Sample records for synthetic fxr agonist

  1. Knocking on FXR's door: the "hammerhead"-structure series of FXR agonists - amphiphilic isoxazoles with potent in vitro and in vivo activities.

    PubMed

    Gege, Christian; Kinzel, Olaf; Steeneck, Christoph; Schulz, Andreas; Kremoser, Claus

    2014-01-01

    The Farnesoid X Receptor (FXR) was recently validated in clinical studies using the bile acid analogue Obeticholic Acid (OCA) as an attractive drug target for liver diseases such as Primary Biliary Cirrhosis (PBC) or Non-alcoholic Steatohepatitis (NASH). OCA, however, turned out to induce cholesterol- related side effects upon prolonged treatment and it shows bile acid like pharmacokinetics. The quest for synthetic non-steroidal FXR agonists with general drug likeliness and improved pharmacokinetic and - dynamic properties has started more than a decade ago: The first non-steroidal and selective FXR agonist with decent submicromolar potency, GW4064, was patented in 1998 and published in 2000. Since then, many pharmaceutical companies have taken GW4064 as a structural template for their efforts in identifying novel patentable FXR agonists with the GW-derived trisubstituted isoxazole general structure. However, so far only one compound out of these different series has made it into the early stages of clinical development: The Px-102/Px-104 from Phenex is currently tested in a phase IIa study in patients with Non-Alcoholic Fatty Liver Disease (NAFLD). In this review we try to summarize from the patent and scientific literature the attempts to improve the GW4064 structure into different directions. Furthermore, we suggest directions for further improvements of this special class of synthetic FXR agonists which all display the typical "hammerhead"-conformation in the FXR ligand binding pocket that provides the basis for their impressive in vitro and in vivo potencies.

  2. FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model.

    PubMed

    Deuschle, Ulrich; Schüler, Julia; Schulz, Andreas; Schlüter, Thomas; Kinzel, Olaf; Abel, Ulrich; Kremoser, Claus

    2012-01-01

    The farnesoid X receptor (FXR) is expressed predominantly in tissues exposed to high levels of bile acids and controls bile acid and lipid homeostasis. FXR(-/-) mice develop hepatocellular carcinoma (HCC) and show an increased prevalence for intestinal malignancies, suggesting a role of FXR as a tumor suppressor in enterohepatic tissues. The N-myc downstream-regulated gene 2 (NDRG2) has been recognized as a tumor suppressor gene, which is downregulated in human hepatocellular carcinoma, colorectal carcinoma and many other malignancies.We show reduced NDRG2 mRNA in livers of FXR(-/-) mice compared to wild type mice and both, FXR and NDRG2 mRNAs, are reduced in human HCC compared to normal liver. Gene reporter assays and Chromatin Immunoprecipitation data support that FXR directly controls NDRG2 transcription via IR1-type element(s) identified in the first introns of the human, mouse and rat NDRG2 genes. NDRG2 mRNA was induced by non-steroidal FXR agonists in livers of mice and the magnitude of induction of NDRG2 mRNA in three different human hepatoma cell lines was increased when ectopically expressing human FXR. Growth and metastasis of SK-Hep-1 cells was strongly reduced by non-steroidal FXR agonists in an orthotopic liver xenograft tumor model. Ectopic expression of FXR in SK-Hep1 cells reduced tumor growth and metastasis potential of corresponding cells and increased the anti-tumor efficacy of FXR agonists, which may be partly mediated via increased NDRG2 expression. FXR agonists may show a potential in the prevention and/or treatment of human hepatocellular carcinoma, a devastating malignancy with increasing prevalence and limited therapeutic options.

  3. FXR agonist activity of conformationally constrained analogs of GW 4064.

    PubMed

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Bruce Wisely, G

    2009-08-15

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  4. Conformationally constrained farnesoid X receptor (FXR) agonists: Naphthoic acid-based analogs of GW 4064.

    PubMed

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Jones, Stacey A; Kaldor, Istvan; Liu, Yaping; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Wisely, G Bruce

    2008-08-01

    Starting from the known FXR agonist GW 4064 1a, a series of stilbene replacements were prepared. The 6-substituted 1-naphthoic acid 1b was an equipotent FXR agonist with improved developability parameters relative to 1a. Analog 1b also reduced the severity of cholestasis in the ANIT acute cholestatic rat model.

  5. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiao; Lee, Florence Ying; Barrera, Gabriel; Lee, Hans; Vales, Charisse; Gonzalez, Frank J.; Willson, Timothy M.; Edwards, Peter A.

    2006-01-01

    Farnesoid X receptor (FXR) plays an important role in maintaining bile acid and cholesterol homeostasis. Here we demonstrate that FXR also regulates glucose metabolism. Activation of FXR by the synthetic agonist GW4064 or hepatic overexpression of constitutively active FXR by adenovirus-mediated gene transfer significantly lowered blood glucose levels in both diabetic db/db and wild-type mice. Consistent with these data, FXR null mice exhibited glucose intolerance and insulin insensitivity. We further demonstrate that activation of FXR in db/db mice repressed hepatic gluconeogenic genes and increased hepatic glycogen synthesis and glycogen content by a mechanism that involves enhanced insulin sensitivity. In view of its central roles in coordinating regulation of both glucose and lipid metabolism, we propose that FXR agonists are promising therapeutic agents for treatment of diabetes mellitus. glucose | GW4064 | farnesoid X receptor-VP16 | triglyceride | cholesterol

  6. Farnesoid-X Receptor (FXR) as a Promising Pharmaceutical Target in Atherosclerosis.

    PubMed

    Moris, Demetrios; Giaginis, Constantinos; Tsourouflis, Gerasimos; Theocharis, Stamatios

    2017-05-31

    Atherosclerosis (AS) is a major cause of death and morbidity in Western world and is strongly connected with atherogenic lipoproteins and inflammation. Bile acids (BA) act as activating signals of endogenous ligands such as Farnesoid-X receptor (FXR). Primary data indicate a potential role of FXR in AS. The therapeutic value of FXR ligands in AS is unknown. With the present review, we analyzed the efficacy of FXR agonists as a therapeutic modalities against AS. In this aspect, we performed an electronic search through Pub- Med/MEDLINE database by using the key terms: FXR*, Farnesoid X receptor*, atherosclerosis*, bile acids* and agonism*. According to our analysis, the FXR seems to be a promising therapeutic target in the atherosclerosis natural history. FXR agonism could exert protective effects in the development and evolution of AS. However, concomitant side effects such as the reduction of plasma HDL have been reported. Finally, results from undergoing clinical trials with synthetic FXR agonists will shed more light to the precise role of FXR agonism in AS treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Improvement of physiochemical properties of the tetrahydroazepinoindole series of farnesoid X receptor (FXR) agonists: beneficial modulation of lipids in primates.

    PubMed

    Lundquist, Joseph T; Harnish, Douglas C; Kim, Callain Y; Mehlmann, John F; Unwalla, Rayomand J; Phipps, Kristin M; Crawley, Matthew L; Commons, Thomas; Green, Daniel M; Xu, Weixin; Hum, Wah-Tung; Eta, Julius E; Feingold, Irene; Patel, Vikram; Evans, Mark J; Lai, Kehdih; Borges-Marcucci, Lisa; Mahaney, Paige E; Wrobel, Jay E

    2010-02-25

    In an effort to develop orally active farnesoid X receptor (FXR) agonists, a series of tetrahydroazepinoindoles with appended solubilizing amine functionalities were synthesized. The crystal structure of the previously disclosed FXR agonist, 1 (FXR-450), aided in the design of compounds with tethered solubilizing functionalities designed to reach the solvent cavity around the hFXR receptor. These compounds were soluble in 0.5% methylcellulose/2% Tween-80 in water (MC/T) for oral administration. In vitro and in vivo optimization led to the identification of 14dd and 14cc, which in a dose-dependent fashion regulated low density lipoprotein cholesterol (LDLc) in low density lipoprotein receptor knockout (LDLR(-/-)) mice. Compound 14cc was dosed in female rhesus monkeys for 4 weeks at 60 mg/kg daily in MC/T vehicle. After 7 days, triglyceride (TG) levels and very low density lipoprotein cholesterol (VLDLc) levels were significantly decreased and LDLc was decreased 63%. These data are the first to demonstrate the dramatic lowering of serum LDLc levels by a FXR agonist in primates and supports the potential utility of 14cc in treating dyslipidemia in humans beyond just TG lowering.

  8. Conformationally constrained farnesoid X receptor (FXR) agonists: alternative replacements of the stilbene.

    PubMed

    Akwabi-Ameyaw, Adwoa; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Wisely, G Bruce

    2011-10-15

    To further explore the optimum placement of the acid moiety in conformationally constrained analogs of GW 4064 1a, a series of stilbene replacements were prepared. The benzothiophene 1f and the indole 1g display the optimal orientation of the carboxylate for enhanced FXR agonist potency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene.

    PubMed

    Bass, Jonathan Y; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Mills, Wendy Y; Navas, Frank; Parks, Derek J; Smalley, Terrence L; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Wisely, G Bruce

    2011-02-15

    To improve on the drug properties of GSK8062 1b, a series of heteroaryl bicyclic naphthalene replacements were prepared. The quinoline 1c was an equipotent FXR agonist with improved drug developability parameters relative to 1b. In addition, analog 1c lowered body weight gain and serum glucose in a DIO mouse model of diabetes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction.

    PubMed

    Schwabl, Philipp; Hambruch, Eva; Seeland, Berit A; Hayden, Hubert; Wagner, Michael; Garnys, Lukas; Strobel, Bastian; Schubert, Tim-Lukas; Riedl, Florian; Mitteregger, Dieter; Burnet, Michael; Starlinger, Patrick; Oberhuber, Georg; Deuschle, Ulrich; Rohr-Udilova, Nataliya; Podesser, Bruno K; Peck-Radosavljevic, Markus; Reiberger, Thomas; Kremoser, Claus; Trauner, Michael

    2017-04-01

    Steroidal farnesoid X receptor (FXR) agonists demonstrated potent anti-fibrotic activities and lowered portal hypertension in experimental models. The impact of the novel non-steroidal and selective FXR agonist PX20606 on portal hypertension and fibrosis was explored in this study. In experimental models of non-cirrhotic (partial portal vein ligation, PPVL, 7days) and cirrhotic (carbon tetrachloride, CCl 4 , 14weeks) portal hypertension, PX20606 (PX,10mg/kg) or the steroidal FXR agonist obeticholic acid (OCA,10mg/kg) were gavaged. We then measured portal pressure, intrahepatic vascular resistance, liver fibrosis and bacterial translocation. PX decreased portal pressure in non-cirrhotic PPVL (12.6±1.7 vs. 10.4±1.1mmHg; p=0.020) and cirrhotic CCl 4 (15.2±0.5 vs. 11.8±0.4mmHg; p=0.001) rats. In PPVL animals, we observed less bacterial translocation (-36%; p=0.041), a decrease in lipopolysaccharide binding protein (-30%; p=0.024) and splanchnic tumour necrosis factor α levels (-39%; p=0.044) after PX treatment. In CCl 4 rats, PX decreased fibrotic Sirius Red area (-43%; p=0.005), hepatic hydroxyproline (-66%; p<0.001), and expression of profibrogenic proteins (Col1a1, α smooth muscle actin, transforming growth factor β). CCl 4 -PX rats had significantly lower transaminase levels and reduced hepatic macrophage infiltration. Moreover, PX induced sinusoidal vasodilation (upregulation of cystathionase, dimethylaminohydrolase (DDAH)1, endothelial nitric oxide synthase (eNOS), GTP-cyclohydrolase1) and reduced intrahepatic vasoconstriction (downregulation of endothelin-1, p-Moesin). In cirrhosis, PX improved endothelial dysfunction (decreased von-Willebrand factor) and normalized overexpression of vascular endothelial growth factor, platelet-derived growth factor and angiopoietins. While short-term 3-day PX treatment reduced portal pressure (-14%; p=0.041) by restoring endothelial function, 14week PX therapy additionally inhibited sinusoidal remodelling and decreased

  11. FXR activation by obeticholic acid or nonsteroidal agonists induces a human-like lipoprotein cholesterol change in mice with humanized chimeric liver.

    PubMed

    Papazyan, Romeo; Liu, Xueqing; Liu, Jingwen; Dong, Bin; Plummer, Emily M; Lewis, Ronald D; Roth, Jonathan D; Young, Mark A

    2018-06-01

    Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.

  12. The nuclear bile acid receptor FXR controls the liver derived tumor suppressor histidine-rich glycoprotein.

    PubMed

    Deuschle, Ulrich; Birkel, Manfred; Hambruch, Eva; Hornberger, Martin; Kinzel, Olaf; Perović-Ottstadt, Sanja; Schulz, Andreas; Hahn, Ulrike; Burnet, Michael; Kremoser, Claus

    2015-06-01

    The nuclear bile acid receptor Farnesoid X receptor (FXR) is strongly expressed in liver and intestine, controls bile acid and lipid homeostasis and exerts tumor-protective functions in liver and intestine. Histidine-rich glycoprotein (HRG) is an abundant plasma protein produced by the liver with the proposed function as a pattern recognition molecule involved in the clearance of immune complexes, necrotic cells and pathogens, the modulation of angiogenesis, the normalization of deranged endothelial vessel structure in tumors and tumor suppression. FXR recognition sequences were identified within a human HRG promoter fragment that mediated FXR/FXR-agonist dependent reporter gene activity in vitro. We show that HRG is a novel transcriptional target gene of FXR in human hepatoma cells, human upcyte® primary hepatocytes and 3D human liver microtissues in vitro and in mouse liver in vivo. Prolonged administration of the potent nonsteroidal FXR agonist PX20606 increases HRG levels in mouse plasma. Finally, daily oral administration of this FXR agonist for seven days resulted in a significant increase of HRG levels in the plasma of healthy human male volunteers during a clinical Phase I safety study. HRG might serve as a surrogate marker indicative of liver-specific FXR activation in future human clinical studies. Furthermore, potent FXR agonists might be beneficial in serious health conditions where HRG is reduced, for example, in hepatocellular carcinoma but also other solid cancers, liver failure, sepsis and pre-eclampsia. © 2014 UICC.

  13. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk

    PubMed Central

    Lien, Fleur; Berthier, Alexandre; Bouchaert, Emmanuel; Gheeraert, Céline; Alexandre, Jeremy; Porez, Geoffrey; Prawitt, Janne; Dehondt, Hélène; Ploton, Maheul; Colin, Sophie; Lucas, Anthony; Patrice, Alexandre; Pattou, François; Diemer, Hélène; Van Dorsselaer, Alain; Rachez, Christophe; Kamilic, Jelena; Groen, Albert K.; Staels, Bart; Lefebvre, Philippe

    2014-01-01

    The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry–based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis. PMID:24531544

  14. FXR induces SOCS3 and suppresses hepatocellular carcinoma

    PubMed Central

    Zhang, Yan; Jiang, Peng; Huang, Gang; Chen, Shan; Lyu, Xilin; Zheng, Ping; Zhao, Xin; Zeng, Yijun; Wang, Shuguang; He, Fengtian

    2015-01-01

    Suppressor of cytokine signaling 3 (SOCS3) is regarded as a vital repressor in the liver carcinogenesis mainly by inhibiting signal transducer and activator of transcription 3 (STAT3) activity. Farnesoid X Receptor (FXR), highly expressed in liver, has an important role in protecting against hepatocellular carcinoma (HCC). However, it is unclear whether the tumor suppressive activity of FXR involves the regulation of SOCS3. In the present study, we found that activation of FXR by its specific agonist GW4064 in HCC cells inhibited cell growth, induced cell cycle arrest at G1 phase, elevated p21 expression and repressed STAT3 activity. The above anti-tumor effects of FXR were dramatically alleviated by knockdown of SOCS3 with siRNA. Reporter assay revealed that FXR activation enhanced the transcriptional activity of SOCS3 promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay displayed that FXR directly bound to IR9 DNA motif within SOCS3 promoter region. The in vivo study in nude mice showed that treatment with FXR ligand GW4064 could decelerate the growth of HCC xenografts, up-regulate SOCS3 and p21 expression and inhibit STAT3 phosphorylation in the xenografts. These results suggest that induction of SOCS3 may be a novel mechanism by which FXR exerts its anti-HCC effects, and the FXR-SOCS3 signaling may serve as a new potential target for the prevention/treatment of HCC. PMID:26416445

  15. A dual agonist of farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice.

    PubMed

    Wang, Xiaoxin X; Luo, Yuhuan; Wang, Dong; Adorini, Luciano; Pruzanski, Mark; Dobrinskikh, Evgenia; Levi, Moshe

    2017-07-21

    Even in healthy individuals, renal function gradually declines during aging. However, an observed variation in the rate of this decline has raised the possibility of slowing or delaying age-related kidney disease. One of the most successful interventional measures that slows down and delays age-related kidney disease is caloric restriction. We undertook the present studies to search for potential factors that are regulated by caloric restriction and act as caloric restriction mimetics. Based on our prior studies with the bile acid-activated nuclear hormone receptor farnesoid X receptor (FXR) and G protein-coupled membrane receptor TGR5 that demonstrated beneficial effects of FXR and TGR5 activation in the kidney, we reasoned that FXR and TGR5 could be excellent candidates. We therefore determined the effects of aging and caloric restriction on the expression of FXR and TGR5 in the kidney. We found that FXR and TGR5 expression levels are decreased in the aging kidney and that caloric restriction prevents these age-related decreases. Interestingly, in long-lived Ames dwarf mice, renal FXR and TGR5 expression levels were also increased. A 2-month treatment of 22-month-old C57BL/6J mice with the FXR-TGR5 dual agonist INT-767 induced caloric restriction-like effects and reversed age-related increases in proteinuria, podocyte injury, fibronectin accumulation, TGF-β expression, and, most notably, age-related impairments in mitochondrial biogenesis and mitochondrial function. Furthermore, in podocytes cultured in serum obtained from old mice, INT-767 prevented the increases in the proinflammatory markers TNF-α, toll-like receptor 2 (TLR2), and TLR4. In summary, our results indicate that FXR and TGR5 may play an important role in modulation of age-related kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Activation of Sirt1/FXR Signaling Pathway Attenuates Triptolide-Induced Hepatotoxicity in Rats.

    PubMed

    Yang, Jing; Sun, Lixin; Wang, Lu; Hassan, Hozeifa M; Wang, Xuan; Hylemon, Phillip B; Wang, Tao; Zhou, Huiping; Zhang, Luyong; Jiang, Zhenzhou

    2017-01-01

    Triptolide (TP), a diterpenoid isolated from Tripterygium wilfordii Hook F, has an excellent pharmacological profile of immunosuppression and anti-tumor activities, but its clinical applications are severely restricted due to its severe and cumulative toxicities. The farnesoid X receptor (FXR) is the master bile acid nuclear receptor and plays an important role in maintaining hepatic metabolism homeostasis. Hepatic Sirtuin (Sirt1) is a key regulator of the FXR signaling pathway and hepatic metabolism homeostasis. The aims of this study were to determine whether Sirt1/FXR signaling pathway plays a critical role in TP-induced hepatotoxicity. Our study revealed that the intragastric administration of TP (400 μg/kg body weight) for 28 consecutive days increased bile acid accumulation, suppressed hepatic gluconeogenesis in rats. The expression of bile acid transporter BSEP was significantly reduced and cholesterol 7α-hydroxylase (CYP7A1) was markedly increased in the TP-treated group, whereas the genes responsible for hepatic gluconeogenesis were suppressed in the TP-treated group. TP also modulated the FXR and Sirt1 by decreasing its expression both in vitro and in vivo . The Sirt1 agonist SRT1720 and the FXR agonist obeticholic acid (OCA) were used both in vivo and in vitro . The remarkable liver damage induced by TP was attenuated by treatment with either SRT1720 or OCA, as reflected by decreased levels of serum total bile acids and alkaline phosphatase and increased glucose levels. Meanwhile, SRT1720 significantly alleviated TP-induced FXR suppression and FXR-targets involved in hepatic lipid and glucose metabolism. Based on these results, we conclude that Sirt1/FXR inactivation plays a critical role in TP-induced hepatotoxicity. Moreover, Sirt1/FXR axis represents a novel therapeutic target that could potentially ameliorate TP-induced hepatotoxicity.

  17. Bile Acid Receptor Agonist GW4064 Regulates PPARγ Coactivator-1α Expression Through Estrogen Receptor-Related Receptor α

    PubMed Central

    Dwivedi, Shailendra Kumar Dhar; Singh, Nidhi; Kumari, Rashmi; Mishra, Jay Sharan; Tripathi, Sarita; Banerjee, Priyam; Shah, Priyanka; Kukshal, Vandana; Tyagi, Abdul Malik; Gaikwad, Anil Nilkanth; Chaturvedi, Rajnish Kumar; Mishra, Durga Prasad; Trivedi, Arun Kumar; Sanyal, Somali; Chattopadhyay, Naibedya; Ramachandran, Ravishankar; Siddiqi, Mohammad Imran; Bandyopadhyay, Arun; Arora, Ashish; Lundåsen, Thomas; Anakk, Sayee Priyadarshini; Moore, David D.

    2011-01-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is induced in energy-starved conditions and is a key regulator of energy homeostasis. This makes PGC-1α an attractive therapeutic target for metabolic syndrome and diabetes. In our effort to identify new regulators of PGC-1α expression, we found that GW4064, a widely used synthetic agonist for the nuclear bile acid receptor [farnesoid X receptor (FXR)] strongly enhances PGC-1α promoter reporter activity, mRNA, and protein expression. This induction in PGC-1α concomitantly enhances mitochondrial mass and expression of several PGC-1α target genes involved in mitochondrial function. Using FXR-rich or FXR-nonexpressing cell lines and tissues, we found that this effect of GW4064 is not mediated directly by FXR but occurs via activation of estrogen receptor-related receptor α (ERRα). Cell-based, biochemical and biophysical assays indicate GW4064 as an agonist of ERR proteins. Interestingly, FXR disruption alters GW4064 induction of PGC-1α mRNA in a tissue-dependent manner. Using FXR-null [FXR knockout (FXRKO)] mice, we determined that GW4064 induction of PGC-1α expression is not affected in oxidative soleus muscles of FXRKO mice but is compromised in the FXRKO liver. Mechanistic studies to explain these differences revealed that FXR physically interacts with ERR and protects them from repression by the atypical corepressor, small heterodimer partner in liver. Together, this interplay between ERRα-FXR-PGC-1α and small heterodimer partner offers new insights into the biological functions of ERRα and FXR, thus providing a knowledge base for therapeutics in energy balance-related pathophysiology. PMID:21493670

  18. Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid.

    PubMed

    Ijssennagger, Noortje; Janssen, Aafke W F; Milona, Alexandra; Ramos Pittol, José M; Hollman, Danielle A A; Mokry, Michal; Betzel, Bark; Berends, Frits J; Janssen, Ignace M; van Mil, Saskia W C; Kersten, Sander

    2016-05-01

    The bile acid-activated farnesoid X receptor (FXR) is a nuclear receptor regulating bile acid, glucose and cholesterol homeostasis. Obeticholic acid (OCA), a promising drug for the treatment of non-alcoholic steatohepatitis (NASH) and type 2 diabetes, activates FXR. Mouse studies demonstrated that FXR activation by OCA alters hepatic expression of many genes. However, no data are available on the effects of OCA in the human liver. Here we generated gene expression profiles in human precision cut liver slices (hPCLS) after treatment with OCA. hPCLS were incubated with OCA for 24 h. Wild-type or FXR(-/-) mice received OCA or vehicle by oral gavage for 7 days. Transcriptomic analysis showed that well-known FXR target genes, including NR0B2 (SHP), ABCB11 (BSEP), SLC51A (OSTα) and SLC51B (OSTβ), and ABCB4 (MDR3) are regulated by OCA in hPCLS. Ingenuity pathway analysis confirmed that 'FXR/RXR activation' is the most significantly changed pathway upon OCA treatment. Comparison of gene expression profiles in hPCLS and mouse livers identified 18 common potential FXR targets. ChIP-sequencing in mouse liver confirmed FXR binding to IR1 sequences of Akap13, Cgnl1, Dyrk3, Pdia5, Ppp1r3b and Tbx6. Our study shows that hPCLS respond to OCA treatment by upregulating well-known FXR target genes, demonstrating its suitability to study FXR-mediated gene regulation. We identified six novel bona-fide FXR target genes in both mouse and human liver. Finally, we discuss a possible explanation for changes in high or low density lipoprotein observed in NASH and primary biliary cholangitis patients treated with OCA based on the genomic expression profile in hPCLS. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis

    PubMed Central

    Verbeke, Len; Mannaerts, Inge; Schierwagen, Robert; Govaere, Olivier; Klein, Sabine; Vander Elst, Ingrid; Windmolders, Petra; Farre, Ricard; Wenes, Mathias; Mazzone, Massimiliano; Nevens, Frederik; van Grunsven, Leo A.; Trebicka, Jonel; Laleman, Wim

    2016-01-01

    Hepatic inflammation drives hepatic stellate cells (HSC), resulting in liver fibrosis. The Farnesoid-X receptor (FXR) antagonizes inflammation through NF-κB inhibition. We investigated preventive and therapeutic effects of FXR agonist obeticholic acid (OCA) on hepatic inflammation and fibrosis in toxic cirrhotic rats. Cirrhosis was induced by thioacetamide (TAA) intoxication. OCA was given during or after intoxication with vehicle-treated rats as controls. At sacrifice, fibrosis, hemodynamic and biochemical parameters were assessed. HSC activation, cell turn-over, hepatic NF-κB activation, pro-inflammatory and pro-fibrotic cytokines were determined. The effect of OCA was further evaluated in isolated HSC, Kupffer cells, hepatocytes and liver sinusoidal endothelial cells (LSEC). OCA decreased hepatic inflammation and fibrogenesis during TAA-administration and reversed fibrosis in established cirrhosis. Portal pressure decreased through reduced intrahepatic vascular resistance. This was paralleled by decreased expression of pro-fibrotic cytokines (transforming growth-factor β, connective tissue growth factor, platelet-derived growth factor β-receptor) as well as markers of hepatic cell turn-over, by blunting effects of pro-inflammatory cytokines (e.g. monocyte chemo-attractant protein-1). In vitro, OCA inhibited both LSEC and Kupffer cell activation; while HSC remained unaffected. This related to NF-κB inhibition via up-regulated IκBα. In conclusion, OCA inhibits hepatic inflammation in toxic cirrhotic rats resulting in decreased HSC activation and fibrosis. PMID:27634375

  20. FXR and liver carcinogenesis

    PubMed Central

    Huang, Xiong-fei; Zhao, Wei-yu; Huang, Wen-dong

    2015-01-01

    Farnesoid X receptor (FXR) is a member of the nuclear receptor family and a ligand-modulated transcription factor. In the liver, FXR has been considered a multi-functional cell protector and a tumor suppressor. FXR can suppress liver carcinogenesis via different mechanisms: 1) FXR maintains the normal liver metabolism of bile acids, glucose and lipids; 2) FXR promotes liver regeneration and repair after injury; 3) FXR protects liver cells from death and enhances cell survival; 4) FXR suppresses hepatic inflammation, thereby preventing inflammatory damage; and 5) FXR can directly increase the expression of some tumor-suppressor genes and repress the transcription of several oncogenes. However, inflammation and epigenetic silencing are known to decrease FXR expression during tumorigenesis. The reactivation of FXR function in the liver may be a potential therapeutic approach for patients with liver cancer. PMID:25500874

  1. Synthetic RORγt Agonists Enhance Protective Immunity

    PubMed Central

    Chang, Mi Ra; Dharmarajan, Venkatasubramanian; Doebelin, Christelle; Garcia-Ordonez, Ruben D.; Novick, Scott J.; Kuruvilla, Dana S.; Kamenecka, Theodore M.; Griffin, Patrick R.

    2016-01-01

    The T cell specific RORγ isoform RORγt has been shown to be the key lineage-defining transcription factor to initiate the differentiation program of TH17 and Tc17 cells, cells that have demonstrated anti-tumor efficacy. RORγt controls gene networks that enhance immunity including increased IL17 production and decreased immune suppression. Both synthetic and putative endogenous agonists of RORγt have been shown to increase the basal activity of RORγt enhancing TH17 cell proliferation. Here we show that activation of RORγt using synthetic agonists drives proliferation of TH17 cells while decreasing levels of the immune checkpoint protein PD-1, a mechanism that should enhance anti-tumor immunity while blunting tumor associated adaptive immune resistance. Interestingly, putative endogenous agonists drive proliferation of TH17 cells but do not repress PD-1. These findings suggest that synthetic agonists of RORγt should activate TC17/TH17 cells (with concomitant reduction in the Tregs population), repress PD-1, and produce IL17 in situ (a factor associated with good prognosis in cancer). Enhanced immunity and blockage of immune checkpoints has transformed cancer treatment, thus such a molecule would provide a unique approach for the treatment of cancer. PMID:26785144

  2. Restoration of enterohepatic bile acid pathways in pregnant mice following short term activation of Fxr by GW4064

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moscovitz, Jamie E.; Kong, Bo; Buckley, Kyle

    The farnesoid X receptor (Fxr) controls bile acid homeostasis by coordinately regulating the expression of synthesizing enzymes (Cyp7a1, Cyp8b1), conjugating enzymes (Bal, Baat) and transporters in the ileum (Asbt, Ostα/β) and liver (Ntcp, Bsep, Ostβ). Transcriptional regulation by Fxr can be direct, or through the ileal Fgf15/FGF19 and hepatic Shp pathways. Circulating bile acids are increased during pregnancy due to hormone-mediated disruption of Fxr signaling. While this adaptation enhances lipid absorption, elevated bile acids may predispose women to develop maternal cholestasis. The objective of this study was to determine whether short-term treatment of pregnant mice with GW4064 (a potent FXRmore » agonist) restores Fxr signaling to the level observed in virgin mice. Plasma, liver and ilea were collected from virgin and pregnant mice administered vehicle or GW4064 by oral gavage. Treatment of pregnant mice with GW4064 induced ileal Fgf15, Shp and Ostα/β mRNAs, and restored hepatic Shp, Bal, Ntcp, and Bsep back to vehicle-treated virgin levels. Pregnant mice exhibited 2.5-fold increase in Cyp7a1 mRNA compared to virgin controls, which was reduced by GW4064. Similarly treatment of mouse primary hepatocytes with plasma isolated from pregnant mice induced Cyp7a1 mRNA by nearly 3-fold as compared to virgin plasma, which could be attenuated by co-treatment with either GW4064 or recombinant FGF19 protein. Collectively, these data reveal that repressed activity of intestinal and hepatic Fxr in pregnancy, as previously demonstrated, may be restored by pharmacological activation. This study provides the basis for a novel approach to restore bile acid homeostasis in patients with maternal cholestasis. - Highlights: • Ileal bile acid pathways are altered in pregnancy in an Fxr-dependent manner. • Ileal Fxr/Fgf contributes to changes in hepatic bile acid synthesis and transport. • Treatment of pregnant mice with an Fxr agonist restores bile acid homeostasis.« less

  3. Suppression of atherosclerosis by synthetic REV-ERB agonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M.

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks comparedmore » to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.« less

  4. Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes

    PubMed Central

    Balasubramaniyan, Natarajan; Ananthanarayanan, Meena

    2012-01-01

    The farnesoid X receptor (FXR) is a ligand (bile acid)-dependent nuclear receptor that regulates target genes involved in every aspect of bile acid homeostasis. Upon binding of ligand, FXR recruits an array of coactivators and associated proteins, some of which have intrinsic enzymatic activity that modify histones or even components of the transcriptional complex. In this study, we show chromatin occupancy by the Set7/9 methyltransferase at the FXR response element (FXRE) and direct methylation of FXR in vivo and in vitro at lysine 206. siRNA depletion of Set7/9 in the Huh-7 liver cell line decreased endogenous mRNAs of the FXR target genes, the short heterodimer partner (SHP) and bile salt export pump (BSEP). Mutation of the methylation site at K206 of FXR to an arginine prevented methylation by Set7/9. A pan-methyllysine antibody recognized the wild-type FXR but not the K206R mutant form. An electromobility shift assay showed that methylation by Set7/9 enhanced binding of FXR/retinoic X receptor-α to the FXRE. Interaction between hinge domain of FXR (containing K206) and Set7/9 was confirmed by coimmunoprecipitation, GST pull down, and mammalian two-hybrid experiments. Set7/9 overexpression in Huh-7 cells significantly enhanced transactivation of the SHP and BSEP promoters in a ligand-dependent fashion by wild-type FXR but not the K206R mutant FXR. A Set7/9 mutant deficient in methyltransferase activity was also not effective in increasing transactivation of the BSEP promoter. These studies demonstrate that posttranslational methylation of FXR by Set7/9 contributes to the transcriptional activation of FXR-target genes. PMID:22345554

  5. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Da-Gang

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatmentmore » inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.« less

  6. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice[S

    PubMed Central

    Fu, Zidong Donna; Cui, Julia Yue; Klaassen, Curtis D.

    2014-01-01

    Statins are effective cholesterol-lowering drugs to treat CVDs. Bile acids (BAs), the end products of cholesterol metabolism in the liver, are important nutrient and energy regulators. The present study aims to investigate how statins affect BA homeostasis in the enterohepatic circulation. Male C57BL/6 mice were treated with atorvastatin (100 mg/kg/day po) for 1 week, followed by BA profiling by ultra-performance LC-MS/MS. Atorvastatin decreased BA pool size, mainly due to less BA in the intestine. Surprisingly, atorvastatin did not alter total BAs in the serum or liver. Atorvastatin increased the ratio of 12α-OH/non12α-OH BAs. Atorvastatin increased the mRNAs of the BA-synthetic enzymes cholesterol 7α-hydroxylase (Cyp7a1) (over 10-fold) and cytochrome P450 27a1, the BA uptake transporters Na+/taurocholate cotransporting polypeptide and organic anion transporting polypeptide 1b2, and the efflux transporter multidrug resistance-associated protein 2 in the liver. Noticeably, atorvastatin suppressed the expression of BA nuclear receptor farnesoid X receptor (FXR) target genes, namely small heterodimer partner (liver) and fibroblast growth factor 15 (ileum). Furthermore, atorvastatin increased the mRNAs of the organic cation uptake transporter 1 and cholesterol efflux transporters Abcg5 and Abcg8 in the liver. The increased expression of BA-synthetic enzymes and BA transporters appear to be a compensatory response to maintain BA homeostasis after atorvastatin treatment. The Cyp7a1 induction by atorvastatin appears to be due to suppressed FXR signaling in both the liver and intestine. PMID:25278499

  7. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations.

    PubMed

    Cariello, Marica; Piccinin, Elena; Garcia-Irigoyen, Oihane; Sabbà, Carlo; Moschetta, Antonio

    2018-04-01

    The nuclear receptor farnesoid X receptor (FXR) is the master regulator of bile acids (BAs) homeostasis since it transcriptionally drives modulation of BA synthesis, influx, efflux, and detoxification along the enterohepatic axis. Due to its crucial role, FXR alterations are involved in the progression of a plethora of BAs associated inflammatory disorders in the liver and in the gut. The involvement of the FXR pathway in cholestasis development and management has been elucidated so far with a direct role of FXR activating therapy in this condition. However, the recent identification of a new type of genetic progressive familial intrahepatic cholestasis (PFIC) linked to FXR mutations has strengthen also the bona fide beneficial effects of target therapies that by-pass FXR activation, directly promoting the action of its target, namely the enterokine FGF19, in the repression of hepatic BAs synthesis with reduction of total BA levels in the liver and serum, accomplishing one of the major goals in cholestasis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structure and biological activity of endogenous and synthetic agonists of GPR119

    NASA Astrophysics Data System (ADS)

    Tyurenkov, I. N.; Ozerov, A. A.; Kurkin, D. V.; Logvinova, E. O.; Bakulin, D. A.; Volotova, E. V.; Borodin, D. D.

    2018-02-01

    A G-protein-coupled receptor, GPR119, is a promising pharmacological target for a new class of hypoglycaemic drugs with an original mechanism of action, namely, increase in the glucose-dependent incretin and insulin secretion. In 2005, the first ligands were found and in the subsequent years, a large number of GPR119 agonists were synthesized in laboratories in various countries; the safest and most promising agonists have entered phase I and II clinical trials as agents for the treatment of type 2 diabetes mellitus and obesity. The review describes the major endogenous GPR119 agonists and the main trends in the design and modification of synthetic structures for increasing the hypoglycaemic activity. The data on synthetic agonists are arranged according to the type of the central core of the molecules. The bibliography includes 104 references.

  9. FXR signaling in the enterohepatic system

    PubMed Central

    Matsubara, Tsutomu; Li, Fei; Gonzalez, Frank J.

    2012-01-01

    Enterohepatic circulation serves to capture bile acids and other steroid metabolites produced in the liver and secreted to the intestine, for reabsorption back into the circulation and reuptake to the liver. This process is under tight regulation by nuclear receptor signaling. Bile acids, produced from cholesterol, can alter gene expression in the liver and small intestine via activating the nuclear receptors farnesoid X receptor (FXR; NR1H4), pregnane X receptor (PXR; NR1I2), vitamin D receptor (VDR; NR1I1), G protein coupled receptor TGR5, and other cell signaling pathways (JNK1/2, AKT and ERK1/2). Among these controls, FXR is known to be a major bile acid-responsive ligand-activated transcription factor and a crucial control element for maintaining bile acid homeostasis. FXR has a high affinity for several major endogenous bile acids, notably cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid. By responding to excess bile acids, FXR is a bridge between the liver and small intestine to control bile acid levels and regulate bile acid synthesis and enterohepatic flow. FXR is highly expressed in the liver and gut, relative to other tissues, and contributes to the maintenance of cholesterol/bile acid homeostasis by regulating a variety of metabolic enzymes and transporters. FXR activation also affects lipid and glucose metabolism, and can influence drug metabolism. PMID:22609541

  10. Structural Studies of the Tandem Tudor Domains of Fragile X Mental Retardation Related Proteins FXR1 and FXR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams-Cioaba, Melanie A.; Guo, Yahong; Bian, ChuanBing

    Expansion of the CGG trinucleotide repeat in the 5'-untranslated region of the FMR1, fragile X mental retardation 1, gene results in suppression of protein expression for this gene and is the underlying cause of Fragile X syndrome. In unaffected individuals, the FMRP protein, together with two additional paralogues (Fragile X Mental Retardation Syndrome-related Protein 1 and 2), associates with mRNA to form a ribonucleoprotein complex in the nucleus that is transported to dendrites and spines of neuronal cells. It is thought that the fragile X family of proteins contributes to the regulation of protein synthesis at sites where mRNAs aremore » locally translated in response to stimuli. Here, we report the X-ray crystal structures of the non-canonical nuclear localization signals of the FXR1 and FXR2 autosomal paralogues of FMRP, which were determined at 2.50 and 1.92 {angstrom}, respectively. The nuclear localization signals of the FXR1 and FXR2 comprise tandem Tudor domain architectures, closely resembling that of UHRF1, which is proposed to bind methylated histone H3K9. The FMRP, FXR1 and FXR2 proteins comprise a small family of highly conserved proteins that appear to be important in translational regulation, particularly in neuronal cells. The crystal structures of the N-terminal tandem Tudor domains of FXR1 and FXR2 revealed a conserved architecture with that of FMRP. Biochemical analysis of the tandem Tudor doamins reveals their ability to preferentially recognize trimethylated peptides in a sequence-specific manner.« less

  11. Suppression of atherosclerosis by synthetic REV-ERB agonist

    PubMed Central

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2015-01-01

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. PMID:25800870

  12. DAX1 suppresses FXR transactivity as a novel co-repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jin; Lu, Yan; Liu, Ruya

    2011-09-09

    Highlights: {yields} DAX1 is co-localized with FXR and interacts with FXR. {yields} DAX1 acts as a negative regulator of FXR. {yields} Three LXXLL motifs in the N-terminus of DAX1 were required. {yields} DAX1 suppresses FXR transactivation by competing with co-activators. -- Abstract: Bile acid receptor FXR (farnesoid X receptor) is a key regulator of hepatic bile acid, glucose and lipid homeostasis through regulation of numerous genes involved in the process of bile acid, triglyceride and glucose metabolism. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is an atypical member of the nuclear receptor familymore » due to lack of classical DNA-binding domains and acts primarily as a co-repressor of many nuclear receptors. Here, we demonstrated that DAX1 is co-localized with FXR in the nucleus and acted as a negative regulator of FXR through a physical interaction with FXR. Our study showed that over-expression of DAX1 down-regulated the expression of FXR target genes, whereas knockdown of DAX1 led to their up-regulation. Furthermore, three LXXLL motifs in the N-terminus of DAX1 were required for the full repression of FXR transactivation. In addition, our study characterized that DAX1 suppresses FXR transactivation via competing with co-activators such as SRC-1 and PGC-1{alpha}. In conclusion, DAX1 acts as a co-repressor to negatively modulate FXR transactivity.« less

  13. Differential modulation of FXR activity by chlorophacinone and ivermectin analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Chia-Wen

    Chemicals that alter normal function of farnesoid X receptor (FXR) have been shown to affect the homeostasis of bile acids, glucose, and lipids. Several structural classes of environmental chemicals and drugs that modulated FXR transactivation were previously identified by quantitative high-throughput screening (qHTS) of the Tox21 10 K chemical collection. In the present study, we validated the FXR antagonist activity of selected structural classes, including avermectin anthelmintics, dihydropyridine calcium channel blockers, 1,3-indandione rodenticides, and pyrethroid pesticides, using in vitro assay and quantitative structural-activity relationship (QSAR) analysis approaches. (Z)-Guggulsterone, chlorophacinone, ivermectin, and their analogs were profiled for their ability to altermore » CDCA-mediated FXR binding using a panel of 154 coregulator motifs and to induce or inhibit transactivation and coactivator recruitment activities of constitutive androstane receptor (CAR), liver X receptor alpha (LXRα), or pregnane X receptor (PXR). Our results showed that chlorophacinone and ivermectin had distinct modes of action (MOA) in modulating FXR-coregulator interactions and compound selectivity against the four aforementioned functionally-relevant nuclear receptors. These findings collectively provide mechanistic insights regarding compound activities against FXR and possible explanations for in vivo toxicological observations of chlorophacinone, ivermectin, and their analogs. - Highlights: • A subset of Tox21 chemicals was investigated for FXR antagonism. • In vitro and computational approaches were used to evaluate FXR antagonists. • Chlorophacinone and ivermectin had distinct patterns in modulating FXR activity.« less

  14. FXR: Big fish or small fry for drug-induced liver injury?

    PubMed

    Ballet, François

    2016-02-01

    By integrating network analysis and molecular modeling, a "system pharmacology" approach identified FXR as a potential off-target protein mediating non-steroidal anti-inflammatory drugs (NSAID)-induced liver injury. In vitro assays showed that NSAID are potent FXR antagonists that inhibit FXR transcriptional activity. Given the role of FXR in bile acid homeostasis, liver inflammation and cell proliferation, the data suggest that FXR antagonism could mediate, at least in part, NSAID-induced liver injury. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yan; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS; Li, Guodong

    2013-01-15

    The farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR deficiency in mice results in cholestasis, metabolic disorders, and tumorigenesis in liver and intestine. FXR is known to contribute to pathogenesis by regulating gene transcription; however, changes in the post-transcriptional modification of proteins associated with FXR modulation have not been determined. In the current study, proteomic analysis of the livers of wild-type (WT) and FXR knockout (FXR-KO) mice treated with a FXR synthetic ligand or vehicle was performed. The results identified five proteins as novel FXR targets. Since FXR deficiency in micemore » leads to liver tumorigenesis, poly (ADP-ribose) polymerase family, member 1 (Parp1) that is important for DNA repair, was validated in the current study by quantitative real-time PCR, and 1- and 2-dimensional gel electrophoresis/western blot. The results showed that Parp1 mRNA levels were not altered by FXR genetic status or by agonist treatment. However, total Parp1 protein levels were increased in FXR-KO mice as early as 3 month old. Interestingly, total Parp1 protein levels were increased in WT mice in an age-dependent manner (from 3 to 18 months), but not in FXR-KO mice. Finally, activation of FXR in WT mice resulted in reduction of phosporylated Parp1 protein in the liver without affecting total Parp1 protein levels. In conclusion, this study reveals that FXR genetic status and agonist treatment affects basal levels and phosphorylation state of Parp1, respectively. These alterations, in turn, may be associated with the hepatobiliary alterations observed in FXR-KO mice and participate in FXR agonist-induced protection in the liver. -- Highlights: ► Proteomic analysis identified novel FXR targets. ► FXR modification altered post-translational modification of the Parp1 protein. ► Altered Parp1 function may contribute to mechanisms of FXR regulation of liver functions.« less

  16. Identification of Novel Synthetic Toll-like Receptor 2 Agonists by High Throughput Screening*

    PubMed Central

    Guan, Yue; Omueti-Ayoade, Katherine; Mutha, Sarita K.; Hergenrother, Paul J.; Tapping, Richard I.

    2010-01-01

    Toll-like receptors (TLRs) play a central role in host defense by inducing inflammatory and adaptive immune responses following infection. Drugs that target TLRs are of considerable interest as potential inflammatory regulators, vaccine adjuvants, and novel immunotherapeutics. TLR2, in cooperation with either TLR1 or TLR6, mediates responses to a wide variety of microbial products as well as products of host tissue damage. In an effort to understand the structural basis of TLR2 recognition and uncover novel TLR2 agonists, a synthetic chemical library of 24,000 compounds was screened using an IL-8-driven luciferase reporter in cells expressing these human receptors. The screening yielded several novel TLR2-dependent activators that utilize TLR1, TLR6, or both as co-receptors. These novel small molecule compounds are aromatic in nature and structurally unrelated to any known TLR2 agonists. The three most potent compounds do not exhibit synergistic activity, nor do they act as pseudoantagonists toward natural TLR2 activators. Interestingly, two of the compounds exhibit species specificity and are inactive toward murine peritoneal macrophages. Mutational analysis reveals that although the central extracellular region of TLR1 is required for stimulation, there are subtle differences in the mechanism of stimulation mediated by the synthetic compounds in comparison with natural lipoprotein agonists. The three most potent compounds activate cells in the nanomolar range and stimulate cytokine production from human peripheral blood monocytes. Our results confirm the utility of high throughput screens to uncover novel synthetic TLR2 agonists that may be of therapeutic benefit. PMID:20504771

  17. Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury

    PubMed Central

    Pu, Jun; Yuan, Ancai; Shan, Peiren; Gao, Erhe; Wang, Xiaoliang; Wang, Yajing; Lau, Wayne Bond; Koch, Walter; Ma, Xin-Liang; He, Ben

    2013-01-01

    Aims Emerging evidence indicates that nuclear receptors play a critical regulatory role in cardiovascular physiology/pathology. Recently, farnesoid-X-receptor (FXR), a member of the metabolic nuclear receptor superfamily, has been demonstrated to be expressed in vascular cells, with important roles in vascular physiology/pathology. However, the potential cardiac function of FXR remains unclear. We investigated the cardiac expression and biological function of FXR. Methods and results Farnesoid-X-receptor was detected in both isolated neonatal rat cardiac myocytes and fibroblasts. Natural and synthetic FXR agonists upregulated cardiac FXR expression, stimulated myocyte apoptosis, and reduced myocyte viability dose- and time-dependently. Mechanistic studies demonstrated that FXR agonists disrupted mitochondria, characterized by mitochondrial permeability transition pores activation, mitochondrial potential dissipation, cytochrome c release, and both caspase-9 and -3 activation. Such mitochondrial apoptotic responses were abolished by siRNA-mediated silencing of endogenous FXR or pharmacological inhibition of mitochondrial death signalling. Furthermore, low levels of FXR were detected in the adult mouse heart, with significant (∼2.0-fold) upregulation after myocardial ischaemia/reperfusion (MI/R). Pharmacological inhibition or genetic ablation of FXR significantly reduced myocardial apoptosis by 29.0–53.4%, decreased infarct size by 23.4–49.7%, and improved cardiac function in ischaemic/reperfused myocardium. Conclusion These results demonstrate that nuclear receptor FXR acts as a novel functional receptor in cardiac tissue, regulates apoptosis in cardiomyocytes, and contributes to MI/R injury. PMID:22307460

  18. Discovery of Natural Products as Novel and Potent FXR Antagonists by Virtual Screening

    NASA Astrophysics Data System (ADS)

    Diao, Yanyan; Jiang, Jing; Zhang, Shoude; Li, Shiliang; Shan, Lei; Huang, Jin; Zhang, Weidong; Li, Honglin

    2018-04-01

    Farnesoid X receptor (FXR) is a member of nuclear receptor family involved in multiple physiological processes through regulating specific target genes. The critical role of FXR as a transcriptional regulator makes it a promising target for diverse diseases, especially those related to metabolic disorders such as diabetes and cholestasis. However, the underlying activation mechanism of FXR is still a blur owing to the absence of proper FXR modulators. To identify potential FXR modulators, an in-house natural product database (NPD) containing over 4000 compounds was screened by structure-based virtual screening strategy and subsequent hit-based similarity searching method. After the yeast two-hybrid (Y2H) assay, six natural products were identified as FXR antagonists which blocked the CDCA-induced SRC-1 association. The IC50 values of compounds 2a, a diterpene bearing polycyclic skeleton, and 3a, named daphneone with chain scaffold, are as low as 1.29 μM and 1.79 μM, respectively. Compared to the control compound guggulsterone (IC50 = 6.47 μM), compounds 2a and 3a displayed 5-fold and 3-fold higher antagonistic activities against FXR, respectively. Remarkably, the two representative compounds shared low topological similarities with other reported FXR antagonists. According to the putative binding poses, the molecular basis of these antagonists against FXR was also elucidated in this report.

  19. Nutrient-sensing nuclear receptors PPARα and FXR control liver energy balance.

    PubMed

    Preidis, Geoffrey A; Kim, Kang Ho; Moore, David D

    2017-04-03

    The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

  20. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal in vitro cell models.

    PubMed

    Zhang, Yuanyuan; LaCerte, Carl; Kansra, Sanjay; Jackson, Jonathan P; Brouwer, Kenneth R; Edwards, Jeffrey E

    2017-12-01

    Obeticholic acid (OCA) is a semisynthetic farnesoid X receptor (FXR) agonist, an analogue of chenodeoxycholic acid (CDCA) which is indicated for the treatment of primary biliary cholangitis (PBC) in combination with ursodeoxycholic acid (UDCA). OCA efficiently inhibits bile acid synthesis and promotes bile acid efflux via activating FXR-mediated mechanisms in a physiologically relevant in vitro cell system, Sandwich-cultured Transporter Certified ™ human primary hepatocytes (SCHH). The study herein evaluated the effects of UDCA alone or in combination with OCA in SCHH. UDCA (≤100 μmol/L) alone did not inhibit CYP7A1 mRNA, and thus, no reduction in the endogenous bile acid pool observed. UDCA ≤100 μmol/L concomitantly administered with 0.1 μmol/L OCA had no effect on bile acid synthesis beyond what was observed with OCA alone. Furthermore, this study evaluated human Caco-2 cells (clone C2BBe1) as in vitro intestinal models. Glycine conjugate of OCA increased mRNA levels of FXR target genes in Caco-2 cells, FGF-19, SHP, OSTα/β, and IBABP, but not ASBT, in a concentration-dependent manner, while glycine conjugate of UDCA had no effect on the expression of these genes. The results suggested that UDCA ≤100 μmol/L did not activate FXR in human primary hepatocytes or intestinal cell line Caco-2. Thus, co-administration of UDCA with OCA did not affect OCA-dependent pharmacological effects. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  1. Fragile X mental retardation protein has a unique, evolutionarily conserved neuronal function not shared with FXR1P or FXR2P

    PubMed Central

    Coffee, R. Lane; Tessier, Charles R.; Woodruff, Elvin A.; Broadie, Kendal

    2010-01-01

    SUMMARY Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The Drosophila genome, by contrast, encodes a single dFMR1 gene with close sequence homology to all three human genes. Drosophila that lack the dFMR1 gene (dfmr1 null mutants) recapitulate FXS-associated molecular, cellular and behavioral phenotypes, suggesting that FMR1 function has been conserved, albeit with specific functions possibly sub-served by the expanded human gene family. To test evolutionary conservation, we used tissue-targeted transgenic expression of all three human genes in the Drosophila disease model to investigate function at (1) molecular, (2) neuronal and (3) non-neuronal levels. In neurons, dfmr1 null mutants exhibit elevated protein levels that alter the central brain and neuromuscular junction (NMJ) synaptic architecture, including an increase in synapse area, branching and bouton numbers. Importantly, hFMR1 can, comparably to dFMR1, fully rescue both the molecular and cellular defects in neurons, whereas hFXR1 and hFXR2 provide absolutely no rescue. For non-neuronal requirements, we assayed male fecundity and testes function. dfmr1 null mutants are effectively sterile owing to disruption of the 9+2 microtubule organization in the sperm tail. Importantly, all three human genes fully and equally rescue mutant fecundity and spermatogenesis defects. These results indicate that FMR1 gene function is evolutionarily conserved in neural mechanisms and cannot be compensated by either FXR1 or FXR2, but that all three proteins can substitute for each other in non-neuronal requirements. We conclude that FMR1 has a neural-specific function that is distinct from its paralogs, and that the unique FMR1

  2. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiongfei, E-mail: xiongfeihuang@hotmail.com; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian; Zeng, Yeting

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth bymore » rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.« less

  3. Identification of SR3335 (ML176): a Synthetic RORα Selective Inverse Agonist

    PubMed Central

    Kumar, Naresh; Kojetin, Douglas J.; Solt, Laura A.; Kumar, K. Ganesh; Nuhant, Philippe; Duckett, Derek R.; Cameron, Michael D.; Butler, Andrew A.; Roush, William R.; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    Several nuclear receptors (NRs) are still characterized as orphan receptors since ligands have not yet been identified for these proteins. The retinoic acid receptor-related receptors (RORs) have no well-defined physiological ligands. Here, we describe the identification of a selective RORα synthetic ligand, SR3335 (ML-176). SR3335 directly binds to RORα, but not other RORs, and functions as a selective partial inverse agonist of RORα in cell-based assays. Furthermore, SR3335 suppresses the expression of endogenous RORα target genes in HepG2 involved in hepatic gluconeogenesis including glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Pharmacokinetic studies indicate that SR3335 displays reasonable exposure following an i.p. injection into mice. We assess the ability of SR3335 to suppress gluconeogenesis in vivo using a diet induced obesity (DIO) mouse model where the mice where treated with 15 mg/kg b.i.d., i.p. for 6-days followed by a pyruvate tolerance test. SR3335 treated mice displayed lower plasma glucose levels following the pyruvate challenge consistent with suppression of gluconeogenesis. Thus, we have identified the first selective synthetic RORα inverse agonist and this compound can be utilized as a chemical tool to probe the function of this receptor both in vitro and in vivo. Additionally, our data suggests that RORα inverse agonists may hold utility for suppression of elevated hepatic glucose production in type 2 diabetics. PMID:21090593

  4. Upgrades to the LLNL flash x-ray induction linear accelerator (FXR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpetti, R. D., LLNL

    1997-06-30

    The FXR is an induction linear accelerator used for flash radiography at the Lawrence Livermore National Laboratory's Site 300 Test Facility. The FXR was originally completed in 1982 and has been in continuous use as a radiographic tool. At that time the FXR produced a 17MeV, 2.2 kA burst of electrons for a duration of 65 ns. An upgrade of the FXR was recently completed. The purpose of this upgrade was to improve the performance of the FXR by increasing the energy of the electron injector from 1.2 MeV to 2.5 MeV and the beam current from 2.2 kA tomore » 3 kA, improving the magnetic transport system by redesigning the solenoidal transport focus coils, reducing the rf coupling of the electron beam to the accelerator cells, and by adding additional beam diagnostics. We will describe the injector upgrades and performance as well as our efforts to tune the accelerator by minimizing beam corkscrew motion and the impact of Beam Breakup Instability on beam centroid motion throughout the beam line as the current is increased to 3 kA.« less

  5. Increased Cardiac Arrhythmogenesis Associated With Gap Junction Remodeling With Upregulation of RNA-Binding Protein FXR1.

    PubMed

    Chu, Miensheng; Novak, Stefanie Mares; Cover, Cathleen; Wang, Anne A; Chinyere, Ikeotunye Royal; Juneman, Elizabeth B; Zarnescu, Daniela C; Wong, Pak Kin; Gregorio, Carol C

    2018-02-06

    Gap junction remodeling is well established as a consistent feature of human heart disease involving spontaneous ventricular arrhythmia. The mechanisms responsible for gap junction remodeling that include alterations in the distribution of, and protein expression within, gap junctions are still debated. Studies reveal that multiple transcriptional and posttranscriptional regulatory pathways are triggered in response to cardiac disease, such as those involving RNA-binding proteins. The expression levels of FXR1 (fragile X mental retardation autosomal homolog 1), an RNA-binding protein, are critical to maintain proper cardiac muscle function; however, the connection between FXR1 and disease is not clear. To identify the mechanisms regulating gap junction remodeling in cardiac disease, we sought to identify the functional properties of FXR1 expression, direct targets of FXR1 in human left ventricle dilated cardiomyopathy (DCM) biopsy samples and mouse models of DCM through BioID proximity assay and RNA immunoprecipitation, how FXR1 regulates its targets through RNA stability and luciferase assays, and functional consequences of altering the levels of this important RNA-binding protein through the analysis of cardiac-specific FXR1 knockout mice and mice injected with 3xMyc-FXR1 adeno-associated virus. FXR1 expression is significantly increased in tissue samples from human and mouse models of DCM via Western blot analysis. FXR1 associates with intercalated discs, and integral gap junction proteins Cx43 (connexin 43), Cx45 (connexin 45), and ZO-1 (zonula occludens-1) were identified as novel mRNA targets of FXR1 by using a BioID proximity assay and RNA immunoprecipitation. Our findings show that FXR1 is a multifunctional protein involved in translational regulation and stabilization of its mRNA targets in heart muscle. In addition, introduction of 3xMyc-FXR1 via adeno-associated virus into mice leads to the redistribution of gap junctions and promotes ventricular

  6. FXR1P is a GSK3β substrate regulating mood and emotion processing

    PubMed Central

    Del’Guidice, Thomas; Latapy, Camille; Rampino, Antonio; Khlghatyan, Jivan; Lemasson, Morgane; Gelao, Barbara; Quarto, Tiziana; Rizzo, Giuseppe; Barbeau, Annie; Lamarre, Claude; Bertolino, Alessandro; Blasi, Giuseppe; Beaulieu, Jean-Martin

    2015-01-01

    Inhibition of glycogen synthase kinase 3β (GSK3β) is a shared action believed to be involved in the regulation of behavior by psychoactive drugs such as antipsychotics and mood stabilizers. However, little is known about the identity of the substrates through which GSK3β affects behavior. We identified fragile X mental retardation-related protein 1 (FXR1P), a RNA binding protein associated to genetic risk for schizophrenia, as a substrate for GSK3β. Phosphorylation of FXR1P by GSK3β is facilitated by prior phosphorylation by ERK2 and leads to its down-regulation. In contrast, behaviorally effective chronic mood stabilizer treatments in mice inhibit GSK3β and increase FXR1P levels. In line with this, overexpression of FXR1P in the mouse prefrontal cortex also leads to comparable mood-related responses. Furthermore, functional genetic polymorphisms affecting either FXR1P or GSK3β gene expression interact to regulate emotional brain responsiveness and stability in humans. These observations uncovered a GSK3β/FXR1P signaling pathway that contributes to regulating mood and emotion processing. Regulation of FXR1P by GSK3β also provides a mechanistic framework that may explain how inhibition of GSK3β can contribute to the regulation of mood by psychoactive drugs in mental illnesses such as bipolar disorder. Moreover, this pathway could potentially be implicated in other biological functions, such as inflammation and cell proliferation, in which FXR1P and GSK3 are known to play a role. PMID:26240334

  7. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation.

    PubMed

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15ml/kg). In CCl 4 +OCA group, mice were orally with OCA (5mg/kg) 48, 24 and 1h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Binding free energy predictions of farnesoid X receptor (FXR) agonists using a linear interaction energy (LIE) approach with reliability estimation: application to the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Rifai, Eko Aditya; van Dijk, Marc; Vermeulen, Nico P. E.; Geerke, Daan P.

    2018-01-01

    Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds. Using our recently introduced reliability estimation metrics, we could classify predictions with higher confidence by featuring an applicability domain (AD) analysis in combination with protein-ligand interaction profiling. The outcomes of and agreement between our AD and interaction-profile analyses to distinguish and rationalize the performance of our predictions highlighted the relevance of sufficiently exploring protein-ligand interactions during training and it demonstrated the possibility to quantitatively and efficiently evaluate if this is achieved by using simulation data only.

  9. Relamorelin: A Novel Gastrocolokinetic Synthetic Ghrelin Agonist

    PubMed Central

    Camilleri, Michael; Acosta, Andres

    2015-01-01

    Synthetic ghrelin agonists, predominantly small molecules, are being developed as prokinetic agents that may prove useful in the treatment of gastrointestinal motility disorders. Relamorelin (RM-131) is a pentapeptide synthetic ghrelin analog that activates the growth hormone secretagogue (GHS)-1a (also called the ghrelin) receptor with approximately 6-fold greater potency than natural ghrelin. The ability of relamorelin to stimulate growth hormone (GH) release is comparable to that of native ghrelin. Relamorelin has enhanced efficacy and plasma stability compared to native ghrelin. In this review, we discuss the pharmacokinetics, pharmacodynamics and potential indications for relamorelin. Relamorelin is administered subcutaneously, dosed daily or twice daily. Relamorelin is being studied for the treatment of patients with gastrointestinal motility disorders. Phase IIA pharmacodynamic studies have demonstrated acceleration of gastric emptying in patients with type 1 diabetes mellitus (T1DM) and type 2 DM (T2DM) and upper gastrointestinal symptoms. In a phase IIA study in patients with diabetic gastroparesis, relamorelin accelerated gastric emptying and significantly improved vomiting frequency compared to placebo and improved other symptoms of gastroparesis in a pre-specified subgroup of patients with vomiting at baseline. In patients with chronic idiopathic constipation with defined transit profile at baseline, relamorelin relieved constipation and accelerated colonic transit compared to placebo. These characteristics suggest that this new ghrelin analog shows great promise to relieve patients with upper or lower gastrointestinal motility disorders. PMID:25545036

  10. Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORα and RORγ.

    PubMed

    Wang, Yongjun; Kumar, Naresh; Nuhant, Philippe; Cameron, Michael D; Istrate, Monica A; Roush, William R; Griffin, Patrick R; Burris, Thomas P

    2010-11-19

    The retinoic acid receptor-related receptors (RORs) are members of the nuclear receptor (NR) superfamily of transcription factors. Several NRs are still characterized as orphan receptors because ligands have not yet been identified for these proteins. Here, we describe the identification of a synthetic RORα/RORγ ligand, SR1078. SR1078 modulates the conformation of RORγ in a biochemical assay and activates RORα and RORγ driven transcription. Furthermore, SR1078 stimulates expression of endogenous ROR target genes in HepG2 cells that express both RORα and RORγ. Pharmacokinetic studies indicate that SR1078 displays reasonable exposure following injection into mice, and consistent with SR1078 functioning as a RORα/RORγ agonist, expression of two ROR target genes, glucose-6-phosphatase and fibroblast growth factor 21, were stimulated in the liver. Thus, we have identified the first synthetic RORα/γ agonist, and this compound can be utilized as a chemical tool to probe the function of these receptors both in vitro and in vivo.

  11. Identification of a Synthetic Agonist for the Orphan Nuclear Receptors RORα and RORγ, SR1078

    PubMed Central

    Wang, Yongjun; Kumar, Naresh; Nuhant, Philippe; Cameron, Michael D.; Istrate, Monica A.; Roush, William R.; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    The retinoic acid receptor-related receptors (RORs) are members of the nuclear receptor (NR) superfamily of transcription factors. Several NRs are still characterized as orphan receptors since ligands have not yet been identified for these proteins. Here, we describe the identification of a synthetic RORα/RORγ ligand, SR1078. SR1078 modulates the conformation of RORγ in a biochemical assay and activates RORα and RORγ driven transcription. Furthermore, SR1078 stimulates expression of endogenous ROR target genes in HepG2 cells that express both RORα and RORγ. Pharmacokinetic studies indicate that SR1078 displays reasonable exposure following injection into mice and consistent with SR1078 functioning as a RORα/RORγ agonist, expression of two ROR target genes, glucose-6-phosphatase and fibroblast growth factor 21, were stimulated in the liver. Thus, we have identified the first synthetic RORα/γ agonist and this compound can be utilized as a chemical tool to probe the function of these receptors both in vitro and in vivo. PMID:20735016

  12. Hippocampal FXR plays a role in the pathogenesis of depression: A preliminary study based on lentiviral gene modulation.

    PubMed

    Chen, Wei-Guan; Zheng, Jia-Xuan; Xu, Xi; Hu, Yu-Ming; Ma, Yu-Min

    2018-06-01

    As a well-known bile acid receptor, the role of Farnesoid X receptor (FXR) in the digestive system and cardiovascular system has been widely explored. However, there are very few studies involving FXR in the central nervous system. In this study, we explored the role of FXR in the pathogenesis of depression, a serious and worldwide neuropsychiatric disease. It was found that chronic unpredictable mild stress (CUMS) fully enhanced the protein and mRNA expressions of FXR in hippocampus, but not medial prefrontal cortex (mPFC). Overexpression of hippocampal FXR induced notable depressive-like behaviors and decreased expression of brain-derived neurotrophic factor (BDNF) in naïve rats, while knockdown of hippocampal FXR fully prevented the effects of CUMS on rat behaviors and hippocampal BDNF expression. Taken together, our research extends the knowledge of FXR's role in the central nervous system, and may provide a potential and novel therapeutic target for treating depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Development of cable fed flash X-ray (FXR) system

    NASA Astrophysics Data System (ADS)

    Menon, Rakhee; Mitra, S.; Patel, A. S.; Kumar, R.; Singh, G.; Senthil, K.; Kumar, Ranjeet; Kolge, T. S.; Roy, Amitava; Acharya, S.; Biswas, D.; Sharma, Archana

    2017-08-01

    Flash X-ray sources driven by pulsed power find applications in industrial radiography, and a portable X-ray source is ideal where the radiography needs to be taken at the test site. A compact and portable flash X-ray (FXR) system based on a Marx generator has been developed with the high voltage fed to the FXR tube via a cable feed-through arrangement. Hard bremsstrahlung X-rays of few tens of nanosecond duration are generated by impinging intense electron beams on an anode target of high Z material. An industrial X-ray source is developed with source size as low as 1 mm. The system can be operated from 150 kV to 450 kV peak voltages and a dose of 10 mR has been measured at 1 m distance from the source window. The modeling of the FXR source has been carried out using particle-in-cell and Monte Carlo simulations for the electron beam dynamics and X-ray generation, respectively. The angular dose profile of X-ray has been measured and compared with the simulation.

  14. Effect of Synthetic Dietary Triglycerides: A Novel Research Paradigm for Nutrigenomics

    PubMed Central

    Sanderson, Linda M.; de Groot, Philip J.; Hooiveld, Guido J. E. J.; Koppen, Arjen; Kalkhoven, Eric; Müller, Michael; Kersten, Sander

    2008-01-01

    Background The effect of dietary fats on human health and disease are likely mediated by changes in gene expression. Several transcription factors have been shown to respond to fatty acids, including SREBP-1c, NF-κB, RXRs, LXRs, FXR, HNF4α, and PPARs. However, it is unclear to what extent these transcription factors play a role in gene regulation by dietary fatty acids in vivo. Methodology/Principal Findings Here, we take advantage of a unique experimental design using synthetic triglycerides composed of one single fatty acid in combination with gene expression profiling to examine the effects of various individual dietary fatty acids on hepatic gene expression in mice. We observed that the number of significantly changed genes and the fold-induction of genes increased with increasing fatty acid chain length and degree of unsaturation. Importantly, almost every single gene regulated by dietary unsaturated fatty acids remained unaltered in mice lacking PPARα. In addition, the majority of genes regulated by unsaturated fatty acids, especially docosahexaenoic acid, were also regulated by the specific PPARα agonist WY14643. Excellent agreement was found between the effects of unsaturated fatty acids on mouse liver versus cultured rat hepatoma cells. Interestingly, using Nuclear Receptor PamChip® Arrays, fatty acid- and WY14643-induced interactions between PPARα and coregulators were found to be highly similar, although several PPARα-coactivator interactions specific for WY14643 were identified. Conclusions/Significance We conclude that the effects of dietary unsaturated fatty acids on hepatic gene expression are almost entirely mediated by PPARα and mimic those of synthetic PPARα agonists in terms of regulation of target genes and molecular mechanism. Use of synthetic dietary triglycerides may provide a novel paradigm for nutrigenomics research. PMID:18301758

  15. Activation of farnesoid X receptor induces RECK expression in mouse liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xiaomin; Wu, Weibin; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032

    2014-01-03

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found thatmore » FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guodong; Department of Abdominal Surgery, Cancer treatment center, Fourth Affiliated Hospital of Harbin Medical University, Harbin; Lin, Wenwei

    Farnesoid X receptor (FXR) is a ligand-activated nuclear receptor and serves as a key regulator to maintain health of the liver and intestine. Bile acids are endogenous ligands of FXR, and there are increasing efforts to identify FXR modulators to serve as biological probes and/or pharmaceutical agents. Natural FXR ligands isolated from plants may serve as models to synthesize novel FXR modulators. In this study, we demonstrated that epigallocatechin-3-gallate (EGCG), a major tea catechin, specifically and dose-dependently activates FXR. In addition, EGCG induced FXR target gene expression in vitro. Surprisingly, in a co-activator (SRC2) recruitment assay, we found that EGCGmore » does not recruit SRC2 to FXR, but it dose-dependently inhibits recruitment of SRC2 to FXR (IC{sub 50}, 1 μM) by GW6064, which is a potent FXR synthetic ligand. In addition, EGCG suppressed FXR target gene expression induced by either GW4064 or chenodeoxycholic acid in vitro. Furthermore, wild-type and FXR knockout mice treated with an acute dose of EGCG had induced mRNA expression in a subset of FXR target genes in the intestine but not in the liver. In conclusion, EGCG is a unique modulator of FXR in the intestine and may serve as an important model for future development of FXR modulators. -- Highlights: ► Epigallocatechin-3-gallate (EGCG) is a unique farnesoid X receptor (FXR) modulator. ► EGCG activates FXR by itself, but inhibits FXR transactivation by other agonists. ► Low concentration of EGCG activates FXR in mouse intestine but not liver. ► EGCG activates FXR to induce a subset of FXR target genes in mouse intestine.« less

  17. Analysis and clinical findings of cases positive for the novel synthetic cannabinoid receptor agonist MDMB-CHMICA.

    PubMed

    Seywright, Alice; Torrance, Hazel J; Wylie, Fiona M; McKeown, Denise A; Lowe, David J; Stevenson, Richard

    2016-09-01

    MDMB-CHMICA is a synthetic cannabinoid receptor agonist which has caused concern due to its presence in cases of adverse reaction and death. 43 cases of suspected synthetic cannabinoid ingestion were identified from patients presenting at an Emergency Department and from post-mortem casework. These were subjected to liquid-liquid extraction using tertiary-butyl methyl ether and quantitatively analysed by Electrospray Ionisation Liquid Chromatography-tandem Mass Spectrometry. For positive samples, case and clinical details were sought and interrogated. 11 samples were found positive for MDMB-CHMICA. Concentrations found ranged from <1 to 22 ng/mL (mean: 6 ng/mL, median: 3 ng/mL). The age range was 15-44 years (mean: 26 years, median: 21 years), with the majority (82%) of positive results found in males. Clinical presentations included hypothermia, hypoglycaemia, syncope, recurrent vomiting, altered mental state and serotonin toxicity, with corresponding concentrations of MDMB-CHMICA as low as <1 ng/mL. Duration of hospitalisation ranged from 3 to 24 h (mean: 12 h, median: 8 h). The concentration range presented in this case series is indicative of MDMB-CHMICA having a high potency, as is known to be the case for other synthetic cannabinoid receptor agonists. The age range and gender representation were consistent with that reported for users of other drugs of this type. The clinical presentations observed were typical of synthetic cannabinoid receptor agonists and show the difficulties in identifying reactions potentially associated with drugs of this type. The range of MDMB-CHMICA concentrations in Emergency Department presentations (n = 9) and post-mortem cases (n = 2) was reported. No correlation between the concentration of this drug and clinical presentation or cause of death was reported in this sample. However, the potential for harm associated with low concentrations of MDMB-CHMICA and the symptoms of toxicity being non-specific were

  18. FXR-Gankyrin axis is involved in development of pediatric liver cancer.

    PubMed

    Valanejad, Leila; Lewis, Kyle; Wright, Mary; Jiang, Yanjun; D'Souza, Amber; Karns, Rebekah; Sheridan, Rachel; Gupta, Anita; Bove, Kevin; Witte, David; Geller, James; Tiao, Gregory; Nelson, David L; Timchenko, Lubov; Timchenko, Nikolai

    2017-07-01

    The development of hepatoblastoma (HBL) is associated with failure of hepatic stem cells (HSC) to differentiate into hepatocytes. Despite intensive investigations, mechanisms of the failure of HSC to differentiate are not known. We found that oncogene Gankyrin (Gank) is involved in the inhibition of differentiation of HSC via triggering degradation of tumor suppressor proteins (TSPs) Rb, p53, C/EBPα and HNF4α. Our data show that the activation of a repressor of Gank, farnesoid X receptor, FXR, after initiation of liver cancer by Diethylnitrosamine (DEN) prevents the development of liver cancer by inhibiting Gank and rescuing tumor suppressor proteins. We next analyzed FXR-Gank-Tumor suppressor pathways in a large cohort of HBL patients which include 6 controls and 53 HBL samples. Systemic analysis of these samples and RNA-Seq approach revealed that the FXR-Gank axis is activated; markers of hepatic stem cells are dramatically elevated and hepatocyte markers are reduced in HBL samples. In the course of these studies, we found that RNA binding protein CUGBP1 is a new tumor suppressor protein which is reduced in all HBL samples. Therefore, we generated CUGBP1 KO mice and examined HBL signatures in the liver of these mice. Micro-array studies revealed that the HBL-specific molecular signature is developed in livers of CUGBP1 KO mice at very early ages. Thus, we conclude that FXR-Gank-TSPs-Stem cells pathway is a key determinant of liver cancer in animal models and in pediatric liver cancer. Our data provide a strong basis for development of FXR-Gank-based therapy for treatment of patients with hepatoblastoma. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Modification on ursodeoxycholic acid (UDCA) scaffold. discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1).

    PubMed

    Sepe, Valentina; Renga, Barbara; Festa, Carmen; D'Amore, Claudio; Masullo, Dario; Cipriani, Sabrina; Di Leva, Francesco Saverio; Monti, Maria Chiara; Novellino, Ettore; Limongelli, Vittorio; Zampella, Angela; Fiorucci, Stefano

    2014-09-25

    Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.

  20. Farnesoid X Receptor Agonist Treatment Alters Bile Acid Metabolism but Exacerbates Liver Damage in a Piglet Model of Short-Bowel Syndrome.

    PubMed

    Pereira-Fantini, Prue M; Lapthorne, Susan; Gahan, Cormac G M; Joyce, Susan A; Charles, Jenny; Fuller, Peter J; Bines, Julie E

    2017-07-01

    Options for the prevention of short-bowel syndrome-associated liver disease (SBS-ALDs) are limited and often ineffective. The farnesoid X receptor (FXR) is a newly emerging pharmaceutical target and FXR agonists have been shown to ameliorate cholestasis and metabolic disorders. The aim of this study was to assess the efficacy of obeticholic acid (OCA) treatment in preventing SBS-ALDs. Piglets underwent 75% small-bowel resection (SBS) or sham surgery (sham) and were assigned to either a daily dose of OCA (2.4 mg/kg/day) or were untreated. Clinical measures included weight gain and stool studies. Histologic features were assessed. Ultraperformance liquid chromatography tandem mass spectrometry was used to determine bile acid composition in end point bile and portal serum samples. Gene expression of key FXR targets was assessed in intestinal and hepatic tissues via quantitative polymerase chain reaction. OCA-treated SBS piglets showed decreased stool fat and altered liver histology when compared with nontreated SBS piglets. OCA prevented SBS-associated taurine depletion, however, further analysis of bile and portal serum samples indicated that OCA did not prevent SBS-associated alterations in bile acid composition. The expression of FXR target genes involved in bile acid transport and synthesis increased within the liver of SBS piglets after OCA administration whereas, paradoxically, intestinal expression of FXR target genes were decreased by OCA administration. Administration of OCA in SBS reduced fat malabsorption and altered bile acid composition, but did not prevent the development of SBS-ALDs. We postulate that extensive small resection impacts the ability of the remnant intestine to respond to FXR activation.

  1. RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC

    PubMed Central

    Majumder, Mrinmoyee; House, Reniqua; Palanisamy, Nallasivam; Qie, Shuo; Day, Terrence A.; Neskey, David; Diehl, J. Alan

    2016-01-01

    RNA-binding proteins (RBP) regulate numerous aspects of co- and post-transcriptional gene expression in cancer cells. Here, we demonstrate that RBP, fragile X-related protein 1 (FXR1), plays an essential role in cellular senescence by utilizing mRNA turnover pathway. We report that overexpressed FXR1 in head and neck squamous cell carcinoma targets (G-quadruplex (G4) RNA structure within) both mRNA encoding p21 (Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A, Cip1) and the non-coding RNA Telomerase RNA Component (TERC), and regulates their turnover to avoid senescence. Silencing of FXR1 in cancer cells triggers the activation of Cyclin-Dependent Kinase Inhibitors, p53, increases DNA damage, and ultimately, cellular senescence. Overexpressed FXR1 binds and destabilizes p21 mRNA, subsequently reduces p21 protein expression in oral cancer cells. In addition, FXR1 also binds and stabilizes TERC RNA and suppresses the cellular senescence possibly through telomerase activity. Finally, we report that FXR1-regulated senescence is irreversible and FXR1-depleted cells fail to form colonies to re-enter cellular proliferation. Collectively, FXR1 displays a novel mechanism of controlling the expression of p21 through p53-dependent manner to bypass cellular senescence in oral cancer cells. PMID:27606879

  2. Superior reductions in hepatic steatosis and fibrosis with co-administration of a glucagon-like peptide-1 receptor agonist and obeticholic acid in mice.

    PubMed

    Jouihan, Hani; Will, Sarah; Guionaud, Silvia; Boland, Michelle L; Oldham, Stephanie; Ravn, Peter; Celeste, Anthony; Trevaskis, James L

    2017-11-01

    Nonalcoholic steatohepatitis (NASH) is an unmet need associated with metabolic syndrome. There are no approved therapies for NASH; however, glucagon-like peptide-1 receptor (GLP-1R) and farnesoid-X receptor (FXR) agonists are promising drug targets. We investigated the therapeutic effects of co-administration of a GLP-1R agonist, IP118, with FXR agonist obeticholic acid (OCA) in mice. OCA and IP118 alone and in combination were sub-chronically administered to Lep ob /Lep ob mice with diet-induced NASH or diet-induced obese (DIO) mice. Metabolic (body weight and glucose) and liver (biochemical and histological) endpoints were assessed. NASH severity in Lep ob /Lep ob mice was graded using a customized integrated scoring system. OCA reduced liver weight and lipid in NASH mice (both by -17%) but had no effect on plasma ALT or AST levels. In contrast, IP118 significantly reduced liver weight (-21%), liver lipid (-15%), ALT (-29%), and AST (-27%). The combination of OCA + IP118 further reduced liver weight (-29%), liver lipid (-22%), ALT (-39%), and AST (-36%). Combination therapy was superior to monotherapies in reducing hepatic steatosis, inflammation, and fibrosis. Hepatic improvements with IP118 and OCA + IP118 were associated with reduced body weight (-4.3% and -3.5% respectively) and improved glycemic control in OCA + IP118-treated mice. In DIO mice, OCA + IP118 co-administration reduced body weight (-25.3%) to a greater degree than IP118 alone (-12.5%) and further improved glucose tolerance and reduced hepatic lipid. Our data suggest a complementary or synergistic therapeutic effect of GLP-1R and FXR agonism in mouse models of metabolic disease and NASH. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  3. Spice, bath salts, and the U.S. military: the emergence of synthetic cannabinoid receptor agonists and cathinones in the U.S. Armed Forces.

    PubMed

    Loeffler, George; Hurst, Donald; Penn, Ashley; Yung, Kathryn

    2012-09-01

    Designer drugs are synthetic compounds that contain modified molecular structures of illegal or controlled substances. They are produced clandestinely with the intent to elicit effects similar to controlled substances while circumventing existing drug laws. Two classes of designer drugs that have risen to recent prominence are "spice," synthetic cannabinoid receptor agonists that mimic the effect of tetrahydrocannabinol, the active ingredient in cannabis, and "bath salts," synthetic cathinones, stimulants structurally related to amphetamines that have effects similar to cocaine and methamphetamine. Although these substances have only gained prominence recently, service members of the U.S. armed forces have not been immune to spice and bath salt abuse. These substances are often perceived as safe and are available via the Internet, in head shops and from dealers. Spice and bath salt abuse is increasingly associated with serious medical and psychiatric problems. Military health care providers must be familiar with these important new classes of drugs. This article discusses the background, current civilian and military legal status, clinical effects, pharmacology, and clinical management of synthetic cannabinoid receptor agonists and synthetic cathinones.

  4. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weibin; Institutes of Biomedical Science, Fudan University, Shanghai 200032; Zhu, Bo

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid andmore » glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.« less

  5. Chronic Activation of FXR in Transgenic Mice Caused Perinatal Toxicity and Sensitized Mice to Cholesterol Toxicity

    PubMed Central

    Cheng, Qiuqiong; Inaba, Yuka; Lu, Peipei; Xu, Meishu; He, Jinhan; Zhao, Yueshui; Guo, Grace L.; Kuruba, Ramalinga; de la Vega, Rona; Evans, Rhobert W.; Li, Song

    2015-01-01

    The nuclear receptor farnesoid X receptor (FXR) (nuclear receptor subfamily 1, group H, member 4, or NR1H4) is highly expressed in the liver and intestine. Previous reports have suggested beneficial functions of FXR in the homeostasis of bile acids, lipids, and glucose, as well as in promoting liver regeneration and inhibiting carcinogenesis. To investigate the effect of chronic FXR activation in vivo, we generated transgenic mice that conditionally and tissue specifically express the activated form of FXR in the liver and intestine. Unexpectedly, the transgenic mice showed several intriguing phenotypes, including partial neonatal lethality, growth retardation, and spontaneous liver toxicity. The transgenic mice also displayed heightened sensitivity to a high-cholesterol diet-induced hepatotoxicity but resistance to the gallstone formation. The phenotypes were transgene specific, because they were abolished upon treatment with doxycycline to silence the transgene expression. The perinatal toxicity, which can be rescued by a maternal vitamin supplement, may have resulted from vitamin deficiency due to low biliary bile acid output as a consequence of inhibition of bile acid formation. Our results also suggested that the fibroblast growth factor-inducible immediate-early response protein 14 (Fn14), a member of the proinflammatory TNF family, is a FXR-responsive gene. However, the contribution of Fn14 induction in the perinatal toxic phenotype of the transgenic mice remains to be defined. Because FXR is being explored as a therapeutic target, our results suggested that a chronic activation of this nuclear receptor may have an unintended side effect especially during the perinatal stage. PMID:25719402

  6. Definition of agonists and design of antagonists for alloreactive T cell clones using synthetic peptide libraries.

    PubMed

    de Koster, H S; Vermeulen, C J; Hiemstra, H S; Amons, R; Drijfhout, J W; Koning, F

    1999-04-01

    Alloreactive T cells form an important barrier for organ transplantation. To reduce the risk of rejection patients are given immunosuppressive drugs, which increase the chance of infection and the incidence of malignancies. It has been shown that a large proportion of alloreactive T cells specifically recognize peptides present in the groove of the allogeneic MHC molecule. This implies that it might be possible to modulate the alloresponse by peptides with antagonistic properties, thus preventing rejection without the side effects of general immunosuppression. Peptide antagonists can be designed on the basis of the original agonist, yet for alloreactive T cells these agonists are usually unknown. In this study we have used a dedicated synthetic peptide library to identify agonists for HLA-DR3-specific alloreactive T cell clones. Based on these agonists, altered peptide ligands (APL) were designed. Three APL could antagonize an alloreactive T cell clone in its response against the library-derived agonist as well as in its response against the original allodeterminant, HLA-DR3. This demonstrates that peptide libraries can be used to design antagonists for alloreactive T cells without knowledge about the nature of the actual allostimulatory peptide. Since the most potent agonists are selected, this strategy permits detection of potent antagonists. The results, however, also suggest that the degree of peptide dependency of alloreactive T cell clones may dictate whether a peptide antagonist can be found for such clones. Whether peptide antagonists will be valuable in the development of donor-patient-specific immunosuppression may therefore depend on the specificity of the in vivo-generated alloreactive T cells.

  7. Cardiopulmonary protective effects of the selective FXR agonist obeticholic acid in the rat model of monocrotaline-induced pulmonary hypertension.

    PubMed

    Vignozzi, Linda; Morelli, Annamaria; Cellai, Ilaria; Filippi, Sandra; Comeglio, Paolo; Sarchielli, Erica; Maneschi, Elena; Vannelli, Gabriella Barbara; Adorini, Luciano; Maggi, Mario

    2017-01-01

    Farnesoid X receptor (FXR) activation by obeticholic acid (OCA) has been demonstrated to inhibit inflammation and fibrosis development and even induce fibrosis regression in liver, kidney and intestine in multiple disease models. OCA also inhibits liver fibrosis in nonalcoholic steatohepatitis patients. FXR activation has also been demonstrated to suppress the inflammatory response and to promote lung repair after lung injury. This study investigated the effects of OCA treatment (3, 10 or 30mg/kg, daily for 5days a week, for 7 and/or 28 days) on inflammation, tissue remodeling and fibrosis in the monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) rat model. Treatment with OCA attenuated MCT-induced increased pulmonary arterial wall thickness and right ventricular hypertrophy, by i) blunting pathogenic inflammatory mechanisms (downregulation of interleukin 6, IL-6, and monocyte chemoattractant protein-1, MCP-1) and ii) enhancing protective mechanisms counteracting fibrosis and endothelial/mesenchymal transition. MCT-injected rats also showed a marked decrease of pulmonary artery responsiveness to both endothelium-dependent and independent relaxant stimuli, such as acetylcholine and a nitric oxide donor, sodium nitroprusside. Administration of OCA (30mg/kg) normalized this decreased responsiveness. Accordingly, OCA treatment induced profound beneficial effects on lung histology. In particular, both OCA doses markedly reduced the MCT-induced medial wall thickness increase in small pulmonary arteries. To evaluate the objective functional improvement by OCA treatment of MCT-induced PAH, we performed a treadmill test and measured duration of exercise. MCT significantly reduced, and OCA normalized treadmill endurance. Results with OCA were similar, or even superior, to those obtained with tadalafil, a well-established treatment of PAH. In conclusion, OCA treatment demonstrates cardiopulmonary protective effects, modulating lung vascular remodeling, reducing

  8. Protective effects of calycosin against CCl4-induced liver injury with activation of FXR and STAT3 in mice.

    PubMed

    Chen, Xinli; Meng, Qiang; Wang, Changyuan; Liu, Qi; Sun, Huijun; Huo, Xiaokui; Sun, Pengyuan; Yang, Xiaobo; Peng, Jinyong; Liu, Kexin

    2015-02-01

    Investigating the hepatoprotective effect of calycosin against acute liver injury in association with FXR activation and STAT3 phosphorylation. The acute liver injury model was established by intraperitoneal injection of CCl4 in C57BL/6 mice. Serum alanine aminotransferase, aspartate aminotransferase, HE staining and TUNEL assay were used to identify the amelioration of the liver histopathological changes and hepatocytes apoptosis after calycosin treatment. ELISA kit and 5-bromo-2-deoxyuridine immunohistochemistry were used to measure the liver bile acid concentration and hepatocyte mitotic rate in vivo. The relation between calycosin and activation of FXR and STAT3 was comfirmed using the Luciferase assay, Molecular docking, Real-time PCR and Western Blot in vitro. The liver histopathological changes, hepatocytes apoptosis, liver bile acid overload and hepatocyte mitosis showed significant changes after calycosin treatment. Calycosin promoted the expression of FXR target genes such as FoxM1B and SHP but the effect was reversed by FXR suppressor guggulsterone. Molecular docking results indicated that calycosin could be embedded into the binding pocket of FXR, thereby increasing the expressions of STAT3 tyrosine phosphorylation and its target genes, Bcl-xl and SOCS3. Calycosin plays a critical role in hepatoprotection against liver injury in association with FXR activation and STAT3 phosphorylation.

  9. The region of CQQQKPQRRP of PGC-1{alpha} interacts with the DNA-binding complex of FXR/RXR{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanaya, Eiko; Jingami, Hisato

    2006-04-14

    PGC-1{alpha} co-activates transcription by several nuclear receptors. To study the interaction among PGC-1{alpha}, RXR{alpha}/FXR, and DNA, we performed electrophoresis mobility shift assays. The RXR{alpha}/FXR proteins specifically bound to DNA containing the IR-1 sequence in the absence of ligand. When the fusion protein of GST-PGC-1{alpha} was added to the mixture of RXR{alpha}/FXR/DNA, the ligand-influenced retardation of the mobility was observed. The ligand for RXR{alpha} (9-cis-retinoic acid) was necessary for this retardation, whereas, the ligand for FXR, chenodeoxycholic acid, barely had an effect. The results obtained using truncated PGC-1{alpha} proteins suggested that two regions are necessary for PGC-1{alpha} to interact with themore » DNA-binding complex of RXR{alpha}/FXR. One is the region of the second leucine-rich motif, and the other is that of the amino acid sequence CQQQKPQRRP, present between the second and third leucine-rich motifs. The results obtained with the SPQSS mutation for KPQRR suggested that the basic amino acids are important for the interaction.« less

  10. Interaction of glucocorticoids with FXR/FGF19/FGF21-mediated ileum-liver crosstalk.

    PubMed

    Al-Aqil, Faten A; Monte, Maria J; Peleteiro-Vigil, Ana; Briz, Oscar; Rosales, Ruben; González, Raquel; Aranda, Carlos J; Ocón, Borja; Uriarte, Iker; de Medina, Fermín Sánchez; Martinez-Augustín, Olga; Avila, Matías A; Marín, José J G; Romero, Marta R

    2018-06-06

    At high doses, glucocorticoids (GC) have been associated with enhanced serum bile acids and liver injury. We have evaluated the effect of GC, in the absence of hepatotoxicity, on FXR/FGF91(Fgf15)/FGF21-mediated ileum-liver crosstalk. Rats and mice (wild type and Fxr -/- , Fgf15 -/- and int-Gr -/- strains; the latter with GC receptor (Gr) knockout selective for intestinal epithelial cells), were treated (i.p.) with dexamethasone, prednisolone or budesonide. In both species, high doses of GC caused hepatotoxicity. At a non-hepatotoxic dose, GC induced ileal Fgf15 down-regulation and liver Fgf21 up-regulation, without affecting Fxr expression. Fgf21 mRNA levels correlated with those of several genes involved in glucose and bile acid metabolism. Surprisingly, liver Cyp7a1 was not up-regulated. The expression of factors involved in transcriptional modulation by Fxr and Gr (p300, Drip205, CBP and Smrt) was not affected. Pxr target genes Cyp3a11 and Mrp2 were not up-regulated in liver or intestine. In contrast, the expression of some Pparα target genes in liver (Fgf21, Cyp4a14 and Vanin-1) and intestine (Vanin-1 and Cyp3a11) was altered. In mice with experimental colitis, liver Fgf21 was up-regulated (4.4-fold). HepG2 cells transfection with FGF21 inhibited CYP7A1 promoter (prCYP7A1-Luc2). This was mimicked by pure human FGF21 protein or culture in medium previously conditioned by cells over-expressing FGF21. This response was not abolished by deletion of a putative response element for phosphorylated FGF21 effectors present in prCYP7A1. In conclusion, GC interfere with FXR/FGF19-mediated intestinal control of CYP7A1 expression by the liver and stimulate hepatic secretion of FGF21, which inhibits CYP7A1 promoter through an autocrine mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Pharmacological characterization of 30 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists, synthetic agonists, and the endogenous agouti-related protein antagonist.

    PubMed

    Xiang, Zhimin; Proneth, Bettina; Dirain, Marvin L; Litherland, Sally A; Haskell-Luevano, Carrie

    2010-06-08

    The melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic biomarker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and nonobese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [alpha-, beta-, and gamma(2)-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-dPhe-Arg-Trp-NH(2) (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219 V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F, and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface

  12. Sevelamer Improves Steatohepatitis, Inhibits Liver and Intestinal Farnesoid X Receptor (FXR), and Reverses Innate Immune Dysregulation in a Mouse Model of Non-alcoholic Fatty Liver Disease.

    PubMed

    McGettigan, Brett M; McMahan, Rachel H; Luo, Yuhuan; Wang, Xiaoxin X; Orlicky, David J; Porsche, Cara; Levi, Moshe; Rosen, Hugo R

    2016-10-28

    Bile acid sequestrants are synthetic polymers that bind bile acids in the gut and are used to treat dyslipidemia and hyperphosphatemia. Recently, these agents have been reported to lower blood glucose and increase insulin sensitivity by altering bile acid signaling pathways. In this study, we assessed the efficacy of sevelamer in treating mice with non-alcoholic fatty liver disease (NAFLD). We also analyzed how sevelamer alters inflammation and bile acid signaling in NAFLD livers. Mice were fed a low-fat or Western diet for 12 weeks followed by a diet-plus-sevelamer regimen for 2 or 12 weeks. At the end of treatment, disease severity was assessed, hepatic leukocyte populations were examined, and expression of genes involved in farnesoid X receptor (FXR) signaling in the liver and intestine was analyzed. Sevelamer treatment significantly reduced liver steatosis and lobular inflammation. Sevelamer-treated NAFLD livers had notably fewer pro-inflammatory infiltrating macrophages and a significantly greater fraction of alternatively activated Kupffer cells compared with controls. Expression of genes involved in FXR signaling in the liver and intestine was significantly altered in mice with NAFLD as well as in those treated with sevelamer. In a mouse model of NAFLD, sevelamer improved disease and counteracted innate immune cell dysregulation in the liver. This study also revealed a dysregulation of FXR signaling in the liver and intestine of NAFLD mice that was counteracted by sevelamer treatment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Pharmacological Characterization of 30 Human Melanocortin-4 Receptor Polymorphisms with the Endogenous Proopiomelanocortin Derived Agonists, Synthetic Agonists, and the Endogenous Agouti-Related Protein (AGRP) Antagonist

    PubMed Central

    Xiang, Zhimin; Proneth, Bettina; Dirain, Marvin L.; Litherland, Sally A.; Haskell-Luevano, Carrie

    2010-01-01

    The melanocortin-4 receptor (MC4R) is a G-protein coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic bio marker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and non-obese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [α-, β, γ2-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface expression by flow

  14. FXR1P Limits Long-Term Memory, Long-Lasting Synaptic Potentiation, and de novo GluA2 Translation

    PubMed Central

    Jones, Emma V.; Altimimi, Haider F.; Farmer, W. Todd; Gandin, Valentina; Hanna, Edith; Zong, Ruiting; Barbon, Alessandro; Nelson, David L.; Topisirovic, Ivan; Rochford, Joseph; Stellwagen, David; Béïque, Jean-Claude; Murai, Keith K.

    2014-01-01

    SUMMARY Translational control of mRNAs allows for rapid and selective changes in synaptic protein expression, changes that are required for long-lasting plasticity and memory formation in the brain. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein that controls mRNA translation in non-neuronal cells and co-localizes with translational machinery in neurons. However, its neuronal mRNA targets and role in the brain are unknown. Here, we demonstrate that removal of FXR1P from the forebrain of postnatal mice selectively enhances long-term storage of spatial memories, hippocampal late-phase LTP (L-LTP) and de novo GluA2 synthesis. Furthermore, FXR1P binds specifically to the 5’UTR of GluA2 mRNA to repress translation and limit the amount of GluA2 incorporated at potentiated synapses. This study uncovers a new mechanism for regulating long-lasting synaptic plasticity and spatial memory formation and reveals an unexpected divergent role of FXR1P among Fragile X proteins in brain plasticity. PMID:25456134

  15. Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis

    PubMed Central

    Zhu, Yan; Li, Guodong; Williams, Jessica A.; Buckley, Kyle; Tawfik, Ossama; Luyendyk, James P.

    2016-01-01

    Farnesoid X receptor (FXR) belongs to the nuclear receptor superfamily with its endogenous ligands bile acids. Mice with whole body FXR deficiency develop liver tumors spontaneously, but the underlying mechanism is unclear. Moreover, it is unknown whether FXR deficiency in liver alone serves as a tumor initiator or promoter during liver carcinogenesis. This study aims to evaluate the effects of hepatocyte-specific FXR deficiency (FXRhep−/−) in liver tumor formation. The results showed that FXRhep−/− mice did not show spontaneous liver tumorigenesis with aging (up to 24 mo of age). Therefore FXRhep−/− mice were fed a bile acid (cholic acid)-containing diet alone or along with a liver tumor initiator, diethylnitrosamine (DEN). Thirty weeks later, no tumors were found in wild-type or FXRhep−/− mice without any treatment or with DEN only. However, with cholic acid, while only some wild-type mice developed tumors, all FXRhep−/− mice presented with severe liver injury and tumors. Interestingly, FXRhep−/− mouse livers increased basal expression of tumor suppressor p53 protein, apoptosis, and decreased basal cyclin D1 expression, which may prevent tumor development in FXRhep−/− mice. However, cholic acid feeding reversed these effects in FXRhep−/− mice, which is associated with an increased cyclin D1 and decreased cell cycle inhibitors. More in-depth analysis indicates that the increased in cell growth might result from disturbance of the MAPK and JAK/Stat3 signaling pathways. In conclusion, this study shows that hepatic FXR deficiency may only serve as a tumor initiator, and increased bile acids is required for tumor formation likely by promoting cell proliferation. PMID:26744468

  16. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    NASA Astrophysics Data System (ADS)

    di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-11-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.

  17. Anti-fibrotic effects of chronic treatment with the selective FXR agonist obeticholic acid in the bleomycin-induced rat model of pulmonary fibrosis.

    PubMed

    Comeglio, Paolo; Filippi, Sandra; Sarchielli, Erica; Morelli, Annamaria; Cellai, Ilaria; Corcetto, Francesca; Corno, Chiara; Maneschi, Elena; Pini, Alessandro; Adorini, Luciano; Vannelli, Gabriella Barbara; Maggi, Mario; Vignozzi, Linda

    2017-04-01

    Farnesoid X receptor (FXR) activation by obeticholic acid (OCA) has been demonstrated to inhibit inflammation and fibrosis development in liver, kidney and intestine in multiple disease models. FXR activation has also been demonstrated to suppress the inflammatory response and to promote lung repair after lung injury. This study investigated the protective effects of OCA treatment (3 or 10mg/kg/day) on inflammation, tissue remodeling and fibrosis in the bleomycin-induced pulmonary fibrosis rat model. Effects of OCA treatment on morphological and molecular alterations of the lung, as well as remodeling of the alveoli and the right ventricle were also evaluated. Lung function was assessed by measuring airway resistance to inflation. In the acute phase (7days), bleomycin promoted an initial thickening and fibrosis of the lung interstitium, with upregulation of genes related to epithelial proliferation, tissue remodeling and hypoxia. At 28days, an evident increase in the deposition of collagen in the lungs was observed. This excessive deposition was accompanied by an upregulation of transcripts related to the extracellular matrix (TGFβ1, SNAI1 and SNAI2), indicating lung fibrosis. Administration of OCA protected against bleomycin-induced lung damage by suppressing molecular mechanisms related to epithelial-to-mesenchymal transition (EMT), inflammation and collagen deposition, with a dose-dependent reduction of proinflammatory cytokines such as IL-1β and IL-6, as well as TGF-β1 and SNAI1 expression. Pirfenidone, a recently approved treatment for idiopathic pulmonary fibrosis (IPF), significantly counteracted bleomycin-induced pro-fibrotic genes expression, but did not exert significant effects on IL-1β and IL-6. OCA treatment in bleomycin-challenged rats also improved pulmonary function, by effectively normalizing airway resistance to inflation and lung stiffness in vivo. Results with OCA were similar, or even superior, to those obtained with pirfenidone. In

  18. A Novel Role for the RNA–Binding Protein FXR1P in Myoblasts Cell-Cycle Progression by Modulating p21/Cdkn1a/Cip1/Waf1 mRNA Stability

    PubMed Central

    Davidovic, Laetitia; Durand, Nelly; Khalfallah, Olfa; Tabet, Ricardo; Barbry, Pascal; Mari, Bernard; Sacconi, Sabrina; Moine, Hervé; Bardoni, Barbara

    2013-01-01

    The Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific. A reduction of these isoforms is found in myoblasts from Facio-Scapulo Humeral Dystrophy (FSHD) patients. FXR1P is an RNA–binding protein involved in translational control; however, so far, no mRNA target of FXR1P has been linked to the drastic muscular phenotypes caused by its absence. In this study, gene expression profiling of C2C12 myoblasts reveals that transcripts involved in cell cycle and muscular development pathways are modulated by Fxr1-depletion. We observed an increase of p21—a regulator of cell-cycle progression—in Fxr1-knocked-down mouse C2C12 and FSHD human myoblasts. Rescue of this molecular phenotype is possible by re-expressing human FXR1P in Fxr1-depleted C2C12 cells. FXR1P muscle-specific isoforms bind p21 mRNA via direct interaction with a conserved G-quadruplex located in its 3′ untranslated region. The FXR1P/G-quadruplex complex reduces the half-life of p21 mRNA. In the absence of FXR1P, the upregulation of p21 mRNA determines the elevated level of its protein product that affects cell-cycle progression inducing a premature cell-cycle exit and generating a pool of cells blocked at G0. Our study describes a novel role of FXR1P that has crucial implications for the understanding of its role during myogenesis and muscle development, since we show here that in its absence a reduced number of myoblasts will be available for muscle formation/regeneration, shedding new light into the pathophysiology of FSHD. PMID:23555284

  19. Cytosol-nucleus traffic and colocalization with FXR of conjugated bile acids in rat hepatocytes.

    PubMed

    Monte, Maria J; Rosales, Ruben; Macias, Rocio I R; Iannota, Valeria; Martinez-Fernandez, Almudena; Romero, Marta R; Hofmann, Alan F; Marin, Jose J G

    2008-07-01

    Bile acids (BAs) are natural ligands of nuclear receptors, in particular farnesoid X receptor (FXR). Whether, in addition to protein-mediated cytosolic-nuclear BA translocation, other mechanisms are involved in the access of BAs to nuclear FXR was investigated. When rat hepatocytes were incubated with radiolabeled taurocholic acid, taurodeoxycholic acid, taurochenodeoxycholic acid, and tauroursodeoxycholic acid, their nuclear accumulation was proportional to their intracellular levels. With the use of flow cytometry analysis, the accumulation by nuclei isolated from rat liver cells was found to differ for several fluorescent compounds of similar molecular weight and different charge, including fluorescein-tagged BAs [cholylglycyl amidofluorescein (CGamF), ursodeoxycholylglycyl amidofluorescein, or chenodeoxycholylglycyl amidofluorescein]. When we varied nuclear volume by incubation with different sucrose concentrations, a similar relationship between nuclear volume and content of FITC and 4-kDa FITC-dextran was found. In contrast, this relationship was markedly lower for CGamF. Confocal microscopy studies revealed that fluorescein-tagged BAs, but also FITC or 10-kDa FITC-dextran were found in the nuclear envelope and concentrated in regions where DNA was less densely packed. In contrast to the cytosolic subcellular localization of peroxisome proliferator-activated receptor-alpha, FXR and nucleolin (a marker of transcriptional active chromatin) were also localized by immunoreactivity in these intranuclear regions. In conclusion, although intranuclear levels of small organic molecules including conjugated BAs depend on their concentrations in the extranuclear space, the existence of certain molecular selectivity (not strictly dependent on molecular weight or charge) suggests that, in addition to simple diffusional exchange, other mechanisms may be also involved in determining their overall nuclear content in regions where these compounds coincide and may interact

  20. Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants

    PubMed Central

    Smith, Alyson J.; Li, Yufeng; Bazin, Hélène G.; St-Jean, Julien R.; Larocque, Daniel; Evans, Jay T.; Baldridge, Jory R.

    2016-01-01

    Small-molecule adjuvants that boost and direct adaptive immunity provide a powerful means to increase the effectiveness of vaccines. Through rational design several novel imidazoquinoline and oxoadenine TLR7/8 agonists, each with unique molecular modifications, were synthesized and assessed for their ability to augment adaptive immunity. All agonists bound human TLR7 and TLR8 and induced maturation of both human mDCs and pDCs. All agonists prompted production of type I interferon and/or proinflammatory cytokines, albeit with varying potencies. In most in vitro assays, the oxoadenine class of agonists proved more potent than the imidazoquinolines. Therefore, an optimized oxoadenine TLR7/8 agonist that demonstrated maximal activity in the in vitro assays was further assessed in a vaccine study with the CRM197 antigen in a porcine model. Antigen-specific antibody production was greatly enhanced in a dose dependent manner, with antibody titers increased 800-fold compared to titers from pigs vaccinated with the non-adjuvanted vaccine. Moreover, pigs vaccinated with antigen containing the highest dose of adjuvant promoted a 13-fold increase in the percentage of antigen-specific CD3+/CD8+ T cells over pigs vaccinated with antigen alone. Together this work demonstrates the promise of these novel TLR7/8 agonists as effective human vaccine adjuvants. PMID:27402566

  1. Obeticholic Acid Protects against Lipopolysaccharide-Induced Fetal Death and Intrauterine Growth Restriction through Its Anti-Inflammatory Activity.

    PubMed

    Chen, Yuan-Hua; Hu, Xiao-Guang; Zhou, Yan; Yu, Zhen; Fu, Lin; Zhang, Gui-Bin; Bo, Qing-Li; Wang, Hua; Zhang, Cheng; Xu, De-Xiang

    2016-12-15

    Farnesoid X receptor (FXR) is expressed in human and rodent placentas. Nevertheless, its function remains obscure. This study investigated the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, on LPS-induced fetal death and intrauterine growth restriction. All pregnant mice except controls were i.p. injected with LPS (100 μg/kg) daily from gestational day (GD) 15 to GD17. Some pregnant mice were orally administered with OCA (5 mg/kg) daily from GD13 to GD17. As expected, placental FXR signaling was activated by OCA. OCA pretreatment protected against LPS-induced fetal death. In addition, OCA pretreatment alleviated LPS-induced reduction of fetal weight and crown-rump length. Additional experiments showed that OCA inhibited LPS-evoked TNF-α in maternal serum and amniotic fluid. Moreover, OCA significantly attenuated LPS-induced upregulation of placental proinflammatory genes including Tnf-α, Il-1β, IL-6, Il-12, Mip-2, Kc, and Mcp-1 By contrast, OCA elevated anti-inflammatory cytokine IL-10 in maternal serum, amniotic fluid, and placenta. Further analysis showed that OCA blocked nuclear translocation of NF-κB p65 and p50 subunits in trophoblast giant cells of the labyrinth zone. These results provide a mechanistic explanation for placental FXR-mediated anti-inflammatory activity. Overall, this study provides evidence for roles of FXR as an important regulator of placental inflammation. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants.

    PubMed

    Smith, Alyson J; Li, Yufeng; Bazin, Hélène G; St-Jean, Julien R; Larocque, Daniel; Evans, Jay T; Baldridge, Jory R

    2016-08-05

    Small-molecule adjuvants that boost and direct adaptive immunity provide a powerful means to increase the effectiveness of vaccines. Through rational design several novel imidazoquinoline and oxoadenine TLR7/8 agonists, each with unique molecular modifications, were synthesized and assessed for their ability to augment adaptive immunity. All agonists bound human TLR7 and TLR8 and induced maturation of both human mDCs and pDCs. All agonists prompted production of type I interferon and/or proinflammatory cytokines, albeit with varying potencies. In most in vitro assays, the oxoadenine class of agonists proved more potent than the imidazoquinolines. Therefore, an optimized oxoadenine TLR7/8 agonist that demonstrated maximal activity in the in vitro assays was further assessed in a vaccine study with the CRM197 antigen in a porcine model. Antigen-specific antibody production was greatly enhanced in a dose dependent manner, with antibody titers increased 800-fold compared to titers from pigs vaccinated with the non-adjuvanted vaccine. Moreover, pigs vaccinated with antigen containing the highest dose of adjuvant promoted a 13-fold increase in the percentage of antigen-specific CD3(+)/CD8(+) T cells over pigs vaccinated with antigen alone. Together this work demonstrates the promise of these novel TLR7/8 agonists as effective human vaccine adjuvants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A synthetic PPAR-γ agonist triterpenoid ameliorates experimental fibrosis: PPAR-γ-independent suppression of fibrotic responses.

    PubMed

    Wei, Jun; Zhu, Hongyan; Komura, Kazuhiro; Lord, Gabriel; Tomcik, Michal; Wang, Wenxia; Doniparthi, Sruthi; Tamaki, Zenshiro; Hinchcliff, Monique; Distler, Joerg H W; Varga, John

    2014-02-01

    Persistent fibroblast activation initiated by transforming growth factor β (TGF-β) is a fundamental event in the pathogenesis of systemic sclerosis, and its pharmacological inhibition represents a potential therapeutic strategy. The nuclear receptor, peroxisome proliferator-activated receptor γ (PPAR-γ), exerts potent fibrotic activity. The synthetic oleanane triterpenoid, 2-cyano-3,12-dioxo-olean-1,9-dien-28-oic acid (CDDO), is a PPAR-γ agonist with potential effects on TGF-β signalling and dermal fibrosis. To examine the modulation of fibrogenesis by CDDO in explanted fibroblasts, skin organ cultures and murine models of scleroderma. The effects of CDDO on experimental fibrosis induced by bleomycin injection or by overexpression of constitutively active type I TGF-β receptor (TgfbR1ca) were evaluated. Modulation of fibrotic gene expression was examined in human skin organ cultures. To delineate the mechanisms underlying the antifibrotic effects of CDDO, explanted skin fibroblasts cultured in two-dimensional monolayers or in three-dimensional full-thickness human skin equivalents were studied. CDDO significantly ameliorated dermal fibrosis in two complementary mouse models of scleroderma, as well as in human skin organ cultures and in three-dimensional human skin equivalents. In two-dimensional monolayer cultures of explanted normal fibroblasts, CDDO abrogated fibrogenic responses induced by TGF-β. These CDDO effects occurred via disruption of Smad-dependent transcription and were associated with inhibition of Akt activation. In scleroderma fibroblasts, CDDO attenuated the elevated synthesis of collagen. Remarkably, the in vitro antifibrotic effects of CDDO were independent of PPAR-γ. The PPAR-γ agonist triterpenoid CDDO attenuates fibrogenesis by antagonistically targeting canonical TGF-β/Smad and Akt signalling in a PPAR-γ-independent manner. These findings identify this synthetic triterpenoid as a potential new therapy for the control of fibrosis.

  4. The effects of the synthetic cannabinoid receptor agonists, WIN55,212-2 and CP55,940, on salicylate-induced tinnitus in rats.

    PubMed

    Zheng, Yiwen; Stiles, Lucy; Hamilton, Emma; Smith, Paul F; Darlington, Cynthia L

    2010-09-01

    Previous studies in animals and humans have shown that, in some cases at least, anti-epileptic drugs can reduce the severity of tinnitus. Given that cannabinoid receptor agonists have been shown to exert anti-epileptic effects in some circumstances, we investigated whether two synthetic CB(1)/CB(2) receptor agonists, WIN55,212-2, and CP55,940, could inhibit the behavioural manifestations of salicylate-induced tinnitus in rats in a conditioned suppression task. We found that neither WIN55,212-2 (3.0 mg/kg s.c) nor CP55,940 (0.1 or 0.3 mg/kg s.c), significantly reduced conditioned behaviour associated with tinnitus. However, both 3 mg/kg WIN55,212-2 and 0.3 mg/kg CP55,940 did significantly increase tinnitus-related behaviour compared to the vehicle control groups. These results suggest that cannabinoid receptor agonists may not be useful in the treatment of salicylate-induced tinnitus and that at certain doses, they could actually exacerbate the condition. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes Cedex; Biologie Servier, Gidy

    2014-04-01

    Although non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease there is no pharmacological agent approved for its treatment. Since peroxisome proliferator-activated receptors (PPARs) are closely associated with hepatic lipid metabolism, they seem to play important roles in NAFLD. However, the effects of PPAR agonists on steatosis that is a common pathology associated with NAFLD, remain largely controversial. In this study, the effects of various PPAR agonists, i.e. fenofibrate, bezafibrate, troglitazone, rosiglitazone, muraglitazar and tesaglitazar on oleic acid-induced steatotic HepaRG cells were investigated after a single 24-hour or 2-week repeat treatment. Lipid vesicles stainedmore » by Oil-Red O and triglycerides accumulation caused by oleic acid overload, were decreased, by up to 50%, while fatty acid oxidation was induced after 2-week co-treatment with PPAR agonists. The greatest effects on reduction of steatosis were obtained with the dual PPARα/γ agonist muraglitazar. Such improvement of steatosis was associated with up-regulation of genes related to fatty acid oxidation activity and down-regulation of many genes involved in lipogenesis. Moreover, modulation of expression of some nuclear receptor genes, such as FXR, LXRα and CAR, which are potent actors in the control of lipogenesis, was observed and might explain repression of de novo lipogenesis. Conclusion: Altogether, our in vitro data on steatotic HepaRG cells treated with PPAR agonists correlated well with clinical investigations, bringing a proof of concept that drug-induced reversal of steatosis in human can be evaluated in in vitro before conducting long-term and costly in vivo studies in animals and patients. - Highlights: • There is no pharmacological agent approved for the treatment of NAFLD. • This study demonstrates that PPAR agonists can reduce fatty acid-induced steatosis. • Some nuclear receptors appear to be potent actors in the

  6. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism.

    PubMed

    Pathak, Preeti; Liu, Hailiang; Boehme, Shannon; Xie, Cen; Krausz, Kristopher W; Gonzalez, Frank; Chiang, John Y L

    2017-06-30

    The bile acid-activated receptors, nuclear farnesoid X receptor (FXR) and the membrane Takeda G-protein receptor 5 (TGR5), are known to improve glucose and insulin sensitivity in obese and diabetic mice. However, the metabolic roles of these two receptors and the underlying mechanisms are incompletely understood. Here, we studied the effects of the dual FXR and TGR5 agonist INT-767 on hepatic bile acid synthesis and intestinal secretion of glucagon-like peptide-1 (GLP-1) in wild-type, Fxr -/- , and Tgr5 -/- mice. INT-767 efficaciously stimulated intracellular Ca 2+ levels, cAMP activity, and GLP-1 secretion and improved glucose and lipid metabolism more than did the FXR-selective obeticholic acid and TGR5-selective INT-777 agonists. Interestingly, INT-767 reduced expression of the genes in the classic bile acid synthesis pathway but induced those in the alternative pathway, which is consistent with decreased taurocholic acid and increased tauromuricholic acids in bile. Furthermore, FXR activation induced expression of FXR target genes, including fibroblast growth factor 15, and unexpectedly Tgr5 and prohormone convertase 1/3 gene expression in the ileum. We identified an FXR-responsive element on the Tgr5 gene promoter. Fxr -/- and Tgr5 -/- mice exhibited reduced GLP-1 secretion, which was stimulated by INT-767 in the Tgr5 -/- mice but not in the Fxr -/- mice. Our findings uncovered a novel mechanism in which INT-767 activation of FXR induces Tgr5 gene expression and increases Ca 2+ levels and cAMP activity to stimulate GLP-1 secretion and improve hepatic glucose and lipid metabolism in high-fat diet-induced obese mice. Activation of both FXR and TGR5 may therefore represent an effective therapy for managing hepatic steatosis, obesity, and diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Trial Watch: Toll-like receptor agonists for cancer therapy.

    PubMed

    Vacchelli, Erika; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-08-01

    Toll-like receptors (TLRs) have long been known for their ability to initiate innate immune responses upon exposure to conserved microbial components such as lipopolysaccharide (LPS) and double-stranded RNA. More recently, this family of pattern recognition receptors has been attributed a critical role in the elicitation of anticancer immune responses, raising interest in the development of immunochemotherapeutic regimens based on natural or synthetic TLR agonists. In spite of such an intense wave of preclinical and clinical investigation, only three TLR agonists are currently licensed by FDA for use in cancer patients: bacillus Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis that operates as a mixed TLR2/TLR4 agonist; monophosphoryl lipid A (MPL), a derivative of Salmonella minnesota that functions as a potent agonist of TLR4; and imiquimod, a synthetic imidazoquinoline that activates TLR7. One year ago, in the August and September issues of OncoImmunology , we described the main biological features of TLRs and discussed the progress of clinical studies evaluating the safety and therapeutic potential of TLR agonists in cancer patients. Here, we summarize the latest developments in this exciting area of research, focusing on preclinical studies that have been published during the last 13 mo and clinical trials launched in the same period to investigate the antineoplastic activity of TLR agonists.

  8. Therapeutic Effect of a Synthetic RORα/γ Agonist in an Animal Model of Autism

    PubMed Central

    2015-01-01

    Autism is a developmental disorder of the nervous system associated with impaired social communication and interactions as well excessive repetitive behaviors. There are no drug therapies that directly target the pathology of this disease. The retinoic acid receptor-related orphan receptor α (RORα) is a nuclear receptor that has been demonstrated to have reduced expression in many individuals with autism spectrum disorder (ASD). Several genes that have been shown to be downregulated in individuals with ASD have also been identified as putative RORα target genes. Utilizing a synthetic RORα/γ agonist, SR1078, that we identified previously, we demonstrate that treatment of BTBR mice (a model of autism) with SR1078 results in reduced repetitive behavior. Furthermore, these mice display increased expression of ASD-associated RORα target genes in both the brains of the BTBR mice and in a human neuroblastoma cell line treated with SR1078. These data suggest that pharmacological activation of RORα may be a method for treatment of autism. PMID:26625251

  9. Therapeutic Effect of a Synthetic RORα/γ Agonist in an Animal Model of Autism.

    PubMed

    Wang, Yongjun; Billon, Cyrielle; Walker, John K; Burris, Thomas P

    2016-02-17

    Autism is a developmental disorder of the nervous system associated with impaired social communication and interactions as well excessive repetitive behaviors. There are no drug therapies that directly target the pathology of this disease. The retinoic acid receptor-related orphan receptor α (RORα) is a nuclear receptor that has been demonstrated to have reduced expression in many individuals with autism spectrum disorder (ASD). Several genes that have been shown to be downregulated in individuals with ASD have also been identified as putative RORα target genes. Utilizing a synthetic RORα/γ agonist, SR1078, that we identified previously, we demonstrate that treatment of BTBR mice (a model of autism) with SR1078 results in reduced repetitive behavior. Furthermore, these mice display increased expression of ASD-associated RORα target genes in both the brains of the BTBR mice and in a human neuroblastoma cell line treated with SR1078. These data suggest that pharmacological activation of RORα may be a method for treatment of autism.

  10. Regulation of p53 Stability and Apoptosis by a ROR Agonist

    PubMed Central

    Wang, Yongjun; Solt, Laura A.; Kojetin, Douglas J.; Burris, Thomas P.

    2012-01-01

    Activation of p53 function leading to cell-cycle arrest and/or apoptosis is a promising strategy for development of anti-cancer therapeutic agents. Here, we describe a novel mechanism for stabilization of p53 protein expression via activation of the orphan nuclear receptor, RORα. We demonstrate that treatment of cancer cells with a newly described synthetic ROR agonist, SR1078, leads to p53 stabilization and induction of apoptosis. These data suggest that synthetic ROR agonists may hold utility in the treatment of cancer. PMID:22509368

  11. Regulation of p53 stability and apoptosis by a ROR agonist.

    PubMed

    Wang, Yongjun; Solt, Laura A; Kojetin, Douglas J; Burris, Thomas P

    2012-01-01

    Activation of p53 function leading to cell-cycle arrest and/or apoptosis is a promising strategy for development of anti-cancer therapeutic agents. Here, we describe a novel mechanism for stabilization of p53 protein expression via activation of the orphan nuclear receptor, RORα. We demonstrate that treatment of cancer cells with a newly described synthetic ROR agonist, SR1078, leads to p53 stabilization and induction of apoptosis. These data suggest that synthetic ROR agonists may hold utility in the treatment of cancer.

  12. Ursodeoxycholic Acid Suppresses Lipogenesis in Mouse Liver: Possible Role of the Decrease in β-Muricholic Acid, a Farnesoid X Receptor Antagonist.

    PubMed

    Fujita, Kyosuke; Iguchi, Yusuke; Une, Mizuho; Watanabe, Shiro

    2017-04-01

    The farnesoid X receptor (FXR) is a major nuclear receptor of bile acids; its activation suppresses sterol regulatory element-binding protein 1c (SREBP1c)-mediated lipogenesis and decreases the lipid contents in the liver. There are many reports showing that the administration of ursodeoxycholic acid (UDCA) suppresses lipogenesis and reduces the lipid contents in the liver of experimental animals. Since UDCA is not recognized as an FXR agonist, these effects of UDCA cannot be readily explained by its direct activation of FXR. We observed that the dietary administration of UDCA in mice decreased the expression levels of SREBP1c and its target lipogenic genes. Alpha- and β-muricholic acids (MCA) and cholic acid (CA) were the major bile acids in the mouse liver but their contents decreased upon UDCA administration. The hepatic contents of chenodeoxycholic acid and deoxycholic acid (DCA) were relatively low but were not changed by UDCA. UDCA did not show FXR agonistic or antagonistic potency in in vitro FXR transactivation assay. Taking these together, we deduced that the above-mentioned change in hepatic bile acid composition induced upon UDCA administration might cause the relative increase in the FXR activity in the liver, mainly by the reduction in the content of β-MCA, a farnesoid X receptor antagonist, which suggests a mechanism by which UDCA suppresses lipogenesis and decreases the lipid contents in the mouse liver.

  13. Farnesoid X Receptor and Liver X Receptor Ligands Initiate Formation of Coated Platelets

    PubMed Central

    Unsworth, Amanda J.; Bye, Alexander P.; Tannetta, Dionne S.; Desborough, Michael J.R.; Kriek, Neline; Sage, Tanya; Allan, Harriet E.; Crescente, Marilena; Yaqoob, Parveen; Warner, Timothy D.; Jones, Chris I.

    2017-01-01

    Objectives— The liver X receptors (LXRs) and farnesoid X receptor (FXR) have been identified in human platelets. Ligands of these receptors have been shown to have nongenomic inhibitory effects on platelet activation by platelet agonists. This, however, seems contradictory with the platelet hyper-reactivity that is associated with several pathological conditions that are associated with increased circulating levels of molecules that are LXR and FXR ligands, such as hyperlipidemia, type 2 diabetes mellitus, and obesity. Approach and Results— We, therefore, investigated whether ligands for the LXR and FXR receptors were capable of priming platelets to the activated state without stimulation by platelet agonists. Treatment of platelets with ligands for LXR and FXR converted platelets to the procoagulant state, with increases in phosphatidylserine exposure, platelet swelling, reduced membrane integrity, depolarization of the mitochondrial membrane, and microparticle release observed. Additionally, platelets also displayed features associated with coated platelets such as P-selectin exposure, fibrinogen binding, fibrin generation that is supported by increased serine protease activity, and inhibition of integrin αIIbβ3. LXR and FXR ligand-induced formation of coated platelets was found to be dependent on both reactive oxygen species and intracellular calcium mobilization, and for FXR ligands, this process was found to be dependent on cyclophilin D. Conclusions— We conclude that treatment with LXR and FXR ligands initiates coated platelet formation, which is thought to support coagulation but results in desensitization to platelet stimuli through inhibition of αIIbβ3 consistent with their ability to inhibit platelet function and stable thrombus formation in vivo. PMID:28619996

  14. Altenusin, a Nonsteroidal Microbial Metabolite, Attenuates Nonalcoholic Fatty Liver Disease by Activating the Farnesoid X Receptor.

    PubMed

    Zheng, Zhihui; Zhao, Zanmei; Li, Shuqiang; Lu, Xinhua; Jiang, Mengxi; Lin, Jie; An, Yunqi; Xie, Yang; Xu, Meishu; Shen, Wenbin; Guo, Grace L; Huang, Yixian; Li, Song; Zhang, Xuexia; Xie, Wen

    2017-10-01

    Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease. The incidence of NAFLD has increased steadily due to its close association with the global epidemic of obesity and type 2 diabetes. However, there is no effective pharmacological therapy approved for NAFLD. Farnesoid X receptor (FXR), a member of the nuclear receptor subfamily, plays important roles in maintaining the homeostasis of bile acids, glucose, and lipids. FXR agonists have shown promise for the treatment of NAFLD. In this study, we report altenusin (2076A), a natural nonsteroidal fungal metabolite, as a novel selective agonist of FXR with an EC 50 value of 3.2 ± 0.2 μM. Administration of 2076A protected mice from high-fat diet (HFD)-induced obesity by reducing the body weight and fat mass by 22.9% and 50.0%, respectively. Administration of 2076A also decreased the blood glucose level from 178.3 ± 12.4 mg/dl to 116.2 ± 4.1 mg/dl and the serum insulin level from 1.4 ± 0.6 ng/dl to 0.4 ± 0.1 ng/dl. Moreover, 2076A treatment nearly reversed HFD-induced hepatic lipid droplet accumulation and macrovesicular steatosis. These metabolic effects were abolished in FXR knockout mice. Mechanistically, the metabolic benefits of 2076A might have been accounted for by the increased insulin sensitivity and suppression of genes that are involved in hepatic gluconeogenesis and lipogenesis. In summary, we have uncovered a new class of nonsteroidal FXR agonist that shows promise in treating NAFLD and the associated metabolic syndrome. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  15. N-(4-Trifluoromethylphenyl)amide group of the synthetic histamine receptor agonist inhibits nicotinic acetylcholine receptor-mediated catecholamine secretion.

    PubMed

    Kim, Dong-Chan; Park, Yong-Soo; Jun, Dong-Jae; Hur, Eun-Mi; Kim, Sun-Hee; Choi, Bo-Hwa; Kim, Kyong-Tai

    2006-02-28

    The therapeutic targeting of nicotinic receptors requires the identification of drugs that selectively activate or inhibit a limited range of nicotine acetylcholine receptors (nAChRs). In this study, we identified N-(4-trifluoromethylphenyl)amide group of the synthetic histamine receptor ligands, histamine-trifluoromethyltoluide, that act as potent inhibitors of nAChRs in bovine adrenal chromaffin cells. Catecholamine secretion induced by the nAChRs agonist, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), was significantly inhibited by histamine-trifluoromethyltoluide. Real time carbon-fiber amperometry confirmed the ability of histamine-trifluoromethyltoluide to inhibit DMPP-induced exocytosis in single chromaffin cells. We also found that histamine-trifluoromethyltoluide inhibited DMPP-induced [Ca(2+)](i) and [Na(+)](i) increases, as well as DMPP-induced inward currents in the absence of extracellular calcium. Histamine-trifluoromethyltoluide had no effect on [(3)H]nicotine binding or on calcium increases induced by high K(+), bradykinin, veratridine, histamine, and benzoylbenzoyl ATP. Among the synthetic histamine receptor ligands, clobenpropit exhibited similarity. In addition, 4'-nitroacetanilide also significantly attenuated nAChR-mediated catecholamine secretion. In conclusion, the N-(4-trifluoromethylphenyl)amide group of the histamine-trifluoromethyltoluide might be the critical moiety in the inhibition of nAChR-mediated CA secretion.

  16. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.

    PubMed

    Inagaki, Takeshi; Moschetta, Antonio; Lee, Youn-Kyoung; Peng, Li; Zhao, Guixiang; Downes, Michael; Yu, Ruth T; Shelton, John M; Richardson, James A; Repa, Joyce J; Mangelsdorf, David J; Kliewer, Steven A

    2006-03-07

    Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow.

  17. Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA

    PubMed Central

    DiMarzio, Michael; Rusconi, Brigida; Yennawar, Neela H.; Eppinger, Mark; Patterson, Andrew D.

    2017-01-01

    Bile salt hydrolase (BSH) activity against the bile acid tauro-beta-muricholic acid (T-β-MCA) was recently reported to mediate host bile acid, glucose, and lipid homeostasis via the farnesoid X receptor (FXR) signaling pathway. An earlier study correlated decreased Lactobacillus abundance in the cecum with increased concentrations of intestinal T-β-MCA, an FXR antagonist. While several studies have characterized BSHs in lactobacilli, deconjugation of T-β-MCA remains poorly characterized among members of this genus, and therefore it was unclear what strain(s) were responsible for this activity. Here, a strain of L. johnsonii with robust BSH activity against T-β-MCA in vitro was isolated from the cecum of a C57BL/6J mouse. A screening assay performed on a collection of 14 Lactobacillus strains from nine different species identified BSH substrate specificity for T-β-MCA only in two of three L. johnsonii strains. Genomic analysis of the two strains with this BSH activity revealed the presence of three bsh genes that are homologous to bsh genes in the previously sequenced human-associated strain L. johnsonii NCC533. Heterologous expression of several bsh genes in E. coli followed by enzymatic assays revealed broad differences in substrate specificity even among closely related bsh homologs, and suggests that the phylogeny of these enzymes does not closely correlate with substrate specificity. Predictive modeling allowed us to propose a potential mechanism driving differences in BSH activity for T-β-MCA in these homologs. Our data suggests that L. johnsonii regulates T-β-MCA levels in the mouse intestinal environment, and that this species may play a central role in FXR signaling in the mouse. PMID:28910295

  18. Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA.

    PubMed

    DiMarzio, Michael; Rusconi, Brigida; Yennawar, Neela H; Eppinger, Mark; Patterson, Andrew D; Dudley, Edward G

    2017-01-01

    Bile salt hydrolase (BSH) activity against the bile acid tauro-beta-muricholic acid (T-β-MCA) was recently reported to mediate host bile acid, glucose, and lipid homeostasis via the farnesoid X receptor (FXR) signaling pathway. An earlier study correlated decreased Lactobacillus abundance in the cecum with increased concentrations of intestinal T-β-MCA, an FXR antagonist. While several studies have characterized BSHs in lactobacilli, deconjugation of T-β-MCA remains poorly characterized among members of this genus, and therefore it was unclear what strain(s) were responsible for this activity. Here, a strain of L. johnsonii with robust BSH activity against T-β-MCA in vitro was isolated from the cecum of a C57BL/6J mouse. A screening assay performed on a collection of 14 Lactobacillus strains from nine different species identified BSH substrate specificity for T-β-MCA only in two of three L. johnsonii strains. Genomic analysis of the two strains with this BSH activity revealed the presence of three bsh genes that are homologous to bsh genes in the previously sequenced human-associated strain L. johnsonii NCC533. Heterologous expression of several bsh genes in E. coli followed by enzymatic assays revealed broad differences in substrate specificity even among closely related bsh homologs, and suggests that the phylogeny of these enzymes does not closely correlate with substrate specificity. Predictive modeling allowed us to propose a potential mechanism driving differences in BSH activity for T-β-MCA in these homologs. Our data suggests that L. johnsonii regulates T-β-MCA levels in the mouse intestinal environment, and that this species may play a central role in FXR signaling in the mouse.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wenxuan; Lu, Chunfeng; Yao, Lu

    Alcoholic liver disease (ALD) is a common etiology of liver diseases, characterized by hepatic steatosis. We previously identified farnesoid X receptor (FXR) as a potential therapeutic target for ALD. Dihydroartemisinin (DHA) has been recently identified to possess potent pharmacological activities on liver diseases. This study was aimed to explore the impact of DHA on ALD and further elaborate the underlying mechanisms. Gain- or loss-of-function analyses of FXR were applied in both in vivo and in vitro studies. Results demonstrated that DHA rescued FXR expression and activity in alcoholic rat livers. DHA also reduced serodiagnostic markers of liver injury, including aspartatemore » aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase. DHA improved alcohol-induced liver histological lesions, expression of inflammation genes, and inflammatory cell infiltration. In addition, DHA not only attenuated hyperlipidemia but also reduced hepatic steatosis through regulating lipogenesis and lipolysis genes. In vitro experiments further consolidated the concept that DHA ameliorated ethanol-caused hepatocyte injury and steatosis. Noteworthily, DHA effects were reinforced by FXR agonist obeticholic acid or FXR expression plasmids but abrogated by FXR antagonist Z-guggulsterone or FXR siRNA. In summary, DHA significantly improved alcoholic liver injury by inhibiting hepatic steatosis, which was dependent on its activation of FXR in hepatocytes. - Highlights: • DHA rescues FXR expression in alcoholic livers. • DHA improves alcoholic liver inflammation and steatosis in a FXR-dependent way. • DHA alleviates ethanol-induced hepatocyte steatosis by activation of FXR.« less

  20. An Intestinal Farnesoid X Receptor–Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice

    PubMed Central

    Xie, Cen; Shi, Jingmin; Gao, Xiaoxia; Sun, Dongxue; Sun, Lulu; Wang, Ting; Takahashi, Shogo; Anitha, Mallappa; Krausz, Kristopher W.; Patterson, Andrew D.

    2017-01-01

    Increasing evidence supports the view that intestinal farnesoid X receptor (FXR) is involved in glucose tolerance and that FXR signaling can be profoundly impacted by the gut microbiota. Selective manipulation of the gut microbiota–FXR signaling axis was reported to significantly impact glucose intolerance, but the precise molecular mechanism remains largely unknown. Here, caffeic acid phenethyl ester (CAPE), an over-the-counter dietary supplement and an inhibitor of bacterial bile salt hydrolase, increased levels of intestinal tauro-β-muricholic acid, which selectively suppresses intestinal FXR signaling. Intestinal FXR inhibition decreased ceramide levels by suppressing expression of genes involved in ceramide synthesis specifically in the intestinal ileum epithelial cells. The lower serum ceramides mediated decreased hepatic mitochondrial acetyl-CoA levels and pyruvate carboxylase (PC) activities and attenuated hepatic gluconeogenesis, independent of body weight change and hepatic insulin signaling in vivo; this was reversed by treatment of mice with ceramides or the FXR agonist GW4064. Ceramides substantially attenuated mitochondrial citrate synthase activities primarily through the induction of endoplasmic reticulum stress, which triggers increased hepatic mitochondrial acetyl-CoA levels and PC activities. These results reveal a mechanism by which the dietary supplement CAPE and intestinal FXR regulates hepatic gluconeogenesis and suggest that inhibiting intestinal FXR is a strategy for treating hyperglycemia. PMID:28223344

  1. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsicmore » activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights:

  2. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan

    2015-03-15

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp)more » and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is

  3. Antineoplastic Effects of PPARγ Agonists, with a Special Focus on Thyroid Cancer.

    PubMed

    Ferrari, Silvia Martina; Materazzi, Gabriele; Baldini, Enke; Ulisse, Salvatore; Miccoli, Paolo; Antonelli, Alessandro; Fallahi, Poupak

    2016-01-01

    Peroxisome Proliferator-Activated Receptor-γ (PPARγ) is a ligand-activated nuclear hormone receptor that functions as transcription factor and plays an important role in lipid metabolism and insulin sensitization. Recent studies have shown that PPARγ is overexpressed in many tumor types, including cancers of breast, lung, pancreas, colon, glioblastoma, prostate and thyroid differentiated/anaplastic cancers. These data suggest a role of PPARγ in tumor development and/or progression. PPARγ is emerging as a growth-limiting and differentiation-promoting factor, and it exerts a tumor suppressor role. Moreover, naturally-occurring and synthetic PPARγ agonists promote growth inhibition and apoptosis. Thiazolidinediones (TZDs) are synthetic agonists of PPARγ that were developed to treat type II diabetes. These compounds also display anticancer effects which appear mainly to be independent of their PPARγ agonist activity. Various preclinical and clinical studies strongly suggest a role for TZDs both alone and in combination with existing chemotherapeutic agents, for the treatment of cancer. Differentiation therapy involves the use of agents with the ability to induce differentiation in cells that have lost this ability, i.e. cancer cells, targeting pathways capable of re-activating blocked terminal differentiation programs. PPARγ agonists have been shown to induce differentiation in solid tumors such as thyroid differentiated/ anaplastic cancers and sarcomas. However, emerging data suggest that chronic use of TZDs is associated with increased risk of adverse cardiovascular events. The exploration of newer PPARγ agonists can help in unveiling the underlying mechanisms of these drugs, providing new molecules that are able to treat cancer, without increasing the cardiovascular risk of neoplastic patients.

  4. Extraction Efficacy of Synthetic Cannabinoids From Damiana Leaf Substrates Utilizing Electrolytic Solvents

    DTIC Science & Technology

    2014-02-01

    cannabis , delta-9-tetrahdyrocannabinol (THC) (1–5). Synthetic cannabinoid receptor agonists comprise a diverse group of chemically unrelated substances...further tested, they have been found to contain neither tobacco nor cannabis , but still produce cannabimimetic effects. As a result, these herbal...mixtures doped with synthetic cannabinoids have become widely abused as a supposed legal alternative to cannabis (12–14). Unfortunately, synthetic

  5. Chronic stimulation of farnesoid X receptor impairs nitric oxide sensitivity of vascular smooth muscle.

    PubMed

    Kida, Taiki; Murata, Takahisa; Hori, Masatoshi; Ozaki, Hiroshi

    2009-01-01

    Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily that is highly expressed in enterohepatic tissue, is implicated in bile acid, lipid, and glucose metabolisms. Although recent studies showed that FXR is also expressed in vascular endothelial cells and smooth muscle cells, its physiological and/or pathological roles in vasculature tissue remain unknown. The aim of this study is to examine the chronic effect of synthetic FXR agonist GW4064 on vascular contraction and endothelium-dependent relaxation using tissue culture procedure. In cultured rabbit mesenteric arteries, the treatment with 0.1-10 microM GW4064 for 7 days did not influence vascular contractility induced by high K(+) (15-65 mM), norepinephrine (0.1-100 microM), and endothelin-1 (0.1-100 nM). However, the chronic treatment with GW4064 (1-10 microM for 7 days) dose dependently impaired endothelium-dependent relaxation induced by substance P (0.1-30 nM). In hematoxylin-eosin cross sectioning and en face immunostaining, GW4064 had no effects on the morphology of endothelial and smooth muscle cells. In endothelium-denuded arteries treated with GW4064 (1-10 microM) for 7 days, 3 nM-100 microM sodium nitroprusside-induced vasorelaxation, but not membrane-permeable cGMP analog 8-bromoguanosine-cGMP (8-Br-cGMP; 1-100 microM)-induced vasorelaxation, was significantly impaired. In these GW4064-treated arteries, 1 muM sodium nitroprusside-induced intracellular cGMP elevations were impaired. In RT-PCR, any changes were detected in mRNA expression level of alpha(1)- and beta(1)-subunit of soluble guanylyl cyclase. These results suggest that chronic stimulation of FXR impairs endothelium-dependent relaxation, which is due to decreased sensitivity of smooth muscle cells to nitric oxide.

  6. FLASH X-RAY (FXR) LINEAR INDUCTION ACCELERATOR (LIA) OPTIMIZATION Sensor Delay Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, M M; Houck, T L; Kreitzer, B R

    2006-05-01

    The radiographic goal of the FXR Optimization Project is to generate an x-ray pulse with peak energy of 19 MeV, spot-size of 1.5 mm, a dose of 500 rad, and duration of 60 ns. The electrical objectives are to generate a 3 kA electron-beam and refine our 16 MV accelerator so that the voltage does not vary more than 1%-rms. In a multi-cell linear induction accelerator, like FXR, the timing of the acceleration pulses relative to the beam is critical. The pulses must be timed optimally so that a cell is at full voltage before the beam arrives and doesmore » not drop until the beam passes. In order to stay within the energy-variation budget, the synchronization between the cells and beam arrival must be controlled to a couple of nanoseconds. Therefore, temporal measurements must be accurate to a fraction of a nanosecond. FXR Optimization Project developed a one-giga-sample per second (gs/s) data acquisition system to record beam sensor data. Signal processing algorithms were written to determine cell timing with an uncertainty of a fraction of a nanosecond. However, the uncertainty in the sensor delay was still a few nanoseconds. This error had to be reduced if we are to improve the quality of the electron beam. Two types of sensors are used to align the cell voltage pulse against the beam current. The beam current is measured with resistive-wall sensors. The cell voltages are read with capacitive voltage monitors. Sensor delays can be traced to two mechanisms: (1) the sensors are not co-located at the beam and cell interaction points, and (2) the sensors have different length jumper cables and other components that connect them to the standard-length coaxial cables of the data acquisition system. Using the physical locations and dimensions of the sensor components, and the dielectric constant of the materials, delay times were computed. Relative to the cell voltage, the beam current was theoretically reporting late by 7.7 ns. Two experiments were performed to verify

  7. Bile acid receptors link nutrient sensing to metabolic regulation

    PubMed Central

    Li, Jibiao; Li, Tiangang

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a common liver disease in Western populations. Non-alcoholic steatohepatitis (NASH) is a more debilitating form of NAFLD characterized by hepatocellular injury and inflammation, which significantly increase the risk of end-stage liver and cardiovascular diseases. Unfortunately, there are no available drug therapies for NASH. Bile acids are physiological detergent molecules that are synthesized from cholesterol exclusively in the hepatocytes. Bile acids circulate between the liver and intestine, where they are required for cholesterol solubilization in the bile and dietary fat emulsification in the gut. Bile acids also act as signaling molecules that regulate metabolic homeostasis and inflammatory processes. Many of these effects are mediated by the bile acid-activated nuclear receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5. Nutrient signaling regulates hepatic bile acid synthesis and circulating plasma bile acid concentrations, which in turn control metabolic homeostasis. The FXR agonist obeticholic acid has had beneficial effects on NASH in recent clinical trials. Preclinical studies have suggested that the TGR5 agonist and the FXR/TGR5 dual agonist are also potential therapies for metabolic liver diseases. Extensive studies in the past few decades have significantly improved our understanding of the metabolic regulatory function of bile acids, which has provided the molecular basis for developing promising bile acid-based therapeutic agents for NASH treatment. PMID:29098111

  8. Obeticholic Acid

    PubMed Central

    Smith, Susan M.; Pegram, Angela H.

    2017-01-01

    Objective: To review the pharmacology, efficacy, and safety of obeticholic acid (OCA) and determine its clinical role relative to other agents in the treatment of patients with primary biliary cholangitis (PBC). Data Sources: A PubMed search (1946 to November 2016) was conducted using the terms INT-747, obeticholic acid, OCA, farnesoid X receptor agonists, FXR agonists, primary biliary cirrhosis, and primary biliary cholangitis. Study Selection and Data Extraction: Phase II and III studies evaluating the use of OCA in PBC patients were included in this review. Data Synthesis: OCA, a farnesoid X receptor (FXR) agonist, is indicated for adult patients with PBC in combination with ursodeoxycholic acid (UDCA) or as monotherapy if unable to tolerate UDCA. Two clinical trials were identified evaluating OCA for the treatment of PBC. Study end points utilized biochemical markers (alkaline phosphatase [ALP] and bilirubin). A phase II study (n = 165) to determine efficacy and safety of OCA at 3 different doses (10 mg, 25 mg, 50 mg) demonstrated statistically significant reductions in ALP (P < .0001 for all OCA groups versus placebo) after 12 weeks. A phase III trial (n = 217) assessed lower OCA doses (5 mg and 10 mg) with a longer study duration (12 months). Statistically significant differences (P < .001) between the 5 to 10 mg group (46%) and the 10 mg group (47%) compared to the placebo group (10%) were found. The primary adverse effect reported in both trials was pruritus. Conclusions: OCA is the first FXR agonist approved for the treatment of PBC. Ongoing research to evaluate clinical outcomes with OCA is currently underway.

  9. Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes

    PubMed Central

    GONZÁLEZ, NIEVES; MARTÍN-DUCE, ANTONIO; MARTÍNEZ-ARRIETA, FÉLIX; MORENO-VILLEGAS, ZAIDA; PORTAL-NÚÑEZ, SERGIO; SANZ, RAÚL; EGIDO, JESÚS

    2015-01-01

    Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein-coupled receptor (GPCR) member of the bombesin receptor family. Several studies have suggested an association between obesity, alterations in glucose metabolism, diabetes and the BRS-3 receptor. In this study, we focused on patients simultaneously diagnosed with obesity and type 2 diabetes (OB/T2D). The analysis of BRS-3 expression in the skeletal muscle of these patients revealed a marked decrease in the expression of BRS-3 at the mRNA (23.6±1.3-fold downregulation, p<0.0001) and protein level (49±7% decrease, p<0.05) compared to the normal patients (no obesity and diabetes). Moreover, in cultured primary myocytes from patients with OB/T2D, the synthetic BRS-3 agonist, [D-Try6,β-Ala11,Phe13,Nle14]bombesin6–14, significantly increased the phosphorylation levels of mitogen-activated protein kinase (MAPK), p90RSK1, protein kinase B (PKB) and p70s6K. Specifically, the ligand at 10−11 M induced the maximal phosphorylation of MAPKs (p42, 159±15% of the control; p44, 166±11% of the control; p<0.0001) and p90RSK1 (148±2% of the control, p<0.0001). The basal phosphorylation levels of all kinases were reduced (p<0.05) in the patients with OB/T2D compared to the normal patients. Furthermore, the BRS-3 agonist stimulated glucose transport, which was already detected at 10−12 M (133±9% of the control), reached maximal levels at 10−11 M (160±9%, p<0.0001) and was maintained at up to 10−8 M (overall mean, 153±7%; p<0.007). This effect was less promiment than that attained with 10−8 M insulin (202±9%, p=0.009). The effect of the agonist on glycogen synthase a activity achieved the maximum effect at 10−11 M (165±16% of the control; p<0.0001), which did not differ from that observed with higher concentrations of the agonist. These results suggest that muscle cells isolated from patients with OB/T2D have extremely high sensitivity to the synthetic ligand, and the effects are particularly observed on

  10. Differential effects of AMPK agonists on cell growth and metabolism

    PubMed Central

    Vincent, Emma E.; Coelho, Paula P.; Blagih, Julianna; Griss, Takla; Viollet, Benoit; Jones, Russell G.

    2016-01-01

    As a sensor of cellular energy status, the AMP-activated protein kinase (AMPK) is believed to act in opposition to the metabolic phenotypes favored by proliferating tumor cells. Consequently, compounds known to activate AMPK have been proposed as cancer therapeutics. However, the extent to which the anti-neoplastic properties of these agonists are mediated by AMPK is unclear. Here we examined the AMPK-dependence of six commonly used AMPK agonists (metformin, phenformin, AICAR, 2DG, salicylate and A-769662) and their influence on cellular processes often deregulated in tumor cells. We demonstrate that the majority of these agonists display AMPK-independent effects on cell proliferation and metabolism with only the synthetic activator, A-769662, exerting AMPK-dependent effects on these processes. We find that A-769662 promotes an AMPK-dependent increase in mitochondrial spare respiratory capacity (SRC). Finally, contrary to the view of AMPK activity being tumor suppressive, we find A-769662 confers a selective proliferative advantage to tumor cells growing under nutrient deprivation. Our results indicate that many of the anti-growth properties of these agonists cannot be attributed to AMPK activity in cells, and thus any observed effects using these agonists should be confirmed using AMPK-deficient cells. Ultimately, our data urge caution, not only regarding the type of AMPK agonist proposed for cancer treatment, but also the context in which they are used. PMID:25241895

  11. Glucagon-receptor Signaling Regulates Energy Metabolism Via Hepatic Farnesoid X Receptor and Fibroblast Growth Factor 21.

    PubMed

    Kim, Teayoun; Nason, Shelly; Holleman, Cassie; Pepin, Mark; Wilson, Landon; Berryhill, Taylor F; Wende, Adam R; Steele, Chad; Young, Martin E; Barnes, Stephen; Drucker, Daniel J; Finan, Brian; DiMarchi, Richard; Perez-Tilve, Diego; Tschoep, Matthias; Habegger, Kirk M

    2018-06-20

    Glucagon, an essential regulator of glucose and lipid metabolism, also promotes weight loss, in part through potentiation of fibroblast-growth factor 21 (FGF21) secretion. However, FGF21 is only a partial mediator of metabolic actions ensuing from GcgR-activation, prompting us to search for additional pathways. Intriguingly, chronic GcgR agonism increases plasma bile acid levels. We hypothesized that GcgR agonism regulates energy metabolism, at least in part, through farnesoid X receptor (FXR). To test this hypothesis, we studied whole body and liver-specific FXR knockout ( Fxr ∆liver ) mice. Chronic GcgR agonist (IUB288) administration in diet-induced obese (DIO) Gcgr , Fgf21 and Fxr whole body or liver-specific knockout ( ∆liver ) mice failed to reduce body weight (BW) when compared to wildtype (WT) mice. IUB288 increased energy expenditure and respiration in DIO WT mice, but not FXR ∆liver mice. GcgR agonism increased [ 14 C]-palmitate oxidation in hepatocytes isolated from WT mice in a dose-dependent manner, an effect blunted in hepatocytes from Fxr ∆liver mice. Our data clearly demonstrate that control of whole body energy expenditure by GcgR agonism requires intact FXR signaling in the liver. This heretofore-unappreciated aspect of glucagon biology has implications for the use of GcgR agonism in the therapy of metabolic disorders. © 2018 by the American Diabetes Association.

  12. The Pharmacologic and Clinical Effects of Illicit Synthetic Cannabinoids.

    PubMed

    White, C Michael

    2017-03-01

    This article presents information on illicitly used synthetic cannabinoids. Synthetic cannabinoids are structurally heterogeneous and commonly used drugs of abuse that act as full agonists of the cannabinoid type-1 receptor but have a variety of additional pharmacologic effects. There are numerous cases of patient harm and death in the United States, Europe, and Australia with many psychological, neurological, cardiovascular, pulmonary, and renal adverse events. Although most users prefer using cannabis, there are convenience, legal, and cost reasons driving the utilization of synthetic cannabinoids. Clinicians should be aware of pharmacologic and clinical similarities and differences between synthetic cannabinoid and cannabis use, the limited ability to detect synthetic cannabinoids in the urine or serum, and guidance to treat adverse events. © 2016, The American College of Clinical Pharmacology.

  13. Synthetic non-peptide low molecular weight agonists of the relaxin receptor 1.

    PubMed

    Agoulnik, Alexander I; Agoulnik, Irina U; Hu, Xin; Marugan, Juan

    2017-05-01

    Relaxin is a small heterodimeric peptide hormone of the insulin/relaxin superfamily produced mainly in female and male reproductive organs. It has potent antifibrotic, vasodilatory and angiogenic effects and regulates the normal function of various physiological systems. Preclinical studies and recent clinical trials have shown the promise of recombinant relaxin as a therapeutic agent in the treatment of cardiovascular and fibrotic diseases. However, there are the universal drawbacks of peptide-based pharmacology that apply to relaxin: a short half-life in vivo requires its continuous delivery, and there are high costs of production, storage and treatment, as well as the possibility of immune responses. All these issues can be resolved by the development of low non-peptide MW agonists of the relaxin receptors which are stable, bioavailable, easily synthesized and specific. In this review, we describe the discovery and characterization of the first series of such compounds. The lead compound, ML290, binds to an allosteric site of the relaxin GPCR, RXFP1. ML290 shows high activity and efficacy, measured by cAMP response, in cells expressing endogenous or transfected RXFP1. Relaxin-like effects of ML290 were shown in various functional cellular assays in vitro. ML290 has excellent absorption, distribution, metabolism and excretion properties and in vivo stability. The identified series of low MW agonists does not activate rodent RXFP1 receptors and thus, the production of a RXFP1 humanized mouse model is needed for preclinical studies. The future analysis and clinical perspectives of relaxin receptor agonists are discussed. This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc. © 2016 The British Pharmacological Society.

  14. Synthetic and natural Peroxisome Proliferator-Activated Receptor (PPAR) agonists as candidates for the therapy of the metabolic syndrome.

    PubMed

    Tan, Chek Kun; Zhuang, Yan; Wahli, Walter

    2017-03-01

    Peroxisome proliferator-activated receptors (PPARs) are the molecular targets of hypolipidemic and insulin-sensitizing drugs and implicated in a multitude of processes that fine-tune the functions of all organs in vertebrates. As transcription factors they sense endogenous and exogenous lipid signaling molecules and convert these signals into intricate gene responses that impact health and disease. The PPARs act as modulators of cellular, organ, and systemic processes, such as lipid and carbohydrate metabolism, making them valuable for understanding body homeostasis influenced by nutrition and exercise. Areas covered: This review concentrates on synthetic and natural PPAR ligands and how they have helped reveal many aspects of the transcriptional control of complex processes important in health. Expert opinion: The three PPARs have complementary roles in the fine-tuning of most fundamental body functions, especially energy metabolism. Understanding their inter-relatedness using ligands that simultaneously modulate the activity of more than one of these receptors is a major goal. This approach may provide essential knowledge for the development of dual or pan-PPAR agonists or antagonists as potential new health-promoting agents and for nutritional approaches to prevent metabolic diseases.

  15. Differential effects of AMPK agonists on cell growth and metabolism.

    PubMed

    Vincent, E E; Coelho, P P; Blagih, J; Griss, T; Viollet, B; Jones, R G

    2015-07-01

    As a sensor of cellular energy status, the AMP-activated protein kinase (AMPK) is believed to act in opposition to the metabolic phenotypes favored by proliferating tumor cells. Consequently, compounds known to activate AMPK have been proposed as cancer therapeutics. However, the extent to which the anti-neoplastic properties of these agonists are mediated by AMPK is unclear. Here we examined the AMPK dependence of six commonly used AMPK agonists (metformin, phenformin, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), 2-deoxy-D-glucose (2DG), salicylate and A-769662) and their influence on cellular processes often deregulated in tumor cells. We demonstrate that the majority of these agonists display AMPK-independent effects on cell proliferation and metabolism with only the synthetic activator, A-769662, exerting AMPK-dependent effects on these processes. We find that A-769662 promotes an AMPK-dependent increase in mitochondrial spare respiratory capacity. Finally, contrary to the view of AMPK activity being tumor suppressive, we find that A-769662 confers a selective proliferative advantage to tumor cells growing under nutrient deprivation. Our results indicate that many of the antigrowth properties of these agonists cannot be attributed to AMPK activity in cells, and thus any observed effects using these agonists should be confirmed using AMPK-deficient cells. Ultimately, our data urge caution not only regarding the type of AMPK agonist proposed for cancer treatment but also the context in which they are used.

  16. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi

    2009-08-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid andmore » glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.« less

  17. Targeted Delivery of LXR Agonist Using a Site-Specific Antibody-Drug Conjugate.

    PubMed

    Lim, Reyna K V; Yu, Shan; Cheng, Bo; Li, Sijia; Kim, Nam-Jung; Cao, Yu; Chi, Victor; Kim, Ji Young; Chatterjee, Arnab K; Schultz, Peter G; Tremblay, Matthew S; Kazane, Stephanie A

    2015-11-18

    Liver X receptor (LXR) agonists have been explored as potential treatments for atherosclerosis and other diseases based on their ability to induce reverse cholesterol transport and suppress inflammation. However, this therapeutic potential has been hindered by on-target adverse effects in the liver mediated by excessive lipogenesis. Herein, we report a novel site-specific antibody-drug conjugate (ADC) that selectively delivers a LXR agonist to monocytes/macrophages while sparing hepatocytes. The unnatural amino acid para-acetylphenylalanine (pAcF) was site-specifically incorporated into anti-CD11a IgG, which binds the α-chain component of the lymphocyte function-associated antigen 1 (LFA-1) expressed on nearly all monocytes and macrophages. An aminooxy-modified LXR agonist was conjugated to anti-CD11a IgG through a stable, cathepsin B cleavable oxime linkage to afford a chemically defined ADC. The anti-CD11a IgG-LXR agonist ADC induced LXR activation specifically in human THP-1 monocyte/macrophage cells in vitro (EC50-27 nM), but had no significant effect in hepatocytes, indicating that payload delivery is CD11a-mediated. Moreover, the ADC exhibited higher-fold activation compared to a conventional synthetic LXR agonist T0901317 (Tularik) (3-fold). This novel ADC represents a fundamentally different strategy that uses tissue targeting to overcome the limitations of LXR agonists for potential use in treating atherosclerosis.

  18. Novel natural and synthetic ligands of the endocannabinoid system.

    PubMed

    Hanus, Lumír O; Mechoulam, Raphael

    2010-01-01

    In this review we describe recent advances in the chemistry of novel CB(1)/CB(2) agonists, CB(1) antagonists, selective CB(2) agonists, fatty acid amide hydrolase inibitors, monoglyceride (MGL) and diglyceride (DAGL) inhibitors and cannabinoid-type agonists and antagonists of non CB(1)/CB(2) receptors. In view of recent interest in the activities of fatty acid amides of amino acids (N-acyl amino acids) a list of this type of compounds was compiled and is presented as a Table. We conclude that further synthetic work based on both the plant cannabinoids and on the endocannabinoids may lead to novel therapeutics and that the identification and the elucidation of the biological profile of the myriad of endogenous N-acyl amino acids and related compounds may enhance the already wide spectrum of lipidomics.

  19. Spicing thing up: Synthetic cannabinoids

    PubMed Central

    Spaderna, Max; Addy, Peter H; D’Souza, Deepak Cyril

    2013-01-01

    Rationale Recently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally. Objectives The availability, acute subjective effects—including self-reports posted on Erowid—laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed. Results Spice is sold under the guise of potpourri or incense. Unlike THC, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid-receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned. Conclusions There is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug-detection tests for synthetic cannabinoids need to become clinically available. PMID:23836028

  20. Analytical confirmation of synthetic cannabinoids in a cohort of 179 presentations with acute recreational drug toxicity to an Emergency Department in London, UK in the first half of 2015.

    PubMed

    Abouchedid, Rachelle; Hudson, Simon; Thurtle, Natalie; Yamamoto, Takahiro; Ho, James H; Bailey, George; Wood, Michelle; Sadones, Nele; Stove, Christophe P; Dines, Alison; Archer, John R H; Wood, David M; Dargan, Paul I

    2017-06-01

    Synthetic cannabinoid receptor agonists are the largest group of new psychoactive substances reported in the last decade; in this study we investigated how commonly these drugs are found in patients presenting to the Emergency Department with acute recreational drug toxicity. We conducted an observational cohort study enrolling consecutive adult patients presenting to an Emergency Department (ED) in London (UK) January-July 2015 (6 months) with acute recreational drug toxicity. Residual serum obtained from a serum sample taken as part of routine clinical care was analyzed using high-resolution accurate mass-spectrometry with liquid-chromatography (HRAM-LCMSMS). Minimum clinical data were obtained from ED medical records. 18 (10%) of the 179 patient samples were positive for synthetic cannabinoid receptor agonists. The most common was 5F AKB-48 (13 samples, concentration 50-7600 pg/ml), followed by 5F PB-22 (7, 30-400 pg/mL), MDMB-CHMICA (7, 80-8000 pg/mL), AB-CHMINACA (3, 50-1800 pg/mL), Cumyl 5F-PINACA (1, 800 pg/mL) and BB-22 (1, 60 pg/mL). Only 9/18 (50%) in whom synthetic cannabinoid receptor agonists were detected self-reported synthetic cannabinoid receptor agonist use. The most common clinical features were seizures and agitation, both recorded in four (22%) individuals. Fourteen patients (78%) were discharged from the ED, one of the four admitted to hospital was admitted to critical care. Synthetic cannabinoid receptor agonists were found in 10% of this cohort with acute recreational drug toxicity but self-reported in only half of these. This suggests that presentations to the ED with acute synthetic cannabinoid receptor agonist toxicity may be more common than reported.

  1. Ranking docking poses by graph matching of protein-ligand interactions: lessons learned from the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    da Silva Figueiredo Celestino Gomes, Priscila; Da Silva, Franck; Bret, Guillaume; Rognan, Didier

    2018-01-01

    A novel docking challenge has been set by the Drug Design Data Resource (D3R) in order to predict the pose and affinity ranking of a set of Farnesoid X receptor (FXR) agonists, prior to the public release of their bound X-ray structures and potencies. In a first phase, 36 agonists were docked to 26 Protein Data Bank (PDB) structures of the FXR receptor, and next rescored using the in-house developed GRIM method. GRIM aligns protein-ligand interaction patterns of docked poses to those of available PDB templates for the target protein, and rescore poses by a graph matching method. In agreement with results obtained during the previous 2015 docking challenge, we clearly show that GRIM rescoring improves the overall quality of top-ranked poses by prioritizing interaction patterns already visited in the PDB. Importantly, this challenge enables us to refine the applicability domain of the method by better defining the conditions of its success. We notably show that rescoring apolar ligands in hydrophobic pockets leads to frequent GRIM failures. In the second phase, 102 FXR agonists were ranked by decreasing affinity according to the Gibbs free energy of the corresponding GRIM-selected poses, computed by the HYDE scoring function. Interestingly, this fast and simple rescoring scheme provided the third most accurate ranking method among 57 contributions. Although the obtained ranking is still unsuitable for hit to lead optimization, the GRIM-HYDE scoring scheme is accurate and fast enough to post-process virtual screening data.

  2. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes.

    PubMed

    Zhang, Yuanyuan; Jackson, Jonathan P; St Claire, Robert L; Freeman, Kimberly; Brouwer, Kenneth R; Edwards, Jeffrey E

    2017-08-01

    Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FXR agonist that is 100-fold more potent than the endogenous ligand chenodeoxycholic acid (CDCA). The effects of OCA on genes involved in bile acid homeostasis were investigated using sandwich-cultured human hepatocytes. Gene expression was determined by measuring mRNA levels. OCA dose-dependently increased fibroblast growth factor-19 (FGF-19) and small heterodimer partner (SHP) which, in turn, suppress mRNA levels of cholesterol 7-alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for de novo synthesis of bile acids. Consistent with CYP7A1 suppression, total bile acid content was decreased by OCA (1 μmol/L) to 42.7 ± 20.5% relative to control. In addition to suppressing de novo bile acids synthesis, OCA significantly increased the mRNA levels of transporters involved in bile acid homeostasis. The bile salt excretory pump (BSEP), a canalicular efflux transporter, increased by 6.4 ± 0.8-fold, and the basolateral efflux heterodimer transporters, organic solute transporter α (OST α ) and OST β increased by 6.4 ± 0.2-fold and 42.9 ± 7.9-fold, respectively. The upregulation of BSEP and OST α and OST β, by OCA reduced the intracellular concentrations of d 8 -TCA, a model bile acid, to 39.6 ± 8.9% relative to control. These data demonstrate that OCA does suppress bile acid synthesis and reduce hepatocellular bile acid levels, supporting the use of OCA to treat bile acid-induced toxicity observed in cholestatic diseases. © 2017 Intercept Pharmaceuticals. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and

  3. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease

    PubMed Central

    Gonzalez, Frank J.; Jiang, Changtao; Patterson, Andrew D.

    2016-01-01

    The gut microbiota is associated with metabolic diseases including obesity, insulin resistance and non-alcoholic fatty liver disease (NAFLD), as demonstrated by correlative studies and by transplant of microbiota from obese humans and mice into germ-free mice. Modification of the microbiota by treatment of high-fat diet (HFD)-fed mice with tempol or antibiotics resulted in decreased adverse metabolic phenotypes. This was due to lower levels of the genera Lactobacillus and decreased bile salt hydrolase (BSH) activity. The decreased BSH resulted in increased levels of tauro-β-muricholic acid (T-β-MCA), a substrate of BSH and a potent farnesoid X receptor (FXR) antagonist. Mice lacking expression of FXR in the intestine were resistant to HFD-induced obesity, insulin resistance and NAFLD thus confirming that intestinal FXR is involved in the potentiation of metabolic disease. A potent intestinal FXR antagonist glycine-β-muricholic acid (Gly-MCA) that is resistant to BSH, was developed that when administered to HFD-treated mice, mimics the effect of the altered microbiota on HFD-induced metabolic disease. Gly-MCA had similar effects on genetically obese leptin-deficient mice. The decreased in adverse metabolic phenotype by tempol, antibiotics and Gly-MCA was due to decreased serum ceramides. Mice lacking FXR in intestine also have lower serum ceramides, are metabolic fit and resistant to HFD-induced metabolic disease, and this is reversed by injection of C16:0 ceramide. In mouse ileum, due to the presence of endogenous FXR agonists produced in the liver, FXR target genes involved in ceramide synthesis are activated and when Gly-MCA is administered, they are repressed, which likely accounts for the decrease in serum ceramides. These studies reveal that ceramides produced in the ileum under control of FXR, influence metabolic diseases. PMID:27639801

  4. Agonist-induced modulation of inverse agonist efficacy at the beta 2-adrenergic receptor.

    PubMed

    Chidiac, P; Nouet, S; Bouvier, M

    1996-09-01

    Sustained stimulation of several G protein-coupled receptors is known to lead to a reduction in the signaling efficacy. This phenomenon, named agonist-induced desensitization, has been best studied for the beta 2-adrenergic receptor (AR) and is characterized by a decreased efficacy of beta-adrenergic agonists to stimulate the adenylyl cyclase activity. Recently, several beta-adrenergic ligands were found to inhibit the spontaneous agonist-independent activity of the beta 2AR. These compounds, termed inverse agonists, have different inhibitory efficacies, ranging from almost neutral antagonists to full inverse agonists. The current study was undertaken to determine whether, as is the case for agonists, desensitization can affect the efficacies of inverse agonists. Agonist-promoted desensitization of the human beta 2AR expressed in Sf9 cells potentiated the inhibitory actions of the inverse agonists, with the extent of the potentiation being inversely proportional to their intrinsic activity. For example, desensitization increased the inhibitory action of the weak inverse agonist labetalol by 29%, whereas inhibition of the spontaneous activity by the strong inverse agonist timolol was not enhanced by the desensitizing stimuli. Interestingly, dichloroisoproterenol acted stochastically as either a weak partial agonist or a weak inverse agonist in control conditions but always behaved as an inverse agonist after desensitization. These data demonstrate that like for agonists, the efficacies of inverse agonists can be modulated by a desensitizing treatment. Also, the data show that the initial state of the receptor can determine whether a ligand behaves as a partial agonist or an inverse agonist.

  5. Acute Toxicity Associated with Use of 5F-Derivations of Synthetic Cannabinoid Receptor Agonists with Analytical Confirmation.

    PubMed

    Abouchedid, Rachelle; Ho, James H; Hudson, Simon; Dines, Alison; Archer, John R H; Wood, David M; Dargan, Paul I

    2016-12-01

    Synthetic Cannabinoid Receptor Agonists (SCRAs) are the largest group of new psychoactive substances reported to the European Warning System and the United Nations Office on Drugs and Crime to date. The heterogeneous nature and speed of diversification of these compounds make it challenging to accurately characterise and predict harms of these compounds in pre-clinical studies, ahead of their appearance. We report the case of a 19-year-old female who purchased three products from a headshop: two new psychoactive substances (sachets of "cannabis tea" and "mushroom tea") as well as two LSD blotters. After the "cannabis tea" was smoked and the two LSD blotters and "mushroom tea" were ingested, the patient became tachycardic (HR 128), developed seizures, agitation, visual hallucinations as well as suspected serotonergic toxicity (sustained ankle clonus 20-30 beats) 1-2 hours after use. She was treated with 1 mg of intravenous midazolam. Symptoms/signs resolved within 13 hours. No further supportive care was required. Plasma, blood, and urine samples confirmed the presence of two SCRAs: 5FAKB-48 and 5F-PB-22. The patient also reported therapeutic use of both fluoxetine and citalopram for depression. To the best of our knowledge, this is the first case report of non-fatal intoxication with 5F-AKB-48 with analytical confirmation and exposure times. It also highlights the difficulties in understanding the pattern of toxicity of certain SCRAs in the context of psychotropic medications/co-morbid mental illness.

  6. Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15.

    PubMed

    Zhou, Mei; Luo, Jian; Chen, Michael; Yang, Hong; Learned, R Marc; DePaoli, Alex M; Tian, Hui; Ling, Lei

    2017-06-01

    . Activation of the nuclear receptor, FXR, leads to the production of a hormone called fibroblast growth factor 19 (FGF19) and subsequently regulation of multiple metabolic processes. Synthetic activators of FXR have been recently approved or are currently in clinical development for treatment of chronic liver diseases, including primary biliary cholangitis (PBC) and non-alcoholic steatohepatitis (NASH). The safety of these activators was partly assessed in mice exposed for prolonged periods of time. However, the results of this study show that mouse FGF15 and human FGF19 exhibit fundamentally different biological activities in mice. This could raise the concern of relying on rodent models for safety assessment of FXR activators. The potential risk of HCC development in patients treated with FXR agonists may need to be monitored. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  7. Agemone mexicana flavanones; apposite inverse agonists of the β2-adrenergic receptor in asthma treatment.

    PubMed

    Eniafe, Gabriel O; Metibemu, Damilohun S; Omotuyi, Olaposi I; Ogunleye, Adewale J; Inyang, Olumide K; Adelakun, Niyi S; Adeniran, Yakubu O; Adewumi, Bamidele; Enejoh, Ojochenemi A; Osunmuyiwa, Joseph O; Shodehinde, Sidiqat A; Oyeneyin, Oluwatoba E

    2018-01-01

    Asthma is an inflammatory disease of the airway that poses a major threat to human health. With increase industrialization in the developed and developing countries, the incidence of asthma is on the rise. The β2-adrenergic receptor is an important target in designing anti-asthmatic drugs. The synthetic agonists of the β2-adrenergic receptor used over the years proved effective, but with indispensable side effects, thereby limiting their therapeutic use on a long-term scale. Inverse agonists of this receptor, although initially contraindicated, had been reported to have long-term beneficial effects. Phytochemicals from Agemone mexicana were screened against the human β2-adrenergic receptor in the agonist, inverse agonist, covalent agonist, and the antagonist conformations. Molecular docking of the phyto-constituents showed that the plant constituents bind better to the inverse agonist bound conformation of the protein, and revealed two flavanones; eriodictyol and hesperitin, with lower free energy (ΔG) values and higher affinities to the inverse agonist bound receptor than the co-crystallized ligand. Eriodictyol and hesperitin bind with the glide score of -10.684 and - 9.958 kcal/mol respectively, while the standard compound ICI-118551, binds with glide score of -9.503 kcal/mol. Further interaction profiling at the protein orthosteric site and ADME/Tox screening confirmed the drug-like properties of these compounds.

  8. LACTIC ACIDOSIS: A RARE MANIFESTATION OF SYNTHETIC MARIJUANA INTOXICATION.

    PubMed

    Antill, T; Jakkoju, A; Dieguez, J; Laskhmiprasad, L

    2015-01-01

    Synthetic cannabinoids are designer drugs that mimic the effect of cannabis, which has become popular with young drug users. These drugs have a similar chemical structure and pharmacologic effects as marijuana, but seem to be more potent. These substances have been banned by the US Drug Enforcement Agency in 2010. Prior to 2010, these drugs were perceived as "safer" by the general population. Synthetic cannabinoids cause effects similar to marijuana making the subjects euphoric. However, they act as full, rather than partial, agonist at the receptor sites causing more severe side effects such as severe agitation, seizures, acute renal failure, and lactic acidosis.

  9. Targeting RORs nuclear receptors by novel synthetic steroidal inverse agonists for autoimmune disorders.

    PubMed

    Dal Prà, Matteo; Carta, Davide; Szabadkai, Gyorgy; Suman, Matteo; Frión-Herrera, Yahima; Paccagnella, Nicola; Castellani, Giulia; De Martin, Sara; Ferlin, Maria Grazia

    2018-05-01

    Designing novel inverse agonists of NR RORγt still represents a challenge for the pharmaceutical community to develop therapeutics for treating immune diseases. By exploring the structure of NRs natural ligands, the representative arotenoid ligands and RORs specific ligands share some chemical homologies which can be exploited to design a novel molecular structure characterized by a polycyclic core bearing a polar head and a hydrophobic tail. Compound MG 2778 (8), a cyclopenta[a]phenantrene derivative, was identified as lead compound which was chemically modified at position 2 in order to obtain a small library for preliminary SARs. Cell viability and estrogenic activity of compounds 7, 8, 19a, 30, 31 and 32 were evaluated to attest selectivity. The selected 7, 8, 19a and 31 compounds were assayed in a Gal4 UAS-Luc co-transfection system in order to determine their ability to modulate RORγt activity in a cellular environment. They were evaluated as inverse agonists taken ursolic acid as reference compound. The potency of compounds was lower than that of ursolic acid, but their efficacy was similar. Compound 19a was the most active, significantly reducing RORγt activity at low micromolar concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. β2 Agonists.

    PubMed

    Billington, Charlotte K; Penn, Raymond B; Hall, Ian P

    2017-01-01

    History suggests β agonists, the cognate ligand of the β 2 adrenoceptor, have been used as bronchodilators for around 5,000 years, and β agonists remain today the frontline treatment for asthma and chronic obstructive pulmonary disease (COPD). The β agonists used clinically today are the products of significant expenditure and over 100 year's intensive research aimed at minimizing side effects and enhancing therapeutic usefulness. The respiratory physician now has a therapeutic toolbox of long acting β agonists to prophylactically manage bronchoconstriction, and short acting β agonists to relieve acute exacerbations. Despite constituting the cornerstone of asthma and COPD therapy, these drugs are not perfect; significant safety issues have led to a black box warning advising that long acting β agonists should not be used alone in patients with asthma. In addition there are a significant proportion of patients whose asthma remains uncontrolled. In this chapter we discuss the evolution of β agonist use and how the understanding of β agonist actions on their principal target tissue, airway smooth muscle, has led to greater understanding of how these drugs can be further modified and improved in the future. Research into the genetics of the β 2 adrenoceptor will also be discussed, as will the implications of individual DNA profiles on the clinical outcomes of β agonist use (pharmacogenetics). Finally we comment on what the future may hold for the use of β agonists in respiratory disease.

  11. Treatment of Obesity-Related Complications with Novel Classes of Naturally Occurring PPAR Agonists

    PubMed Central

    Bassaganya-Riera, Josep; Guri, Amir J.; Hontecillas, Raquel

    2011-01-01

    The prevalence of obesity and its associated comorbidities has grown to epidemic proportions in the US and worldwide. Thus, developing safe and effective therapeutic approaches against these widespread and debilitating diseases is important and timely. Activation of peroxisome proliferator-activated receptors (PPARs) α, γ, and δ through several classes of pharmaceuticals can prevent or treat a variety of metabolic and inflammatory diseases, including type II diabetes (T2D). Thus, PPARs represent important molecular targets for developing novel and better treatments for a wide range of debilitating and widespread obesity-related diseases and disorders. However, available PPAR γ agonistic drugs such as Avandia have significant adverse side effects, including weight gain, fluid retention, hepatotoxicity, and congestive heart failure. An alternative to synthetic agonists of PPAR γ is the discovery and development of naturally occurring and safer nutraceuticals that may be dual or pan PPAR agonists. The purpose of this paper is to summarize the health effects of three plant-derived PPAR agonists: abscisic acid (ABA), punicic acid (PUA), and catalpic acid (CAA) in the prevention and treatment of chronic inflammatory and metabolic diseases and disorders. PMID:21253508

  12. Treatment of Obesity-Related Complications with Novel Classes of Naturally Occurring PPAR Agonists.

    PubMed

    Bassaganya-Riera, Josep; Guri, Amir J; Hontecillas, Raquel

    2011-01-01

    The prevalence of obesity and its associated comorbidities has grown to epidemic proportions in the US and worldwide. Thus, developing safe and effective therapeutic approaches against these widespread and debilitating diseases is important and timely. Activation of peroxisome proliferator-activated receptors (PPARs) α, γ, and δ through several classes of pharmaceuticals can prevent or treat a variety of metabolic and inflammatory diseases, including type II diabetes (T2D). Thus, PPARs represent important molecular targets for developing novel and better treatments for a wide range of debilitating and widespread obesity-related diseases and disorders. However, available PPAR γ agonistic drugs such as Avandia have significant adverse side effects, including weight gain, fluid retention, hepatotoxicity, and congestive heart failure. An alternative to synthetic agonists of PPAR γ is the discovery and development of naturally occurring and safer nutraceuticals that may be dual or pan PPAR agonists. The purpose of this paper is to summarize the health effects of three plant-derived PPAR agonists: abscisic acid (ABA), punicic acid (PUA), and catalpic acid (CAA) in the prevention and treatment of chronic inflammatory and metabolic diseases and disorders.

  13. New therapeutic perspectives in non-alcoholic steatohepatitis.

    PubMed

    Ampuero, Javier; Sánchez-Torrijos, Yolanda; Aguilera, Virginia; Bellido, Francisco; Romero-Gómez, Manuel

    2018-02-01

    Management of non-alcoholic steatohepatitis is focused on restitution of metabolic derangement, weight loss and drugs able to improve steatosis, ballooning and fibrosis. Life-style interventions based on Mediterranean diet and increasing physical activity are the first line therapy. In patients with unsuccessful life-style intervention several drugs are under development: agonist PPAR, agonist GLP-1R and agonist FXR together with drugs focussing on inflammation, ballooning, apoptosis and fibrosis. Bariatric surgery or advanced endoscopy are reserved for morbid obese without response to life-style intervention and weighting loss drugs. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  14. The Synthetic Cannabinoids Phenomenon.

    PubMed

    Karila, Laurent; Benyamina, Amine; Blecha, Lisa; Cottencin, Olivier; Billieux, Joël

    2016-01-01

    « Spice » is generally used to describe the diverse types of herbal blends that encompass synthetic cannabinoids on the market. The emergence of smokable herbal products containing synthetic cannabinoids, which mimic the effects of cannabis, appears to become increasingly popular, in the new psychoactive substances landscape. In 2014, the existence of 134 different types of synthetic cannabinoids were reported by the European Union Early Warning System. These drugs are mainly sold online as an alternative to controlled and regulated psychoactive substances. They appear to have a life cycle of about 1-2 years before being replaced by a next wave of products. Legislation controlling these designer drugs has been introduced in many countries with the objective to limit the spread of existing drugs and control potential new analogs. The majority of the synthetic cannabinoids are full agonists at the CB1 receptor and do not contain tobacco or cannabis. They are becoming increasingly popular in adolescents, students and clubbers as an abused substance. Relatively high incidence of adverse effects associated with synthetic cannabinoids use has been documented in the literature. Numerous fatalities linked with their use and abuse have been reported. In this paper, we will review the available data regarding the use and effects of synthetic cannabinoids in humans in order to highlight their impact on public health. To reach this objective, a literature search was performed on two representative databases (Pubmed, Google Scholar), the Erowid Center website (a US non-profit educational organization that provides information about psychoactive plants and chemicals), and various governmental websites. The terms used for the database search were: "synthetic cannabinoids", "spice", "new psychoactive substances", and/or "substance use disorder", and/or "adverse effects", and/or "fatalities". The search was limited to years 2005 to 2016 due to emerging scientific literature at

  15. Targeting the transsulfuration-H2S pathway by FXR and GPBAR1 ligands in the treatment of portal hypertension.

    PubMed

    Fiorucci, Stefano; Distrutti, Eleonora

    2016-09-01

    Cirrhosis is a end-stage disease of the liver in which fibrogenesis, angiogenesis and distortion of intrahepatic microcirculation lead to increased intrahepatic resistance to portal blood flow, a condition known as portal hypertension. Portal hypertension is maintained by a variety of molecular mechanisms including sinusoidal endothelial cells (LSECs) hyporeactivity, activation of hepatic stellate cells (HSCs), reduction in hepatic endothelial nitric oxide synthase (eNOS) activity along with increased eNOS-derived NO generation in the splanchnic and systemic circulations. A reduction of the expression/function of the two major hydrogen sulfide (H2S)-producing enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), has also been demonstrated. A deficit in the transsulfuration pathway leading to the accumulation of homocysteine might contribute to defective generation of H2S and endothelial hyporeactivity. Bile acids are ligands for nuclear receptors, such as farnesoid X receptor (FXR), and G-protein-coupled receptors (GPCRs), such as the G-protein bile acid receptor 1 (GPBAR1). FXR and GPBAR1 ligands regulate the expression/activity of CSE by both genomic and non-genomic effects and have been proved effective in protecting against endothelial dysfunction observed in rodent models of cirrhosis. GPBAR1, a receptor for secondary bile acids, is selectively expressed by LSECs and its activation increases the expression of CSE and attenuates the production of endotelin-1, a potent vasoconstrictor agent. In vivo GPBAR1 ligand attenuates the imbalance between vasodilatory and vaso-constricting agents, making GPBAR1 a promising target in the treatment of portal hypertension. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identification of a Novel Non-retinoid Pan Inverse Agonist of the Retinoic Acid Receptors

    PubMed Central

    Busby, Scott A.; Kumar, Naresh; Kuruvilla, Dana S.; Istrate, Monica A.; Conkright, Juliana J.; Wang, Yongjun; Kamenecka, Theodore M.; Cameron, Michael D.; Roush, William R.; Burris, Thomas P.; Griffin, Patrick R.

    2011-01-01

    Retinoids are potent forms of vitamin A and are involved in a broad range of physiological processes and the pharmacological effects of retinoids are primarily mediated by the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Several natural and synthetic RAR modulators have proven to be clinically useful for a number of therapeutic indications including cancer, psoriasis, and diabetes. Unfortunately, these agents lead to a number of significant side effects. Most synthetic retinoid ligands are based on the retinoid scaffold and thus have similarities to the natural ligand with all previously disclosed RAR ligands having a carboxylic acid that makes a critical ionic bridge within the ligand binding domain of the receptors. The potential therapeutic value offered from RAR modulation provides the impetus to identify novel ligands based on unique scaffolds that may offer improved toxicity and pharmacokinetic profiles. Here we describe the identification of an atypical RAR inverse agonist that represents the first non-acid, non-retinoid direct modulator of RAR receptor subfamily. SR-0065 functions as a pan-RAR inverse agonist suppressing the basal activity of RARα, RARβ, and RARγ as well as inhibiting agonist induced RAR activity. SR-0065 treatment enhanced receptor interaction with a peptide representative of the corepressor SMRT and in cells SR-0065 enhances recruitment of SMRT to RARγ. The acid form of SR-0065, SR-1758, was inactive in all assays. Thus, SR-0065 represents a new class of non-acid, non-retinoid RAR modulator that may be used as a point to initiate development of improved RAR-targeted drugs. PMID:21381756

  17. Semi-synthesis of a HGF/SF kringle one (K1) domain scaffold generates a potent in vivo MET receptor agonist.

    PubMed

    Simonneau, Claire; Bérénice Leclercq; Mougel, Alexandra; Adriaenssens, Eric; Paquet, Charlotte; Raibaut, Laurent; Ollivier, Nathalie; Drobecq, Hervé; Marcoux, Julien; Cianférani, Sarah; Tulasne, David; de Jonge, Hugo; Melnyk, Oleg; Vicogne, Jérôme

    2015-03-01

    The development of MET receptor agonists is an important goal in regenerative medicine, but is limited by the complexity and incomplete understanding of its interaction with HGF/SF (Hepatocyte Growth Factor/Scatter Factor). NK1 is a natural occurring agonist comprising the N-terminal (N) and the first kringle (K1) domains of HGF/SF. In the presence of heparin, NK1 can self-associate into a "head to tail" dimer which is considered as the minimal structural module able to trigger MET dimerization and activation whereas isolated K1 and N domains showed a weak or a complete lack of agonistic activity respectively. Starting from these structural and biological observations, we investigated whether it was possible to recapitulate the biological properties of NK1 using a new molecular architecture of isolated N or K1 domains. Therefore, we engineered multivalent N or K1 scaffolds by combining synthetic and homogeneous site-specifically biotinylated N and K1 domains (NB and K1B) and streptavidin (S). NB alone or in complex failed to activate MET signaling and to trigger cellular phenotypes. Importantly and to the contrary of K1B alone, the semi-synthetic K1B/S complex mimicked NK1 MET agonist activity in cell scattering, morphogenesis and survival phenotypic assays. Impressively, K1B/S complex stimulated in vivo angiogenesis and, when injected in mice, protected the liver against fulminant hepatitis in a MET dependent manner whereas NK1 and HGF were substantially less potent. These data reveal that without N domain, proper multimerization of K1 domain is a promising strategy for the rational design of powerful MET agonists.

  18. Toll-Like Receptor–2/6 and Toll-Like Receptor–9 Agonists Suppress Viral Replication but Not Airway Hyperreactivity in Guinea Pigs

    PubMed Central

    Evans, Scott E.; Dickey, Burton F.; Fryer, Allison D.; Jacoby, David B.

    2013-01-01

    Respiratory virus infections cause airway hyperreactivity (AHR). Preventative strategies for virus-induced AHR remain limited. Toll-like receptors (TLRs) have been suggested as a therapeutic target because of their central role in triggering antiviral immune responses. Previous studies showed that concurrent treatment with TLR2/6 and TLR9 agonists reduced lethality and the microbial burden in murine models of bacterial and viral pneumonia. This study investigated the effects of TLR2/6 and TLR9 agonist pretreatment on parainfluenza virus pneumonia and virus-induced AHR in guinea pigs in vivo. Synthetic TLR2/6 lipopeptide agonist Pam2CSK4 and Class C oligodeoxynucleotide TLR9 agonist ODN2395, administered in combination 24 hours before virus infection, significantly reduced viral replication in the lung. Despite a fivefold reduction in viral titers, concurrent TLR2/6 and TLR9 agonist pretreatment did not prevent virus-induced AHR or virus-induced inhibitory M2 muscarinic receptor dysfunction. Interestingly, the TLR agonists independently caused non–M2-dependent AHR. These data confirm the therapeutic antiviral potential of TLR agonists, while suggesting that virus inhibition may be insufficient to prevent virus-induced airway pathophysiology. Furthermore, TLR agonists independently cause AHR, albeit through a distinctly different mechanism from that of parainfluenza virus. PMID:23449736

  19. Clinical Effects of Synthetic Cannabinoid Receptor Agonists Compared with Marijuana in Emergency Department Patients with Acute Drug Overdose.

    PubMed

    Zaurova, Milana; Hoffman, Robert S; Vlahov, David; Manini, Alex F

    2016-12-01

    Synthetic cannabinoid receptor agonists (SCRAs) are heterogeneous compounds originally intended as probes of the endogenous cannabinoid system or as potential therapeutic agents. We assessed the clinical toxicity associated with recent SCRA use in a large cohort of drug overdose patients. This subgroup analysis of a large (n = 3739) drug overdose cohort study involved consecutive ED patients at two urban teaching hospitals collected between 2009 and 2013. Clinical characteristics of patients with the exposure to SCRAs (SRCA subgroup) were compared with those from patients who smoked traditional cannabinoids (marijuana subgroup). Data included demographics, exposure details, vital signs, mental status, and basic chemistries gathered as part of routine clinical care. Study outcomes included altered mental status and cardiotoxicity. Eighty-seven patients reported exposure to any cannabinoid, of whom 17 reported SCRAs (17 cases, 70 controls, mean age 38.9 years, 77 % males, 31 % Hispanic). There were no significant differences between SRCA and marijuana with respect to demographics (age, gender, and race/ethnicity), exposure history (suicidality, misuse, and intent), vital signs, or serum chemistries. Mental status varied between SRCA and marijuana, with agitation significantly more likely in SCRA subgroup (OR = 3.8, CI = 1.2-11.9). Cardiotoxicity was more pronounced in the SCRA subgroup with dysrhythmia significantly more likely (OR = 9.2, CI = 1.0-108). In the first clinical study comparing the adverse effects of SCRA overdose vs. marijuana controls in an ED population, we found that SCRA overdoses had significantly pronounced neurotoxicity and cardiotoxicity compared with marijuana.

  20. Design, Synthesis, and Evaluation of N- and C-Terminal Protein Bioconjugates as G Protein-Coupled Receptor Agonists.

    PubMed

    Healey, Robert D; Wojciechowski, Jonathan P; Monserrat-Martinez, Ana; Tan, Susan L; Marquis, Christopher P; Sierecki, Emma; Gambin, Yann; Finch, Angela M; Thordarson, Pall

    2018-02-21

    A G protein-coupled receptor (GPCR) agonist protein, thaumatin, was site-specifically conjugated at the N- or C-terminus with a fluorophore for visualization of GPCR:agonist interactions. The N-terminus was specifically conjugated using a synthetic 2-pyridinecarboxyaldehyde reagent. The interaction profiles observed for N- and C-terminal conjugates were varied; N-terminal conjugates interacted very weakly with the GPCR of interest, whereas C-terminal conjugates bound to the receptor. These chemical biology tools allow interactions of therapeutic proteins:GPCR to be monitored and visualized. The methodology used for site-specific bioconjugation represents an advance in application of 2-pyridinecarboxyaldehydes for N-terminal specific bioconjugations.

  1. Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents.

    PubMed

    Baldridge, Jory R; McGowan, Patrick; Evans, Jay T; Cluff, Christopher; Mossman, Sally; Johnson, David; Persing, David

    2004-07-01

    Toll-like receptor (TLR) agonists are being developed for use as vaccine adjuvants and as stand-alone immunomodulators because of their ability to stimulate innate and adaptive immune responses. Among the most thoroughly studied TLR agonists are the lipid A molecules that target the TLR4 complex. One promising candidate, monophosphoryl lipid A, which is a derivative of lipid A from Salmonella minnesota, has proven to be safe and effective as a vaccine adjuvant in > 120,000 human doses. A new class of synthetic lipid A mimetics, the aminoalkyl glucosaminide 4-phosphates (AGPs), have been engineered specifically to target human TLR4 and are showing promise as vaccine adjuvants and as monotherapeutic agents capable of eliciting nonspecific protection against a wide range of infectious pathogens. In this review, the authors provide an update of the preclinical and clinical experiences with the TLR4 agonists, MPL (Corixa Corporation) adjuvant and the AGPs.

  2. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Athanasiou, Christina; Vasilakaki, Sofia; Dellis, Dimitris; Cournia, Zoe

    2018-01-01

    Computer-aided drug design has become an integral part of drug discovery and development in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The drug design data resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed free energy perturbation (FEP) calculations coupled with molecular dynamics (MD) simulations. FEP/MD calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of

  3. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis[S

    PubMed Central

    Liu, Hailiang; Pathak, Preeti; Boehme, Shannon; Chiang, John Y. L.

    2016-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overexpression of Cyp7a1 ameliorated lipopolysaccharide (LPS)-induced inflammatory cell infiltration and pro-inflammatory cytokine production in WT and TGR5-deficient (Tgr5−/−) mice, but not in FXR-deficient (Fxr−/−) mice, suggesting that bile acid signaling through FXR protects against hepatic inflammation. Nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-luciferase reporter assay showed that FXR agonists significantly inhibited TNF-α-induced NF-κB activity. Furthermore, chromatin immunoprecipitation and mammalian two-hybrid assays showed that ligand-activated FXR interacted with NF-κB and blocked recruitment of steroid receptor coactivator-1 to cytokine promoter and resulted in inhibition of NF-κB activity. Methionine/choline-deficient (MCD) diet increased hepatic inflammation, free cholesterol, oxidative stress, apoptosis, and fibrosis in CYP7A1-deficient (Cyp7a1−/−) mice compared with WT mice. Remarkably, adenovirus-mediated overexpression of Cyp7a1 effectively reduced hepatic free cholesterol and oxidative stress and reversed hepatic inflammation and fibrosis in MCD diet-fed Cyp7a1−/− mice. Current studies suggest that increased Cyp7a1 expression and bile acid synthesis ameliorate hepatic inflammation through activation of FXR, whereas reduced bile acid synthesis aggravates MCD diet-induced hepatic inflammation and fibrosis. Maintaining bile acid and cholesterol homeostasis is important for protecting against liver injury and nonalcoholic fatty liver disease. PMID:27534992

  4. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    PubMed

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists.

  5. Activation of the Farnesoid X Receptor Induces Hepatic Expression and Secretion of Fibroblast Growth Factor 21*

    PubMed Central

    Cyphert, Holly A.; Ge, Xuemei; Kohan, Alison B.; Salati, Lisa M.; Zhang, Yanqiao; Hillgartner, F. Bradley

    2012-01-01

    Previous studies have shown that starvation or consumption of a high fat, low carbohydrate (HF-LC) ketogenic diet induces hepatic fibroblast growth factor 21 (FGF21) gene expression in part by activating the peroxisome proliferator-activated receptor-α (PPARα). Using primary hepatocyte cultures to screen for endogenous signals that mediate the nutritional regulation of FGF21 expression, we identified two sources of PPARα activators (i.e. nonesterified unsaturated fatty acids and chylomicron remnants) that induced FGF21 gene expression. In addition, we discovered that natural (i.e. bile acids) and synthetic (i.e. GW4064) activators of the farnesoid X receptor (FXR) increased FGF21 gene expression and secretion. The effects of bile acids were additive with the effects of nonesterified unsaturated fatty acids in regulating FGF21 expression. FXR activation of FGF21 gene transcription was mediated by an FXR/retinoid X receptor binding site in the 5′-flanking region of the FGF21 gene. FGF19, a gut hormone whose expression and secretion is induced by intestinal bile acids, also increased hepatic FGF21 secretion. Deletion of FXR in mice suppressed the ability of an HF-LC ketogenic diet to induce hepatic FGF21 gene expression. The results of this study identify FXR as a new signaling pathway activating FGF21 expression and provide evidence that FXR activators work in combination with PPARα activators to mediate the stimulatory effect of an HF-LC ketogenic diet on FGF21 expression. We propose that the enhanced enterohepatic flux of bile acids during HF-LC consumption leads to activation of hepatic FXR and FGF19 signaling activity and an increase in FGF21 gene expression and secretion. PMID:22661717

  6. Differential activation of G-proteins by mu-opioid receptor agonists.

    PubMed

    Saidak, Zuzana; Blake-Palmer, Katherine; Hay, Debbie L; Northup, John K; Glass, Michelle

    2006-03-01

    We investigated the ability of the activated mu-opioid receptor (MOR) to differentiate between myristoylated G(alphai1) and G(alphaoA) type G(alpha) proteins, and the maximal activity of a range of synthetic and endogenous agonists to activate each G(alpha) protein. Membranes from HEK293 cells stably expressing transfected MOR were chaotrope extracted to denature endogenous G-proteins and reconstituted with specific purified G-proteins. The G(alpha) subunits were generated in bacteria and were demonstrated to be recognised equivalently to bovine brain purified G(alpha) protein by CB(1) cannabinoid receptors. The ability of agonists to catalyse the MOR-dependent GDP/[(35)S]GTP(gamma)S exchange was then compared for G(alphai1) and G(alphaoA). Activation of MOR by DAMGO produced a high-affinity saturable interaction for G(alphaoA) (K(m)=20+/-1 nM) but a low-affinity interaction with G(alphai1) (K(m)=116+/-12 nM). DAMGO, met-enkephalin and leucine-enkephalin displayed maximal G(alpha) activation among the agonists evaluated. Endomorphins 1 and 2, methadone and beta-endorphin activated both G(alpha) to more than 75% of the maximal response, whereas fentanyl partially activated both G-proteins. Buprenorphine and morphine demonstrated a statistically significant difference between the maximal activities between G(alphai1) and G(alphaoA). Interestingly, DAMGO, morphine, endomorphins 1 and 2, displayed significant differences in the potencies for the activation of the two G(alpha). Differences in maximal activity and potency, for G(alphai1) versus G(alphaoA), are both indicative of agonist selective activation of G-proteins in response to MOR activation. These findings may provide a starting point for the design of drugs that demonstrate greater selectivity between these two G-proteins and therefore produce a more limited range of effects.

  7. Differential activation of G-proteins by μ-opioid receptor agonists

    PubMed Central

    Saidak, Zuzana; Blake-Palmer, Katherine; Hay, Debbie L; Northup, John K; Glass, Michelle

    2006-01-01

    We investigated the ability of the activated μ-opioid receptor (MOR) to differentiate between myristoylated Gαi1 and GαoA type Gα proteins, and the maximal activity of a range of synthetic and endogenous agonists to activate each Gα protein. Membranes from HEK293 cells stably expressing transfected MOR were chaotrope extracted to denature endogenous G-proteins and reconstituted with specific purified G-proteins. The Gα subunits were generated in bacteria and were demonstrated to be recognised equivalently to bovine brain purified Gα protein by CB1 cannabinoid receptors. The ability of agonists to catalyse the MOR-dependent GDP/[35S]GTPγS exchange was then compared for Gαi1 and GαoA. Activation of MOR by DAMGO produced a high-affinity saturable interaction for GαoA (Km=20±1 nM) but a low-affinity interaction with Gαi1 (Km=116±12 nM). DAMGO, met-enkephalin and leucine-enkephalin displayed maximal Gα activation among the agonists evaluated. Endomorphins 1 and 2, methadone and β-endorphin activated both Gα to more than 75% of the maximal response, whereas fentanyl partially activated both G-proteins. Buprenorphine and morphine demonstrated a statistically significant difference between the maximal activities between Gαi1 and GαoA. Interestingly, DAMGO, morphine, endomorphins 1 and 2, displayed significant differences in the potencies for the activation of the two Gα. Differences in maximal activity and potency, for Gαi1 versus GαoA, are both indicative of agonist selective activation of G-proteins in response to MOR activation. These findings may provide a starting point for the design of drugs that demonstrate greater selectivity between these two G-proteins and therefore produce a more limited range of effects. PMID:16415903

  8. Discrimination between olfactory receptor agonists and non-agonists.

    PubMed

    Topin, Jérémie; de March, Claire A; Charlier, Landry; Ronin, Catherine; Antonczak, Serge; Golebiowski, Jérôme

    2014-08-11

    A joint approach combining free-energy calculations and calcium-imaging assays on the broadly tuned human 1G1 olfactory receptor is reported. The free energy of binding of ten odorants was computed by means of molecular-dynamics simulations. This state function allows separating the experimentally determined eight agonists from the two non-agonists. This study constitutes a proof-of-principle for the computational deorphanization of olfactory receptors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma

    PubMed Central

    Sareddy, Gangadhara R.; Li, Xiaonan; Liu, Jinyou; Viswanadhapalli, Suryavathi; Garcia, Lauren; Gruslova, Aleksandra; Cavazos, David; Garcia, Mike; Strom, Anders M.; Gustafsson, Jan-Ake; Tekmal, Rajeshwar Rao; Brenner, Andrew; Vadlamudi, Ratna K.

    2016-01-01

    Glioblastomas (GBM), deadly brain tumors, have greater incidence in males than females. Epidemiological evidence supports a tumor suppressive role of estrogen; however, estrogen as a potential therapy for GBM is limited due to safety concerns. Since GBM express ERβ, a second receptor for estrogen, targeting ERβ with a selective agonist may be a potential novel GBM therapy. In the present study, we examined the therapeutic effect of the selective synthetic ERβ agonist LY500307 using in vitro and in vivo GBM models. Treatment with LY500307 significantly reduced the proliferation of GBM cells with no activity on normal astrocytes in vitro. ERβ agonists promoted apoptosis of GBM cells, and mechanistic studies using RNA sequencing revealed that LY500307 modulated several pathways related to apoptosis, cell cycle, and DNA damage response. Further, LY500307 sensitized GBM cells to several FDA-approved chemotherapeutic drugs including cisplatin, lomustine and temozolomide. LY500307 treatment significantly reduced the in vivo tumor growth and promoted apoptosis of GBM tumors in an orthotopic model and improved the overall survival of tumor-bearing mice in the GL26 syngeneic glioma model. Our results demonstrate that LY500307 has potential as a therapeutic agent for GBM. PMID:27126081

  10. A simple fluorescence-based assay for quantification of the Toll-Like Receptor agonist E6020 in vaccine formulations.

    PubMed

    Pollet, Jeroen; Versteeg, Leroy; Rezende, Wanderson; Strych, Ulrich; Gusovsky, Fabian; Hotez, Peter J; Bottazzi, Maria Elena

    2017-03-07

    Despite the generally accepted immunostimulatory effect of Toll-Like Receptor 4 (TLR4) agonists and their value as vaccine adjuvants, there remains a demand for fast and easy quantification assays for these TLR4 agonists in order to accelerate and improve vaccine formulation studies. A new medium-throughput method was developed for the quantification of the TLR4 agonist, E6020, independent of the formulation composition. The assay uses a fluorescent hydrazide (DCCH) to label the synthetic lipopolysaccharide (LPS) analog E6020 through its diketone groups. This novel, low-cost, and fluorescence based assay may obviate the need for traditional approaches that primarily rely on Fourier transform infrared spectroscopy (FTIR) or mass spectrometry. The experiments were performed in a wide diversity of vaccine formulations containing E6020 to assess method robustness and accuracy. The assay was also expanded to evaluate the loading efficiency of E6020 in poly(lactic-co-glycolic acid) (PLGA) micro-particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  12. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    PubMed

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  13. Trial Watch: Toll-like receptor agonists in oncological indications.

    PubMed

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Henrik Ter Meulen, Jan; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.

  14. Prevention and Mitigation of Acute Radiation Syndrome in Mice by Synthetic Lipopeptide Agonists of Toll-Like Receptor 2 (TLR2)

    PubMed Central

    Shakhov, Alexander N.; Singh, Vijay K.; Bone, Frederick; Cheney, Alec; Kononov, Yevgeniy; Krasnov, Peter; Bratanova-Toshkova, Troitza K.; Shakhova, Vera V.; Young, Jason; Weil, Michael M.; Panoskaltsis-Mortari, Angela; Orschell, Christie M.; Baker, Patricia S.; Gudkov, Andrei; Feinstein, Elena

    2012-01-01

    Bacterial lipoproteins (BLP) induce innate immune responses in mammals by activating heterodimeric receptor complexes containing Toll-like receptor 2 (TLR2). TLR2 signaling results in nuclear factor-kappaB (NF-κB)-dependent upregulation of anti-apoptotic factors, anti-oxidants and cytokines, all of which have been implicated in radiation protection. Here we demonstrate that synthetic lipopeptides (sLP) that mimic the structure of naturally occurring mycoplasmal BLP significantly increase mouse survival following lethal total body irradiation (TBI) when administered between 48 hours before and 24 hours after irradiation. The TBI dose ranges against which sLP are effective indicate that sLP primarily impact the hematopoietic (HP) component of acute radiation syndrome. Indeed, sLP treatment accelerated recovery of bone marrow (BM) and spleen cellularity and ameliorated thrombocytopenia of irradiated mice. sLP did not improve survival of irradiated TLR2-knockout mice, confirming that sLP-mediated radioprotection requires TLR2. However, sLP was radioprotective in chimeric mice containing TLR2-null BM on a wild type background, indicating that radioprotection of the HP system by sLP is, at least in part, indirect and initiated in non-BM cells. sLP injection resulted in strong transient induction of multiple cytokines with known roles in hematopoiesis, including granulocyte colony-stimulating factor (G-CSF), keratinocyte chemoattractant (KC) and interleukin-6 (IL-6). sLP-induced cytokines, particularly G-CSF, are likely mediators of the radioprotective/mitigative activity of sLP. This study illustrates the strong potential of LP-based TLR2 agonists for anti-radiation prophylaxis and therapy in defense and medical scenarios. PMID:22479357

  15. Prevention and mitigation of acute radiation syndrome in mice by synthetic lipopeptide agonists of Toll-like receptor 2 (TLR2).

    PubMed

    Shakhov, Alexander N; Singh, Vijay K; Bone, Frederick; Cheney, Alec; Kononov, Yevgeniy; Krasnov, Peter; Bratanova-Toshkova, Troitza K; Shakhova, Vera V; Young, Jason; Weil, Michael M; Panoskaltsis-Mortari, Angela; Orschell, Christie M; Baker, Patricia S; Gudkov, Andrei; Feinstein, Elena

    2012-01-01

    Bacterial lipoproteins (BLP) induce innate immune responses in mammals by activating heterodimeric receptor complexes containing Toll-like receptor 2 (TLR2). TLR2 signaling results in nuclear factor-kappaB (NF-κB)-dependent upregulation of anti-apoptotic factors, anti-oxidants and cytokines, all of which have been implicated in radiation protection. Here we demonstrate that synthetic lipopeptides (sLP) that mimic the structure of naturally occurring mycoplasmal BLP significantly increase mouse survival following lethal total body irradiation (TBI) when administered between 48 hours before and 24 hours after irradiation. The TBI dose ranges against which sLP are effective indicate that sLP primarily impact the hematopoietic (HP) component of acute radiation syndrome. Indeed, sLP treatment accelerated recovery of bone marrow (BM) and spleen cellularity and ameliorated thrombocytopenia of irradiated mice. sLP did not improve survival of irradiated TLR2-knockout mice, confirming that sLP-mediated radioprotection requires TLR2. However, sLP was radioprotective in chimeric mice containing TLR2-null BM on a wild type background, indicating that radioprotection of the HP system by sLP is, at least in part, indirect and initiated in non-BM cells. sLP injection resulted in strong transient induction of multiple cytokines with known roles in hematopoiesis, including granulocyte colony-stimulating factor (G-CSF), keratinocyte chemoattractant (KC) and interleukin-6 (IL-6). sLP-induced cytokines, particularly G-CSF, are likely mediators of the radioprotective/mitigative activity of sLP. This study illustrates the strong potential of LP-based TLR2 agonists for anti-radiation prophylaxis and therapy in defense and medical scenarios.

  16. Pharmacological characterization of emerging synthetic cannabinoids in HEK293T cells and hippocampal neurons.

    PubMed

    Costain, Willard J; Tauskela, Joseph S; Rasquinha, Ingrid; Comas, Tanya; Hewitt, Melissa; Marleau, Vincent; Soo, Evelyn C

    2016-09-05

    There has been a worldwide proliferation of synthetic cannabinoids that have become marketed as legal alternatives to cannabis (marijuana). Unfortunately, there is a dearth of information about the pharmacological effects of many of these emerging synthetic cannabinoids (ESCs), which presents a challenge for regulatory authorities that need to take such scientific evidence into consideration in order to regulate ECSs as controlled substances. We aimed to characterize the pharmacological properties of ten ESCs using two cell based assays that enabled the determination of potency and efficacy relative to a panel of well-characterized cannabinoids. Agonist-mediated inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live HEK293T cells transfected with human cannabinoid receptor 1 gene (CNR1) and pGloSensor-22F. Pharmacological analysis of this data indicated that all of the ESCs tested were full agonists, with the following rank order of potency: Win 55212-2≈5F-PB-22≈AB-PINACA≈EAM-2201≈MAM-2201>JWH-250≈ PB-22>AKB48 N-(5FP)>AKB-48≈STS-135>XLR-11. Assessment of agonist-stimulated depression of Ca(2+) transients was also used to confirm the efficacy of five ESCs (XLR-11, JWH-250, AB-PINACA, 5F-PB-22, and MAM-2201) in cultured primary hippocampal neurons. This work aims to help inform decisions made by regulatory agencies concerned with the profusion of these poorly characterized recreational drugs. Copyright © 2016. Published by Elsevier B.V.

  17. The epileptogenic spectrum of opiate agonists.

    PubMed

    Snead, O C; Bearden, L J

    1982-11-01

    The present authors gave mu, delta, kappa, epsilon and sigma opiate receptor agonists intracerebroventricularly to rats both singly and in combination while monitoring the electroencephalogram from cortical and depth electrodes. Dose-response curves were plotted with naloxone against the changes produced by each agonist, and the effect of a number of anticonvulsant drugs on agonist-induced seizures was ascertained. Each opiate agonist produced a different seizure pattern with a different naloxone dose-response curve and anticonvulsant profile. The order of convulsive potency was epsilon greater than delta greater than mu greater than sigma much greater than kappa. Petit mal-like seizure activity was unique to the delta agonist, leucine-enkephalin, while only the mu agonist, morphine produced generalized convulsive seizures. These experiments raise the possibility that opiate systems in the brain may be involved in the pathogenesis of a wide spectrum of seizure disorders.

  18. The Toll-Like Receptor 2/6 Agonist, FSL-1 Lipopeptide, Therapeutically Mitigates Acute Radiation Syndrome.

    PubMed

    Kurkjian, Cathryn J; Guo, Hao; Montgomery, Nathan D; Cheng, Ning; Yuan, Hong; Merrill, Joseph R; Sempowski, Gregory D; Brickey, W June; Ting, Jenny P-Y

    2017-12-11

    Risks of radiation exposure from nuclear incidents and cancer radiotherapy are undeniable realities. These dangers urgently compel the development of agents for ameliorating radiation-induced injuries. Biologic pathways mediated by myeloid differentiation primary response gene 88 (MyD88), the common adaptor for toll-like receptor (TLR) and Interleukin-1 receptor signaling, are critical for radioprotection. Treating with agonists prior to radiation enhances survival by activating TLR signaling, whereas radiomitigating TLR-activating therapeutics given after exposure are less defined. We examine the radiomitigation capability of TLR agonists and identify one that is superior for its efficacy and reduced toxic consequences compared to other tested agonists. We demonstrate that the synthetic TLR2/6 ligand Fibroblast-stimulating lipopeptide (FSL-1) substantially prolongs survival in both male and female mice when administered 24 hours after radiation and shows MyD88-dependent function. FSL-1 treatment results in accelerated hematopoiesis in bone marrow, spleen and periphery, and augments systemic levels of hematopoiesis-stimulating factors. The ability of FSL-1 to stimulate hematopoiesis is critical, as hematopoietic dysfunction results from a range of ionizing radiation doses. The efficacy of a single FSL-1 dose for alleviating radiation injury while protecting against adverse effects reveals a viable radiation countermeasures agent.

  19. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor.

    PubMed

    Troppmann, B; Balfanz, S; Baumann, A; Blenau, W

    2010-04-01

    5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT(1) receptor of an insect model for neurobiology, physiology and pharmacology. A cDNA encoding for the Periplaneta americana 5-HT(1) receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. The P. americana 5-HT(1) receptor (Pea5-HT(1)) shares pronounced sequence and functional similarity with mammalian 5-HT(1) receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT(1) was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT(1) receptor. The results presented here should facilitate further analyses of 5-HT(1) receptors in mediating central and peripheral effects of 5-HT in insects.

  20. Novel Prevention Strategies for Bacterial Infections in Cirrhosis

    PubMed Central

    Yan, Kathleen; Garcia-Tsao, Guadalupe

    2016-01-01

    Introduction Bacterial infections are a serious complication of cirrhosis, as they can lead to decompensation, multiple organ failure, and/or death. Preventing infections is therefore very relevant. Because gut bacterial translocation is their main pathogenic mechanism, prevention of infections is mostly based on the use of orally administered poorly absorbed antibiotics such as norfloxacin (selective intestinal decontamination). However, antibiotic prophylaxis leads to antibiotic resistance, limiting therapy and increasing morbidity and mortality. Prevention of bacterial infections in cirrhosis should therefore move away from antibiotics. Areas Covered This review focuses on various potentially novel methods to prevent infections in cirrhosis focusing on non-antibiotic strategies. The use of probiotics, nonselective intestinal decontamination with rifaximin, prokinetics and beta-blockers or fecal microbiota transplant as means of targeting altered gut microbiota, bile acids and FXR agonists are all potential alternatives to selective intestinal decontamination. Prokinetics and beta-blockers can improve intestinal motility, while bile acids and FXR agonists help by improving the intestinal barrier. Finally, granulocyte colony stimulating factor (G-CSF) and statins are emerging therapeutic strategies that may improve immune dysfunction in cirrhosis. Expert Opinion Evidence for these strategies has been restricted to animal studies and proof-of concept studies but we expect this to change in coming years. PMID:26799197

  1. Novel selective agonists and antagonists confirm neurokinin NK1 receptors in guinea-pig vas deferens.

    PubMed Central

    Hall, J. M.; Morton, I. K.

    1991-01-01

    1. This study investigated the recognition characteristics of neurokinin receptors mediating potentiation of the contractile response to field stimulation in the guinea-pig vas deferens. 2. A predominant NK1 receptor population is strongly suggested by the relative activities of the common naturally-occurring tachykinin agonists, which fall within less than one order of magnitude. This conclusion is supported by the relative activities of the synthetic NK1 selective agonists substance P methyl ester, [Glp6,L-Pro9]-SP(6-11) and delta-aminovaleryl-[L-Pro9,N-MeLeu10]- SP(7-11) (GR73632) which were 0.78, 9.3 and 120 as active as substance P, respectively. Furthermore, the NK2 selective agonist [Lys3, Gly8,-R-gamma-lactam-Leu9]-NKA(3-10) (GR64349) was active only at the highest concentrations tested (greater than 10 microM), and the NK3 selective agonist, succ-[Asp6,N-MePhe8]-SP(6-11) (senktide) was essentially inactive (10 nM-32 microM). 3. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-SP(1-11) antagonized responses to neurokinin A, neurokinin B, physalaemin, eledoisin, [Glp6,D-Pro9]-SP(6-11), GR73632 and GR64349 (apparent pKB s 5.6-6.2), but was less potent in antagonizing responses to substance P, substance P methyl ester and [Glp6,L-Pro9]-SP(6-11) (apparent pKB s less than or equal to 5.0-5.0). 4. In contrast, the recently developed NK1-selective receptor antagonist [D-Pro9[Spiro-gamma-lactam]Leu10,Trp11]-SP(1-11) (GR71251) did not produce agonist-dependent pKB estimates. Schild plot analysis indicated a competitive interaction with a single receptor population where the antagonist had an estimated overall pKB of 7.58 +/- 0.13 for the four agonists of differing subtype selectivity tested (GR73632, GR64349, substance P methyl ester and neurokinin B).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1707714

  2. Evaluation of partial beta-adrenoceptor agonist activity.

    PubMed

    Lipworth, B J; Grove, A

    1997-01-01

    A partial beta-adrenoceptor (beta-AR) agonist will exhibit opposite agonist and antagonist activity depending on the prevailing degree of adrenergic tone or the presence of a beta-AR agonist with higher intrinsic activity. In vivo partial beta-AR agonist activity will be evident at rest with low endogenous adrenergic tone, as for example with chronotropicity (beta 1/beta 2), inotropicity (beta 1) or peripheral vasodilatation and finger tremor (beta 2). beta-AR blocking drugs which have partial agonist activity may exhibit a better therapeutic profile when used for hypertension because of maintained cardiac output without increased systemic vascular resistance, along with an improved lipid profile. In the presence of raised endogenous adrenergic tone such as exercise or an exogenous full agonist, beta-AR subtype antagonist activity will become evident in terms of effects on exercise induced heart rate (beta 1) and potassium (beta 2) responses. Reduction of exercise heart rate will occur to a lesser degree in the case of a beta-adrenoceptor blocker with partial beta 1-AR agonist activity compared with a beta-adrenoceptor blocker devoid of partial agonist activity. This may result in reduced therapeutic efficacy in the treatment of angina on effort when using beta-AR blocking drugs with partial beta 1-AR agonist activity. Effects on exercise hyperkalaemia are determined by the balance between beta 2-AR partial agonist activity and endogenous adrenergic activity. For predominantly beta 2-AR agonist such as salmeterol and salbutamol, potentiation of exercise hyperkalaemia occurs. For predominantly beta 2-AR antagonists such as carteolol, either potentiation or attenuation of exercise hyperkalaemia occurs at low and high doses respectively. beta 2-AR partial agonist activity may also be expressed as antagonism in the presence of an exogenous full agonist, as for example attenuation of fenoterol induced responses by salmeterol. Studies are required to investigate whether

  3. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling

    NASA Astrophysics Data System (ADS)

    Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär

    2018-01-01

    Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.

  4. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling.

    PubMed

    Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär

    2018-01-01

    Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.

  5. Differential agonist and inverse agonist profile of antipsychotics at D2L receptors coupled to GIRK potassium channels.

    PubMed

    Heusler, Peter; Newman-Tancredi, Adrian; Castro-Fernandez, Annabelle; Cussac, Didier

    2007-03-01

    The D(2) dopaminergic receptor represents a major target of antipsychotic drugs. Using the coupling of the human D(2long) (hD(2L)) receptor to G protein-coupled inward rectifier potassium (GIRK) channels in Xenopus laevis oocytes, we examined the activity of antipsychotic agents of different classes - typical, atypical, and a "new generation" of compounds, exhibiting a preferential D(2) and 5-HT(1A) receptor profile. When the hD(2L) receptor was coexpressed with GIRK channels, a series of reference compounds exhibited full agonist (dopamine, and quinpirole), partial agonist (apomorphine, (-)3-PPP, and (+)-UH232) or inverse agonist (raclopride, and L741626) properties. Sarizotan exhibited only very weak partial agonist action. At higher levels of receptor cRNA injected per oocyte, both partial agonist activity and inverse agonist properties were generally more pronounced. The inverse agonist action of L741626 was reversed by interaction with sarizotan, thus confirming the constitutive activity of wild-type hD(2L) receptors in the oocyte expression system. When antipsychotic agents were tested for their actions at the hD(2L) receptor, typical (haloperidol) as well as atypical (nemonapride, ziprasidone, and clozapine) compounds acted as inverse agonists. In contrast, among D(2)/5-HT(1A) antipsychotics, only SLV313 and F15063 behaved as inverse agonists, whilst the other members of this group (bifeprunox, SSR181507 and the recently marketed antipsychotic, aripiprazole) exhibited partial agonist properties. Thus, the X. laevis oocyte expression system highlights markedly different activity of antipsychotics at the hD(2L) receptor. These differential properties may translate to distinct therapeutic potential of these compounds.

  6. In vitro priming of adoptively transferred T cells with a RORγ agonist confers durable memory and stemness in vivo.

    PubMed

    Hu, Xiao; Majchrzak, Kinga; Liu, Xikui; Wyatt, Megan M; Spooner, Chauncey; Moisan, Jacques; Zou, Weiping; Carter, Laura L; Paulos, Chrystal M

    2018-05-16

    Adoptive T cell transfer therapy is an FDA-approved treatment for leukemia that relies on the ex vivo expansion and re-infusion of a patient's immune cells, which can be engineered with a chimeric antigen receptor (CAR) for more efficient tumor recognition. Type 17 T cells, controlled transcriptionally by RORγ, have been reported to mediate potent anti-tumor effects superior to those observed with conventionally expanded T cells. Here we demonstrate that addition of a synthetic, small molecule RORγ agonist during ex vivo expansion potentiates the anti-tumor activity of human Th17 and Tc17 cells redirected with a CAR. Likewise, ex vivo use of this agonist bolstered the anti-tumor properties of murine tumor-specific CD4+ and CD8+ T cells. Expansion in the presence of the RORγ agonist enhanced IL-17A production without compromising IFN-γ secretion in vitro. In vivo, cytokine neutralization studies revealed that IFN-γ and IL-17A were required to regress murine melanoma tumors. The enhanced anti-tumor effect of RORγ agonist treatment was associated with recovery of more donor T cells in the tumor and spleen; these cells produced elevated levels of cytokines months after infusion and expressed markers of long-lived stem and central memory cells such as Tcf7 and CD62L. Conversely, untreated cells mainly exhibited effector phenotypes in the tumor. Cured mice previously treated with agonist-primed T cells were protected from tumor re-challenge. Collectively, our work reveals that in vitro treatment with a RORγ agonist generates potent anti-tumor Type 17 effector cells that persist as long-lived memory cells in vivo. Copyright ©2018, American Association for Cancer Research.

  7. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor

    PubMed Central

    Troppmann, B; Balfanz, S; Baumann, A; Blenau, W

    2010-01-01

    Background and purpose: 5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT1 receptor of an insect model for neurobiology, physiology and pharmacology. Experimental approach: A cDNA encoding for the Periplaneta americana 5-HT1 receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. Key results: The P. americana 5-HT1 receptor (Pea5-HT1) shares pronounced sequence and functional similarity with mammalian 5-HT1 receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT1 was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. Conclusions and implications: This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT1 receptor. The results presented here should facilitate further analyses of 5-HT1 receptors in mediating central and peripheral effects of 5-HT in insects. PMID:20233210

  8. UDCA and CDCA alleviate 17α-ethinylestradiol-induced cholestasis through PKA-AMPK pathways in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaojiaoyang; Yuan, Zihang

    Estrogen-induced cholestasis, known as intrahepatic cholestasis of pregnancy (ICP), is an estrogen-related liver disease that is widely recognized as female or pregnancy-specific. Our previous findings showed that the synthetic estrogen, 17α-ethinylestradiol (EE), induced cholestatic injury through ERK1/2-LKB1-AMP-activated protein kinase (AMPK) signaling pathway and its mediated suppression of farnesoid X receptor (FXR). To investigate the role played by bile acids in EE-induced cholestasis, we evaluated the effects of chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) on sandwich cultured rat primary hepatocytes (SCRHs) and an in vivo rat model. Our results showed that, both CDCA and UDCA significantly inducedmore » time- and concentration-dependent reduction in AMPK phosphorylation in SCRHs. Despite having different effects on FXR activation, CDCA and UDCA both inhibited EE-induced AMPK activation, accompanied with the up-regulation of FXR and its downstream bile acid transporters. However, although DCA activates FXR and induces SHP, it was unable to alleviate EE-induced FXR suppression and further aggravated EE-induced cholestasis. We further demonstrated that both CDCA and UDCA, but not DCA, activated cyclic AMP dependent protein kinase (PKA) in SCRHs and the livers of male rats (8 weeks old) liver. Furthermore, PKA antagonist, H89, blocked the AMPK inhibition by CDCA and UDCA, and pharmacological and genetic activation of PKA suppressed EE-induced AMPK activation and its downstream effects. Collectively, these results suggest that CDCA and UDCA protect against estrogen-induced cholestatic injury via PKA signaling pathway and up-regulation of EE-suppressed FXR, which suggests a potential therapeutic target for ICP. - Highlights: • AMPK is involved in cholestatic liver injury with bile acid dysregulation. • CDCA and UDCA inhibit the phosphorylation of AMPK and alleviate estrogen-induced cholestasis. • PKA activation

  9. Dexamethasone enhances agonist induction of tissue factor in monocytes but not in endothelial cells.

    PubMed

    Bottles, K D; Morrissey, J H

    1993-06-01

    Stimulation of monocytic cells by inflammatory agents such as bacterial lipopolysaccharide or tumour necrosis factor-alpha leads to the rapid and transient expression of tissue factor, the major cellular initiator of the extrinsic coagulation cascade in both haemostasis and tissue inflammation. In this study we investigated whether the synthetic anti-inflammatory glucocorticoid, dexamethasone, would inhibit agonist induction of tissue factor expression in both monocytes and endothelial cells. Surprisingly, dexamethasone significantly enhanced the induction of tissue factor expression by peripheral blood mononuclear cells and an established monocytic cell line, THP-1, in response to lipopolysaccharide or tumour necrosis factor-alpha. However, unlike monocytic cells, dexamethasone did not enhance agonist induction of tissue factor in endothelial cells. Synergistic enhancement of tissue factor expression by dexamethasone was also reflected in tissue factor mRNA levels in THP-1 cells, but was not the result of improved TF mRNA stability. Synergism between bacterial lipopolysaccharide and glucocorticoid in the induction of monocyte effector function is extremely unusual and may help to explain the variable outcome of glucocorticoid treatment of septic shock.

  10. [Dopamine agonists--clinical applications beyond Parkinson's disease].

    PubMed

    Kuran, Włodzimierz

    2007-01-01

    Contemporary experience and results of clinical trials concerning dopamine agonist application in the treatment of many different diseases (apart from Parkinson's disease) are presented in the paper. A basic clinical recommendation for agonists is restless legs syndrome. In this syndrome almost all agonists give a considerable subjective and objective improvement. Treatment of atypical parkinsonism (MSA, PSP, CBD) in the majority of patients is ineffective. The author also presents promising results of treatment with agonists in such diverse diseases as hyperkinetic syndromes, cocaine dependence, drug-resistant depression and erectile dysfunction (apomorphine). Dopamine partial agonists (e.g. aripiprazol) are recommended in the modern treatment of schizophrenia.

  11. Liver X receptor agonists augment human islet function through activation of anaplerotic pathways and glycerolipid/free fatty acid cycling.

    PubMed

    Ogihara, Takeshi; Chuang, Jen-Chieh; Vestermark, George L; Garmey, James C; Ketchum, Robert J; Huang, Xiaolun; Brayman, Kenneth L; Thorner, Michael O; Repa, Joyce J; Mirmira, Raghavendra G; Evans-Molina, Carmella

    2010-02-19

    Recent studies in rodent models suggest that liver X receptors (LXRs) may play an important role in the maintenance of glucose homeostasis and islet function. To date, however, no studies have comprehensively examined the role of LXRs in human islet biology. Human islets were isolated from non-diabetic donors and incubated in the presence or absence of two synthetic LXR agonists, TO-901317 and GW3965, under conditions of low and high glucose. LXR agonist treatment enhanced both basal and stimulated insulin secretion, which corresponded to an increase in the expression of genes involved in anaplerosis and reverse cholesterol transport. Furthermore, enzyme activity of pyruvate carboxylase, a key regulator of pyruvate cycling and anaplerotic flux, was also increased. Whereas LXR agonist treatment up-regulated known downstream targets involved in lipogenesis, we observed no increase in the accumulation of intra-islet triglyceride at the dose of agonist used in our study. Moreover, LXR activation increased expression of the genes encoding hormone-sensitive lipase and adipose triglyceride lipase, two enzymes involved in lipolysis and glycerolipid/free fatty acid cycling. Chronically, insulin gene expression was increased after treatment with TO-901317, and this was accompanied by increased Pdx-1 nuclear protein levels and enhanced Pdx-1 binding to the insulin promoter. In conclusion, our data suggest that LXR agonists have a direct effect on the islet to augment insulin secretion and expression, actions that should be considered either as therapeutic or unintended side effects, as these agents are developed for clinical use.

  12. New approaches in the management of insomnia: weighing the advantages of prolonged-release melatonin and synthetic melatoninergic agonists

    PubMed Central

    Hardeland, Rüdiger

    2009-01-01

    Hypnotic effects of melatonin and melatoninergic drugs are mediated via MT1 and MT2 receptors, especially those in the circadian pacemaker, the suprachiasmatic nucleus, which acts on the hypothalamic sleep switch. Therefore, they differ fundamentally from GABAergic hypnotics. Melatoninergic agonists primarily favor sleep initiation and reset the circadian clock to phases allowing persistent sleep, as required in circadian rhythm sleep disorders. A major obstacle for the use of melatonin to support sleep maintenance in primary insomnia results from its short half-life in the circulation. Solutions to this problem have been sought by developing prolonged-release formulations of the natural hormone, or melatoninergic drugs of longer half-life, such as ramelteon, tasimelteon and agomelatine. With all these drugs, improvements of sleep are statistically demonstrable, but remain limited, especially in primary chronic insomnia, so that GABAergic drugs may be indicated. Melatoninergic agonists do not cause next-day hangover and withdrawal effects, or dependence. They do not induce behavioral changes, as sometimes observed with z-drugs. Despite otherwise good tolerability, the use of melatoninergic drugs in children, adolescents, and during pregnancy has been a matter of concern, and should be avoided in autoimmune diseases and Parkinsonism. Problems and limits of melatoninergic hypnotics are compared. PMID:19557144

  13. The synthetic cannabinoid WIN55212-2 decreases the intraocular pressure in human glaucoma resistant to conventional therapies.

    PubMed

    Porcella, A; Maxia, C; Gessa, G L; Pani, L

    2001-01-01

    The search for new ocular hypotensive agents represents a frontier of current eye research because blindness due to optic neuropathy occurs insidiously in 10% of all patients affected by glaucoma. Cannabinoids have been proposed to lower intraocular pressure by either central or peripheral effects but a specific mechanism for this action has never been elucidated. We recently demonstrated the presence of the central cannabinoid receptor (CB(1)) mRNA and protein in the human ciliary body. In the present study we show that the synthetic CB(1) receptor agonist, WIN 55212--2, applied topically at doses of 25 or 50 microg (n = 8), decreases the intraocular pressure of human glaucoma resistant to conventional therapies within the first 30 min (15 +/- 0.5% and 23 +/- 0.9%, respectively). A maximal reduction of 20 +/- 0.7% and 31 +/- 0.6%, respectively, is reached in the first 60 min. These data confirm that CB(1) receptors have direct involvement in the regulation of human intraocular pressure, and suggest that, among various classes of promising antiglaucoma agents, synthetic CB(1) receptor agonists should deserve further research and clinical development.

  14. Progesterone and synthetic progestin, dienogest, induce apoptosis of human primary cultures of adenomyotic stromal cells.

    PubMed

    Yamanaka, Akiyoshi; Kimura, Fuminori; Kishi, Yohei; Takahashi, Kentaro; Suginami, Hiroshi; Shimizu, Yutaka; Murakami, Takashi

    2014-08-01

    To investigate the direct effects of progesterone receptor (PR) agonists on proliferation and apoptosis of human adenomyotic cells. Human primary cultures of adenomyotic stromal cells (ASCs) from 24 patients with adenomyosis were co-treated with estradiol (E2) plus the PR agonists, endogenous progesterone (P) or the synthetic progestin dienogest (DNG), which is used to treat endometriosis. In ASCs, anti-proliferative effects and induction of apoptosis were evaluated in the presence or absence of P (10(-8)-10(-6)M) or DNG (10(-8)-10(-6)M) in culture medium containing E2. Cellular proliferation was analyzed with bromodeoxyuridine incorporation and flow cytometry. Apoptosis was detected with annexin V/7-amino-actinomycin D (7-AAD) staining with flow cytometry and cellular caspase 3/7 activity. P and DNG significantly decreased the proportion of cells in the S phase. In addition, both P and DNG increased apoptosis as measured by annexin V-positive/7-AAD -negative cells and caspase 3/7 activity. Both endogenous P and synthetic progestin directly inhibited cellular proliferation and induced apoptosis in human ASCs. These pharmacological features of progestational compounds provide insight into the therapeutic strategy for the treatment of adenomyosis. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  16. Rational screening of peroxisome proliferator-activated receptor-γ agonists from natural products: potential therapeutics for heart failure.

    PubMed

    Chen, Rui; Wan, Jing; Song, Jing; Qian, Yan; Liu, Yong; Gu, Shuiming

    2017-12-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Activation of PPARγ pathway has been shown to enhance fatty acid oxidation, improve endothelial cell function, and decrease myocardial fibrosis in heart failure. Thus, the protein has been raised as an attractive target for heart failure therapy. This work attempted to discover new and potent PPARγ agonists from natural products using a synthetic strategy of computer virtual screening and transactivation reporter assay. A large library of structurally diverse, drug-like natural products was compiled, from which those with unsatisfactory pharmacokinetic profile and/or structurally redundant compounds were excluded. The binding mode of remaining candidates to PPARγ ligand-binding domain (LBD) was computationally modelled using molecular docking and their relative binding potency was ranked by an empirical scoring scheme. Consequently, eight commercially available hits with top scores were selected and their biological activity was determined using a cell-based reporter-gene assay. Four natural product compounds, namely ZINC13408172, ZINC4292805, ZINC44179 and ZINC901461, were identified to have high or moderate agonistic potency against human PPARγ with EC 50 values of 0.084, 2.1, 0.35 and 5.6 μM, respectively, which are comparable to or even better than that of the approved PPARγ full agonists pioglitazone (EC 50  =   0.16 μM) and rosiglitazone (EC 50  =   0.034 μM). Hydrophobic interactions and van der Waals contacts are the primary chemical forces to stabilize the complex architecture of PPARγ LBD domain with these agonist ligands, while few hydrogen bonds, salt bridges and/or π-π stacking at the complex interfaces confer selectivity and specificity for the domain-agonist recognition. The integrated in vitro-in silico screening strategy can be successfully applied to rational discovery of

  17. Adverse Effects of GLP-1 Receptor Agonists

    PubMed Central

    Filippatos, Theodosios D.; Panagiotopoulou, Thalia V.; Elisaf, Moses S.

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a class of injective anti-diabetic drugs that improve glycemic control and many other atherosclerosis-related parameters in patients with type 2 diabetes (T2D). However, the use of this relatively new class of drugs may be associated with certain adverse effects. Concerns have been expressed regarding the effects of these drugs on pancreatic and thyroid tissue, since animal studies and analyses of drug databases indicate an association of GLP-1 receptor agonists with pancreatitis, pancreatic cancer, and thyroid cancer. However, several meta-analyses failed to confirm a cause-effect relation between GLP-1 receptor agonists and the development of these adverse effects. One benefit of GLP-1 receptor agonists is that they do not cause hypoglycemia when combined with metformin or thiazolidinediones, but the dose of concomitant sulphonylurea or insulin may have to be decreased to reduce the risk of hypoglycemic episodes. On the other hand, several case reports have linked the use of these drugs, mainly exenatide, with the occurrence of acute kidney injury, primarily through hemodynamic derangement due to nausea, vomiting, and diarrhea. The most common symptoms associated with the use of GLP-1 receptor agonists are gastrointestinal symptoms, mainly nausea. Other common adverse effects include injection site reactions, headache, and nasopharyngitis, but these effects do not usually result in discontinuation of the drug. Current evidence shows that GLP-1 receptor agonists have no negative effects on the cardiovascular risk of patients with T2D. Thus, GLP-1 receptor agonists appear to have a favorable safety profile, but ongoing trials will further assess their cardiovascular effects. The aim of this review is to analyze critically the available data regarding adverse events of GLP-1 receptor agonists in different anatomic systems published in Pubmed and Scopus. Whenever possible, certain differences between GLP-1

  18. Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens.

    PubMed

    Moulin, Morgane; Alguacil, Javier; Gu, Siyi; Mehtougui, Asmaa; Adams, Erin J; Peyrottes, Suzanne; Champagne, Eric

    2017-12-01

    Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.

  19. Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119.

    PubMed

    Hassing, Helle A; Fares, Suzan; Larsen, Olav; Pad, Hamideh; Hauge, Maria; Jones, Robert M; Schwartz, Thue W; Hansen, Harald S; Rosenkilde, Mette M

    2016-11-01

    GPR119 is a Gαs-coupled lipid-sensor in the gut, where it mediates release of incretin hormones from the enteroendocrine cells and in pancreatic α-cells, where it releases insulin. Naturally occurring lipids such as monoacylglycerols (MAGs) and N-acylethanolamines (NAEs), like oleoylethanolamide (OEA), activate GPR119, and multiple synthetic ligands have been described. Here, we extend the GPR119 signaling profile to Gαq and Gαi in addition to β-arrestin recruitment and the downstream transcription factors CRE (cAMP response element), SRE (serum response element) and NFAT (nuclear factor of activated T cells). The endogenous OEA and the synthetic AR231453 were full agonists in all pathways except for NFAT, where no ligand-modulation was observed. The potency of AR231453 varied <16-fold (EC 50 from 6 to 95nM) across the different signaling pathways, whereas that of OEA varied >175-fold (from 85nM to 15μM) indicating a biased signaling for OEA. The degree of constitutive activity was 1-10%, 10-30% and 30-70% of OEA-induced E max in Gαi, Gαq and Gαs-driven pathways, respectively. This coincided with the lowest and highest OEA potency observed in Gαi and Gαs-driven pathways, respectively. Incubation for 2h with the 2-MAG-lipase inhibitor JZL84 doubled the constitutive activity, indicating that endogenous lipids contribute to the apparent constitutive activity. Finally, besides being an agonist, AR231453 acted as a positive allosteric modulator of OEA and increased its potency by 54-fold at 100nM AR231453. Our studies uncovering broad and biased signaling, masked constitutive activity by endogenous MAGs, and ago-allosteric properties of synthetic ligands may explain why many GPR119 drug-discovery programs have failed so far. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Beta-agonists and animal welfare

    USDA-ARS?s Scientific Manuscript database

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  1. A novel formulation of veggies with potent liver detoxifying activity.

    PubMed

    Jain, Mohit M; Kumari, Nirmala; Rai, Geeta

    2015-01-01

    LXR (encoded by NR1H2 and 3) and FXR (known as bile acid receptor) encoded by NR1H4 (nuclear receptor subfamily 1, group H and member 4) are nuclear receptors in humans and are important regulators of bile acid production, cholesterol, fatty acid and glucose homeostasis hence responsible for liver detoxification. Several strategies for drug design with numerous ligands for this target have failed owing to the inability of the ligand to access the target/receptor or their early metabolisation. In this work, we have evaluated FXR and LXR structure bound with agonist and compared the binding energy affinity of active ligands present in live green-real veggies with reference drugs (ligands) present in the market. A high throughput screening combined with molecular docking, absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions, log P values and percentage of human oral absorption value led to the identification of two compounds present in live green-real veggies with strong potential for liver detoxification.

  2. The adverse health effects of synthetic cannabinoids with emphasis on psychosis-like effects.

    PubMed

    van Amsterdam, Jan; Brunt, Tibor; van den Brink, Wim

    2015-03-01

    Cannabis use is associated with an increased risk of psychosis in vulnerable individuals. Cannabis containing high levels of the partial cannabinoid receptor subtype 1 (CB1) agonist tetrahydrocannabinol (THC) is associated with the induction of psychosis in susceptible subjects and with the development of schizophrenia, whereas the use of cannabis variants with relatively high levels of cannabidiol (CBD) is associated with fewer psychotic experiences. Synthetic cannabinoid receptor agonists (SCRAs) are full agonists and often more potent than THC. Moreover, in contrast to natural cannabis, SCRAs preparations contain no CBD so that these drugs may have a higher psychosis-inducing potential than cannabis. This paper reviews the general toxicity profile and the adverse effects of SCRAs with special emphasis on their psychosis-inducing risk. The review shows that, compared with the use of natural cannabis, the use of SCRAs may cause more frequent and more severe unwanted negative effects, especially in younger, inexperienced users. Psychosis and psychosis-like conditions seem to occur relatively often following the use of SCRAs, presumably due to their high potency and the absence of CBD in the preparations. Studies on the relative risk of SCRAs compared with natural cannabis to induce or evoke psychosis are urgently needed. © The Author(s) 2015.

  3. Quantitative Phosphoproteomics Unravels Biased Phosphorylation of Serotonin 2A Receptor at Ser280 by Hallucinogenic versus Nonhallucinogenic Agonists*

    PubMed Central

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J.; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-01-01

    The serotonin 5-HT2A receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT2A receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT2A receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT2A agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser280) located in the third intracellular loop of the 5-HT2A receptor, a region important for its desensitization. The specific phosphorylation of Ser280 by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT2A receptors at Ser280 in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser280 to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of

  4. Long-term studies of dopamine agonists.

    PubMed

    Hubble, Jean P

    2002-02-26

    Dopamine agonists have long been used as adjunctive therapy for the treatment of Parkinson's disease (PD). In more recent years these drugs have also been proved safe and effective as initial therapy in lieu of levodopa in the treatment of PD. Long-term levodopa therapy is associated with motor complications, including fluctuating response patterns and dyskinesia. By initially introducing a dopamine agonist as symptomatic drug therapy, it may be possible to postpone the use of levodopa and delay or prevent the development of motor complications. Recently, four clinical trials have explored this hypothesis by comparing the long-term response and side effects of levodopa with dopamine agonist therapy. The drugs studied have included ropinirole, pramipexole, cabergoline, and pergolide. In each of these projects, the occurrence of motor complications, such as wearing off and dyskinesia, was significantly less in the subjects assigned to initiation of therapy with a dopamine agonist. The addition of levodopa could be postponed by many months or even several years. Therefore, these long-term studies of dopamine agonists support the initiation of a dopamine agonist instead of levodopa in an effort to postpone levodopa-related motor complications. This therapeutic approach may be particularly appropriate in PD patients with a long treatment horizon on the basis of age and general good health. The extension phase of the long-term study comparing pramipexole with levodopa is ongoing, and follow-up information may help to establish the value of this treatment strategy.

  5. Evaluation of AhR-agonists and AhR-agonist activity in sediments of Liaohe River protected areas, China.

    PubMed

    Zhang, Yun; Ke, Xin; Gui, Shaofeng; Wu, Xiaoqiong; Wang, Chunyong; Zhang, Haijun

    2017-02-15

    A total of 9 sediment samples of Liaohe River protected areas were collected to evaluate aryl hydrocarbon receptor agonists (AhR-agonists) and AhR-agonist activity via chemical analysis and in vitro H4IIE cell bioassay. Results indicated that bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (Bio-TEQs) ranged from 89.1 to 251.1pg/g dry weight. Concentrations of 16 EPA polycyclic aromatic hydrocarbons (PAHs), 12 dioxin-like polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) ranged from 256.8 to 560.1ng/g, 79.2 to 416.2pg/g, and 199.6 to 538.4pg/g, respectively. According to potency balance analysis, TEQ chem s based on PAHs, PCBs, and PCDD/Fs could contribute 16.56% to 26.11% of Bio-TEQs. This could be explained by the potential existence of unidentified AhR-agonists and the potential non-additive interactions among AhR-agonists in sediment extracts. Through the different contributions to Bio-TEQs, this study confirms that PCDD/Fs were the main pollutants that induced significantly AhR-agonist activity in sediments of Liaohe River protected areas. Copyright © 2016. Published by Elsevier Ltd.

  6. The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element.

    PubMed

    Prieur, Xavier; Coste, Herve; Rodriguez, Joan C

    2003-07-11

    The newly identified apolipoprotein AV (apoAV) gene is a key player in determining plasma triglyceride concentrations. Because hypertriglyceridemia is a major independent risk factor in coronary artery disease, the understanding of the regulation of the expression of this gene is of considerable importance. We presently characterize the structure, the transcription start site, and the promoter of the human apoAV gene. Since the peroxisome proliferator-activated receptor-alpha (PPARalpha) and the farnesoid X-activated receptor (FXR) have been shown to modulate the expression of genes involved in triglyceride metabolism, we evaluated the potential role of these nuclear receptors in the regulation of apoAV transcription. Bile acids and FXR induced the apoAV gene promoter activity. 5'-Deletion, mutagenesis, and gel shift analysis identified a heretofore unknown element at positions -103/-84 consisting of an inverted repeat of two consensus receptor-binding hexads separated by 8 nucleotides (IR8), which was required for the response to bile acid-activated FXR. The isolated IR8 element conferred FXR responsiveness on a heterologous promoter. On the other hand, in apoAV-expressing human hepatic Hep3B cells, transfection of PPARalpha specifically enhanced apoAV promoter activity. By deletion, site-directed mutagenesis, and binding analysis, a PPARalpha response element located 271 bp upstream of the transcription start site was identified. Finally, treatment with a specific PPARalpha activator led to a significant induction of apoAV mRNA expression in hepatocytes. The identification of apoAV as a PPARalpha target gene has major implications with respect to mechanisms whereby pharmacological PPARalpha agonists may exert their beneficial hypotriglyceridemic actions.

  7. Individual bile acids have differential effects on bile acid signaling in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu

    2015-02-15

    pharmacological concentrations of BAs. - Highlights: • All four major bile acids in humans activate the FXR in liver and intestine. • These bile acids decreased the mRNA of the bile acid synthetic enzymes Cyp7a1 and Cyp8b1. • These BAs did not alter the mRNA or protein of the conjugated BA transporters (Ntcp and Bsep). • Cholic acid and deoxycholic acid are more potent activators of FXR than chenodeoxycholic acid and lithocholic acid.« less

  8. Modification of kindled amygdaloid seizures by opiate agonists and antagonists.

    PubMed

    Albertson, T E; Joy, R M; Stark, L G

    1984-03-01

    The effects of 19 opiate agonists and antagonists on kindled amygdaloid seizures in the rat were studied. The mu agonists tended to reduce the length of elicited afterdischarges and behavioral ranks, while markedly increasing postictal electroencephalogram spikes and behavioral arrest time. These effects were reversed by naloxone. The kappa agonists reduced behavioral rank and variably reduced afterdischarge length with a concomitant lengthening of postictal behavioral arrest time and number of electroencephalogram spikes. The putative sigma agonist, SKF 10,047, reduced afterdischarge durations only at the higher doses tested. The decreases found after the sigma agonists in postictal electroencephalogram spiking and time of behavioral arrest were not reversed by naloxone. Only the lower doses of normeperidine were found to decrease seizure thresholds. The mixed agonist/antagonists (MAA) cyclazocine and cyclorphan markedly increased seizure threshold and reduced afterdischarge duration and behavioral rank. Only the MAA pentazocine tended to increase threshold but not suprathreshold afterdischarge durations. The order of ability to modify the ictal events was MAA (selected) greater than kappa agonists greater than mu agonists greater than sigma agonists. The increase in postictal events (behavior arrest and spikes) was caused most effectively by pretreatment with mu agonist greater than kappa agonist greater than selected MAA greater than sigma agonists.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Targeting Pattern Recognition Receptors (PRR) for Vaccine Adjuvantation: From Synthetic PRR Agonists to the Potential of Defective Interfering Particles of Viruses

    PubMed Central

    Vasou, Andri; Sultanoglu, Nazife; Goodbourn, Stephen

    2017-01-01

    Modern vaccinology has increasingly focused on non-living vaccines, which are more stable than live-attenuated vaccines but often show limited immunogenicity. Immunostimulatory substances, known as adjuvants, are traditionally used to increase the magnitude of protective adaptive immunity in response to a pathogen-associated antigen. Recently developed adjuvants often include substances that stimulate pattern recognition receptors (PRRs), essential components of innate immunity required for the activation of antigen-presenting cells (APCs), which serve as a bridge between innate and adaptive immunity. Nearly all PRRs are potential targets for adjuvants. Given the recent success of toll-like receptor (TLR) agonists in vaccine development, molecules with similar, but additional, immunostimulatory activity, such as defective interfering particles (DIPs) of viruses, represent attractive candidates for vaccine adjuvants. This review outlines some of the recent advances in vaccine development related to the use of TLR agonists, summarizes the current knowledge regarding DIP immunogenicity, and discusses the potential applications of DIPs in vaccine adjuvantation. PMID:28703784

  10. Development of 2′-substituted (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine analogues as potent N-methyl-d-aspartic acid receptor agonists

    PubMed Central

    Risgaard, Rune; Nielsen, Simon D.; Hansen, Kasper B.; Jensen, Christina M.; Nielsen, Birgitte; Traynelis, Stephen F.; Clausen, Rasmus P.

    2013-01-01

    A series of 2′-substituted analogues of the selective NMDA receptor ligand (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine ((S)-CCG-IV) have been designed, synthesized and pharmacologically characterized. The design was based on a docking study hypothesizing that substituents in the 2′-position would protrude into a region where differences among the NMDA receptor GluN2 subunits exist. Various synthetic routes were explored, and two different routes provided a series of alkyl-substituted analogues. Pharmacological characterization revealed that these compounds are NMDA receptor agonists and that potency decreases with increasing size of the alkyl groups. Variations in agonist activity are observed at the different recombinant NMDA receptor subtypes. This study demonstrates that it is possible to introduce substituents in the 2′-position of (S)-CCG-IV while maintaining agonist activity and that variation among NMDA receptor subtypes may be achieved by probing this region of the receptor. PMID:23614571

  11. Regulation of lipid metabolism by obeticholic acid in hyperlipidemic hamsters[S

    PubMed Central

    Dong, Bin; Young, Mark; Liu, Xueqing; Singh, Amar Bahadur; Liu, Jingwen

    2017-01-01

    The farnesoid X receptor (FXR) plays critical roles in plasma cholesterol metabolism, in particular HDL-cholesterol (HDL-C) homeostasis. Obeticholic acid (OCA) is a FXR agonist being developed for treating various chronic liver diseases. Previous studies reported inconsistent effects of OCA on regulating plasma cholesterol levels in different animal models and in different patient populations. The mechanisms underlying its divergent effects have not yet been thoroughly investigated. The scavenger receptor class B type I (SR-BI) is a FXR-modulated gene and the major receptor for HDL-C. We investigated the effects of OCA on hepatic SR-BI expression and correlated such effects with plasma HDL-C levels and hepatic cholesterol efflux in hyperlipidemic hamsters. We demonstrated that OCA induced a time-dependent reduction in serum HDL-C levels after 14 days of treatment, which was accompanied by a significant reduction of liver cholesterol content and increases in fecal cholesterol in OCA-treated hamsters. Importantly, hepatic SR-BI mRNA and protein levels in hamsters were increased to 1.9- and 1.8-fold of control by OCA treatment. Further investigations in normolipidemic hamsters did not reveal OCA-induced changes in serum HDL-C levels or hepatic SR-BI expression. We conclude that OCA reduces plasma HDL-C levels and promotes transhepatic cholesterol efflux in hyperlipidemic hamsters via a mechanism involving upregulation of hepatic SR-BI. PMID:27940481

  12. Regulation of lipid metabolism by obeticholic acid in hyperlipidemic hamsters.

    PubMed

    Dong, Bin; Young, Mark; Liu, Xueqing; Singh, Amar Bahadur; Liu, Jingwen

    2017-02-01

    The farnesoid X receptor (FXR) plays critical roles in plasma cholesterol metabolism, in particular HDL-cholesterol (HDL-C) homeostasis. Obeticholic acid (OCA) is a FXR agonist being developed for treating various chronic liver diseases. Previous studies reported inconsistent effects of OCA on regulating plasma cholesterol levels in different animal models and in different patient populations. The mechanisms underlying its divergent effects have not yet been thoroughly investigated. The scavenger receptor class B type I (SR-BI) is a FXR-modulated gene and the major receptor for HDL-C. We investigated the effects of OCA on hepatic SR-BI expression and correlated such effects with plasma HDL-C levels and hepatic cholesterol efflux in hyperlipidemic hamsters. We demonstrated that OCA induced a time-dependent reduction in serum HDL-C levels after 14 days of treatment, which was accompanied by a significant reduction of liver cholesterol content and increases in fecal cholesterol in OCA-treated hamsters. Importantly, hepatic SR-BI mRNA and protein levels in hamsters were increased to 1.9- and 1.8-fold of control by OCA treatment. Further investigations in normolipidemic hamsters did not reveal OCA-induced changes in serum HDL-C levels or hepatic SR-BI expression. We conclude that OCA reduces plasma HDL-C levels and promotes transhepatic cholesterol efflux in hyperlipidemic hamsters via a mechanism involving upregulation of hepatic SR-BI.

  13. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release

    PubMed Central

    Ilyinskii, Petr O.; Roy, Christopher J.; O’Neil, Conlin P.; Browning, Erica A.; Pittet, Lynnelle A.; Altreuter, David H.; Alexis, Frank; Tonti, Elena; Shi, Jinjun; Basto, Pamela A.; Iannacone, Matteo; Radovic-Moreno, Aleksandar F.; Langer, Robert S.; Farokhzad, Omid C.; von Andrian, Ulrich H.; Johnston, Lloyd P.M.; Kishimoto, Takashi Kei

    2014-01-01

    Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-α and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required. PMID:24593999

  14. Dopamine agonists in the treatment of Parkinson's disease.

    PubMed

    Bonuccelli, Ubaldo; Pavese, Nicola

    2006-01-01

    Dopamine agonists are highly effective as adjunctive therapy to levodopa in advanced Parkinson's disease and have rapidly gained popularity as a monotherapy in the early stages of Parkinson's disease for patients less than 65-70 years old. In the latter case, dopamine agonists are about as effective as levodopa but patients demonstrate a lower tendency to develop motor complications. However, dopamine agonists lose efficacy over time and the number of patients remaining on agonist monotherapy decreases to less than 50% after 3 years of treatment. Thus, after a few years of treatment the majority of patients who started on dopamine agonists will be administered levodopa, in a combined dopaminergic therapy, in order to achieve a better control of motor symptoms.

  15. Dopamine agonist withdrawal syndrome: implications for patient care.

    PubMed

    Nirenberg, Melissa J

    2013-08-01

    Dopamine agonists are effective treatments for a variety of indications, including Parkinson's disease and restless legs syndrome, but may have serious side effects, such as orthostatic hypotension, hallucinations, and impulse control disorders (including pathological gambling, compulsive eating, compulsive shopping/buying, and hypersexuality). The most effective way to alleviate these side effects is to taper or discontinue dopamine agonist therapy. A subset of patients who taper a dopamine agonist, however, develop dopamine agonist withdrawal syndrome (DAWS), which has been defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with dopamine agonist withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other dopaminergic medications, and cannot be accounted for by other clinical factors. The symptoms of DAWS include anxiety, panic attacks, dysphoria, depression, agitation, irritability, suicidal ideation, fatigue, orthostatic hypotension, nausea, vomiting, diaphoresis, generalized pain, and drug cravings. The severity and prognosis of DAWS is highly variable. While some patients have transient symptoms and make a full recovery, others have a protracted withdrawal syndrome lasting for months to years, and therefore may be unwilling or unable to discontinue DA therapy. Impulse control disorders appear to be a major risk factor for DAWS, and are present in virtually all affected patients. Thus, patients who are unable to discontinue dopamine agonist therapy may experience chronic impulse control disorders. At the current time, there are no known effective treatments for DAWS. For this reason, providers are urged to use dopamine agonists judiciously, warn patients about the risks of DAWS prior to the initiation of dopamine agonist therapy, and follow patients closely for withdrawal symptoms during dopamine agonist taper.

  16. Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system.

    PubMed

    Pozvek, G; Hilton, J M; Quiza, M; Houssami, S; Sexton, P M

    1997-04-01

    The structure/function relationship of salmon calcitonin (sCT) analogues was investigated in heterologous calcitonin receptor (CTR) expression systems. sCT analogues with progressive amino-terminal truncations intermediate of sCT-(1-32) to sCT-(8-32) were examined for their ability to act as agonists, antagonists, or inverse agonists. Two CTR cell clones, B8-H10 and G12-E12, which express approximately 5 million and 25,000 C1b receptors/cell, respectively, were used for this study. The B8-H10 clone has an approximately 80-fold increase in basal levels of intracellular cAMP due to constitutive activation of the overexpressed receptor. In whole-cell competition binding studies, sCT-(1-32) was more potent than any of its amino-terminally truncated analogues in competition for 125I-sCT binding. In cAMP accumulation studies, sCT-(1-32) and modified analogues sCT-(2-32) and sCT-(3-32) had agonist activities. SDZ-216-710, with an amino-terminal truncation of four amino acids, behaved as a partial agonist/antagonist, whereas amino-terminal truncations of six or seven amino acid residues produced a 16-fold reduction in basal cAMP levels and attenuated the response to the agonist sCT-(1-32) in the constitutively active CTR system. This inverse agonist effect was insensitive to pertussis toxin inhibition. In contrast, the inverse agonist activity of these peptides was not observed in the nonconstitutively active CTR system, in which sCT analogues with amino-terminal truncations of four or more amino acids behaved as neutral competitive antagonists. These results suggest that the inverse agonist activity is mediated by stabilization of the inactive state of the receptor, which does not couple to G protein, and attenuates basal signaling initiated by ligand-independent activation of the effector adenylyl cyclase.

  17. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  18. A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease.

    PubMed

    Trasino, Steven E; Tang, Xiao-Han; Jessurun, Jose; Gudas, Lorraine J

    2016-10-01

    Hepatic stellate cells (HSCs) are an important cellular target for the development of novel pharmacological therapies to prevent and treat nonalcoholic fatty liver diseases (NAFLD). Using a high fat diet (HFD) model of NAFLD, we sought to determine if synthetic selective agonists for retinoic acid receptor β2 (RARβ2) and RARγ can mitigate HSC activation and HSC relevant signaling pathways during early stages of NAFLD, before the onset of liver injury. We demonstrate that the highly selective RARβ2 agonist, AC261066, can reduce the activation of HSCs, marked by decreased HSC expression of α-smooth muscle actin (α-SMA), in mice with HFD-induced NAFLD. Livers of HFD-fed mice treated with AC261066 exhibited reduced steatosis, oxidative stress, and expression of pro-inflammatory mediators, such as tumor necrosis factor-alpha (TNFα), interleukin 1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1). Kupffer cell (macrophage) expression of transforming growth factor-β1 (TGF-β1), which plays a critical role in early HSC activation, was markedly reduced in AC261066-treated, HFD-fed mice. In contrast, HFD-fed mice treated with an RARγ agonist (CD1530) showed no decreases in steatosis, HSC activation, or Kupffer cell TGF-β1 levels. In conclusion, our data demonstrate that RARβ2 is an attractive target for development of NAFLD therapies. • Hepatic stellate cells (HSCs) are an important pharmacological target for the prevention of nonalcoholic fatty liver diseases (NAFLD). • Retinoids and retinoic acid receptors (RARs) possess favorable metabolic modulating properties. • We show that an agonist for retinoic acid receptor-β2 (RARβ2), but not RARγ, mitigates HSC activation and NAFLD.

  19. Focus on cannabinoids and synthetic cannabinoids.

    PubMed

    Le Boisselier, R; Alexandre, J; Lelong-Boulouard, V; Debruyne, D

    2017-02-01

    The recent emergence of a multitude of synthetic cannabinoids (SCs) has generated a wealth of new information, suggesting the usefulness of state-of-the-art on lato sensu cannabinoids. By modulating a plurality of neurotransmission pathways, the endocannabinoid system is involved in many physiological processes that are increasingly explored. SCs desired and adverse effects are considered to be more intense than those observed with cannabis smoking, which is partly explained by the full agonist activity and higher affinity for cannabinoid receptors. Neurological and cardiovascular side effects observed after cannabinoid poisoning generally respond to conventional supportive care, but severe outcomes may occur in a minority of cases, mainly observed with SCs. The likelihood of severe abuse and addiction produced by SCs are of concern for the scientific community also interested in the potential therapeutic value of cannabinoids. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  20. Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    PubMed Central

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye

    2011-01-01

    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288

  1. Retrospective analysis of synthetic cannabinoids in serum samples--epidemiology and consumption patterns.

    PubMed

    Jaenicke, Nathalie J; Pogoda, Werner; Paulke, Alexander; Wunder, Cora; Toennes, Stefan W

    2014-09-01

    Herbal mixtures contain synthetic cannabinoids, which can cause severe intoxications. Due to the great variety and the changing spectrum of substances on the drug market, prevalence data are limited, and data on prevalence rates of synthetic cannabinoids in forensic cases are not available. The present study was performed to survey the prevalence of synthetic cannabinoids in cases of traffic and criminal offences in the German state Hesse in 2010. The applied analytical method covered all synthetic cannabinoids on the drug market at that time, and with 20% of the blood samples (422 out of 2201) a representative number was reanalyzed. In twelve samples synthetic cannabinoids were identified and a prevalence of 2.8% was estimated. Consumption patterns showed predominantly cases of multi-drug consumption (10 cases); the combination with cannabis or alcohol was frequent (four cases each). The observed deficits were moderate with the exception of aggravation of paranoia in one case. The symptoms were either compatible with the effects of cannabinoid agonists or attributable to alcohol or other drugs found in the blood samples. Our current analytical strategy is to perform such analyses only in cases where use is suspected or where symptoms are not explained by routine toxicological analyses. Hence, the positive rate is rather low highlighting the need to keep up with the developments on the drug market and to establish sensitive screening methods covering a broad range of substances that can be updated fast, e.g., relying on collections of mass spectrometric reference data. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Sports doping: emerging designer and therapeutic β2-agonists.

    PubMed

    Fragkaki, A G; Georgakopoulos, C; Sterk, S; Nielen, M W F

    2013-10-21

    Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future. © 2013.

  3. Mixed Kappa/Mu Opioid Receptor Agonists: The 6β-Naltrexamines

    PubMed Central

    Cami-Kobeci, Gerta; Neal, Adrian P.; Bradbury, Faye A.; Purington, Lauren C.; Aceto, Mario D.; Harris, Louis S.; Lewis, John W.; Traynor, John R.; Husbands, Stephen M.

    2011-01-01

    Ligands from the naltrexamine series have consistently demonstrated agonist activity at kappa opioid receptors (KOR), with varying activity at the mu opioid receptor (MOR). Various 6β-cinnamoylamino derivatives were made with the aim of generating ligands with a KOR agonist/MOR partial agonist profile, as ligands with this activity may be of interest as treatment agents for cocaine abuse. The ligands all displayed the desired high affinity, non-selective binding in vitro and in the functional assays were high efficacy KOR agonists with some partial agonist activity at MOR. Two of the new ligands (12a, 12b) have been evaluated in vivo, with 12a acting as a KOR agonist, and therefore somewhat similar to the previously evaluated analogues 3–6, while 12b displayed predominant MOR agonist activity. PMID:19253970

  4. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor.

    PubMed

    Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei

    2017-09-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.

  5. No Gut No Gain! Enteral Bile Acid Treatment Preserves Gut Growth but Not Parenteral Nutrition-Associated Liver Injury in a Novel Extensive Short Bowel Animal Model.

    PubMed

    Villalona, Gustavo; Price, Amber; Blomenkamp, Keith; Manithody, Chandrashekhara; Saxena, Saurabh; Ratchford, Thomas; Westrich, Matthew; Kakarla, Vindhya; Pochampally, Shruthika; Phillips, William; Heafner, Nicole; Korremla, Niraja; Greenspon, Jose; Guzman, Miguel A; Kumar Jain, Ajay

    2018-04-27

    Parenteral nutrition (PN) provides nutrition intravenously; however, this life-saving therapy is associated with significant liver disease. Recent evidence indicates improvement in PN-associated injury in animals with intact gut treated with enteral bile acid (BA), chenodeoxycholic acid (CDCA), and a gut farnesoid X receptor (FXR) agonist, which drives the gut-liver cross talk (GLCT). We hypothesized that similar improvement could be translated in animals with short bowel syndrome (SBS). Using piglets, we developed a novel 90% gut-resected SBS model. Fifteen SBS piglets receiving PN were given CDCA or control (vehicle control) for 2 weeks. Tissue and serum were analyzed posteuthanasia. CDCA increased gut FXR (quantitative polymerase chain reaction; P = .008), but not downstream FXR targets. No difference in gut fibroblast growth factor 19 (FGF19; P = .28) or hepatic FXR (P = .75), FGF19 (P = .86), FGFR4 (P = .53), or Cholesterol 7 α-hydroxylase (P = .61) was noted. PN resulted in cholestasis; however, no improvement was noted with CDCA. Hepatic fibrosis or immunostaining for Ki67, CD3, or Cytokeratin 7 was not different with CDCA. PN resulted in gut atrophy. CDCA preserved (P = .04 vs control) gut mass and villous/crypt ratio. The median (interquartile range) for gut mass for control was 0.28 (0.17-0.34) and for CDCA was 0.33 (0.26-0.46). We note that, unlike in animals with intact gut, in an SBS animal model there is inadequate CDCA-induced activation of gut-derived signaling to cause liver improvement. Thus, it appears that activation of GLCT is critically dependent on the presence of adequate gut. This is clinically relevant because it suggests that BA therapy may not be as effective for patients with SBS. © 2018 American Society for Parenteral and Enteral Nutrition.

  6. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals.

    PubMed

    Chen, Kong Y; Muniyappa, Ranganath; Abel, Brent S; Mullins, Katherine P; Staker, Pamela; Brychta, Robert J; Zhao, Xiongce; Ring, Michael; Psota, Tricia L; Cone, Roger D; Panaro, Brandon L; Gottesdiener, Keith M; Van der Ploeg, Lex H T; Reitman, Marc L; Skarulis, Monica C

    2015-04-01

    Activation of the melanocortin-4 receptor (MC4R) with the synthetic agonist RM-493 decreases body weight and increases energy expenditure (EE) in nonhuman primates. The effects of MC4R agonists on EE in humans have not been examined to date. In a randomized, double-blind, placebo-controlled, crossover study, we examined the effects of the MC4R agonist RM-493 on resting energy expenditure (REE) in obese subjects in an inpatient setting. Twelve healthy adults (6 men and 6 women) with body mass index of 35.7 ± 2.9 kg/m(2) (mean ± SD) received RM-493 (1 mg/24 h) or placebo by continuous subcutaneous infusion over 72 hours, followed immediately by crossover to the alternate treatment. All subjects received a weight-maintenance diet (50% carbohydrate, 30% fat, and 20% protein) and performed 30 minutes of standardized exercise daily. Continuous EE was measured on the third treatment day in a room calorimeter, and REE in the fasting state was defined as the mean of 2 30-minute resting periods. RM-493 increased REE vs placebo by 6.4% (95% confidence interval, 0.68-13.02%), on average by 111 kcal/24 h (95% confidence interval, 15-207 kcal, P = .03). Total daily EE trended higher, whereas the thermic effect of a test meal and exercise EE did not differ significantly. The 23-hour nonexercise respiratory quotient was lower during RM-493 treatment (0.833 ± 0.021 vs 0.848 ± 0.022, P = .02). No adverse effect on heart rate or blood pressure was observed. Short-term administration of the MC4R agonist RM-493 increases REE and shifts substrate oxidation to fat in obese individuals.

  7. Potencies of agonists acting at tachykinin receptors in the oestrogen-primed rat uterus: effects of peptidase inhibitors.

    PubMed

    Fisher, L; Pennefather, J N

    1997-09-24

    The uterotonic potencies of the naturally occurring mammalian tachykinins and the synthetic subtype-selective agonist analogues of these agents [Lys5,MeLeu9,Nlel0]neurokinin A-(4-10) and [Nle10]neurokinin A-(4-10) (tachykinin NK2 receptor-selective), [Sar9,Met(O2)11]substance P (tachykinin NK1 receptor-selective) and senktide (tachykinin NK3 receptor-selective) were determined using preparations from oestradiol-treated rats. The endopeptidase 24.11 inhibitor, N-[N-[1-(S)-carboxyl-3-phenylpropyl]-(S)-phenyl-alanyl-(S)-isoserine+ ++ (SCH 39370), potentiated responses to neurokinin A, neurokinin B and substance P, but not to [Lys5,MeLeu9,Nle10)]neurokinin A-(4-10) or senktide. [Nle10]neurokinin A-(4-10) effects were potentiated by SCH 39370 with amastatin and those to [Sar9,Met(O2)11]substance P were potentiated by SCH 39370 and captopril in combination. In the presence of optimal concentrations of peptidase inhibitors the relative order of agonist potency was: neurokinin A > substance P > neurokinin B for the naturally occurring mammalian tachykinins and [Lys5,MeLeu9,Nle10]neurokinin A-(4-10) > [Nle10]neurokinin A-(4-10) > [Sar9,Met(O2)11]substance P > senktide for the synthetic tachykinin analogues. Thus, while a tachykinin NK2 receptor predominates in the oestrogen-primed uterus, a tachykinin NK1 receptor may also be present. The non-peptide tachykinin NK3 receptor antagonist, SR 142801, did not antagonise the effects of senktide suggesting that tachykinin NK3 receptors do not mediate its relatively minor effect on the uterus of the oestrogen-primed rat.

  8. 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor

    PubMed Central

    Hanuš, Lumír; Abu-Lafi, Saleh; Fride, Ester; Breuer, Aviva; Vogel, Zvi; Shalev, Deborah E.; Kustanovich, Irina; Mechoulam, Raphael

    2001-01-01

    Two types of endogenous cannabinoid-receptor agonists have been identified thus far. They are the ethanolamides of polyunsaturated fatty acids—arachidonoyl ethanolamide (anandamide) is the best known compound in the amide series—and 2-arachidonoyl glycerol, the only known endocannabinoid in the ester series. We report now an example of a third, ether-type endocannabinoid, 2-arachidonyl glyceryl ether (noladin ether), isolated from porcine brain. The structure of noladin ether was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and was confirmed by comparison with a synthetic sample. It binds to the CB1 cannabinoid receptor (Ki = 21.2 ± 0.5 nM) and causes sedation, hypothermia, intestinal immobility, and mild antinociception in mice. It binds weakly to the CB2 receptor (Ki > 3 μM). PMID:11259648

  9. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Caroline; Grimaldi, Marina; Boulahtouf, Abdelhay

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28 °C as compared tomore » 37 °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology. - Highlights: • Zebrafish is increasingly used to study the effects of estrogens. • We assessed the activity of pharmaceutical and environmental estrogens on zfERs. • Environmental estrogens displayed greater potency for zfERα compared to zfERβs. • hERβ selective agonists displayed greater

  10. New thrombopoietin receptor agonists for platelet disorders.

    PubMed

    Homeida, S; Ebdon, C; Batty, P; Jackson, B; Kolade, S; Bateman, C; Peng, Y Y; Stasi, R

    2012-04-01

    Since thrombopoietin (TPO) was cloned in 1994, TPO receptor (TPO-R) agonists have been developed which have shown significant clinical activity in various conditions characterized by thrombocytopenia. First-generation TPO-R agonists were recombinant forms of human TPO. The clinical development of these molecules was discontinued after one of them, pegylated recombinant human megakaryocyte growth and development factor, was associated with the development of neutralizing autoantibodies cross-reacting with endogenous TPO. Second-generation TPO-R agonists are now available, which present no sequence homology to endogenous TPO. Two of these new agents, romiplostim and eltrombopag, have been granted marketing authorization for use in patients with primary immune thrombocytopenia unresponsive to conventional treatments. Clinical trials with TPO-R agonists are also ongoing in other thrombocytopenias, such as hepatitis C virus-related thrombocytopenia and the myelodysplastic syndromes. Copyright 2012 Prous Science, S.A.U. or its licensors. All rights reserved.

  11. Synthetic biology, inspired by synthetic chemistry.

    PubMed

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Sensitivity of GBM cells to cAMP agonist-mediated apoptosis correlates with CD44 expression and agonist resistance with MAPK signaling.

    PubMed

    Daniel, Paul M; Filiz, Gulay; Mantamadiotis, Theo

    2016-12-01

    In some cell types, activation of the second messenger cAMP leads to increased expression of proapoptotic Bim and subsequent cell death. We demonstrate that suppression of the cAMP pathway is a common event across many cancers and that pharmacological activation of cAMP in glioblastoma (GBM) cells leads to enhanced BIM expression and apoptosis in specific GBM cell types. We identified the MAPK signaling axis as the determinant of cAMP agonist sensitivity in GBM cells, with high MAPK activity corresponding to cAMP resistance and low activity corresponding to sensitization to cAMP-induced apoptosis. Sensitive cells were efficiently killed by cAMP agonists alone, while targeting both the cAMP and MAPK pathways in resistant GBM cells resulted in efficient apoptosis. We also show that CD44 is differentially expressed in cAMP agonist-sensitive and -resistant cells. We thus propose that CD44 may be a useful biomarker for distinguishing tumors that may be sensitive to cAMP agonists alone or cAMP agonists in combination with other pathway inhibitors. This suggests that using existing chemotherapeutic compounds in combination with existing FDA-approved cAMP agonists may fast track trials toward improved therapies for difficult-to-treat cancers, such as GBM.

  13. Sufentanil, Morphine, Met-enkephalin, and κ-Agonist (U-50,488H) Inhibit Substance P Release from Primary Sensory-Neurons: A Model for Presynaptic Spinal Opioid Actions

    PubMed Central

    Chang, H. Ming; Berde, Charles B.; Holz, George G.; Steward, Grieg F.; Kream, Richard M.

    2010-01-01

    An in vitro model system for analysis of presynaptic inhibitory actions of spinal opioids has been applied. Embryonic sensory neurons derived from chick dorsal root ganglia were grown in primary cell culture, and the release of substance P was evoked by electrical field stimulation during exposure to drugs with well-demonstrated affinity for opioid receptors. This allowed a pharmacologic characterization of the inhibitory actions of specific opioid agonists on the release of substance P as measured by radioimmunoassay (RIA). Sufentanil (0.5 µm), a high affinity µ receptor agonist, U-50,488H (25 µm), a selective κ receptor agonist, and morphine (10 µm), an agonist with high affinity for µ and δ receptors, inhibited the evoked release of substance P by approximately 60%, 40%, and 50%, respectively. For sufentanil the response was demonstrated to be dose-dependent. As is the case for its analgesic action in vivo, morphine was approximately 50-fold less potent than sufentanil on a molar basis in this assay. The actions of sufentanil, U-50-488H and morphine were mimicked by the endogenous opioid peptide met-enkephalin, and its stable synthetic analog D-ala2-met5-enkephalinamide (DAME). Naloxone (25 µm), an opioid receptor antagonist, blocked the inhibitory action of sufentanil (0.5 µm), morphine (5 µm), and DAME (5 µm), but not U-50,488H (10 µm). The action of U-50,488H was partially blocked by the antagonist naltrexone (25 µm). Stereo-selectivity of agonist action was confirmed by the failure of dextrorphan (50 µm), an inactive opioid isomer, to inhibit the release of substance P. Actions mediated by specific opioid receptors were thus demonstrated by high affinity responses to agonists, blockade of agonist responses by opioid antagonists, and stereoselectivity. These findings suggest that in the spinal cord presynaptic inhibition of evoked substance P release is mediated by µ, K and δ opioid receptors located on primary sensory nerve terminals

  14. Apoptotic effect of the selective PPARβ/δ agonist GW501516 in invasive bladder cancer cells.

    PubMed

    Péchery, Adeline; Fauconnet, Sylvie; Bittard, Hugues; Lascombe, Isabelle

    2016-11-01

    GW501516 is a selective and high-affinity synthetic agonist of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). This molecule promoted the inhibition of proliferation and apoptosis in few cancer cell lines, but its anticancer action has never been investigated in bladder tumor cells. Thus, this study was undertaken to determine whether GW501516 had antiproliferative and/or apoptotic effects on RT4 and T24 urothelial cancer cells and to explore the molecular mechanisms involved. Our results indicated that, in RT4 cells (derived from a low-grade papillary tumor), GW501516 did not induce cell death. On the other hand, in T24 cells (derived from an undifferentiated high-grade carcinoma), this PPARβ/δ agonist induced cytotoxic effects including cell morphological changes, a decrease of cell viability, a G2/M cell cycle arrest, and the cell death as evidenced by the increase of the sub-G1 cell population. Furthermore, GW501516 triggered T24 cell apoptosis in a caspase-dependent manner including both extrinsic and intrinsic apoptotic pathways through Bid cleavage. In addition, the drug led to an increase of the Bax/Bcl-2 ratio, a mitochondrial dysfunction associated with the dissipation of ΔΨm, and the release of cytochrome c from the mitochondria to the cytosol. GW501516 induced also ROS generation which was not responsible for T24 cell death since NAC did not rescue cells upon PPARβ/δ agonist exposure. For the first time, our data highlight the capacity of GW501516 to induce apoptosis in invasive bladder cancer cells. This molecule could be relevant as a therapeutic drug for high-grade urothelial cancers.

  15. Modification of opiate agonist binding by pertussis toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin.more » This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.« less

  16. Reciprocity of agonistic support in ravens.

    PubMed

    Fraser, Orlaith N; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim's likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals.

  17. Reciprocity of agonistic support in ravens

    PubMed Central

    Fraser, Orlaith N.; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim’s likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals. PMID:22298910

  18. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lusi; Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015; Jiang, Ying

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAHmore » (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.« less

  19. Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A.

    PubMed

    Kaur, Manminder; Holden, Neil S; Wilson, Sylvia M; Sukkar, Maria B; Chung, Kian Fan; Barnes, Peter J; Newton, Robert; Giembycz, Mark A

    2008-09-01

    In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.

  20. Mechanisms of inverse agonist action at D2 dopamine receptors

    PubMed Central

    Roberts, David J; Strange, Philip G

    2005-01-01

    Mechanisms of inverse agonist action at the D2(short) dopamine receptor have been examined. Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [3H]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. Competition of inverse agonists versus [3H]NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. Ki values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. Kcoupled and Kuncoupled were statistically different for the set of compounds tested (ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. These observations were supported by simulations of these competition experiments according to the extended ternary complex model. Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [35S]GTPγS binding to varying degrees in concentration–response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (−)-sulpiride was unaffected. These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism. PMID:15735658

  1. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model.

    PubMed

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9)BK (LDBK) and SarLys[dPhe(8)]desArg(9)BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T(1)-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites.

  2. Activation of single heteromeric GABAA receptor ion channels by full and partial agonists

    PubMed Central

    Mortensen, Martin; Kristiansen, Uffe; Ebert, Bjarke; Frølund, Bente; Krogsgaard-Larsen, Povl; Smart, Trevor G

    2004-01-01

    The linkage between agonist binding and the activation of a GABAA receptor ion channel is yet to be resolved. This aspect was examined on human recombinant α1β2γ2S GABAA receptors expressed in human embryonic kidney cells using the following series of receptor agonists: GABA, isoguvacine, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), isonipecotic acid, piperidine-4-sulphonic acid (P4S), imidazole-4-acetic acid (IAA), 5-(4-piperidyl)-3-isothiazolol (thio-4-PIOL) and 5-(4-piperidyl)-3-isoxazolol (4-PIOL). Whole-cell concentration–response curves enabled the agonists to be categorized into four classes based upon their maximum responses. Single channel analyses revealed that the channel conductance of 25–27 pS was unaffected by the agonists. However, two open states were resolved from the open period distributions with mean open times reduced 5-fold by the weakest partial agonists. Using saturating agonist concentrations, estimates of the channel shutting rate, α, ranged from 200 to 600 s−1. The shut period distributions were described by three or four components and for the weakest partial agonists, the interburst shut periods increased whilst the mean burst durations and longest burst lengths were reduced relative to the full agonists. From the burst analyses, the opening rates for channel activation, β, and the total dissociation rates, k−1, for the agonists leaving the receptor were estimated. The agonist efficacies were larger for the full agonists (E ∼7−9) compared to the weak partial agonists (∼0.4–0.6). Overall, changes in agonist efficacy largely determined the different agonist profiles with contributions from the agonist affinities and the degree of receptor desensitization. From this we conclude that GABAA receptor activation does not occur in a switch-like manner since the agonist recognition sites are flexible, accommodating diverse agonist structures which differentially influence the opening and shutting rates of the ion

  3. Synthesis and pharmacological validation of a novel series of non-steroidal FXR agonists.

    PubMed

    Abel, Ulrich; Schlüter, Thomas; Schulz, Andreas; Hambruch, Eva; Steeneck, Christoph; Hornberger, Martin; Hoffmann, Thomas; Perović-Ottstadt, Sanja; Kinzel, Olaf; Burnet, Michael; Deuschle, Ulrich; Kremoser, Claus

    2010-08-15

    To overcome the known liabilities of GW4064 a series of analogs were synthesized where the stilbene double bond is replaced by an oxymethylene or amino-methylene linker connecting a terminal benzoic acid with a substituted heteroaryl in the middle ring position. As a result we discovered compounds with increased potency in vitro that cause dose-dependent reduction of plasma triglycerides and cholesterol in db/db mice down to 2 x 1 mg/kg/day upon oral administration. 2010 Elsevier Ltd. All rights reserved.

  4. Characterization of "mini-nucleotides" as P2X receptor agonists in rat cardiomyocyte cultures. An integrated synthetic, biochemical, and theoretical study.

    PubMed

    Fischer, B; Yefidoff, R; Major, D T; Rutman-Halili, I; Shneyvays, V; Zinman, T; Jacobson, K A; Shainberg, A

    1999-07-15

    The design and synthesis of "mini-nucleotides", based on a xanthine-alkyl phosphate scaffold, are described. The physiological effects of the new compounds were evaluated in rat cardiac cell culture regarding Ca(2+) elevation and contractility. The results indicate biochemical and physiological profiles similar to those of ATP, although at higher concentrations. The biological target molecules of these "mini-nucleotides" were identified by using selective P2-R and A(1)-R antagonists and P2-R subtype selective agonists. On the basis of these results and of experiments in Ca(2+) free medium, in which [Ca(2+)](i) elevation was not observed, we concluded that interaction of the analogues is likely with P2X receptor subtypes, which causes Ca(2+) influx. Theoretical calculations analyzing electronic effects within the series of xanthine-alkyl phosphates were performed on reduced models at quantum mechanical levels. Calculated dipole moment vectors, electrostatic potential maps, and volume parameters suggest an explanation for the activity or inactivity of the synthesized derivatives and predict a putative binding site environment for the active agonists. Xanthine-alkyl phosphate analogues proved to be selective agents for activation of P2X-R subtypes, whereas ATP activated all P2-R subtypes in cardiac cells. Therefore, these analogues may serve as prototypes of selective drugs aiming at cardiac disorders mediated through P2X receptors.

  5. The chemistry and pharmacology of synthetic cannabinoid SDB-006 and its regioisomeric fluorinated and methoxylated analogs.

    PubMed

    Banister, Samuel D; Olson, Alexander; Winchester, Matthew; Stuart, Jordyn; Edington, Amelia R; Kevin, Richard C; Longworth, Mitchell; Herrera, Marco; Connor, Mark; McGregor, Iain S; Gerona, Roy R; Kassiou, Michael

    2018-01-19

    Synthetic cannabinoids are the largest and most structurally diverse class of new psychoactive substances, with manufacturers often using isomerism to evade detection and circumvent legal restriction. The regioisomeric methoxy- and fluorine-substituted analogs of SDB-006 (N-benzyl-1-pentyl-1H-indole-3-carboxamide) were synthesized and could not be differentiated by gas chromatography-mass spectrometry (GC-MS), but were distinguishable by liquid chromatography-quadrupole time-of-flight-MS (LC-QTOF-MS). In a fluorescence-based plate reader membrane potential assay, SDB-006 acted as a potent agonist at human cannabinoid receptors (CB 1 EC 50 = 19 nM). All methoxy- and fluorine-substituted analogs showed reduced potency compared to SDB-006, although the 2-fluorinated analog (EC 50 = 166 nM) was comparable to known synthetic cannabinoid RCS-4 (EC 50 = 146 nM). Using biotelemetry in rats, SDB-006 and RCS-4 evoked comparable reduction in body temperature (~0.7°C at a dose of 10 mg/kg), suggesting lower potency than the recent synthetic cannabinoid AB-CHMINACA (>2°C, 3 mg/kg). Copyright © 2018 John Wiley & Sons, Ltd.

  6. Ghrelin and motilin receptor agonists: time to introduce bias into drug design.

    PubMed

    Sanger, G J

    2014-02-01

    Ghrelin and motilin receptor agonists increase gastric motility and are attractive drug targets. However, 14 years after the receptors were described (18-24 years since ligands became available) the inactivity of the ghrelin agonist TZP-102 in patients with gastroparesis joins the list of unsuccessful motilin agonists. Fundamental questions must be asked. Pustovit et al., have now shown that the ghrelin agonist ulimorelin evokes prolonged increases in rat colorectal propulsion yet responses to other ghrelin agonists fade. Similarly, different motilin agonists induce short- or long-lasting effects in a cell-dependent manner. Together, these and other data create the hypothesis that the receptors can be induced to preferentially signal ('biased agonism') via particular pathways to evoke different responses with therapeutic advantages/disadvantages. Biased agonism has been demonstrated for ghrelin. Are motilin agonists which cause long-lasting facilitation of human stomach cholinergic function (compared with motilin) biased agonists (e.g., camicinal, under development for patients with gastric hypo-motility)? For ghrelin, additional complications exist because the therapeutic aims/mechanisms of action are uncertain, making it difficult to select the best (biased) agonist. Will ghrelin agonists be useful treatments of nausea and/or as suggested by Pustovit et al., chronic constipation? How does ghrelin increase gastric motility? As gastroparesis symptoms poorly correlate with delayed gastric emptying (yet gastro-prokinetic drugs can provide relief: e.g., low-dose erythromycin), would low doses of ghrelin and motilin agonists relieve symptoms simply by restoring neuromuscular rhythm? These questions on design and functions need addressing if ghrelin and motilin agonists are to reach patients as drugs. © 2014 John Wiley & Sons Ltd.

  7. Reverse Induced Fit-Driven MAS-Downstream Transduction: Looking for Metabotropic Agonists.

    PubMed

    Pernomian, Larissa; Gomes, Mayara S; de Paula da Silva, Carlos H Tomich; Rosa, Joaquin M C

    2017-01-01

    Protective effects of MAS activation have spurred clinical interests in developing MAS agonists. However, current bases that drive this process preclude that physiological concentrations of peptide MAS agonists induce an atypical signaling that does not reach the metabotropic efficacy of constitutive activation. Canonical activation of MAS-coupled G proteins is only achieved by supraphysiological concentrations of peptide MAS agonists or physiological concentrations of chemically modified analogues. These pleiotropic differences are because of two overlapped binding domains: one non-metabotropic site that recognizes peptide agonists and one metabotropic domain that recognizes modified analogues. It is feasible that supraphysiological concentrations of peptide MAS agonists undergo to chemical modifications required for binding to metabotropic domain. Receptor oligomerization enhances pharmacological parameters coupled to metabotropic signaling. The formation of receptor-signalosome complex makes the transduction of agonists more adaptive. Considering the recent identification of MAS-signalosome, we aimed to postulate the reverse induced fit hypothesis in which MAS-signalosome would trigger chemical modifications required for agonists bind to MAS metabotropic domain. Here we cover rational perspectives for developing novel metabotropic MAS agonists in the view of the reverse induced-fit hypothesis. Predicting a 3D model of MAS metabotropic domain may guide the screening of chemical modifications required for metabotropic efficacy. Pharmacophore-based virtual screening would select potential metabotropic MAS agonists from virtual libraries from human proteome. Rational perspectives that consider reverse induced fit hypothesis during MAS activation for developing metabotropic MAS agonists represents the best approach in providing MAS ligands with constitutive efficacy at physiological concentrations. Copyright© Bentham Science Publishers; For any queries, please email

  8. PPARbeta agonists trigger neuronal differentiation in the human neuroblastoma cell line SH-SY5Y.

    PubMed

    Di Loreto, S; D'Angelo, B; D'Amico, M A; Benedetti, E; Cristiano, L; Cinque, B; Cifone, M G; Cerù, M P; Festuccia, C; Cimini, A

    2007-06-01

    Neuroblastomas are pediatric tumors originating from immature neuroblasts in the developing peripheral nervous system. Differentiation therapies could help lowering the high mortality due to rapid tumor progression to advanced stages. Oleic acid has been demonstrated to promote neuronal differentiation in neuronal cultures. Herein we report on the effects of oleic acid and of a specific synthetic PPARbeta agonist on cell growth, expression of differentiation markers and on parameters responsible for the malignancy such as adhesion, migration, invasiveness, BDNF, and TrkB expression of SH-SY5Y neuroblastoma cells. The results obtained demonstrate that many, but not all, oleic acid effects are mediated by PPARbeta and support a role for PPARbeta in neuronal differentiation strongly pointing towards PPAR ligands as new therapeutic strategies against progression and recurrences of neuroblastoma.

  9. Kronic hysteria: exploring the intersection between Australian synthetic cannabis legislation, the media, and drug-related harm.

    PubMed

    Bright, Stephen J; Bishop, Brian; Kane, Robert; Marsh, Ali; Barratt, Monica J

    2013-05-01

    Having first appeared in Europe, synthetic cannabis emerged as a drug of concern in Australia during 2011. Kronic is the most well-known brand of synthetic cannabis in Australia and received significant media attention. Policy responses were reactive and piecemeal between state and federal governments. In this paper we explore the relationship between media reports, policy responses, and drug-related harm. Google search engine applications were used to produce time-trend graphs detailing the volume of media stories being published online about synthetic cannabis and Kronic, and also the amount of traffic searching for these terms. A discursive analysis was then conducted on those media reports that were identified by Google as 'key stories'. The timing of related media stories was also compared with self-reported awareness and month of first use, using previously unpublished data from a purposive sample of Australian synthetic cannabis users. Between April and June 2011, mentions of Kronic in the media increased. The number of media stories published online connected strongly with Google searches for the term Kronic. These stories were necessarily framed within dominant discourses that served to construct synthetic cannabis as pathogenic and created a 'moral panic'. Australian state and federal governments reacted to this moral panic by banning individual synthetic cannabinoid agonists. Manufacturers subsequently released new synthetic blends that they claimed contained new unscheduled chemicals. Policies implemented within in the context of 'moral panic', while well-intended, can result in increased awareness of the banned product and the use of new yet-to-be-scheduled drugs with unknown potential for harm. Consideration of regulatory models should be based on careful examination of the likely intended and unintended consequences. Such deliberation might be limited by the discursive landscape. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Synthetic cannabinoids found in "spice" products alter body temperature and cardiovascular parameters in conscious male rats.

    PubMed

    Schindler, Charles W; Gramling, Benjamin R; Justinova, Zuzana; Thorndike, Eric B; Baumann, Michael H

    2017-10-01

    The misuse of synthetic cannabinoids is a persistent public health concern. Because these drugs target the same cannabinoid receptors as the active ingredient of marijuana, Δ 9 -tetrahydrocannabinol (THC), we compared the effects of synthetic cannabinoids and THC on body temperature and cardiovascular parameters. Biotelemetry transmitters for the measurement of body temperature or blood pressure (BP) were surgically implanted into separate groups of male rats. THC and the synthetic cannabinoids CP55,940, JWH-018, AM2201 and XLR-11 were injected s.c., and rats were placed into isolation cubicles for 3h. THC and synthetic cannabinoids produced dose-related decreases in body temperature that were most prominent in the final 2h of the session. The rank order of potency was CP55,940>AM2201=JWH-018>THC=XLR-11. The cannabinoid inverse agonist rimonabant antagonized the hypothermic effect of all compounds. Synthetic cannabinoids elevated BP in comparison to vehicle treatment during the first h of the session, while heart rate was unaffected. The rank order of potency for BP increases was similar to that seen for hypothermia. Hypertensive effects of CP55,940 and JWH-018 were not antagonized by rimonabant or the neutral antagonist AM4113. However, the BP responses to both drugs were antagonized by pretreatment with either the ganglionic blocker hexamethonium or the α 1 adrenergic antagonist prazosin. Our results show that synthetic cannabinoids produce hypothermia in rats by a mechanism involving cannabinoid receptors, while they increase BP by a mechanism independent of these sites. The hypertensive effect appears to involve central sympathetic outflow. Published by Elsevier B.V.

  11. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists

    PubMed Central

    Beatty, Gregory L.; Li, Yan; Long, Kristen B.

    2017-01-01

    INTRODUCTION CD40 is a promising therapeutic target for cancer immunotherapy. In patients with advanced solid malignancies, CD40 agonists have demonstrated some anti-tumor activity and a manageable toxicity profile. A 2nd generation of CD40 agonists has now been designed with optimized Fc receptor (FcR) binding based on preclinical evidence suggesting a critical role for FcR engagement in defining the potency of CD40 agonists in vivo. AREAS COVERED We provide a comprehensive review using PubMed and Google Patent databases on the current clinical status of CD40 agonists, strategies for applying CD40 agonists in cancer therapy, and the preclinical data that supports and is guiding the future development of CD40 agonists. EXPERT COMMENTARY There is a wealth of preclinical data that provide rationale on several distinct approaches for using CD40 agonists in cancer immunotherapy. This data illustrates the need to strategically combine CD40 agonists with other clinically active treatment regimens in order to realize the full potential of activating CD40 in vivo. Thus, critical to the success of this class of immune-oncology drugs, which have the potential to restore both innate and adaptive immunosurveillance, will be the identification of biomarkers for monitoring and predicting responses as well as informing mechanisms of treatment resistance. PMID:27927088

  12. Identification of Thyroid Receptor Ant/Agonists in Water Sources Using Mass Balance Analysis and Monte Carlo Simulation

    PubMed Central

    Shi, Wei; Wei, Si; Hu, Xin-xin; Hu, Guan-jiu; Chen, Cu-lan; Wang, Xin-ru; Giesy, John P.; Yu, Hong-xia

    2013-01-01

    Some synthetic chemicals, which have been shown to disrupt thyroid hormone (TH) function, have been detected in surface waters and people have the potential to be exposed through water-drinking. Here, the presence of thyroid-active chemicals and their toxic potential in drinking water sources in Yangtze River Delta were investigated by use of instrumental analysis combined with cell-based reporter gene assay. A novel approach was developed to use Monte Carlo simulation, for evaluation of the potential risks of measured concentrations of TH agonists and antagonists and to determine the major contributors to observed thyroid receptor (TR) antagonist potency. None of the extracts exhibited TR agonist potency, while 12 of 14 water samples exhibited TR antagonistic potency. The most probable observed antagonist equivalents ranged from 1.4 to 5.6 µg di-n-butyl phthalate (DNBP)/L, which posed potential risk in water sources. Based on Monte Carlo simulation related mass balance analysis, DNBP accounted for 64.4% for the entire observed antagonist toxic unit in water sources, while diisobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP) and di-2-ethylhexyl phthalate (DEHP) also contributed. The most probable observed equivalent and most probable relative potency (REP) derived from Monte Carlo simulation is useful for potency comparison and responsible chemicals screening. PMID:24204563

  13. Identification of M-CSF agonists and antagonists

    DOEpatents

    Pandit, Jayvardhan [Mystic, CT; Jancarik, Jarmila [Walnut Creek, CA; Kim, Sung-Hou [Moraga, CA; Koths, Kirston [El Cerrito, CA; Halenbeck, Robert [San Rafael, CA; Fear, Anna Lisa [Oakland, CA; Taylor, Eric [Oakland, CA; Yamamoto, Ralph [Martinez, CA; Bohm, Andrew [Armonk, NY

    2000-02-15

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  14. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guodong; Kong, Bo; Zhu, Yan

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, wemore » generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.« less

  15. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−})more » mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.« less

  16. Liver X receptor agonist alleviated high glucose-induced endothelial progenitor cell dysfunction via inhibition of reactive oxygen species and activation of AMP-activated protein kinase.

    PubMed

    Li, Xiaoxia; Song, Yimeng; Han, Yingying; Wang, Dawei; Zhu, Yi

    2012-08-01

    Liver X receptors (LXRs) are key regulators of cholesterol homeostasis. Synthetic LXR agonists are anti-atherogenic and anti-inflammatory. However, the effect of LXR agonists on endothelial progenitor cell (EPC) function is largely unknown. Here, we explored the effect of the LXR agonist TO901317 (TO) on EPC biology and the underlying mechanisms. Endothelial progenitor cells were cultured in mannitol or 30 mm glucose (high glucose) for 24 hours. For TO treatments, cells were pretreated with TO (10 μm) for 12 hours, then mannitol or high glucose was added for an additional 24 hours. EPCs function, reactive oxygen species (ROS) release, and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) were analyzed. TO could restore the high glucose-impaired adhesion and migration capacity of EPCs. High glucose impaired EPC-mediated angiogenesis, and TO reversed the impairment. TO also alleviated ROS release induced by high glucose. Western blot analysis revealed that high glucose downregulated the phosphorylation of AMPK and endothelial nitric oxide synthase, which could be reversed with TO treatment. Furthermore, inhibiting AMPK activation by compound C could abolish the protective effects of TO on EPCs. TO had a protective effect on EPCs under high glucose by inhibiting ROS release and activating AMPK. © 2012 John Wiley & Sons Ltd.

  17. Magnesium ions and opioid agonists in vincristine-induced neuropathy.

    PubMed

    Bujalska, Magdalena; Makulska-Nowak, Helena; Gumułka, Stanisław W

    2009-01-01

    Neuropathic pain is difficult to treat. Classic analgesics (i.e., opioid receptor agonists) usually possess low activity. Therefore other agents such as antidepressants, anticonvulsants, and corticosteroids are used. It is commonly known that NMDA antagonists increase analgesic activity of opioids. Unfortunately, clinical use of NMDA antagonists is limited because of the relatively frequent occurrence of adverse effects e.g., memory impairment, psychomimetic effects, ataxia and motor in-coordination. Magnesium ions (Mg(2+)) are NMDA receptor blockers in physiological conditions. Therefore, in this study the effect of opioid receptor agonists and the influence of Mg(2+) on the action of opioid agonists in vincristine-induced hyperalgesia were examined. Opioid agonists such as morphine (5 mg/kg, ip), and fentanyl (0.0625 mg/kg, ip), as well as the partial agonist buprenorphine (0.075 mg/kg, ip) administered alone on 5 consecutives days did not modify the hyperalgesia in vincristine rats. In contrast, pretreatment with a low dose of magnesium sulfate (30 mg/kg, ip) resulted in a progressive increase of the analgesic action of all three investigated opioids. After discontinuation of drug administration, the effect persisted for several days.

  18. AB-CHMINACA, AB-PINACA, and FUBIMINA: Affinity and Potency of Novel Synthetic Cannabinoids in Producing Δ9-Tetrahydrocannabinol–Like Effects in Mice

    PubMed Central

    Marusich, Julie A.; Lefever, Timothy W.; Antonazzo, Kateland R.; Wallgren, Michael T.; Cortes, Ricardo A.; Patel, Purvi R.; Grabenauer, Megan; Moore, Katherine N.

    2015-01-01

    Diversion of synthetic cannabinoids for abuse began in the early 2000s. Despite legislation banning compounds currently on the drug market, illicit manufacturers continue to release new compounds for recreational use. This study examined new synthetic cannabinoids, AB-CHMINACA (N-[1-amino-3-methyl-oxobutan-2-yl]-1-[cyclohexylmethyl]-1H-indazole-3-carboxamide), AB-PINACA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide], and FUBIMINA [(1-(5-fluoropentyl)-1H-benzo[d]imadazol-2-yl)(naphthalen-1-yl)methanone], with the hypothesis that these compounds, like those before them, would be highly susceptible to abuse. Cannabinoids were examined in vitro for binding and activation of CB1 receptors, and in vivo for pharmacological effects in mice and in Δ9-tetrahydrocannabinol (Δ9-THC) discrimination. AB-CHMINACA, AB-PINACA, and FUBIMINA bound to and activated CB1 and CB2 receptors, and produced locomotor suppression, antinociception, hypothermia, and catalepsy. Furthermore, these compounds, along with JWH-018 [1-pentyl-3-(1-naphthoyl)indole], CP47,497 [rel-5-(1,1-dimethylheptyl)-2-[(1R,3S)-3-hydroxycyclohexyl]-phenol], and WIN55,212-2 ([(3R)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone, monomethanesulfonate), substituted for Δ9-THC in Δ9-THC discrimination. Rank order of potency correlated with CB1 receptor-binding affinity, and all three compounds were full agonists in [35S]GTPγS binding, as compared with the partial agonist Δ9-THC. Indeed, AB-CHMINACA and AB-PINACA exhibited higher efficacy than most known full agonists of the CB1 receptor. Preliminary analysis of urinary metabolites of the compounds revealed the expected hydroxylation. AB-PINACA and AB-CHMINACA are of potential interest as research tools due to their unique chemical structures and high CB1 receptor efficacies. Further studies on these chemicals are likely to include research on understanding cannabinoid receptors

  19. TLR9 agonist protects mice from radiation-induced gastrointestinal syndrome.

    PubMed

    Saha, Subhrajit; Bhanja, Payel; Liu, Laibin; Alfieri, Alan A; Yu, Dong; Kandimalla, Ekambar R; Agrawal, Sudhir; Guha, Chandan

    2012-01-01

    Radiation-induced gastrointestinal syndrome (RIGS) is due to the clonogenic loss of crypt cells and villi depopulation, resulting in disruption of mucosal barrier, bacterial invasion, inflammation and sepsis. Intestinal macrophages could recognize invading bacterial DNA via TLR9 receptors and transmit regenerative signals to the neighboring crypt. We therefore investigated whether systemic administration of designer TLR9 agonist could ameliorate RIGS by activating TLR9. Male C57Bl6 mice were distributed in four experimental cohorts, whole body irradiation (WBI) (8.4-10.4 Gy), TLR9 agonist (1 mg/kg s.c.), 1 h pre- or post-WBI and TLR9 agonist+WBI+iMyd88 (pretreatment with inhibitory peptide against Myd88). Animals were observed for survival and intestine was harvested for histological analysis. BALB/c mice with CT26 colon tumors in abdominal wall were irradiated with 14 Gy single dose of whole abdominal irradiation (AIR) for tumor growth study. Mice receiving pre-WBI TLR9 agonist demonstrated improvement of survival after 10.4 Gy (p<0.03), 9.4 Gy (p<0.008) and 8.4 Gy (p<0.002) of WBI, compared to untreated or iMyd88-treated controls. Post-WBI TLR9 agonist mitigates up to 8.4 Gy WBI (p<0.01). Histological analysis and xylose absorption test demonstrated significant structural and functional restitution of the intestine in WBI+TLR9 agonist cohorts. Although, AIR reduced tumor growth, all animals died within 12 days from RIGS. TLR9 agonist improved the survival of mice beyond 28 days post-AIR (p<0.008) with significant reduction of tumor growth (p<0.0001). TLR9 agonist treatment could serve both as a prophylactic or mitigating agent against acute radiation syndrome and also as an adjuvant therapy to increase the therapeutic ratio of abdominal Radiation Therapy for Gastro Intestinal malignancies.

  20. Aegeline inspired synthesis of novel β3-AR agonist improves insulin sensitivity in vitro and in vivo models of insulin resistance.

    PubMed

    Rajan, Sujith; Satish, Sabbu; Shankar, Kripa; Pandeti, Sukanya; Varshney, Salil; Srivastava, Ankita; Kumar, Durgesh; Gupta, Abhishek; Gupta, Sanchita; Choudhary, Rakhi; Balaramnavar, Vishal M; Narender, Tadigoppula; Gaikwad, Anil N

    2018-03-07

    In our drug discovery program of natural product, earlier we have reported Aegeline that is N-acylated-1-amino-2- alcohol, which was isolated from the leaves of Aeglemarmelos showed anti-hyperlipidemic activity for which the QSAR studies predicted the compound to be the β3-AR agonist, but the mechanism of its action was not elucidated. In our present study, we have evaluated the β3-AR activity of novel N-acyl-1-amino-3-arylopropanol synthetic mimics of aegeline and its beneficial effect in insulin resistance. In this study, we have proposed the novel pharmacophore model using reported molecules for antihyperlipidemic activity. The reported pharmacophore features were also compared with the newly developed pharmacophore model for the observed biological activity. Based on 3D pharmacophore modeling of known β3AR agonist, we screened 20 synthetic derivatives of Aegeline from the literature. From these, the top scoring compound 10C was used for further studies. The in-slico result was further validated in HEK293T cells co-trransfected with human β3-AR and CRE-Luciferase reporter plasmid for β3-AR activity.The most active compound was selected and β3-AR activity was further validated in white and brown adipocytes differentiated from human mesenchymal stem cells (hMSCs). Insulin resistance model developed in hMSC derived adipocytes was used to study the insulin sensitizing property. 8 week HFD fed C57BL6 mice was given 50 mg/Kg of the selected compound and metabolic phenotyping was done to evaluate its anti-diabetic effect. As predicted by in-silico 3D pharmacophore modeling, the compound 10C was found to be the most active and specific β3-AR agonist with EC 50 value of 447 nM. The compound 10C activated β3AR pathway, induced lipolysis, fatty acid oxidation and increased oxygen consumption rate (OCR) in human adipocytes. Compound 10C induced expression of brown adipocytes specific markers and reverted chronic insulin induced insulin resistance in white

  1. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing.

    PubMed

    Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J

    2018-03-01

    The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes

  2. Effects of obeticholic acid on lipoprotein metabolism in healthy volunteers.

    PubMed

    Pencek, R; Marmon, T; Roth, J D; Liberman, A; Hooshmand-Rad, R; Young, M A

    2016-09-01

    The bile acid analogue obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist in development for treatment of several chronic liver diseases. FXR activation regulates lipoprotein homeostasis. The effects of OCA on cholesterol and lipoprotein metabolism in healthy individuals were assessed. Two phase I studies were conducted to evaluate the effects of repeated oral doses of 5, 10 or 25 mg OCA on lipid variables after 14 or 20 days of consecutive administration in 68 healthy adults. Changes in HDL and LDL cholesterol levels were examined, in addition to nuclear magnetic resonance analysis of particle sizes and sub-fraction concentrations. OCA elicited changes in circulating cholesterol and particle size of LDL and HDL. OCA decreased HDL cholesterol and increased LDL cholesterol, independently of dose. HDL particle concentrations declined as a result of a reduction in medium and small HDL. Total LDL particle concentrations increased because of an increase in large LDL particles. Changes in lipoprotein metabolism attributable to OCA in healthy individuals were found to be consistent with previously reported changes in patients receiving OCA with non-alcoholic fatty liver disease or non-alcoholic steatohepatitis. © 2016 John Wiley & Sons Ltd.

  3. Synthesis, physicochemical properties, and biological activity of bile acids 3-glucuronides: Novel insights into bile acid signalling and detoxification.

    PubMed

    Mostarda, Serena; Passeri, Daniela; Carotti, Andrea; Cerra, Bruno; Colliva, Carolina; Benicchi, Tiziana; Macchiarulo, Antonio; Pellicciari, Roberto; Gioiello, Antimo

    2018-01-20

    Glucuronidation is considered an important detoxification pathway of bile acids especially in cholestatic conditions. Glucuronides are less toxic than the parent free forms and are more easily excreted in urine. However, the pathophysiological significance of bile acid glucuronidation is still controversial and debated among the scientific community. Progress in this field has been strongly limited by the lack of appropriate methods for the preparation of pure glucuronides in the amount needed for biological and pharmacological studies. In this work, we have developed a new synthesis of bile acid C3-glucuronides enabling the convenient preparation of gram-scale quantities. The synthesized compounds have been characterized in terms of physicochemical properties and abilities to modulate key nuclear receptors including the farnesoid X receptor (FXR). In particular, we found that C3-glucuronides of chenodeoxycholic acid and lithocholic acid, respectively the most abundant and potentially cytotoxic species formed in patients affected by cholestasis, behave as FXR agonists and positively regulate the gene expression of transporter proteins, the function of which is critical in human conditions related to imbalances of bile acid homeostasis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  5. Induction of Selective Blood-Tumor Barrier Permeability and Macromolecular Transport by a Biostable Kinin B1 Receptor Agonist in a Glioma Rat Model

    PubMed Central

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg9BK (LDBK) and SarLys[dPhe8]desArg9BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T 1-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites. PMID:22629405

  6. Thrombin-receptor agonist peptides, in contrast to thrombin itself, are not full agonists for activation and signal transduction in human platelets in the absence of platelet-derived secondary mediators.

    PubMed Central

    Lau, L F; Pumiglia, K; Côté, Y P; Feinstein, M B

    1994-01-01

    Synthetic thrombin receptor peptides (TRPs), comprising the first 6-14 amino acids of the new N-terminus tethered ligand of the thrombin receptor that is generated by thrombin's proteolytic activity, were reported to activate platelets equally with thrombin itself and are considered to be full agonists [Vu et al. (1991) Cell 64, 1057-1068]. Using aspirin plus ADP-scavengers or the ADP-receptor antagonist adenosine 5'-[alpha-thio]triphosphate to prevent the secondary effects of the potent agonists that are normally released from stimulated platelets (i.e. ADP and thromboxane A2), we assessed the direct actions of thrombin and TRPs (i.e. TRP42-47 and TRP42-55). Compared with thrombin, under these conditions, TRPs: (1) failed to aggregate platelets completely; (2) produced less activation of glycoprotein (GP)IIb-IIIa; (3) did not cause association of GPIIb and pp60c-src with the cytoskeleton; and (4) caused less alpha-granule secretion, phosphorylation of cytoplasmic phospholipase A2, arachidonic acid release and phosphatidyl inositol (PtdOH) production. Furthermore, TRPs induced transient increases in protein phosphorylation mediated by protein kinase C and protein tyrosine phosphorylation, whereas these same responses to thrombin were greater and more sustained. Hirudin added after thrombin accelerated protein dephosphorylation, thereby mimicking the rate of spontaneous dephosphorylation seen after stimulation by TRPs. Platelets totally desensitized to very high concentrations of TRPs, by prior exposure to maximally effective concentrations of the peptides, remained responsive to alpha- and gamma-thrombins. Thrombin-stimulated PtdOH production in permeabilized platelets desensitized to TRPs was abolished by guanosine 5'-[beta-thio]diphosphate (GDP[beta S]), as in normal platelets. These results are discussed in terms of the allosteric Ternary Complex Model for G-protein linked receptors [Samama et al. (1993) J. Biol. Chem. 268, 4625-4636]. We conclude that: (1) TRPs

  7. The Therapeutic Role of Xenobiotic Nuclear Receptors against Metabolic Syndrome.

    PubMed

    Pu, Shuqi; Wu, Xiaojie; Yang, Xiaoying; Zhang, Yunzhan; Dai, Yunkai; Zhang, Yueling; Wu, Xiaoting; Liu, Yan; Cui, Xiaona; Jin, Haiyong; Cao, Jianhong; Li, Ruliu; Cai, Jiazhong; Cao, Qizhi; Hu, Ling; Gao, Yong

    2018-06-10

    Xenobiotic nuclear receptors (XNRs) are nuclear receptors that characterized by coordinately regulating the expression of genes encoding drug-metabolizing enzymes and transporters to essentially eliminate and detoxify xenobiotics and endobiotics from the body, including the peroxisome proliferator-activated receptor (PPAR), the farnesoid X receptor (FXR), the liver X receptor (LXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Heretofore, increasing evidences have suggested that these five XNRs are not only involved in the regulation of xeno-/endo-biotics detoxication but also the development of human diseases, such as cancer, obesity and diabetes. PPAR, FXR, LXR, PXR and CAR, as the receptors for numerous natural or synthetic compounds may be the most effective therapeutic targets in the treatment of metabolic diseases. In this review, we will focus on these five XNRs and their recently discovered functions in diabetes and its complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly.

    PubMed

    Pacher, Pal; Steffens, Sabine; Haskó, György; Schindler, Thomas H; Kunos, George

    2018-03-01

    Dysregulation of the endogenous lipid mediators endocannabinoids and their G-protein-coupled cannabinoid receptors 1 and 2 (CB 1 R and CB 2 R) has been implicated in a variety of cardiovascular pathologies. Activation of CB 1 R facilitates the development of cardiometabolic disease, whereas activation of CB 2 R (expressed primarily in immune cells) exerts anti-inflammatory effects. The psychoactive constituent of marijuana, Δ 9 -tetrahydrocannabinol (THC), is an agonist of both CB 1 R and CB 2 R, and exerts its psychoactive and adverse cardiovascular effects through the activation of CB 1 R in the central nervous and cardiovascular systems. The past decade has seen a nearly tenfold increase in the THC content of marijuana as well as the increased availability of highly potent synthetic cannabinoids for recreational use. These changes have been accompanied by the emergence of serious adverse cardiovascular events, including myocardial infarction, cardiomyopathy, arrhythmias, stroke, and cardiac arrest. In this Review, we summarize the role of the endocannabinoid system in cardiovascular disease, and critically discuss the cardiovascular consequences of marijuana and synthetic cannabinoid use. With the legalization of marijuana for medicinal purposes and/or recreational use in many countries, physicians should be alert to the possibility that the use of marijuana or its potent synthetic analogues might be the underlying cause of severe cardiovascular events and pathologies.

  9. DBZ is a putative PPARγ agonist that prevents high fat diet-induced obesity, insulin resistance and gut dysbiosis.

    PubMed

    Xu, Pengfei; Hong, Fan; Wang, Jialin; Wang, Jing; Zhao, Xia; Wang, Sheng; Xue, Tingting; Xu, Jingwei; Zheng, Xiaohui; Zhai, Yonggong

    2017-11-01

    The nuclear receptor PPARγ is an effective pharmacological target for some types of metabolic syndrome, including obesity, diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. However, the current PPARγ-targeting thiazolidinedione drugs have undesirable side effects. Danshensu Bingpian Zhi (DBZ), also known as tanshinol borneol ester derived from Salvia miltiorrhiza, is a synthetic derivative of natural compounds used in traditional Chinese medicine for its anti-inflammatory activity. In vitro, investigations of DBZ using a luciferase reporter assay and molecular docking identified this compound as a novel promising PPARγ agonist. Ten-week-old C57BL/6J mice were fed either a normal chow diet (NCD) or a high-fat diet (HFD). The HFD-fed mice were gavaged daily with either vehicle or DBZ (50mg/kg or 100mg/kg) for 10weeks. The gut microbiota composition was assessed by analyzing the 16S rRNA gene V3+V4 regions via pyrosequencing. DBZ is an efficient natural PPARγ agonist that shows lower PPARγ-responsive luciferase reporter activity than thiazolidinediones, has excellent effects on the metabolic phenotype and exhibits no unwanted adverse effects in a HFD-induced obese mouse model. DBZ protects against HFD-induced body weight gain, insulin resistance, hepatic steatosis and inflammation in mice. DBZ not only stimulates brown adipose tissue (BAT) browning and maintains intestinal barrier integrity but also reverses HFD-induced intestinal microbiota dysbiosis. DBZ is a putative PPARγ agonist that prevents HFD-induced obesity-related metabolic syndrome and reverse gut dysbiosis. DBZ may be used as a beneficial probiotic agent to improve HFD-induced obesity-related metabolic syndrome in obese individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Electrophysiological Perspectives on the Therapeutic Use of Nicotinic Acetylcholine Receptor Partial AgonistsS⃞

    PubMed Central

    Trocmé-Thibierge, Caryn; Guendisch, Daniela; Al Rubaiy, Shehd Abdullah Abbas; Bloom, Stephen A.

    2011-01-01

    Partial agonist therapies rely variously on two hypotheses: the partial agonists have their effects through chronic low-level receptor activation or the partial agonists work by decreasing the effects of endogenous or exogenous full agonists. The relative significance of these activities probably depends on whether acute or chronic effects are considered. We studied nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes to test a model for the acute interactions between acetylcholine (ACh) and weak partial agonists. Data were best-fit to a basic competition model that included an additional factor for noncompetitive inhibition. Partial agonist effects were compared with the nAChR antagonist bupropion in prolonged bath application experiments that were designed to mimic prolonged drug exposure typical of therapeutic drug delivery. A primary effect of prolonged application of nicotine was to decrease the response of all nAChR subtypes to acute applications of ACh. In addition, nicotine, cytisine, and varenicline produced detectable steady-state activation of α4β2* [(α4)2(β2)3, (α4)3(β2)2, and (α4)2(β2)2α5)] receptor subtypes that was not seen with other test compounds. Partial agonists produced no detectable steady-state activation of α7 nAChR, but seemed to show small potentiation of ACh-evoked responses; however, “run-up” of α7 ACh responses was also sometimes observed under control conditions. Potential off-target effects of the partial agonists therefore included the modulation of α7 responses by α4β2 partial agonists and decreases in α4β2* responses by α7-selective agonists. These data indicate the dual effects expected for α4β2* partial agonists and provide models and insights for utility of partial agonists in therapeutic development. PMID:21285282

  11. Pharmacological and Toxicological Effects of Synthetic Cannabinoids and Their Metabolites

    PubMed Central

    Tai, Sherrica

    2017-01-01

    Commercial preparations containing synthetic cannabinoids (SCBs) are rapidly emerging as drugs of abuse. Although often assumed to be “safe” and “legal” alternatives to cannabis, reports indicate that SCBs induce toxicity not often associated with the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). This chapter will summarize the evidence that use of SCBs poses greater health risks relative to marijuana and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to this increased toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs act as full CB1 and CB2 receptor agonists both in cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for and exhibit a range of intrinsic activities at CB1 and CB2 receptors. Finally, the potential for SCBs to cause adverse drug–drug interactions with other drugs of abuse, as well as with common therapeutic agents, will be discussed. Collectively, the evidence provided in this chapter indicates that SCBs should not be considered safe and legal alternatives to marijuana. Instead, the enhanced toxicity of SCBs relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2 receptors, highlights the inherent danger that may accompany use of these substances. PMID:28012093

  12. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function

    PubMed Central

    Perroy, Julie; Walwyn, Wendy M.; Smith, Monique L.; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L.; Evans, Christopher J.

    2016-01-01

    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor–Ca2+ channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560

  13. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Synthetic Self-Adjuvanting Glycopeptide Cancer Vaccines

    NASA Astrophysics Data System (ADS)

    Payne, Richard; McDonald, David; Byrne, Scott

    2015-10-01

    Due to changes in glycosyltransferase expression during tumorigenesis, the glycoproteins of cancer cells often carry highly truncated carbohydrate chains compared to those on healthy cells. These glycans are known as tumor-associated carbohydrate antigens, and are prime targets for use in vaccines for the prevention and treatment of cancer. Herein, we review the state-of-the-art in targeting the immune system towards tumor-associated glycopeptide antigens via synthetic self adjuvanting vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in the same molecule. The majority of the self-adjuvanting glycopeptide cancer vaccines reported to date employ antigens from mucin 1, a protein which is highly over-expressed and aberrantly glycosylated in many forms of cancer. The adjuvants used in these vaccines predominantly include lipopeptide- or lipoamino acid-based TLR2 agonists, although studies investigating stimulation of TLR9 and TLR4 are also discussed. Most of these adjuvants are highly lipophilic, and, upon conjugation to antigenic peptides, provide amphiphilic vaccine molecules. The amphiphilic nature of these vaccine constructs can lead to the formation of higher-order structures by vaccines in solution, which are likely to be important for their efficacy in vivo.

  15. Synthetic Cannabinoids: Pharmacology, Behavioral Effects, and Abuse Potential

    PubMed Central

    Tai, Sherrica; Fantegrossi, William E.

    2015-01-01

    Cannabis has been used throughout the world for centuries. The psychoactive effects of cannabis are largely attributable to Δ9-tetrahydrocannabinol (Δ9-THC), the prototypical cannabinoid that occurs naturally in the plant. More recently, chemically- and pharmacologically-distinct synthetic cannabinoids (SCBs) have emerged as drugs of abuse. As compared to Δ9-THC, the distinct structures of these compounds allow them to avoid legal restrictions (at least initially) and detection in standard drug screens. This has contributed to the popularity of SCBs among drug users who seek to avoid positive drug screens. Importantly, the distinct structures of the SCBs also typically result in increased affinity for and efficacy at cannabinoid CB1 receptors, which are thought to be responsible for the psychoactive effects of Δ9-THC and its analogues. Accordingly, it seems likely that these more powerful cannabimimetic effects could result in increased adverse reactions and toxicities not elicited by Δ9-THC in cannabis. Animal models useful for the study of emerging SCBs include the cannabinoid tetrad, drug discrimination, and assays of tolerance, dependence, and withdrawal. However, these in vivo procedures have not been particularly informative with regards to drug efficacy, where the majority of SCB effects are comparable to those of Δ9-THC. In contrast, essentially all in vitro measures of drug efficacy confirm Δ9-THC as a relatively weak CB1 partial agonist, while the majority of the SCBs detected in commercial preparations are full agonists at the CB1 receptor. As use of these emerging SCBs continues to rise, there is an urgent need to better understand the pharmacology and toxicology of these novel compounds. PMID:26413452

  16. Actions of Agonists and Antagonists of the ghrelin/GHS-R Pathway on GH Secretion, Appetite, and cFos Activity

    PubMed Central

    Hassouna, Rim; Labarthe, Alexandra; Zizzari, Philippe; Videau, Catherine; Culler, Michael; Epelbaum, Jacques; Tolle, Virginie

    2012-01-01

    The stimulatory effects of ghrelin, a 28-AA acylated peptide originally isolated from stomach, on growth hormone (GH) secretion and feeding are exclusively mediated through the growth hormone secretagogue 1a receptor (GHS-R1a), the only ghrelin receptor described so far. Several GHS-R1a agonists and antagonists have been developed to treat metabolic or nutritional disorders but their mechanisms of action in the central nervous system remain poorly understood. In the present study, we compared the activity of BIM-28163, a GHS-R1a antagonist, and of several agonists, including native ghrelin and the potent synthetic agonist, BIM-28131, to modulate food intake, GH secretion, and cFos activity in arcuate nucleus (ArcN), nucleus tractus solitarius (NTS), and area postrema (AP) in wild-type and NPY-GFP mice. BIM-28131 was as effective as ghrelin in stimulating GH secretion, but more active than ghrelin in inducing feeding. It stimulated cFos activity similarly to ghrelin in the NTS and AP but was more powerful in the ArcN, suggesting that the super-agonist activity of BIM-28131 is mostly mediated in the ArcN. BIM-28163 antagonized ghrelin-induced GH secretion but not ghrelin-induced food consumption and cFos activation, rather it stimulated food intake and cFos activity without affecting GH secretion. The level of cFos activation was dependent on the region considered: BIM-28163 was as active as ghrelin in the NTS, but less active in the ArcN and AP. All compounds also induced cFos immunoreactivity in ArcN NPY neurons but BIM-28131 was the most active. In conclusion, these data demonstrate that two peptide analogs of ghrelin, BIM-28163, and BIM-28131, are powerful stimulators of appetite in mice, acting through pathways and key brain regions involved in the control of appetite that are only partially superimposable from those activated by ghrelin. A better understanding of the molecular pathways activated by these compounds could be useful in devising future therapeutic

  17. The PPARdelta agonist GW501516 suppresses interleukin-6-mediated hepatocyte acute phase reaction via STAT3 inhibition.

    PubMed

    Kino, T; Rice, K C; Chrousos, G P

    2007-05-01

    Interleukin-6 and downstream liver effectors acute phase reactants are implicated in the systemic inflammatory reaction. Peroxisome proliferator-activated receptor delta (PPARdelta), which binds to and is activated by a variety of fatty acids, was recently shown to have anti-inflammatory actions. We examined the ability of the synthetic PPARdelta agonist GW501516 to suppress interleukin-6-induced expression of acute phase proteins in human hepatoma HepG2 cells and rat primary hepatocytes. Results GW501516 dose-dependently suppressed interleukin-6-induced mRNA expression of the acute phase protein alpha1-antichymotrypsin in HepG2 cells. The compound also suppressed interleukin-6-induced mRNA expression of alpha2-acid glycoprotein, beta-fibrinogen and alpha2-macroglobulin in and the secretion of C-reactive protein by rat primary hepatocytes. Depletion of the PPARdelta receptor, but not of PPARalpha or gamma, attenuated the suppressive effect of GW501516 on interleukin-6-induced alpha1-antichymotrypsin mRNA expression, indicating that PPARdelta specifically mediated this effect. Since interleukin-6 stimulates the transcriptional activity of the alpha1-antichymotrypsin promoter by activating the signal transducer and activator of transcription (STAT) 3, we examined functional interaction of this transcription factor and PPARdelta on this promoter. Overexpression of PPARdelta enhanced the suppressive effect of GW501516 on STAT3-activated transcriptional activity of the alpha1-antichymotrypsin promoter, while GW501516 suppressed interleukin-6-induced binding of this transcription factor to this promoter. These findings indicate that agonist-activated PPARdelta interferes with interleukin-6-induced acute phase reaction in the liver by inhibiting the transcriptional activity of STAT3. PPARdelta agonists might be useful for the suppression of systemic inflammatory reactions in which IL-6 plays a central role.

  18. Dissociable Effects of the Cannabinoid Receptor Agonists Δ9-Tetrahydrocannabinol and CP55940 on Pain-Stimulated Versus Pain-Depressed Behavior in Rats

    PubMed Central

    Kwilasz, Andrew J.

    2012-01-01

    Cannabinoid receptor agonists produce reliable antinociception in most preclinical pain assays but have inconsistent analgesic efficacy in humans. This disparity suggests that conventional preclinical assays of nociception are not sufficient for the prediction of cannabinoid effects related to clinical analgesia. To extend the range of preclinical cannabinoid assessment, this study compared the effects of the marijuana constituent and low-efficacy cannabinoid agonist Δ9-tetrahydrocannabinol (THC) and the high-efficacy synthetic cannabinoid agonist 3-(2-hydroxy-4-(1,1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol (CP55940) in assays of pain-stimulated and pain-depressed behavior. Intraperitoneal injection of dilute lactic acid (1.8% in 1 ml/kg) stimulated a stretching response or depressed intracranial self-stimulation (ICSS) in separate groups of male Sprague-Dawley rats. THC (0.1–10 mg/kg) and CP55940 (0.0032–0.32 mg/kg) dose-dependently blocked acid- stimulated stretching but only exacerbated acid-induced depression of ICSS at doses that also decreased control ICSS in the absence of a noxious stimulus. Repeated THC produced tolerance to sedative rate-decreasing effects of THC on control ICSS in the absence of the noxious stimulus but failed to unmask antinociception in the presence of the noxious stimulus. THC and CP55940 also failed to block pain-related depression of feeding in rats, although THC did attenuate satiation-related depression of feeding. In contrast to the effects of the cannabinoid agonists, the clinically effective analgesic and nonsteroidal anti-inflammatory drug ketoprofen (1 mg/kg) blocked acid-stimulated stretching and acid-induced depression of both ICSS and feeding. The poor efficacy of THC and CP55940 to block acute pain-related depression of behavior in rats agrees with the poor efficacy of cannabinoids to treat acute pain in humans. PMID:22892341

  19. The farnesoid X receptor agonist obeticholic acid upregulates biliary excretion of asymmetric dimethylarginine via MATE-1 during hepatic ischemia/reperfusion injury

    PubMed Central

    Berardo, Clarissa; Siciliano, Veronica; Rizzo, Vittoria; Adorini, Luciano; Richelmi, Plinio

    2018-01-01

    Background We previously showed that increased asymmetric dimethylarginine (ADMA) biliary excretion occurs during hepatic ischemia/reperfusion (I/R), prompting us to study the effects of the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) on bile, serum and tissue levels of ADMA after I/R. Material and methods Male Wistar rats were orally administered 10mg/kg/day of OCA or vehicle for 5 days and were subjected to 60 min partial hepatic ischemia or sham-operated. After a 60 min reperfusion, serum, tissue and bile ADMA levels, liver mRNA and protein expression of ADMA transporters (CAT-1, CAT-2A, CAT-2B, OCT-1, MATE-1), and enzymes involved in ADMA synthesis (protein-arginine-N-methyltransferase-1, PRMT-1) and metabolism (dimethylarginine-dimethylaminohydrolase-1, DDAH-1) were measured. Results OCA administration induced a further increase in biliary ADMA levels both in sham and I/R groups, with no significant changes in hepatic ADMA content. A reduction in CAT-1, CAT-2A or CAT-2B transcripts was found in OCA-treated sham-operated rats compared with vehicle. Conversely, OCA administration did not change CAT-1, CAT-2A or CAT-2B expression, already reduced by I/R. However, a marked decrease in OCT-1 and increase in MATE-1 expression was observed. A similar trend occurred with protein expression. Conclusion The reduced mRNA expression of hepatic CAT transporters suggests that the increase in serum ADMA levels is probably due to decreased liver uptake of ADMA from the systemic circulation. Conversely, the mechanism involved in further increasing biliary ADMA levels in sham and I/R groups treated with OCA appears to be MATE-1-dependent. PMID:29346429

  20. Lack of cocaine-like discriminative-stimulus effects of σ-receptor agonists in rats.

    PubMed

    Hiranita, Takato; Soto, Paul L; Tanda, Gianluigi; Katz, Jonathan L

    2011-09-01

    Previous studies demonstrated the effectiveness of selective σ-receptor (σR) agonists [1,3-di-o-tolylguanidine (DTG), PRE-084] as reinforcers in rats trained to self-administer cocaine. Similar to cocaine, these drugs increased nucleus accumbens shell dopamine levels, and effects of DTG, but not PRE-084, on dopamine seemed to be mediated by σRs. In addition, σR antagonists blocked self-administration of σR agonists, but were inactive against reinforcing and neurochemical effects of cocaine. Thus, pharmacologically distinct mechanisms likely underlie the reinforcing and neurochemical effects of σR agonists and cocaine. This study further examined the cocaine-like effects of σR agonists in rats trained to discriminate injections of cocaine from saline to assess the similarity of their subjective effects. Standard dopamine-uptake inhibitors (WIN 35,428, methylphenidate), but neither σR agonist (PRE-084, DTG), produced full cocaine-like discriminative-stimulus effects. The lack of effects of σR agonists was obtained regardless of route of administration (intraperitoneal, subcutaneous, or intravenous) or pretreatment time (5 or 30 min before sessions). The present results demonstrate differences in the discriminative-stimulus effects of cocaine and selective σR agonists, indicating that an overlap of subjective effects is not necessary for σR agonist self-administration. The previously found differences in neurochemical effects of cocaine and σR agonists may contribute to their different subjective effects.

  1. Lack of Cocaine-Like Discriminative-Stimulus Effects of σ Receptor Agonists in Rats

    PubMed Central

    Hiranita, Takato; Soto, Paul L.; Tanda, Gianluigi; Katz, Jonathan L.

    2013-01-01

    Previous studies demonstrated effectiveness of selective sigma-receptor (σR) agonists (DTG, PRE-084) as reinforcers in rats trained to self-administer cocaine. Like cocaine, these drugs increased nucleus accumbens shell dopamine levels, and effects of DTG, but not PRE-084, on dopamine appeared to be mediated by σRs. Additionally, σR antagonists blocked self-administration of σR agonists, but were inactive against reinforcing and neurochemical effects of cocaine. Thus pharmacologically distinct mechanisms likely underlie the reinforcing and neurochemical effects of σR agonists and cocaine. The present study further examined the cocaine-like effects of σR agonists in rats trained to discriminate injections of cocaine from saline to assess the similarity of their subjective effects. Standard dopamine-uptake inhibitors (WIN 35,428, methylphenidate), but neither σR agonist (PRE-084, DTG) produced full cocaine-like discriminative-stimulus effects. The lack of effects of σR agonists was obtained regardless of route of administration (i.p., s.c. or i.v.) or pretreatment time (5- or 30-min before sessions). The present results demonstrate differences in the discriminative-stimulus effects of cocaine and selective σR agonists, indicating that an overlap of subjective effects is not necessary for σR agonist self-administration. The previously found differences in neurochemical effects of cocaine and σR agonists may contribute to their different subjective effects. PMID:21808192

  2. Pharmacological characterization of the new histamine H4 receptor agonist VUF 8430

    PubMed Central

    Lim, Herman D; Adami, Maristella; Guaita, Elena; Werfel, Thomas; Smits, Rogier A; de Esch, Iwan JP; Bakker, Remko A; Gutzmer, Ralf; Coruzzi, Gabriella; Leurs, Rob

    2009-01-01

    Background and purpose: We compare the pharmacological profiles of a new histamine H4 receptor agonist 2-(2-guanidinoethyl)isothiourea (VUF 8430) with that of a previously described H4 receptor agonist, 4-methylhistamine. Experimental approach: Radioligand binding and functional assays were performed using histamine H4 receptors expressed in mammalian cell lines. Compounds were also evaluated ex vivo in monocyte-derived dendritic cells endogenously expressing H4 receptors and in vivo in anaesthetized rats for gastric acid secretion activity. Key results: Both VUF 8430 and 4-methylhistamine were full agonists at human H4 receptors with lower affinity at rat and mouse H4 receptors. Both compounds induced chemotaxis of monocyte-derived dendritic cells. VUF 8430 also showed reasonable affinity and was a full agonist at the H3 receptor. Agmatine is a metabolite of arginine, structurally related to VUF 8430, and was a H4 receptor agonist with micromolar affinity. At histamine H3 receptors, agmatine was a full agonist, whereas 4-methylhistamine was an agonist only at high concentrations. Both VUF 8430 and agmatine were inactive at H1 and H2 receptors, whereas 4-methylhistamine is as active as histamine at H2 receptors. In vivo, VUF 8430 only caused a weak secretion of gastric acid mediated by H2 receptors, whereas 4-methylhistamine, dimaprit, histamine and amthamine, at equimolar doses, induced 2.5- to 6-fold higher output than VUF 8430. Conclusions and implications: Our results suggest complementary use of 4-methylhistamine and VUF 8430 as H4 receptor agonists. Along with H4 receptor antagonists, both agonists can serve as useful pharmacological tools in studies of histamine H4 receptors. PMID:19413569

  3. Metabolite profiling of RCS-4, a novel synthetic cannabinoid designer drug, using human hepatocyte metabolism and TOF-MS

    PubMed Central

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A

    2014-01-01

    Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048

  4. Separate and combined effects of the cannabinoid agonists nabilone and Δ⁹-THC in humans discriminating Δ⁹-THC.

    PubMed

    Lile, Joshua A; Kelly, Thomas H; Hays, Lon R

    2011-07-01

    Agonist replacement treatment is a promising strategy to manage cannabis-use disorders. The aim of this study was to assess the combined effects of the synthetic cannabinoid agonist nabilone and Δ⁹-tetrahydrocannabinol (Δ⁹-THC) using drug-discrimination procedures, which are sensitive to drug interactions. Testing the concurrent administration of nabilone and Δ⁹-THC was also conducted to provide initial safety and tolerability data, which is important because cannabis users will likely lapse during treatment. Six cannabis users learned to discriminate 30 mg oral Δ⁹-THC from placebo and then received nabilone (0, 1 and 3mg) and Δ⁹-THC (0, 5, 15 and 30 mg), alone and in combination. Subjects completed the multiple-choice procedure to assess drug reinforcement, and self-report, task performance and physiological measures were collected. Δ⁹-THC and nabilone alone shared discriminative-stimulus effects with the training dose of Δ⁹-THC, increased crossover point on the multiple-choice procedure, produced overlapping subject ratings and decreased skin temperature. Nabilone alone also elevated heart rate. In combination, nabilone shifted the discriminative-stimulus effects of Δ⁹-THC leftward/upward and enhanced Δ⁹-THC effects on the other outcome measures. These results replicate a previous study demonstrating that nabilone shares agonist effects with the active constituent of cannabis in cannabis users, and contribute further by indicating that nabilone would likely be safe and well tolerated when combined with cannabis. These data support the conduct of future studies to determine if nabilone treatment would produce cross-tolerance to the abuse-related effects of cannabis and reduce cannabis use. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Differential agonist sensitivity of glycine receptor α2 subunit splice variants

    PubMed Central

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-01-01

    The glycine receptor (GlyR) α2A and α2B splice variants differ by a dual, adjacent amino acid substitution from α2AV58,T59 to α2BI58,A59 in the N-terminal extracellular domain. Comparing the effects of the GlyR agonists, glycine, β-alanine and taurine, on the GlyR α2 isoforms, revealed a significant increase in potency for all three agonists at the α2B variant. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn2+, were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR α2A compared to GlyR α2B receptors. Coexpression of α2A or α2B subunits with the GlyR β subunit revealed that the higher agonist potencies observed with the α2B homomer were retained for the α2Bβ heteromer. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR α2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. The existence of a spasmodic mouse phenotype linked to a GlyR α1A52S mutation, the equivalent position to the source of the α2 splice variation, raises the possibility that the GlyR α2 splice variants may be responsible for distinct roles in neuronal function. PMID:15302677

  6. Effects of PPAR-γ agonist treatment on LPS-induced mastitis in rats.

    PubMed

    Mingfeng, Ding; Xiaodong, Ming; Yue, Liu; Taikui, Piao; Lei, Xiao; Ming, Liu

    2014-12-01

    PPAR-γ, a member of the nuclear receptor superfamily, plays an important role in lipid metabolism and inflammation. The aim of this study was to investigate the preventive effects of synthetic PPAR-γ agonist rosiglitazone on lipopolysaccharide (LPS)-induced mastitis in rats. The mouse model of mastitis was induced by the injection of LPS through the duct of the mammary gland. Rosiglitazone was injected 1 h before the induction of LPS intraperitoneally. The results showed that rosiglitazone attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting showed that rosiglitazone inhibited the phosphorylation of IκB-α and NF-κB p65. These results indicated that rosiglitazone has a protective effect on mastitis, and the anti-inflammatory mechanism of rosiglitazone on LPS-induced mastitis in rats may be due to its ability to inhibit NF-κB signaling pathways. PPAR-γ may be a potential therapeutic target against mastitis.

  7. CMP‑N‑acetylneuraminic acid synthetase interacts with fragile X related protein 1.

    PubMed

    Ma, Yun; Tian, Shuai; Wang, Zongbao; Wang, Changbo; Chen, Xiaowei; Li, Wei; Yang, Yang; He, Shuya

    2016-08-01

    Fragile X mental retardation protein (FMRP), fragile X related 1 protein (FXR1P) and FXR2P are the members of the FMR protein family. These proteins contain two KH domains and a RGG box, which are characteristic of RNA binding proteins. The absence of FMRP, causes fragile X syndrome (FXS), the leading cause of hereditary mental retardation. FXR1P is expressed throughout the body and important for normal muscle development, and its absence causes cardiac abnormality. To investigate the functions of FXR1P, a screen was performed to identify FXR1P‑interacting proteins and determine the biological effect of the interaction. The current study identified CMP‑N‑acetylneuraminic acid synthetase (CMAS) as an interacting protein using the yeast two‑hybrid system, and the interaction between FXR1P and CMAS was validated in yeast using a β‑galactosidase assay and growth studies with selective media. Furthermore, co‑immunoprecipitation was used to analyze the FXR1P/CMAS association and immunofluorescence microscopy was performed to detect expression and intracellular localization of the proteins. The results of the current study indicated that FXR1P and CMAS interact, and colocalize in the cytoplasm and the nucleus of HEK293T and HeLa cells. Accordingly, a fragile X related 1 (FXR1) gene overexpression vector was constructed to investigate the effect of FXR1 overexpression on the level of monosialotetrahexosylganglioside 1 (GM1). The results of the current study suggested that FXR1P is a tissue‑specific regulator of GM1 levels in SH‑SY5Y cells, but not in HEK293T cells. Taken together, the results initially indicate that FXR1P interacts with CMAS, and that FXR1P may enhance the activation of sialic acid via interaction with CMAS, and increase GM1 levels to affect the development of the nervous system, thus providing evidence for further research into the pathogenesis of FXS.

  8. The amphiphilic peptide adenoregulin enhances agonist binding to A1-adenosine receptors and [35S]GTP gamma S to brain membranes.

    PubMed

    Moni, R W; Romero, F S; Daly, J W

    1995-08-01

    1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state

  9. Muscarinic agonists for the treatment of cognition in schizophrenia.

    PubMed

    Sellin, Angela K; Shad, Mujeeb; Tamminga, Carol

    2008-11-01

    It is widely accepted that cholinergic activity at muscarinic receptors is required to maintain cognitive functions, including learning and memory. Memory domains are especially impaired in schizophrenia, which may explain difficulties in psychosocial rehabilitation of individuals with this illness. However, little is known about the mechanism of this impairment. To understand our current knowledge, we reviewed the literature since 1990 via a PubMed search for the terms "muscarinic", "schizophrenia", "cognition", "memory", "learning", and "agonist" in combination. We found 89 basic science/laboratory studies, case reports/series, case-control studies, cross-sectional studies, standardized controlled animal trials, standardized controlled human trials, and reviews. Although further research is required to fully understand the neuropharmacology of the cholinergic system in cognitive function in schizophrenia, we have examined the data currently available. In general, these data suggest that agonist activity at acetylcholine muscarinic type 1 (M1) receptors would enhance memory and learning in schizophrenia. We present an overview of likely side effects of muscarinic agonists. We outline the anticholinergic activity of several available antipsychotics and review the available M1 muscarinic agonists.

  10. Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns

    PubMed Central

    König, Harald; Frank, Daniel; Heil, Reinhard; Coenen, Christopher

    2013-01-01

    New organisms and biological systems designed to satisfy human needs are among the aims of synthetic genomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and organisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genomics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engineering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and converging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by making possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, environmental and socio-economic risks – stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications. PMID:23997647

  11. Cannabinoid CB1 /CB2 receptor agonists attenuate hyperactivity and body weight loss in a rat model of activity-based anorexia.

    PubMed

    Scherma, Maria; Satta, Valentina; Collu, Roberto; Boi, Maria Francesca; Usai, Paolo; Fratta, Walter; Fadda, Paola

    2017-08-01

    Anorexia nervosa (AN) is a serious psychiatric condition characterized by excessive body weight loss and disturbed perceptions of body shape and size, often associated with excessive physical activity. There is currently no effective drug-related therapy of this disease and this leads to high relapse rate. Clinical data suggest that a promising therapy to treat and reduce reoccurrence of AN may be based on the use of drugs that target the endocannabinoid (EC) system, which appears dysregulated in AN patients. The activity-based anorexia (ABA) rodent model mimics the severe body weight loss and increased physical activity, as well as the neuroendocrine disturbances (i.e. hypoleptinaemia and hypercortisolaemia) in AN. This study investigated whether cannabinoid agonists can effectively modify anorexic-like behaviours and neuroendocrine changes in rats subjected to a repeated ABA regime that mimics the human condition in which patients repeatedly undergo a recovery and illness cycle. Our data show that subchronic treatment with both the natural CB 1 /CB 2 receptor agonist Δ 9 -tetrahydrocannabinol and the synthetic CB 1 /CB 2 receptor agonist CP-55,940 significantly reduced body weight loss and running wheel activity in ABA rats. These behavioural effects were accompanied by an increase in leptin signalling and a decrease in plasma levels of corticosterone. Taken together, our results further demonstrate the involvement of the EC system in AN pathophysiology and that strategies which modulate EC signalling are useful to treat this disorder, specifically in patients where physical hyperactivity plays a central role in its progression and maintenance. © 2017 The British Pharmacological Society.

  12. [From synthetic biology to synthetic humankind].

    PubMed

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. Identification of novel peroxisome proliferator-activated receptor-gamma (PPARγ) agonists using molecular modeling method

    NASA Astrophysics Data System (ADS)

    Gee, Veronica M. W.; Wong, Fiona S. L.; Ramachandran, Lalitha; Sethi, Gautam; Kumar, Alan Prem; Yap, Chun Wei

    2014-11-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) plays a critical role in lipid and glucose homeostasis. It is the target of many drug discovery studies, because of its role in various disease states including diabetes and cancer. Thiazolidinediones, a synthetic class of agents that work by activation of PPARγ, have been used extensively as insulin-sensitizers for the management of type 2 diabetes. In this study, a combination of QSAR and docking methods were utilised to perform virtual screening of more than 25 million compounds in the ZINC library. The QSAR model was developed using 1,517 compounds and it identified 42,378 potential PPARγ agonists from the ZINC library, and 10,000 of these were selected for docking with PPARγ based on their diversity. Several steps were used to refine the docking results, and finally 30 potentially highly active ligands were identified. Four compounds were subsequently tested for their in vitro activity, and one compound was found to have a K i values of <5 μM.

  14. Farnesoid X receptor is essential for the survival of renal medullary collecting duct cells under hypertonic stress.

    PubMed

    Xu, Sujuan; Huang, Shizheng; Luan, Zhilin; Chen, Tingyue; Wei, Yuanyi; Xing, Miaomiao; Li, Yaqing; Du, Chunxiu; Wang, Bing; Zheng, Feng; Wang, Nanping; Guan, Youfei; Gustafsson, Jan-Åke; Zhang, Xiaoyan

    2018-05-22

    Hypertonicity in renal medulla is critical for the kidney to produce concentrated urine. Renal medullary cells have to survive high medullary osmolarity during antidiuresis. Previous study reported that farnesoid X receptor (FXR), a nuclear receptor transcription factor activated by endogenous bile acids, increases urine concentrating ability by up-regulating aquaporin 2 expression in medullary collecting duct cells (MCDs). However, whether FXR is also involved in the maintenance of cell survival of MCDs under dehydration condition and hypertonic stress remains largely unknown. In the present study, we demonstrate that 24-hours water restriction selectively up-regulated renal medullary expression of FXR with little MCD apoptosis in wild-type mice. In contrast, water deprivation caused a massive apoptosis of MCDs in both global FXR gene-deficient mice and collecting duct-specific FXR knockout mice. In vitro studies showed that hypertonicity significantly increased FXR and tonicity response enhancer binding protein (TonEBP) expression in mIMCD3 cell line and primary cultured MCDs. Activation and overexpression of FXR markedly increased cell viability and decreased cell apoptosis under hyperosmotic conditions. In addition, FXR can increase gene expression and nuclear translocation of TonEBP. We conclude that FXR protects MCDs from hypertonicity-induced cell injury very likely via increasing TonEBP expression and nuclear translocation. This study provides insights into the molecular mechanism by which FXR enhances urine concentration via maintaining cell viability of MCDs under hyperosmotic condition.

  15. Potentiation of cytotoxic chemotherapy by growth hormone-releasing hormone agonists.

    PubMed

    Jaszberenyi, Miklos; Rick, Ferenc G; Popovics, Petra; Block, Norman L; Zarandi, Marta; Cai, Ren-Zhi; Vidaurre, Irving; Szalontay, Luca; Jayakumar, Arumugam R; Schally, Andrew V

    2014-01-14

    The dismal prognosis of malignant brain tumors drives the development of new treatment modalities. In view of the multiple activities of growth hormone-releasing hormone (GHRH), we hypothesized that pretreatment with a GHRH agonist, JI-34, might increase the susceptibility of U-87 MG glioblastoma multiforme (GBM) cells to subsequent treatment with the cytotoxic drug, doxorubicin (DOX). This concept was corroborated by our findings, in vivo, showing that the combination of the GHRH agonist, JI-34, and DOX inhibited the growth of GBM tumors, transplanted into nude mice, more than DOX alone. In vitro, the pretreatment of GBM cells with JI-34 potentiated inhibitory effects of DOX on cell proliferation, diminished cell size and viability, and promoted apoptotic processes, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay, ApoLive-Glo multiplex assay, and cell volumetric assay. Proteomic studies further revealed that the pretreatment with GHRH agonist evoked differentiation decreasing the expression of the neuroectodermal stem cell antigen, nestin, and up-regulating the glial maturation marker, GFAP. The GHRH agonist also reduced the release of humoral regulators of glial growth, such as FGF basic and TGFβ. Proteomic and gene-expression (RT-PCR) studies confirmed the strong proapoptotic activity (increase in p53, decrease in v-myc and Bcl-2) and anti-invasive potential (decrease in integrin α3) of the combination of GHRH agonist and DOX. These findings indicate that the GHRH agonists can potentiate the anticancer activity of the traditional chemotherapeutic drug, DOX, by multiple mechanisms including the induction of differentiation of cancer cells.

  16. D1 receptor agonist improves sleep-wake parameters in experimental parkinsonism.

    PubMed

    Hyacinthe, Carole; Barraud, Quentin; Tison, François; Bezard, Erwan; Ghorayeb, Imad

    2014-03-01

    Both excessive daytime sleepiness (EDS) and rapid eye movement (REM) sleep deregulation are part of Parkinson's disease (PD) non-motor symptoms and may complicate dopamine replacement therapy. We report here that dopamine agonists act differentially on sleep architecture in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine macaque monkey. Continuous sleep and wake electroencephalographic monitoring revealed no effect of the selective dopamine D2 receptor agonist quinpirole on EDS, whereas the selective dopamine D1 receptor agonist SKF38393 efficiently alleviated EDS and restored REM sleep to baseline values. The present results question the relevance of abandoning D1 receptor agonist treatment in PD as it might actually improve sleep-related disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Characterization of the hypothermic effects of imidazoline I2 receptor agonists in rats

    PubMed Central

    Thorn, David A; An, Xiao-Fei; Zhang, Yanan; Pigini, Maria; Li, Jun-Xu

    2012-01-01

    BACKGROUND AND PURPOSE Imidazoline I2 receptors have been implicated in several CNS disorders. Although several I2 receptor agonists have been described, no simple and sensitive in vivo bioassay is available for studying I2 receptor ligands. This study examined I2 receptor agonist-induced hypothermia as a functional in vivo assay of I2 receptor agonism. EXPERIMENTAL APPROACH Different groups of rats were used to examine the effects of I2 receptor agonists on the rectal temperature and locomotion. The pharmacological mechanisms were investigated by combining I2 receptor ligands and different antagonists. KEY RESULTS All the selective I2 receptor agonists examined (2-BFI, diphenyzoline, phenyzoline, CR4056, tracizoline, BU224 and S22687, 3.2–56 mg·kg–1, i.p.) dose-dependently and markedly decreased the rectal temperature (hypothermia) in rats, with varied duration of action. Pharmacological mechanism of the observed hypothermia was studied by combining the I2 receptor agonists (2-BFI, BU224, tracizoline and diphenyzoline) with imidazoline I2 receptor/ α2 adrenoceptor antagonist idazoxan, selective I1 receptor antagonist efaroxan, α2 adrenoceptor antagonist/5-HT1A receptor agonist yohimbine. Idazoxan but not yohimbine or efaroxan attenuated the hypothermic effects of 2-BFI, BU224, tracizoline and diphenyzoline, supporting the I2 receptor mechanism. In contrast, both idazoxan and yohimbine attenuated hypothermia induced by the α2 adrenoceptor agonist clonidine. Among all the I2 receptor agonists studied, only S22687 markedly increased the locomotor activity in rats. CONCLUSIONS AND IMPLICATIONS Imidazoline I2 receptor agonists can produce hypothermic effects, which are primarily mediated by I2 receptors. These data suggest that I2 receptor agonist-induced hypothermia is a simple and sensitive in vivo assay for studying I2 receptor ligands. PMID:22324428

  18. Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site

    PubMed Central

    Gill, JasKiran K.; Savolainen, Mari; Young, Gareth T.; Zwart, Ruud; Sher, Emanuele; Millar, Neil S.

    2011-01-01

    Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular “orthosteric” binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site. PMID:21436053

  19. The Natural Product Magnolol as a Lead Structure for the Development of Potent Cannabinoid Receptor Agonists

    PubMed Central

    Müller, Christa E.

    2013-01-01

    Magnolol (4-allyl-2-(5-allyl-2-hydroxyphenyl)phenol), the main bioactive constituent of the medicinal plant Magnolia officinalis, and its main metabolite tetrahydromagnolol were recently found to activate cannabinoid (CB) receptors. We now investigated the structure-activity relationships of (tetrahydro)magnolol analogs with variations of the alkyl chains and the phenolic groups and could considerably improve potency. Among the most potent compounds were the dual CB1/CB2 full agonist 2-(2-methoxy-5-propyl-phenyl)-4-hexylphenol (61a, K i CB1∶0.00957 µM; K i CB2∶0.0238 µM), and the CB2-selective partial agonist 2-(2-hydroxy-5-propylphenyl)-4-pentylphenol (60, K i CB1∶0.362 µM; K i CB2∶0.0371 µM), which showed high selectivity versus GPR18 and GPR55. Compound 61b, an isomer of 61a, was the most potent GPR55 antagonist with an IC50 value of 3.25 µM but was non-selective. The relatively simple structures, which possess no stereocenters, are easily accessible in a four- to five-step synthetic procedure from common starting materials. The central reaction step is the well-elaborated Suzuki-Miyaura cross-coupling reaction, which is suitable for a combinatorial chemistry approach. The scaffold is versatile and may be fine-tuned to obtain a broad range of receptor affinities, selectivities and efficacies. PMID:24204944

  20. Illegal use of beta-adrenergic agonists: European Community.

    PubMed

    Kuiper, H A; Noordam, M Y; van Dooren-Flipsen, M M; Schilt, R; Roos, A H

    1998-01-01

    The use of veterinary medicinal products within the European Community is governed by a series of directives and regulations that describe the requirements for safety, quality, and efficacy of these products. Veterinary therapeutic use of beta-agonists has only been approved in the case of clenbuterol for bronchodilatation in horses and calves and for tocolysis in cows. No beta-agonists have been permitted in the European Community for growth-promoting purposes in farm animals. Surveillance for the presence of residues of veterinary agents in food-producing animals and meat is regulated by the Directive 86/469/EEC containing specific guidelines for sampling procedures on farms and in slaughterhouses. The level and frequency of sampling is dependent on the category of compounds and animal species. When positive samples have been identified (above certain action levels), sampling intensity is increased. Results of monitoring programs in EU member states during 1992 and 1993 for the occurrence of residues of beta-agonists in food-producing animals vary substantially with respect to the percentages of positive samples, ranging from 0 to 7%. The variability is partly explained by differences in sampling strategies, detection methods, and action levels applied. Identification of the proper matrices for sampling and detection of beta-agonists is important. In the case of clenbuterol, hair and choroid retinal tissue are appropriate tissues because clenbuterol accumulates in these matrices. A clear decrease in the use of clenbuterol in cattle has been observed in The Netherlands, Germany, Northern Ireland, and Spanish Basque Country over the last 3 yr. This is partly due to intensified surveillance activities at farms and slaughterhouses by governmental agencies and production sector organizations. There are data on human intoxication following consumption of liver or meat from cattle treated with beta-agonists. At the concentrations of clenbuterol measured in contaminated

  1. Agonist-Antagonist Interaction at the Cholinergic Receptor of Denervated Diaphragm,

    DTIC Science & Technology

    A study has been made of the cholinergic receptor induced by chronic denervation in the rat diaphragm. The agonists acetylcholine, carbachol and...muscle cells. Supramaximally effective doses of agonists caused desensitization of the preparation; however, there was no cross tachyphylaxis between acetylcholine and carbachol . (Author)

  2. Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)α agonist fenofibrate and the PPARγ agonist pioglitazone

    PubMed Central

    Syversen, Unni; Stunes, Astrid K; Gustafsson, Björn I; Obrant, Karl J; Nordsletten, Lars; Berge, Rolf; Thommesen, Liv; Reseland, Janne E

    2009-01-01

    Background All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARγ agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARα agonist fenofibrate (FENO) and the PPARγ agonist pioglitazone (PIO) on bone in intact female rats. Methods Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied. Results The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1. Conclusion We show opposite skeletal effects of PPARα and γ agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARα activation. PMID:19331671

  3. Scale-Up Synthesis and Identification of GLYX-13, a NMDAR Glycine-Site Partial Agonist for the Treatment of Major Depressive Disorder.

    PubMed

    Li, Wenchao; Liu, Jingjian; Fan, Minghua; Li, Zhongtang; Chen, Yin; Zhang, Guisen; Huang, Zhuo; Zhang, Liangren

    2018-04-24

    GLYX-13, a NMDAR glycine-site partial agonist, was discovered as a promising antidepressant with rapidly acting effects but no ketamine-like side effects. However, the reported synthetic process route had deficiencies of low yield and the use of unfriendly reagents. Here, we report a scaled-up synthesis of GLYX-13 with an overall yield of 30% on the hectogram scale with a column chromatography-free strategy, where the coupling and deprotection reaction conditions were systematically optimized. Meanwhile, the absolute configuration of precursor compound of GLYX-13 was identified by X-ray single crystal diffraction. Finally, the activity of GLYX-13 was verified in the cortical neurons of mice through whole-cell voltage-clamp technique.

  4. Identification of novel selective V2 receptor non-peptide agonists.

    PubMed

    Del Tredici, Andria L; Vanover, Kim E; Knapp, Anne E; Bertozzi, Sine M; Nash, Norman R; Burstein, Ethan S; Lameh, Jelveh; Currier, Erika A; Davis, Robert E; Brann, Mark R; Mohell, Nina; Olsson, Roger; Piu, Fabrice

    2008-10-30

    Peptides with agonist activity at the vasopressin V(2) receptor are used clinically to treat fluid homeostasis disorders such as polyuria and central diabetes insipidus. Of these peptides, the most commonly used is desmopressin, which displays poor bioavailability as well as potent activity at the V(1b) receptor, with possible stress-related adverse effects. Thus, there is a strong need for the development of small molecule chemistries with selective V(2) receptor agonist activity. Using the functional cell-based assay Receptor Selection and Amplification Technology (R-SAT((R))), a screening effort identified three small molecule chemotypes (AC-94544, AC-88324, and AC-110484) with selective agonist activity at the V(2) receptor. One of these compounds, AC-94544, displayed over 180-fold selectivity at the V(2) receptor compared to related vasopressin and oxytocin receptors and no activity at 28 other G protein-coupled receptors (GPCRs). All three compounds also showed partial agonist activity at the V(2) receptor in a cAMP accumulation assay. In addition, in a rat model of central diabetes insipidus, AC-94544 was able to significantly reduce urine output in a dose-dependent manner. Thus, AC-94544, AC-88324, and AC-110484 represent novel opportunities for the treatment of disorders associated with V(2) receptor agonist deficiency.

  5. The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified

    PubMed Central

    Movérare-Skrtic, Sofia; Börjesson, Anna E.; Farman, Helen H.; Sjögren, Klara; Windahl, Sara H.; Lagerquist, Marie K.; Andersson, Annica; Stubelius, Alexandra; Carlsten, Hans; Gustafsson, Jan-Åke; Ohlsson, Claes

    2014-01-01

    The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-20) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-20 mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-20 mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist. PMID:24395795

  6. The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified.

    PubMed

    Movérare-Skrtic, Sofia; Börjesson, Anna E; Farman, Helen H; Sjögren, Klara; Windahl, Sara H; Lagerquist, Marie K; Andersson, Annica; Stubelius, Alexandra; Carlsten, Hans; Gustafsson, Jan-Åke; Ohlsson, Claes

    2014-01-21

    The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-2(0)) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-2(0) mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-2(0) mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist.

  7. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  8. Peptide and small molecules rescue the functional activity and agonist potency of dysfunctional human melanocortin-4 receptor polymorphisms.

    PubMed

    Xiang, Zhimin; Pogozheva, Irina D; Sorenson, Nicholas B; Wilczynski, Andrzej M; Holder, Jerry Ryan; Litherland, Sally A; Millard, William J; Mosberg, Henry I; Haskell-Luevano, Carrie

    2007-07-17

    The melanocortin pathway, specifically the melanocortin-4 receptor and the cognate endogenous agonist and antagonist ligands, have been strongly implicated in the regulation of energy homeostasis and satiety. Genetic studies of morbidly obese human patients and normal weight control patients have resulted in the discovery of over 70 human melanocortin-4 receptor (MC4R) polymorphisms observed as both heterozygous and homozygous forms. A number of laboratories have been studying these hMC4R polymorphisms attempting to understand the molecular mechanism(s) that might explain the obese human phenotype. Herein, we have studied 13 polymorphic hMC4Rs that have been identified to possess statistically significant decreased endogenous agonist potency with synthetic peptides and small molecules attempting to identify ligands that can pharmacologically rescue the hMC4R polymorphic agonist response. The ligands examined in this study include NDP-MSH, MTII, Ac-His-DPhe-Arg-Trp-NH2 (JRH887-9), Ac-Anc-DPhe-Arg-Trp-NH2 (amino-2-naphtylcarboxylic acid, Anc, JRH420-12), Ac-His-(pI)DPhe-Arg-Trp-NH2 (JRH322-18), chimeric AGRP-melanocortin based ligands (Tyr-c[Cys-His-DPhe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH2, AMW3-130 and Ac-mini-(His-DPhe-Arg-Trp)-hAGRP-NH2, AMW3-106), and the small molecules JB25 and THIQ. The hMC4R polymorphisms included in this study are S58C, N97D, I102S, L106P, S127L, T150I, R165Q, R165W, L250Q, G252S, C271Y, Y287Stop, and I301T. These studies resulted in the NDP-MSH, MTII, AMW3-130, THIQ, and AMW3-106 ligands possessing nanomolar to subnanomolar agonist potency at the hMC4R polymorphisms examined in this study. Thus, these ligands could generically rescue the potency and stimulatory response of the abnormally functioning hMC4Rs studied and may provide tools to further clarify the molecular mechanism(s) involving these receptor modifications.

  9. CB2 Receptor Agonists Protect Human Dopaminergic Neurons against Damage from HIV-1 gp120

    PubMed Central

    Hu, Shuxian; Sheng, Wen S.; Rock, R. Bryan

    2013-01-01

    Despite the therapeutic impact of anti-retroviral therapy, HIV-1-associated neurocognitive disorder (HAND) remains a serious threat to AIDS patients, and there currently remains no specific therapy for the neurological manifestations of HIV-1. Recent work suggests that the nigrostriatal dopaminergic area is a critical brain region for the neuronal dysfunction and death seen in HAND and that human dopaminergic neurons have a particular sensitivity to gp120-induced damage, manifested as reduced function (decreased dopamine uptake), morphological changes, and reduced viability. Synthetic cannabinoids inhibit HIV-1 expression in human microglia, suppress production of inflammatory mediators in human astrocytes, and there is substantial literature demonstrating the neuroprotective properties of cannabinoids in other neuropathogenic processes. Based on these data, experiments were designed to test the hypothesis that synthetic cannabinoids will protect dopaminergic neurons against the toxic effects of the HIV-1 protein gp120. Using a human mesencephalic neuronal/glial culture model, which contains dopaminergic neurons, microglia, and astrocytes, we were able to show that the CB1/CB2 agonist WIN55,212-2 blunts gp120-induced neuronal damage as measured by dopamine transporter function, apoptosis and lipid peroxidation; these actions were mediated principally by the CB2 receptor. Adding supplementary human microglia to our cultures enhances gp120-induced damage; WIN55,212-2 is able to alleviate this enhanced damage. Additionally, WIN55,212-2 inhibits gp120-induced superoxide production by purified human microglial cells, inhibits migration of human microglia towards supernatants generated from gp120-stimulated human mesencephalic neuronal/glial cultures and reduces chemokine and cytokine production from the human mesencephalic neuronal/glial cultures. These data suggest that synthetic cannabinoids are capable of protecting human dopaminergic neurons from gp120 in a variety

  10. Endogenous cannabinoid receptor agonists inhibit neurogenic inflammations in guinea pig airways.

    PubMed

    Yoshihara, Shigemi; Morimoto, Hiroshi; Ohori, Makoto; Yamada, Yumi; Abe, Toshio; Arisaka, Osamu

    2005-09-01

    Although neurogenic inflammation via the activation of C fibers in the airway must have an important role in the pathogenesis of asthma, their regulatory mechanism remains uncertain. The pharmacological profiles of endogenous cannabinoid receptor agonists on the activation of C fibers in airway tissues were investigated and the mechanisms how cannabinoids regulate airway inflammatory reactions were clarified. The effects of endogenous cannabinoid receptor agonists on electrical field stimulation-induced bronchial smooth muscle contraction, capsaicin-induced bronchoconstriction and capsaicin-induced substance P release in guinea pig airway tissues were investigated. The influences of cannabinoid receptor antagonists and K+ channel blockers to the effects of cannabinoid receptor agonists on these respiratory reactions were examined. Both endogenous cannabinoid receptor agonists, anandamide and palmitoylethanolamide, inhibited electrical field stimulation-induced guinea pig bronchial smooth muscle contraction, but not neurokinin A-induced contraction. A cannabinoid CB2 antagonist, SR 144528, reduced the inhibitory effect of endogenous agonists, but not a cannabinoid CB1 antagonist, SR 141716A. Inhibitory effects of agonists were also reduced by the pretreatment of large conductance Ca2+ -activated K+ channel (maxi-K+ channel) blockers, iberiotoxin and charybdotoxin, but not by other K+ channel blockers, dendrotoxin or glibenclamide. Anandamide and palmitoylethanolamide blocked the capsaicin-induced release of substance P-like immunoreactivity from guinea pig airway tissues. Additionally, intravenous injection of palmitoylethanolamide dose-dependently inhibited capsaicin-induced guinea pig bronchoconstriction, but not neurokinin A-induced reaction. However, anandamide did not reduce capsaicin-induced guinea pig bronchoconstriction. These findings suggest that endogenous cannabinoid receptor agonists inhibit the activation of C fibers via cannabinoid CB2 receptors and

  11. Partial agonist therapy in schizophrenia: relevance to diminished criminal responsibility.

    PubMed

    Gavaudan, Gilles; Magalon, David; Cohen, Julien; Lançon, Christophe; Léonetti, Georges; Pélissier-Alicot, Anne-Laure

    2010-11-01

    Pathological gambling (PG), classified in the DSM-IV among impulse control disorders, is defined as inappropriate, persistent gaming for money with serious personal, family, and social consequences. Offenses are frequently committed to obtain money for gambling. Pathological gambling, a planned and structured behavioral disorder, has often been described as a complication of dopamine agonist treatment in patients with Parkinson's disease. It has never been described in patients with schizophrenia receiving dopamine agonists. We present two patients with schizophrenia, previously treated with antipsychotic drugs without any suggestion of PG, who a short time after starting aripiprazole, a dopamine partial agonist, developed PG and criminal behavior, which totally resolved when aripiprazole was discontinued. Based on recent advances in research on PG and adverse drug reactions to dopamine agonists in Parkinson's disease, we postulate a link between aripiprazole and PG in both our patients with schizophrenia and raise the question of criminal responsibility. © 2010 American Academy of Forensic Sciences.

  12. Binary agonist surface patterns prime platelets for downstream adhesion in flowing whole blood.

    PubMed

    Eichinger, Colin D; Hlady, Vladimir

    2017-04-28

    As platelets encounter damaged vessels or biomaterials, they interact with a complex milieu of surface-bound agonists, from exposed subendothelium to adsorbed plasma proteins. It has been shown that an upstream, surface-immobilized agonist is capable of priming platelets for enhanced adhesion downstream. In this study, binary agonists were integrated into the upstream position of flow cells and the platelet priming response was measured by downstream adhesion in flowing whole blood. A nonadditive response was observed in which platelets transiently exposed to two agonists exhibited greater activation and downstream adhesion than that from the sum of either agonist alone. Antibody blocking of one of the two upstream agonists eliminated nonadditive activation and downstream adhesion. Crosstalk between platelet activation pathways likely led to a synergistic effect which created an enhanced activation response in the platelet population. The existence of synergy between platelet priming pathways is a concept that has broad implications for the field of biomaterials hemocompatibility and platelet activity testing.

  13. Farnesoid X receptor immunolocalization in reproductive tissues of adult female rabbits.

    PubMed

    Anaya-Hernández, Arely; Méndez-Tepepa, Maribel; Hernández-Aragón, Laura G; Pacheco, Pablo; Martínez-Gómez, Margarita; Castelán, Francisco; Cuevas, Estela

    2014-07-01

    Farnesoid X receptor (FXR) has been involved in lipid metabolism, cell proliferation, apoptosis, and aromatase expression, as well as in the steroid synthesis and signaling. Considering that these events occur in reproductive tissues in females, the aim of the present study was to determine the immunolocalization of FXR in the ovary, oviduct, uterus, and vagina of rabbits. Rabbits were sacrificed and their reproductive tissues were excised and histologically processed. Immunohistochemistry for FXR was done and reproductive tissues were photographed. FXR immunoreactivity was found in all types of ovarian follicles, ovarian stroma, and corpus luteum of virgin and pregnant rabbits. Also, oviductal and vaginal epithelium of virgins, as well as the oviductal smooth muscle, showed anti-FXR immunoreactivity. The uterine epithelium and musculature of virgins had scarce anti-FXR immunoreactivity. Although the role of FXR in female reproductive tissues is still not known, it is possible to consider various functions related to the reproductive tissue. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Cholinergic agonists increase intracellular calcium concentration in guinea pig vestibular hair cells.

    PubMed

    Han, W; Zhang, S; Han, D; Jiang, S; Yang, W

    2001-07-01

    To better understand the cholinergic receptors in vestibular hair cells (VHC) and their subtypes, and to investigate the effects of cholinergic agonists on intracellular calcium concentration ([Ca2+]i) in guinea pig VHCs. VHCs were isolated from guinea pig crista ampullaris by enzymatic and mechanical methods. The effect of cholinergic agonists on [Ca2+]i was examined using laser scanning confocal microscopy and the Ca2+ sensitive dye Fluo-3. The results showed that the addition of acetylcholine (ACh) and carbachol (CCh), muscamic and nicotinic agonists, induced [Ca2+]i increases in all the VHCs, whereas acetylcholine bromide (ACh-Br), a nicotinic agonist, induced the [Ca2+]i increase in only a small percentage of VHCs. The ACh or CCh-induced Ca2+ response could be partially suppressed by atropine. In the presence of 0.1 mmol/L atropine, the amplitudes of ACh or CCh-induced [Ca2+]i responses became significantly smaller than those in atropine free medium (P < 0.01). The results suggest the existence of cholinergic receptors in guinea pig VHCs. It is the muscamic agonists rather than nicontic receptors that dominate [Ca2+]i variation. Atropine can suppress muscamic agonist-induced Ca2+ responses.

  15. PPARgamma agonists inhibit TGF-beta-PKA signaling in glomerulosclerosis.

    PubMed

    Zou, Rong; Xu, Gang; Liu, Xiao-cheng; Han, Min; Jiang, Jing-jing; Huang, Qian; He, Yong; Yao, Ying

    2010-01-01

    To study the probable mechanisms of the anti-glomerulosclerosis effects induced by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists in rat intraglomerular mesangial cells (MCs). Cells were transfected with the pTAL-PPRE-tk-Luc(+) plasmid and then treated with different concentrations of PPARgamma agonist, either troglitazone or telmisartan, for the indicated times. Promega luciferase assays were subsequently used for the detection of PPARgamma activation. Protein expression levels were assessed by Western blot, and PepTag assays were used for the non-radioactive detection of protein kinase A (PKA) activity. The deposition of alpha-smooth muscle actin (alpha-SMA) and p-cyclic AMP responsive element binding protein (pCREB) were analyzed by confocal laser scanning. Both troglitazone and telmisartan remarkably inhibit the PKA activation and pCREB expression that is stimulated by TGF-beta. The PPARgamma agonists also inhibited alpha-SMA and collagen IV protein expression by blocking PKA activation. PPARgamma ligands effectively suppress the activation of MCs and the accumulation of collagen IV stimulated by TGF-beta in vitro. The renal protection provided by PPARgamma agonists is partly mediated via their blockade of TGF-beta/PKA signaling.

  16. Western Diet-Induced Dysbiosis in Farnesoid X Receptor Knockout Mice Causes Persistent Hepatic Inflammation after Antibiotic Treatment.

    PubMed

    Jena, Prasant K; Sheng, Lili; Liu, Hui-Xin; Kalanetra, Karen M; Mirsoian, Annie; Murphy, William J; French, Samuel W; Krishnan, Viswanathan V; Mills, David A; Wan, Yu-Jui Yvonne

    2017-08-01

    Patients who have liver cirrhosis and liver cancer also have reduced farnesoid X receptor (FXR). The current study analyzes the effect of diet through microbiota that affect hepatic inflammation in FXR knockout (KO) mice. Wild-type and FXR KO mice were on a control (CD) or Western diet (WD) for 10 months. In addition, both CD- and WD-fed FXR KO male mice, which had hepatic lymphocyte and neutrophil infiltration, were treated by vancomycin, polymyxin B, and Abx (ampicillin, neomycin, metronidazole, and vancomycin). Mice were subjected to morphological analysis as well as gut microbiota and bile acid profiling. Male WD-fed FXR KO mice had the most severe steatohepatitis. FXR KO also had reduced Firmicutes and increased Proteobacteria, which could be reversed by Abx. In addition, Abx eliminated hepatic neutrophils and lymphocytes in CD-fed, but not WD-fed, FXR KO mice. Proteobacteria and Bacteroidetes persisted in WD-fed FXR KO mice even after Abx treatment. Only polymyxin B could reduce hepatic lymphocytes in WD-fed FXR KO mice. The reduced hepatic inflammation by antibiotics was accompanied by decreased free and conjugated secondary bile acids as well as changes in gut microbiota. Our data revealed that Lactococcus, Lactobacillus, and Coprococcus protect the liver from inflammation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  18. Effect of beta-agonists on LAM progression and treatment.

    PubMed

    Le, Kang; Steagall, Wendy K; Stylianou, Mario; Pacheco-Rodriguez, Gustavo; Darling, Thomas N; Vaughan, Martha; Moss, Joel

    2018-01-30

    Lymphangioleiomyomatosis (LAM), a rare disease of women, is associated with cystic lung destruction resulting from the proliferation of abnormal smooth muscle-like LAM cells with mutations in the tuberous sclerosis complex (TSC) genes TSC1 and/or TSC2 The mutant genes and encoded proteins are responsible for activation of the mechanistic target of rapamycin (mTOR), which is inhibited by sirolimus (rapamycin), a drug used to treat LAM. Patients who have LAM may also be treated with bronchodilators for asthma-like symptoms due to LAM. We observed stabilization of forced expiratory volume in 1 s over time in patients receiving sirolimus and long-acting beta-agonists with short-acting rescue inhalers compared with patients receiving only sirolimus. Because beta-agonists increase cAMP and PKA activity, we investigated effects of PKA activation on the mTOR pathway. Human skin TSC2 +/- fibroblasts or LAM lung cells incubated short-term with isoproterenol (beta-agonist) showed a sirolimus-independent increase in phosphorylation of S6, a downstream effector of the mTOR pathway, and increased cell growth. Cells incubated long-term with isoproterenol, which may lead to beta-adrenergic receptor desensitization, did not show increased S6 phosphorylation. Inhibition of PKA blocked the isoproterenol effect on S6 phosphorylation. Thus, activation of PKA by beta-agonists increased phospho-S6 independent of mTOR, an effect abrogated by beta-agonist-driven receptor desensitization. In agreement, retrospective clinical data from patients with LAM suggested that a combination of bronchodilators in conjunction with sirolimus may be preferable to sirolimus alone for stabilization of pulmonary function.

  19. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms.

    PubMed

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, Esam E; Jakubík, Jan

    2015-07-01

    We mutated key amino acids of the human variant of the M1 muscarinic receptor that target ligand binding, receptor activation, and receptor-G protein interaction. We compared the effects of these mutations on the action of two atypical M1 functionally preferring agonists (N-desmethylclozapine and xanomeline) and two classical non-selective orthosteric agonists (carbachol and oxotremorine). Mutations of D105 in the orthosteric binding site and mutation of D99 located out of the orthosteric binding site decreased affinity of all tested agonists that was translated as a decrease in potency in accumulation of inositol phosphates and intracellular calcium mobilization. Mutation of D105 decreased the potency of the atypical agonist xanomeline more than that of the classical agonists carbachol and oxotremorine. Mutation of the residues involved in receptor activation (D71) and coupling to G-proteins (R123) completely abolished the functional responses to both classical and atypical agonists. Our data show that both classical and atypical agonists activate hM1 receptors by the same molecular switch that involves D71 in the second transmembrane helix. The principal difference among the studied agonists is rather in the way they interact with D105 in the orthosteric binding site. Furthermore, our data demonstrate a key role of D105 in xanomeline wash-resistant binding and persistent activation of hM1 by wash-resistant xanomeline. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release

    PubMed Central

    Held, Katharina; Kichko, Tatjana; De Clercq, Katrien; Klaassen, Hugo; Van Bree, Rieta; Vanherck, Jean-Christophe; Marchand, Arnaud; Reeh, Peter W.; Chaltin, Patrick; Voets, Thomas; Vriens, Joris

    2015-01-01

    Transient receptor potential (TRP) cation channel subfamily M member 3 (TRPM3), a member of the TRP channel superfamily, was recently identified as a nociceptor channel in the somatosensory system, where it is involved in the detection of noxious heat; however, owing to the lack of potent and selective agonists, little is known about other potential physiological consequences of the opening of TRPM3. Here we identify and characterize a synthetic TRPM3 activator, CIM0216, whose potency and apparent affinity greatly exceeds that of the canonical TRPM3 agonist, pregnenolone sulfate (PS). In particular, a single application of CIM0216 causes opening of both the central calcium-conducting pore and the alternative cation permeation pathway in a membrane-delimited manner. CIM0216 evoked robust calcium influx in TRPM3-expressing somatosensory neurons, and intradermal injection of the compound induced a TRPM3-dependent nocifensive behavior. Moreover, CIM0216 elicited the release of the peptides calcitonin gene-related peptide (CGRP) from sensory nerve terminals and insulin from isolated pancreatic islets in a TRPM3-dependent manner. These experiments identify CIM0216 as a powerful tool for use in investigating the physiological roles of TRPM3, and indicate that TRPM3 activation in sensory nerve endings can contribute to neurogenic inflammation. PMID:25733887

  1. Epidemiology and clinical features of toxicity following recreational use of synthetic cannabinoid receptor agonists: a report from the United Kingdom National Poisons Information Service.

    PubMed

    Waugh, Jennifer; Najafi, Javad; Hawkins, Leonard; Hill, Simon L; Eddleston, Michael; Vale, J Allister; Thompson, John P; Thomas, Simon H L

    2016-07-01

    Toxicity from the use of synthetic cannabinoid receptor agonists (SCRAs) has been encountered increasingly frequent in many countries. To characterise presentation rates, demographic profiles and reported clinical features for users of SCRAs referred by health professionals in the United Kingdom to the National Poisons Information Service (NPIS), to compare reported toxicity between commonly used branded products, and to examine the impact of legal control measures on enquiry numbers. NPIS telephone enquiry records were searched for SCRA-related terms for the 8-year period 1st January 2007 to 31st December 2014, consolidating multiple enquiries about the same case into a single record. Demographic data, reported exposure details, clinical features and poisoning severity were analysed, excluding cases where SCRA exposure was unlikely. Enquiries to the NPIS were made concerning 510 individuals relating to probable SCRA use, with annual numbers increasing year on year. Most patients were male (80.8%) and <25 years old (65.1%). Common clinical features reported in the 433 (84.9%) patients reporting SCRA use without other substances included tachycardia (n = 73, 16.9%), reduced level of consciousness (n = 70, 16.2%), agitation or aggression (n = 45, 10.4%), vomiting (n = 30, 6.9%), dizziness (n = 26, 6.0%), confusion (n= 21, 4.8%), mydriasis (n = 20, 4.6%) and hallucinations (n = 20, 4.6%). The Maximum Poisoning Severity Score (PSS) indicated severe toxicity in 36 cases (8.3%). Legal control of "second generation" SCRAs did not affect the rate of growth in enquiry numbers or the proportion with severe toxicity. The three most commonly reported products were "Black Mamba" (n= 88, 20.3%), "Pandora's Box" (n= 65, 15.0%) and "Clockwork Orange" (n= 27, 6.2%). Neurological and general features were recorded more often with "Clockwork Orange" than for "Black Mamba" and "Pandora's Box", but moderate or severe toxicity was significantly less

  2. Opioid-receptor subtype agonist-induced enhancements of sucrose intake are dependent upon sucrose concentration.

    PubMed

    Ruegg, H; Yu, W Z; Bodnar, R J

    1997-07-01

    Selective mu ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO)), delta1 ([D-Pen2, D-Pen5]-enkephalin (DPDPE)), delta2 ([D-Ala2, Glu4]-Deltorphin (Delt II)), kappa1 (U50488H) and kappa3 (naloxone benzoylhydrazone (NalBzOH)) opioid agonists each stimulate food intake in rats. Whereas studies with selective opioid antagonists implicate mu and kappa1 receptors in the mediation of sucrose intake, studies with selective opioid agonists implicate mu and delta receptors in the mediation of saccharin intake. The present study determined if specific delta1, delta2, kappa1, kappa3 and mu opioid-receptor subtype agonists produced similar alterations in sucrose intake as a function of sucrose concentration (0.5%, 2.5%, 10%) across a 1-h time-course. Each of these agonists significantly increased sucrose intake with variations in pattern, magnitude, and consistency as a function of sucrose concentration. Whereas the mu opioid agonist, DAMGO, and the delta1 opioid agonist, DPDPE, each enhanced sucrose intake at higher (2.5%, 10%), but not lower (0.5%), concentrations, the delta2 opioid agonist, Delt II, increased sucrose intake at lower (0.5%, 2.5%), but not higher (10%), concentrations. Kappa opioid agonists produced less consistent effects. The kappa1 opioid agonist, U50488H, increased sucrose intake at high (10%) concentrations and decreased sucrose intake at low (0.5%) concentrations, and the kappa3 opioid agonist, NalBzOH, inconsistently increased sucrose intake at the 0.5% (20 microg) and 10% (1 microg) concentrations. Thus, these data further implicate mu, delta1, and delta2 opioid mediation of palatable intake, particularly of its orosensory characteristics.

  3. Generalized concentration addition: a method for examining mixtures containing partial agonists.

    PubMed

    Howard, Gregory J; Webster, Thomas F

    2009-08-07

    Environmentally relevant toxic exposures often consist of simultaneous exposure to multiple agents. Methods to predict the expected outcome of such combinations are critical both to risk assessment and to an accurate judgment of whether combinations are synergistic or antagonistic. Concentration addition (CA) has commonly been used to assess the presence of synergy or antagonism in combinations of similarly acting chemicals, and to predict effects of combinations of such agents. CA has the advantage of clear graphical interpretation: Curves of constant joint effect (isoboles) must be negatively sloped straight lines if the mixture is concentration additive. However, CA cannot be directly used to assess combinations that include partial agonists, although such agents are of considerable interest. Here, we propose a natural extension of CA to a functional form that may be applied to mixtures including full agonists and partial agonists. This extended definition, for which we suggest the term "generalized concentration addition," encompasses linear isoboles with slopes of any sign. We apply this approach to the simple example of agents with dose-response relationships described by Hill functions with slope parameter n=1. The resulting isoboles are in all cases linear, with negative, zero and positive slopes. Using simple mechanistic models of ligand-receptor systems, we show that the same isobole pattern and joint effects are generated by modeled combinations of full and partial agonists. Special cases include combinations of two full agonists and a full agonist plus a competitive antagonist.

  4. Modeling synthetic lethality

    PubMed Central

    Le Meur, Nolwenn; Gentleman, Robert

    2008-01-01

    Background Synthetic lethality defines a genetic interaction where the combination of mutations in two or more genes leads to cell death. The implications of synthetic lethal screens have been discussed in the context of drug development as synthetic lethal pairs could be used to selectively kill cancer cells, but leave normal cells relatively unharmed. A challenge is to assess genome-wide experimental data and integrate the results to better understand the underlying biological processes. We propose statistical and computational tools that can be used to find relationships between synthetic lethality and cellular organizational units. Results In Saccharomyces cerevisiae, we identified multi-protein complexes and pairs of multi-protein complexes that share an unusually high number of synthetic genetic interactions. As previously predicted, we found that synthetic lethality can arise from subunits of an essential multi-protein complex or between pairs of multi-protein complexes. Finally, using multi-protein complexes allowed us to take into account the pleiotropic nature of the gene products. Conclusions Modeling synthetic lethality using current estimates of the yeast interactome is an efficient approach to disentangle some of the complex molecular interactions that drive a cell. Our model in conjunction with applied statistical methods and computational methods provides new tools to better characterize synthetic genetic interactions. PMID:18789146

  5. Interaction between the mu-agonist dermorphin and the delta-agonist [D-Ala2, Glu4]deltorphin in supraspinal antinociception and delta-opioid receptor binding.

    PubMed Central

    Negri, L.; Improta, G.; Lattanzi, R.; Potenza, R. L.; Luchetti, F.; Melchiorri, P.

    1995-01-01

    1. In rats, the interaction between the mu-opioid agonist dermorphin and the delta-opioid agonist [D-Ala2, Glu4]deltorphin was studied in binding experiments to delta-opioid receptors and in the antinociceptive test to radiant heat. 2. When injected i.c.v., doses of [D-Ala2, Glu4]deltorphin higher than 20 nmol produced antinociception in the rat tail-flick test to radiant heat. Lower doses were inactive. None of the doses tested elicited the maximum achievable response. This partial antinociception was accomplished with an in vivo occupancy of more than 97% of brain delta-opioid receptors and of 17% of mu-opioid receptors. Naloxone (0.1 mg kg-1, s.c.), and naloxonazine (10 mg kg-1, i.v., 24 h before), but not the selective delta-opioid antagonist naltrindole, antagonized the antinociception. 3. In vitro competitive inhibition studies in rat brain membranes showed that [D-Ala2, Glu4]deltorphin displaced [3H]-naltrindole from two delta-binding sites of high and low affinity. The addition of 100 microM Gpp[NH]p produced a three fold increase in the [D-Ala2, Glu4]deltorphin Ki value for both binding sites. The addition of 10 nM dermorphin increased the Ki value of the delta-agonist for the high affinity site five times. When Gpp[NH]p was added to the incubation medium together with 10 nM dermorphin, the high affinity Ki of the delta-agonist increased 15 times. 4. Co-administration into the rat brain ventricles of subanalgesic doses of dermorphin and [D-Ala2, Glu4]deltorphin resulted in synergistic antinociceptive responses. 5. Pretreatment with naloxone or with the non-equilibrium mu-antagonists naloxonazine and beta-funaltrexamine completely abolished the antinociceptive response of the mu-delta agonist combinations. 6. Pretreatment with the delta-opioid antagonists naltrindole and DALCE reduced the antinociceptive response of the dermorphin-[D-Ala2, Glu4]deltorphin combinations to a value near that observed after the mu-agonist alone. At the dosage used, naltrindole

  6. Effect of growth promotants on the occurrence of endogenous and synthetic steroid hormones on feedlot soils and in runoff from beef cattle feeding operations.

    PubMed

    Bartelt-Hunt, Shannon L; Snow, Daniel D; Kranz, William L; Mader, Terry L; Shapiro, Charles A; Donk, Simon J van; Shelton, David P; Tarkalson, David D; Zhang, Tian C

    2012-02-07

    Supplements and growth promotants containing steroid hormones are routinely administered to beef cattle to improve feeding efficiency, reduce behavioral problems, and enhance production. As a result, beef cattle manure will contain both synthetic steroids as well as a range of endogenous steroids including androgens, estrogens, and progestogens. A two-year controlled study was conducted in which beef cattle were administered steroid hormones via subcutaneous implants and feed additives and the occurrence of 16 endogenous and synthetic steroid hormones and metabolites was evaluated in runoff from beef cattle feedlots and in manure and soil collected from feedlot surfaces. Samples were extracted and analyzed using liquid chromatography tandem mass spectrometryfor metabolites of the synthetic androgen trenbolone acetate, 17α-trenbolone, 17β-trenbolone, for the nonsteroidal semisynthetic estrogen agonist, α-zearalanol, and the synthetic progesterone melengesterol acetate, as well as a wide range of endogeneous estrogens, androgens, and fusarium metabolites. Synthetic steroids including trenbolone metabolites and melengestrol acetate were detected in fresh manure and in feedlot surface soils from cattle administered synthetic steroids at concentrations up to 55 ± 22 ng/g dry weight (dw) (17α-trenbolone) and 6.5 ± 0.4 ng/g dw (melengesterol acetate). Melengesterol acetate was detected in 6% of runoff samples from feedlots holding cattle administered synthetic steroids at concentrations ranging up to 115 ng/L. The presence of melengesterol acetate in runoff from beef cattle feeding operations has not been previously reported. Synthetic steroids were not detected in manure or runoff from control cattle. A wide range of endogenous hormones were detected in runoff and feedlot surface soils and manure from cattle given synthetic steroids and from control cattle, with no statistically significant differences in concentration. These results indicate that runoff from

  7. RNA sequencing-based analysis of gallbladder cancer reveals the importance of the liver X receptor and lipid metabolism in gallbladder cancer

    PubMed Central

    Zuo, Mingxin; Rashid, Asif; Wang, Ying; Jain, Apurva; Li, Donghui; Behari, Anu; Kapoor, Vinay Kumar; Koay, Eugene J.; Chang, Ping; Vauthey, Jean Nicholas; Li, Yanan; Espinoza, Jaime A.; Roa, Juan Carlos; Javle, Milind

    2016-01-01

    Gallbladder cancer (GBC) is an aggressive malignancy. Although surgical resection may be curable, most patients are diagnosed at an advanced unresectable disease stage. Cholelithiasis is the major risk factor; however the pathogenesis of the disease, from gallstone cholecystitis to cancer, is still not understood. To understand the molecular genetic underpinnings of this cancer and explore novel therapeutic targets for GBC, we examined the key genes and pathways involved in GBC using RNA sequencing. We performed gene expression analysis of 32 cases of surgically-resected GBC along with normal gallbladder tissue controls. We observed that 519 genes were differentially expressed between GBC and normal GB mucosal controls. The liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor (FXR) /RXR pathways were the top canonical pathways involved in GBC. Key genes in these pathways, including SERPINB3 and KLK1, were overexpressed in GBC, especially in female GBC patients. Additionally, ApoA1 gene expression suppressed in GBC as compared with normal control tissues. LXR and FXR genes, known to be important in lipid metabolism also function as tumor suppressors and their down regulation appears to be critical for GBC pathogenesis. LXR agonists may have therapeutic value and as potential therapeutic targets. PMID:27167107

  8. Small-molecule agonists for the glucagon-like peptide 1 receptor

    PubMed Central

    Knudsen, Lotte Bjerre; Kiel, Dan; Teng, Min; Behrens, Carsten; Bhumralkar, Dilip; Kodra, János T.; Holst, Jens J.; Jeppesen, Claus B.; Johnson, Michael D.; de Jong, Johannes Cornelis; Jorgensen, Anker Steen; Kercher, Tim; Kostrowicki, Jarek; Madsen, Peter; Olesen, Preben H.; Petersen, Jacob S.; Poulsen, Fritz; Sidelmann, Ulla G.; Sturis, Jeppe; Truesdale, Larry; May, John; Lau, Jesper

    2007-01-01

    The peptide hormone glucagon-like peptide (GLP)-1 has important actions resulting in glucose lowering along with weight loss in patients with type 2 diabetes. As a peptide hormone, GLP-1 has to be administered by injection. Only a few small-molecule agonists to peptide hormone receptors have been described and none in the B family of the G protein coupled receptors to which the GLP-1 receptor belongs. We have discovered a series of small molecules known as ago-allosteric modulators selective for the human GLP-1 receptor. These compounds act as both allosteric activators of the receptor and independent agonists. Potency of GLP-1 was not changed by the allosteric agonists, but affinity of GLP-1 for the receptor was increased. The most potent compound identified stimulates glucose-dependent insulin release from normal mouse islets but, importantly, not from GLP-1 receptor knockout mice. Also, the compound stimulates insulin release from perfused rat pancreas in a manner additive with GLP-1 itself. These compounds may lead to the identification or design of orally active GLP-1 agonists. PMID:17213325

  9. beta-Adrenoceptor agonists enhance 5-hydroxytryptamine-mediated behavioural responses.

    PubMed Central

    Cowen, P. J.; Grahame-Smith, D. G.; Green, A. R.; Heal, D. J.

    1982-01-01

    The beta-adrenoceptor agonists, salbutamol, terbutaline and clenbuterol, were investigated for their effect on 5-hydroxytryptamine-mediated (5-HT) hyperactivity. 2 The lipophilic beta-adrenoceptor agonist, clenbuterol (5 mg/kg) enhanced the behaviours induced by quipazine (25 mg/kg), including headweaving, forepaw treading and hind-limb abduction and thus increased automated activity recording. Clenbuterol (5 mg/kg) also enhanced the hyperactivity syndrome produced by the 5-HT agonist, 5-methoxy N,N-dimethyltryptamine (2 mg/kg) and the combination of tranylcypromine (10 mg/kg) and L-tryptophan (50 mg/kg). Salbutamol and terbutaline potentiated quipazine-induced hyperactivity only when given at the higher dose of 20 mg/kg. 3 The effect of clenbuterol in enhancing quipazine hyperactivity was blocked by the centrally acting beta 1-adrenoceptor antagonist, metoprolol (5 mg/kg), but not by the beta 2-adrenoceptor antagonist, butoxamine (5 mg/kg) or the peripherally acting beta 1-adrenoceptor antagonist, atenolol (5 mg/kg). 4 Clenbuterol (5 mg/kg) did not enhance the circling responses produced by methamphetamine (0.5 mg/kg) in unilateral nigrostriatal-lesioned rats. 5 The results suggest that beta-adrenoceptor agonists in common with some established antidepressant treatments produce enhancement of 5-HT-mediated behavioural responses. PMID:6124294

  10. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto

    2009-12-18

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins aremore » known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.« less

  11. Long-acting beta 2-agonists in chronic obstructive pulmonary disease.

    PubMed

    Llewellyn-Jones, Carol

    2002-01-01

    Until recently, the use of long-acting beta 2-agonists in chronic obstructive pulmonary disease has been understated. There is now evidence that they may offer benefits beyond bronchodilation. This article reviews the management of chronic obstructive pulmonary disease and looks at the place of long-acting beta 2-agonists as a first-line treatment option.

  12. Importance of agonists in alpha-adrenoceptor classification and localisation of alpha1-adrenoceptors in human prostate.

    PubMed

    McGrath, J C; Naghadeh, M A; Pediani, J D; Mackenzie, J F; Daly, C J

    1999-01-01

    alpha-Adrenoceptor blocker drugs are commonly used in the clinical (non-surgical) treatment of BPH. alpha1-adrenoceptors were originally sub-divided using agonists but, subsequently, were sub-divided using only antagonists in ligand-ligand interactions, which did not require agonists at all. Ultimately, proof that adrenoceptors are functional receptors for the natural ligands, noradrenaline and adrenaline, requires that agonists be used. The earlier excitement engendered by finding varying agonist potency series in different tissues has not been revisited to place it in the context of current concepts of alpha1-adrenoceptor subtypes. This review will consider the advantages and limitations of different agonists for the study of alpha1-adrenoceptor subtypes including 'extreme' examples where the archetypal alpha1-adrenoceptor agonist phenylephrine activates alpha2-adrenoceptors and others where UK14304, often the alpha2-adrenoceptor agonist of choice, activates alpha1-adrenoceptors. New work will also be presented showing the interaction between agonists and the fluorescent alpha1-adrenoceptor antagonist QAPB. This introduces the novel point of view of studying the displacement of antagonists by agonists. Possible errors in antagonist classification arising from complexity in the actions of agonists and the recently developed method of fluorescent ligand binding on isolated living human prostatic smooth muscle cells will be discussed.

  13. Flow-injection chemiluminescence method to detect a β2 adrenergic agonist.

    PubMed

    Zhang, Guangbin; Tang, Yuhai; Shang, Jian; Wang, Zhongcheng; Yu, Hua; Du, Wei; Fu, Qiang

    2015-02-01

    A new method for the detection of β2 adrenergic agonists was developed based on the chemiluminescence (CL) reaction of β2 adrenergic agonist with potassium ferricyanide-luminol CL. The effect of β2 adrenergic agonists including isoprenaline hydrochloride, salbutamol sulfate, terbutaline sulfate and ractopamine on the CL intensity of potassium ferricyanide-luminol was discovered. Detection of the β2 adrenergic agonist was carried out in a flow system. Using uniform design experimentation, the influence factors of CL were optimized. The optimal experimental conditions were 1 mmol/L of potassium ferricyanide, 10 µmol/L of luminol, 1.2 mmol/L of sodium hydroxide, a flow speed of 2.6 mL/min and a distance of 1.2 cm from 'Y2 ' to the flow cell. The linear ranges and limit of detection were 10-100 and 5 ng/mL for isoprenaline hydrochloride, 20-100 and 5 ng/mL for salbutamol sulfate, 8-200 and 1 ng/mL for terbutaline sulfate, 20-100 and 4 ng/mL for ractopamine, respectively. The proposed method allowed 200 injections/h with excellent repeatability and precision. It was successfully applied to the determination of three β2 adrenergic agonists in commercial pharmaceutical formulations with recoveries in the range of 96.8-98.5%. The possible CL reaction mechanism of potassium ferricyanide-luminol-β2 adrenergic agonist was discussed from the UV/vis spectra. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Enzyme-linked immunosorbent assay (ELISA) for the detection of use of the synthetic cannabinoid agonists UR-144 and XLR-11 in human urine.

    PubMed

    Mohr, Amanda L A; Ofsa, Bill; Keil, Alyssa Marie; Simon, John R; McMullin, Matthew; Logan, Barry K

    2014-09-01

    Ongoing changes in the synthetic cannabinoid drug market create the need for relevant targeted immunoassays for rapid screening of biological samples. We describe the validation and performance characteristics of an enzyme-linked immunosorbent assay designed to detect use of one of the most prevalent synthetic cannabinoids in urine, UR-144, by targeting its pentanoic acid metabolite. Fluorinated UR-144 (XLR-11) has been demonstrated to metabolize to this common product. The assay has significant cross-reactivity with UR-144-5-OH, UR-144-4-OH and XLR-11-4-OH metabolites, but <10% cross-reactivity with the parent compounds, and no measurable cross-reactivity with other synthetic cannabinoids and their metabolites at concentrations of <1,000 ng/mL. The assay's cutoff is 5 ng/mL relative to the pentanoic acid metabolite of UR-144, which is used as the calibrator. The method was validated with 90 positive and negative control urine samples for UR-144, XLR-11 and its metabolites tested versus liquid chromatography-tandem mass spectrometry. The accuracy, sensitivity and specificity were determined to be 100% for the assay at the specified cutoff. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Update in TSH Receptor Agonists and Antagonists

    PubMed Central

    Neumann, Susanne

    2012-01-01

    The physiological role of the TSH receptor (TSHR) as a major regulator of thyroid function is well understood, but TSHRs are also expressed in multiple normal extrathyroidal tissues, and the physiological roles of TSHRs in these tissues are unclear. Moreover, TSHRs play a major role in several pathological conditions including hyperthyroidism, hypothyroidism, and thyroid tumors. Small molecule, “drug-like” TSHR agonists, neutral antagonists, and inverse agonists may be useful as probes of TSHR function in extrathyroidal tissues and as leads to develop drugs for several diseases of the thyroid. In this Update, we review the most recent findings regarding the development and use of these small molecule TSHR ligands. PMID:23019348

  16. Evaluation of peroxisome proliferator-activated receptor agonists on interleukin-5-induced eosinophil differentiation

    PubMed Central

    Smith, Steven G; Hill, Mike; Oliveria, John-Paul; Watson, Brittany M; Baatjes, Adrian J; Dua, Benny; Howie, Karen; Campbell, Heather; Watson, Rick M; Sehmi, Roma; Gauvreau, Gail M

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) agonists have been suggested as novel therapeutics for the treatment of inflammatory lung disease, such as allergic asthma. Treatment with PPAR agonists has been shown to inhibit airway eosinophilia in murine models of allergic asthma, which can occur through several mechanisms including attenuated generation of chemoattractants (e.g. eotaxin) and decreased eosinophil migrational responses. In addition, studies report that PPAR agonists can inhibit the differentiation of several cell types. To date, no studies have examined the effects of PPAR agonists on interleukin-5 (IL-5) -induced eosinophil differentiation from haemopoietic progenitor cells. Non-adherent mononuclear cells or CD34+ cells isolated from the peripheral blood of allergic subjects were grown for 2 weeks in Methocult® cultures with IL-5 (10 ng/ml) and IL-3 (25 ng/ml) in the presence of 1–1000 nm PPARα agonist (GW9578), PPARβ/δ agonist (GW501516), PPARγ agonist (rosiglitazone) or diluent. The number of eosinophil/basophil colony-forming units (Eo/B CFU) was quantified by light microscopy. The signalling mechanism involved was assessed by phosphoflow. Blood-extracted CD34+ cells cultured with IL-5 or IL-5 + IL-3 formed Eo/B CFU, which were significantly inhibited by rosiglitazone (100 nm, P < 0·01) but not GW9578 or GW501516. In addition, rosglitazone significantly inhibited IL-5-induced phosphorylation of extracellular signal-regulated kinase 1/2. We observed an inhibitory effect of rosiglitazone on eosinophil differentiation in vitro, mediated by attenuation of the extracellular signal-regulated kinase 1/2 signalling pathway. These findings indicate that the PPARγ agonist can attenuate tissue eosinophilia by interfering with local differentiative responses. PMID:24628018

  17. β-Agonist-mediated Relaxation of Airway Smooth Muscle Is Protein Kinase A-dependent*

    PubMed Central

    Morgan, Sarah J.; Deshpande, Deepak A.; Tiegs, Brian C.; Misior, Anna M.; Yan, Huandong; Hershfeld, Alena V.; Rich, Thomas C.; Panettieri, Reynold A.; An, Steven S.; Penn, Raymond B.

    2014-01-01

    Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of β-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased β-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, β-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which β-agonists exert their relaxant effects. PMID:24973219

  18. Self-Administration of Cocaine Induces Dopamine-Independent Self-Administration of Sigma Agonists

    PubMed Central

    Hiranita, Takato; Mereu, Maddalena; Soto, Paul L; Tanda, Gianluigi; Katz, Jonathan L

    2013-01-01

    Sigma1 receptors (σ1Rs) are intracellularly mobile chaperone proteins implicated in several disease processes, as well as psychiatric disorders and substance abuse. Here we report that although selective σ1R agonists (PRE-084, (+)-pentazocine) lacked reinforcing effects in drug-naive rats, over the course of 28 experimental sessions, which was more than sufficient for acquisition of cocaine self-administration, responding was not maintained by either σ1R agonist. In contrast, after subjects self-administered cocaine σ1R agonists were readily self-administered. The induced reinforcing effects were long lasting; a response for which subjects had no history of reinforcement was newly conditioned with both σ1R agonists, extinguished when injections were discontinued, and reconditioned when σ1R agonists again followed responses. Experience with food reinforcement was ineffective as an inducer of σ1R agonist reinforcement. Although a variety of dopamine receptor antagonists blocked cocaine self-administration, consistent with its dopaminergic mechanism, PRE-084 self-administration was entirely insensitive to these drugs. Conversely, the σR antagonist, BD1063, blocked PRE-084 self-administration but was inactive against cocaine. In microdialysis studies i.v. PRE-084 did not significantly stimulate dopamine at doses that were self-administered in rats either with or without a cocaine self-administration experience. The results indicate that cocaine experience induces reinforcing effects of previously inactive σ1R agonists, and that the mechanism underlying these reinforcing effects is dopamine independent. It is further suggested that induced σ1R mechanisms may have an essential role in treatment-resistant stimulant abuse, suggesting new approaches for the development of effective medications for stimulant abuse. PMID:23187725

  19. Self-administration of cocaine induces dopamine-independent self-administration of sigma agonists.

    PubMed

    Hiranita, Takato; Mereu, Maddalena; Soto, Paul L; Tanda, Gianluigi; Katz, Jonathan L

    2013-03-01

    Sigma(1) receptors (σ(1)Rs) are intracellularly mobile chaperone proteins implicated in several disease processes, as well as psychiatric disorders and substance abuse. Here we report that although selective σ(1)R agonists (PRE-084, (+)-pentazocine) lacked reinforcing effects in drug-naive rats, over the course of 28 experimental sessions, which was more than sufficient for acquisition of cocaine self-administration, responding was not maintained by either σ(1)R agonist. In contrast, after subjects self-administered cocaine σ(1)R agonists were readily self-administered. The induced reinforcing effects were long lasting; a response for which subjects had no history of reinforcement was newly conditioned with both σ(1)R agonists, extinguished when injections were discontinued, and reconditioned when σ(1)R agonists again followed responses. Experience with food reinforcement was ineffective as an inducer of σ(1)R agonist reinforcement. Although a variety of dopamine receptor antagonists blocked cocaine self-administration, consistent with its dopaminergic mechanism, PRE-084 self-administration was entirely insensitive to these drugs. Conversely, the σR antagonist, BD1063, blocked PRE-084 self-administration but was inactive against cocaine. In microdialysis studies i.v. PRE-084 did not significantly stimulate dopamine at doses that were self-administered in rats either with or without a cocaine self-administration experience. The results indicate that cocaine experience induces reinforcing effects of previously inactive σ(1)R agonists, and that the mechanism underlying these reinforcing effects is dopamine independent. It is further suggested that induced σ(1)R mechanisms may have an essential role in treatment-resistant stimulant abuse, suggesting new approaches for the development of effective medications for stimulant abuse.

  20. Characterization of the hypothermic effect of the synthetic cannabinoid HU-210 in the rat. Relation to the adrenergic system and endogenous pyrogens.

    PubMed

    Ovadia, H; Wohlman, A; Mechoulam, R; Weidenfeld, J

    1995-02-01

    In the present study we have characterized the hypothermic effect of the psychoactive cannabinoid HU-210, by investigating its interaction with the endogenous pyrogens, IL-1 and PGE2. We also studied the involvement of the adrenergic system in mediation of this hypothermic effect. Injection of HU-210 directly into the preoptic area caused a dose dependent reduction of rectal temperature from 37 to 32.1 degrees C. Injection of the non-psychoactive analog, HU-211 which does not bind to brain cannabinoid receptor, did not affect body temperature. Injection of the adrenergic agonists, CGP-12177 and clonidine (beta, and alpha adrenergic agonists, respectively) abrogated the hypothermia induced by HU-210. Injection of the adrenergic antagonists, prazosin (alpha 1) and propranolol (beta) enhanced the hypothermic effect of HU-210. Intracerebral administration of IL-1 or PGE2 to rats pretreated with HU-210 caused a transient inhibition of the hypothermia. The ex vivo rate of basal or bacterial endotoxin-induced synthesis of PGE2 by different brain regions, including the preoptic area was not affected by HU-210 administration. These results suggest that the synthetic cannabinoid HU-210 acts in the preoptic area, probably via the brain cannabinoid receptor to induce hypothermia. The hypothermic effect can be antagonized by adrenergic agonists and enhanced by adrenergic antagonists. HU-210 does not interfere with the pyrogenic effect of IL-1 or PGE2.

  1. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry

    PubMed Central

    Harris, D. Calvin; Jewett, Michael C.

    2014-01-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of non-biological polymers having new backbone compositions, new chemical properties, new structures, and new functions. PMID:22483202

  2. Designing synthetic biology.

    PubMed

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  3. A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis

    NASA Astrophysics Data System (ADS)

    Ghosh, Eshan; Srivastava, Ashish; Baidya, Mithu; Kumari, Punita; Dwivedi, Hemlata; Nidhi, Kumari; Ranjan, Ravi; Dogra, Shalini; Koide, Akiko; Yadav, Prem N.; Sidhu, Sachdev S.; Koide, Shohei; Shukla, Arun K.

    2017-12-01

    Beta-arrestins (βarrs) critically mediate desensitization, endocytosis and signalling of G protein-coupled receptors (GPCRs), and they scaffold a large number of interaction partners. However, allosteric modulation of their scaffolding abilities and direct targeting of their interaction interfaces to modulate GPCR functions selectively have not been fully explored yet. Here we identified a series of synthetic antibody fragments (Fabs) against different conformations of βarrs from phage display libraries. Several of these Fabs allosterically and selectively modulated the interaction of βarrs with clathrin and ERK MAP kinase. Interestingly, one of these Fabs selectively disrupted βarr-clathrin interaction, and when expressed as an intrabody, it robustly inhibited agonist-induced endocytosis of a broad set of GPCRs without affecting ERK MAP kinase activation. Our data therefore demonstrate the feasibility of selectively targeting βarr interactions using intrabodies and provide a novel framework for fine-tuning GPCR functions with potential therapeutic implications.

  4. Perioperative use of selective alpha-2 agonists and antagonists in small animals

    PubMed Central

    2004-01-01

    Abstract Alpha-2 agonists are the only single class of anesthetic drugs that induce reliable, dose-dependent sedation, analgesia, and muscle relaxation in dogs and cats. Used at low doses, as adjuncts to injectable and inhalational anesthetics, selective alpha-2 agonists dramatically reduce the amount of anesthetic drug required to induce and maintain anesthesia. This reduction in anesthetic requirements is achieved without significant depression of pulmonary function and with limited effects on cardiovascular function. Selective alpha-2 agonists can also be used postoperatively to potentiate the analgesic effects of opioids and other drugs. Given the nearly ideal pharmacodynamic profile and reversibility of alpha-2 agonists, these drugs will play a central role in balanced approaches to anesthesia and the management of perioperative pain in healthy dogs and cats. PMID:15283516

  5. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.

    PubMed

    Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai

    2017-12-01

    Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    PubMed Central

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In

  7. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.

    PubMed

    Farroni, Jeffrey S; McCool, Brian A

    2004-08-09

    Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The beta-amino acid taurine possessed 30-50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for beta-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here

  8. Do agonistic motives matter more than anger? Three studies of cardiovascular risk in adolescents.

    PubMed

    Ewart, Craig K; Elder, Gavin J; Smyth, Joshua M; Sliwinski, Martin J; Jorgensen, Randall S

    2011-09-01

    Three motivational profiles have been associated with recurring psychological stress in low-income youth and young adults: Striving to control others (agonistic striving), striving to control the self (transcendence striving), and not asserting control (dissipated striving). Agonistic striving has been associated with elevated ambulatory blood pressure during daily activities. Three studies tested the hypotheses that: (1) agonistic striving is associated with poor anger regulation, and (2) agonistic striving and poor anger regulation interactively elevate blood pressure. Motivational profiles, anger regulation, and ambulatory blood pressure were assessed in a multiethnic sample of 264 urban youth. (1) anger regulation/recovery during laboratory challenge; (2) anger/blood pressure during daily activities (48 hours). Replication of the profiles in distant cities showed they occur with similar frequency across differences of region, race, and gender. Analyses controlling for body size, race, and gender revealed that individuals with the agonistic striving profile had higher ambulatory pressure, especially during social encounters. They became more openly angry and aggressive when challenged but did not exhibit difficulty regulating anger in the laboratory, nor did they feel angrier during monitoring. However, individuals with the agonistic striving profile who did display poor anger regulation in the lab had the highest blood pressure; deficient self-regulatory capability amplified the positive association between agonistic striving and cardiovascular risk in both genders and all ethnic groups. Although anger is thought to increase cardiovascular risk, present findings suggest that anger and elevated blood pressure are coeffects of agonistic struggles to control others.

  9. Alisol B 23-acetate from the rhizomes of Alisma orientale is a natural agonist of the human pregnane X receptor.

    PubMed

    Kanno, Yuichiro; Yatsu, Tomofumi; Yamashita, Naoya; Zhao, Shuai; Li, Wei; Imai, Miyuki; Kashima, Manami; Inouye, Yoshio; Nemoto, Kiyomitsu; Koike, Kazuo

    2017-03-15

    Pregnane X receptor (PXR) is a key regulator of the induction of drug metabolizing enzymes. PXR has been studied for its importance in drug-drug or herb-drug interactions, and it is also a molecular target for the treatment of inflammatory and metabolic diseases. This study aims to determine new natural PXR-ligands from traditional plant medicines. The PXR activation activity was measured by a mammalian one hybrid assay of PXR. Identification of the active compound from Alisma rhizome (the rhizomes of Alisma orientale) was carried out by bioassay-guided fractionation method. The transcriptional activity of the liver-enriched nuclear receptors was measured by the luciferase reporter assay. The interaction between the SRC-1 and PXR was measured by a mammalian 2-hybrid assay. The expression of endogenous CYP3A4 mRNA in both cultured hPXR-overexpressing hepatoma cells and human primary hepatocytes were measured by quantitative RT-PCR method. The extract of Alisma rhizome showed the most potent activation activity by screening of a library of medicinal plant extracts. Alisol B 23-acetate (ABA) was identified to be the active compound of Alisma rhizome. ABA caused a concentration-dependent increase on the PXR-dependent transactivation of a luciferase reporter gene, but did not affect the ligand binding activity of the liver-enriched nuclear receptors, such as CAR, LXR, FXR, PPARα, PPARδ and PPARγ, emphasizing that ABA is a potent and specific agonist of PXR. With ABA treatment, the direct interaction between the ligand-binding domain of PXR and the receptor interaction domain of SRC1 was observed. ABA also induced the expression of endogenous CYP3A4 mRNA in both cultured hPXR-overexpressing hepatoma cells and human primary hepatocytes. Since the rhizomes of Alisma orientale are used for a wide range of ailments in traditional Chinese medicine and Japanese Kampo medicine, this study could possibly extend into the clinical usage of these medicines via the mechanism of

  10. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet.

    PubMed

    Kong, Bo; Luyendyk, James P; Tawfik, Ossama; Guo, Grace L

    2009-01-01

    Nonalcoholic steatohepatitis (NASH) comprises dysregulation of lipid metabolism and inflammation. Identification of the various genetic and environmental susceptibility factors for NASH may provide novel treatments to limit inflammation and fibrosis in patients. This study utilized a mouse model of hypercholesterolemia, low-density lipoprotein receptor knockout (LDLr(-/-)) mice fed a high-fat diet for 5 months, to test the hypothesis that farnesoid X receptor (FXR) deficiency contributed to NASH development. Either the high-fat diet or FXR deficiency increased serum alanine aminotransferase activity, whereas only FXR deficiency increased bile acid and alkaline phosphatase levels. FXR deficiency and high-fat feeding increased serum cholesterol and triglycerides. Although high fat led to macrosteatosis and hepatocyte ballooning in livers of mice regardless of genotype, no inflammatory infiltrate was observed in the livers of LDLr(-/-) mice. In contrast, in the livers of LDLr(-/-)/FXR(-/-) mice, foci of inflammatory cells were observed occasionally when fed the control diet and were greatly increased when fed the high-fat diet. Consistent with enhanced inflammatory cells, hepatic levels of tumor necrosis factor alpha and intercellular adhesion molecule-1 mRNA were increased by the high-fat diet in LDLr(-/-)/FXR(-/-) mice. In agreement with elevated levels of procollagen 1 alpha 1 and TGF-beta mRNA, type 1 collagen protein levels were increased in livers of LDLr(-/-)/FXR(-/-) mice fed a high-fat diet. In conclusion, FXR deficiency induces pathologic manifestations required for NASH diagnosis in a mouse model of hypercholesterolemia, including macrosteatosis, hepatocyte ballooning, and inflammation, which suggest a combination of FXR deficiency and high-fat diet is a risk factor for NASH development, and activation of FXR may be a therapeutic intervention in the treatment of NASH.

  11. Farnesoid X receptor regulates forkhead Box O3a activation in ethanol-induced autophagy and hepatotoxicity

    PubMed Central

    Manley, Sharon; Ni, Hong-Min; Williams, Jessica A.; Kong, Bo; DiTacchio, Luciano; Guo, Grace; Ding, Wen-Xing

    2014-01-01

    Alcoholic liver disease encompasses a wide spectrum of pathogenesis including steatosis, fibrosis, cirrhosis, and alcoholic steatohepatitis. Autophagy is a lysosomal degradation process that degrades cellular proteins and damaged/excess organelles, and serves as a protective mechanism in response to various stresses. Acute alcohol treatment induces autophagy via FoxO3a-mediated autophagy gene expression and protects against alcohol-induced steatosis and liver injury in mice. Farnesoid X Receptor (FXR) is a nuclear receptor that regulates cellular bile acid homeostasis. In the present study, wild type and FXR knockout (KO) mice were treated with acute ethanol for 16 h. We found that ethanol treated-FXR KO mice had exacerbated hepatotoxicity and steatosis compared to wild type mice. Furthermore, we found that ethanol treatment had decreased expression of various essential autophagy genes and several other FoxO3 target genes in FXR KO mice compared with wild type mice. Mechanistically, we did not find a direct interaction between FXR and FoxO3. Ethanol-treated FXR KO mice had increased Akt activation, increased phosphorylation of FoxO3 resulting in decreased FoxO3a nuclear retention and DNA binding. Furthermore, ethanol treatment induced hepatic mitochondrial spheroid formation in FXR KO mice but not in wild type mice, which may serve as a compensatory alternative pathway to remove ethanol-induced damaged mitochondria in FXR KO mice. These results suggest that lack of FXR impaired FoxO3a-mediated autophagy and in turn exacerbated alcohol-induced liver injury. PMID:25460735

  12. Kinetic and metabolic profiles of synthetic cannabinoids NNEI and MN-18.

    PubMed

    Kevin, Richard C; Lefever, Timothy W; Snyder, Rodney W; Patel, Purvi R; Gamage, Thomas F; Fennell, Timothy R; Wiley, Jenny L; McGregor, Iain S; Thomas, Brian F

    2018-01-01

    In 2014 and 2015, synthetic cannabinoid receptor agonists NNEI (N-1-naphthalenyl-1-pentyl-1H-indole-3-carboxamide) and MN-18 (N-1-naphthalenyl-1-pentyl-1H-indazole-3-carboxamide) were detected in recreationally used and abused products in multiple countries, and were implicated in episodes of poisoning and toxicity. Despite this, the pharmacokinetic profiles of NNEI and MN-18 have not been characterized. In the present study NNEI and MN-18 were incubated in rat and human liver microsomes and hepatocytes, to estimate kinetic parameters and to identify potential metabolic pathways, respectively. These parameters and pathways were then examined in vivo, via analysis of blood and urine samples from catheterized male rats following intraperitoneal (3 mg/kg) administration of NNEI and MN-18. Both NNEI and MN-18 were rapidly cleared by rat and human liver microsomes, and underwent a range of oxidative transformations during incubation with rat and human hepatocytes. Several unique metabolites were identified for the forensic identification of NNEI and MN-18 intake. Interestingly, NNEI underwent a greater number of biotransformations (20 NNEI metabolites versus 10 MN-18 metabolites), yet parent MN-18 was eliminated at a faster rate than NNEI in vivo. Additionally, in vivo elimination was more rapid than in vitro estimates. These data highlight that even closely related synthetic cannabinoids can possess markedly distinct pharmacokinetic profiles, which can vary substantially between in vitro and in vivo models. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Potent and selective agonists of alpha-melanotropin (alphaMSH) action at human melanocortin receptor 5; linear analogs of alpha-melanotropin.

    PubMed

    Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Cabello, M Angeles; Maroto, Marta; Teran, Ana

    2007-05-01

    Alpha-melanotropin, Ac-Ser(1)-Tyr-Ser-Met-Glu-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2)(1), is a non-selective endogenous agonist for the melanocortin receptor 5; the receptor present in various peripheral tissues and in the brain, cortex and cerebellum. Most of the synthetic analogs of alphaMSH, including a broadly used and more potent the NDP-alphaMSH peptide, Ac-Ser(1)-Tyr-Ser-Nle(4)-Glu-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2), are also not particularly selective for MC5R. To elucidate physiological functions of the melanocortin receptor 5 in rodents and humans, the receptor subtype selective research tools are needed. We report herein syntheses and pharmacological evaluation in vitro of several analogs of NDP-alphaMSH which are highly potent and specific agonists for the human MC5R. The new linear peptides, of structures and solubility properties similar to those of the endogenous ligand alphaMSH, are exemplified by compound 7, Ac-Ser(1)-Tyr-Ser-Met-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2) (Oic: octahydroindole-2-COOH, 4,4'-Bip: 4,4'-biphenylalanine, Pip: pipecolic acid), shortly NODBP-alphaMSH, which has an IC(50)=0.74 nM (binding assay) and EC(50)=0.41 (cAMP production assay) at hMC5R nM and greater than 3500-fold selectivity with respect to the melanocortin receptors 1b, 3 and 4. A shorter peptide derived from NODBP-alphaMSH: Ac-Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9) -NH(2) (17) was measured to be an agonist only 10-fold less potent at hMC5R than the full length parent peptide. In the structure of this smaller analog, the Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8) segment was found to be critical for high agonist potency, while the C-terminal Trp(9) residue was shown to be required for high hMC5R selectivity versus hMC1b,3,4R.

  14. Evaluation of peroxisome proliferator-activated receptor agonists on interleukin-5-induced eosinophil differentiation.

    PubMed

    Smith, Steven G; Hill, Mike; Oliveria, John-Paul; Watson, Brittany M; Baatjes, Adrian J; Dua, Benny; Howie, Karen; Campbell, Heather; Watson, Rick M; Sehmi, Roma; Gauvreau, Gail M

    2014-07-01

    Peroxisome proliferator-activated receptor (PPAR) agonists have been suggested as novel therapeutics for the treatment of inflammatory lung disease, such as allergic asthma. Treatment with PPAR agonists has been shown to inhibit airway eosinophilia in murine models of allergic asthma, which can occur through several mechanisms including attenuated generation of chemoattractants (e.g. eotaxin) and decreased eosinophil migrational responses. In addition, studies report that PPAR agonists can inhibit the differentiation of several cell types. To date, no studies have examined the effects of PPAR agonists on interleukin-5 (IL-5) -induced eosinophil differentiation from haemopoietic progenitor cells. Non-adherent mononuclear cells or CD34(+) cells isolated from the peripheral blood of allergic subjects were grown for 2 weeks in Methocult(®) cultures with IL-5 (10 ng/ml) and IL-3 (25 ng/ml) in the presence of 1-1000 nm PPARα agonist (GW9578), PPARβ/δ agonist (GW501516), PPARγ agonist (rosiglitazone) or diluent. The number of eosinophil/basophil colony-forming units (Eo/B CFU) was quantified by light microscopy. The signalling mechanism involved was assessed by phosphoflow. Blood-extracted CD34(+) cells cultured with IL-5 or IL-5 + IL-3 formed Eo/B CFU, which were significantly inhibited by rosiglitazone (100 nm, P < 0·01) but not GW9578 or GW501516. In addition, rosglitazone significantly inhibited IL-5-induced phosphorylation of extracellular signal-regulated kinase 1/2. We observed an inhibitory effect of rosiglitazone on eosinophil differentiation in vitro, mediated by attenuation of the extracellular signal-regulated kinase 1/2 signalling pathway. These findings indicate that the PPARγ agonist can attenuate tissue eosinophilia by interfering with local differentiative responses. © 2014 John Wiley & Sons Ltd.

  15. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compoundmore » action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.« less

  16. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells

    PubMed Central

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C.; Hershfeld, Alena; Kenyon, Lawrence C.

    2015-01-01

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K+ channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  17. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    PubMed

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  18. The Good, the Bad, and the Ugly: Agonistic Behaviour in Juvenile Crocodilians

    PubMed Central

    Brien, Matthew L.; Lang, Jeffrey W.; Webb, Grahame J.; Stevenson, Colin; Christian, Keith A.

    2013-01-01

    We examined agonistic behaviour in seven species of hatchling and juvenile crocodilians held in small groups (N = 4) under similar laboratory conditions. Agonistic interactions occurred in all seven species, typically involved two individuals, were short in duration (5–15 seconds), and occurred between 1600–2200 h in open water. The nature and extent of agonistic interactions, the behaviours displayed, and the level of conspecific tolerance varied among species. Discrete postures, non-contact and contact movements are described. Three of these were species-specific: push downs by C. johnstoni; inflated tail sweeping by C. novaeguineae; and, side head striking combined with tail wagging by C. porosus. The two long-snouted species (C. johnstoni and G. gangeticus) avoided contact involving the head and often raised the head up out of the way during agonistic interactions. Several behaviours not associated with aggression are also described, including snout rubbing, raising the head up high while at rest, and the use of vocalizations. The two most aggressive species (C. porosus, C. novaeguineae) appeared to form dominance hierarchies, whereas the less aggressive species did not. Interspecific differences in agonistic behaviour may reflect evolutionary divergence associated with morphology, ecology, general life history and responses to interspecific conflict in areas where multiple species have co-existed. Understanding species-specific traits in agonistic behaviour and social tolerance has implications for the controlled raising of different species of hatchlings for conservation, management or production purposes. PMID:24349018

  19. β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent.

    PubMed

    Morgan, Sarah J; Deshpande, Deepak A; Tiegs, Brian C; Misior, Anna M; Yan, Huandong; Hershfeld, Alena V; Rich, Thomas C; Panettieri, Reynold A; An, Steven S; Penn, Raymond B

    2014-08-15

    Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of β-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased β-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, β-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which β-agonists exert their relaxant effects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Do Agonistic Motives Matter More Than Anger? Three Studies of Cardiovascular Risk in Adolescents

    PubMed Central

    Ewart, Craig K.; Elder, Gavin J.; Smyth, Joshua M.; Sliwinski, Martin J.; Jorgensen, Randall S.

    2011-01-01

    Objective Three motivational profiles have been associated with recurring psychological stress in low-income youth and young adults: Striving to control others (agonistic striving), striving to control the self (transcendence striving), and not asserting control (dissipated striving); Agonistic Striving has been associated with elevated ambulatory blood pressure during daily activities. Three studies tested the hypotheses that: (1) Agonistic Striving is associated with poor anger regulation, and (2) Agonistic Striving and poor anger regulation interactively elevate blood pressure. Design Motivational profiles, anger regulation, and ambulatory blood pressure were assessed in a multiethnic sample of 264 urban youth. Main outcome measures (1) Anger regulation/recovery during laboratory challenge; (2) anger / blood pressure during daily activities (48 hours). Results and conclusion Replication of the profiles in distant cities showed they occur with similar frequency across differences of region, race, and gender. Analyses controlling for body size, race, and gender revealed that individuals with the Agonistic Striving profile had higher ambulatory pressure, especially during social encounters. They became more openly angry and aggressive when challenged, but did not exhibit difficulty regulating anger in the laboratory, nor did they feel more angry during monitoring. However, individuals with the Agonistic Striving profile who did display poor anger regulation in the lab had the highest blood pressure; deficient self-regulatory capability amplified the positive association between Agonistic Striving and cardiovascular risk in both genders and all ethnic groups. Although anger is thought to increase cardiovascular risk, present findings suggest that anger and elevated blood pressure are co-effects of agonistic struggles to control others. PMID:21534673

  1. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

    PubMed

    Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A

    2017-07-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological

  2. Cholecystokinin type B receptor antagonist PD-136,450 is a partial secretory agonist in the stomach and a full agonist in the pancreas of the rat.

    PubMed Central

    Schmassmann, A; Garner, A; Flogerzi, B; Hasan, M Y; Sanner, M; Varga, L; Halter, F

    1994-01-01

    Gastrin (cholecystokinin type B (CCK-B)) receptor antagonists may help to elucidate the physiological role of gastrin, have therapeutic potential as acid antisecretory drugs, and may be of use as adjuvant therapy for gastrin sensitive tumours. In binding studies, the gastrin receptor antagonist PD-136,450 had at least 1000 fold greater affinity for gastrin (CCK-B) than CCK-A receptors. In this study the biological activity of PD-136,450 was evaluated in conscious and anaesthetised rats. PD-136,450 antagonised gastrin stimulated acid secretion after subcutaneous (IC50: 0.28 mumol/kg; conscious rats) and intravenous (IC50: 0.17 mumol/kg; anaesthetised rats) administration. In basal secreting fistula animals, the compound stimulated acid output to 30 (5)% of the maximal response to gastrin. Stimulant activity was not caused by gastrin release. As an agonist PD-136,450 was about 350 times less potent than gastrin-17 on a molar basis. In addition, PD-136,450 was a powerful agonist of pancreatic secretion in anaesthetised rats. The specific gastrin antagonist L-365,260 inhibited the (partial) agonist activity of PD-136,450 in the stomach and the specific CCK-A receptor antagonist L-364,718 inhibited the agonist activity of PD-136,450 in the pancreas. It is concluded that the agonist effect of PD-136,450 is mediated via interaction with the gastrin (CCK-B) receptor in the stomach and the CCK-A receptor in the pancreas. PMID:8307482

  3. Activation of the endogenous nociceptin system by selective nociceptin receptor agonist SCH 221510 produces antitransit and antinociceptive effect: a novel strategy for treatment of diarrhea-predominant IBS.

    PubMed

    Fichna, J; Sobczak, M; Mokrowiecka, A; Cygankiewicz, A I; Zakrzewski, P K; Cenac, N; Sałaga, M; Timmermans, J-P; Vergnolle, N; Małecka-Panas, E; Krajewska, W M; Storr, M

    2014-11-01

    Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, defined by the presence of loose stools and abdominal pain. In search for a novel anti-IBS-D therapy, here we investigated the nociceptin receptor (NOP)-dependent effects in the GI tract. A novel potent and selective NOP agonist SCH 221510 was used in the study. The effect of NOP activation on mouse intestinal motility was characterized in vitro and in vivo, in physiological conditions and in animal models of hypermotility and diarrhea. Well-established mouse models of visceral pain were used to characterize the antinociceptive effect of the NOP activation. To provide additional evidence that the endogenous nociceptin system is a relevant target for IBS, NOP expression and nociceptin levels were quantified in serum and colonic biopsies from IBS-D patients. SCH 221510 produced a potent NOP-mediated inhibitory effect on mouse intestinal motility in vitro and in vivo in physiological conditions. The NOP agonist displayed an antidiarrheal and analgesic action after oral administration in animal models mimicking the symptoms of IBS-D. Studies on human samples revealed a strong decrease in endogenous nociceptin system expression in IBS-D patients compared with healthy controls. Collectively, mouse and human data suggest that the endogenous nociceptin system is involved in IBS-D and may become a target for anti-IBS-D treatments using potent and selective synthetic NOP agonists. © 2014 John Wiley & Sons Ltd.

  4. 3D-Pharmacophore Identification for κ-Opioid Agonists Using Ligand-Based Drug-Design Techniques

    NASA Astrophysics Data System (ADS)

    Yamaotsu, Noriyuki; Hirono, Shuichi

    A selective κ-opioid receptor (KOR) agonist might act as a powerful analgesic without the side effects of μ-opioid receptor-selective drugs such as morphine. The eight classes of known KOR agonists have different chemical structures, making it difficult to construct a pharmacophore model that takes them all into account. Here, we summarize previous efforts to identify the pharmacophore for κ-opioid agonists and propose a new three-dimensional pharmacophore model that encompasses the κ-activities of all classes. This utilizes conformational sampling of agonists by high-temperature molecular dynamics and pharmacophore extraction through a series of molecular superpositions.

  5. Synthetic and semi-synthetic chondroitin sulfate oligosaccharides, polysaccharides, and glycomimetics.

    PubMed

    Bedini, Emiliano; Parrilli, Michelangelo

    2012-07-15

    Chondroitin sulfate (CS) is a sulfated polysaccharide involved in a myriad of biological processes. Due to the variable sulfation pattern of CS polymer chains, the need to study in detail structure-activity relationships regarding CS biomedical features has provoked much interest in obtaining synthetic CS species. This paper reviews two decades of synthetic and semi-synthetic CS oligosaccharides, polysaccharides, and glycomimetics obtained by chemical, chemoenzymatic, enzymatic, and microbiological-chemical strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Liver X receptor agonist prevents LPS-induced mastitis in mice.

    PubMed

    Fu, Yunhe; Tian, Yuan; Wei, Zhengkai; Liu, Hui; Song, Xiaojing; Liu, Wenbo; Zhang, Wenlong; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Liver X receptor-α (LXR-α) which belongs to the nuclear receptor superfamily, is a ligand-activated transcription factor. Best known for its ability to regulate lipid metabolism and transport, LXRs have recently also been implicated in regulation of inflammatory response. The aim of this study was to investigate the preventive effects of synthetic LXR-α agonist T0901317 on LPS-induced mastitis in mice. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. T0901317 was injected 1h before and 12h after induction of LPS intraperitoneally. The results showed that T0901317 significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase (MPO); down-regulated the level of pro-inflammatory mediators including TNF-α, IL-1β, IL-6, COX-2 and PEG2; inhibited the phosphorylation of IκB-α and NF-κB p65, caused by LPS. Moreover, we report for the first time that LXR-α activation impaired LPS-induced mastitis. Taken together, these data indicated that T0901317 had protective effect on mastitis and the anti-inflammatory mechanism of T0901317 on LPS induced mastitis in mice may be due to its ability to inhibit NF-κB signaling pathway. LXR-α activation can be used as a therapeutic approach to treat mastitis. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Synthetic cannabinoid JWH-018 and psychosis: an explorative study.

    PubMed

    Every-Palmer, Susanna

    2011-09-01

    Aroma, Spice, K2 and Dream are examples of a class of new and increasingly popular recreational drugs. Ostensibly branded "herbal incense", they have been intentionally adulterated with synthetic cannabinoids such as JWH-018 in order to confer on them cannabimimetic psychoactive properties while circumventing drug legislation. JWH-018 is a potent cannabinoid receptor agonist. Little is known about its pharmacology and toxicology in humans. This is the first research considering the effects of JWH-018 on a psychiatric population and exploring the relationship between JWH-018 and psychotic symptoms. This paper presents the results of semi-structured interviews regarding the use and effects of JWH-018 in 15 patients with serious mental illness in a New Zealand forensic and rehabilitative service. All 15 subjects were familiar with a locally available JWH-018 containing product called "Aroma" and 86% reported having used it. They credited the product's potent psychoactivity, legality, ready availability and non-detection in drug testing as reasons for its popularity, with most reporting it had replaced cannabis as their drug of choice. Most patients had assumed the product was "natural" and "safe". Anxiety and psychotic symptoms were common after use, with 69% of users experiencing or exhibiting symptoms consistent with psychotic relapse after smoking JWH-018. Although psychological side effects were common, no one reported becoming physically unwell after using JWH-018. Three subjects described developing some tolerance to the product, but no one reported withdrawal symptoms. It seems likely that JWH-018 can precipitate psychosis in vulnerable individuals. People with risk factors for psychosis should be counseled against using synthetic cannabinoids. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    PubMed Central

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 Project: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. PMID:26272997

  9. The glycine transport inhibitor sarcosine is an inhibitory glycine receptor agonist.

    PubMed

    Zhang, Hai Xia; Lyons-Warren, Ariel; Thio, Liu Lin

    2009-01-01

    Sarcosine is an endogenous amino acid that is a competitive inhibitor of the type I glycine transporter (GlyT1), an N-methyl-d-aspartate receptor (NMDAR) co-agonist, and an important intermediate in one-carbon metabolism. Its therapeutic potential for schizophrenia further underscores its clinical importance. The structural similarity between sarcosine and glycine and sarcosine's ability to serve as an NMDAR co-agonist led us to examine whether sarcosine is also an agonist at the inhibitory glycine receptor (GlyR). We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons and found that sarcosine evoked a dose-dependent, strychnine sensitive, Cl(-) current that cross-inhibited glycine currents. Sarcosine evoked this current with Li(+) in the extracellular solution to block GlyT1, in neurons treated with the essentially irreversible GlyT1 inhibitor N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS), and in neurons plated in the absence of glia. These results indicate that the sarcosine currents did not result from GlyT1 inhibition or heteroexchange. We conclude that sarcosine is a GlyR agonist.

  10. Radiolabelled D2 agonists as prolactinoma imaging agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otto, C.A.

    1989-08-01

    During the past year, further studies on mAChR were conducted. These studies included verification of the difference in pituitary distribution based on ligand charge. The pituitary localization of TRB. A neutral mAChR ligand, was verified. The lack of QNB blockade of TRB uptake was tested by blockage with scopolamine, another mAChR antagonist and by testing the effect in a different strain of rat. Neither scopolamine or change of rat strain had any effect. We concluded that TRB uptake in pituitary is not a receptor-mediated process. Further studies were conducted with an additional quaternized mAChR ligand: MQNB. Pituitary localization of MQNB,more » like MTRB, could be blocked by pretreatment with QNB. We have tentatively concluded that permanent charge on a mAChR antagonist changes the mechanism of uptake in the pituitary. Time course studies and the effects of DES on myocardial uptake are reported. A brief report on preliminary results of evaluation of quaternized mAChR ligands in the heart is included. In a limited series of such ligands, we have observed a single binding site and a difference in B{sub max} values: QNB competition studies yield larger B{sub max} values than studies with {sup 3}H-NMS. Progress in the synthesis of D{sub 2} agonists includes solving a synthetic problem and preparation of the cold'' analogue of N-0437 using procedures applicable to eventual synthesis with {sup 11}C-CH{sub 3}I. 2 refs., 5 figs., 1 tab.« less

  11. Differential profile of typical, atypical and third generation antipsychotics at human 5-HT7a receptors coupled to adenylyl cyclase: detection of agonist and inverse agonist properties.

    PubMed

    Rauly-Lestienne, Isabelle; Boutet-Robinet, Elisa; Ailhaud, Marie-Christine; Newman-Tancredi, Adrian; Cussac, Didier

    2007-10-01

    5-HT(7) receptors are present in thalamus and limbic structures, and a possible role of these receptors in the pathology of schizophrenia has been evoked. In this study, we examined binding affinity and agonist/antagonist/inverse agonist properties at these receptors of a large series of antipsychotics, i.e., typical, atypical, and third generation compounds preferentially targeting D(2) and 5-HT(1A) sites. Adenylyl cyclase (AC) activity was measured in HEK293 cells stably expressing the human (h) 5-HT(7a) receptor isoform. 5-HT and 5-CT increased cyclic adenosine monophosphate level by about 20-fold whereas (+)-8-OH-DPAT, the antidyskinetic agent sarizotan, and the novel antipsychotic compound bifeprunox exhibited partial agonist properties at h5-HT(7a) receptors stimulating AC. Other compounds antagonized 5-HT-induced AC activity with pK (B) values which correlated with their pK (i) as determined by competition binding vs [(3)H]5-CT. The selective 5-HT(7) receptor ligand, SB269970, was the most potent antagonist. For antipsychotic compounds, the following rank order of antagonism potency (pK (B)) was ziprasidone > tiospirone > SSR181507 > or = clozapine > or = olanzapine > SLV-314 > SLV-313 > or = aripiprazole > or = chlorpromazine > nemonapride > haloperidol. Interestingly, pretreatment of HEK293-h5-HT(7a) cells with forskolin enhanced basal AC activity and revealed inverse agonist properties for both typical and atypical antipsychotics as well as for aripiprazole. In contrast, other novel antipsychotics exhibited diverse 5-HT(7a) properties; SLV-313 and SLV-314 behaved as quasi-neutral antagonists, SSR181507 acted as an inverse agonist, and bifeprunox as a partial agonist, as mentioned above. In conclusion, the differential properties of third generation antipsychotics at 5-HT(7) receptors may influence their antipsychotic profile.

  12. Microbiota-induced obesity requires farnesoid X receptor.

    PubMed

    Parséus, Ava; Sommer, Nina; Sommer, Felix; Caesar, Robert; Molinaro, Antonio; Ståhlman, Marcus; Greiner, Thomas U; Perkins, Rosie; Bäckhed, Fredrik

    2017-03-01

    The gut microbiota has been implicated as an environmental factor that modulates obesity, and recent evidence suggests that microbiota-mediated changes in bile acid profiles and signalling through the bile acid nuclear receptor farnesoid X receptor (FXR) contribute to impaired host metabolism. Here we investigated if the gut microbiota modulates obesity and associated phenotypes through FXR. We fed germ-free (GF) and conventionally raised (CONV-R) wild-type and Fxr-/- mice a high-fat diet (HFD) for 10 weeks. We monitored weight gain and glucose metabolism and analysed the gut microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr -deficient mice to GF wild-type mice. The gut microbiota promoted weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr-/- and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr-/- and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. Our results indicate that the gut microbiota promotes diet-induced obesity and associated phenotypes through FXR, and that FXR may contribute to increased adiposity by altering the microbiota composition. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity.

    PubMed

    Yao, Yongxue; Harrison, Kathleen A; Al-Hassani, Mohammed; Murphy, Robert C; Rezania, Samin; Konger, Raymond L; Travers, Jeffrey B

    2012-03-16

    To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.

  14. Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism.

    PubMed

    Zhang, Limin; Xie, Cen; Nichols, Robert G; Chan, Siu H J; Jiang, Changtao; Hao, Ruixin; Smith, Philip B; Cai, Jingwei; Simons, Margaret N; Hatzakis, Emmanuel; Maranas, Costas D; Gonzalez, Frank J; Patterson, Andrew D

    2016-01-01

    The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is not fully understood. The current study investigated the influence of FXR activity on the gut microbiota community structure and function and its impact on hepatic lipid metabolism. Predictions about the metabolic contribution of the gut microbiota to the host were made using 16S rRNA-based PICRUSt ( p hylogenetic i nvestigation of c ommunities by r econstruction of u nobserved st ates), then validated using 1 H nuclear magnetic resonance-based metabolomics, and results were summarized by using genome-scale metabolic models. Oral Gly-MCA administration altered the gut microbial community structure, notably reducing the ratio of Firmicutes to Bacteroidetes and its PICRUSt-predicted metabolic function, including reduced production of short-chain fatty acids (substrates for hepatic gluconeogenesis and de novo lipogenesis) in the ceca of HFD-fed mice. Metabolic improvement was intestinal FXR dependent, as revealed by the lack of changes in HFD-fed intestine-specific Fxr -null ( Fxr ΔIE ) mice treated with Gly-MCA. Integrative analyses based on genome-scale metabolic models demonstrated an important link between Lactobacillus and Clostridia bile salt hydrolase activity and bacterial fermentation. Hepatic metabolite levels after Gly-MCA treatment correlated with altered levels of gut bacterial species. In conclusion, modulation of the gut microbiota by inhibition of intestinal FXR signaling alters host liver lipid metabolism and improves obesity-related metabolic dysfunction. IMPORTANCE The farnesoid X receptor (FXR) plays an important role in mediating the dialog between the host

  15. Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism

    PubMed Central

    Zhang, Limin; Xie, Cen; Nichols, Robert G.; Chan, Siu H. J.; Jiang, Changtao; Hao, Ruixin; Smith, Philip B.; Cai, Jingwei; Simons, Margaret N.; Hatzakis, Emmanuel; Maranas, Costas D.; Gonzalez, Frank J.

    2016-01-01

    ABSTRACT The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is not fully understood. The current study investigated the influence of FXR activity on the gut microbiota community structure and function and its impact on hepatic lipid metabolism. Predictions about the metabolic contribution of the gut microbiota to the host were made using 16S rRNA-based PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states), then validated using 1H nuclear magnetic resonance-based metabolomics, and results were summarized by using genome-scale metabolic models. Oral Gly-MCA administration altered the gut microbial community structure, notably reducing the ratio of Firmicutes to Bacteroidetes and its PICRUSt-predicted metabolic function, including reduced production of short-chain fatty acids (substrates for hepatic gluconeogenesis and de novo lipogenesis) in the ceca of HFD-fed mice. Metabolic improvement was intestinal FXR dependent, as revealed by the lack of changes in HFD-fed intestine-specific Fxr-null (FxrΔIE) mice treated with Gly-MCA. Integrative analyses based on genome-scale metabolic models demonstrated an important link between Lactobacillus and Clostridia bile salt hydrolase activity and bacterial fermentation. Hepatic metabolite levels after Gly-MCA treatment correlated with altered levels of gut bacterial species. In conclusion, modulation of the gut microbiota by inhibition of intestinal FXR signaling alters host liver lipid metabolism and improves obesity-related metabolic dysfunction. IMPORTANCE The farnesoid X receptor (FXR) plays an important role in mediating the dialog between the host

  16. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control.

    PubMed

    Decker, M W; Meyer, M D; Sullivan, J P

    2001-10-01

    Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.

  17. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  18. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Universite de Rennes 1, 35065 Rennes Cedex; Biologie Servier, 45520 Gidy

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes inducedmore » by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.« less

  19. The Role of Agonistic Striving in the Association Between Cortisol and High Blood Pressure.

    PubMed

    Ewart, Craig K; Elder, Gavin J; Jorgensen, Randall S; Fitzgerald, Sheila T

    2017-05-01

    A social action theory of chronic stress proposes that agonistic striving (seeking to influence or control others) impairs cardiovascular health by magnifying the impact of high adversity-induced cortisol levels on blood pressure. We tested three predictions of social action theory: (1) the social action theory taxonomy of regulatory strivings characterizes young adults from high-adversity neighborhoods; (2) high cortisol levels predict high blood pressure more reliably in the subgroup with the agonistic striving profile than in subgroups with other profiles; (3) the association of higher cortisol and higher blood pressure with agonistic striving is not explained by negative affect (depressive symptoms/dysphoria, anger, hostility). Participants were young adults (N = 198, mean [SD] age = 32 [3.4] years); 71% female; 65% black) from disadvantaged urban neighborhoods. Motive profiles (including agonistic strivings) were assessed using the Social Competence Interview. Cortisol levels were derived from saliva samples; blood pressure level was obtained during two days of ambulatory monitoring. Psychological measures of negative affect were assessed using questionnaires. The predicted taxonomy of regulatory strivings was replicated in this sample; the interaction between cortisol and motive profile was significant (F(2, 91) = 6.72, p = .002); analyses of simple effects disclosed that higher cortisol levels predicted higher ambulatory blood pressure only in individuals who exhibited agonistic striving. Depressive symptoms/dysphoria, trait anger, and hostility were not correlated with agonistic striving, cortisol, or blood pressure. Agonistic striving may represent a distinctive (and novel) social-cognitive mechanism of toxic stress and cardiovascular risk.

  20. Determination of beta-agonists in swine hair by μFIA and chemiluminescence.

    PubMed

    Chen, Xu; Luo, Yong; Shi, Bo; Gao, Zhigang; Du, Yuguang; Liu, Xianming; Zhao, Weijie; Lin, Bingcheng

    2015-04-01

    β-Agonists are a group of illegal feed additives. In this paper, it was found that the light emission produced by the oxidation of luminol by potassium ferricyanide was enhanced by the β-agonists (ractopamine, salbutamol, and terbutaline). Based on chemiluminescence phenomenon, a novel, rapid, and sensitive microflow injection analysis system on a microfluidic glass chip was established for determination of the β-agonists. The chip was fabricated from two glass plates (64 mm × 32 mm) with microchannels of 200 μm width and 100 μm depth. The detection limits were achieved at 2.0 × 10(-8) mol/L of ractopamine, 1.0 × 10(-8) mol/L of terbutaline and 5.0 × 10(-7) mol/L of salbutamol. In this report, our method was applied for determination of the β-agonists in swine hair from three different sources with satisfactory results. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

    PubMed

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-08-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.

  2. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells.

    PubMed

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C; Hershfeld, Alena; Kenyon, Lawrence C; Deshpande, Deepak A

    2016-02-15

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K(+) channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  3. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    PubMed

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  4. SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium.

    PubMed

    Chen, Ye; Kim, Jae Kyoung; Hirning, Andrew J; Josić, Krešimir; Bennett, Matthew R

    2015-08-28

    A challenge of synthetic biology is the creation of cooperative microbial systems that exhibit population-level behaviors. Such systems use cellular signaling mechanisms to regulate gene expression across multiple cell types. We describe the construction of a synthetic microbial consortium consisting of two distinct cell types—an "activator" strain and a "repressor" strain. These strains produced two orthogonal cell-signaling molecules that regulate gene expression within a synthetic circuit spanning both strains. The two strains generated emergent, population-level oscillations only when cultured together. Certain network topologies of the two-strain circuit were better at maintaining robust oscillations than others. The ability to program population-level dynamics through the genetic engineering of multiple cooperative strains points the way toward engineering complex synthetic tissues and organs with multiple cell types. Copyright © 2015, American Association for the Advancement of Science.

  5. Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice.

    PubMed

    Lawson, Sarah K; Gray, Andrew C; Woehrle, Nancy S

    2016-11-01

    Social impairments in autism remain poorly understood and without approved pharmacotherapies. Novel animals models are needed to elucidate mechanisms and evaluate novel treatments for the social deficits in autism. Recently, serotonin 1B receptor (5-HT1B) agonist challenge in mice was shown to induce autism-like behaviors including perseveration, reduced prepulse inhibition, and delayed alternation deficits. However, the effects of 5-HT1B agonists on autism-related social behaviors in mice remain unknown. Here, we examine the effects of 5-HT1B agonist challenge on sociability and preference for social novelty in mice. We also examine the effects of 5-HT1B agonist treatment on average rearing duration, a putative rodent measure of non-selective attention. Non-selective attention is an associated feature of autism that is also not well understood. We show that 5-HT1B receptor activation reduces sociability, preference for social novelty, and rearing in mice. In addition, we examine the ability of oxytocin, an off-label treatment for the social impairments in autism, to reverse 5-HT1B agonist-induced social and attention deficits in mice. We show that oxytocin restores social novelty preference in mice treated with a 5-HT1B agonist. We also show that oxytocin attenuates 5-HT1B agonist-induced sociability and rearing deficits in mice. Our results suggest that 5-HT1B agonist challenge provides a useful pharmacological mouse model for aspects of autism, and implicate 5-HT1B in autism social and attention deficits. Moreover, our findings suggest that oxytocin may treat the social deficits in autism through a mechanism involving 5-HT1B. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Systematic review: cardiovascular safety profile of 5-HT(4) agonists developed for gastrointestinal disorders.

    PubMed

    Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; De Maeyer, J H; Stanghellini, V

    2012-04-01

    The nonselective 5-HT(4) receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT(4) agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006-2008 and DDW 2008-2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT(4) agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT(4) agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT(1) receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT(4) agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT(4) agonists with no hERG or 5-HT(1) affinity (renzapride, clebopride, mosapride). 5-HT(4) agonists for GI disorders differ in chemical structure and selectivity for 5-HT(4) receptors. Selectivity for 5-HT(4) over non-5-HT(4) receptors may influence the agent's safety and overall risk-benefit profile. Based on available evidence, highly selective 5-HT(4) agonists may offer improved safety to treat patients with impaired GI motility. © 2012 Blackwell Publishing Ltd.

  7. Systematic review: cardiovascular safety profile of 5-HT4 agonists developed for gastrointestinal disorders

    PubMed Central

    Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; Maeyer, J H; Stanghellini, V

    2012-01-01

    Summary Background The nonselective 5-HT4 receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). Aim To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT4 agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Methods Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006–2008 and DDW 2008–2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Results Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT4 agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT4 agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT1 receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT4 agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT4 agonists with no hERG or 5-HT1 affinity (renzapride, clebopride, mosapride). Conclusions 5-HT4 agonists for GI disorders differ in chemical structure and selectivity for 5-HT4 receptors. Selectivity for 5-HT4 over non-5-HT4 receptors may influence the agent's safety and overall risk–benefit profile. Based on available evidence, highly selective 5-HT4 agonists may offer improved safety to treat patients with impaired GI motility. PMID:22356640

  8. Beta2-adrenoceptor agonists for dysmenorrhoea.

    PubMed

    Fedorowicz, Zbys; Nasser, Mona; Jagannath, Vanitha A; Beaman, Jessica H; Ejaz, Kiran; van Zuuren, Esther J

    2012-05-16

    Dysmenorrhoea is a common gynaecological complaint that can affect as many as 50% of premenopausal women, 10% of whom suffer severely enough to be rendered incapacitated for one to three days during each menstrual cycle. Primary dysmenorrhoea is where women suffer from menstrual pain but lack any pathology in their pelvic anatomy. Beta2-adrenoceptor agonists have been used in the treatment of women with primary dysmenorrhoea but their effects are unclear. To determine the effectiveness and safety of beta2-adrenoceptor agonists in the treatment of primary dysmenorrhoea. We searched the Cochrane Menstrual Disorders and Subfertility Group Specialised Register; CENTRAL (The Cochrane Library 2011, Issue 8); MEDLINE; EMBASE; PsycINFO and the EBM Reviews databases. The last search was on 22 August 2011. Randomised controlled trials comparing beta2-adrenoceptor agonists with placebo or no treatment, each other or any other conventional treatment in women of reproductive age with primary dysmenorrhoea. Two review authors independently assessed trial quality and extracted the data. Five trials involving 187 women with an age range of 15 to 40 years were included. Oral isoxsuprine was compared with placebo in two trials; terbutaline oral spray, ritodrine chloride and oral hydroxyphenyl-orciprenalin were compared with placebo in a further three trials. Clinical diversity in the studies in terms of the interventions being evaluated, assessments at different time points and the use of different assessment tools mitigated against pooling of outcome data across studies in order to provide a summary estimate of effect for any of the comparisons. Only one study, with unclear risk of bias, reported pain relief with a combination of isoxsuprine, acetaminophen and caffeine. None of the other studies reported any significant clinical difference in effectiveness between the intervention and placebo. Adverse effects were reported with all of these medications in up to a quarter of the

  9. Targeting GLP-1 receptor trafficking to improve agonist efficacy.

    PubMed

    Jones, Ben; Buenaventura, Teresa; Kanda, Nisha; Chabosseau, Pauline; Owen, Bryn M; Scott, Rebecca; Goldin, Robert; Angkathunyakul, Napat; Corrêa, Ivan R; Bosco, Domenico; Johnson, Paul R; Piemonti, Lorenzo; Marchetti, Piero; Shapiro, A M James; Cochran, Blake J; Hanyaloglu, Aylin C; Inoue, Asuka; Tan, Tricia; Rutter, Guy A; Tomas, Alejandra; Bloom, Stephen R

    2018-04-23

    Glucagon-like peptide-1 receptor (GLP-1R) activation promotes insulin secretion from pancreatic beta cells, causes weight loss, and is an important pharmacological target in type 2 diabetes (T2D). Like other G protein-coupled receptors, the GLP-1R undergoes agonist-mediated endocytosis, but the functional and therapeutic consequences of modulating GLP-1R endocytic trafficking have not been clearly defined. Here, we investigate a series of biased GLP-1R agonists with variable propensities for GLP-1R internalization and recycling. Compared to a panel of FDA-approved GLP-1 mimetics, compounds that retain GLP-1R at the plasma membrane produce greater long-term insulin release, which is dependent on a reduction in β-arrestin recruitment and faster agonist dissociation rates. Such molecules elicit glycemic benefits in mice without concomitant increases in signs of nausea, a common side effect of GLP-1 therapies. Our study identifies a set of agents with specific GLP-1R trafficking profiles and the potential for greater efficacy and tolerability as T2D treatments.

  10. MT-7716, a novel selective nonpeptidergic NOP receptor agonist, effectively blocks ethanol-induced increase in GABAergic transmission in the rat central amygdala

    PubMed Central

    Kallupi, Marsida; Oleata, Christopher S.; Luu, George; Teshima, Koji; Ciccocioppo, Roberto; Roberto, Marisa

    2014-01-01

    The GABAergic system in the central amygdala (CeA) plays a major role in ethanol dependence and the anxiogenic-like response to ethanol withdrawal. A large body of evidence shows that Nociceptin/Orphanin FQ (N/OFQ) regulates ethanol intake and anxiety-like behavior. In the rat, ethanol significantly augments CeA GABA release, whereas N/OFQ diminishes it. Using electrophysiological techniques in an in vitro slice preparation, in this study we investigated the effects of a nonpeptidergic NOP receptor agonist, MT-7716 [(R)-2-3-[1-(Acenaphthen-1-yl)piperidin-4-yl]-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl-N-methylacetamide hydrochloride hydrate], and its interaction with ethanol on GABAergic transmission in CeA slices of naïve rats. We found that MT-7716 dose-dependently (100–1000 nM) diminished evoked GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs) and increased paired-pulse facilitation (PPF) ratio of these evoked IPSPs, suggesting a presynaptic site of action of the MT-7716 by decreasing GABA release at CeA synapses. The presynaptic action of MT-7716 was also supported by the significant decrease in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) induced by the nociceptin receptor (NOP) agonist. Interestingly, MT-7716 prevented the ethanol-induced augmentation of evoked IPSPs. A putative selective NOP antagonist, [Nphe1]Nociceptin(1–13)NH2, totally prevented the MT-7716-induced inhibition of IPSP amplitudes indicating that MT-7716 exerts its effect through NOPs. These data provide support for an interaction between the nociceptin and GABAergic systems in the CeA and for the anti-alcohol properties of the NOP activation. The development of a synthetic nonpeptidergic NOP receptor agonist such as MT-7716 may represent a useful therapeutic target for alcoholism. PMID:24600360

  11. Peroxidative metabolism of beta2-agonists salbutamol and fenoterol and their analogues.

    PubMed

    Reszka, Krzysztof J; McGraw, Dennis W; Britigan, Bradley E

    2009-06-01

    Phenolic beta(2)-adrenoreceptor agonists salbutamol, fenoterol, and terbutaline relax smooth muscle cells that relieve acute airway bronchospasm associated with asthma. Why their use sometimes fails to relieve bronchospasm and why the drugs appear to be less effective in patients with severe asthma exacerbations remains unclear. We show that in the presence of hydrogen peroxide, both myeloperoxidase, secreted by activated neutrophils present in inflamed airways, and lactoperoxidase, which is naturally present in the respiratory system, catalyze oxidation of these beta(2)-agonists. Azide, cyanide, thiocyanate, ascorbate, glutathione, and methimazole inhibited this process, while methionine was without effect. Inhibition by ascorbate and glutathione was associated with their oxidation to corresponding radical species by the agonists' derived phenoxyl radicals. Using electron paramagnetic resonance (EPR), we detected free radical metabolites from beta(2)-agonists by spin trapping with 2-methyl-2-nitrosopropane (MNP). Formation of these radicals was inhibited by pharmacologically relevant concentrations of methimazole and dapsone. In alkaline buffers, radicals from fenoterol and its structural analogue, metaproteronol, were detected by direct EPR. Analysis of these spectra suggests that oxidation of fenoterol and metaproterenol, but not terbutaline, causes their transformation through intramolecular cyclization by addition of their amino nitrogen to the aromatic ring. Together, these results indicate that phenolic beta(2)-agonists function as substrates for airway peroxidases and that the resulting products differ in their structural and functional properties from their parent compounds. They also suggest that these transformations can be modulated by pharmacological approaches using appropriate peroxidase inhibitors or alternative substrates. These processes may affect therapeutic efficacy and also play a role in adverse reactions of the beta(2)-agonists.

  12. The Synthetic Peroxisome Proliferator-Activated Receptor-γ Agonist Ciglitazone Attenuates Neuroinflammation and Accelerates Encapsulation in Bacterial Brain Abscesses1

    PubMed Central

    Kielian, Tammy; Md. Syed, Mohsin; Liu, Shuliang; Phulwani, Nirmal K.; Phillips, Napoleon; Wagoner, Gail; Drew, Paul D.; Esen, Nilufer

    2008-01-01

    Brain abscesses result from a pyogenic parenchymal infection commonly initiated by Gram-positive bacteria such as Staphylococcus aureus. Although the host immune response elicited following infection is essential for effective bacterial containment, this response also contributes to the significant loss of brain parenchyma by necrosis that may be reduced by modulating the inflammatory response. Ciglitazone, a PPAR-γ agonist with anti-inflammatory properties, was evaluated for its ability to influence the course of brain abscess development when treatment was initiated 3 days following infection. Interestingly, abscess-associated bacterial burdens were significantly lower following ciglitazone administration, which could be explained, in part, by the finding that ciglitazone enhanced S. aureus phagocytosis by microglia. In addition, ciglitazone attenuated the expression of select inflammatory mediators during brain abscess development including inducible NO synthase, TNF-α, IL-1β, CXCL2, and CCL3. Unexpectedly, ciglitazone also accelerated brain abscess encapsulation, which was typified by the heightened expression of fibronectin and α-smooth muscle actin-positive myofibroblasts. Collectively, through its ability to attenuate excessive inflammation and accelerate abscess encapsulation, ciglitazone may effectively sequester brain abscesses and limit bacterial dissemination. PMID:18354226

  13. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  14. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.

    2018-01-01

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  15. Rapid desensitization and resensitization of 5-HT sub 2 receptor mediated phosphatidyl inositol hydrolysis by serotonin agonists in quiescent calf aortic smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauwels, P.J.; Van Gompel, P.; Leysen, J.E.

    1990-01-01

    Agonist regulation of 5-hydroxytryptamine{sub 2} (5-HT{sub 2}) receptors was studied in calf aortic smooth muscle cultures incubated in a quiescent, defined synthetic medium that does not stimulate cell proliferation, but that provides cells with supplements that maintain cell viability. In these cells, 5-hydroxytryptamine (5-HT)-induced ({sup 3}H)inositol phosphates accumulation showed the characteristics of a 5-HT{sub 2} receptor coupled transducing system according to the inhibition of the response by 5-HT{sub 2} antagonists at nanomolar concentrations. The 5-HT{sub 2} receptor coupled response became rapidly desensitized during continued incubation with 5-HT and 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM); nearly full desensitization was obtained in two hours with 10more » {mu}M 5-HT and DOM pretreatment. The recovery of the response had a half-live of 5 hours after 2 hours pretreatment and of 9.5 to 12.5 hours after 24 to 96 hours agonist pretreatment. The DOM-induced desensitization of the 5-HT{sub 2} receptor coupled response was fully blocked by 0.1 {mu}M cinanserin. Cinanserin alone did not induce desensitization or up-regulation of the 5-HT{sub 2} receptor coupled response at 0.1 {mu}M.« less

  16. The convulsive and electroencephalographic changes produced by nonpeptidic delta-opioid agonists in rats: comparison with pentylenetetrazol.

    PubMed

    Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H

    2006-06-01

    delta-Opioid agonists produce convulsions and antidepressant-like effects in rats. It has been suggested that the antidepressant-like effects are produced through a convulsant mechanism of action either through overt convulsions or nonconvulsive seizures. This study evaluated the convulsive and seizurogenic effects of nonpeptidic delta-opioid agonists at doses that previously were reported to produce antidepressant-like effects. In addition, delta-opioid agonist-induced electroencephalographic (EEG) and behavioral changes were compared with those produced by the chemical convulsant pentylenetetrazol (PTZ). For these studies, EEG changes were recorded using a telemetry system before and after injections of the delta-opioid agonists [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenz (SNC80) and [(+)-4-[alpha(R)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide [(+)-BW373U86]. Acute administration of nonpeptidic delta-opioid agonists produced bilateral ictal and paroxysmal spike and/or sharp wave discharges. delta-Opioid agonists produced brief changes in EEG recordings, and tolerance rapidly developed to these effects; however, PTZ produced longer-lasting EEG changes that were exacerbated after repeated administration. Studies with antiepileptic drugs demonstrated that compounds used to treat absence epilepsy blocked the convulsive effects of nonpeptidic delta-opioid agonists. Overall, these data suggest that delta-opioid agonist-induced EEG changes are not required for the antidepressant-like effects of these compounds and that neural circuitry involved in absence epilepsy may be related to delta-opioid agonist-induced convulsions. In terms of therapeutic development, these data suggest that it may be possible to develop delta-opioid agonists devoid of convulsive properties.

  17. The Glycine Transport Inhibitor Sarcosine Is an Inhibitory Glycine Receptor Agonist

    PubMed Central

    Zhang, Hai Xia; Lyons-Warren, Ariel; Thio, Liu Lin

    2009-01-01

    Summary Sarcosine is an endogenous amino acid that is a competitive inhibitor of the type I glycine transporter (GlyT1), an N-methyl-D-aspartate receptor (NMDAR) co-agonist, and an important intermediate in one-carbon metabolism. Its therapeutic potential for schizophrenia further underscores its clinical importance. The structural similarity between sarcosine and glycine and sarcosine's ability to serve as an NMDAR co-agonist led us to examine whether sarcosine is also an agonist at the inhibitory glycine receptor (GlyR). We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons and found that sarcosine evoked a dose-dependent, strychnine sensitive, Cl- current that cross-inhibited glycine currents. Sarcosine evoked this current with Li+ in the extracellular solution to block GlyT1, in neurons treated with the essentially irreversible GlyT1 inhibitor N[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine (NFPS), and in neurons plated in the absence of glia. These results indicate that the sarcosine currents did not result from GlyT1 inhibition or heteroexchange. We conclude that sarcosine is a GlyR agonist. PMID:19619564

  18. PPAR agonists regulate brain gene expression: relationship to their effects on ethanol consumption.

    PubMed

    Ferguson, Laura B; Most, Dana; Blednov, Yuri A; Harris, R Adron

    2014-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. Although prescribed for dyslipidemia and type-II diabetes, PPAR agonists also possess anti-addictive characteristics. PPAR agonists decrease ethanol consumption and reduce withdrawal severity and susceptibility to stress-induced relapse in rodents. However, the cellular and molecular mechanisms facilitating these properties have yet to be investigated. We tested three PPAR agonists in a continuous access two-bottle choice (2BC) drinking paradigm and found that tesaglitazar (PPARα/γ; 1.5 mg/kg) and fenofibrate (PPARα; 150 mg/kg) decreased ethanol consumption in male C57BL/6J mice while bezafibrate (PPARα/γ/β; 75 mg/kg) did not. We hypothesized that changes in brain gene expression following fenofibrate and tesaglitazar treatment lead to reduced ethanol drinking. We studied unbiased genomic profiles in areas of the brain known to be important for ethanol dependence, the prefrontal cortex (PFC) and amygdala, and also profiled gene expression in liver. Genomic profiles from the non-effective bezafibrate treatment were used to filter out genes not associated with ethanol consumption. Because PPAR agonists are anti-inflammatory, they would be expected to target microglia and astrocytes. Surprisingly, PPAR agonists produced a strong neuronal signature in mouse brain, and fenofibrate and tesaglitazar (but not bezafibrate) targeted a subset of GABAergic interneurons in the amygdala. Weighted gene co-expression network analysis (WGCNA) revealed co-expression of treatment-significant genes. Functional annotation of these gene networks suggested that PPAR agonists might act via neuropeptide and dopaminergic signaling pathways in the amygdala. Our results reveal gene targets through which PPAR agonists can affect alcohol consumption behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Synthetic and semi-synthetic strategies to study ubiquitin signaling.

    PubMed

    van Tilburg, Gabriëlle Ba; Elhebieshy, Angela F; Ovaa, Huib

    2016-06-01

    The post-translational modification ubiquitin can be attached to the ɛ-amino group of lysine residues or to a protein's N-terminus as a mono ubiquitin moiety. Via its seven intrinsic lysine residues and its N-terminus, it can also form ubiquitin chains on substrates in many possible ways. To study ubiquitin signals, many synthetic and semi-synthetic routes have been developed for generation of ubiquitin-derived tools and conjugates. The strength of these methods lies in their ability to introduce chemo-selective ligation handles at sites that currently cannot be enzymatically modified. Here, we review the different synthetic and semi-synthetic methods available for ubiquitin conjugate synthesis and their contribution to how they have helped investigating conformational diversity of diubiquitin signals. Next, we discuss how these methods help understanding the ubiquitin conjugation-deconjugation system by recent advances in ubiquitin ligase probes and diubiquitin-based DUB probes. Lastly, we discuss how these methods help studying post-translational modification of ubiquitin itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hepatic inflammation caused by dysregulated bile acid synthesis is reversible by butyrate supplementation.

    PubMed

    Sheng, Lili; Jena, Prasant Kumar; Hu, Ying; Liu, Hui-Xin; Nagar, Nidhi; Kalanetra, Karen M; French, Samuel William; French, Samuel Wheeler; Mills, David A; Wan, Yu-Jui Yvonne

    2017-12-01

    Dysregulated bile acid (BA) synthesis or reduced farnesoid X receptor (FXR) levels are found in patients having metabolic diseases, autoimmune hepatitis, and liver cirrhosis or cancer. The objective of this study was to establish the relationship between butyrate and dysregulated BA synthesis-induced hepatitis as well as the effect of butyrate in reversing the liver pathology. Wild-type (WT) and FXR knockout (KO) male mice were placed on a control (CD) or western diet (WD) for 15 months. In the presence or absence of butyrate supplementation, feces obtained from 15-month-old WD-fed FXR KO mice, which had severe hepatitis and liver tumors, were transplanted to 7-month-old WD-fed FXR KO for 3 months. Hepatic phenotypes, microbiota profile, and BA composition were analyzed. Butyrate-generating bacteria and colonic butyrate concentration were reduced due to FXR inactivation and further reduced by WD intake. In addition, WD-fed FXR KO male mice had the highest concentration of hepatic β-muricholic acid (β-MCA) and bacteria-generated deoxycholic acid (DCA) accompanied by serious hepatitis. Moreover, dysregulated BA and reduced SCFA signaling co-existed in both human liver cancers and WD-fed FXR KO mice. Microbiota transplantation using butyrate-deficient feces derived from 15-month-old WD-fed FXR KO mice increased hepatic lymphocyte numbers as well as hepatic β-MCA and DCA concentrations. Furthermore, butyrate supplementation reduced hepatic β-MCA as well as DCA and eliminated hepatic lymphocyte infiltration. In conclusion, reduced butyrate contributes to the development of hepatitis in the FXR KO mouse model. In addition, butyrate reverses dysregulated BA synthesis and its associated hepatitis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Triazolophostins: a library of novel and potent agonists of IP3 receptors.

    PubMed

    Vibhute, Amol M; Konieczny, Vera; Taylor, Colin W; Sureshan, Kana M

    2015-06-28

    IP3 receptors are channels that mediate the release of Ca(2+) from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of synthetic conditions for each analog. Such lengthy one-at-a-time syntheses limit access to AdA analogs. We have addressed this problem by synthesizing a library of triazole-based AdA analogs, triazolophostins, by employing click chemistry. An advanced intermediate having all the necessary phosphates and a β-azide at the anomeric position was reacted with various alkynes under Cu(i) catalysis to yield triazoles, which upon deprotection gave triazolophostins. All eleven triazolophostins synthesized are more potent than IP3 and some are equipotent with AdA in functional analyses of IP3 receptors. We show that a triazole ring can replace adenine without compromising the potency of AdA and provide facile routes to novel AdA analogs.

  2. Pharmacological characterization of ATPM [(-)-3-aminothiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride], a novel mixed kappa-agonist and mu-agonist/-antagonist that attenuates morphine antinociceptive tolerance and heroin self-administration behavior.

    PubMed

    Wang, Yu-Jun; Tao, Yi-Min; Li, Fu-Ying; Wang, Yu-Hua; Xu, Xue-Jun; Chen, Jie; Cao, Ying-Lin; Chi, Zhi-Qiang; Neumeyer, John L; Zhang, Ao; Liu, Jing-Gen

    2009-04-01

    ATPM [(-)-3-amino-thiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride] was found to have mixed kappa- and mu-opioid activity and identified to act as a full kappa-agonist and a partial mu-agonist by in vitro binding assays. The present study was undertaken to characterize its in vivo effects on morphine antinociceptive tolerance in mice and heroin self-administration in rats. ATPM was demonstrated to yield more potent antinociceptive effects than (-)U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide). It was further found that the antinociceptive effects of ATPM were mediated by kappa- and mu-, but not delta-opioid, receptors. In addition to its agonist profile on the mu-receptor, ATPM also acted as a mu-antagonist, as measured by its inhibition of morphine-induced antinociception. It is more important that ATPM had a greater ratio of the ED(50) value of sedation to that of antinociception than (-)U50,488 (11.8 versus 3.7), indicative of a less sedative effect than (-)U50,488H. In addition, ATPM showed less potential to develop antinociceptive tolerance relative to (-)U50,488H and morphine. Moreover, it dose-dependently inhibited morphine-induced antinociceptive tolerance. Furthermore, it was found that chronic treatment of rats for 8 consecutive days with ATPM (0.5 mg/kg s.c.) produced sustained decreases in heroin self-administration. (-)U50,488H (2 mg/kg s.c.) also produced similar inhibitory effect. Taken together, our findings demonstrated that ATPM, a novel mixed kappa-agonist and mu-agonist/-antagonist, could inhibit morphine-induced antinociceptive tolerance, with less potential to develop tolerance and reduce heroin self-administration with less sedative effect. kappa-Agonists with some mu-activity appear to offer some advantages over selective kappa-agonists for the treatment of heroin abuse.

  3. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    PubMed

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  4. Discovery of Peripheral κ-Opioid Receptor Agonists as Novel Analgesics.

    PubMed

    Suzuki, Shinya; Sugawara, Yuji; Inada, Hideaki; Tsuji, Riichiro; Inoue, Atsushi; Tanimura, Ryuji; Shimozono, Rieko; Konno, Mitsuhiro; Ohyama, Tomofumi; Higashi, Eriko; Sakai, Chizuka; Kawai, Koji

    2017-01-01

    κ-Opioid receptor agonists with high selectivity over the μ-opioid receptor and peripheral selectivity are attractive targets in the development of drugs for pain. We have previously attempted to create novel analgesics with peripheral selective κ-opioid receptor agonist on the basis of TRK-820. In this study, we elucidated the biological properties of 17-hydroxy-cyclopropylmethyl and 10α-hydroxy derivatives. These compounds were found to have better κ-opioid receptor selectivity and peripheral selectivity than TRK-820.

  5. Choline as an agonist: determination of its agonistic potency on cholinergic receptors.

    PubMed

    Ulus, I H; Millington, W R; Buyukuysal, R L; Kiran, B K

    1988-07-15

    These experiments examined the potency of choline as a cholinergic agonist at both muscarinic and nicotinic receptors in rat brain and peripheral tissues. Choline stimulated the contraction of isolated smooth muscle preparations of the stomach fundus, urinary bladder and trachea and reduced the frequency of spontaneous contractions of the right atrium at high micromolar and low millimolar concentrations. The potency of choline to elicit a biological response varied markedly among these tissues; EC50 values ranged between 0.41 mM in the fundus to 14.45 mM in the atrium. Choline also displaced [3H]quinuclidinyl benzilate binding in a concentration-dependent manner although, again, its potency varied among different brain regions (Ki = 1.2 to 3.5 mM) and peripheral tissues (Ki = 0.28 to 3.00 mM). Choline exhibited a comparable affinity for nicotinic receptors. It stimulated catecholamine release from the vascularly perfused adrenal gland (EC50 = 1.3 mM) and displaced L-[3H]nicotine binding to membrane preparations of brain and peripheral tissues (Ki = 0.38 to 1.17 mM). However, the concentration of choline required to bind to cholinergic receptors in most tissues was considerably higher than serum levels either in controls (8-13 microM) or following the administration of choline chloride (200 microM). These results clearly demonstrate that choline is a weak cholinergic agonist. Its potency is too low to account for the central nervous system effects produced by choline administration, although the direct activation of cholinergic receptors in several peripheral tissues may explain some of its side effects.

  6. Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.

  7. Effect of β-agonist on the dexamethasone-induced expression of aromatase by the human monocyte cells

    PubMed Central

    Ohno, Shuji; Wachi, Hiroshi

    2017-01-01

    Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus–pituitary–adrenal axis (HPA) and facilitation of the (hypothalamus)–sympathetic–adrenomedullary system (SAM) attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex), the synthetic β-agonist isoproterenol (Iso) and the β-antagonist propranolol (Pro). Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health. PMID:28126832

  8. Effect of β-agonist on the dexamethasone-induced expression of aromatase by the human monocyte cells.

    PubMed

    Watanabe, Masatada; Ohno, Shuji; Wachi, Hiroshi

    2017-02-01

    Emerging evidence suggests that sex steroids are important for human skin health. In particular, estrogen improves skin thickness, elasticity and moisture of older women. The major source of circulating estrogen is the ovary; however, local estrogen synthesis and secretion have important roles in, for example, bone metabolism and breast cancer development. We hypothesized that infiltrated peripheral monocytes are one of the sources of estrogen in skin tissues. We also hypothesized that, during atopic dermatitis under stress, a decline in the hypothalamus-pituitary-adrenal axis (HPA) and facilitation of the (hypothalamus)-sympathetic-adrenomedullary system (SAM) attenuates estrogen secretion from monocytes. Based on this hypothesis, we tested aromatase expression in the human peripheral monocyte-derived cell line THP-1 in response to the synthetic glucocorticoid dexamethasone (Dex), the synthetic β-agonist isoproterenol (Iso) and the β-antagonist propranolol (Pro). Dex mimics glucocorticoid secreted during excitation of the HPA, and Iso mimics catecholamine secreted during excitation of the SAM. We found that aromatase activity and the CYP19A1 gene transcript were both upregulated in THP-1 cells in the presence of Dex. Addition of Iso induced their downregulation and further addition of Pro rescued aromatase expression. These results may suggest that attenuation of estrogen secretion from peripheral monocytes could be a part of the pathology of stress-caused deterioration of atopic dermatitis. Further examination using an in vitro human skin model including THP-1 cells might be a valuable tool for investigating the therapeutic efficacy and mechanism of estrogen treatment for skin health. © 2017 The authors.

  9. The potency of different serotonergic agonists in counteracting opioid evoked cardiorespiratory disturbances

    PubMed Central

    Dutschmann, M.; Waki, H.; Manzke, T.; Simms, A. E.; Pickering, A. E.; Richter, D. W.; Paton, J. F. R.

    2009-01-01

    Serotonin receptor (5-HTR) agonists that target 5-HT4(a)R and 5-HT1AR can reverse μ-opioid receptor (μ-OR)-evoked respiratory depression. Here, we have tested whether such rescuing by serotonin agonists also applies to the cardiovascular system. In working heart–brainstem preparations in situ, we have recorded phrenic nerve activity, thoracic sympathetic chain activity (SCA), vascular resistance and heart rate (HR) and in conscious rats, diaphragmatic electromyogram, arterial blood pressure (BP) and HR via radio-telemetry. In addition, the distribution of 5-HT4(a)R and 5-HT1AR in ponto-medullary cardiorespiratory networks was identified using histochemistry. Systemic administration of the μ-OR agonist fentanyl in situ decreased HR, vascular resistance, SCA and phrenic nerve activity. Subsequent application of the 5-HT1AR agonist 8-OH-DPAT further enhanced bradycardia, but partially compensated the decrease in vascular resistance, sympathetic activity and restored breathing. By contrast, the 5-HT4(a)R agonist RS67333 further decreased vascular resistance, HR and sympathetic activity, but partially rescued breathing. In conscious rats, administration of remifentanyl caused severe respiratory depression, a decrease in mean BP accompanied by pronounced bradyarrhythmia. 8-OH-DPAT restored breathing and prevented the bradyarrhythmia; however, BP and HR remained below baseline. In contrast, RS67333 further suppressed cardiovascular functions in vivo and only partially recovered breathing in some cases. The better recovery of μ-OR cardiorespiratory disturbance by 5-HT1AR than 5-HT4(a)R is supported by the finding that 5-HT1AR was more densely expressed in key brainstem nuclei for cardiorespiratory control compared with 5-HT4(a)R. We conclude that during treatment of severe pain, 5-HT1AR agonists may provide a useful tool to counteract opioid-mediated cardiorespiratory disturbances. PMID:19651661

  10. Synthetic environments

    NASA Astrophysics Data System (ADS)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  11. Activation of muscle nicotinic acetylcholine receptor channels by nicotinic and muscarinic agonists

    PubMed Central

    Akk, Gustav; Auerbach, Anthony

    1999-01-01

    The dose-response parameters of recombinant mouse adult neuromuscular acetylcholine receptor channels (nAChR) activated by carbamylcholine, nicotine, muscarine and oxotremorine were measured. Rate constants for agonist association and dissociation, and channel opening and closing, were estimated from single-channel kinetic analysis.The dissociation equilibrium constants were (mM): ACh (0.16)carbamylcholine (5.1)>oxotremorine M (0.6)>nicotine (0.5)>muscarine (0.15).Rat neuronal α4β2 nAChR can be activated by all of the agonists. However, detailed kinetic analysis was impossible because the recordings lacked clusters representing the activity of a single receptor complex. Thus, the number of channels in the patch was unknown and the activation rate constants could not be determined.Considering both receptor affinity and agonist efficacy, muscarine and oxotremorine are significant agonists of muscle-type nAChR. The results are discussed in terms of structure-function relationships at the nAChR transmitter binding site. PMID:10602325

  12. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist

    PubMed Central

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-01-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury. PMID:26196013

  13. Prospects for Creation of Cardioprotective Drugs Based on Cannabinoid Receptor Agonists.

    PubMed

    Maslov, Leonid N; Khaliulin, Igor; Zhang, Yi; Krylatov, Andrey V; Naryzhnaya, Natalia V; Mechoulam, Raphael; De Petrocellis, Luciano; Downey, James M

    2016-05-01

    Cannabinoids can mimic the infarct-reducing effect of early ischemic preconditioning, delayed ischemic preconditioning, and ischemic postconditioning against myocardial ischemia/reperfusion. They do this primarily through both CB1 and CB2 receptors. Cannabinoids are also involved in remote preconditioning of the heart. The cannabinoid receptor ligands also exhibit an antiapoptotic effect during ischemia/reperfusion of the heart. The acute cardioprotective effect of cannabinoids is mediated by activation of protein kinase C, extracellular signal-regulated kinase, and p38 kinase. The delayed cardioprotective effect of cannabinoid anandamide is mediated via stimulation of phosphatidylinositol-3-kinase-Akt signaling pathway and enhancement of heat shock protein 72 expression. The delayed cardioprotective effect of another cannabinoid, Δ9-tetrahydrocannabinol, is associated with augmentation of nitric oxide (NO) synthase expression, but data on the involvement of NO synthase in the acute cardioprotective effect of cannabinoids are contradictory. The adenosine triphosphate-sensitive K(+)channel is involved in the synthetic cannabinoid HU-210-induced cardiac resistance to ischemia/reperfusion injury. Cannabinoids inhibit Na(+)/Ca(2+)exchange via peripheral cannabinoid receptor (CB2) activation that may also be related to the antiapoptotic and cardioprotective effects of cannabinoids. The cannabinoid receptor agonists should be considered as prospective group of compounds for creation of drugs that are able to protect the heart against ischemia-reperfusion injury in the clinical setting. © The Author(s) 2015.

  14. Effect of beta-ADrenergic Agonist on Cyclic AMP Synthesis in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Because it seems logical that these agonists exert their action on muscle through stimulation of cAMP synthesis, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax levels were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. In addition, the EC50 values for isoproterenol, cimaterol, clenbuterol, epinephrine, and albuterol were 360 nM, 630 nM, 900 nM, 2,470 nM, and 3,650 nM, respectively. Finally, dose response curves show that the concentrations of cimaterol and clenbuterol in culture media at concentrations known to cause significant muscle hypertrophy in animals had no detectable effect on stimulation of CAMP accumulation in chicken skeletal muscle cells.

  15. Spicing Up Pharmacology: A Review of Synthetic Cannabinoids From Structure to Adverse Events.

    PubMed

    Davidson, Colin; Opacka-Juffry, Jolanta; Arevalo-Martin, Angel; Garcia-Ovejero, Daniel; Molina-Holgado, Eduardo; Molina-Holgado, Francisco

    2017-01-01

    Recreational use of synthetic cannabinoids (SCB), a class of novel psychoactive substances is an increasing public health problem specifically in Western societies, with teenagers, young adults, and the prison population being the most affected. Some of these SCB are analogs of tetrahydrocannabinol, aminoalkylindoles, and other phytocannabinoid analogs have been detected in herbal preparations generically called "Spice." Spice, "K2" or "fake cannabis" is a general term used for variable herbal mixtures of unknown ingredients or chemical composition. SCB are highly potent CB 1 cannabinoid receptor agonists falsely marketed and sold as safe and legal drugs. Here, we present an overview of the endocannabinoid system, CB, and SCB chemical structures and activity at CB receptors. Finally, we highlight the psychological effects of SCB, particularly on learning and memory, and adverse clinical effects including on the cardiovascular system, kidneys, and CNS, including psychosis. Taken together, it is clear that many SCB are extremely dangerous and a major public health problem. © 2017 Elsevier Inc. All rights reserved.

  16. Receptor-selective, peptidase-resistant agonists at neurokinin NK-1 and NK-2 receptors: new tools for investigating neurokinin function.

    PubMed

    Hagan, R M; Ireland, S J; Jordan, C C; Beresford, I J; Deal, M J; Ward, P

    1991-06-01

    The pharmacological profiles of two novel neurokinin agonists have been investigated. delta Ava[L-Pro9,N-MeLeu10]SP(7-11) (GR73632) and [Lys3,Gly8-R-gamma-lactam-Leu9] NKA(3-10) (GR64349) are potent and selective agonists at NK-1 and NK-2 receptors respectively. In the guinea-pig isolated trachea preparation, contractions induced by these agonists were largely unaffected by inclusion of peptidase inhibitors in the bathing medium, indicating that these agonists are resistant to metabolism by peptidases. In the anaesthetised guinea-pig, both agonists were more potent bronchoconstrictor agents than either NKA or the SP analogue, SP methylester. In the anaesthetised rat, the NK-1 agonist, GR73632 was more potent than SP, NKA or NKB at causing the histamine-independent extravasation of plasma proteins into the skin after intradermal administration. The NK-2 agonist, GR64349 and the NK-3 agonist, senktide were without significant effect in this model. These agonists are useful tools for characterizing neurokinin receptor-mediated actions both in vitro and in vivo.

  17. Structure-guided design of an invariant natural killer T cell agonist for optimum protection from type 1 diabetes in non-obese diabetic mice

    PubMed Central

    Blumenfeld, H J; Tohn, R; Haeryfar, S M M; Liu, Y; Savage, P B; Delovitch, T L

    2011-01-01

    Because invariant natural killer T (iNK T) cells link innate and adaptive immunity, the structure-dependent design of iNK T cell agonists may have therapeutic value as vaccines for many indications, including autoimmune disease. Previously, we showed that treatment of non-obese diabetic (NOD) mice with the iNK T cell activating prototypic glycolipid α-galactosylceramide (α-GalCer) protects them from type 1 diabetes (T1D). However, α-GalCer is a strong agonist that can hyperactivate iNK T cells, elicit several side effects and has shown only limited success in clinical trials. Here, we used a structure-guided design approach to identify an iNK T cell agonist that optimally protects from T1D with minimal side effects. Analyses of the kinetics and function of a panel of synthetic α-GalCer fatty acyl chain derivatives (C8:0-C16:0) were performed in NOD mice. C16:0 elicited the highest protection from insulitis and T1D, which was associated with a higher frequency and survival of iNK T cells and enhanced activity of tolerogenic dendritic cells (DCs) in draining pancreatic lymph nodes (PLN), inability to transactivate NK cells and a more rapid kinetics of induction and recovery of iNK T cells from anergy. We conclude that the length and structure of the acyl chain of α-GalCer regulates the level of protection against T1D in mice, and propose that the extent of this protection depends on the relative capacity of the acyl chain to accommodate an endogenous spacer lipid of appropriate length and structure. Thus, our findings with the α-GalCer C16:0 derivative suggest strongly that it be considered as a lead glycolipid candidate in clinical trials of T1D. PMID:21910729

  18. Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery?

    PubMed

    Riese, David J

    2011-02-01

    INTRODUCTION: Receptor tyrosine kinases (RTKs) are validated targets for oncology drug discovery and several RTK antagonists have been approved for the treatment of human malignancies. Nonetheless, the discovery and development of RTK antagonists has lagged behind the discovery and development of agents that target G-protein coupled receptors. In part, this is because it has been difficult to discover analogs of naturally-occurring RTK agonists that function as antagonists. AREAS COVERED: Here we describe ligands of ErbB receptors that function as partial agonists for these receptors, thereby enabling these ligands to antagonize the activity of full agonists for these receptors. We provide insights into the mechanisms by which these ligands function as antagonists. We discuss how information concerning these mechanisms can be translated into screens for novel small molecule- and antibody-based antagonists of ErbB receptors and how such antagonists hold great potential as targeted cancer chemotherapeutics. EXPERT OPINION: While there have been a number of important key findings into this field, the identification of the structural basis of ligand functional specificity is still of the greatest importance. While it is true that, with some notable exceptions, peptide hormones and growth factors have not proven to be good platforms for oncology drug discovery; addressing the fundamental issues of antagonistic partial agonists for receptor tyrosine kinases has the potential to steer oncology drug discovery in new directions. Mechanism based approaches are now emerging to enable the discovery of RTK partial agonists that may antagonize both agonist-dependent and -independent RTK signaling and may hold tremendous promise as targeted cancer chemotherapeutics.

  19. The Therapeutic Potential of Nociceptin/Orphanin FQ Receptor Agonists as Analgesics without Abuse Liability

    PubMed Central

    2012-01-01

    Although mu opioid (MOP) receptor agonists are the most commonly used analgesics for the treatment of moderate to severe pain in the clinic, the side effects of MOP agonists such as abuse liability limit their value as a medication. Research to identify novel analgesics without adverse effects is pivotal to advance the health care of humans. The nociceptin/orphanin FQ peptide (NOP) receptor, the fourth opioid receptor subtype, mediates distinctive actions in nonhuman primates which suggests the possibility that activity at this receptor may result in strong analgesia in the absence of virtually all of the side effects associated with MOP agonists. The present review highlights the recent progress of pharmacological studies of NOP-related ligands in primates. Selective NOP agonists, either peptidic or nonpeptidic, produce full analgesia in various assays in primates, when delivered systemically or intrathecally. Yet small molecule NOP agonists do not serve as reinforcers, indicating a lack of abuse liability. Given that NOP agonists have low abuse liability and that coactivation of NOP and MOP receptors produces synergistic antinociception, it is worth developing bifunctional NOP/MOP ligands. The outcomes of these studies and recent developments provide new perspectives to establish a translational bridge for understanding the biobehavioral functions of NOP receptors in primates and for facilitating the development of NOP-related ligands as a new generation of analgesics without abuse liability in humans. PMID:23421672

  20. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  1. Impact of cardiac support device combined with slow-release prostacyclin agonist in a canine ischemic cardiomyopathy model.

    PubMed

    Kubota, Yasuhiko; Miyagawa, Shigeru; Fukushima, Satsuki; Saito, Atsuhiro; Watabe, Hiroshi; Daimon, Takashi; Sakai, Yoshiki; Akita, Toshiaki; Sawa, Yoshiki

    2014-03-01

    The cardiac support device supports the heart and mechanically reduces left ventricular (LV) diastolic wall stress. Although it has been shown to halt LV remodeling in dilated cardiomyopathy, its therapeutic efficacy is limited by its lack of biological effects. In contrast, the slow-release synthetic prostacyclin agonist ONO-1301 enhances reversal of LV remodeling through biological mechanisms such as angiogenesis and attenuation of fibrosis. We therefore hypothesized that ONO-1301 plus a cardiac support device might be beneficial for the treatment of ischemic cardiomyopathy. Twenty-four dogs with induced anterior wall infarction were assigned randomly to 1 of 4 groups at 1 week postinfarction as follows: cardiac support device alone, cardiac support device plus ONO-1301 (hybrid therapy), ONO-1301 alone, or sham control. At 8 weeks post-infarction, LV wall stress was reduced significantly in the hybrid therapy group compared with the other groups. Myocardial blood flow, measured by positron emission tomography, and vascular density were significantly higher in the hybrid therapy group compared with the cardiac support device alone and sham groups. The hybrid therapy group also showed the least interstitial fibrosis, the greatest recovery of LV systolic and diastolic functions, assessed by multidetector computed tomography and cardiac catheterization, and the lowest plasma N-terminal pro-B-type natriuretic peptide levels (P < .05). The combination of a cardiac support device and the prostacyclin agonist ONO-1301 elicited a greater reversal of LV remodeling than either treatment alone, suggesting the potential of this hybrid therapy for the clinical treatment of ischemia-induced heart failure. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  2. Effect of vibration frequency on agonist and antagonist arm muscle activity.

    PubMed

    Rodríguez Jiménez, Sergio; Benítez, Adolfo; García González, Miguel A; Moras Feliu, Gerard; Maffiuletti, Nicola A

    2015-06-01

    This study aimed to assess the effect of vibration frequency (f out) on the electromyographic (EMG) activity of the biceps brachii (BB) and triceps brachii (TB) muscles when acting as agonist and antagonist during static exercises with different loads. Fourteen healthy men were asked to hold a vibratory bar as steadily as possible for 10 s during lying row (pulling) and bench press (pushing) exercise at f out of 0 (non-vibration condition), 18, 31 and 42 Hz with loads of 20, 50, and 80 % of the maximum sustainable load (MSL). The root mean square of the EMG activity (EMGRMS) of the BB and TB muscles was expressed as a function of the maximal EMGRMS for respective muscles to characterize agonist activation and antagonist coactivation. We found that (1) agonist activation was greater during vibration (42 Hz) compared to non-vibration exercise for the TB but not for the BB muscle (p < 0.05); (2) antagonist activation was greater during vibration compared to non-vibration exercise for both BB (p < 0.01) and TB (p < 0.05) muscles; (3) the vibration-induced increase in antagonist coactivation was proportional to vibration f out in the range 18-42 Hz and (4) the vibration-induced increase in TB agonist activation and antagonist coactivation occurred at all loading conditions in the range 20-80 % MSL. The use of high vibration frequencies within the range of 18-42 Hz can maximize TB agonist activation and antagonist activation of both BB and TB muscles during upper limb vibration exercise.

  3. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-08

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. SYNTHETIC LUBRICANTS

    DTIC Science & Technology

    azelaic , and sebacic acids are the most readily available dibasic acids suitable for ester lubricant production, while the petroleum derived Oxo alcohols...of synthetic lubricants for use at low and high temperatures. The diesters of straight-chain dibasic acids lead the field of esters mutable as...dibasic acid esters in all the characteristics studied so far, and this type of ester therefore represents a promising source of synthetic oil. Mono

  5. Opportunities in plant synthetic biology.

    PubMed

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  6. Characterization of 12 GnRH peptide agonists - a kinetic perspective.

    PubMed

    Nederpelt, Indira; Georgi, Victoria; Schiele, Felix; Nowak-Reppel, Katrin; Fernández-Montalván, Amaury E; IJzerman, Adriaan P; Heitman, Laura H

    2016-01-01

    Drug-target residence time is an important, yet often overlooked, parameter in drug discovery. Multiple studies have proposed an increased residence time to be beneficial for improved drug efficacy and/or longer duration of action. Currently, there are many drugs on the market targeting the gonadotropin-releasing hormone (GnRH) receptor for the treatment of hormone-dependent diseases. Surprisingly, the kinetic receptor-binding parameters of these analogues have not yet been reported. Therefore, this project focused on determining the receptor-binding kinetics of 12 GnRH peptide agonists, including many marketed drugs. A novel radioligand-binding competition association assay was developed and optimized for the human GnRH receptor with the use of a radiolabelled peptide agonist, [(125) I]-triptorelin. In addition to radioligand-binding studies, a homogeneous time-resolved FRET Tag-lite™ method was developed as an alternative assay for the same purpose. Two novel competition association assays were successfully developed and applied to determine the kinetic receptor-binding characteristics of 12 high-affinity GnRH peptide agonists. Results obtained from both methods were highly correlated. Interestingly, the binding kinetics of the peptide agonists were more divergent than their affinities with residence times ranging from 5.6 min (goserelin) to 125 min (deslorelin). Our research provides new insights by incorporating kinetic, next to equilibrium, binding parameters in current research and development that can potentially improve future drug discovery targeting the GnRH receptor. © 2015 The British Pharmacological Society.

  7. Adenosine A2A receptor agonists with potent antiplatelet activity.

    PubMed

    Fuentes, Eduardo; Fuentes, Manuel; Caballero, Julio; Palomo, Iván; Hinz, Sonja; El-Tayeb, Ali; Müller, Christa E

    2018-05-01

    Selected adenosine A 2A receptor agonists (PSB-15826, PSB-12404, and PSB-16301) have been evaluated as new antiplatelet agents. In addition, radioligand-binding studies and receptor-docking experiments were performed in order to explain their differential biological effects on a molecular level. Among the tested adenosine derivatives, PSB-15826 was the most potent compound to inhibit platelet aggregation (EC 50 0.32 ± 0.05 µmol/L) and platelet P-selectin cell-surface localization (EC 50 0.062 ± 0.2 µmol/L), and to increase intraplatelets cAMP levels (EC 50 0.24 ± 0.01 µmol/L). The compound was more active than CGS21680 (EC 50 0.97±0.07 µmol/L) and equipotent to NECA (EC 50 0.31 ± 0.05 µmol/L) in platelet aggregation induced by ADP. In contrast to the results from cAMP assays, K i values determined in radioligand-binding studies were not predictive of the A 2A agonists' antiplatelet activity. Docking studies revealed the key molecular determinants of this new family of adenosine A 2A receptor agonists: differences in activities are related to π-stacking interactions between the ligands and the residue His264 in the extracellular loop of the adenosine A 2A receptor which may result in increased residence times. In conclusion, these results provide an improved understanding of the requirements of antiplatelet adenosine A 2A receptor agonists.

  8. [Synthetic cannabinoids: A new addiction matrix].

    PubMed

    Scocard, Amandine; Benyamina, Amine; Coscas, Sarah; Karila, Laurent

    2017-01-01

    Synthetic cannabinoids (SC) belong to the emergent market of new psychoactive substances, sold on the Internet or specialized shops. Since the 1970s, more than 160 new SC have invaded the drug market. These substances imitate the psychoactive effects of cannabis. Underestimated for too long, SC's market growth and consequences are no longer to be ignored, first of all in terms of public health. SC were first synthesized during researches on the endocannabinoid system. Though they are agonists of the cannabinoid receptors 1 and 2, as Δ9-tetrahydrocannabinol in cannabis, they can also have a really high affinity with these receptors, rising up their potency. Each country in the world has chosen various ways how to deal with SC: scheduling, blanket ban, regulation… In order to contour the legal system, producers regularly modify the chemical formulas of those substances and hand out an attracting packaging looking harmless. However, the content of those small packets is extremely unstable and unreliable, including harmful compounds to health. Reports show an increasing number of non-fatal intoxications but also fatalities. Consequences on the body are numerous but there have been also reports of mental health imbalance and appearances of addiction-linked clinical signs. This review of literature aims at establishing a picture on SC in order to raise awareness among professionals in the health field on this new addiction matrix. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. From noise to synthetic nucleoli: can synthetic biology achieve new insights?

    PubMed

    Ciechonska, Marta; Grob, Alice; Isalan, Mark

    2016-04-18

    Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."

  10. The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-kappaB signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats.

    PubMed

    Ochaion, A; Bar-Yehuda, S; Cohen, S; Amital, H; Jacobson, K A; Joshi, B V; Gao, Z G; Barer, F; Patoka, R; Del Valle, L; Perez-Liz, G; Fishman, P

    2008-08-15

    The A(3) adenosine receptor (A(3)AR) is over-expressed in inflammatory cells and was defined as a target to combat inflammation. Synthetic agonists to this receptor, such as IB-MECA and Cl-IB-MECA, exert an anti-inflammatory effect in experimental animal models of adjuvant- and collagen-induced arthritis. In this study we present a novel A(3)AR agonist, CF502, with high affinity and selectivity at the human A(3)AR. CF502 induced a dose dependent inhibitory effect on the proliferation of fibroblast-like synoviocytes (FLS) via de-regulation of the nuclear factor-kappa B (NF-kappaB) signaling pathway. Furthermore, CF502 markedly suppressed the clinical and pathological manifestations of adjuvant-induced arthritis (AIA) in a rat experimental model when given orally at a low dose (100 microg/kg). As is typical of other G-protein coupled receptors, the A(3)AR expression level was down-regulated shortly after treatment with agonist CF502 in paw and in peripheral blood mononuclear cells (PBMCs) derived from treated AIA animals. Subsequently, a decrease in the expression levels of protein kinase B/Akt (PKB/Akt), IkappaB kinase (IKK), I kappa B (IkappaB), NF-kappaB and tumor necrosis factor-alpha (TNF-alpha) took place. In addition, the expression levels of glycogen synthase kinase-3 beta (GSK-3beta), beta-catenin, and poly(ADP-ribose)polymerase (PARP), known to control the level and activity of NF-kappaB, were down-regulated upon treatment with CF502. Taken together, CF502 inhibits FLS growth and the inflammatory manifestations of arthritis, supporting the development of A(3)AR agonists for the treatment of rheumatoid arthritis.

  11. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  12. GLA-SE, a synthetic toll-like receptor 4 agonist, enhances T-cell responses to influenza vaccine in older adults.

    PubMed

    Behzad, Hayedeh; Huckriede, Anke L W; Haynes, Laura; Gentleman, Beth; Coyle, Krysta; Wilschut, Jan C; Kollmann, Tobias R; Reed, Steven G; McElhaney, Janet E

    2012-02-01

    The decline in influenza vaccine efficacy in older adults is associated with a limited ability of current split-virus vaccines (SVVs) to stimulate cytotoxic T lymphocyte (CTL) responses required for clinical protection against influenza. The Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) was combined with SVV to stimulate peripheral blood mononuclear cells (PBMCs) in vitro to determine the cytokine response in dendritic cell subsets. Stimulated PBMCs were then challenged with live influenza virus to mimic the response to natural infection following vaccination, using previously identified T-cell correlates of protection. GLA-SE significantly increased the proportion of myeloid dendritic cells that produced tumor necrosis factor α, interleukin 6, and interleukin 12. When combined with SVV to stimulate PBMCs in vitro, this effect of GLA-SE was shown to regulate a T-helper 1 cell response upon challenge with live influenza virus; interleukin 10 production was suppressed, thus significantly increasing the interferon γ to interleukin 10 ratio and the cytolytic (granzyme B) response to influenza virus challenge, both of which have been shown to correlate with protection against influenza in older adults. Our findings suggest that a novel adjuvant, GLA-SE, combined with standard SVV has the potential to significantly improve vaccine-mediated protection against influenza in older adults.

  13. 2-(2-Bromophenyl)-formononetin and 2-heptyl-formononetin are PPARγ partial agonists and reduce lipid accumulation in 3T3-L1 adipocytes.

    PubMed

    Andersen, Charlotte; Kotowska, Dorota; Tortzen, Christian G; Kristiansen, Karsten; Nielsen, John; Petersen, Rasmus Koefoed

    2014-11-01

    Isoflavones are bioactive compounds that have been shown to decrease lipid accumulation in vitro. However, the knowledge of the isoflavone formononetin is limited. The aim of the study was to assess the effects of formononetin and its two synthetic analogues, 2-(2-bromophenyl)-formononetin and 2-heptyl-formononetin, on lipid accumulation in 3T3-L1 adipocytes and investigate possible mechanisms. Formononetin and the two analogues were added day 0-8 or day 8-10 of the differentiation period, and lipid accumulation, glycerol release and gene expression were measured. Additionally, competitive peroxisome proliferator-activated receptor (PPAR)-γ binding assay, PPARγ transactivation assay and Western blot for phosphorylated AMP-activated protein kinase (AMPK) were performed. Chronic treatment (day 0-8) with formononetin increased lipid accumulation, whereas the two analogues decreased lipid accumulation partly due to decreased differentiation. The two analogues, but not formononetin, also decreased lipid content in mature adipocytes. 2-Heptyl-formononetin increased glycerol release and lipolytic gene expression and decreased lipogenic gene expression. Formononetin did not bind to or activate PPARγ whereas both analogues bound to the receptor and behaved as PPARγ partial agonists in the transactivation assay. Neither of the compounds affected phosphorylation of AMPK. In conclusion, the analogues of formononetin decreased lipid accumulation possibly in part by acting as PPARγ partial agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Synthetic biology and metabolic engineering.

    PubMed

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  15. Synthetic Morphogenesis.

    PubMed

    Teague, Brian P; Guye, Patrick; Weiss, Ron

    2016-09-01

    Throughout biology, function is intimately linked with form. Across scales ranging from subcellular to multiorganismal, the identity and organization of a biological structure's subunits dictate its properties. The field of molecular morphogenesis has traditionally been concerned with describing these links, decoding the molecular mechanisms that give rise to the shape and structure of cells, tissues, organs, and organisms. Recent advances in synthetic biology promise unprecedented control over these molecular mechanisms; this opens the path to not just probing morphogenesis but directing it. This review explores several frontiers in the nascent field of synthetic morphogenesis, including programmable tissues and organs, synthetic biomaterials and programmable matter, and engineering complex morphogenic systems de novo. We will discuss each frontier's objectives, current approaches, constraints and challenges, and future potential. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. The nociceptin/orphanin FQ receptor agonist Ro 64-6198 reduces alcohol self-administration and prevents relapse-like alcohol drinking.

    PubMed

    Kuzmin, Alexander; Kreek, Mary Jeanne; Bakalkin, Georgy; Liljequist, Sture

    2007-04-01

    Effects of the opioid receptor like-1 (ORL-1) receptor agonist Ro 64-6198 (0.1, 0.3, and 1.0 mg/kg intraperitoneally (i.p.)) on operant ethanol self-administration and activation of self-administration by ethanol deprivation were studied in male Wistar rats. Acute administration of Ro 64-6198 caused a dose-dependent reduction of ethanol self-administration. In comparison, the opioid antagonist naltrexone (0.1, 0.3, and 1.0 mg/kg i.p.) inhibited ethanol self-administration at all doses tested. Ethanol deprivation for 10 days significantly increased ethanol self-administration during the first 2 days after deprivation. Daily pretreatment with Ro 64-6198 (0.3 mg/kg) or naltrexone (0.3 mg/kg) during the last 3 days of ethanol deprivation abolished the deprivation-induced increase in ethanol intake. Thus, stimulation of the ORL-1 receptors by Ro 64-6198 reduced the acute reinforcing effects of ethanol and prevented relapse-like behavior in the ethanol-deprivation model in a similar manner as a blockade of opioid receptors by naltrexone. Ro 64-6198 at 0.1 and 0.3 mg/kg doses did not alter self-administration of 0.2% saccharin solution, indicating an apparent selectivity of this compound in modification of ethanol reward. These findings add further support to the idea that Ro 64-6198 and potentially other synthetic ORL-1 receptor agonists are as effective as naltrexone in blocking the actions of ethanol important for its addictive potential in animal experiments, and therefore may have therapeutic value in the treatment of alcoholism.

  17. Effects of acute and repeated dosing of the synthetic cannabinoid CP55,940 on intracranial self-stimulation in mice*

    PubMed Central

    Grim, Travis W.; Wiebelhaus, Jason M.; Negus, S. Stevens; Lichtman, Aron H.

    2015-01-01

    Background Synthetic cannabinoids have emerged as a significant public health concern. To increase the knowledge of how these molecules interact on brain reward processes, we investigated the effects of CP55,940, a high efficacy synthetic CB1 receptor agonist, in a frequency-rate intracranial self-stimulation (ICSS) procedure. Methods The impact of acute and repeated administration (seven days) of CP55,940 on operant responding for electrical brain stimulation of the medial forebrain bundle was investigated in C57BL/6J mice. Results CP55,940 attenuated ICSS in a dose-related fashion (ED50 (95% C.L.) = 0.15 (0.12–0.18) mg/kg). This effect was blocked by the CB1 receptor antagonist rimonabant. Tolerance developed quickly, though not completely, to the rate-decreasing effects of CP55,940 (0.3 mg/kg). Abrupt discontinuation of drug did not alter baseline responding for up to seven days. Moreover, rimonabant (10 mg/kg) challenge did not alter ICSS responding in mice treated repeatedly with CP55,940. Conclusions The finding that CP55,940 reduced ICSS in mice with no evidence of facilitation at any dose is consistent with synthetic cannabinoid effects on ICSS in rats. CP55,940-induced ICSS depression was mediated through a CB1 receptor mechanism. Additionally, tolerance and dependence following repeated CP55,940 administration were dissociable. Thus, CP55,940 does not produce reward-like effects in ICSS under these conditions. PMID:25772438

  18. 6'-Guanidinonaltrindole (6'-GNTI) is a G protein-biased κ-opioid receptor agonist that inhibits arrestin recruitment.

    PubMed

    Rives, Marie-Laure; Rossillo, Mary; Liu-Chen, Lee-Yuan; Javitch, Jonathan A

    2012-08-03

    κ-Opioid receptor (KOR) agonists do not activate the reward pathway stimulated by morphine-like μ-opioid receptor (MOR) agonists and thus have been considered to be promising nonaddictive analgesics. However, KOR agonists produce other adverse effects, including dysphoria, diuresis, and constipation. The therapeutic promise of KOR agonists has nonetheless recently been revived by studies showing that their dysphoric effects require arrestin recruitment, whereas their analgesic effects do not. Moreover, KOR agonist-induced antinociceptive tolerance observed in vivo has also been proposed to be correlated to the ability to induce arrestin-dependent phosphorylation, desensitization, and internalization of the receptor. The discovery of functionally selective drugs that are therapeutically effective without the adverse effects triggered by the arrestin pathway is thus an important goal. We have identified such an extreme G protein-biased KOR compound, 6'-guanidinonaltrindole (6'-GNTI), a potent partial agonist at the KOR receptor for the G protein activation pathway that does not recruit arrestin. Indeed, 6'-GNTI functions as an antagonist to block the arrestin recruitment and KOR internalization induced by other nonbiased agonists. As an extremely G protein-biased KOR agonist, 6'-GNTI represents a promising lead compound in the search for nonaddictive opioid analgesic as its signaling profile suggests that it will be without the dysphoria and other adverse effects promoted by arrestin recruitment and its downstream signaling.

  19. Therapeutic synthetic gene networks.

    PubMed

    Karlsson, Maria; Weber, Wilfried

    2012-10-01

    The field of synthetic biology is rapidly expanding and has over the past years evolved from the development of simple gene networks to complex treatment-oriented circuits. The reprogramming of cell fate with open-loop or closed-loop synthetic control circuits along with biologically implemented logical functions have fostered applications spanning over a wide range of disciplines, including artificial insemination, personalized medicine and the treatment of cancer and metabolic disorders. In this review we describe several applications of interactive gene networks, a synthetic biology-based approach for future gene therapy, as well as the utilization of synthetic gene circuits as blueprints for the design of stimuli-responsive biohybrid materials. The recent progress in synthetic biology, including the rewiring of biosensing devices with the body's endogenous network as well as novel therapeutic approaches originating from interdisciplinary work, generates numerous opportunities for future biomedical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Estradiol agonists inhibit human LoVo colorectal-cancer cell proliferation and migration through p53.

    PubMed

    Hsu, Hsi-Hsien; Kuo, Wei-Wen; Ju, Da-Tong; Yeh, Yu-Lan; Tu, Chuan-Chou; Tsai, Ying-Lan; Shen, Chia-Yao; Chang, Sheng-Huang; Chung, Li-Chin; Huang, Chih-Yang

    2014-11-28

    To investigate the effects of 17β-estradiol via estrogen receptors (ER) or direct administration of ER agonists on human colorectal cancer. LoVo cells were established from the Bioresource Collection and Research Center and cultured in phenol red-free DMEM (Sigma, United States). To investigate the effects of E2 and/or ER selective agonists on cellular proliferation, LoVo colorectal cells were treated with E2 or ER-selective agonists for 24 h and 48 h and subjected to the MTT (Sigma) assay to find the concentration. And investigate the effects of E2 and/or ER selective agonists on cell used western immunoblotting to find out the diversification of signaling pathways. In order to observe motility and migration the wound healing assay and a transwell chamber (Neuro Probe) plate were tased. For a quantitative measure, we counted the number of migrating cells to the wound area post-wounding for 24 h. We further examined the cellular migration-regulating factors urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA) and matrix metalloproteinase (MMP)-9 in human LoVo cells so gelatin zymography that we used and gelatinolytic activity was visualized by Coomassie blue staining. And these results are presented as means ± SE, and statistical comparisons were made using Student's t-test. The structure was first compared with E2 and ER agonists. We then treated the LoVo cells with E2 and ER agonists (10(-8) mol/L) for 24 h and 48 h and subsequently measured the cell viability using MTT assay. Our results showed that treatment with 17β-estradiol and/or ER agonists in human LoVo colorectal cancer cells activated p53 and then up-regulated p21 and p27 protein levels, subsequently inhibiting the downstream target gene, cyclin D1, which regulates cell proliferation. Taken together, our findings demonstrate the anti-tumorigenesis effects of 17β-estradiol and/or ER agonists and suggest that these compounds may prove to be a potential alternative

  1. Find novel dual-agonist drugs for treating type 2 diabetes by means of cheminformatics.

    PubMed

    Liu, Lei; Ma, Ying; Wang, Run-Ling; Xu, Wei-Ren; Wang, Shu-Qing; Chou, Kuo-Chen

    2013-01-01

    The high prevalence of type 2 diabetes mellitus in the world as well as the increasing reports about the adverse side effects of the existing diabetes treatment drugs have made developing new and effective drugs against the disease a very high priority. In this study, we report ten novel compounds found by targeting peroxisome proliferator-activated receptors (PPARs) using virtual screening and core hopping approaches. PPARs have drawn increasing attention for developing novel drugs to treat diabetes due to their unique functions in regulating glucose, lipid, and cholesterol metabolism. The reported compounds are featured with dual functions, and hence belong to the category of dual agonists. Compared with the single PPAR agonists, the dual PPAR agonists, formed by combining the lipid benefit of PPARα agonists (such as fibrates) and the glycemic advantages of the PPARγ agonists (such as thiazolidinediones), are much more powerful in treating diabetes because they can enhance metabolic effects while minimizing the side effects. This was observed in the studies on molecular dynamics simulations, as well as on absorption, distribution, metabolism, and excretion, that these novel dual agonists not only possessed the same function as ragaglitazar (an investigational drug developed by Novo Nordisk for treating type 2 diabetes) did in activating PPARα and PPARγ, but they also had more favorable conformation for binding to the two receptors. Moreover, the residues involved in forming the binding pockets of PPARα and PPARγ among the top ten compounds are explicitly presented, and this will be very useful for the in-depth conduction of mutagenesis experiments. It is anticipated that the ten compounds may become potential drug candidates, or at the very least, the findings reported here may stimulate new strategies or provide useful insights for designing new and more powerful dual-agonist drugs for treating type 2 diabetes.

  2. Comparative Gene Expression Profiles Induced by PPARγ and PPARα/γ Agonists in Human Hepatocytes

    PubMed Central

    Rogue, Alexandra; Lambert, Carine; Jossé, Rozenn; Antherieu, Sebastien; Spire, Catherine; Claude, Nancy; Guillouzo, André

    2011-01-01

    Background Several glitazones (PPARγ agonists) and glitazars (dual PPARα/γ agonists) have been developed to treat hyperglycemia and, simultaneously, hyperglycemia and dyslipidemia, respectively. However, most have caused idiosyncratic hepatic or extrahepatic toxicities through mechanisms that remain largely unknown. Since the liver plays a key role in lipid metabolism, we analyzed changes in gene expression profiles induced by these two types of PPAR agonists in human hepatocytes. Methodology/Principal Findings Primary human hepatocytes and the well-differentiated human hepatoma HepaRG cells were exposed to different concentrations of two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists for 24 h and their transcriptomes were analyzed using human pangenomic Agilent microarrays. Principal Component Analysis, hierarchical clustering and Ingenuity Pathway Analysis® revealed large inter-individual variability in the response of the human hepatocyte populations to the different compounds. Many genes involved in lipid, carbohydrate, xenobiotic and cholesterol metabolism, as well as inflammation and immunity, were regulated by both PPARγ and PPARα/γ agonists in at least a number of human hepatocyte populations and/or HepaRG cells. Only a few genes were selectively deregulated by glitazars when compared to glitazones, indicating that PPARγ and PPARα/γ agonists share most of their target genes. Moreover, some target genes thought to be regulated only in mouse or to be expressed in Kupffer cells were also found to be responsive in human hepatocytes and HepaRG cells. Conclusions/Significance This first comprehensive analysis of gene regulation by PPARγ and PPARα/γ agonists favor the conclusion that glitazones and glitazars share most of their target genes and induce large differential changes in gene profiles in human hepatocytes depending on hepatocyte donor, the compound class and/or individual compound, thereby

  3. Cigarette smoke exposure inhibits contact hypersensitivity via the generation of platelet activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Petrache, Irina; Van Demark, Mary J; Rashid, Badri M.; Ocana, Jesus A.; Tang, Yuxuan; Yi, Qiaofang; Turner, Matthew J.; Konger, Raymond L.; Travers, Jeffrey B.

    2013-01-01

    Previous studies have established that pro-oxidative stressors suppress host immunity due to their ability to generate oxidized lipids with PAF-receptor (PAF-R) agonist activity. Although exposure to the pro-oxidative stressor cigarette smoke (CS) is known to exert immunomodulatory effects, little is known regarding the role of platelet-activating factor (PAF) in these events. The current studies sought to determine the role of PAF-R signaling in CS-mediated immunomodulatory effects. We demonstrate that CS exposure induces the generation of a transient PAF-R agonistic activity in the blood of mice. CS exposure inhibits contact hypersensitivity in a PAF-R-dependent manner as PAF-R-deficient mice were resistant to these effects. Blocking PAF-R agonist production either by systemic antioxidants or treatment with serum PAF-acetyl hydrolase enzyme blocked both the CS-mediated generation of PAF-R-agonists and PAF-R dependent inhibition of CHS reactions, indicating a role for oxidized glycerophosphocholines with PAF-R agonistic activity in this process. In addition, cyclooxygenase-2 (COX-2) inhibition did not block PAF-R agonist production but prevented CS-induced inhibition of CHS. This suggests that COX-2 acts downstream of the PAF-R in mediating CS-induced systemic immunosuppression. Moreover, CS-exposure induced a significant increase in the expression of the regulatory T cell reporter gene in FoxP3EGFP mice but not in FoxP3EGFP mice on a PAF-R-deficient background. Finally, Treg depletion via anti-CD25 antibodies blocked CS-mediated inhibition of CHS, indicating the potential involvement of Tregs in CS-mediated systemic immunosuppression. These studies provide the first evidence that the pro-oxidative stressor CS can modulate cutaneous immunity via the generation of PAF-R agonists produced through lipid oxidation. PMID:23355733

  4. Structure of an agonist-bound ionotropic glutamate receptor.

    PubMed

    Yelshanskaya, Maria V; Li, Minfen; Sobolevsky, Alexander I

    2014-08-29

    Ionotropic glutamate receptors (iGluRs) mediate most excitatory neurotransmission in the central nervous system and function by opening their ion channel in response to binding of agonist glutamate. Here, we report a structure of a homotetrameric rat GluA2 receptor in complex with partial agonist (S)-5-nitrowillardiine. Comparison of this structure with the closed-state structure in complex with competitive antagonist ZK 200775 suggests conformational changes that occur during iGluR gating. Guided by the structures, we engineered disulfide cross-links to probe domain interactions that are important for iGluR gating events. The combination of structural information, kinetic modeling, and biochemical and electrophysiological experiments provides insight into the mechanism of iGluR gating. Copyright © 2014, American Association for the Advancement of Science.

  5. AMPK and PPARδ agonists are exercise mimetics

    PubMed Central

    Narkar, Vihang A.; Downes, Michael; Yu, Ruth T.; Embler, Emi; Wang, Yong-Xu; Banayo, Ester; Mihaylova, Maria M.; Nelson, Michael C.; Zou, Yuhua; Juguilon, Henry; Kang, Heonjoong; Shaw, Reuben; Evans, Ronald M.

    2008-01-01

    SUMMARY The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARβ/δ agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1α, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARδ pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise. PMID:18674809

  6. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    PubMed

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  7. Antagonism of methoxyflurane-induced anesthesia in rats by benzodiazepine inverse agonists.

    PubMed

    Miller, D W; Yourick, D L; Tessel, R E

    1989-11-28

    Injection of the partial benzodiazepine inverse agonist Ro15-4513 (1-32 mg/kg i.p.) or nonconvulsant i.v. doses of the full benzodiazepine inverse agonist beta-CCE immediately following cessation of exposure of rats to an anesthetic concentration of methoxyflurane significantly antagonized the duration of methoxyflurane anesthesia as measured by recovery of the righting reflex and/or pain sensitivity. This antagonism was inhibited by the benzodiazepine antagonist Ro15-1788 at doses which alone did not alter the duration of methoxyflurane anesthesia. In addition, high-dose Ro15-4513 pretreatment (32 mg/kg) antagonized the induction and duration of methoxyflurane anesthesia but was unable to prevent methoxyflurane anesthesia or affect the induction or duration of anesthesia induced by the dissociative anesthetic ketamine (100 mg/kg). These findings indicate that methoxyflurane anesthesia can be selectively antagonized by the inverse agonistic action of Ro15-4513 and beta-CCE.

  8. Pre-Clinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma

    PubMed Central

    Waters, Alicia M.; Stewart, Jerry E.; Atigadda, Venkatram R.; Mroczek-Musulman, Elizabeth; Muccio, Donald D.; Grubbs, Clinton J.; Beierle, Elizabeth A.

    2015-01-01

    Neuroblastoma remains a common cause of pediatric cancer deaths, especially for children who present with advanced stage or recurrent disease. Currently, retinoic acid therapy is used as maintenance treatment to induce differentiation and reduce tumor recurrence following induction therapy for neuroblastoma, but unavoidable side effects are seen. A novel retinoid, UAB30, has been shown to generate negligible toxicities. In the current study, we hypothesized that UAB30 would have a significant impact on multiple neuroblastoma cell lines in vitro and in vivo. Cellular survival, cell cycle analysis, migration, and invasion were studied using alamarBlue® assays, FACS, and Transwell® assays, respectively, in multiple cell lines following treatment with UAB30. In addition, an in vivo murine model of human neuroblastoma was utilized to study the effects of UAB30 upon tumor xenograft growth and animal survival. We successfully demonstrated decreased cellular survival, invasion and migration, cell cycle arrest and increased apoptosis after treatment with UAB30. Furthermore, inhibition of tumor growth and increased survival was observed in a murine neuroblastoma xenograft model. The results of these in vitro and in vivo studies suggest a potential therapeutic role for the low toxicity synthetic retinoid X receptor selective agonist, UAB30, in neuroblastoma treatment. PMID:25944918

  9. Alpha-2 adrenergic agonists for the prevention of cardiac complications among adults undergoing surgery.

    PubMed

    Duncan, Dallas; Sankar, Ashwin; Beattie, W Scott; Wijeysundera, Duminda N

    2018-03-06

    The surgical stress response plays an important role on the pathogenesis of perioperative cardiac complications. Alpha-2 adrenergic agonists attenuate this response and may help prevent postoperative cardiac complications. To determine the efficacy and safety of α-2 adrenergic agonists for reducing mortality and cardiac complications in adults undergoing cardiac surgery and non-cardiac surgery. We searched CENTRAL (2017, Issue 4), MEDLINE (1950 to April Week 4, 2017), Embase (1980 to May 2017), the Science Citation Index, clinical trial registries, and reference lists of included articles. We included randomized controlled trials that compared α-2 adrenergic agonists (i.e. clonidine, dexmedetomidine or mivazerol) against placebo or non-α-2 adrenergic agonists. Included trials had to evaluate the efficacy and safety of α-2 adrenergic agonists for preventing perioperative mortality or cardiac complications (or both), or measure one or more relevant outcomes (i.e. death, myocardial infarction, heart failure, acute stroke, supraventricular tachyarrhythmia and myocardial ischaemia). Two authors independently assessed trial quality, extracted data and independently performed computer entry of abstracted data. We contacted study authors for additional information. Adverse event data were gathered from the trials. We evaluated included studies using the Cochrane 'Risk of bias' tool, and the quality of the evidence underlying pooled treatment effects using GRADE methodology. Given the clinical heterogeneity between cardiac and non-cardiac surgery, we analysed these subgroups separately. We expressed treatment effects as pooled risk ratios (RR) with 95% confidence intervals (CI). We included 47 trials with 17,039 participants. Of these studies, 24 trials only included participants undergoing cardiac surgery, 23 only included participants undergoing non-cardiac surgery and eight only included participants undergoing vascular surgery. The α-2 adrenergic agonist studied

  10. Virtual identification of novel PPARα/γ dual agonists by scaffold hopping of saroglitazar.

    PubMed

    Jia, Wen-Qing; Jing, Zhi; Liu, Xin; Feng, Xiao-Yan; Liu, Ya-Ya; Wang, Shu-Qing; Xu, Wei-Ren; Liu, Jian-Wen; Cheng, Xian-Chao

    2017-10-28

    The thiazolidinedione class PPARγ agonists as antidiabetic agents are restricted in clinical use because of the side effects such as edema, weight gain, and heart failure. The single and selective agonism of PPARγ is the main cause of side effects. The multi-target cooperative PPARα/γ dual agonist development is a hot topic in the antidiabetic medicinal chemistry field. Saroglitazar is the first approved PPARα/γ dual agonist, available in India for the treatment of diabetic dyslipidemia. It got rid of these side effects. With the aim of finding more protent PPARα/γ dual agonists, the scaffold hopping was used to replace α-o phenylpropionic acid skeleton of saroglitazar with L-tyrosine skeleton. Then, the structural modification was carried out designing 72 compounds. Considering the importance of chirality, opposite configuration of 72 compounds was also studied. 12 compounds with better -cdocker energy were screened by molecular docking. Subsequently, the pharmacokinetic properties and toxicity evaluated by ADMET prediction, 11 of them showed better properties. Comp#L-17-1 and comp#L-3-1 were regarded as representatives to study the binding stability by molecular dynamics (MD) simulations. The MD simulation results of comp#L-17-1-PPARs (α, γ) and comp#L-3-1-PPARs (α, γ) provided structure reference for the research and development of novel PPARα/γ dual agonists.

  11. Combined ovulation triggering with GnRH agonist and hCG in IVF patients.

    PubMed

    Kasum, Miro; Kurdija, Kristijan; Orešković, Slavko; Čehić, Ermin; Pavičić-Baldani, Dinka; Škrgatić, Lana

    2016-11-01

    The aim of the review is to analyse the combination of a gonadotrophin releasing hormone (GnRH) agonist with a human chorionic gonadotrophin (hCG) trigger, for final oocyte maturation in in vitro fertilisation (IVF) cycles. The concept being a ''dual trigger'' combines a single dose of the GnRH agonist with a reduced or standard dosage of hCG at the time of triggering. The use of a GnRH agonist with a reduced dose of hCG in high responders demonstrated luteal phase support with improved pregnancy rates, similar to those after conventional hCG and a low risk of ovarian hyperstimulation syndrome (OHSS). The administration of a GnRH agonist and a standard hCG in normal responders, demonstrated significantly improved live-birth rates and a higher number of embryos of excellent quality, or cryopreserved embryos. The concept of the ''double trigger" represents a combination of a GnRH agonist and a standard hCG, when used 40 and 34 h prior to ovum pick-up, respectively. The use of the ''double trigger" has been successfully offered in the treatment of empty follicle syndrome and in patients with a history of immature oocytes retrieved or with low/poor oocytes yield. Further prospective studies are required to confirm the aforementioned observations prior to clinical implementation.

  12. Synthetic biology and occupational risk.

    PubMed

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  13. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  14. Synthetic Biology and Personalized Medicine

    PubMed Central

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  15. Synthetic cannabis and respiratory depression.

    PubMed

    Jinwala, Felecia N; Gupta, Mayank

    2012-12-01

    In recent years, synthetic cannabis use has been increasing in appeal among adolescents, and its use is now at a 30 year peak among high school seniors. The constituents of synthetic cannabis are difficult to monitor, given the drug's easy accessibility. Currently, 40 U.S. states have banned the distribution and use of some known synthetic cannabinoids, and have included these drugs in the Schedule I category. The depressive respiratory effect in humans caused by synthetic cannabis inhalation has not been thoroughly investigated in the medical literature. We are the first to report, to our knowledge, two cases of self-reported synthetic cannabis use leading to respiratory depression and necessary intubation.

  16. Tracking the emergence of synthetic biology.

    PubMed

    Shapira, Philip; Kwon, Seokbeom; Youtie, Jan

    2017-01-01

    Synthetic biology is an emerging domain that combines biological and engineering concepts and which has seen rapid growth in research, innovation, and policy interest in recent years. This paper contributes to efforts to delineate this emerging domain by presenting a newly constructed bibliometric definition of synthetic biology. Our approach is dimensioned from a core set of papers in synthetic biology, using procedures to obtain benchmark synthetic biology publication records, extract keywords from these benchmark records, and refine the keywords, supplemented with articles published in dedicated synthetic biology journals. We compare our search strategy with other recent bibliometric approaches to define synthetic biology, using a common source of publication data for the period from 2000 to 2015. The paper details the rapid growth and international spread of research in synthetic biology in recent years, demonstrates that diverse research disciplines are contributing to the multidisciplinary development of synthetic biology research, and visualizes this by profiling synthetic biology research on the map of science. We further show the roles of a relatively concentrated set of research sponsors in funding the growth and trajectories of synthetic biology. In addition to discussing these analyses, the paper notes limitations and suggests lines for further work.

  17. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR) AGONISTS AS PROMISING NEW MEDICATIONS FOR DRUG ADDICTION: PRECLINICAL EVIDENCE

    PubMed Central

    Foll, Bernard Le; Ciano, Patricia Di; Panlilio, Leigh V.; Goldberg, Steven R.; Ciccocioppo, Roberto

    2013-01-01

    This review examines the growing literature on the role of peroxisome proliferator-activated receptors (PPARs) in addiction. There are two subtypes of PPAR receptors that have been studied in addiction: PPAR-α and PPAR-γ. The role of each PPAR subtype in common models of addictive behavior, mainly pre-clinical models, is summarized. In particular, studies are reviewed that investigated the effects of PPAR-α agonists on relapse, sensitization, conditioned place preference, withdrawal and drug intake, and effects of PPAR-γ agonists on relapse, withdrawal and drug intake. Finally, studies that investigated the effects of PPAR agonists on neural pathways of addiction are reviewed. Taken together this preclinical data indicates that PPAR agonists are promising new medications for drug addiction treatment. PMID:23614675

  18. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs.

    PubMed

    Moore, Thomas J; Glenmullen, Joseph; Mattison, Donald R

    2014-12-01

    Severe impulse control disorders involving pathological gambling, hypersexuality, and compulsive shopping have been reported in association with the use of dopamine receptor agonist drugs in case series and retrospective patient surveys. These agents are used to treat Parkinson disease, restless leg syndrome, and hyperprolactinemia. To analyze serious adverse drug event reports about these impulse control disorders received by the US Food and Drug Administration (FDA) and to assess the relationship of these case reports with the 6 FDA-approved dopamine receptor agonist drugs. We conducted a retrospective disproportionality analysis based on the 2.7 million serious domestic and foreign adverse drug event reports from 2003 to 2012 extracted from the FDA Adverse Event Reporting System. Cases were selected if they contained any of 10 preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA) that described the abnormal behaviors. We used the proportional reporting ratio (PRR) to compare the proportion of target events to all serious events for the study drugs with a similar proportion for all other drugs. We identified 1580 events indicating impulse control disorders from the United States and 21 other countries:710 fordopamine receptor agonist drugs and 870 for other drugs. The dopamine receptor agonist drugs had a strong signal associated with these impulse control disorders (n = 710; PRR = 277.6, P < .001). The association was strongest for the dopamine agonists pramipexole (n = 410; PRR = 455.9, P < .001) and ropinirole (n = 188; PRR = 152.5, P < .001), with preferential affinity for the dopamine D3 receptor. A signal was also seen for aripiprazole, an antipsychotic classified as a partial agonist of the D3 receptor (n = 37; PRR = 8.6, P < .001). Our findings confirm and extend the evidence that dopamine receptor agonist drugs are associated with these specific impulse control disorders. At present

  19. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  20. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Trapella, Claudio; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Neumeyer, John L

    2010-02-17

    Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.

  1. Synthesis and pharmacological characterization of beta2-adrenergic agonist enantiomers: zilpaterol.

    PubMed

    Kern, Christopher; Meyer, Thorsten; Droux, Serge; Schollmeyer, Dieter; Miculka, Christian

    2009-03-26

    The beta-adrenergic agonist 1 (zilpaterol) is used as production enhancer in cattle. Binding experiments of separated enantiomers on recombinant human beta(2)-adrenergic and mu-opioid receptors and functional studies showed that the (-)-1 enantiomer accounts for essentially all the beta(2)-adrenergic agonist activity and that it exhibits less affinity toward the mu-opioid receptor than (+)-1, which is a mu-opioid receptor antagonist. X-ray crystallography revealed the absolute configuration of (-)-1 to be 6R,7R.

  2. Structural insights into selective agonist actions of tamoxifen on human estrogen receptor alpha.

    PubMed

    Chakraborty, Sandipan; Biswas, Pradip Kumar

    2014-08-01

    Tamoxifen-an anti-estrogenic ligand in breast tissues used as a first-line treatment in estrogen receptor (ER)-positive breast cancers-is associated with the development of resistance followed by resumption of tumor growth in about 30 % of cases. Whether tamoxifen assists in proliferation in such cases or whether any ligand-independent pathway to transcription exists is not fully understood; also, no ERα mutants have been detected so far that could lead to tamoxifen resistance. Using in silico conformational analysis of the ERα ligand binding domain (LBD), in the absence and presence of selective agonist (diethylstilbestrol; DES), antagonist (Faslodex; ICI), and selective estrogen receptor modulator (SERM; 4-hydroxy tamoxifen; 4-OHT) ligands, we have elucidated ligand-responsive structural modulations of the ERα-LBD dimer in its agonist and antagonist complexes to address the issue of "tamoxifen resistance". DES and ICI were found to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also led to a stable structure in agonist conformation. However, binding of 4-OHT to the antagonist structure led to a flexible conformation allowing the protein to visit conformations populated by agonists as was evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein exhibited a diminished size of the co-repressor binding pocket in the LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT-bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at the LBD provide crucial structural insights into tamoxifen-resistance that complement our existing understanding.

  3. Toll-like receptor 7 agonists are potent and rapid bronchodilators in guinea pigs

    PubMed Central

    Kaufman, Elad H.; Fryer, Allison D.; Jacoby, David B.

    2011-01-01

    Background Respiratory tract viral infections result in asthma exacerbations. Toll-like receptor (TLR) 7 is a receptor for viral single-stranded RNA and is expressed at high levels in the lungs. Objective Because TLR7 polymorphisms are associated with asthma, we examined the effects of TLR7 agonists in guinea pig airways. Methods We induced bronchoconstriction in guinea pigs in vivo by means of electrical stimulation of the vagus nerve or intravenous administration of acetylcholine and measured the effect of a TLR7 agonist administered intravenously. We induced contraction of airway smooth muscle in segments of isolated guinea pig tracheas in vitro and measured the effect of TLR7 agonists, antagonists, and pharmacologic inhibitors of associated signaling pathways administered directly to the bath. Results TLR7 agonists acutely inhibited bronchoconstriction in vivo and relaxed contraction of airway smooth muscle in vitro within minutes of administration. Airway relaxation induced by the TLR7 agonist R837 (imiquimod) was partially blocked with a TLR7 antagonist and was also blocked by inhibitors of large-conductance, calcium-activated potassium channels; prostaglandin synthesis; and nitric oxide generation. Another TLR7 agonist, 21-mer single-stranded phosphorothioated polyuridylic acid (PolyUs), mediated relaxation that was completely blocked by a TLR7 antagonist. Conclusions These data demonstrate a novel protective mechanism to limit bronchoconstriction and maintain airflow during respiratory tract viral infections. The fast time frame is inconsistent with canonical TLR7 signaling. R837 mediates bronchodilation by means of TLR7-dependent and TLR7-independent mechanisms, whereas PolyUs does so through only the TLR7-dependent mechanism. TLR7-independent mechanisms involve prostaglandins and large-conductance, calcium-activated potassium channels, whereas TLR7-dependent mechanisms involve nitric oxide. TLR7 is an attractive therapeutic target for its ability to

  4. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  5. Gonadotropin-releasing Hormone Agonists, Orchiectomy, and Risk of Cardiovascular Disease: Semi-ecologic, Nationwide, Population-based Study.

    PubMed

    Thomsen, Frederik Birkebæk; Sandin, Fredrik; Garmo, Hans; Lissbrant, Ingela Franck; Ahlgren, Göran; Van Hemelrijck, Mieke; Adolfsson, Jan; Robinson, David; Stattin, Pär

    2017-12-01

    In observational studies, men with prostate cancer treated with gonadotropin-releasing hormone (GnRH) agonists had a higher risk of cardiovascular disease (CVD) compared to men who had undergone orchiectomy. However, selection bias may have influenced the difference in risk. To investigate the association of type of androgen deprivation therapy (ADT) with risk of CVD while minimising selection bias. Semi-ecologic study of 6556 men who received GnRH agonists and 3330 men who underwent orchiectomy as primary treatment during 1992-1999 in the Prostate Cancer Database Sweden 3.0. We measured the proportion of men who received GnRH agonists as primary treatment in 580 experimental units defined by healthcare provider, diagnostic time period, and age at diagnosis. Incident or fatal CVD events in units with high and units with low use of GnRH agonists were compared. Net and crude probabilities were also analysed. The risk of CVD was similar between units with the highest and units with the lowest proportion of GnRH agonist use (relative risk 1.01, 95% confidence interval [CI] 0.93-1.11). Accordingly, there was no difference in the net probability of CVD after GnRH agonist compared to orchiectomy (hazard ratio 1.02, 95% CI 0.96-1.09). The 10-yr crude probability of CVD was 0.56 (95% CI 0.55-0.57) for men on GnRH agonists and 0.52 (95% CI 0.50-0.54) for men treated with orchiectomy. The main limitation was the nonrandom allocation to treatment, with younger men with lower comorbidity and less advanced cancer more likely to receive GnRH agonists. Our data do not support previous observations that GnRH agonists increase the risk of CVD in comparison to orchiectomy. We found a similar risk of cardiovascular disease between medical and surgical treatment as androgen deprivation therapy for prostate cancer. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  6. Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury

    PubMed Central

    Li, Li; Huang, Liping; Ye, Hong; Song, Steven P.; Bajwa, Amandeep; Lee, Sang Ju; Moser, Emily K.; Jaworska, Katarzyna; Kinsey, Gilbert R.; Day, Yuan J.; Linden, Joel; Lobo, Peter I.; Rosin, Diane L.; Okusa, Mark D.

    2012-01-01

    DC-mediated NKT cell activation is critical in initiating the immune response following kidney ischemia/reperfusion injury (IRI), which mimics human acute kidney injury (AKI). Adenosine is an important antiinflammatory molecule in tissue inflammation, and adenosine 2A receptor (A2AR) agonists protect kidneys from IRI through their actions on leukocytes. In this study, we showed that mice with A2AR-deficient DCs are more susceptible to kidney IRI and are not protected from injury by A2AR agonists. In addition, administration of DCs treated ex vivo with an A2AR agonist protected the kidneys of WT mice from IRI by suppressing NKT production of IFN-γ and by regulating DC costimulatory molecules that are important for NKT cell activation. A2AR agonists had no effect on DC antigen presentation or on Tregs. We conclude that ex vivo A2AR–induced tolerized DCs suppress NKT cell activation in vivo and provide a unique and potent cell-based strategy to attenuate organ IRI. PMID:23093781

  7. Neurotransmitter agonists inhibit inositol phosphate formation in the brain of bupropione-treated rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P.D.; Hungund, B.; Suckow, R.

    1986-03-05

    Bupropione is a chemically unique antidepressant whose mechanism of action is not known. In this study they have evaluated the effect of chronic treatment with bupropione on the receptor-mediated release of inositol phosphates (IP) from brain slices in rats. Animals were implanted with Alzet osmotic pumps that delivered bupropione at a constant rate (40mg/kg/day) for 2 weeks. Cross-chopped slices of cerebral cortex from control and drug-treated rats were prelabelled with myo-/sup 3/H-inositol in HEPES buffer containing 11 mM LiCl. Accumulation of IP was measured in the presence and absence of the following agonists: Carbamylcholine (100..mu..m); norepinephrine (5..mu..M) and serotonin (10..mu..M).more » All agonists stimulated release of IP from slices of control animals but appeared to inhibit IP release in bupropione-treated rats. These results indicate that a phospholipase C inhibitor may appear following the activation of this enzyme by the agonist, and that the agonist-induced formation of the apparent inhibitor may be markedly enhanced after treatment with bupropione.« less

  8. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-05

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Dopamine agonist 3-PPP fails to protect against MPTP-induced toxicity.

    PubMed

    Muralikrishnan, Dhanasekaran; Ebadi, Manuchair; Brown-Borg, Holly M

    2004-02-01

    We investigated the neuroprotective effect of the dopamine agonist, 3-PPP [3-(3-hydroxyphenyl)-N-propylpiperidine] against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. MPTP (30 mg/kg, i.p., twice, 16 h apart) causes significant dopamine depletion in nucleus caudatus putamen (NCP) by 1 week. 3-PPP had no effect on the monoamine oxidase-B activity (MAO-B) activity in NCP. 3-PPP did not affect dopamine uptake, whereas mazindol significantly blocked the uptake of dopamine dose dependently. MPTP-induced behavioral changes in mice were not reduced by pretreatment with 3-PPP. This dopamine agonist did not prevent dopamine depletion caused by MPTP. MPP+ (20 microM) significantly inhibited the cell proliferation of SH-SY5Y dopaminergic neuronal cells. 3-PPP had no effect on the SH-SY5Y neuronal cell growth in culture and did not block the MPP(+)-induced cytotoxicity. This study shows that the dopamine agonist 3-PPP failed to protect against MPTP-induced dopaminergic neurotoxicity.

  10. GnRH agonist versus GnRH antagonist in ovarian stimulation: is the emperor naked?

    PubMed

    Orvieto, R; Rabinson, J; Meltzer, S; Homburg, R; Anteby, E; Zohav, E

    2006-01-01

    The aim of the study was to evaluate the influence of type of GnRH-analog used during controlled ovarian hyperstimulation (COH) on the outcome of in vitro fertilization (IVF) cycles. All consecutive women aged < or = 35 years admitted to our IVF unit from January 2001 to December 2004 were enrolled in the study. Only patients undergoing up to their third IVF cycle attempt were included. Ovarian stimulation characteristics, number of oocytes retrieved, number of embryos transferred, and clinical pregnancy rate were compared between women given GnRH-agonist or GnRH-antagonist during COH. Four hundred and eighty-seven consecutive IVF cycles were evaluated, 226 in the agonist group and 261 in the antagonist group. A clinical pregnancy was achieved in 93 patients in the agonist group (pregnancy rate 41.2% per cycle) and 66 patients in the antagonist grup (pregnancy rate 25.3%); this difference was statistically significant (p < 0.01). The agonist group also used significantly more gonadotropin ampoules, required longer stimulation, and had higher estradiol levels on the day of human chorionic gonadotropin administration. The midluteal long GhRH-agonist suppressive protocol should be the protocol of choice in young patients in their first three IVF cycle attempts.

  11. GLA-SE, a Synthetic Toll-like Receptor 4 Agonist, Enhances T-Cell Responses to Influenza Vaccine in Older Adults

    PubMed Central

    Behzad, Hayedeh; Huckriede, Anke L. W.; Haynes, Laura; Gentleman, Beth; Coyle, Krysta; Wilschut, Jan C.; Kollmann, Tobias R.; Reed, Steven G.

    2012-01-01

    Background. The decline in influenza vaccine efficacy in older adults is associated with a limited ability of current split-virus vaccines (SVVs) to stimulate cytotoxic T lymphocyte (CTL) responses required for clinical protection against influenza. Methods. The Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant–stable emulsion (GLA-SE) was combined with SVV to stimulate peripheral blood mononuclear cells (PBMCs) in vitro to determine the cytokine response in dendritic cell subsets. Stimulated PBMCs were then challenged with live influenza virus to mimic the response to natural infection following vaccination, using previously identified T-cell correlates of protection. Results. GLA-SE significantly increased the proportion of myeloid dendritic cells that produced tumor necrosis factor α, interleukin 6, and interleukin 12. When combined with SVV to stimulate PBMCs in vitro, this effect of GLA-SE was shown to regulate a T-helper 1 cell response upon challenge with live influenza virus; interleukin 10 production was suppressed, thus significantly increasing the interferon γ to interleukin 10 ratio and the cytolytic (granzyme B) response to influenza virus challenge, both of which have been shown to correlate with protection against influenza in older adults. Conclusions. Our findings suggest that a novel adjuvant, GLA-SE, combined with standard SVV has the potential to significantly improve vaccine-mediated protection against influenza in older adults. PMID:22147791

  12. Rate constants of agonist binding to muscarinic receptors in rat brain medulla. Evaluation by competition kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, G.; Henis, Y.I.; Sokolovsky, M.

    The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization ofmore » the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.« less

  13. The cannabinoid receptor inverse agonist AM251 regulates the expression of the EGF receptor and its ligands via destabilization of oestrogen-related receptor α protein

    PubMed Central

    Fiori, JL; Sanghvi, M; O'Connell, MP; Krzysik-Walker, SM; Moaddel, R; Bernier, M

    2011-01-01

    BACKGROUND AND PURPOSE AM251 is an inverse agonist of the cannabinoid 1 receptor (CB1R) that can exert ‘off-target’ effects in vitro and in CB1R knock-out mice. AM251 is also potent at modulating tumour cell growth, suggesting that growth factor-mediated oncogenic signalling could be regulated by AM251. Since dysregulation of the EGF receptor has been associated with carcinogenesis, we examined AM251 regulation of EGF receptor (EGFR) expression and function. EXPERIMENTAL APPROACH The various biological functions of AM251 were measured in CB1R-negative human cancer cells. Pharmacological and genetic approaches were used to validate the data. KEY RESULTS The mRNA levels for EGFR and its associated ligands, including HB-EGF, were induced several fold in PANC-1 and HCT116 cells in response to AM251. This event was associated with enhanced expression of EGFR on the cell surface with concomitant increase in EGF-induced cellular responses in AM251-treated cells. Exposure to XCT790, a synthetic inverse agonist of the orphan nuclear oestrogen-related receptor α (ERRα), also induced EGFR and HB-EGF expression to the same extent as AM251, whereas pretreatment with the ERRα-selective agonist, biochanin A, blunted AM251 actions. AM251 promoted the degradation of ERRα protein without loss of the corresponding mRNA. Knock-down of ERRα by siRNA-based approach led to constitutive induction of EGFR and HB-EGF levels, and eliminated the biological responses of AM251 and XCT790. Finally, AM251 displaced diethylstilbestrol prebound to the ligand-binding domain of ERRα. CONCLUSIONS AND IMPLICATIONS AM251 up-regulates EGFR expression and signalling via a novel non-CB1R-mediated pathway involving destabilization of ERRα protein in selected cancer cell lines. PMID:21449913

  14. Identification of PPARgamma Partial Agonists of Natural Origin (I): Development of a Virtual Screening Procedure and In Vitro Validation

    PubMed Central

    Guasch, Laura; Sala, Esther; Castell-Auví, Anna; Cedó, Lidia; Liedl, Klaus R.; Wolber, Gerhard; Muehlbacher, Markus; Mulero, Miquel; Pinent, Montserrat; Ardévol, Anna; Valls, Cristina; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2012-01-01

    Background Although there are successful examples of the discovery of new PPARγ agonists, it has recently been of great interest to identify new PPARγ partial agonists that do not present the adverse side effects caused by PPARγ full agonists. Consequently, the goal of this work was to design, apply and validate a virtual screening workflow to identify novel PPARγ partial agonists among natural products. Methodology/Principal Findings We have developed a virtual screening procedure based on structure-based pharmacophore construction, protein-ligand docking and electrostatic/shape similarity to discover novel scaffolds of PPARγ partial agonists. From an initial set of 89,165 natural products and natural product derivatives, 135 compounds were identified as potential PPARγ partial agonists with good ADME properties. Ten compounds that represent ten new chemical scaffolds for PPARγ partial agonists were selected for in vitro biological testing, but two of them were not assayed due to solubility problems. Five out of the remaining eight compounds were confirmed as PPARγ partial agonists: they bind to PPARγ, do not or only moderately stimulate the transactivation activity of PPARγ, do not induce adipogenesis of preadipocyte cells and stimulate the insulin-induced glucose uptake of adipocytes. Conclusions/Significance We have demonstrated that our virtual screening protocol was successful in identifying novel scaffolds for PPARγ partial agonists. PMID:23226391

  15. Discovery of 3-aryl-4-isoxazolecarboxamides as TGR5 receptor agonists.

    PubMed

    Evans, Karen A; Budzik, Brian W; Ross, Sean A; Wisnoski, David D; Jin, Jian; Rivero, Ralph A; Vimal, Mythily; Szewczyk, George R; Jayawickreme, Channa; Moncol, David L; Rimele, Thomas J; Armour, Susan L; Weaver, Susan P; Griffin, Robert J; Tadepalli, Sarva M; Jeune, Michael R; Shearer, Todd W; Chen, Zibin B; Chen, Lihong; Anderson, Donald L; Becherer, J David; De Los Frailes, Maite; Colilla, Francisco Javier

    2009-12-24

    A series of 3-aryl-4-isoxazolecarboxamides identified from a high-throughput screening campaign as novel, potent small molecule agonists of the human TGR5 G-protein coupled receptor is described. Subsequent optimization resulted in the rapid identification of potent exemplars 6 and 7 which demonstrated improved GLP-1 secretion in vivo via an intracolonic dose coadministered with glucose challenge in a canine model. These novel TGR5 receptor agonists are potentially useful therapeutics for metabolic disorders such as type II diabetes and its associated complications.

  16. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: role of FXR and KIM-1.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Ghosh, Pinaki; Venkata, Shivakumar; Raygude, Kiran S; Bodhankar, Subhash L

    2016-07-01

    Acetaminophen (APAP) is an analgesic and antipyretic agent commonly known agent to cause hepatic and renal toxicity at a higher dose. Naringin, a bioflavonoid possesses multiple pharmacological properties such as antioxidant, anti-inflammatory, analgesic and anti-hyperlipidemic activity. To evaluate the effect of naringin against the APAP-induced hepatic and renal toxicity. Male Wistar albino rats (180-220 g) were divided into various groups, and toxicity was induced by APAP (700 mg/kg, p.o., 14 days). Naringin (20, 40 and 80 mg/kg, p.o.) or Silymarin (25 mg/kg) was administered to rats 2 h before APAP oral administration. Various biochemical, molecular and histopathological parameter were accessed in hepatic and renal tissue. Naringin pretreatment significantly decreased (p < 0.05) serum creatinine, blood urea nitrogen, bilirubin, aspartate transaminase, alanine transaminase, lactate dehydrogenase, low-density lipoprotein, very low-density lipoprotein, cholesterol and triglycerides as compared with APAP control rats. Decreased level of serum albumin, uric acid, and high-density lipoprotein were also significantly restored (p < 0.05) by naringin pretreatment. It also significantly restores (p < 0.05) the altered level of superoxide dismutase, reduced glutathione, malondialdehyde and nitric oxide in hepatic and renal tissue. Moreover, altered mRNA expression of hepatic farnesoid X receptor and renal injury molecule-1 (KIM-1) were significantly restored (p < 0.05) by naringin treatment. Naringin treatment also reduced histological alteration induced by APAP in the liver and kidney. Naringin exerts its hepato- and nephroprotective effect via modulation of oxido-nitrosative stress, FXR and KIM-1 mRNA expression.

  17. Peroxidative Metabolism of β2-Agonists Salbutamol and Fenoterol and Their Analogs

    PubMed Central

    Reszka, Krzysztof J.; McGraw, Dennis W.; Britigan, Bradley E.

    2009-01-01

    Phenolic β2-adrenoreceptor agonists salbutamol, fenoterol and terbutaline relax smooth muscle cells that relieve acute airway bronchospasm associated with asthma. Why their use sometimes fails to relieve bronchospasm, and why the drugs appear to be less effective in patients with severe asthma exacerbations, remains unclear. We show that in the presence of hydrogen peroxide, both myeloperoxidase, secreted by activated neutrophils present in inflamed airways, and lactoperoxidase, which is naturally present in the respiratory system, catalyze oxidation of these β2-agonists. Azide, cyanide, thiocyanate, ascorbate, glutathione, and methimazole inhibited this process, while methionine was without effect. Inhibition by ascorbate and glutathione was associated with their oxidation to corresponding radical species by the agonists’-derived phenoxyl radicals. Using electron paramagnetic resonance (EPR), we detected free radical metabolites from β2-agonists by spin trapping with 2-methyl-2-nitrosopropane (MNP). Formation of these radicals was inhibited by pharmacologically-relevant concentrations of methimazole and dapsone. In alkaline buffers radicals from fenoterol and its structural analog, metaproteronol, were detected by direct EPR. Analysis of these spectra suggests that oxidation of fenoterol and metaproterenol, but not terbutaline, causes their transformation through intramolecular cyclization by addition of their amino nitrogen to the aromatic ring. Together, these results indicate that phenolic β2-agonists function as substrates for airway peroxidases and that the resulting products differ in their structural and functional properties from their parent compounds. They also suggest that these transformations can be modulated by pharmacological approaches using appropriate peroxidase inhibitors or alternative substrates. These processes may affect therapeutic efficacy and also play a role in adverse reactions of the β2-agonists. PMID:19462961

  18. Oxytocin and Vasopressin Agonists and Antagonists as Research Tools and Potential Therapeutics

    PubMed Central

    Manning, M; Misicka, A; Olma, A; Bankowski, K; Stoev, S; Chini, B; Durroux, T; Mouillac, B; Corbani, M; Guillon, G

    2012-01-01

    We recently reviewed the status of peptide and nonpeptide agonists and antagonists for the V1a, V1b and V2 receptors for arginine vasopressin (AVP) and the oxytocin receptor for oxytocin (OT). In the present review, we update the status of peptides and nonpeptides as: (i) research tools and (ii) therapeutic agents. We also present our recent findings on the design of fluorescent ligands for V1b receptor localisation and for OT receptor dimerisation. We note the exciting discoveries regarding two novel naturally occurring analogues of OT. Recent reports of a selective VP V1a agonist and a selective OT agonist point to the continued therapeutic potential of peptides in this field. To date, only two nonpeptides, the V2/V1a antagonist, conivaptan and the V2 antagonist tolvaptan have received Food and Drug Administration approval for clinical use. The development of nonpeptide AVP V1a, V1b and V2 antagonists and OT agonists and antagonists has recently been abandoned by Merck, Sanofi and Pfizer. A promising OT antagonist, Retosiban, developed at Glaxo SmithKline is currently in a Phase II clinical trial for the prevention of premature labour. A number of the nonpeptide ligands that were not successful in clinical trials are proving to be valuable as research tools. Peptide agonists and antagonists continue to be very widely used as research tools in this field. In this regard, we present receptor data on some of the most widely used peptide and nonpeptide ligands, as a guide for their use, especially with regard to receptor selectivity and species differences. PMID:22375852

  19. Discovery of novel acetanilide derivatives as potent and selective beta3-adrenergic receptor agonists.

    PubMed

    Maruyama, Tatsuya; Onda, Kenichi; Hayakawa, Masahiko; Matsui, Tetsuo; Takasu, Toshiyuki; Ohta, Mitsuaki

    2009-06-01

    In the search for potent and selective human beta3-adrenergic receptor (AR) agonists as potential drugs for the treatment of obesity and noninsulin-dependent (type II) diabetes, a novel series of acetanilide-based analogues were prepared and their biological activities were evaluated at the human beta3-, beta2-, and beta1-ARs. Among these compounds, 2-pyridylacetanilide (2f), pyrimidin-2-ylacetanilide (2u), and pyrazin-2-ylacetanilide (2v) derivatives exhibited potent agonistic activity at the beta3-AR with functional selectivity over the beta1- and beta2-ARs. In particular, compound 2u was found to be the most potent and selective beta3-AR agonist with an EC(50) value of 0.11 microM and no agonistic activity for either the beta1- or beta2-AR. In addition, 2f, 2u, and 2v showed significant hypoglycemic activity in a rodent diabetic model.

  20. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    2003-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate CAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of CAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of CAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of CAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of CAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of CAMP by either epinephrine or isoproterenol.

  1. The Endocannabinoid System as a Target for Treatment of Breast Cancer

    DTIC Science & Technology

    2010-08-01

    psychoactive constituent of marijuana (Gaoni and Mechoulam, 1964), as well as other naturally occurring and synthetically derived cannabinoids bind to and...the primary psychoactive constituent present in marijuana , and WIN55,212-2, a highly potent, full CB1 receptor agonist. Female mice implanted with...potent and highly efficacious synthetic cannabinoid receptor agonist originally developed as a nonsteroidal anti-inflammatory drug (Ward et al., 1991

  2. The Endocannabinoid System as a Target for Treatment of Breast Cancer

    DTIC Science & Technology

    2011-08-01

    cannabinoids with radiation in MCF-7, MDA-MB-231, and 4T1 breast tumor cell lines. Interestingly, the high efficacy synthetic cannabinoid agonist...tumorgenesis in FAAH (-/-) mice vs. wild type mice; and 2) the synthetic cannabinoid receptor agonist WIN55,212-2 in combination with radiation or adriamycin...THC (the primary active psychoactive constituent present in marijuana ), cannabidiol (CBD: a marijuana -derived cannabinoid that lacks psychomimetic

  3. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  4. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea

    PubMed Central

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-01-01

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment. PMID:27570415

  5. Rilmenidine improves hepatic steatosis through p38-dependent pathway to higher the expression of farnesoid X receptor.

    PubMed

    Yang, Po-Sheng; Wu, Hung-Tsung; Chung, Hsien-Hui; Chen, Chun-Ta; Chi, Chin-Wen; Yeh, Ching-Hua; Cheng, Juei-Tang

    2012-01-01

    The nuclear receptor farnesoid X receptor (FXR) regulates pathways in lipid, glucose, and energy metabolism. Activation of FXR in mice significantly improved high-fat diet-induced hepatic steatosis. It has been reported that activation of imidazoline I-1 receptor by rilmenidine increases the expression of FXR in human hepatoma cell line, Hep G2 cell, to regulate the target genes relating to lipid metabolism; activation of FXR by rilmenidine exerts an antihyperlipidemic action. However, signals for this action of rilmenidine are still unknown. In the present study, hepatic steatosis induced in mice by high-fat diet was improved by rilmenidine after intraperitoneal injection at 1 mg/kg daily for 12 weeks. Also, mediation of I-1 receptors was identified using the specific antagonist efaroxan. Moreover, rilmenidine decreased the oleic acid-induced lipid accumulation in Hep G2 cells. Otherwise, rilmenidine increased the phosphorylation of p38 to increase the expression of FXR. Deletion of calcium ions by BAPTA-AM reversed the rilmenidine-induced p38 phosphorylation. In conclusion, we suggest that rilmenidine activates I-1 receptor to increase intracellular calcium ions that may enhance the phosphorylation of p38 to higher the expression of FXR for improvement of hepatic steatosis in both animals and cells.

  6. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    PubMed

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  7. Newspapers and Newspaper Ink Contain Agonists for the Ah Receptor

    PubMed Central

    Bohonowych, Jessica E. S.; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T.; Denison, Michael S.

    2010-01-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [3H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  8. A Human Platelet Calcium Calculator Trained by Pairwise Agonist Scanning

    PubMed Central

    Lee, Mei Yan; Diamond, Scott L.

    2015-01-01

    Since platelet intracellular calcium mobilization [Ca(t)]i controls granule release, cyclooxygenase-1 and integrin activation, and phosphatidylserine exposure, blood clotting simulations require prediction of platelet [Ca(t)]i in response to combinatorial agonists. Pairwise Agonist Scanning (PAS) deployed all single and pairwise combinations of six agonists (ADP, convulxin, thrombin, U46619, iloprost and GSNO used at 0.1, 1, and 10xEC50; 154 conditions including a null condition) to stimulate platelet P2Y1/P2Y12 GPVI, PAR1/PAR4, TP, IP receptors, and guanylate cyclase, respectively, in Factor Xa-inhibited (250 nM apixaban), diluted platelet rich plasma that had been loaded with the calcium dye Fluo-4 NW. PAS of 10 healthy donors provided [Ca(t)]i data for training 10 neural networks (NN, 2-layer/12-nodes) per donor. Trinary stimulations were then conducted at all 0.1x and 1xEC50 doses (160 conditions) as was a sampling of 45 higher ordered combinations (four to six agonists). The NN-ensemble average was a calcium calculator that accurately predicted [Ca (t)]i beyond the single and binary training set for trinary stimulations (R = 0.924). The 160 trinary synergy scores, a normalized metric of signaling crosstalk, were also well predicted (R = 0.850) as were the calcium dynamics (R = 0.871) and high-dimensional synergy scores (R = 0.695) for the 45 higher ordered conditions. The calculator even predicted sequential addition experiments (n = 54 conditions, R = 0.921). NN-ensemble is a fast calcium calculator, ideal for multiscale clotting simulations that include spatiotemporal concentrations of ADP, collagen, thrombin, thromboxane, prostacyclin, and nitric oxide. PMID:25723389

  9. Neonatal (+)-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists

    PubMed Central

    Graham, Devon L.; Amos-Kroohs, Robyn M.; Braun, Amanda A.; Grace, Curtis E.; Schaefer, Tori L.; Skelton, Matthew R.; Williams, Michael T.; Vorhees, Charles V.

    2015-01-01

    Neonatal exposure to (+)-methamphetamine (Meth) results in long-term behavioural abnormalities but its developmental mechanisms are unknown. In a series of experiments, rats were treated from post-natal days (PD) 11–20 (stage that approximates human development from the second to third trimester) with Meth or saline and assessed using locomotor activity as the readout following pharmacological challenge doses with dopamine, serotonin and glutamate agonists or antagonists during adulthood. Exposure to Meth early in life resulted in an exaggerated adult locomotor hyperactivity response to the dopamine D1 agonist SKF-82958 at multiple doses, a high dose only under-response activating effect of the D2 agonist quinpirole, and an exaggerated under-response to the activating effect of the N-methyl-D-aspartic acid (NMDA) receptor antagonist, MK-801. No change in locomotor response was seen following challenge with the 5-HT releaser p-chloroamphetamine or the 5-HT2/3 receptor agonist, quipazine. These are the first data to show that PD 11-20 Meth exposure induces long-lasting alterations to dopamine D1, D2 and glutamate NMDA receptor function and may suggest how developmental Meth exposure leads to many of its long-term adverse effects. PMID:22391043

  10. Gonadotropin-releasing Hormone Agonist Overuse: Urologists’ Response to Reimbursement and Characteristics Associated with Persistent Overuse

    PubMed Central

    Ellis, Shellie D.; Nielsen, Matthew E.; Carpenter, William R.; Jackson, George L.; Wheeler, Stephanie B.; Liu, Huan; Weinberger, Morris

    2015-01-01

    BACKGROUND Medicare reimbursement cuts have been associated with declining Gonadotropin-releasing Hormone (GnRH) agonist overuse in localized prostate cancer. Medical school affiliation and foreign training have been associated with persistent overuse. However, physician-level prescribing changes and the practice type of persistent overusers have not been examined. We sought to describe physician-level changes in GnRH agonist overuse and test the association of time in practice and solo practice type with GnRH agonist overuse. METHODS We matched American Medical Association physician data for 2,138 urologists to SEER–Medicare data for 12,943 men diagnosed with early stage and lower grade adenocarcinoma of the prostate between 2000 and 2007. We conducted a population-based, retrospective study using multi-level modeling to control for patient and provider characteristics. RESULTS Three distinct patterns of GnRH agonist overuse were observed. Urologists’ time in practice was not associated with GnRH agonist overuse (OR 0.89; 95% CI 0.75–1.05).However, solo practice type (OR 1.65; 95% CI 1.34–2.02), medical school affiliation (OR 0.65; 95% CI 0.55–0.77), and patient race were. Compared to non-Hispanic whites, non-Hispanic blacks (OR 1.76; 95% CI 1.37–2.27), Hispanics (OR 1.41; 95% CI 1.12–1.79) and men of “other” race (OR 1.44; 95% CI 1.04–1.99) had greater odds of receiving unnecessary GnRH agonists. CONCLUSIONS GnRH agonist overuse remains high among some urologists who may be professionally isolated and difficult to reach. These urologists treat more vulnerable populations, which may contribute to health disparities in prostate cancer treatment quality. Nonetheless, these findings provide guidance to develop interventions to address overuse in prostate cancer. PMID:25849354

  11. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  12. Current status of synthetic epikeratoplasty.

    PubMed

    Thompson, K P; Hanna, K; Waring, G O; Gipson, I; Liu, Y; Gailitis, R P; Johnson-Wint, B; Green, K

    1991-01-01

    Many of the deficiencies with human tissue epikeratoplasty might be improved by the use of a suitable synthetic lenticule. Potential biomaterials for epikeratoplasty include collagen (types I, III, or IV), collagen-hydrogel copolymers, bioactive synthetics, and coated hydrogels. The biomaterial must be engineered to achieve strict specifications of optical clarity, support of epithelial migration and adhesion, permeability to solutes, and stability to corneal proteases. Attaching synthetic lenticules to the cornea without cutting Bowman's layer by adhesives, laser welding, or direct adhesion may also improve the efficacy of synthetic epikeratoplasty.

  13. Metformin sensitizes triple-negative breast cancer to proapoptotic TRAIL receptor agonists by suppressing XIAP expression.

    PubMed

    Strekalova, Elena; Malin, Dmitry; Rajanala, Harisha; Cryns, Vincent L

    2017-06-01

    Despite robust antitumor activity in diverse preclinical models, TNF-related apoptosis-inducing ligand (TRAIL) receptor agonists have not demonstrated efficacy in clinical trials, underscoring the need to identify agents that enhance their activity. We postulated that the metabolic stress induced by the diabetes drug metformin would sensitize breast cancer cells to TRAIL receptor agonists. Human triple (estrogen receptor, progesterone receptor, and HER2)-negative breast cancer (TNBC) cell lines were treated with TRAIL receptor agonists (monoclonal antibodies or TRAIL peptide), metformin, or the combination. The effects on cell survival, caspase activation, and expression of TRAIL receptors and the antiapoptotic protein XIAP were determined. In addition, XIAP was silenced by RNAi in TNBC cells and the effects on sensitivity to TRAIL were determined. The antitumor effects of metformin, TRAIL, or the combination were evaluated in an orthotopic model of metastatic TNBC. Metformin sensitized diverse TNBC cells to TRAIL receptor agonists. Metformin selectively enhanced the sensitivity of transformed breast epithelial cells to TRAIL receptor agonist-induced caspase activation and apoptosis with little effect on untransformed breast epithelial cells. These effects of metformin were accompanied by robust reductions in the protein levels of XIAP, a negative regulator of TRAIL-induced apoptosis. Silencing XIAP in TNBC cells mimicked the TRAIL-sensitizing effects of metformin. Metformin also enhanced the antitumor effects of TRAIL in a metastatic murine TNBC model. Our findings indicate that metformin enhances the activity of TRAIL receptor agonists, thereby supporting the rationale for additional translational studies combining these agents.

  14. Molecular interactions of agonist and inverse agonist ligands at serotonin 5-HT2C G protein-coupled receptors: computational ligand docking and molecular dynamics studies validated by experimental mutagenesis results

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania C.; Liu, Yue; Booth, Raymond G.

    2015-02-01

    To understand molecular determinants for ligand activation of the serotonin 5-HT2C G protein-coupled receptor (GPCR), a drug target for obesity and neuropsychiatric disorders, a 5-HT2C homology model was built according to an adrenergic β2 GPCR (β2AR) structure and validated using a 5-HT2B GPCR crystal structure. The models were equilibrated in a simulated phosphatidyl choline membrane for ligand docking and molecular dynamics studies. Ligands included (2S, 4R)-(-)-trans-4-(3'-bromo- and trifluoro-phenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalene-2-amine (3'-Br-PAT and 3'-CF3-PAT), a 5-HT2C agonist and inverse agonist, respectively. Distinct interactions of 3'-Br-PAT and 3'-CF3-PAT at the wild-type (WT) 5-HT2C receptor model were observed and experimental 5-HT2C receptor mutagenesis studies were undertaken to validate the modelling results. For example, the inverse agonist 3'-CF3-PAT docked deeper in the WT 5-HT2C binding pocket and altered the orientation of transmembrane helices (TM) 6 in comparison to the agonist 3'-Br-PAT, suggesting that changes in TM orientation that result from ligand binding impact function. For both PATs, mutation of 5-HT2C residues S3.36, T3.37, and F5.47 to alanine resulted in significantly decreased affinity, as predicted from modelling results. It was concluded that upon PAT binding, 5-HT2C residues T3.37 and F5.47 in TMs 3 and 5, respectively, engage in inter-helical interactions with TMs 4 and 6, respectively. The movement of TMs 5 and 6 upon agonist and inverse agonist ligand binding observed in the 5-HT2C receptor modelling studies was similar to movements reported for the activation and deactivation of the β2AR, suggesting common mechanisms among aminergic neurotransmitter GPCRs.

  15. Co-administration of delta- and mu-opioid receptor agonists promotes peripheral opioid receptor function

    PubMed Central

    Schramm, Cicely L.; Honda, Christopher N.

    2010-01-01

    Enhancement of peripheral opioid analgesia following tissue injury or inflammation in animal models is well-documented, but clinical results of peripheral opioid therapy remain inconsistent. Previous studies in the central nervous system have shown that co-administration of μ- and δ-opioid receptor agonists can enhance analgesic outcomes; however, less is known about the functional consequences of opioid receptor interactions in the periphery. The present study examines the effects of intraplantar injection of the μ- and δ-opioid receptor agonists, morphine and deltorphin, alone and in combination on behavioral tests of nociception in naïve rats and on potassium-evoked release of CGRP from sciatic nerves of naïve rats. Neither drug alone affected nociceptive behaviors or CGRP release. Two separate measures of mechanical nociceptive sensitivity remained unchanged after co-administration of the two drugs. In contrast, when deltorphin was co-injected with morphine, dose-dependent and peripherally-restricted increases in paw withdrawal latencies to radiant heat were observed. Similarly, concentration-dependent inhibition of CGRP release was observed when deltorphin and morphine were administered in sequence prior to potassium stimulation. However, no inhibition was observed when morphine was administered prior to deltorphin. All combined opioid effects were blocked by co-application of antagonists. Deltorphin exposure also enhanced the in vivo and in vitro effects of another μ-opioid receptor agonist, DAMGO. Together, these results suggest that under normal conditions, δ-opioid receptor agonists enhance the effect of μ-opioid receptor agonists in the periphery, and local co-administration of δ- and μ-opioid receptor agonists may improve results of peripheral opioid therapy for the treatment of pain. PMID:20970925

  16. Drugs for metabolic conditions and prostate cancer death in men on GnRH agonists.

    PubMed

    Bosco, Cecilia; Wong, Chloe; Garmo, Hans; Crawley, Danielle; Holmberg, Lars; Hammar, Niklas; Adolfsson, Jan; Stattin, Pär; Van Hemelrijck, Mieke

    2018-02-01

    To evaluate whether drugs for metabolic conditions influence prostate cancer-specific mortality in men starting gonadotrophin-releasing hormone (GnRH) agonists, as it is unclear whether metabolic syndrome and its related drugs is affecting treatment response in men with prostate cancer on GnRH agonists. We selected all men receiving GnRH agonists as primary treatment in the Prostate Cancer data Base Sweden (PCBaSe) (n = 9267). Use of drugs for metabolic conditions (i.e. anti-diabetes, anti-dyslipidaemia, and antihypertension) in relation to all-cause, cardiovascular disease (CVD), and prostate cancer-specific death were studied using multivariate Cox proportional hazard and Fine and Gray competing regression models. In all, 6322 (68%) men used at least one drug for a metabolic condition at GnRH agonist initiation: 46% on antihypertensive drugs only, 32% on drugs for dyslipidaemia and hypertension, and ~10% on drugs for more than two metabolic conditions. Cox models indicated a weak increased risk of prostate cancer death in men who were on drugs for hypertension only (hazard ratio [HR] 1.12, 95% confidence interval [CI] 1.03-1.23) or drugs for hyperglycaemia (HR 1.19, 95% CI 1.06-1.35) at GnRH agonist initiation. However, upon taking into account competing risk from CVD death, none of the drugs for metabolic conditions were associated with an increased risk of prostate cancer death. We did not find evidence for a better or worse response to GnRH agonists in men with prostate cancer who were also on drugs for hypertension, dyslipidaemia, or hyperglycaemia. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  17. Additive melanoma suppression with intralesional phospholipid conjugated TLR7 agonists and systemic IL-2

    PubMed Central

    Hayashi, Tomoko; Chan, Michael; Norton, John T.; Wu, Christina C.N.; Yao, Shiyin; Cottam, Howard B.; Tawatao, Rommel I.; Corr, Maripat; Carson, Dennis A; Daniels, Gregory A.

    2010-01-01

    Objective There remains a compelling need for the development of treatments for unresectable melanoma. Agents that stimulate the innate immune response could provide advantages for cell based therapies. However there are conflicting reports concerning whether Toll-like receptor (TLR) signaling controls tumor growth. The objective of this study was to evaluate the effect of the intralesional administration of a TLR7 agonist in melanoma therapy. Methods B16cOVA melanoma was implanted to TLR7−/− mice to evaluate the roles of stromal TLR7 on melanoma growth. To capitalize on the potential deleterious effects of TLR7 stimulation on tumor growth, we injected melanoma tumor nodules with a newly developed and potent TLR7 agonist. Results B16 melanoma nodules expanded more rapidly in mice deficient in TLR7- and MyD88- compared to TLR9-deficient and wild type mice. Repeated injections with low doses of unconjugated TLR7 agonist were more effective at attenuating nodule size than a single high dose injection. To improve efficacy we conjugated the agonist to phospholipid or polyethylene glycol-phospholipid, which retained TLR7 specificity. The phospholipid conjugate was indeed more effective in reducing lesion size. Furthermore intralesional administration of the phospholipid TLR7 agonist conjugate enhanced the anti-melanoma effects of systemic IL-2 treatment and prolonged the survival of mice compared to IL-2 alone. Conclusion TLR7/MyD88 signaling in the stroma is involved in melanoma growth. Intralesional administration of a TLR7 agonist reduces the growth of melanoma nodules and enhances the anti-melanoma effects of IL-2. PMID:21030882

  18. Distributed and collaborative synthetic environments

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.; Bernardini, Fausto

    1995-01-01

    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

  19. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    PubMed Central

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  20. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.

    PubMed

    Sharma, Sunil V; Tong, Xiaoxue; Pubill-Ulldemolins, Cristina; Cartmell, Christopher; Bogosyan, Emma J A; Rackham, Emma J; Marelli, Enrico; Hamed, Refaat B; Goss, Rebecca J M

    2017-08-09

    Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.

  1. LHRH Agonists for the Treatment of Prostate Cancer: 2012

    PubMed Central

    Lepor, Herbert; Shore, Neal D

    2012-01-01

    The most recent guidelines on prostate cancer screening from the American Urological Association (2009), the National Comprehensive Cancer Network (2011), and the European Association of Urology (2011), as well as treatment and advances in disease monitoring, have increased the androgen deprivation therapy (ADT) population and the duration of ADT usage as the first-line treatment for metastatic prostate cancer. According to the European Association of Urology, gonadotropin-releasing hormone (GnRH) agonists have become the leading therapeutic option for ADT because they avoid the physical and psychological discomforts associated with orchiectomy. However, GnRH agonists display several shortcomings, including testosterone (T) surge (“clinical flare”) and microsurges. T surge delays the intended serologic endpoint of T suppression and may exacerbate clinical symptoms. Furthermore, ADT manifests an adverse-event spectrum that can impact quality of life with its attendant well-documented morbidities. Strategies to improve ADT tolerability include a holistic management approach, improved diet and exercise, and more specific monitoring to detect and prevent T depletion toxicities. Intermittent ADT, which allows hormonal recovery between treatment periods, has become increasingly utilized as a methodology for improving quality of life while not diminishing chronic ADT efficacy, and may also provide healthcare cost savings. This review assesses the present and potential future role of GnRH agonists in prostate cancer and explores strategies to minimize the adverse-event profile for patients receiving ADT. PMID:23172994

  2. Heritable victimization and the benefits of agonistic relationships

    PubMed Central

    Lea, Amanda J.; Blumstein, Daniel T.; Wey, Tina W.; Martin, Julien G. A.

    2010-01-01

    Here, we present estimates of heritability and selection on network traits in a single population, allowing us to address the evolutionary potential of social behavior and the poorly understood link between sociality and fitness. To evolve, sociality must have some heritable basis, yet the heritability of social relationships is largely unknown. Recent advances in both social network analyses and quantitative genetics allow us to quantify attributes of social relationships and estimate their heritability in free-living populations. Our analyses addressed a variety of measures (in-degree, out-degree, attractiveness, expansiveness, embeddedness, and betweenness), and we hypothesized that traits reflecting relationships controlled by an individual (i.e., those that the individual initiated or were directly involved in) would be more heritable than those based largely on the behavior of conspecifics. Identifying patterns of heritability and selection among related traits may provide insight into which types of relationships are important in animal societies. As expected, we found that variation in indirect measures was largely explained by nongenetic variation. Yet, surprisingly, traits capturing initiated interactions do not possess significant additive genetic variation, whereas measures of received interactions are heritable. Measures describing initiated aggression and position in an agonistic network are under selection (0.3 < |S| < 0.4), although advantageous trait values are not inherited by offspring. It appears that agonistic relationships positively influence fitness and seemingly costly or harmful ties may, in fact, be beneficial. Our study highlights the importance of studying agonistic as well as affiliative relationships to understand fully the connections between sociality and fitness. PMID:21115836

  3. Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry.

    PubMed

    Holm, Niels Bjerre; Pedersen, Anders Just; Dalsgaard, Petur Weihe; Linnet, Kristian

    2015-03-01

    New types of synthetic cannabinoid designer drugs are constantly introduced to the illicit drug market to circumvent legislation. Recently, N-​(1-Adamant​yl)-​1-​(5-​fluoropentyl)-​1H-​indazole-​3-​carboxamide (5F-AKB-48), also known as 5F-APINACA, was identified as an adulterant in herbal products. This compound deviates from earlier JHW-type synthetic cannabinoids by having an indazole ring connected to an adamantyl group via a carboxamide linkage. Synthetic cannabinoids are completely metabolized, and identification of the metabolites is thus crucial when using urine as the sample matrix. Using an authentic urine sample and high-resolution accurate-mass Fourier transform Orbitrap mass spectrometry, we identified 16 phase-I metabolites of 5F-AKB-48. The modifications included mono-, di-, and trihydroxylation on the adamantyl ring alone or in combination with hydroxylation on the N-fluoropentylindazole moiety, dealkylation of the N-fluoropentyl side chain, and oxidative loss of fluorine as well as combinations thereof. The results were compared to human liver microsomal (HLM) incubations, which predominantly showed time-dependent formation of mono-, di-, and trihydroxylated metabolites having the hydroxyl groups on the adamantyl ring. The results presented here may be used to select metabolites specific of 5F-AKB-48 for use in clinical and forensic screening. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Intraperirhinal cortex administration of the synthetic cannabinoid, HU210, disrupts object recognition memory in rats.

    PubMed

    Sticht, Martin A; Jacklin, Derek L; Mechoulam, Raphael; Parker, Linda A; Winters, Boyer D

    2015-03-25

    Cannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.01, 1.0 μg/hemisphere), into PRh on spontaneous object recognition in Long-Evans rats. Animals received intra-PRh infusions of HU210 before the sample phase, and object recognition memory was assessed at various delays in a subsequent retention test. We found that presample intra-PRh HU210 dose dependently (1.0 μg but not 0.01 μg) interfered with spontaneous object recognition performance, exerting an apparently more pronounced effect when memory demands were increased. These novel findings show that cannabinoid agonists in PRh disrupt object recognition memory. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  5. Modulation Effect of Peroxisome Proliferator-Activated Receptor Agonists on Lipid Droplet Proteins in Liver.

    PubMed

    Zhu, Yun-Xia; Zhang, Ming-Liang; Zhong, Yuan; Wang, Chen; Jia, Wei-Ping

    2016-01-01

    Peroxisome proliferator-activated receptor (PPAR) agonists are used for treating hyperglycemia and type 2 diabetes. However, the mechanism of action of these agonists is still under investigation. The lipid droplet-associated proteins FSP27/CIDEC and LSDP5, regulated directly by PPARγ and PPARα, are associated with hepatic steatosis and insulin sensitivity. Here, we evaluated the expression levels of FSP27/CIDEC and LSDP5 and the regulation of these proteins by consumption of a high-fat diet (HFD) or administration of PPAR agonists. Mice with diet-induced obesity were treated with the PPARγ or PPARα agonist, pioglitazone or fenofibrate, respectively. Liver tissues from db/db diabetic mice and human were also collected. Interestingly, FSP27/CIEDC was expressed in mouse and human livers and was upregulated in obese C57BL/6J mice. Fenofibrate treatment decreased hepatic triglyceride (TG) content and FSP27/CIDEC protein expression in mice fed an HFD diet. In mice, LSDP5 was not detected, even in the context of insulin resistance or treatment with PPAR agonists. However, LSDP5 was highly expressed in humans, with elevated expression observed in the fatty liver. We concluded that fenofibrate greatly decreased hepatic TG content and FSP27/CIDEC protein expression in mice fed an HFD, suggesting a potential regulatory role for fenofibrate in the amelioration of hepatic steatosis.

  6. New-generation 5-HT4 receptor agonists: potential for treatment of gastrointestinal motility disorders.

    PubMed

    Manabe, Noriaki; Wong, Banny S; Camilleri, Michael

    2010-06-01

    Gastrointestinal (GI) dysmotility is an important mechanism in functional GI disorders (FGIDs) including constipation, irritable bowel syndrome, functional dyspepsia, and gastroparesis. 5-hydroxytryptamine(4) (5-HT(4)) receptors are targets for the treatment of GI motility disorders. However, older 5-HT(4) receptor agonists had limited clinical success because they were associated with changes in the function of the cardiac HERG potassium channel. We conducted a PubMed search using the following key words alone or in combination: 5-HT(4), safety, toxicity, pharmacokinetics, pharmacodynamics, clinical trial, cardiac, hERG, arrhythmia, potassium current, elderly, prucalopride, ATI-7505, and velusetrag (TD-5108), to review mechanisms of action, clinical efficacy, safety and tolerability of three new-generation 5-HT(4) receptor agonists. Prucalopride, ATI-7505, and velusetrag (TD-5108) are highly selective, high-affinity 5-HT(4) receptor agonists that are devoid of action on other receptors within their therapeutic range. Their efficacy has been demonstrated in pharmacodynamic studies which demonstrate acceleration of colonic transit and, to a variable degree, in clinical trials that significantly relieve chronic constipation. Currently available evidence shows that the new 5-HT(4) receptor agonists have safe cardiac profiles. New-generation 5-HT(4) receptor agonists and future drugs targeting organ-specific splice variants are promising approaches to treat GI dysmotility, particularly colonic diseases.

  7. Antinociceptive action of NOP and opioid receptor agonists in the mouse orofacial formalin test.

    PubMed

    Rizzi, A; Ruzza, C; Bianco, S; Trapella, C; Calo', G

    2017-08-01

    Nociceptin/orphanin FQ (N/OFQ) modulates several biological functions, including pain transmission via selective activation of a specific receptor named NOP. The aim of this study was the investigation of the antinociceptive properties of NOP agonists and their interaction with opioids in the trigeminal territory. The orofacial formalin (OFF) test in mice was used to investigate the antinociceptive potential associated to the activation of NOP and opioid receptors. Mice subjected to OFF test displayed the typical biphasic nociceptive response and sensitivity to opioid and NSAID drugs. Mice knockout for the NOP gene displayed a robust pronociceptive phenotype. The NOP selective agonist Ro 65-6570 (0.1-1mgkg -1 ) and morphine (0.1-10mgkg -1 ) elicited dose dependent antinociceptive effects in the OFF with the alkaloid showing larger effects; the isobologram analysis of their actions demonstrated an additive type of interaction. The mixed NOP/opioid receptor agonist cebranopadol elicited potent (0.01-0.1mgkg -1 ) and robust antinociceptive effects. In the investigated dose range, all drugs did not modify the motor performance of the mice in the rotarod test. Collectively the results of this study demonstrated that selective NOP agonists and particularly mixed NOP/opioid agonists are worthy of development as innovative drugs to treat painful conditions of the trigeminal territory. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 5-Functionalized indazoles as glucocorticoid receptor agonists.

    PubMed

    Bai, Mei; Carr, Grant; Deorazio, Russell J; Friedrich, Thomas D; Dobritsa, Svetlana; Fitzpatrick, Kevin; Guzzo, Peter R; Kitchen, Douglas B; Lynch, Michael A; Peace, Denise; Sajad, Mohammed; Usyatinsky, Alexander; Wolf, Mark A

    2010-05-15

    An indazole based series of glucocorticoid receptor agonists is reported. The SAR exploration of this scaffold yielded compounds with nanomolar affinity for the glucocorticoid receptor with indications of selectivity for the preferred transrepression mechanism; in vivo efficacy was observed in the mouse LPS induced TNFalpha model for compound 28. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Development of novel neurokinin 3 receptor (NK3R) selective agonists with resistance to proteolytic degradation.

    PubMed

    Misu, Ryosuke; Oishi, Shinya; Yamada, Ai; Yamamura, Takashi; Matsuda, Fuko; Yamamoto, Koki; Noguchi, Taro; Ohno, Hiroaki; Okamura, Hiroaki; Ohkura, Satoshi; Fujii, Nobutaka

    2014-10-23

    Neurokinin B (NKB) regulates the release of gonadotropin-releasing hormone (GnRH) via activation of the neurokinin-3 receptor (NK3R). We evaluated the biological stability of NK3R selective agonists to develop novel NK3R agonists to regulate reproductive functions. On the basis of degradation profiles, several peptidomimetic derivatives were designed. The modification of senktide with (E)-alkene dipeptide isostere generated a novel potent NK3R agonist with high stability and prolonged bioactivity.

  10. Creating biological nanomaterials using synthetic biology.

    PubMed

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  11. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Cureri, Peter A. (Technical Monitor)

    2002-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of cAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of cAMP by either epinephrine or isoproterenol.

  12. PPAR-γ Agonists As Antineoplastic Agents in Cancers with Dysregulated IGF Axis

    PubMed Central

    Vella, Veronica; Nicolosi, Maria Luisa; Giuliano, Stefania; Bellomo, Maria; Belfiore, Antonino; Malaguarnera, Roberta

    2017-01-01

    It is now widely accepted that insulin resistance and compensatory hyperinsulinemia are associated to increased cancer incidence and mortality. Moreover, cancer development and progression as well as cancer resistance to traditional anticancer therapies are often linked to a deregulation/overactivation of the insulin-like growth factor (IGF) axis, which involves the autocrine/paracrine production of IGFs (IGF-I and IGF-II) and overexpression of their cognate receptors [IGF-I receptor, IGF-insulin receptor (IR), and IR]. Recently, new drugs targeting various IGF axis components have been developed. However, these drugs have several limitations including the occurrence of insulin resistance and compensatory hyperinsulinemia, which, in turn, may affect cancer cell growth and survival. Therefore, new therapeutic approaches are needed. In this regard, the pleiotropic effects of peroxisome proliferator activated receptor (PPAR)-γ agonists may have promising applications in cancer prevention and therapy. Indeed, activation of PPAR-γ by thiazolidinediones (TZDs) or other agonists may inhibit cell growth and proliferation by lowering circulating insulin and affecting key pathways of the Insulin/IGF axis, such as PI3K/mTOR, MAPK, and GSK3-β/Wnt/β-catenin cascades, which regulate cancer cell survival, cell reprogramming, and differentiation. In light of these evidences, TZDs and other PPAR-γ agonists may be exploited as potential preventive and therapeutic agents in tumors addicted to the activation of IGF axis or occurring in hyperinsulinemic patients. Unfortunately, clinical trials using PPAR-γ agonists as antineoplastic agents have reached conflicting results, possibly because they have not selected tumors with overactivated insulin/IGF-I axis or occurring in hyperinsulinemic patients. In conclusion, the use of PPAR-γ agonists in combined therapies of IGF-driven malignancies looks promising but requires future developments. PMID:28275367

  13. Synthetic Defects for Vibrothermography

    NASA Astrophysics Data System (ADS)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  14. Local administration of a hedgehog agonist accelerates fracture healing in a mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Miki; Division of Clinical Biotechnology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-0033; Hojo, Hironori

    Bone fracture healing is processed through multiple biological stages including the transition from cartilaginous callus to bony callus formation. Because of its specific, temporal and indispensable functions demonstrated by mouse genetic studies, Hedgehog (Hh) signaling is one of the most potent signaling pathways involved in these processes, but the effect of Hh-signaling activation by small compounds on the repair process had not yet been addressed. Here we examined therapeutic effects of local and one shot-administration of the Hh agonist known as smoothened agonist (SAG) on bone fracture healing in a mouse model. A quantitative analysis with three-dimensional micro-computed tomography showedmore » that SAG administration increased the size of both the cartilaginous callus and bony callus at 14 days after the surgery. A histological analysis showed that SAG administration increased the number of cells expressing a proliferation marker and a chondrocyte marker in cartilaginous callus as well as the cells expressing an osteoblast marker in bony callus. These results indicate that the SAG administration resulted in an enhancement of callus formation during bone fracture healing, which is at least in part mediated by an increase in chondrocyte proliferation in cartilaginous callus and the promotion of bone formation in bony callus. Therapeutic strategies with a SAG-mediated protocol may thus be useful for the treatment of bone fractures. - Highlights: • Local administration of a Hh agonist accelerates callus formation. • The Hh agonist administration promotes chondrocyte proliferation in the soft callus. • The Hh agonist administration increases osteoblast formation in the hard callus.« less

  15. Synthetic biology: Emerging bioengineering in Indonesia

    NASA Astrophysics Data System (ADS)

    Suhandono, Sony

    2017-05-01

    The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.

  16. Comparison of the release of microRNAs and extracellular vesicles from platelets in response to different agonists.

    PubMed

    Ambrose, Ashley R; Alsahli, Mohammed A; Kurmani, Sameer A; Goodall, Alison H

    2018-07-01

    On activation platelets release microRNAs and extracellular vesicles (EV) into circulation. The release of EV from platelets has been shown to be dependent on the agonist; in this study, we investigated whether the microRNA profile or EV released from platelets was also agonist specific. Washed platelets from healthy subjects were maximally stimulated with agonists specific for the receptors for collagen (Glycoprotein VI (GPVI)), thrombin (PAR1/PAR4), or ADP (P2Y1/P2Y12) with/without inhibiting secondary mediators, using aspirin to block cyclooxygenase-1 and apyrase to remove ADP. The released microRNAs were profiled using TaqMan microRNA microarray cards. Platelet-derived EV (pdEV) were characterized by size (Nanoparticle Tracking Analysis, NTA), for procoagulant activity (Annexin-V binding and support of thrombin generation), and for the EV markers CD63 and HSP70. Platelet activation triggered the release of 57-79 different microRNAs, dependent upon agonist, with a core of 46 microRNAs observed with all agonists. There was a high level of correlation between agonists (r 2  > 0.98; p < 0.0001 for all), and with the microRNA content of the parent platelets (r 2  > 0.98; p < 0.0001). The 46 microRNAs seen in all samples are predicted to have significant effects on the translation of proteins involved in endocytosis, cell cycle control, and differentiation. MiR-223-3p was the most abundant in all samples and has previously been implicated in myeloid lineage development and demonstrated to have anti-inflammatory effects. Stimulation through GPVI produced a pdEV population with significantly more procoagulant activity than the other agonists. Apyrase significantly reduced microRNA and pdEV release, while aspirin had little effect. These data suggest that all tested agonists trigger the release of a similar microRNA profile while the procoagulant activity of the pdEV was agonist dependent. ADP was shown to play an important role in the release of both micro

  17. Technical Assessment: Synthetic Biology

    DTIC Science & Technology

    2015-01-01

    to help heal wounds; probiotics that mitigate the effects of stress and enhance mental performance. The same characteristics that make synthetic... probiotics . 5. BW/CW Defense Despite claims about the risks from synthetic biology often inappropriately drowning out discussions of other

  18. Beta agonists in livestock feed: status, health concerns, and international trade.

    PubMed

    Centner, T J; Alvey, J C; Stelzleni, A M

    2014-09-01

    Since the U.S. Food and Drug Administration approved ractopamine hydrochloride and zilpaterol hydrochloride in animal feeds, usage of those compounds has been a topic of worldwide debate. Ractopamine and zilpaterol are β-adrenergic agonists used as veterinary drugs to increase weight gain in certain animals raised for food. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) established maximum residue limits for ractopamine, which were adopted by the Codex Alimentarius Commission (Codex). No maximum residue limits for zilpaterol have been adopted by JECFA, and new reports of animal mobility issues confront the use of this feed additive. However, many countries disagree with the Codex standards and are restricting or banning meat products containing β agonists. The bans by major importers of U.S. meat products have prompted some to advocate that the United States use the World Trade Organization dispute settlement body. This paper looks at the developments to provide a fuller accounting of what the issues may mean to U.S. firms selling meat products containing residues of β agonists.

  19. Differential epileptogenic potentials of selective mu and delta opiate receptor agonists.

    PubMed

    Haffmans, J; Dzoljic, M R

    1983-01-01

    By using electroencephalographic (EEG) and electromyographic recordings in anaesthetized and free-moving rats, two opioid peptides, known as selective agonists for mu and delta opiate receptors, respectively, were examined for their epileptogenic properties. The delta receptor peptide (DSTLE, 4.6-18.6 nmol, intraventricularly, ivt), a putative delta opiate agonist, produced a dose-related increase of myoclonic contractions (MC) with epileptic discharges in anaesthetized rats and severe wet dog shakes, with occasionally falling down, in free-moving animals. Morphiceptin, a specific mu opiate agonist, used in equimolar doses and under the same experimental conditions, had a significantly less pronounced effect on the number of MC and epileptiform EEG phenomena. Similarly, DSTLE (18.6 nmol) injected in the CA2 area of the hippocampus, a region with a nearly equal distribution of mu and delta opiate receptors, induced epileptic discharges in anaesthetized and free-moving rats, while an equimolar dose of morphiceptin had no significant effect. It is suggested that the epileptiform activity of opioid peptides is mainly due to an activation of delta opiate receptors in the central nervous system.

  20. Biphasic Effect of Melanocortin Agonists on Metabolic Rate and Body Temperature

    PubMed Central

    Lute, Beth; Jou, William; Lateef, Dalya M.; Goldgof, Margalit; Xiao, Cuiying; Piñol, Ramón A.; Kravitz, Alexxai V.; Miller, Nicole R.; Huang, Yuning George; Girardet, Clemence; Butler, Andrew A.; Gavrilova, Oksana; Reitman, Marc L.

    2014-01-01

    Summary The melanocortin system regulates metabolic homeostasis and inflammation. Melanocortin agonists have contradictorily been reported to both increase and decrease metabolic rate and body temperature. We find two distinct physiologic responses occurring at similar doses. Intraperitoneal administration of the nonselective melanocortin agonist MTII causes a melanocortin-4 receptor (Mc4r) mediated hypermetabolism/hyperthermia. This is preceded by a profound, transient hypometabolism/hypothermia that is preserved in mice lacking any one of Mc1r, Mc3r, Mc4r, or Mc5r. Three other melanocortin agonists also caused hypothermia, which is actively achieved via seeking a cool environment, vasodilation, and inhibition of brown adipose tissue thermogenesis. These results suggest that the hypometabolic/hypothermic effect of MTII is not due to a failure of thermoregulation. The hypometabolism/hypothermia was prevented by dopamine antagonists and MTII selectively activated arcuate nucleus dopaminergic neurons; these neurons may contribute to the hypometabolism/hypothermia. We propose that the hypometabolism/hypothermia is a regulated response, potentially beneficial during extreme physiologic stress. PMID:24981835