maghsoudi, Yasser; Amani, Meisam

    2017-07-01

    Environmental conditions have considerable effects on synthetic aperture radar (SAR) imagery. Therefore, assessing these effects is important for obtaining accurate and reliable results. In this study, three series of RADARSAT-2 SAR images were evaluated. In each of these series, the sensor configuration was fixed, but the environmental conditions differed. The effects of variable environmental conditions were also investigated on co- and cross-polarized backscattering coefficients, Freeman-Durden scattering contributions, and the pedestal height in different classes of a forest area in Ottawa, Ontario. It was observed that the backscattering coefficient of wet snow was up to 2 dB more than that of dry snow. The absence of snow also caused a decrease of up to 3 dB in the surface scattering of ground and up to 5 dB in that of trees. In addition, the backscatter coefficients of ground vegetation, hardwood species, and softwood species were more similar at temperatures below 0°C than those at temperatures above 0°C. Moreover, the pedestal height was generally greater at temperatures above 0°C than at temperatures below 0°C. Finally, the highest class separability was observed when the temperature was at or above 0°C and there was no snow on the ground or trees.

  18. Upper ocean fine-scale features in synthetic aperture radar imagery. Part I: Simultaneous satellite and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Maingot, C.; Matt, S.; Fenton, J.; Lehner, S.; Brusch, S.; Perrie, W. A.; Zhang, B.

    2011-12-01

    The new generation of synthetic aperture radar (SAR) satellites provides high resolution images that open new opportunities for identifying and studying fine features in the upper ocean. The problem is, however, that SAR images of the sea surface can be affected by atmospheric phenomena (rain cells, fronts, internal waves, etc.). Implementation of in-situ techniques in conjunction with SAR is instrumental for discerning the origin of features on the image. This work is aimed at the interpretation of natural and artificial features in SAR images. These features can include fresh water lenses, sharp frontal interfaces, internal wave signatures, as well as slicks of artificial and natural origin. We have conducted field experiments in the summer of 2008 and 2010 and in the spring of 2011 to collect in-situ measurements coordinated with overpasses of the TerraSAR-X, RADARSAT-2, ALOS PALSAR, and COSMO SkyMed satellites. The in-situ sensors deployed in the Straits of Florida included a vessel-mounted sonar and CTD system to record near-surface data on stratification and frontal boundaries, a bottom-mounted Nortek AWAC system to gather information on currents and directional wave spectra, an ADCP mooring at a 240 m isobath, and a meteorological station. A nearby NOAA NEXRAD Doppler radar station provided a record of rainfall in the area. Controlled releases of menhaden fish oil were performed from our vessel before several satellite overpasses in order to evaluate the effect of surface active materials on visibility of sea surface features in SAR imagery under different wind-wave conditions. We found evidence in the satellite images of rain cells, squall lines, internal waves of atmospheric and possibly oceanic origin, oceanic frontal interfaces and submesoscale eddies, as well as anthropogenic signatures of ships and their wakes, and near-shore surface slicks. The combination of satellite imagery and coordinated in-situ measurements was helpful in interpreting fine

  19. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, S. T.; Akerley, J.; Baluyut, E. C.

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairsmore » spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.« less

  20. Atmospheric corrections in interferometric synthetic aperture radar surface deformation - a case study of the city of Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Balbarani, S.; Euillades, P. A.; Euillades, L. D.; Casu, F.; Riveros, N. C.

    2013-09-01

    Differential interferometry is a remote sensing technique that allows studying crustal deformation produced by several phenomena like earthquakes, landslides, land subsidence and volcanic eruptions. Advanced techniques, like small baseline subsets (SBAS), exploit series of images acquired by synthetic aperture radar (SAR) sensors during a given time span. Phase propagation delay in the atmosphere is the main systematic error of interferometric SAR measurements. It affects differently images acquired at different days or even at different hours of the same day. So, datasets acquired during the same time span from different sensors (or sensor configuration) often give diverging results. Here we processed two datasets acquired from June 2010 to December 2011 by COSMO-SkyMed satellites. One of them is HH-polarized, and the other one is VV-polarized and acquired on different days. As expected, time series computed from these datasets show differences. We attributed them to non-compensated atmospheric artifacts and tried to correct them by using ERA-Interim global atmospheric model (GAM) data. With this method, we were able to correct less than 50% of the scenes, considering an area where no phase unwrapping errors were detected. We conclude that GAM-based corrections are not enough for explaining differences in computed time series, at least in the processed area of interest. We remark that no direct meteorological data for the GAM-based corrections were employed. Further research is needed in order to understand under what conditions this kind of data can be used.

  1. On the retrieval of significant wave heights from spaceborne Synthetic Aperture Radar using the Max-Planck Institut algorithm.

    PubMed

    Violante-Carvalho, Nelson

    2005-12-01

    Synthetic Aperture Radar (SAR) onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM) imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI) scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.

  2. Multi-Antenna Radar Systems for Doppler Rain Measurements

    NASA Technical Reports Server (NTRS)

    Durden, Stephen; Tanelli, Simone; Siqueira, Paul

    2007-01-01

    Use of multiple-antenna radar systems aboard moving high-altitude platforms has been proposed for measuring rainfall. The basic principle of the proposed systems is a variant of that of along-track interferometric synthetic-aperture radar systems used previously to measure ocean waves and currents.

  3. NASA Radar Captures Earth Deformation from 2010 Baja Calif. Quake

    NASA Image and Video Library

    2011-03-04

    This radar image from NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar UAVSAR shows the deformed Earth caused by a 7.2 earthquake in Mexico state of Baja California and parts of the American Southwest on April 4, 2010.

  4. Observation of melt onset on multiyear Arctic sea ice using the ERS 1 synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Winebrenner, D. P.; Nelson, E. D.; Colony, R.; West, R. D.

    1994-01-01

    We present nearly coincident observations of backscattering from the Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and of near-surface temperature from six drifting buoys in the Beaufort Sea, showing that the onset of melting in snow on multiyear sea ice is clearly detectable in the SAR data. Melt onset is marked by a clean, steep decrease in the backscattering cross section of multiyear ice at 5.3 GHz and VV polarization. We investigate the scattering physics responsible for the signature change and find that the cross section decrease is due solely to the appearance of liquid water in the snow cover overlying the ice. A thin layer of moist snow is sufficient to cause the observed decrease. We present a prototype algorithm to estimate the date of melt onset using the ERS 1 SAR and apply the algorithm first to the SAR data for which we have corresponding buoy temperatures. The melt onset dates estimated by the SAR algorithm agree with those obtained independently from the temperature data to within 4 days or less, with the exception of one case in which temperatures oscillated about 0 C for several weeks. Lastly, we apply the algorithm to the entire ERS 1 SAR data record acquired by the Alaska SAR Facility for the Beaufort Sea north of 73 deg N during the spring of 1992, to produce a map of the dates of melt onset over an area roughly 1000 km on a side. The progression of melt onset is primarily poleward but shows a weak meridional dependence at latitudes of approximately 76 deg-77 deg N. Melting begins in the southern part of the study region on June 13 and by June 20 has progressed to the northermost part of the region.

  5. National Radar Conference, Los Angeles, CA, March 12, 13, 1986, Proceedings

    NASA Astrophysics Data System (ADS)

    The topics discussed include radar systems, radar subsystems, and radar signal processing. Papers are presented on millimeter wave radar for proximity fuzing of smart munitions, a solid state low pulse power ground surveillance radar, and the Radarsat prototype synthetic-aperture radar signal processor. Consideration is also given to automatic track quality assessment in ADT radar systems instrumentation of RCS measurements of modulation spectra of aircraft blades.

  6. SAR Ambiguity Study for the Cassini Radar

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Im, Eastwood; Johnson, William T. K.

    1993-01-01

    The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.

  7. Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping

    NASA Technical Reports Server (NTRS)

    Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas

    2010-01-01

    During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.

  8. Design considerations for eye-safe single-aperture laser radars

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Volfson, L.

    2015-05-01

    The design considerations for low cost, shock resistant, compact and efficient laser radars and ranging systems are discussed. The reviewed approach with single optical aperture allows reducing the size, weight and power of the system. Additional design benefits include improved stability, reliability and rigidity of the overall system. The proposed modular architecture provides simplified way of varying the performance parameters of the range finder product family by selecting the sets of specific illumination and detection modules. The performance operation challenges are presented. The implementation of non-reciprocal optical elements is considered. The cross talk between illumination and detection channels for single aperture design is reviewed. 3D imaging capability for the ranging applications is considered. The simplified assembly and testing process for single aperture range finders that allows to mass produce the design are discussed. The eye safety of the range finder operation is summarized.

  9. Glacier surface velocity estimation in the West Kunlun Mountain range from L-band ALOS/PALSAR images using modified synthetic aperture radar offset-tracking procedure

    NASA Astrophysics Data System (ADS)

    Ruan, Zhixing; Guo, Huadong; Liu, Guang; Yan, Shiyong

    2014-01-01

    Glacier movement is closely related to changes in climatic, hydrological, and geological factors. However, detecting glacier surface flow velocity with conventional ground surveys is challenging. Remote sensing techniques, especially synthetic aperture radar (SAR), provide regular observations covering larger-scale glacier regions. Glacier surface flow velocity in the West Kunlun Mountains using modified offset-tracking techniques based on ALOS/PALSAR images is estimated. Three maps of glacier flow velocity for the period 2007 to 2010 are derived from procedures of offset detection using cross correlation in the Fourier domain and global offset elimination of thin plate smooth splines. Our results indicate that, on average, winter glacier motion on the North Slope is 1 cm/day faster than on the South Slope-a result which corresponds well with the local topography. The performance of our method as regards the reliability of extracted displacements and the robustness of this algorithm are discussed. The SAR-based offset tracking is proven to be reliable and robust, making it possible to investigate comprehensive glacier movement and its response mechanism to environmental change.

  10. Field-scale surface soil moisture retrieval using L-band synthetic aperture radar data: shrublands examples

    NASA Astrophysics Data System (ADS)

    Kim, S.; Arii, M.; Jackson, T. J.

    2017-12-01

    L-band airborne synthetic aperture radar (SAR) observations at 7-m spatial resolution were made over California shrublands to better understand the effects of soil and vegetation parameters on backscattering coefficient (σ0). Temporal changes in σ0 of up to 3 dB were highly correlated to surface soil moisture but not to vegetation, even though vegetation water content (VWC) varied seasonally by a factor of two. HH was always greater than VV, suggesting the importance of double-bounce scattering by the woody parts. However, the geometric and dielectric properties of the woody parts did not vary significantly over time. Instead the changes in VWC occurred primarily in thin leaves that may not meaningfully influence absorption and scattering. A physically-based model for single scattering by discrete elements of plants successfully simulated the magnitude of the temporal variations in HH, VV, and HH/VV with a difference of less than 0.9 dB. In order to simulate the observations, the VWC input of the plant to the model was formulated as a function of plant's dielectric property (water fraction) while the plant geometry remains static in time. In comparison, when the VWC input was characterized by the geometry of a growing plant, the model performed poorly in describing the observed patterns in the σ0 changes. The modeling results offer explanation of the observation that soil moisture correlated highly with σ0: the dominant mechanisms for HH and VV are double-bounce scattering by trunk, and soil surface scattering, respectively. The time-series inversion of the physical model was able to retrieve soil moisture with the difference of -0.037 m3/m3 (mean), 0.025 m3/m3 (standard deviation), and 0.89 (correlation). Together with the previous results over croplands using the SAR data offering 0.05 m3/m3 retrieval accuracy, we will demonstrate the efficacy of the model-based time-series soil moisture retrieval at field scales.

  11. Application of SEASAT-1 Synthetic Aperture Radar (SAR) data to enhance and detect geological lineaments and to assist LANDSAT landcover classification mapping. [Appalachian Region, West Virginia

    NASA Technical Reports Server (NTRS)

    Sekhon, R.

    1981-01-01

    Digital SEASAT-1 synthetic aperture radar (SAR) data were used to enhance linear features to extract geologically significant lineaments in the Appalachian region. Comparison of Lineaments thus mapped with an existing lineament map based on LANDSAT MSS images shows that appropriately processed SEASAT-1 SAR data can significantly improve the detection of lineaments. Merge MSS and SAR data sets were more useful fo lineament detection and landcover classification than LANDSAT or SEASAT data alone. About 20 percent of the lineaments plotted from the SEASAT SAR image did not appear on the LANDSAT image. About 6 percent of minor lineaments or parts of lineaments present in the LANDSAT map were missing from the SEASAT map. Improvement in the landcover classification (acreage and spatial estimation accuracy) was attained by using MSS-SAR merged data. The aerial estimation of residential/built-up and forest categories was improved. Accuracy in estimating the agricultural and water categories was slightly reduced.

  12. Multitemporal L- and C-Band Synthetic Aperture Radar To Highlight Differences in Water Status Among Boreal Forest and Wetland Systems in the Yukon Flats, Interior Alaska

    USGS Publications Warehouse

    Balser, Andrew W.; Wylie, Bruce K.

    2010-01-01

    Tracking landscape-scale water status in high-latitude boreal systems is indispensible to understanding the fate of stored and sequestered carbon in a climate change scenario. Spaceborne synthetic aperture radar (SAR) imagery provides critical information for water and moisture status in Alaskan boreal environments at the landscape scale. When combined with results from optical sensor analyses, a complementary picture of vegetation, biomass, and water status emerges. Whereas L-band SAR showed better inherent capacity to map water status, C-band had much more temporal coverage in this study. Analysis through the use of L- and C-band SARs combined with Landsat Enhanced Thematic Mapper Plus (ETM+) enables landscape stratification by vegetation and by seasonal and interannual hydrology. Resultant classifications are highly relevant to biogeochemistry at the landscape scale. These results enhance our understanding of ecosystem processes relevant to carbon balance and may be scaled up to inform regional carbon flux estimates and better parameterize general circulation models (GCMs).

  13. Radar data processing and analysis

    NASA Technical Reports Server (NTRS)

    Ausherman, D.; Larson, R.; Liskow, C.

    1976-01-01

    Digitized four-channel radar images corresponding to particular areas from the Phoenix and Huntington test sites were generated in conjunction with prior experiments performed to collect X- and L-band synthetic aperture radar imagery of these two areas. The methods for generating this imagery are documented. A secondary objective was the investigation of digital processing techniques for extraction of information from the multiband radar image data. Following the digitization, the remaining resources permitted a preliminary machine analysis to be performed on portions of the radar image data. The results, although necessarily limited, are reported.

  14. Analysis of ERS 1 synthetic aperture radar data of frozen lakes in northern Montana and implications for climate studies

    USGS Publications Warehouse

    Hall, Dorothy K.; Fagre, Daniel B.; Klasner, Fritz; Linebaugh, Gregg; Liston, Glen E.

    1994-01-01

    Lakes that freeze each winter are good indicators of regional climate change if key parameters, such as freeze-up and breakup date and maximum ice thickness, are measured over a decade-scale time frame. Synthetic aperture radar (SAR) satellite data have proven to be especially useful for measurement of climatologically significant parameters characteristic of frozen lakes. In this paper, five lakes in Glacier National Park, Montana, have been studied both in the field and using Earth Remote-Sensing Satellite (ERS) 1 SAR data during the 1992-1993 winter. The lakes are characterized by clear ice, sometimes with tubular or rounded bubbles, and often with a layer of snow ice on top of the clear ice. They are also often snow covered. Freeze-up is detected quite easily using ERS 1 SAR data as soon as a thin layer of ice forms. The effect of snow ice on the backscatter is thought to be significant but is, as yet, undetermined. On the five lakes studied, relative backscatter was found to increase with ice thickness until a maximum was reached in February. Breakup, an often ill-defined occurrence, is difficult to detect because surface water causes the SAR signal to be absorbed, thus masking the ice below. Comparison of the bubble structure of thaw lakes in northern Alaska with lakes in northern Montana has shown that the ice structure is quite different, and this difference may contribute to differential SAR signature evolution in the lakes of the two areas.

  15. Laser radar: from early history to new trends

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Kamerman, Gary; Steinvall, Ove

    2010-10-01

    The first steps of laser radar are discussed with the examples from range finding and designation. The followed successes in field tests and further fast development provided their wide use. Coherent laser radar, developed almost simultaneously, tried the ideas from microwaves including chirp technology for pulse compression, and Doppler mode of operation. This latter found a unique implementation in a cruise missile. In many applications, environmental studies very strongly rely upon the lidars sensing the wind, temperature, constituents, optical parameters. Lidars are used in the atmosphere and in the sea water measurements. Imaging and mapping is an important role prescribed to ladars. One of the prospective trends in laser radar development is incorporation of range and velocity data into the image information. Deep space program, even having not come to the finish, gave a lot for 3D imaging. Gated imaging, as one of the 3D techniques, demonstrated its prospects (seeing through scattering layers) for military and security usage. Synthetic aperture laser radar, which had a long incubation period, started to show first results, at least in modeling. Coherent laser radar baptized as the optical coherence tomography, along with the position sensitive laser radar, synthetic aperture laser radar, multispectral laser radar demonstrated very pragmatic results in the micro-scale applications.

  16. Optical design of optical synthetic aperture telescope

    NASA Astrophysics Data System (ADS)

    Zhou, Chenghao; Wang, Zhile

    2018-03-01

    Optical synthetic aperture (OSA) is a promising solution for very high-resolution imaging while reducing its volume and mass. In this paper, first, the configuration of OSA systems are analyzed and the design methods of two types (Fizeau and Michelson) of OSA systems are summarized and researched. Second, Fizeau and Michelson OSA prototype systems are designed in detail. In the Michelson configuration, the instrument is made of sub-telescopes distributed in entrance pupil and combined by a common telescope via phase delay line. The design of Michelson configuration is more difficult than that of Fizeau configuration. In the design of Fizeau configuration, according to the third aberration theory tworeflective system is designed. Then the primary mirror of the two mirror system is replaced by the synthetic aperture. The whole system was simulated by Zemax software to obtain the Modulation transform function (MTF). In the design of Michelson configuration, the system is first divided into three parts: the afocal interferometric telescopes, beam combiner system and phase delay line. The three parts are designed respectively and then combined in Zemax software to obtain the MTF.

  17. Sandia National Laboratories: Pathfinder Radar ISR and Synthetic Aperture

    Science.gov Websites

    Eyes for the Warfighter Actionable Intelligence for the Decision Maker Actionable Intelligence for the Decision Maker All Weather, Persistent, Optical Like All Weather, Persistent, Optical Like Real-time, High radar systems encompass the entire end-to-end connectivity needed for decision superiority to ensure

  18. GeoSTAR - A Synthetic Aperture Microwave Sounder for Geostationary Missions

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn; Wilson, William; Tanner, Alan; Kangaslahti, Pekka

    2004-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new microwave atmospheric sounder under development. It will bring capabilities similar to those now available on low-earth orbiting environmental satellites to geostationary orbit - where such capabilities have not been available. GeoSTAR will synthesize the multimeter aperture needed to achieve the required spatial resolution, which will overcome the obstacle that has prevented a GEO microwave sounder from being implemented until now. The synthetic aperture approach has until recently not been feasible, due to the high power needed to operate the on-board high-speed massively parallel processing system required for 2D-synthesis, as well as a number of system and calibration obstacles. The development effort under way at JPL, with important contributions from the Goddard Space Flight Center and the University of Michigan, is intended to demonstrate the measurement concept and retire much of the technology risk.

  19. Analysis of Interferometric Synthetic Aperture Radar Phase Data at Brady Hot Springs, Nevada, USA Using Prior Information

    NASA Astrophysics Data System (ADS)

    Reinisch, E. C.; Ali, S. T.; Cardiff, M. A.; Morency, C.; Kreemer, C.; Feigl, K. L.; Team, P.

    2016-12-01

    Time-dependent deformation has been observed at Brady Hot Springs using interferometric synthetic aperture radar (InSAR) [Ali et al. 2016, http://dx.doi.org/10.1016/j.geothermics.2016.01.008]. Our goal is to evaluate multiple competing hypotheses to explain the observed deformation at Brady. To do so requires statistical tests that account for uncertainty. Graph theory is useful for such an analysis of InSAR data [Reinisch, et al. 2016, http://dx.doi.org/10.1007/s00190-016-0934-5]. In particular, the normalized edge Laplacian matrix calculated from the edge-vertex incidence matrix of the graph of the pair-wise data set represents its correlation and leads to a full data covariance matrix in the weighted least squares problem. This formulation also leads to the covariance matrix of the epoch-wise measurements, representing their relative uncertainties. While the formulation in terms of incidence graphs applies to any quantity derived from pair-wise differences, the modulo-2π ambiguity of wrapped phase renders the problem non-linear. The conventional practice is to unwrap InSAR phase before modeling, which can introduce mistakes without increasing the corresponding measurement uncertainty. To address this issue, we are applying Bayesian inference. To build the likelihood, we use three different observables: (a) wrapped phase [e.g., Feigl and Thurber 2009, http://dx.doi.org/10.1111/j.1365-246X.2008.03881.x]; (b) range gradients, as defined by Ali and Feigl [2012, http://dx.doi.org/10.1029/2012GC004112]; and (c) unwrapped phase, i.e. range change in mm, which we validate using GPS data. We apply our method to InSAR data taken over Brady Hot Springs geothermal field in Nevada as part of a project entitled "Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology" (PoroTomo) [ http://geoscience.wisc.edu/feigl/porotomo].

  20. Passive Multistatic Radar Imaging using an OFDM Based Signal of Opportunity

    DTIC Science & Technology

    2012-03-22

    PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Matthew B.P. Rapson, Flight Lieutenant, Royal Australian Air Force...PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Presented to the Faculty Department of Electrical and Computer...for use in radar ap- plications such as synthetic aperture radar (SAR). The orthogonal frequency divi- sion multiplexing ( OFDM ) specific Worldwide

  1. Crop monitoring & yield forecasting system based on Synthetic Aperture Radar (SAR) and process-based crop growth model: Development and validation in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.

    2014-12-01

    Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.

  2. Efficient Terahertz Wide-Angle NUFFT-Based Inverse Synthetic Aperture Imaging Considering Spherical Wavefront.

    PubMed

    Gao, Jingkun; Deng, Bin; Qin, Yuliang; Wang, Hongqiang; Li, Xiang

    2016-12-14

    An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT) is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG)-based nonuniform FFT (NUFFT) is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP) algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section) of targets in the terahertz regime.

  3. Gulf Coast Subsidence: Integration of Geodesy, Geophysical Modeling, and Interferometric Synthetic Aperture Radar Observations

    NASA Astrophysics Data System (ADS)

    Blom, R. G.; Chapman, B. D.; Deese, R.; Dokka, R. K.; Fielding, E. J.; Hawkins, B.; Hensley, S.; Ivins, E. R.; Jones, C. E.; Kent, J. D.; Liu, Z.; Lohman, R.; Zheng, Y.

    2012-12-01

    The vulnerability of the US Gulf Coast has received increased attention in the years since hurricanes Katrina and Rita. Agencies responsible for the long-term protection of lives and infrastructure require precise estimates of future subsidence and sea level rise. A quantitative, geophysically based methodology can provide such estimates by incorporating geological data, geodetic measurements, geophysical models of non-elastic mechanical behavior at depth, and geographically comprehensive deformation monitoring made possible with measurements from Interferometric Synthetic Aperture Radar (InSAR). To be effective, results must be available to user agencies in a format suitable for integration within existing decision-support processes. Work to date has included analysis of historical and continuing ground-based geodetic measurements. These reveal a surprising degree of complexity, including regions that are subsiding at rates faster than those considered for hurricane protection planning of New Orleans and other coastal communities (http://www.mvn.usace.army.mil/pdf/hps_verticalsettlement.pdf) as well as Louisiana's coastal restoration strategies (http://www.coast2050.gov/2050reports.htm) (Dokka, 2011, J. Geophys. Res., 116, B06403, doi:10.1029/2010JB008008). Traditional geodetic measurements provide precise information at single points, while InSAR observations provide geographically comprehensive measurements of surface deformation at lower vertical precision. Available InSAR data sources include X-, C- and L-band satellite, and NASA/JPL airborne UAVSAR L-band data. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. For example, the shorter wavelength C-band data decorrelates over short time periods requiring more elaborate time-series analysis techniques, with which we've had some success. Meanwhile, preliminary analysis of limited L-Band ALOS/PALSAR satellite data show promise

  4. Forest above ground biomass estimation and forest/non-forest classification for Odisha, India, using L-band Synthetic Aperture Radar (SAR) data

    NASA Astrophysics Data System (ADS)

    Suresh, M.; Kiran Chand, T. R.; Fararoda, R.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    Tropical forests contribute to approximately 40 % of the total carbon found in terrestrial biomass. In this context, forest/non-forest classification and estimation of forest above ground biomass over tropical regions are very important and relevant in understanding the contribution of tropical forests in global biogeochemical cycles, especially in terms of carbon pools and fluxes. Information on the spatio-temporal biomass distribution acts as a key input to Reducing Emissions from Deforestation and forest Degradation Plus (REDD+) action plans. This necessitates precise and reliable methods to estimate forest biomass and to reduce uncertainties in existing biomass quantification scenarios. The use of backscatter information from a host of allweather capable Synthetic Aperture Radar (SAR) systems during the recent past has demonstrated the potential of SAR data in forest above ground biomass estimation and forest / nonforest classification. In the present study, Advanced Land Observing Satellite (ALOS) / Phased Array L-band Synthetic Aperture Radar (PALSAR) data along with field inventory data have been used in forest above ground biomass estimation and forest / non-forest classification over Odisha state, India. The ALOSPALSAR 50 m spatial resolution orthorectified and radiometrically corrected HH/HV dual polarization data (digital numbers) for the year 2010 were converted to backscattering coefficient images (Schimada et al., 2009). The tree level measurements collected during field inventory (2009-'10) on Girth at Breast Height (GBH at 1.3 m above ground) and height of all individual trees at plot (plot size 0.1 ha) level were converted to biomass density using species specific allometric equations and wood densities. The field inventory based biomass estimations were empirically integrated with ALOS-PALSAR backscatter coefficients to derive spatial forest above ground biomass estimates for the study area. Further, The Support Vector Machines (SVM) based Radial

  5. Two antenna, two pass interferometric synthetic aperture radar

    DOEpatents

    Martinez, Ana; Doerry, Armin W.; Bickel, Douglas L.

    2005-06-28

    A multi-antenna, multi-pass IFSAR mode utilizing data driven alignment of multiple independent passes can combine the scaling accuracy of a two-antenna, one-pass IFSAR mode with the height-noise performance of a one-antenna, two-pass IFSAR mode. A two-antenna, two-pass IFSAR mode can accurately estimate the larger antenna baseline from the data itself and reduce height-noise, allowing for more accurate information about target ground position locations and heights. The two-antenna, two-pass IFSAR mode can use coarser IFSAR data to estimate the larger antenna baseline. Multi-pass IFSAR can be extended to more than two (2) passes, thereby allowing true three-dimensional radar imaging from stand-off aircraft and satellite platforms.

  6. Radar Based Navigation in Unknown Terrain

    DTIC Science & Technology

    2012-12-31

    localization and mapping ( SLAM ) approach. The radar processing algorithms detect strong, persistent, and stationary reflectors embedded in the...Global System for Mobile Communications . . . . . . . . . 2 LIDAR Light Detection and Ranging . . . . . . . . . . . . . . . . 2 SAR Synthetic Aperture...22 SLAM Simultaneous Localization and Mapping . . . . . . . . . . 25 FDM Frequency Division Multiplexing

  7. Development of the ECOSAR P-Band Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, R. F.; Fatoyinbo, T.; Ranson, K. J.; Sun, G.; Deshpande, M.; Hale, R. D.; Bhat, A.; Perrine, M.; DuToit, C. F.; Bonds, Q.; hide

    2012-01-01

    This paper describes objectives and recent progress on the development of the EcoSAR, a new P-band airborne radar instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. These measurements support science requirements for the study of the carbon cycle and its relationship to climate change. The instrument is scheduled to be completed and flight tested in 2013. Index Terms SAR, Digital Beamforming, Interferometry.

  8. Climate Change Indicator for Hazard Identification of Indian North West Coast Marine Environment Using Synthetic Aperture Radar (sar)

    NASA Astrophysics Data System (ADS)

    Gambheer, Phani Raj

    2012-07-01

    Stormwater runoff, Petroleum Hydrocarbon plumes are found abundantly near coastal cities, coastal population settlements especially in developing nations as more than half the world's human population. Ever increasing coastal populations and development in coastal areas have led to increased loading of toxic substances, nutrients and pathogens. These hazards cause deleterious effects on the population in many ways directly or indirectly which lead to algal blooms, hypoxia, beach closures, and damage to coastal fisheries. Hence these pollution hazards are important and the coastal administrations and people need to be aware of such a danger lurking very close to them. These hazards due to their small size, dynamic and episodic in nature are difficult to be visualized or to sample using in-situ traditional scientific methods. Natural obstructions like cloud cover and complex coastal circulations can hinder to detect and monitor such occurrences in the selected areas chosen for observations. This study takes recourse to Synthetic Aperture Radar (SAR) imagery because the pollution hazards are easily detectable as surfactants are deposited on the sea surface, along with nutrients and pathogens, smoothing capillary and small gravity waves to produce areas of reduced backscatter compared with surrounding ocean. These black spots can be termed as `Ecologic Indicator' and formed probably due to stronger thermal stratification, a deepening event of thermocline. SAR imagery that delivers useful data better than others regardless of darkness or cloud cover, should be made as an important observational tool for assessment and monitoring marine pollution hazards in the areas close to coastal regions. Till now the effects of climate change, sea level rise and global warming seems to have not affected the coastal populace of India in intrusions of sea water but it takes significance to the human health as the tides dominate these latitudes with bringing these polluted waters. KEY

  9. Ground Deformation from Chilean Volcanic Eruption Shown by Satellite Radar Image

    NASA Image and Video Library

    2015-04-29

    This satellite interferometric synthetic aperture radar image-pair shows relative deformation of the Earth surface when nn April 22-23, 2015, significant explosive eruptions occurred at Calbuco volcano, Chile.

  10. Operations Manager Tim Miller checks out software for the Airborne Synthetic Aperature Radar (AIRSAR

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tim Miller checks out software for the Airborne Synthetic Aperture Radar (AIRSAR). He was the AIRSAR operations manager for NASA's Jet Propulsion Laboratory. The AIRSAR produces imaging data for a range of studies conducted by the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  11. SAR (Synthetic Aperture Radar). Earth observing system. Volume 2F: Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The scientific and engineering requirements for the Earth Observing System (EOS) imaging radar are provided. The radar is based on Shuttle Imaging Radar-C (SIR-C), and would include three frequencies: 1.25 GHz, 5.3 GHz, and 9.6 GHz; selectable polarizations for both transmit and receive channels; and selectable incidence angles from 15 to 55 deg. There would be three main viewing modes: a local high-resolution mode with typically 25 m resolution and 50 km swath width; a regional mapping mode with 100 m resolution and up to 200 km swath width; and a global mapping mode with typically 500 m resolution and up to 700 km swath width. The last mode allows global coverage in three days. The EOS SAR will be the first orbital imaging radar to provide multifrequency, multipolarization, multiple incidence angle observations of the entire Earth. Combined with Canadian and Japanese satellites, continuous radar observation capability will be possible. Major applications in the areas of glaciology, hydrology, vegetation science, oceanography, geology, and data and information systems are described.

  12. Multifocal interferometric synthetic aperture microscopy

    PubMed Central

    Xu, Yang; Chng, Xiong Kai Benjamin; Adie, Steven G.; Boppart, Stephen A.; Scott Carney, P.

    2014-01-01

    There is an inherent trade-off between transverse resolution and depth of field (DOF) in optical coherence tomography (OCT) which becomes a limiting factor for certain applications. Multifocal OCT and interferometric synthetic aperture microscopy (ISAM) each provide a distinct solution to the trade-off through modification to the experiment or via post-processing, respectively. In this paper, we have solved the inverse problem of multifocal OCT and present a general algorithm for combining multiple ISAM datasets. Multifocal ISAM (MISAM) uses a regularized combination of the resampled datasets to bring advantages of both multifocal OCT and ISAM to achieve optimal transverse resolution, extended effective DOF and improved signal-to-noise ratio. We present theory, simulation and experimental results. PMID:24977909

  13. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  14. Ku band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1991-01-01

    Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.

  15. Observations of the marine environment from spaceborne side-looking real aperture radars

    NASA Technical Reports Server (NTRS)

    Kalmykov, A. I.; Velichko, S. A.; Tsymbal, V. N.; Kuleshov, Yu. A.; Weinman, J. A.; Jurkevich, I.

    1993-01-01

    Real aperture, side looking X-band radars have been operated from the Soviet Cosmos-1500, -1602, -1766 and Ocean satellites since 1984. Wind velocities were inferred from sea surface radar scattering for speeds ranging from approximately 2 m/s to those of hurricane proportions. The wind speeds were within 10-20 percent of the measured in situ values, and the direction of the wind velocity agreed with in situ direction measurements within 20-50 deg. Various atmospheric mesoscale eddies and tropical cyclones were thus located, and their strengths were inferred from sea surface reflectivity measurements. Rain cells were observed over both land and sea with these spaceborne radars. Algorithms to retrieve rainfall rates from spaceborne radar measurements were also developed. Spaceborne radars have been used to monitor various marine hazards. For example, information derived from those radars was used to plan rescue operations of distressed ships trapped in sea ice. Icebergs have also been monitored, and oil spills were mapped. Tsunamis produced by underwater earthquakes were also observed from space by the radars on the Cosmos 1500 series of satellites. The Cosmos-1500 satellite series have provided all weather radar imagery of the earths surface to a user community in real time by means of a 137.4 MHz Automatic Picture Transmission channel. This feature enabled the radar information to be used in direct support of Soviet polar maritime activities.

  16. Prototype development of a Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR

    NASA Technical Reports Server (NTRS)

    Tanner, A. B.; Wilson, W. J.; Kangaslahti, P. P.; Lambrigsten, B. H.; Dinardo, S. J.; Piepmeier, J. R.; Ruf, C. S.; Rogacki, S.; Gross, S. M.; Musko, S.

    2004-01-01

    Preliminary details of a 2-D synthetic aperture radiometer prototype operating from 50 to 55 GHz will be presented. The laboratory prototype is being developed to demonstrate the technologies and system design needed to do millimeter-wave atmospheric soundings with high spatial resolution from Geostationary orbit. The concept is to deploy a large thinned aperture Y-array on a geostationary satellite, and to use aperture synthesis to obtain images of the Earth without the need for a large mechanically scanned antenna. The laboratory prototype consists of a Y-array of 24 horn antennas, MMIC receivers, and a digital cross-correlation sub-system.

  17. Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility

    NASA Astrophysics Data System (ADS)

    Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.

    2006-12-01

    The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific

  18. Oil Spill Detection and Tracking Using Lipschitz Regularity and Multiscale Techniques in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2014-12-01

    Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images

  19. Detecting and Measuring Land Subsidence in Houston-Galveston, Texas using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System Data, 2012-2016

    NASA Astrophysics Data System (ADS)

    Reed, A.; Baker, S.

    2016-12-01

    Several cities in the Houston-Galveston (HG) region in Texas have subsided up to 13 feet over several decades due to natural and anthropogenic processes [Yu et al. 2014]. Land subsidence, a gradual sinking of the Earth's surface, is an often human-induced hazard and a major environmental problem expedited by activities such as mining, oil and gas extraction, urbanization and excessive groundwater pumping. We are able to detect and measure subsidence in HG using interferometric synthetic aperture radar (InSAR) and global positioning systems (GPS). Qu et al. [2015] used ERS, Envisat, and ALOS-1 to characterize subsidence in HG from 1995 to 2011, but a five-year gap in InSAR measurements exists due to a lack of freely available SAR data. We build upon the previous study by comparing subsidence patterns detected by Sentinel-1 data starting in July 2015. We used GMT5SAR to generate a stack of interferograms with perpendicular baselines less than 100 meters and temporal baselines less than 100 days to minimize temporal and spatial decorrelation. We applied the short baseline subset (SBAS) time series processing using GIAnT and compared our results with GPS measurements. The implications of this work will strengthen land subsidence monitoring systems in HG and broadly aid in the development of effective water resource management policies and strategies.

  20. Radar Image with Color as Height, Sman Teng, Temple, Cambodia

    NASA Image and Video Library

    2002-10-11

    This image, taken by NASA Airborne Synthetic Aperture Radar AIRSAR in 2002, is of Cambodia Angkor region revealing a temple upper-right not depicted on early 19th Century French archeological survey maps and American topographic maps.

  1. Precipitation evidences on X-Band Synthetic Aperture Radar imagery: an approach for quantitative detection and estimation

    NASA Astrophysics Data System (ADS)

    Mori, Saverio; Marzano, Frank S.; Montopoli, Mario; Pulvirenti, Luca; Pierdicca, Nazzareno

    2017-04-01

    Spaceborne synthetic aperture radars (SARs) operating at L-band and above are nowadays a well-established tool for Earth remote sensing; among the numerous civil applications we can indicate flood areas detection and monitoring, earthquakes analysis, digital elevation model production, land use monitoring and classification. Appealing characteristics of this kind of instruments is the high spatial resolution ensured in almost all-weather conditions and with a reasonable duty cycle and coverage. This result has achieved by the by the most recent generation of SAR missions, which moreover allow polarimetric observation of the target. Nevertheless, atmospheric clouds, in particular the precipitating ones, can significantly affect the signal backscattered from the ground surface (e.g. Ferrazzoli and Schiavon, 1997), on both amplitude and phase, with effects increasing with the operating frequency. In this respect, proofs are given by several recent works (e.g. Marzano et al., 2010, Baldini et al., 2014) using X-Band SAR data by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions. On the other hand, this sensitivity open interesting perspectives towards the SAR observation, and eventually quantification, of precipitations. In this respect, a proposal approach for X-SARs precipitation maps production and cloud masking arise from our work. Cloud masking allows detection of precipitation compromised areas. Respect precipitation maps, satellite X-SARs offer the unique possibility to ingest within flood forecasting model precipitation data at the catchment scale. This aspect is particularly innovative, even if work has been done the late years, and some aspects need to still address. Our developed processing framework allows, within the cloud masking stage, distinguishing flooded areas, precipitating clouds together with permanent water bodies, all appearing dark in the SAR image. The procedure is mainly based on image segmentation techniques and fuzzy logic (e.g. Pulvirenti et

  2. Design of a Ku band Instrumentation Synthetic Aperture Radar System

    DTIC Science & Technology

    2015-10-14

    was 13 MHz, that the noise levels were minimal, and that the variable attenuator was able to raise and lower the power level of the signal. Once all...20 40 60 80 100 120 M ag ni tu de (d B) 0 10 20 30 40 50 60 70 80 Abs-Mean Raw IQ Pulses David Kelly Project: Radar Design WPI MQP Project 34

  3. Radar systems for the water resources mission. Volume 4: Appendices E-I

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts.

  4. Low cost realization of space-borne synthectic aperture radar - MicroSAR

    NASA Astrophysics Data System (ADS)

    Carter, D.; Hall, C.

    Spaceborne Earth Observation data has been used for decades in the areas of meteorology and optical imaging. The systems and satellites have, in the main, been owned and operated by a few government institutions and agencies. More recently industrial organizations in North America have joined the list. Few of these, however, include Synthetic Aperture Radar (SAR)., although the additional utility in terms of all weather, 24 hour measurement capability over the Earth's surface is well recognized. Three major factors explain this:1) Relationships between the SAR measurements of radar backscatter and images to the specific information needs have not been seen as sufficiently well understood or robust2) Availability of suitable sources, at the relevant performance and data quality have been inadequate to provide service assurance that is necessary to sustain commercial businesses3) Costs associated with building, launching and operating spaceborne SAR have not been low enough as to achieve an acceptable return of investment. A significant amount of research and development has been undertaken throughout the World to establish reliable and robust algorithms for information extraction from SAR data. Much of this work has been carried out utilizing airborne systems over localized and carefully controlled regions. In addition, an increasing number of pilot services have been offered by geo-information providers. This has allowed customer confidence to grow. With the status of spaceborne SAR being effectively in the development phase, commercial funding has been scarce, and there has been need to rely on government and institutional budgets. Today the increasing maturity of the technology of SAR and its applications is beginning to attract the commercial sector. This is the funding necessary to realize sufficient assets to be able to provide a robust supply of SAR data to the geo-information providers and subsequently a reliable service to customers. Reducing the costs

  5. Synthetic range profiling in ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Pawel; Lapiński, Marian; Silko, Dariusz

    2009-06-01

    The paper describes stepped frequency continuous wave (SFCW) ground penetrating radar (GPR), where signal's frequency is discretely increased in N linear steps, each separated by a fixed ▵f increment from the previous one. SFCW radar determines distance from phase shift in a reflected signal, by constructing synthetic range profile in spatial time domain using the IFFT. Each quadrature sample is termed a range bin, as it represents the signal from a range window of length cτ/2, where τ is duration of single frequency segment. IFFT of those data samples resolves the range bin in into fine range bins of c/2N▵f width, thus creating the synthetic range profile in a GPR - a time domain approximation of the frequency response of a combination of the medium through which electromagnetic waves propagates (soil) and any targets or dielectric interfaces (water, air, other types of soil) present in the beam width of the radar. In the paper, certain practical measurements done by a monostatic SFCW GPR were presented. Due to complex nature of signal source, E5062A VNA made by Agilent was used as a signal generator, allowing number of frequency steps N to go as high as 1601, with generated frequency ranging from 300kHz to 3 GHz.

  6. Edge detection for optical synthetic aperture based on deep neural network

    NASA Astrophysics Data System (ADS)

    Tan, Wenjie; Hui, Mei; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin

    2017-09-01

    Synthetic aperture optics systems can meet the demands of the next-generation space telescopes being lighter, larger and foldable. However, the boundaries of segmented aperture systems are much more complex than that of the whole aperture. More edge regions mean more imaging edge pixels, which are often mixed and discretized. In order to achieve high-resolution imaging, it is necessary to identify the gaps between the sub-apertures and the edges of the projected fringes. In this work, we introduced the algorithm of Deep Neural Network into the edge detection of optical synthetic aperture imaging. According to the detection needs, we constructed image sets by experiments and simulations. Based on MatConvNet, a toolbox of MATLAB, we ran the neural network, trained it on training image set and tested its performance on validation set. The training was stopped when the test error on validation set stopped declining. As an input image is given, each intra-neighbor area around the pixel is taken into the network, and scanned pixel by pixel with the trained multi-hidden layers. The network outputs make a judgment on whether the center of the input block is on edge of fringes. We experimented with various pre-processing and post-processing techniques to reveal their influence on edge detection performance. Compared with the traditional algorithms or their improvements, our method makes decision on a much larger intra-neighbor, and is more global and comprehensive. Experiments on more than 2,000 images are also given to prove that our method outperforms classical algorithms in optical images-based edge detection.

  7. The aperture synthesis imaging capability of the EISCAT_3D radars

    NASA Astrophysics Data System (ADS)

    La Hoz, Cesar; Belyey, Vasyl

    2010-05-01

    The built-in Aperture Synthesis Imaging Radar (ASIR) capabilities of the EISCAT_3D system, complemented with multiple beams and rapid beam scanning, is what will make the new radar truly three dimensional and justify its name. With the EISCAT_3D radars it will be possible to make investigations in 3-dimensions of several important phenomena such as Natural Enhanced Ion Acoustic Lines (NEIALs), Polar Mesospheric Summer and Winter Echoes (PMSE and PMWE), meteors, space debris, atmospheric waves and turbulence in the mesosphere, upper troposphere and possibly the lower stratosphere. Of particular interest and novelty is the measurement of the structure in electron density created by aurora that produce incoherent scatter. With scale sizes of the order of tens of meters, the imaging of these structures will be conditioned only by the signal to noise ratio which is expected to be high during some of these events, since the electron density can be significantly enhanced. The electron density inhomogeneities and plasma structures excited by artificial ionospheric heating could conceivable be resolved by the radars provided that their variation during the integration time is not great.

  8. Gulf of Mexico Ecological Forecasting - Atlantic Bluefin Tuna Population Assessment and Management using Synthetic Aperture Radar (SAR) Data

    NASA Astrophysics Data System (ADS)

    Laygo, K.; Jones, I.; Huerta, J.; Holt, B.

    2010-12-01

    Atlantic Bluefin Tuna (Thunnus thynnus) is one of the largest vertebrates in the world and is in high demand in sushi markets. It is a highly political species and is managed internationally by the International Commission for the Conservation of Atlantic Tuna. The Gulf of Mexico and the Mediterranean Sea are the only two known spawning sites in the world. However, there is a large variance in estimates of adult Atlantic Tuna spawning. This research focuses on extending Earth science research results to existing decision-making systems, National Oceanic and Atmospheric Administration (NOAA) and the National Marine Fisheries Service (NMFS)for population assessment and management of Atlantic Bluefin Tuna. The research team is a multi-sector and multi-disciplinary team composed of government (NOAA_NMFS), academic (University of South Florida Institute for Marine Remote Sensing) and commercial (Roffer’s Ocean Fishing Forecasting Service, Inc.) institutions. Their goal is to reduce the variance in the estimates of adult Bluefin Tuna spawning stock abundance in the Gulf of Mexico (GOM). Therefore, this paper will be derived from the innovative use of several earth orbiting satellites focusing on the use of synthetic aperture radar (SAR) data to identify Sargassum, which is a floating marine algae that may be relevant to the presence of Bluefin Tuna aggregations. The SAR imagery will be examined in combination with MODIS and MERIS Chlorophyll-a products to detect fine-scale surface current shear, eddy and frontal features, as well as biological slicks due to the presence of Sargassum. In addition, wind records from NOAA buoy data will be studied to analyze wind patterns in the Gulf of Mexico. The fine-resolution, all-weather capabilities of SAR provide a valuable complement to optical/IR sensors, which are often impacted by cloud cover. This study will provide an assessment of whether or not SAR can contribute to decision support efforts relevant to commercial fisheries

  9. Space Radar Image of Baikal Lake, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band black-and-white image of the forests east of the Baikal Forest in the Jablonowy Mountains of Russia. The image is centered at 52.5 degrees north latitude and 116 degrees east longitude near the mining town of Bukatschatscha. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on October 4, 1994, during the second flight of the spaceborne radar. This area is part of an international research project known as the Taiga Aerospace Investigation using Geographic Information System Applications.

  10. Experiments in Coherent Change Detection for Synthetic Aperture Sonar

    DTIC Science & Technology

    2010-06-01

    data from synthetic aperture sonars mounted on autonomous undersea ve- hicles and actively navigated tow bodies. A noncoherent example carried out...III of this paper describe approaches for au- tomatic change detection and introduces CCD. Section IV pro- vides an example of noncoherent change...registration insufficiently robust to support correlation-based change detection (whether cohe- rent or noncoherent ). Fig. 6. Baseline (a) and

  11. Increasing circular synthetic aperture sonar resolution via adapted wave atoms deconvolution.

    PubMed

    Pailhas, Yan; Petillot, Yvan; Mulgrew, Bernard

    2017-04-01

    Circular Synthetic Aperture Sonar (CSAS) processing computes coherently Synthetic Aperture Sonar (SAS) data acquired along a circular trajectory. This approach has a number of advantages, in particular it maximises the aperture length of a SAS system, producing very high resolution sonar images. CSAS image reconstruction using back-projection algorithms, however, introduces a dissymmetry in the impulse response, as the imaged point moves away from the centre of the acquisition circle. This paper proposes a sampling scheme for the CSAS image reconstruction which allows every point, within the full field of view of the system, to be considered as the centre of a virtual CSAS acquisition scheme. As a direct consequence of using the proposed resampling scheme, the point spread function (PSF) is uniform for the full CSAS image. Closed form solutions for the CSAS PSF are derived analytically, both in the image and the Fourier domain. The thorough knowledge of the PSF leads naturally to the proposed adapted atom waves basis for CSAS image decomposition. The atom wave deconvolution is successfully applied to simulated data, increasing the image resolution by reducing the PSF energy leakage.

  12. Optimal aperture synthesis radar imaging

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Chau, J. L.

    2006-03-01

    Aperture synthesis radar imaging has been used to investigate coherent backscatter from ionospheric plasma irregularities at Jicamarca and elsewhere for several years. Phenomena of interest include equatorial spread F, 150-km echoes, the equatorial electrojet, range-spread meteor trails, and mesospheric echoes. The sought-after images are related to spaced-receiver data mathematically through an integral transform, but direct inversion is generally impractical or suboptimal. We instead turn to statistical inverse theory, endeavoring to utilize fully all available information in the data inversion. The imaging algorithm used at Jicamarca is based on an implementation of the MaxEnt method developed for radio astronomy. Its strategy is to limit the space of candidate images to those that are positive definite, consistent with data to the degree required by experimental confidence limits; smooth (in some sense); and most representative of the class of possible solutions. The algorithm was improved recently by (1) incorporating the antenna radiation pattern in the prior probability and (2) estimating and including the full error covariance matrix in the constraints. The revised algorithm is evaluated using new 28-baseline electrojet data from Jicamarca.

  13. Radar image processing module development program, phase 3

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The feasibility of using charge coupled devices in an IPM for processing synthetic aperture radar signals onboard the NASA Convair 990 (CV990) aircraft was demonstrated. Radar data onboard the aircraft was recorded and processed using a CCD sampler and digital tape recorder. A description of equipment and testing was provided. The derivation of the digital presum filter was documented. Photographs of the sampler/tape recorder, real time display and circuit boards in the IPM were also included.

  14. Radar measurement of L-band signal fluctuations caused by propagation through trees

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1991-01-01

    Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.

  15. Quad-polarized synthetic aperture radar and multispectral data classification using classification and regression tree and support vector machine-based data fusion system

    NASA Astrophysics Data System (ADS)

    Bigdeli, Behnaz; Pahlavani, Parham

    2017-01-01

    Interpretation of synthetic aperture radar (SAR) data processing is difficult because the geometry and spectral range of SAR are different from optical imagery. Consequently, SAR imaging can be a complementary data to multispectral (MS) optical remote sensing techniques because it does not depend on solar illumination and weather conditions. This study presents a multisensor fusion of SAR and MS data based on the use of classification and regression tree (CART) and support vector machine (SVM) through a decision fusion system. First, different feature extraction strategies were applied on SAR and MS data to produce more spectral and textural information. To overcome the redundancy and correlation between features, an intrinsic dimension estimation method based on noise-whitened Harsanyi, Farrand, and Chang determines the proper dimension of the features. Then, principal component analysis and independent component analysis were utilized on stacked feature space of two data. Afterward, SVM and CART classified each reduced feature space. Finally, a fusion strategy was utilized to fuse the classification results. To show the effectiveness of the proposed methodology, single classification on each data was compared to the obtained results. A coregistered Radarsat-2 and WorldView-2 data set from San Francisco, USA, was available to examine the effectiveness of the proposed method. The results show that combinations of SAR data with optical sensor based on the proposed methodology improve the classification results for most of the classes. The proposed fusion method provided approximately 93.24% and 95.44% for two different areas of the data.

  16. Preliminary study of synthetic aperture tissue harmonic imaging on in-vivo data

    NASA Astrophysics Data System (ADS)

    Rasmussen, Joachim H.; Hemmsen, Martin C.; Madsen, Signe S.; Hansen, Peter M.; Nielsen, Michael B.; Jensen, Jørgen A.

    2013-03-01

    A method for synthetic aperture tissue harmonic imaging is investigated. It combines synthetic aperture sequen- tial beamforming (SASB) with tissue harmonic imaging (THI) to produce an increased and more uniform spatial resolution and improved side lobe reduction compared to conventional B-mode imaging. Synthetic aperture sequential beamforming tissue harmonic imaging (SASB-THI) was implemented on a commercially available BK 2202 Pro Focus UltraView ultrasound system and compared to dynamic receive focused tissue harmonic imag- ing (DRF-THI) in clinical scans. The scan sequence that was implemented on the UltraView system acquires both SASB-THI and DRF-THI simultaneously. Twenty-four simultaneously acquired video sequences of in-vivo abdominal SASB-THI and DRF-THI scans on 3 volunteers of 4 different sections of liver and kidney tissues were created. Videos of the in-vivo scans were presented in double blinded studies to two radiologists for image quality performance scoring. Limitations to the systems transmit stage prevented user defined transmit apodization to be applied. Field II simulations showed that side lobes in SASB could be improved by using Hanning transmit apodization. Results from the image quality study show, that in the current configuration on the UltraView system, where no transmit apodization was applied, SASB-THI and DRF-THI produced equally good images. It is expected that given the use of transmit apodization, SASB-THI could be further improved.

  17. Contribution to the glaciology of northern Greenland from satellite radar interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Gogineni, S.; Joughin, I.; Krabill, W.

    2001-01-01

    Interferometric synthetic aperture radar (InSAR) data from the ERS-1 and ERS-2 satellites are used to measure the surface velocity, topography, and grounding line position of the major outletglaciers in the northern sector of the Greenland ice sheet.

  18. Likelihood parameter estimation for calibrating a soil moisture using radar backscatter

    USDA-ARS?s Scientific Manuscript database

    Assimilating soil moisture information contained in synthetic aperture radar imagery into land surface model predictions can be done using a calibration, or parameter estimation, approach. The presence of speckle, however, necessitates aggregating backscatter measurements over large land areas in or...

  19. Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark

    2014-01-01

    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.

  20. Real-Time Spaceborne Synthetic Aperture Radar Float-Point Imaging System Using Optimized Mapping Methodology and a Multi-Node Parallel Accelerating Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long

    2018-01-01

    With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637

  1. Determining River Ice Displacement Using the Differential Interferometry Synthetic Aperture Radar (D-InSAR) technique

    NASA Astrophysics Data System (ADS)

    Chu, T.; Lindenschmidt, K. E.

    2016-12-01

    incorporate the results of ice cover displacement (rise/drop) to locate areas of initial breakup in an ice jam forecasting system. Keywords: D-InSAR, Mutiple Aperture Radar InSAR (MAI), river ice displacement, RADARSAT-2

  2. Effect of Atmospheric Turbulence on Synthetic Aperture LADAR Imaging Performance

    NASA Astrophysics Data System (ADS)

    Schumm, Bryce Eric

    Synthetic aperture LADAR (SAL) has been widely investigated over the last 15 years with many studies and experiments examining its performance. Comparatively little work has been done to investigate the effect of atmospheric turbulence on SAL performance. The turbulence work that has been accomplished is in related fields or under weak turbulence assumptions. This research investigates some of the fundamental limits of turbulence on SAL performance. Seven individual impact mechanisms of atmospheric turbulence are examined including: beam wander, beam growth, beam breakup, piston, coherence diameter/length, isoplanatic angle (anisoplanatism) and coherence time. Each component is investigated separately from the others through modeling to determine their respective effect on standard SAL image metrics. Analytic solutions were investigated for the SAL metrics of interest for each atmospheric impact mechanism. The isolation of each impact mechanism allows identification of mitigation techniques targeted at specific, and most dominant, sources of degradation. Results from this work will be critical in focusing future research on those effects which prove to be the most deleterious. Previous research proposed that the resolution of a SAL system was limited by the SAL coherence diameter/length r˜_0 which was derived from the average autocorrelation of the SAL phase history data. The present research confirms this through extensive wave optics simulations. A detailed study is conducted that shows, for long synthetic apertures, measuring the peak widths of individual phase histories may not accurately represent the true resolving power of the synthetic aperture. The SAL wave structure function and degree of coherence are investigated for individual turbulence mechanisms. Phase is shown to be an order of magnitude stronger than amplitude in its impact on imaging metrics. In all the analyses, piston variation and coherence diameter make up the majority of errors in SAL image

  3. Comparison of simulated and actual wind shear radar data products

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Crittenden, Lucille H.

    1992-01-01

    Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.

  4. Hinge-line Migration of Petermann Gletscher, North Greenland, Detected Using Satellite Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1998-01-01

    The synthetic-aperture radar interferometry technique is used to detect the migration of the limit of tidal flexing, or hinge line, of the floating ice tongue of Petermann Gletscher, a major outlet glacier of north Greenland.

  5. High Resolution Full-Aperture ISAR Processing through Modified Doppler History Based Motion Compensation

    PubMed Central

    Song, Jung-Hwan; Lee, Kee-Woong; Lee, Woo-Kyung; Jung, Chul-Ho

    2017-01-01

    A high resolution inverse synthetic aperture radar (ISAR) technique is presented using modified Doppler history based motion compensation. To this purpose, a novel wideband ISAR system is developed that accommodates parametric processing over extended aperture length. The proposed method is derived from an ISAR-to-SAR approach that makes use of high resolution spotlight SAR and sub-aperture recombination. It is dedicated to wide aperture ISAR imaging and exhibits robust performance against unstable targets having non-linear motions. We demonstrate that the Doppler histories of the full aperture ISAR echoes from disturbed targets are efficiently retrieved with good fitting models. Experiments have been conducted on real aircraft targets and the feasibility of the full aperture ISAR processing is verified through the acquisition of high resolution ISAR imagery. PMID:28555036

  6. Impact of the ionosphere on an L-band space based radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Chan, Samuel F.; Chapman, Bruce D.; Chen, Curtis W.; Martin, Jan M.; Michel, Thierry R.; Muellerschoen, Ronald J.; Pi, Xiaoqing; Rosen, Paul A.

    2006-01-01

    We have quantified the impact that the ionosphere would have on a L-band interferometric Synthetic Aperture Radar (SAR) mission using a combination of simulation, modeling, Global Positioning System (GPS) data collected during the last solar maximum, and existing spaceborne SAR data.

  7. Evaluation Digital Elevation Model Generated by Synthetic Aperture Radar Data

    NASA Astrophysics Data System (ADS)

    Makineci, H. B.; Karabörk, H.

    2016-06-01

    Digital elevation model, showing the physical and topographical situation of the earth, is defined a tree-dimensional digital model obtained from the elevation of the surface by using of selected an appropriate interpolation method. DEMs are used in many areas such as management of natural resources, engineering and infrastructure projects, disaster and risk analysis, archaeology, security, aviation, forestry, energy, topographic mapping, landslide and flood analysis, Geographic Information Systems (GIS). Digital elevation models, which are the fundamental components of cartography, is calculated by many methods. Digital elevation models can be obtained terrestrial methods or data obtained by digitization of maps by processing the digital platform in general. Today, Digital elevation model data is generated by the processing of stereo optical satellite images, radar images (radargrammetry, interferometry) and lidar data using remote sensing and photogrammetric techniques with the help of improving technology. One of the fundamental components of remote sensing radar technology is very advanced nowadays. In response to this progress it began to be used more frequently in various fields. Determining the shape of topography and creating digital elevation model comes the beginning topics of these areas. It is aimed in this work , the differences of evaluation of quality between Sentinel-1A SAR image ,which is sent by European Space Agency ESA and Interferometry Wide Swath imaging mode and C band type , and DTED-2 (Digital Terrain Elevation Data) and application between them. The application includes RMS static method for detecting precision of data. Results show us to variance of points make a high decrease from mountain area to plane area.

  8. Radar image enhancement and simulation as an aid to interpretation and training

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Stiles, J. A.; Holtzman, J. C.; Dellwig, L. F.; Held, D. N.

    1980-01-01

    Greatly increased activity in the field of radar image applications in the coming years demands that techniques of radar image analysis, enhancement, and simulation be developed now. Since the statistical nature of radar imagery differs from that of photographic imagery, one finds that the required digital image processing algorithms (e.g., for improved viewing and feature extraction) differ from those currently existing. This paper addresses these problems and discusses work at the Remote Sensing Laboratory in image simulation and processing, especially for systems comparable to the formerly operational SEASAT synthetic aperture radar.

  9. Space Radar Image of Baikal Lake, Russia

    NASA Image and Video Library

    1999-05-01

    This is an X-band black-and-white image of the forests east of the Baikal Forest in the Jablonowy Mountains of Russia. The image is centered at 52.5 degrees north latitude and 116 degrees east longitude near the mining town of Bukatschatscha. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on October 4, 1994, during the second flight of the spaceborne radar. This area is part of an international research project known as the Taiga Aerospace Investigation using Geographic Information System Applications. http://photojournal.jpl.nasa.gov/catalog/PIA01754

  10. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation

    USGS Publications Warehouse

    Lu, Z.; Masterlark, Timothy; Dzurisin, Daniel

    2005-01-01

    Okmok volcano, located in the central Aleutian arc, Alaska, is a dominantly basaltic complex topped with a 10-km-wide caldera that formed circa 2.05 ka. Okmok erupted several times during the 20th century, most recently in 1997; eruptions in 1945, 1958, and 1997 produced lava flows within the caldera. We used 80 interferometric synthetic aperture radar (InSAR) images (interferograms) to study transient deformation of the volcano before, during, and after the 1997 eruption. Point source models suggest that a magma reservoir at a depth of 3.2 km below sea level, located beneath the center of the caldera and about 5 km northeast of the 1997 vent, is responsible for observed volcano-wide deformation. The preeruption uplift rate decreased from about 10 cm yr−1 during 1992–1993 to 2 ∼ 3 cm yr−1 during 1993–1995 and then to about −1 ∼ −2 cm yr−1 during 1995–1996. The posteruption inflation rate generally decreased with time during 1997–2001, but increased significantly during 2001–2003. By the summer of 2003, 30 ∼ 60% of the magma volume lost from the reservoir in the 1997 eruption had been replenished. Interferograms for periods before the 1997 eruption indicate consistent subsidence of the surface of the 1958 lava flows, most likely due to thermal contraction. Interferograms for periods after the eruption suggest at least four distinct deformation processes: (1) volcano-wide inflation due to replenishment of the shallow magma reservoir, (2) subsidence of the 1997 lava flows, most likely due to thermal contraction, (3) deformation of the 1958 lava flows due to loading by the 1997 flows, and (4) continuing subsidence of 1958 lava flows buried beneath 1997 flows. Our results provide insights into the postemplacement behavior of lava flows and have cautionary implications for the interpretation of inflation patterns at active volcanoes.

  11. Broad perspectives in radar for ocean measurements

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1978-01-01

    The various active radar implementation options available for the measurement functions of interest for the SEASAT follow-on missions were evaluated. These functions include surface feature imaging, surface pressure and vertical profile, atmospheric sounding, surface backscatter and wind speed determination, surface current location, wavelength spectra, sea surface topography, and ice/snow thickness. Some concepts for the Synthetic Aperture Imaging Radar were examined that may be useful in the design and selection of the implementation options for these missions. The applicability of these instruments for the VOIR mission was also kept under consideration.

  12. Inverse synthetic aperture radar imagery of a man with a rocket propelled grenade launcher

    NASA Astrophysics Data System (ADS)

    Tran, Chi N.; Innocenti, Roberto; Kirose, Getachew; Ranney, Kenneth I.; Smith, Gregory

    2004-08-01

    As the Army moves toward more lightly armored Future Combat System (FCS) vehicles, enemy personnel will present an increasing threat to U.S. soldiers. In particular, they face a very real threat from adversaries using shoulder-launched, rocket propelled grenade (RPG). The Army Research Laboratory has utilized its Aberdeen Proving Ground (APG) turntable facility to collect very high resolution, fully polarimetric Ka band radar data at low depression angles of a man holding an RPG. In this paper, we examine the resulting low resolution and high resolution range profiles; and based on the observed radar cross section (RCS) value, we attempt to determine the utility of Ka band radar for detecting enemy personnel carrying RPG launchers.

  13. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOEpatents

    Mast, Jeffrey E.

    1998-01-01

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  14. Predicting dangerous ocean waves with spaceborne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Beal, R. C.

    1984-01-01

    It is pointed out that catastrophes, related to the occurrence of strong winds and large ocean waves, can consume more lives and property than most naval battles. The generation of waves by wind are considered, Pierson et al. (1955) have incorporated statistical concepts into a wave forecast model. The concept of an 'ocean wave spectrum' was introduced, with the wind acting independently on each Fourier component. However, even after 30 years of research and debate, the generation, propagation, and dissipation of the spectrum under arbitrary conditions continue to be controversial. It has now been found that spaceborne SAR has a surprising ability to precisely monitor spatially evolving wind and wave fields. Approaches to overcome certain weaknesses of the SAR method are discussed, taking into account the second Shuttle Imaging Radar experiment, and a possible long-term solution provided by Spectrasat. Spectrasat should be a low-altitude (200 to 250 km) satellite with active drag compensation.

  15. Radar systems for the water resources mission, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.

    1976-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence.

  16. Structural health monitoring of engineered structures using a space-borne synthetic aperture radar multi-temporal approach: from cultural heritage sites to war zones

    NASA Astrophysics Data System (ADS)

    Milillo, Pietro; Tapete, Deodato; Cigna, Francesca; Perissin, Daniele; Salzer, Jacqueline; Lundgren, Paul; Fielding, Eric; Burgmann, Roland; Biondi, Filippo; Milillo, Giovanni; Serio, Carmine

    2016-10-01

    Structural health monitoring (SHM) of engineered structures consists of an automated or semi-automated survey system that seeks to assess the structural condition of an anthropogenic structure. The aim of an SHM system is to provide insights into possible induced damage or any inherent signals of deformation affecting the structure in terms of detection, localization, assessment, and prediction. During the last decade there has been a growing interest in using several remote sensing techniques, such as synthetic aperture radar (SAR), for SHM. Constellations of SAR satellites with short repeat time acquisitions permit detailed surveys temporal resolution and millimetric sensitivity to deformation that are at the scales relevant to monitoring large structures. The all-weather multi-temporal characteristics of SAR make its products suitable for SHM systems, especially in areas where in situ measurements are not feasible or not cost effective. To illustrate this capability, we present results from COSMO-SkyMed (CSK) and TerraSAR-X SAR observations applied to the remote sensing of engineered structures. We show how by using multiple-geometry SAR-based products which exploit both phase and amplitude of the SAR signal we can address the main objectives of an SHM system including detection and localization. We highlight that, when external data such as rain or temperature records are available or simple elastic models can be assumed, the SAR-based SHM capability can also provide an interpretation in terms of assessment and prediction. We highlight examples of the potential for such imaging capabilities to enable advances in SHM from space, focusing on dams and cultural heritage areas.

  17. Feasibility of inter-comparing airborne and spaceborne obsevations of radar backscattering coefficients

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas. The SMAP mission, scheduled for launch in November 2014, will offer synthetic aperture radar (SAR) measurements of backscattering coefficients for the re...

  18. Three-dimensional surface deformation mapping by convensional interferometry and multiple aperture interferometry

    USGS Publications Warehouse

    Jung, H.-S.; Lu, Z.; Lee, C.-W.

    2011-01-01

    Interferometric synthetic aperture radar (InSAR) technique has been successfully used for mapping surface deformations [1-2], but it has been normally limited to a measurement along the radar line-of-sight (LOS) direction. For this reason, it is impossible to determine the north (N-S) component of surface deformation because of using data from near-polar orbiting satellites, and it is not sufficient to resolve the parameters of models for earthquakes and volcanic activities because there is a marked trade-off among model parameters [3]. ?? 2011 KIEES.

  19. Monitoring Land Subsidence in Arizona Due to Excessive Groundwater Withdrawal Using Interferometric Synthetic Aperture Radar (InSAR) Data

    NASA Astrophysics Data System (ADS)

    Conway, B. D.

    2014-12-01

    Land subsidence due to excess groundwater overdraft has been an ongoing problem in south-central and southern Arizona since the1940's. The first earth fissure attributed to excessive groundwater withdrawal was discovered in 1946 near Picacho, Arizona. In some areas of the State, groundwater declines of more than 400 feet have resulted in extensive earth fissuring and widespread land subsidence; land subsidence of more than 19 feet has been documented near Phoenix and Eloy. The Arizona Department of Water Resources (ADWR) has been monitoring land subsidence throughout Arizona since 1997 using Interferometric Synthetic Aperture Radar (InSAR) Data and Global Navigation Satellite System Data. The ADWR InSAR program has proven to be a critical resource in monitoring land subsidence throughout Arizona, resulting in the identification of more than twenty-five individual land subsidence features that cover an area of more than 1,200 square miles. The majority of these land subsidence features are a direct result of groundwater declines attributed to groundwater overdraft. Using InSAR data in conjunction with both automated and manual groundwater level datasets, ADWR is able to monitor active land subsidence areas as well as identify other areas that may require additional InSAR monitoring. InSAR data have also proven to be extremely useful in monitoring land surface uplift associated with rising groundwater levels near groundwater recharge facilities. InSAR data can show the impact of the recharged groundwater as the area of uplift extends down gradient from the recharge facility. Some highlights of recent InSAR results include the identification of a new land subsidence feature in the eastern portion of Metropolitan Phoenix where groundwater levels have recently declined; the identification of changes to a floodplain that may be exacerbating recent flooding; seasonal land subsidence and uplift related to seasonal groundwater demands; and the identification of uplift

  20. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOEpatents

    Mast, J.E.

    1998-08-18

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 10 figs.

  1. In vivo visualization of robotically implemented synthetic tracked aperture ultrasound (STRATUS) imaging system using curvilinear array

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Aalamifar, Fereshteh; Boctor, Emad M.

    2016-04-01

    Synthetic aperture for ultrasound is a technique utilizing a wide aperture in both transmit and receive to enhance the ultrasound image quality. The limitation of synthetic aperture is the maximum available aperture size limit determined by the physical size of ultrasound probe. We propose Synthetic-Tracked Aperture Ultrasound (STRATUS) imaging system to overcome the limitation by extending the beamforming aperture size through ultrasound probe tracking. With a setup involving a robotic arm, the ultrasound probe is moved using the robotic arm, while the positions on a scanning trajectory are tracked in real-time. Data from each pose are synthesized to construct a high resolution image. In previous studies, we have demonstrated the feasibility through phantom experiments. However, various additional factors such as real-time data collection or motion artifacts should be taken into account when the in vivo target becomes the subject. In this work, we build a robot-based STRATUS imaging system with continuous data collection capability considering the practical implementation. A curvilinear array is used instead of a linear array to benefit from its wider capture angle. We scanned human forearms under two scenarios: one submerged the arm in the water tank under 10 cm depth, and the other directly scanned the arm from the surface. The image contrast improved 5.51 dB, and 9.96 dB for the underwater scan and the direct scan, respectively. The result indicates the practical feasibility of STRATUS imaging system, and the technique can be potentially applied to the wide range of human body.

  2. Remote sensing of a dynamic sub-arctic peatland reservoir using optical and synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Larter, Jarod Lee

    Stephens Lake, Manitoba is an example of a peatland reservoir that has undergone physical changes related to mineral erosion and peatland disintegration processes since its initial impoundment. In this thesis I focused on the processes of peatland upheaval, transport, and disintegration as the primary drivers of dynamic change within the reservoir. The changes related to these processes are most frequent after initial reservoir impoundment and decline over time. They continue to occur over 35 years after initial flooding. I developed a remote sensing approach that employs both optical and microwave sensors for discriminating land (Le. floating peatlands, forested land, and barren land) from open water within the reservoir. High spatial resolution visible and near-infrared (VNIR) optical data obtained from the QuickBird satellite, and synthetic aperture radar (SAR) microwave data obtained from the RADARSAT-1 satellite were implemented. The approach was facilitated with a Geographic Information System (GIS) based validation map for the extraction of optical and SAR pixel data. Each sensor's extracted data set was first analyzed separately using univariate and multivariate statistical methods to determine the discriminant ability of each sensor. The initial analyses were followed by an integrated sensor approach; the development of an image classification model; and a change detection analysis. Results showed excellent (> 95%) classification accuracy using QuickBird satellite image data. Discrimination and classification of studied land cover classes using SAR image texture data resulted in lower overall classification accuracies (˜ 60%). SAR data classification accuracy improved to > 90% when classifying only land and water, demonstrating SAR's utility as a land and water mapping tool. An integrated sensor data approach showed no considerable improvement over the use of optical satellite image data alone. An image classification model was developed that could be

  3. Forecasting slope failures from space-based synthetic aperture radar (SAR) measurements

    NASA Astrophysics Data System (ADS)

    Wasowski, J.; Bovenga, F.; Nutricato, R.; Nitti, D. O.; Chiaradia, M. T.; Tijani, K.; Morea, A.

    2017-12-01

    New space-borne radar sensors enable multi-scale monitoring of potentially unstable slopes thanks to wide-area coverage (tens of thousands km2), regular long-term image acquisition schedule with increasing re-visit frequency (weekly to daily), and high measurement precision (mm). In particular, the recent radar satellite missions e.g., COSMO-SkyMed (CSK), Sentinel-1 (S-1) and improved multi-temporal interferometry (MTI) processing techniques allow timely delivery of information on slow ground surface displacements. Here we use two case study examples to show that it is possible to capture pre-failure slope strains through long-term MTI-based monitoring. The first case is a retrospective investigation of a huge 500ML m3 landslide, which occurred in Sept. 2016 in a large, active open-cast coal mine in central Europe. We processed over 100 S-1 images acquired since Fall 2014. The MTI results showed that the slope that failed had been unstable at least since 2014. Importantly, we detected consistent displacement trends and trend changes, which can be used for slope failure forecasting. Specifically, we documented significant acceleration in slope surface displacement in the two months preceding the catastrophic failure. The second case of retrospectively captured pre-failure slope strains regards our earlier study of a small 50 m long landslide, which occurred on Jan. 2014 and caused the derailment of a train on the railway line connecting NW Italy to France. We processed 56 CSK images acquired from Fall 2008 to Spring 2014. The MTI results revealed pre-failure displacements of the engineering structures on the slope subsequently affected by the 2014 slide. The analysis of the MTI time series further showed that the displacements had been occurring since 2009. This information could have been used to forewarn the railway authority about the slope instability hazard. The above examples indicate that more frequent and consistent image acquisitions by the new radar

  4. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Shaw, John B.; Ayoub, Francois; Jones, Cathleen E.; Lamb, Michael P.; Holt, Benjamin; Wagner, R. Wayne; Coffey, Thomas S.; Chadwick, J. Austin; Mohrig, David

    2016-05-01

    Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including ~700 m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network.

  5. Titan Radar Mapper observations from Cassini's T3 fly-by

    USGS Publications Warehouse

    Elachi, C.; Wall, S.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Lorenz, R.; Lunine, J.; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    Cassini's Titan Radar Mapper imaged the surface of Saturn's moon Titan on its February 2005 fly-by (denoted T3), collecting high-resolution synthetic-aperture radar and larger-scale radiometry and scatterometry data. These data provide the first definitive identification of impact craters on the surface of Titan, networks of fluvial channels and surficial dark streaks that may be longitudinal dunes. Here we describe this great diversity of landforms. We conclude that much of the surface thus far imaged by radar of the haze-shrouded Titan is very young, with persistent geologic activity. ?? 2006 Nature Publishing Group.

  6. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  7. Prototype Development of a Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR

    NASA Technical Reports Server (NTRS)

    Tanner, Alan B.; Wilson, William J.; Kangaslahti, Pekka P.; Lambrigsten, Bjorn H.; Dinardo, Steven J.; Piepmeier, Jeffrey R.; Ruf, Christopher S.; Rogacki, Steven; Gross, S. M.; Musko, Steve

    2004-01-01

    Preliminary details of a 2-D synthetic aperture radiometer prototype operating from 50 to 58 GHz will be presented. The instrument is being developed as a laboratory testbed, and the goal of this work is to demonstrate the technologies needed to do atmospheric soundings with high spatial resolution from Geostationary orbit. The concept is to deploy a large sparse aperture Y-array from a geostationary satellite, and to use aperture synthesis to obtain images of the earth without the need for a large mechanically scanned antenna. The laboratory prototype consists of a Y-array of 24 horn antennas, MMIC receivers, and a digital cross-correlation sub-system. System studies are discussed, including an error budget which has been derived from numerical simulations. The error budget defines key requirements, such as null offsets, phase calibration, and antenna pattern knowledge. Details of the instrument design are discussed in the context of these requirements.

  8. Polarization-Based Radar Detection in Sea Clutter

    DTIC Science & Technology

    2015-02-27

    Boerner, "Introduction to Synthetic Aperture Radar (SAR) Polarimetry ," Wexford College Press, 2007. [7] E. Pottier, J. S. Lee, and L. Ferro...Application, US 20140169428 Al, December 10, 2013 T. Pratt, "Methods and Apparatus for Radio Frequency Polarimetry Sensing," non- provisional... Polarimetry ," submitted to IEEE Transactions on Instrumentation and Measurement, 2012 J. Mueller and T. Pratt, "A Radio Frequency Polarimetric Sensor for

  9. Feasibility of inter-comparing airborne and spaceborne observations of radar backscattering coefficients

    USDA-ARS?s Scientific Manuscript database

    This paper investigates the feasibility of using an airborne synthetic aperture radar (SAR) to validate spaceborne SAR data. This is directed at soil moisture sensing and the recently launched Soil Moisture Active Passive (SMAP) satellite. The value of this approach is related to the fact that vicar...

  10. One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating.

    PubMed

    Lin, Yu-Chih; Tu, Han-Yen; Wu, Xin-Ru; Lai, Xin-Ji; Cheng, Chau-Jern

    2018-05-14

    This paper proposes one-shot synthetic aperture digital holographic microscopy using a combination of angular-multiplexing and coherence gating. The proposed angular-multiplexing technique uses multiple noncoplanar incident beams into the synthetic aperture to create tight packed passbands so as to extend spatial frequency spectrum. Coherence gating is performed to prevent the self-interference among the multiple beams. Based on the design guideline proposed herein, a phase-only spatial light modulator is employed as an adjustable blazed grating to split multiple noncoplanar beams and perform angular-multiplexing, and then using coherence gating based on low-coherence-light, superresolution imaging is achieved after one-shot acquisition.

  11. Three-dimensional radar imaging techniques and systems for near-field applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  12. Radar detection of surface oil accumulations

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Oneill, P.; Wilson, M.

    1980-01-01

    The United States Coast Guard is developing AIREYE, an all weather, day/night airborne surveillance system, for installation aboard future medium range surveillance aircraft. As part of this program, a series of controlled tests were conducted off southern California to evaluate the oil slick detection capabilities of two Motorola developed, side looking radars. The systems, a real aperture AN/APS-94D and a synthetic aperture coherent on receive (COR) were flown over the Santa Barbara Channel on May 19, 1976. Targets imaged during the coincident overflights included natural oil seepage, simulated oil spills, oil production platforms, piers, mooring buoys, commercial boats and barges at other targets. Based on an analysis of imagery from the coincident radar runs, COR provides better detection of natural and man made oil slicks, whereas the AN/APS-94D consistently exhibited higher surface target detection results. This and other tests have shown that active microwave systems have considerable potential for aiding in the detection and analysis of surface oil accumulations.

  13. Robust flood area detection using a L-band synthetic aperture radar: Preliminary application for Florida, the U.S. affected by Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Ohki, M.; Abe, T.

    2017-12-01

    Urgent crisis response for a hurricane-induced flood needs urgent providing of a flood map covering a broad region. However, there is no standard threshold values for automatic flood identification from pre-and-post images obtained by satellite-based synthetic aperture radars (SARs). This problem could hamper prompt data providing for operational uses. Furthermore, one pre-flood SAR image does not always represent potential water surfaces and river flows especially in tropical flat lands which are greatly influenced by seasonal precipitation cycle. We are, therefore, developing a new method of flood mapping using PALSAR-2, an L-band SAR, which is less affected by temporal surface changes. Specifically, a mean-value image and a standard-deviation image are calculated from a series of pre-flood SAR images. It is combined with a post-flood SAR image to obtain normalized backscatter amplitude difference (NoBADi), with which a difference between a post-flood image and a mean-value image is divided by a standard-deviation image to emphasize anomalous water extents. Flooding areas are then automatically obtained from the NoBADi images as lower-value pixels avoiding potential water surfaces. We applied this method to PALSAR-2 images acquired on Sept. 8, 10, and 12, 2017, covering flooding areas in a central region of Dominican Republic and west Florida, the U.S. affected by Hurricane Irma. The output flooding outlines are validated with flooding areas manually delineated from high-resolution optical satellite images, resulting in higher consistency and less uncertainty than previous methods (i.e., a simple pre-and-post flood difference and pre-and-post coherence changes). The NoBADi method has a great potential to obtain a reliable flood map for future flood hazards, not hampered by cloud cover, seasonal surface changes, and "casual" thresholds in the flood identification process.

  14. Laser radar: historical prospective-from the East to the West

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; McManamon, Paul; Steinvall, Ove; Kobayashi, Takao; Chen, Weibiao

    2017-03-01

    This article discusses the history of laser radar development in America, Europe, and Asia. Direct detection laser radar is discussed for range finding, designation, and topographic mapping of Earth and of extraterrestrial objects. Coherent laser radar is discussed for environmental applications, such as wind sensing and for synthetic aperture laser radar development. Gated imaging is discussed through scattering layers for military, medical, and security applications. Laser microradars have found applications in intravascular studies and in ophthalmology for vision correction. Ghost laser radar has emerged as a new technology in theoretical and simulation applications. Laser radar is now emerging as an important technology for applications such as self-driving cars and unmanned aerial vehicles. It is also used by police to measure speed, and in gaming, such as the Microsoft Kinect.

  15. Constraining the slip distribution and fault geometry of the Mw 7.9, 3 November 2002, Denali fault earthquake with Interferometric Synthetic Aperture Radar and Global Positioning System data

    USGS Publications Warehouse

    Wright, Tim J.; Lu, Z.; Wicks, Charles

    2004-01-01

    The Mw 7.9, Denali fault earthquake (DFE) is the largest continental strike-slip earthquake to occur since the development of Interferometric Synthetic Aperture Radar (InSAR). We use five interferograms, constructed using radar images from the Canadian Radarsat-1 satellite, to map the surface deformation at the western end of the fault rupture. Additional geodetic data are provided by displacements observed at 40 campaign and continuous Global Positioning System (GPS) sites. We use the data to determine the geometry of the Susitna Glacier fault, thrusting on which initiated the DFE, and to determine a slip model for the entire event that is consistent with both the InSAR and GPS data. We find there was an average of 7.3 ± 0.4 m slip on the Susitna Glacier fault, between 1 and 9.5 km depth on a 29 km long fault that dips north at 41 ± 0.7° and has a surface projection close to the mapped rupture. On the Denali fault, a simple model with large slip patches finds a maximum of 8.7 ± 0.7 m of slip between the surface and 14.3 ± 0.2 km depth. A more complex distributed slip model finds a peak of 12.5 ± 0.8 m in the upper 4 km, significantly higher than the observed surface slip. We estimate a geodetic moment of 670 ± 10 × 1018 N m (Mw 7.9), consistent with seismic estimates. Lack of preseismic data resulted in an absence of InSAR coverage for the eastern half of the DFE rupture. A dedicated geodetic InSAR mission could obviate coverage problems in the future.

  16. A Prototype Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) for Atmospheric Temperature Sounding

    NASA Technical Reports Server (NTRS)

    Tanner, Alan B.; Lambrigsten, B. H.; Brown, S. T.; Wilson, W. J.; Piepmeier, J. R.; Ruf, C. S.; Lim, B.

    2006-01-01

    A viewgraph presentation of a prototype Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) for atmospheric temperature sounding is shown. The topics include: 1) Overview; 2) Requirements & Error allocations; 3) Design; 4) Problems, and How We Solved Them; and 5) Results

  17. Space Radar Laboratory photos taken at Kennedy Space Center

    NASA Image and Video Library

    1994-03-18

    S94-30393 (23 Nov 1993) --- In the south level IV stand of the Operations and Checkout Building low bay, the Space Radar Laboratory -1 (SRL-1) antenna is being placed atop a pallet which holds the antenna electronics. SRL-1 is scheduled to fly on Space Shuttle mission STS-59 next year. It is comprised of two different imaging radars, the Spaceborne Imaging Radar-C (SIR-C) and the X-band Synthetic Aperture Radar (X-SAR). These radars are the most advanced of their kind to fly in space to date, and will allow scientists to make highly detailed studies of the Earth's surface on a global scale. An Interface Verification Test of the antenna and a Mission Sequence Test will be performed on the fully assembled SRL-1 later this month.

  18. RADAR Reveals Titan Topography

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

    2005-01-01

    The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

  19. Development and characterization analysis of a radar polarimeter

    NASA Technical Reports Server (NTRS)

    Bong, S.; Blanchard, A. J.

    1983-01-01

    The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided.

  20. Space Radar Image of Kilauea, Hawaii - interferometry 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This X-band image of the volcano Kilauea was taken on October 4, 1994, by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. The area shown is about 9 kilometers by 13 kilometers (5.5 miles by 8 miles) and is centered at about 19.58 degrees north latitude and 155.55 degrees west longitude. This image and a similar image taken during the first flight of the radar instrument on April 13, 1994 were combined to produce the topographic information by means of an interferometric process. This is a process by which radar data acquired on different passes of the space shuttle is overlaid to obtain elevation information. Three additional images are provided showing an overlay of radar data with interferometric fringes; a three-dimensional image based on altitude lines; and, finally, a topographic view of the region. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo

  1. Reconfigurable metasurface aperture for security screening and microwave imaging

    NASA Astrophysics Data System (ADS)

    Sleasman, Timothy; Imani, Mohammadreza F.; Boyarsky, Michael; Pulido-Mancera, Laura; Reynolds, Matthew S.; Smith, David R.

    2017-05-01

    Microwave imaging systems have seen growing interest in recent decades for applications ranging from security screening to space/earth observation. However, hardware architectures commonly used for this purpose have not seen drastic changes. With the advent of metamaterials a wealth of opportunities have emerged for honing metasurface apertures for microwave imaging systems. Recent thrusts have introduced dynamic reconfigurability directly into the aperture layer, providing powerful capabilities from a physical layer with considerable simplicity. The waveforms generated from such dynamic metasurfaces make them suitable for application in synthetic aperture radar (SAR) and, more generally, computational imaging. In this paper, we investigate a dynamic metasurface aperture capable of performing microwave imaging in the K-band (17.5-26.5 GHz). The proposed aperture is planar and promises an inexpensive fabrication process via printed circuit board techniques. These traits are further augmented by the tunability of dynamic metasurfaces, which provides the dexterity necessary to generate field patterns ranging from a sequence of steered beams to a series of uncorrelated radiation patterns. Imaging is experimentally demonstrated with a voltage-tunable metasurface aperture. We also demonstrate the aperture's utility in real-time measurements and perform volumetric SAR imaging. The capabilities of a prototype are detailed and the future prospects of general dynamic metasurface apertures are discussed.

  2. Seasat radar geomorphic applications in coastal and wetland environments, southeastern U.S

    NASA Technical Reports Server (NTRS)

    Macdonald, H. C.

    1981-01-01

    The application of Seasat Synthetic Aperture Radar (SAR) to the assessment of terrain conditions in coastal environments is considered. Drainage patterns and plant community spatial relationships can be adequately mapped as is shown by Seasat L-band imagery of the southeastern Gulf Coast and Atlantic Coastal Plain. Anomalously bright radar signatures are identified as characteristic of mangrove and cypress swamps. Marshes have a low radar return, less than that from non-marsh areas and open water in tidal channels. Drainage patterns for coastal plain transition zones can also be determined. Spaceborne imaging radar provides information which complements geomorphic analyses presently obtained with optical sensors.

  3. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    ,

    2003-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Imagery and Mapping Agency (NIMA), the U.S. Geological Survey (USGS) is now distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project between NASA and NIMA to map the Earth's land surface in three dimensions at a level of detail unprecedented for such a large area. Flown aboard the NASA Space Shuttle Endeavour February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface, for most of the area between 60? N. and 56? S. latitude. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected specifically with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  4. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    ,

    2009-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  5. Maximum a posteriori classification of multifrequency, multilook, synthetic aperture radar intensity data

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Chellappa, R.

    1993-01-01

    We present a maximum a posteriori (MAP) classifier for classifying multifrequency, multilook, single polarization SAR intensity data into regions or ensembles of pixels of homogeneous and similar radar backscatter characteristics. A model for the prior joint distribution of the multifrequency SAR intensity data is combined with a Markov random field for representing the interactions between region labels to obtain an expression for the posterior distribution of the region labels given the multifrequency SAR observations. The maximization of the posterior distribution yields Bayes's optimum region labeling or classification of the SAR data or its MAP estimate. The performance of the MAP classifier is evaluated by using computer-simulated multilook SAR intensity data as a function of the parameters in the classification process. Multilook SAR intensity data are shown to yield higher classification accuracies than one-look SAR complex amplitude data. The MAP classifier is extended to the case in which the radar backscatter from the remotely sensed surface varies within the SAR image because of incidence angle effects. The results obtained illustrate the practicality of the method for combining SAR intensity observations acquired at two different frequencies and for improving classification accuracy of SAR data.

  6. Radar for Measuring Soil Moisture Under Vegetation

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya

    2004-01-01

    A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.

  7. Remote sensing at the University of Kansas in radar systems

    NASA Technical Reports Server (NTRS)

    Moore, R. K.

    1970-01-01

    Demonstration that a spectral response across an octave bandwidth in the microwave region is as variable as the comparable response in the visible and infrared region is a major mile-stone and indicates the potential of polypanchromatic radar systems is analogous with that of color photography. Averaging of the returns from a target element appears necessary to obtain a grey scale adequate for many earth-science applications of radar systems. This result can be obtained either by azimuth averaging or by the use of panchromatic techniques (range averaging). Improvement with panchromatic techniques has been demonstrated both with a landbased electromagnetic system and with an ultrasonic simulator. The advantage of the averaging achieved in azimuth with the real-aperture version of the DPD-2 when compared with the synthetic aperture version confirms the concept.

  8. Modifications to the synthetic aperture microwave imaging diagnostic.

    PubMed

    Brunner, K J; Chorley, J C; Dipper, N A; Naylor, G; Sharples, R M; Taylor, G; Thomas, D A; Vann, R G L

    2016-11-01

    The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. The diagnostic has also been installed on the NSTX-U and is acquiring data since May 2016.

  9. Workshop on Radar Investigations of Planetary and Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.

  10. Shallow magma system of Kilauea volcano investigated using L-band synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Fukushima, Y.; Sinnett, D. K.; Segall, P.

    2009-12-01

    L-band synthetic aperture radar (SAR) images on Kilauea volcano have been archived by Japanese JERS-1 (1992-1998) and ALOS (2006-) satellites. L-band interferometric SAR (InSAR) can measure displacements in a broader region compared to C-band, thanks to higher phase coherence on vegetated areas. We made InSAR analyses on Kilauea using the following L-band data sets: J1) two JERS-1 images, acquired on 20 Oct. 1992 and 1 Mar. 1993 from a descending orbit (RSP path 589) with off-nadir angle of 34.3 degrees, J2) three JERS-1 images, acquired between 8 Oct. 1993 and 3 Jul. 1997 from a descending orbit (RSP path 590) with off-nadir angle of 34.3 degrees, A1) 13 ALOS images, acquired between 24 Jun. 2006 and 14 Feb. 2009 from an ascending orbit with off-nadir angle 9.9 degrees, and A2) 11 ALOS images, acquired between 21 May 2006 and 26 Feb. 2009 from a descending orbit with off-nadir angle 9.9 degrees. One-second SRTM digital elevation data were used to remove the topographic phase. The interferogram of the data set J1 contains signals of 1) a maximum of about 30 cm of range decrease resulting from a dike intrusion in the Makaopuhi crater area, 2) about 10 cm of maximum range increase in the Pu`u `O`o crater area, and 3) a few cm of range increase along the East Rift Zone (ERZ) between the summit and Pu`u `O`o craters. An interferogram (8 Oct. 1993 - 3 Jul. 1997) of the data set J2 indicates 1) range increase (maximum 7 cm/yr) in both the summit and Pu`u `O`o areas, 2) range increase (maximum 5 cm/yr) along the ERZ between the summit and Makaopuhi crater, and 3) range decrease (maximum 6cm/yr) on the southern flank near the coast that is consistent with a seaward movement of the southern flank. A small baseline subset InSAR time-series analysis was performed using all the images of the data sets A1 and A2, assuming that the data acquisitions had been made in pure vertical direction. The analysis period includes the 2007 Father's day dike intrusion. A preliminary result

  11. Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications

    PubMed Central

    He, Chengbing; Xi, Rui; Wang, Han; Jing, Lianyou; Shi, Wentao; Zhang, Qunfei

    2017-01-01

    Phase-coherent underwater acoustic (UWA) communication systems typically employ multiple hydrophones in the receiver to achieve spatial diversity gain. However, small underwater platforms can only carry a single transducer which can not provide spatial diversity gain. In this paper, we propose single-carrier with frequency domain equalization (SC-FDE) for phase-coherent synthetic aperture acoustic communications in which a virtual array is generated by the relative motion between the transmitter and the receiver. This paper presents synthetic aperture acoustic communication results using SC-FDE through data collected during a lake experiment in January 2016. The performance of two receiver algorithms is analyzed and compared, including the frequency domain equalizer (FDE) and the hybrid time frequency domain equalizer (HTFDE). The distances between the transmitter and the receiver in the experiment were about 5 km. The bit error rate (BER) and output signal-to-noise ratio (SNR) performances with different receiver elements and transmission numbers were presented. After combining multiple transmissions, error-free reception using a convolution code with a data rate of 8 kbps was demonstrated. PMID:28684683

  12. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array—Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-01-01

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813

  13. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    PubMed

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  14. Feasibility of sea ice typing with synthetic aperture radar (SAR): Merging of Landsat thematic mapper and ERS 1 SAR satellite imagery

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Heinrichs, John

    1994-01-01

    Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and Landsat thematic mapper (TM) images were acquired for the same area in the Beaufort Sea, April 16 and 18, 1992. The two image pairs were colocated to the same grid (25-m resolution), and a supervised ice type classification was performed on the TM images in order to classify ice free, nilas, gray ice, gray-white ice, thin first-year ice, medium and thick first-year ice, and old ice. Comparison of the collocated SAR pixels showed that ice-free areas can only be classified under calm wind conditions (less than 3 m/s) and for surface winds greater than 10 m/s based on the backscattering coefficient alone. This is true for pack ice regions during the cold months of the year where ice-free areas are spatially limited and where the capillary waves that cause SAR backscatter are dampened by entrained ice crystals. For nilas, two distinct backscatter classes were found at -17 dB and at -10 dB. The higher backscattering coefficient is attributed to the presence of frost flowers on light nilas. Gray and gray-white ice have a backscatter signature similar to first-year ice and therefore cannot be distinguished by SAR alone. First-year and old ice can be clearly separated based on their backscattering coefficient. The performance of the Geophysical Processor System ice classifier was tested against the Landsat derived ice products. It was found that smooth first-year ice and rough first-year ice were not significantly different in the backscatter domain. Ice concentration estimates based on ERS 1 C band SAR showed an error range of 5 to 8% for high ice concentration regions, mainly due to misclassified ice-free and smooth first-year ice areas. This error is expected to increase for areas of lower ice concentration. The combination of C band SAR and TM channels 2, 4, and 6 resulted in ice typing performance with an estimated accuracy of 90% for all seven ice classes.

  15. Measuring the Impact of Wildfire on Active Layer Thickness in a Discontinuous Permafrost region using Interferometric Synthetic Aperture Radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Michaelides, R. J.; Schaefer, K. M.; Zebker, H. A.; Liu, L.; Chen, J.; Parsekian, A.

    2017-12-01

    In permafrost regions, the active layer is defined as the uppermost portion of the permafrost table that is subject to annual freeze/thaw cycles. The active layer plays a crucial role in surface processes, surface hydrology, and vegetation succession; furthermore, trapped methane, carbon dioxide, and other greenhouse gases in permafrost are released into the atmosphere as permafrost thaws. A detailed understanding of active layer dynamics is therefore critical towards understanding the interactions between permafrost surface processes, freeze/thaw cycles, and climate-especially in regions across the Arctic subject to long-term permafrost degradation. The Yukon-Kuskokwim (YK) delta in southwestern Alaska is a region of discontinuous permafrost characterized by surface lakes, wetlands, and thermokarst depressions. Furthermore, extensive wildfires have burned across the YK delta in 2006, 2007, and 2015, impacting vegetation cover, surface soil moisture, and the active layer. Using data from the ALOS PALSAR, ALOS-2 PALSAR-2, and Sentinel-1A/B space borne synthetic aperture radar (SAR) systems, we generate a series of interferograms over a study site in the YK delta spanning 2007-2011, and 2014-present. Using the ReSALT (Remotely-Sensed Active Layer Thickness) technique, we demonstrate that active layer can be characterized over most of the site from the relative interferometric phase difference due to ground subsidence and rebound associated with the seasonal active layer freeze/thaw cycle. Additionally, we show that this technique successfully discriminates between burned and unburned regions, and can resolve increases in active layer thickness in burned regions on the order of 10's of cms. We use the time series of interferograms to discuss permafrost recovery following wildfire burn, and compare our InSAR observations with GPR and active layer probing data from a 2016 summer field campaign to the study site. Finally, we compare the advantages and disadvantages of

  16. A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere

    PubMed Central

    Guo, Liang; Xing, Mendao; Tang, Yu; Dan, Jing

    2008-01-01

    The spatial resolution of a conventional imaging lidar system is constrained by the diffraction limit of the telescope's aperture. The combination of the lidar and synthetic aperture (SA) processing techniques may overcome the diffraction limit and pave the way for a higher resolution air borne or space borne remote sensor. Regarding the lidar transmitting frequency modulation continuous-wave (FMCW) signal, the motion during the transmission of a sweep and the reception of the corresponding echo were expected to be one of the major problems. The given modified Omega-K algorithm takes the continuous motion into account, which can compensate for the Doppler shift induced by the continuous motion efficiently and azimuth ambiguity for the low pulse recurrence frequency limited by the tunable laser. And then, simulation of Phase Screen (PS) distorted by atmospheric turbulence following the von Karman spectrum by using Fourier Transform is implemented in order to simulate turbulence. Finally, the computer simulation shows the validity of the modified algorithm and if in the turbulence the synthetic aperture length does not exceed the similar coherence length of the atmosphere for SAIL, we can ignore the effect of the turbulence. PMID:27879865

  17. Space Radar Image of Kilauea, Hawaii - Interferometry 1

    NASA Image and Video Library

    1999-05-01

    This X-band image of the volcano Kilauea was taken on October 4, 1994, by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. The area shown is about 9 kilometers by 13 kilometers (5.5 miles by 8 miles) and is centered at about 19.58 degrees north latitude and 155.55 degrees west longitude. This image and a similar image taken during the first flight of the radar instrument on April 13, 1994 were combined to produce the topographic information by means of an interferometric process. This is a process by which radar data acquired on different passes of the space shuttle is overlaid to obtain elevation information. Three additional images are provided showing an overlay of radar data with interferometric fringes; a three-dimensional image based on altitude lines; and, finally, a topographic view of the region. http://photojournal.jpl.nasa.gov/catalog/PIA01763

  18. Space Radar Image of Raco Biomass Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This biomass map of the Raco, Michigan, area was produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. Biomass is the amount of plant material on an area of Earth's surface. Radar can directly sense the quantity and organizational structure of the woody biomass in the forest. Science team members at the University of Michigan used the radar data to estimate the standing biomass for this Raco site in the Upper Peninsula of Michigan. Detailed surveys of 70 forest stands will be used to assess the accuracy of these techniques. The seasonal growth of terrestrial plants, and forests in particular, leads to the temporary storage of large amounts of carbon, which could directly affect changes in global climate. In order to accurately predict future global change, scientists need detailed information about current distribution of vegetation types and the amount of biomass present around the globe. Optical techniques to determine net biomass are frustrated by chronic cloud-cover. Imaging radar can penetrate through cloud-cover with negligible signal losses. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German

  19. Modifications to the synthetic aperture microwave imaging diagnostic

    DOE PAGES

    Brunner, K. J.; Chorley, J. C.; Dipper, N. A.; ...

    2016-09-02

    The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. Finally, the diagnostic has also been installed on the NSTX-U and is acquiring datamore » since May 2016.« less

  20. The role of space borne imaging radars in environmental monitoring: Some shuttle imaging radar results in Asia

    NASA Technical Reports Server (NTRS)

    Imhoff, M.; Vermillion, C.

    1986-01-01

    The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. This paper discusses how synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agriculture land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems discussed.

  1. The role of space borne imaging radars in environmental monitoring: Some shuttle imaging radar results in Asia

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Vermillion, C. H.

    1986-01-01

    The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. How synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather is discussed. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agricultural land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems are discussed.

  2. Assessment of the sensitivity of radar backscatter to seasonal snow and vegetation thaw dynamics in a boreal ecosystem

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Qualls, B.; Hardy, J.

    2002-01-01

    We examine the sensitivity of ERS-1 C-band synthetic aperture radar (SAR) backscatter to springtime snow and vegetation thaw dynamics for boreal forest stands within the BOREAS Southern Study Area (SSA) in Canada during the 1994 winter-spring thaw transition.

  3. Interpreting sea surface slicks on the basis of the normalized radar cross-section model using RADARSAT-2 copolarization dual-channel SAR images

    NASA Astrophysics Data System (ADS)

    Ivonin, D. V.; Skrunes, S.; Brekke, C.; Ivanov, A. Yu.

    2016-03-01

    A simple automatic multipolarization technique for discrimination of main types of thin oil films (of thickness less than the radio wave skin depth) from natural ones is proposed. It is based on a new multipolarization parameter related to the ratio between the damping in the slick of specially normalized resonant and nonresonant signals calculated using the normalized radar cross-section model proposed by Kudryavtsev et al. (2003a). The technique is tested on RADARSAT-2 copolarization (VV/HH) synthetic aperture radar images of slicks of a priori known provenance (mineral oils, e.g., emulsion and crude oil, and plant oil served to model a natural slick) released during annual oil-on-water exercises in the North Sea in 2011 and 2012. It has been shown that the suggested multipolarization parameter gives new capabilities in interpreting slicks visible on synthetic aperture radar images while allowing discrimination between mineral oil and plant oil slicks.

  4. Mapping of sea ice and measurement of its drift using aircraft synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Bryan, M. L.; Elachi, C.; Farr, T.; Campbell, W.

    1979-01-01

    Side-looking radar images of Arctic sea ice were obtained as part of the Arctic Ice Dynamics Joint Experiment. Repetitive coverages of a test site in the Arctic were used to measure sea ice drift, employing single images and blocks of overlapping radar image strips; the images were used in conjunction with data from the aircraft inertial navigation and altimeter. Also, independently measured, accurate positions of a number of ground control points were available. Initial tests of the method were carried out with repeated coverages of a land area on the Alaska coast (Prudhoe). Absolute accuracies achieved were essentially limited by the accuracy of the inertial navigation data. Errors of drift measurements were found to be about + or - 2.5 km. Relative accuracy is higher; its limits are set by the radar image geometry and the definition of identical features in sequential images. The drift of adjacent ice features with respect to one another could be determined with errors of less than + or - 0.2 km.

  5. Sentinel-1 - the radar mission for GMES operational land and sea services

    NASA Astrophysics Data System (ADS)

    Attema, Evert; Bargellini, Pierre; Edwards, Peter; Levrini, Guido; Lokas, Svein; Moeller, Ludwig; Rosich-Tell, Betlem; Secchi, Patrizia; Torres, Ramon; Davidson, Malcolm; Snoeij, Paul

    2007-08-01

    The ESA Sentinels will be the first series of operational satellites to meet the Earth observation needs of the European Union - ESA Global Monitoring for Environment and Security (GMES) programme. Existing and planned space assets will be complemented by new developments from ESA. The first is Sentinel-1, a pair of synthetic aperture radar (SAR) imaging satellites.

  6. Radar Interferometry Detection of Hinge Line Migration on Rutford Ice Stream and Carlson Inlet, Antarctica

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1997-01-01

    Satellite synthetic-aperture radar (SAR) Interferometry is employed to map the hinge line, or limit of tidal flexing, of Rutford Ice Stream and Carlson Inlet, Antarctica, and detect its migration between 1992 and 1996. The hinge line is mapped using a model fit from an elastic beam theory.

  7. Space Radar Image of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional image of the volcano Kilauea was generated based on interferometric fringes derived from two X-band Synthetic Aperture Radar data takes on April 13, 1994 and October 4, 1994. The altitude lines are based on quantitative interpolation of the topographic fringes. The level difference between neighboring altitude lines is 20 meters (66 feet). The ground area covers 12 kilometers by 4 kilometers (7.5 miles by 2.5 miles). The altitude difference in the image is about 500 meters (1,640 feet). The volcano is located around 19.58 degrees north latitude and 155.55 degrees west longitude. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in the interferometry analysis.

  8. Space Radar Image of Mammoth Mountain, California

    NASA Image and Video Library

    1999-05-01

    This false-color composite radar image of the Mammoth Mountain area in the Sierra Nevada Mountains, California, was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 67th orbit on October 3, 1994. The image is centered at 37.6 degrees north latitude and 119.0 degrees west longitude. The area is about 39 kilometers by 51 kilometers (24 miles by 31 miles). North is toward the bottom, about 45 degrees to the right. In this image, red was created using L-band (horizontally transmitted/vertically received) polarization data; green was created using C-band (horizontally transmitted/vertically received) polarization data; and blue was created using C-band (horizontally transmitted and received) polarization data. Crawley Lake appears dark at the center left of the image, just above or south of Long Valley. The Mammoth Mountain ski area is visible at the top right of the scene. The red areas correspond to forests, the dark blue areas are bare surfaces and the green areas are short vegetation, mainly brush. The purple areas at the higher elevations in the upper part of the scene are discontinuous patches of snow cover from a September 28 storm. New, very thin snow was falling before and during the second space shuttle pass. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput Synthetic Aperture Radar processing in preparation for upcoming data-intensive SAR missions. The image released here was produced as part of this experimental effort. http://photojournal.jpl.nasa.gov/catalog/PIA01746

  9. Wide-Angle Multistatic Synthetic Aperture Radar: Focused Image Formation and Aliasing Artifact Mitigation

    DTIC Science & Technology

    2005-07-01

    Progress in Applied Computational Electro- magnetics. ACES, Syracuse, NY, 2004. 91. Mahafza, Bassem R. Radar Systems Analysis and Design Using MATLAB...Figure Page 4.5. RCS chamber coordinate system . . . . . . . . . . . . . . . . . 88 4.6. AFIT’s RCS Chamber...4.11. Frequency domain schematic of RCS data collection . . . . . . 98 4.12. Spherical coordinate system for RCS data calibration . . . . . . 102 4.13

  10. Radar Image of Galapagos Island

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image showing part of Isla Isabella in the western Galapagos Islands. It was taken by the L-band radar in HH polarization from the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar on the 40th orbit of the space shuttle Endeavour. The image is centered at about 0.5 degree south latitude and 91 degrees west longitude and covers an area of 75 by 60 kilometers (47 by 37 miles). The radar incidence angle at the center of the image is about 20 degrees.

    The western Galapagos Islands, which lie about 1,200 kilometers (750 miles) west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii. Since the time of Charles Darwin's visit to the area in 1835, there have been over 60 recorded eruptions of these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. A small portion of Isla Fernandina is visible in the extreme upper left corner of the image.

    The Galapagos Islands are one of the SIR-C/X-SAR supersites and data of this area will be taken several times during the flight to allow scientists to conduct topographic change studies and to search for different lava flow types, ash deposits and fault lines.

    Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes

  11. Mathematical modeling and simulation of the space shuttle imaging radar antennas

    NASA Technical Reports Server (NTRS)

    Campbell, R. W.; Melick, K. E.; Coffey, E. L., III

    1978-01-01

    Simulations of space shuttle synthetic aperture radar antennas under the influence of space environmental conditions were carried out at L, C, and X-band. Mathematical difficulties in modeling large, non-planar array antennas are discussed, and an approximate modeling technique is presented. Results for several antenna error conditions are illustrated in far-field profile patterns, earth surface footprint contours, and summary graphs.

  12. Lava-flow characterization at Pisgah Volcanic Field, California, with multiparameter imaging radar

    USGS Publications Warehouse

    Gaddis, L.R.

    1992-01-01

    Multi-incidence-angle (in the 25?? to 55?? range) radar data aquired by the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) at three wavelengths simultaneously and displayed at three polarizations are examined for their utility in characterizing lava flows at Pisgah volcanic field, California. Pisgah lava flows were erupted in three phases; flow textures consist of hummocky pahoehoe, smooth pahoehoe, and aa (with and without thin sedimentary cover). Backscatter data shown as a function of relative age of Pisgah flows indicate that dating of lava flows on the basis of average radar backscatter may yield ambiguous results if primary flow textures and modification processes are not well understood. -from Author

  13. Unmanned Aircraft Systems (UAS) Sensor and Targeting

    DTIC Science & Technology

    2010-07-27

    4.7.1 Objective. The objective of this subtest is to determine the detection performance of the Synthetic Aperture Radar (SAR) with the radar...Detection SAR – Synthetic Aperture Radar 4.7.3 Data Required. Section 5.1 outlines general test data required. The following additional data may...m – meter No. – Number PC – Probability of Classification SAR – Synthetic Aperture Radar 4.8.3 Data Required. Section 5.1 outlines

  14. Characterization of wetland, forest, and agricultural ecosystems in Belize with airborne radar (AIRSAR)

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Rey-Benayas, Jose Maria; Paris, Jack F.

    1992-01-01

    The Shuttle Imaging Radar-C/X-SAR (Synthetic Aperture Radar) Experiment includes the study of wetland dynamics in the seasonal tropics. In preparation for these wetland studies, airborne P, L, and C band radar (AIRSAR) data of Belize, Guatemala, and Mexico acquired by NASA and JPL in March 1990 were analyzed. The first phase of our study focuses on AIRSAR data from the Gallon Jug test site in northwestern Belize, for which ground data were also collected during the three days prior to the overflight. One of the main objectives of the Gallon Jug study is to develop a method for characterizing wetland vegetation types and their flooding status with multifrequency polarimetric radar data.

  15. STS-68 radar image: Kilauea, Hawaii

    NASA Image and Video Library

    1994-10-10

    STS068-S-054 (10 October 1994) --- This is a deformation map of the south flank of Kilauea volcano on the big island of Hawaii, centered at 19.5 degrees north latitude and 155.25 degrees west longitude. The map was created by combining interferometric radar data - that is data acquired on different passes of the Space Shuttle Endeavour which are then overlaid to obtain elevation information - acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) during its first flight in April 1994 and its second flight in October 1994. The area shown is approximately 40 by 80 kilometers (25 by 50 miles). North is toward the upper left of the image. The colors indicate the displacement of the surface in that direction that the radar instrument was pointed (toward the right of the image) in the six months between images. The analysis of ground movement is preliminary, but appears consistent with the motions detected by the Global Positioning System ground receivers that have been used over the past five years. The south flank of the Kilauea volcano is among the most rapidly deforming terrain's on Earth. Several regions show motion over the six-month time period. Most obvious is at the base of Hilina Pali, where 10 centimeters (4 inches) or more of crustal deformation can be seen in a concentrated area near the coastline. On a more localized scale, the currently active Pu'u O'o summit also shows about 10 centimeters (4 inches) of change near the vent area. Finally, there are indications of additional movement along the upper southwest rift zone, just below the Kilauea caldera in the image. Deformation of the south flank is believed to be the result of movements along faults deep beneath the surface of the volcano, as well as injections of magma, or molten rock, into the volcano's "plumbing" system. Detection of ground motions from space has proven to be a unique capability of imaging radar technology. Scientists hope to use deformation data

  16. Sinking Coastlines: Land Subsidence at Aquaculture Facilities in the Yellow River Delta, China, measured with Differential Synthetic Aperture Radar (D-InSAR)

    NASA Astrophysics Data System (ADS)

    Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J. P.

    2013-12-01

    Land subsidence in river deltas is a global problem. It heightens storm surges, salinates groundwater, intensifies river flooding, destabilizes infrastructure and accelerates shoreline retreat. Measurements of delta subsidence typically rely on point measures such as GPS devices, tide gauges or extensometers, but spatial coverage is needed to fully assess risk across river deltas. Differential Interferometric Synthetic Aperture Radar (D-InSAR) is a satellite-based technique that can provide maps of ground deformation with mm to cm-scale vertical resolution. We apply D-InSAR to the coast of the Yellow River Delta in China, which is dominated by aquaculture facilities and has experienced severe coastal erosion in the last twenty years. We extract deformation patterns from dry land adjacent to aquaculture facilities along the coast, allowing the first measurements of subsidence at a non-urban delta shoreline. Results show classic cones-of-depression surrounding aquaculture facilities, likely due to groundwater pumping. Subsidence rates are as high as 250 mm/y at the largest facility on the delta. These rates exceed local and global average sea level rise by nearly two orders of magnitude. If these rates continue, large aquaculture facilities in the area could induce more than a meter of relative sea level rise every five years. Given the global explosion in fish farming in recent years, these results also suggest that similar subsidence and associated relative sea level rise may present a significant hazard for other Asian megadeltas. False-color MODIS image of the Yellow River delta in September 2012. Water appears dark blue, highlighting the abundance of aquaculture facilities along the coast. Green land is primarily agricultural; brown is urban. Red boxes indicate locations of aquaculture facilities examined in this study. Figure from Higgins, S., Overeem, I., Tanaka, A., & Syvitski, J.P.M., (2013), Land Subsidence at Aquaculture Facilities in the Yellow River

  17. Forest discrimination with multipolarization imaging radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.

    1985-01-01

    The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical properties, false-color composite images were compared to maps of forest stands in the timber compartment. In decreasing order, the most useful correlative forest data are stand basal area, forest age, site condition index, and forest management type. It is found that multipolarization images discriminate variation in tree density and difference in the amount of understory, but do not discriminate between evergreen and deciduous forest types.

  18. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method.

  19. Synthetic-Aperture Silhouette Imaging (SASI)

    NASA Astrophysics Data System (ADS)

    Paxman, R.

    2016-09-01

    The problem of ground-based fine-resolution imaging of geosynchronous satellites continues to be an important unsolved space-surveillance problem. We are investigating a passive-illumination approach that is radically different from amplitude, intensity, or heterodyne interferometry approaches. The approach, called Synthetic-Aperture Silhouette Imaging (SASI), produces a fine-resolution image of the satellite silhouette. When plane-wave radiation emanating from a bright star is occluded by a GEO satellite, then the light is diffracted and a moving diffraction pattern (shadow) is cast on the surface of the earth. With prior knowledge of the satellite orbit and star location, the track of the moving shadow can be predicted with high precision. A linear array of inexpensive hobby telescopes can be deployed roughly perpendicular to the shadow track to collect a time history of the star intensity as the shadow passes by. A phase-retrieval algorithm, using the strong constraint that the occlusion of the satellite is a binary-valued silhouette, allows us to retrieve the missing phase and reconstruct a fine-resolution image of the silhouette. Silhouettes are highly informative, providing diagnostic information about deployment of antennas and solar panels, enabling satellite pose estimation, and revealing the presence and orientation of neighboring satellites in rendezvous and proximity operations.

  20. Preliminary radar systems analysis for Venus orbiter missions

    NASA Technical Reports Server (NTRS)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  1. Space Radar Image of Wadi Kufra, Libya

    NASA Image and Video Library

    1998-04-14

    The ability of a sophisticated radar instrument to image large regions of the world from space, using different frequencies that can penetrate dry sand cover, produced the discovery in this image: a previously unknown branch of an ancient river, buried under thousands of years of windblown sand in a region of the Sahara Desert in North Africa. This area is near the Kufra Oasis in southeast Libya, centered at 23.3 degrees north latitude, 22.9 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on its 60th orbit on October 4, 1994. This SIR-C image reveals a system of old, now inactive stream valleys, called "paleodrainage systems, http://photojournal.jpl.nasa.gov/catalog/PIA01310

  2. Grounding line migration of Petermann Gletscher, north Greenland, detected using satellite radar interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1997-01-01

    Ice Sheet grounding lines are sensitive indicator of changes in ice thickness, sea level or elevation of the sea bed. Here, we use the synthetic-aperture radar interferometry technique to detect the migration of thel imit of tidal flexing, or hinge line, of Petermann Gletscher, a major outlet glacier of north Greenland which develops an extensive floating tongue.

  3. Wide area coverage radar imaging satellite for earth applications. [surveillance and mapping of ice on Great Lakes

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Ramler, J. R.

    1974-01-01

    A preliminary study was made of a radar imaging satellite for earth applications. A side-looking synthetic-aperture radar was considered and the feasibility of obtaining a wide area coverage to reduce the time required to image a given area was investigated. Two basic approaches were examined; low altitude sun-synchronous orbits using a multibeam/multifrequency radar system and equatorial orbits up to near-synchronous altitude using a single beam system. Surveillance and mapping of ice on the Great Lakes was used as a typical application to focus the study effort.

  4. Identification of sea ice types in spaceborne synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Rignot, Eric; Holt, Benjamin; Onstott, R.

    1992-01-01

    This study presents an approach for identification of sea ice types in spaceborne SAR image data. The unsupervised classification approach involves cluster analysis for segmentation of the image data followed by cluster labeling based on previously defined look-up tables containing the expected backscatter signatures of different ice types measured by a land-based scatterometer. Extensive scatterometer observations and experience accumulated in field campaigns during the last 10 yr were used to construct these look-up tables. The classification approach, its expected performance, the dependence of this performance on radar system performance, and expected ice scattering characteristics are discussed. Results using both aircraft and simulated ERS-1 SAR data are presented and compared to limited field ice property measurements and coincident passive microwave imagery. The importance of an integrated postlaunch program for the validation and improvement of this approach is discussed.

  5. Radar image and data fusion for natural hazards characterisation

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Jixian; Zhang, Yonghong

    2010-01-01

    Fusion of synthetic aperture radar (SAR) images through interferometric, polarimetric and tomographic processing provides an all - weather imaging capability to characterise and monitor various natural hazards. This article outlines interferometric synthetic aperture radar (InSAR) processing and products and their utility for natural hazards characterisation, provides an overview of the techniques and applications related to fusion of SAR/InSAR images with optical and other images and highlights the emerging SAR fusion technologies. In addition to providing precise land - surface digital elevation maps, SAR - derived imaging products can map millimetre - scale elevation changes driven by volcanic, seismic and hydrogeologic processes, by landslides and wildfires and other natural hazards. With products derived from the fusion of SAR and other images, scientists can monitor the progress of flooding, estimate water storage changes in wetlands for improved hydrological modelling predictions and assessments of future flood impacts and map vegetation structure on a global scale and monitor its changes due to such processes as fire, volcanic eruption and deforestation. With the availability of SAR images in near real - time from multiple satellites in the near future, the fusion of SAR images with other images and data is playing an increasingly important role in understanding and forecasting natural hazards.

  6. InSAR datum connection using GNSS-augmented radar transponders

    NASA Astrophysics Data System (ADS)

    Mahapatra, Pooja; der Marel, Hans van; van Leijen, Freek; Samiei-Esfahany, Sami; Klees, Roland; Hanssen, Ramon

    2018-01-01

    Deformation estimates from Interferometric Synthetic Aperture Radar (InSAR) are relative: they form a `free' network referred to an arbitrary datum, e.g. by assuming a reference point in the image to be stable. However, some applications require `absolute' InSAR estimates, i.e. expressed in a well-defined terrestrial reference frame, e.g. to compare InSAR results with those of other techniques. We propose a methodology based on collocated InSAR and Global Navigation Satellite System (GNSS) measurements, achieved by rigidly attaching phase-stable millimetre-precision compact active radar transponders to GNSS antennas. We demonstrate this concept through a simulated example and practical case studies in the Netherlands.

  7. Initial processing and analysis of forward- and side-looking data from the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar

    NASA Astrophysics Data System (ADS)

    Ranney, Kenneth; Phelan, Brian; Sherbondy, Kelly; Kirose, Getachew; Smith, Gregory; Clark, John; Harrison, Arthur; Ressler, Marc; Nguyen, Lam; Narayanan, Ram

    2017-05-01

    A new, versatile, UHF/L band, ultrawideband (UWB), vehicle-mounted radar system developed at the U.S. Army Research Laboratory (ARL) has recently been exercised at an arid U.S. test site. The unique switching scheme implemented to record data from all receive channels is described, along with the current calibration procedure. Radar and global positioning system (GPS) data collected in both forwardand side-looking configurations are processed, and synthetic aperture radar (SAR) images are formed. Results are presented for various target emplacement scenarios.

  8. A Geosynchronous Synthetic Aperture Provides for Disaster Management, Measurement of Soil Moisture, and Measurement of Earth-Surface Dynamics

    NASA Technical Reports Server (NTRS)

    Madsen, Soren; Komar, George (Technical Monitor)

    2001-01-01

    A GEO-based Synthetic Aperture Radar (SAR) could provide daily coverage of basically all of North and South America with very good temporal coverage within the mapped area. This affords a key capability to disaster management, tectonic mapping and modeling, and vegetation mapping. The fine temporal sampling makes this system particularly useful for disaster management of flooding, hurricanes, and earthquakes. By using a fairly long wavelength, changing water boundaries caused by storms or flooding could be monitored in near real-time. This coverage would also provide revolutionary capabilities in the field of radar interferometry, including the capability to study the interferometric signature immediately before and after an earthquake, thus allowing unprecedented studies of Earth-surface dynamics. Preeruptive volcano dynamics could be studied as well as pre-seismic deformation, one of the most controversial and elusive aspects of earthquakes. Interferometric correlation would similarly allow near real-time mapping of surface changes caused by volcanic eruptions, mud slides, or fires. Finally, a GEO SAR provides an optimum configuration for soil moisture measurement that requires a high temporal sampling rate (1-2 days) with a moderate spatial resolution (1 km or better). From a technological point of view, the largest challenges involved in developing a geosynchronous SAR capability relate to the very large slant range distance from the radar to the mapped area. This leads to requirements for large power or alternatively very large antenna, the ability to steer the mapping area to the left and right of the satellite, and control of the elevation and azimuth angles. The weight of this system is estimated to be 2750 kg and it would require 20 kW of DC-power. Such a system would provide up to a 600 km ground swath in a strip-mapping mode and 4000 km dual-sided mapping in a scan-SAR mode.

  9. Space Radar Image of Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Data acquired on April 13, 1994 and on October 4, 1994 from the X-band Synthetic Aperture Radar on board the space shuttle Endeavour were used to generate interferometric fringes, which were overlaid on the X-SAR image of Kilauea. The volcano is centered in this image at 19.58 degrees north latitude and 155.55 degrees west longitude. The image covers about 9 kilometers by 13 kilometers (5.6 miles by 8 miles). The X-band fringes correspond clearly to the expected topographic image. The yellow line indicates the area below which was used for the three-dimensional image using altitude lines. The yellow rectangular frame fences the area for the final topographic image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in interferometry analysis.

  10. Space Radar Image of Kliuchevskoi Volcano,Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This photograph of the eruption of Kliuchevskoi volcano, Kamchatka, Russia was taken by space shuttle Endeavour astronauts during the early hours of the eruption on September 30, 1994. The ash plume, which reached heights of more than 18 kilometers (50,000 feet), is emerging from a vent on the north flank of Kliuchevskoi, partially hidden by the plume and its shadow in this view. The photograph is oriented with north toward the bottom, for comparison with the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) image (P-44823) that was acquired a few days later. Near the center of the photo, a small whitish steam plume may be seen emanating from the growing lava dome of a companion volcano, Bezymianny.

  11. Near Real-Time Use of Optical Remote Sensing and Synthetic Aperture Radar for Response to Central U.S. Flooding in Late April-Early May 2017

    NASA Astrophysics Data System (ADS)

    Bell, J. R.; Schultz, L. A.; Jones, M.; Molthan, A.; Arko, S. A.; Hogenson, K.; Meyer, F. J.

    2017-12-01

    In late April and early May 2017, heavy rainfall across Missouri led to extensive flooding along the Missouri and Mississippi River basins in the Central United States. Determining the extent of flooding is critical for response organizations to properly deploy personnel and other assets involved in preparedness, mitigation, response, and recovery efforts. The Federal Emergency Management Agency (FEMA) relies on geospatial flood extent data, among other data, to estimate the impacts to population and infrastructure in order to prepare and engage response activities in support of the affected states and communities. To assist FEMA in mapping flood extent in a near real-time, the NASA Earth Science Disasters Program coordinates a multi-NASA center response to provide satellite imagery and products to FEMA during major flood events to supplement their analysis tools and capabilities. Scientists at the NASA Short-term Prediction Research and Transition (SPoRT) Center at Marshall Space Flight Center, who led this particular response, have been working with the Alaska Satellite Facility (ASF) at the University of Alaska Fairbanks to provide synthetic aperture radar (SAR) imagery and derived flood products to FEMA's geospatial response team in support of flooding events. Combined, these efforts helped to provide preliminary flood mapping to FEMA from a broad constellation of remote sensors. The presentation will describe the various products available throughout the response event, post-event collaborations examining these products in comparison to additional modeling and data collection by FEMA, training needs to improve product use, and more efficient methods for data delivery. Lessons learned will highlight opportunities for future work and improvement, and guide other ongoing efforts to develop collaborations that would also support other domestic emergency response activities, such as those led by the National Guard Bureau, which assists individual state Guard units.

  12. Seasat views North America, the Caribbean, and Western Europe with imaging radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Blom, R. G.; Bryan, M. L.; Daily, M.; Dixon, T. H.; Elachi, C.; Xenos, E. C.

    1980-01-01

    Forty-one digitally correlated Seasat synthetic-aperture radar images of land areas in North America, the Caribbean, and Western Europe are presented to demonstrate this microwave orbital imagery. The characteristics of the radar images, the types of information that can be extracted from them, and certain of their inherent distortions are briefly described. Each atlas scene covers an area of 90 X 90 kilometers, with the exception of the one that is the Nation's Capital. The scenes are grouped according to salient features of geology, hydrology and water resources, urban landcover, or agriculture. Each radar image is accompanied by a corresponding image in the optical or near-infrared range, or by a simple sketch map to illustrate features of interest. Characteristics of the Seasat radar imaging system are outlined.

  13. Surface roughness measuring system. [synthetic aperture radar measurements of ocean wave height and terrain peaks

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1978-01-01

    Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.

  14. Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging

    PubMed Central

    Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao

    2016-01-01

    Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method’s applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method’s advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114

  15. Titan's Elusive Lakes? Properties and Context of Dark Spots in Cassini TA Radar Data

    NASA Technical Reports Server (NTRS)

    Lorenz, R. D.; Elachi, C.; Stiles, B.; West, R.; Janssen, M.; Lopes, R.; Stofan, E.; Paganelli, F.; Wood, C.; Kirk, R.

    2005-01-01

    Titan's atmospheric methane abundance suggests the likelihood of a surface reservoir of methane and a surface sink for its photochemical products, which might also be predominantly liquid. Although large expanses of obvious hydrocarbon seas have not been unambiguously observed, a number of rather radar-dark spots up to approximately 30 km across are observed in the Synthetic Aperture Radar (SAR) data acquired during the Cassini TA encounter on October 26th 2004. Here we review the properties and setting of these dark spots to explore whether these may be hydrocarbon lakes.

  16. MIMO-OFDM signal optimization for SAR imaging radar

    NASA Astrophysics Data System (ADS)

    Baudais, J.-Y.; Méric, S.; Riché, V.; Pottier, É.

    2016-12-01

    This paper investigates the optimization of the coded orthogonal frequency division multiplexing (OFDM) transmitted signal in a synthetic aperture radar (SAR) context. We propose to design OFDM signals to achieve range ambiguity mitigation. Indeed, range ambiguities are well known to be a limitation for SAR systems which operates with pulsed transmitted signal. The ambiguous reflected signal corresponding to one pulse is then detected when the radar has already transmitted the next pulse. In this paper, we demonstrate that the range ambiguity mitigation is possible by using orthogonal transmitted wave as OFDM pulses. The coded OFDM signal is optimized through genetic optimization procedures based on radar image quality parameters. Moreover, we propose to design a multiple-input multiple-output (MIMO) configuration to enhance the noise robustness of a radar system and this configuration is mainly efficient in the case of using orthogonal waves as OFDM pulses. The results we obtain show that OFDM signals outperform conventional radar chirps for range ambiguity suppression and for robustness enhancement in 2 ×2 MIMO configuration.

  17. Carotid lesion characterization by synthetic-aperture-imaging techniques with multioffset ultrasonic probes

    NASA Astrophysics Data System (ADS)

    Capineri, Lorenzo; Castellini, Guido; Masotti, Leonardo F.; Rocchi, Santina

    1992-06-01

    This paper explores the applications of a high-resolution imaging technique to vascular ultrasound diagnosis, with emphasis on investigation of the carotid vessel. With the present diagnostic systems, it is difficult to measure quantitatively the extension of the lesions and to characterize the tissue; quantitative images require enough spatial resolution and dynamic to reveal fine high-risk pathologies. A broadband synthetic aperture technique with multi-offset probes is developed to improve the lesion characterization by the evaluation of local scattering parameters. This technique works with weak scatterers embedded in a constant velocity medium, large aperture, and isotropic sources and receivers. The features of this technique are: axial and lateral spatial resolution of the order of the wavelength, high dynamic range, quantitative measurements of the size and scattering intensity of the inhomogeneities, and capabilities of investigation of inclined layer. The evaluation of the performances in real condition is carried out by a software simulator in which different experimental situations can be reproduced. Images of simulated anatomic test-objects are presented. The images are obtained with an inversion process of the synthesized ultrasonic signals, collected on the linear aperture by a limited number of finite size transducers.

  18. Comparison of Shuttle Imaging Radar-B ocean wave image spectra with linear model predictions based on aircraft measurements

    NASA Technical Reports Server (NTRS)

    Monaldo, Frank M.; Lyzenga, David R.

    1988-01-01

    During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.

  19. Polarization differences in airborne ground penetrating radar performance for landmine detection

    NASA Astrophysics Data System (ADS)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  20. Parametric analysis of synthetic aperture radar data acquired over truck garden vegetation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1984-01-01

    An airborne X-band SAR acquired multipolarization and multiflight pass SAR images over a truck garden vegetation area. Based on a variety of land cover and row crop direction variations, the vertical (VV) polarization data contain the highest contrast, while cross polarization contains the least. When the radar flight path is parallel to the row direction, both horizontal (HH) and VV polarization data contain very high return which masks out the specific land cover that forms the row structure. Cross polarization data are not that sensitive to row orientation. The inclusion of like and cross polarization data help delineate special surface features (e.g., row crop against non-row-oriented land cover, very-rough-surface against highly row-oriented surface).

  1. STS-68 radar image: Glasgow, Missouri

    NASA Image and Video Library

    1994-10-07

    STS068-S-055 (7 October 1994) --- This is a false-color L-Band image of an area near Glasgow, Missouri, centered at about 39.2 degrees north latitude and 92.8 degrees west longitude. The image was acquired using the L-Band radar channel (horizontally transmitted and received and horizontally transmitted and vertically received) polarization's combined. The data were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour on orbit 50 on October 3, 1994. The area shown is approximately 37 by 25 kilometers (23 by 16 miles). The radar data, coupled with pre-flood aerial photography and satellite data and post-flood topographic and field data, are being used to evaluate changes associated with levee breaks in land forms, where deposits formed during the widespread flooding in 1993 along the Missouri and Mississippi Rivers. The distinct radar scattering properties of farmland, sand fields and scoured areas will be used to inventory flood plains along the Missouri River and determine the processes by which these areas return to preflood conditions. The image shows one such levee break near Glasgow, Missouri. In the upper center of the radar image, below the bend of the river, is a region covered by several meters of sand, shown as dark regions. West (left) of the dark areas, a gap in the levee tree canopy shows the area where the levee failed. Radar data such as these can help scientists more accurately assess the potential for future flooding in this region and how that might impact surrounding communities. Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses the three microwave wavelengths: the L-Band (24 centimeters), C-Band (6 centimeters) and X-Band (3 centimeters). The multi

  2. Applications of Radar Interferometric Techniques to Assess Natural Hazards and their Controlling Factors

    NASA Astrophysics Data System (ADS)

    Sultan, M.; Becker, R.; Gebremichael, E.; Othman, A.; Emil, M.; Ahmed, M.; Elkadiri, R.; Pankratz, H. G.; Chouinard, K.

    2015-12-01

    Radar interferometric techniques including Persistent Scatterer (PS), Small BAseline Subset (SBAS), and two and three pass (differential interferometry) methods were applied to Synthetic Aperture Radar (SAR) datasets. These include the European Space Agency (ESA) ERS-1, ERS-2, Environmental satellite (Envisat), and Phased Array type L-band Synthetic Aperture Radar (PALSAR) to conduct the following: (1) map the spatial distribution of land deformation associated with a wide range of geologic settings, (2) quantify the rates of the observed land deformation, and (3) identify the factors controlling the observed deformation. The research topics/areas include: (1) subsidence associated with sediment compaction in a Delta setting (Nile Delta, Egypt), (2) deformation in a rifting setting (Red Sea rifting along the Red Sea coastal zone and proximal basement outcrops in Egypt and Saudi Arabia), (3) deformation associated with salt dome intrusion and the dissolution of sabkha deposits (Jazan area in Saudi Arabia), (4) mass transport associated with debris flows (Jazan area in Saudi Arabia), and (5) deformation preceding, contemporaneous with, or following large earthquakes (in Nepal; magnitude: 7.8; date: April, 25, 2015) and medium earthquakes (in Harrat Lunayyir volcanic field, central Saudi Arabia; magnitude: 5.7; date: May 19, 2009). The identification of the factor(s) controlling the observed deformation was attained through spatial correlation of extracted radar velocities with relevant temporal and static ground based and remotely sensed geological and cultural data sets (e.g., lithology, structure, precipitation, land use, and earthquake location, magnitude, and focal mechanism) in a Geographical Information System (GIS) environment.

  3. High resolution three-dimensional robotic synthetic tracked aperture ultrasound imaging: feasibility study

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Fang, Ting Yun; Finocchi, Rodolfo; Boctor, Emad M.

    2017-03-01

    Three dimensional (3D) ultrasound imaging is becoming a standard mode for medical ultrasound diagnoses. Conventional 3D ultrasound imaging is mostly scanned either by using a two dimensional matrix array or by motorizing a one dimensional array in the elevation direction. However, the former system is not widely assessable due to its cost, and the latter one has limited resolution and field-of-view in the elevation axis. Here, we propose a 3D ultrasound imaging system based on the synthetic tracked aperture approach, in which a robotic arm is used to provide accurate tracking and motion. While the ultrasound probe is moved by a robotic arm, each probe position is tracked and can be used to reconstruct a wider field-of-view as there are no physical barriers that restrict the elevational scanning. At the same time, synthetic aperture beamforming provides a better resolution in the elevation axis. To synthesize the elevational information, the single focal point is regarded as the virtual element, and forward and backward delay-andsum are applied to the radio-frequency (RF) data collected through the volume. The concept is experimentally validated using a general ultrasound phantom, and the elevational resolution improvement of 2.54 and 2.13 times was measured at the target depths of 20 mm and 110 mm, respectively.

  4. Geologic interpretation of space shuttle radar images of Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabing, F.F.

    1983-11-01

    The National Aeronautics and Space Administration (NASA) space shuttle mission in November 1981 acquired images of parts of the earth with a synthetic aperture radar system at a wavelength of 23.5 cm (9.3 in.) and spatial resolution of 38 m (125 ft). This report describes the geologic interpretation of 1:250,000-scale images of Irian Jaya and eastern Kalimantan, Indonesia, where the all-weather capability of radar penetrates the persistent cloud cover. The inclined look direction of radar enhances subtle topographic features that may be the expression of geologic structures. On the Indonesian images, the following terrain categories are recognizable for geologic mapping:more » carbonate, clastic, volcanic, alluvial and coastal, melange, and metamorphic, as well as undifferentiated bedrock. Regional and local geologic structures are well expressed on the images.« less

  5. Space Radar Image of Kennedy Space Center, Florida

    NASA Image and Video Library

    1999-06-25

    This image was produced during radar observations taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar as it flew over the Gulf Stream, Florida, and past the Atlantic Ocean on October 7, 1994. The data were produced using the X-band radar frequency. Knowing ahead of time that this region would be included in a regularly scheduled radar pass, the Kennedy Space Center team, who assembled and integrated the SIR-C/X-SAR equipment with the Spacelab pallet system, designed a set of radar reflectors from common construction materials and formed the letters "KSC" on the ground adjacent to the main headquarters building at the entrance to the Cape Canaveral launch facility. The point of light formed by the bright return from these reflectors are visible in the image. Other more diffuse bright spots are reflections from building faces, roofs and other large structures at the Kennedy Space Center complex. This frame covers an area of approximately 6 kilometers by 8 kilometers (4 miles by 5 miles), which was just a small portion of the data taken on this particular pass. http://photojournal.jpl.nasa.gov/catalog/PIA01747

  6. Geologic Studies of Planetary Surfaces Using Radar Polarimetric Imaging

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, Donald B.; Campbell, Bruce A.

    2010-01-01

    Radar is a useful remote sensing tool for studying planetary geology because it is sensitive to the composition, structure, and roughness of the surface and can penetrate some materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single sense of circular polarization, and both senses of circular polarization are received, which allows for the construction of the Stokes polarization vector. From the Stokes vector, daughter products such as the circular polarization ratio, the degree of linear polarization, and linear polarization angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the Moon. These observations can be compared to radar data for terrestrial surfaces to better understand surface physical properties and regional geologic evolution. For example, polarimetric radar studies of volcanic settings on Venus, the Moon and Earth display some similarities, but also illustrate a variety of different emplacement and erosion mechanisms. Polarimetric radar data provides important information about surface properties beyond what can be obtained from single-polarization radar. Future observations using polarimetric synthetic aperture radar will provide information on roughness, composition and stratigraphy that will support a broader interpretation of surface evolution.

  7. Using phase for radar scatterer classification

    NASA Astrophysics Data System (ADS)

    Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.

    2017-04-01

    Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.

  8. Spaceborne radar observations: A guide for Magellan radar-image analysis

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Blom, R. G.; Crisp, J. A.; Elachi, Charles; Farr, T. G.; Saunders, R. Stephen; Theilig, E. E.; Wall, S. D.; Yewell, S. B.

    1989-01-01

    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high

  9. Space Radar Image of Kliuchevskoi Volcano,Russia

    NASA Image and Video Library

    1999-05-01

    This photograph of the eruption of Kliuchevskoi volcano, Kamchatka, Russia was taken by space shuttle Endeavour astronauts during the early hours of the eruption on September 30, 1994. The ash plume, which reached heights of more than 18 kilometers (50,000 feet), is emerging from a vent on the north flank of Kliuchevskoi, partially hidden by the plume and its shadow in this view. The photograph is oriented with north toward the bottom, for comparison with the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) image (P-44823) that was acquired a few days later. Near the center of the photo, a small whitish steam plume may be seen emanating from the growing lava dome of a companion volcano, Bezymianny. http://photojournal.jpl.nasa.gov/catalog/PIA01766

  10. Global search and rescue - A new concept. [orbital digital radar system with passive reflectors

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1976-01-01

    A new terrestrial search and rescue concept is defined embodying the use of simple passive radiofreqeuncy reflectors in conjunction with a low earth-orbiting, all-weather, synthetic aperture radar to detect, identify, and position locate earth-bound users in distress. Users include ships, aircraft, small boats, explorers, hikers, etc. Airborne radar tests were conducted to evaluate the basic concept. Both X-band and L-band, dual polarization radars were operated simultaneously. Simple, relatively small, corner-reflector targets were successfully imaged and digital data processing approaches were investigated. Study of the basic concept and evaluation of results obtained from aircraft flight tests indicate an all-weather, day or night, global search and rescue system is feasible.

  11. Waveform-Diverse Multiple-Input Multiple-Output Radar Imaging Measurements

    NASA Astrophysics Data System (ADS)

    Stewart, Kyle B.

    Multiple-input multiple-output (MIMO) radar is an emerging set of technologies designed to extend the capabilities of multi-channel radar systems. While conventional radar architectures emphasize the use of antenna array beamforming to maximize real-time power on target, MIMO radar systems instead attempt to preserve some degree of independence between their received signals and to exploit this expanded matrix of target measurements in the signal-processing domain. Specifically the use of sparse “virtual” antenna arrays may allow MIMO radars to achieve gains over traditional multi-channel systems by post-processing diverse received signals to implement both transmit and receive beamforming at all points of interest within a given scene. MIMO architectures have been widely examined for use in radar target detection, but these systems may yet be ideally suited to real and synthetic aperture radar imaging applications where their proposed benefits include improved resolutions, expanded area coverage, novel modes of operation, and a reduction in hardware size, weight, and cost. While MIMO radar's theoretical benefits have been well established in the literature, its practical limitations have not received great attention thus far. The effective use of MIMO radar techniques requires a diversity of signals, and to date almost all MIMO system demonstrations have made use of time-staggered transmission to satisfy this requirement. Doing so is reliable but can be prohibitively slow. Waveform-diverse systems have been proposed as an alternative in which multiple, independent waveforms are broadcast simultaneously over a common bandwidth and separated on receive using signal processing. Operating in this way is much faster than its time-diverse equivalent, but finding a set of suitable waveforms for this technique has proven to be a difficult problem. In light of this, many have questioned the practicality of MIMO radar imaging and whether or not its theoretical benefits

  12. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  13. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  14. Determination of Classification Accuracy for Land Use/cover Types Using Landsat-Tm Spot-Mss and Multipolarized and Multi-Channel Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Dondurur, Mehmet

    The primary objective of this study was to determine the degree to which modern SAR systems can be used to obtain information about the Earth's vegetative resources. Information obtainable from microwave synthetic aperture radar (SAR) data was compared with that obtainable from LANDSAT-TM and SPOT data. Three hypotheses were tested: (a) Classification of land cover/use from SAR data can be accomplished on a pixel-by-pixel basis with the same overall accuracy as from LANDSAT-TM and SPOT data. (b) Classification accuracy for individual land cover/use classes will differ between sensors. (c) Combining information derived from optical and SAR data into an integrated monitoring system will improve overall and individual land cover/use class accuracies. The study was conducted with three data sets for the Sleeping Bear Dunes test site in the northwestern part of Michigan's lower peninsula, including an October 1982 LANDSAT-TM scene, a June 1989 SPOT scene and C-, L- and P-Band radar data from the Jet Propulsion Laboratory AIRSAR. Reference data were derived from the Michigan Resource Information System (MIRIS) and available color infrared aerial photos. Classification and rectification of data sets were done using ERDAS Image Processing Programs. Classification algorithms included Maximum Likelihood, Mahalanobis Distance, Minimum Spectral Distance, ISODATA, Parallelepiped, and Sequential Cluster Analysis. Classified images were rectified as necessary so that all were at the same scale and oriented north-up. Results were analyzed with contingency tables and percent correctly classified (PCC) and Cohen's Kappa (CK) as accuracy indices using CSLANT and ImagePro programs developed for this study. Accuracy analyses were based upon a 1.4 by 6.5 km area with its long axis east-west. Reference data for this subscene total 55,770 15 by 15 m pixels with sixteen cover types, including seven level III forest classes, three level III urban classes, two level II range classes, two

  15. Attitude-error compensation for airborne down-looking synthetic-aperture imaging lidar

    NASA Astrophysics Data System (ADS)

    Li, Guang-yuan; Sun, Jian-feng; Zhou, Yu; Lu, Zhi-yong; Zhang, Guo; Cai, Guang-yu; Liu, Li-ren

    2017-11-01

    Target-coordinate transformation in the lidar spot of the down-looking synthetic-aperture imaging lidar (SAIL) was performed, and the attitude errors were deduced in the process of imaging, according to the principle of the airborne down-looking SAIL. The influence of the attitude errors on the imaging quality was analyzed theoretically. A compensation method for the attitude errors was proposed and theoretically verified. An airborne down-looking SAIL experiment was performed and yielded the same results. A point-by-point error-compensation method for solving the azimuthal-direction space-dependent attitude errors was also proposed.

  16. High resolution beamforming on large aperture vertical line arrays: Processing synthetic data

    NASA Astrophysics Data System (ADS)

    Tran, Jean-Marie Q.; Hodgkiss, William S.

    1990-09-01

    This technical memorandum studies the beamforming of large aperture line arrays deployed vertically in the water column. The work concentrates on the use of high resolution techniques. Two processing strategies are envisioned: (1) full aperture coherent processing which offers in theory the best processing gain; and (2) subaperture processing which consists in extracting subapertures from the array and recombining the angular spectra estimated from these subarrays. The conventional beamformer, the minimum variance distortionless response (MVDR) processor, the multiple signal classification (MUSIC) algorithm and the minimum norm method are used in this study. To validate the various processing techniques, the ATLAS normal mode program is used to generate synthetic data which constitute a realistic signals environment. A deep-water, range-independent sound velocity profile environment, characteristic of the North-East Pacific, is being studied for two different 128 sensor arrays: a very long one cut for 30 Hz and operating at 20 Hz; and a shorter one cut for 107 Hz and operating at 100 Hz. The simulated sound source is 5 m deep. The full aperture and subaperture processing are being implemented with curved and plane wavefront replica vectors. The beamforming results are examined and compared to the ray-theory results produced by the generic sonar model.

  17. 3D surface flow kinematics derived from airborne UAVSAR interferometric synthetic aperture radar to constrain the physical mechanisms controlling landslide motion

    NASA Astrophysics Data System (ADS)

    Delbridge, B. G.; Burgmann, R.; Fielding, E. J.; Hensley, S.; Schulz, W. H.

    2013-12-01

    This project focuses on improving our understanding of the physical mechanisms controlling landslide motion by studying the landslide-wide kinematics of the Slumgullion landslide in southwestern Colorado using interferometric synthetic aperture radar (InSAR) and GPS. The NASA/JPL UAVSAR airborne repeat-pass SAR interferometry system imaged the Slumgullion landslide from 4 look directions on eight flights in 2011 and 2012. Combining the four look directions allows us to extract the full 3-D velocity field of the surface. Observing the full 3-dimensional flow field allows us to extract the full strain tensor (assuming free surface boundary conditions and incompressible flow) since we have both the spatial resolution to take spatial derivates and full deformation information. COSMO-SkyMed(CSK) high-resolution Spotlight data was also acquired during time intervals overlapping with the UAVSAR one-week pairs, with intervals as short as one day. These observations allow for the quantitative testing of the deformation magnitude and estimated formal errors in the UAVSAR derived deformation field. We also test the agreement of the deformation at 20 GPS monitoring sites concurrently acquired by the USGS. We also utilize the temporal resolution of real-time GPS acquired by the UC Berkeley Active Tectonics Group during a temporary deployment from July 22nd - August 2nd. By combining this data with the kinematic data we hope to elucidate the response of the landslide to environmental changes such as rainfall, snowmelt, and atmospheric pressure, and consequently the mechanisms controlling the dynamics of the landslide system. To constrain the longer temporal dynamics, interferograms made from pairs of CSK images acquired in 2010, 2011, 2012 and 2013 reveal the slide deformation on a longer timescale by allowing us to measure meters of motion and see the average rates over year long intervals using pixel offset tracking of the high-resolution SAR amplitude images. The results of

  18. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1999-01-01

    These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those

  19. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of San Francisco, California, taken on October 3,1994. The image is about 40 kilometers by 55 kilometers (25 miles by 34 miles) with north toward the upper right. Downtown San Francisco is visible in the center of the image with the city of Oakland east (to the right) across San Francisco Bay. Also visible in the image is the Golden Gate Bridge (left center) and the Bay Bridge connecting San Francisco and Oakland. North of the Bay Bridge is Treasure Island. Alcatraz Island appears as a small dot northwest of Treasure Island. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 56. The image is centered at 37 degrees north latitude, 122degrees west longitude. This single-frequency SIR-C image was obtained by the L-band (24 cm) radar channel, horizontally transmitted and received. Portions of the Pacific Ocean visible in this image appear very dark as do other smooth surfaces such as airport runways. Suburban areas, with the low-density housing and tree-lined streets that are typical of San Francisco, appear as lighter gray. Areas with high-rise buildings, such as those seen in the downtown areas, appear in very bright white, showing a higher density of housing and streets which run parallel to the radar flight track. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes

  20. Ice dynamics of the Allan Hills meteorite concentration sites revealed by satellite aperture radar interferometry

    NASA Astrophysics Data System (ADS)

    Coren, F.; Delisle, G.; Sterzai, P.

    2003-09-01

    The ice flow conditions of a 100 x 100 km area of Victoria Land, Antarctica were analyzed with the synthetic aperture radar (SAR) technique. The area includes a number of meteorite concentration sites, in particular the Allan Hills ice fields. Regional ice flow velocities around the Mid- western and Near-western ice fields and the Allan Hills main ice field are shown to be 2.5 m yr-1. These sites are located on a horseshoe-shaped area that bounds an area characterized by higher ice flow velocities of up to 5 m yr-1. Meteorite find locations on the Elephant Moraine are located in this "high ice flow" area. The SAR derived digital elevation model (DEM) shows atypical low surface slopes for Antarctic conditions, which are the cause for the slow ice movements. Numerous ice rises in the area are interpreted to cap sub-ice obstacles, which were formed by tectonic processes in the past. The ice rises are considered to represent temporary features, which develop only during warm stages when the regional ice stand is lowered. Ice depressions, which develop in warm stages on the lee side of ice rises, may act as the sites of temporary build-up of meteorite concentrations, which turn inoperative during cold stages when the regional ice level rises and the ice rises disappear. Based on a simplified ice flow model, we argue that the regional ice flow in cold stages is reduced by a factor of at least 3.