Science.gov

Sample records for synuclein induced alterations

  1. Nitrated Alpha Synuclein Induced Alterations in Microglial Immunity is Regulated by CD4+ T Cell Subsets1

    PubMed Central

    Reynolds, Ashley D.; Stone, David K.; Mosley, R. Lee; Gendelman, Howard E.

    2009-01-01

    Microglial inflammatory neuroregulatory activities affect the tempo of nigrostriatal degeneration during Parkinson's disease (PD). Such activities are induced, in part, by misfolded, nitrated alpha-synuclein (N-α-syn) within Lewy bodies released from dying or dead dopaminergic neurons. Such pathobiologic events initiate innate and adaptive immune responses affecting neurodegeneration. We posit that the neurobiological activities of activated microglia are affected by cell-protein and cell-cell contacts, in that microglial interactions with N-α-syn and CD4+ T cells substantively alter the microglial proteome. This leads to alterations in cell homeostatic functions and disease. CD4+CD25+ regulatory T cells (Treg) suppress N-α-syn microglial induced reactive oxygen species and nuclear factor kappa B activation by modulating redox-active enzymes, cell migration, phagocytosis, and bioenergetic protein expression and cell function. In contrast, CD4+CD25− effector T cells exacerbate microglial inflammation and induce “putative” neurotoxic responses. These data support the importance of adaptive immunity in the regulation of PD-associated microglial inflammation. PMID:19299711

  2. Increased lipolysis and altered lipid homeostasis protect y-synuclein null mutant mice from diet-induced obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synucleins are a family of homologous proteins principally known for their involvement in neurodegeneration. In neurons a-synuclein promotes assembly of SNARE complexes required for fusion of synaptic vesicles with the plasma membrane during neurotransmitter release. Y-synuclein is highly expressed ...

  3. A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration.

    PubMed

    Scott, David A; Tabarean, Iustin; Tang, Yong; Cartier, Anna; Masliah, Eliezer; Roy, Subhojit

    2010-06-16

    Several neurodegenerative diseases are typified by intraneuronal alpha-synuclein deposits, synaptic dysfunction, and dementia. While even modest alpha-synuclein elevations can be pathologic, the precise cascade of events induced by excessive alpha-synuclein and eventually culminating in synaptotoxicity is unclear. To elucidate this, we developed a quantitative model system to evaluate evolving alpha-synuclein-induced pathologic events with high spatial and temporal resolution, using cultured neurons from brains of transgenic mice overexpressing fluorescent-human-alpha-synuclein. Transgenic alpha-synuclein was pathologically altered over time and overexpressing neurons showed striking neurotransmitter release deficits and enlarged synaptic vesicles; a phenotype reminiscent of previous animal models lacking critical presynaptic proteins. Indeed, several endogenous presynaptic proteins involved in exocytosis and endocytosis were undetectable in a subset of transgenic boutons ("vacant synapses") with diminished levels in the remainder, suggesting that such diminutions were triggering the overall synaptic pathology. Similar synaptic protein alterations were also retrospectively seen in human pathologic brains, highlighting potential relevance to human disease. Collectively the data suggest a previously unknown cascade of events where pathologic alpha-synuclein leads to a loss of a number of critical presynaptic proteins, thereby inducing functional synaptic deficits. PMID:20554859

  4. A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration

    PubMed Central

    Scott, David A.; Tabarean, Iustin; Tang, Yong; Cartier, Anna; Masliah, Eliezer; Roy, Subhojit

    2010-01-01

    Several neurodegenerative diseases are typified by intra-neuronal α-synuclein deposits, synaptic dysfunction and dementia. While even modest α-synuclein elevations can be pathologic, the precise cascade of events induced by excessive α-synuclein and eventually culminating in synaptotoxicity is unclear. Towards this, we developed a quantitative model-system to evaluate evolving α-synuclein-induced pathologic events with high spatial and temporal resolution, using cultured neurons from brains of transgenic mice over-expressing fluorescent-human-α-synuclein. Transgenic α-synuclein was pathologically altered over time and over-expressing neurons showed striking neurotransmitter release deficits and enlarged synaptic vesicles; a phenotype reminiscent of previous animal-models lacking critical presynaptic proteins. Indeed several endogenous presynaptic proteins involved in exo- and endo-cytosis were undetectable in a subset of transgenic boutons (‘vacant synapses’) with diminished levels in the remainder; suggesting that such diminutions were triggering the overall synaptic pathology. Similar synaptic protein alterations were also retrospectively seen in human pathologic brains, highlighting potential relevance to human disease. Collectively the data suggest a previously unknown cascade of events where pathologic α-synuclein leads to a loss of a number of critical presynaptic proteins, thereby inducing functional synaptic deficits. PMID:20554859

  5. Biophysics of α-synuclein induced membrane remodelling.

    PubMed

    Shi, Zheng; Sachs, Jonathan N; Rhoades, Elizabeth; Baumgart, Tobias

    2015-06-28

    α-Synuclein is an intrinsically disordered protein whose aggregation is a hallmark of Parkinson's disease. In neurons, α-synuclein is thought to play important roles in mediating both endo- and exocytosis of synaptic vesicles through interactions with either the lipid bilayer or other proteins. Upon membrane binding, the N-terminus of α-synuclein forms a helical structure and inserts into the hydrophobic region of the outer membrane leaflet. However, membrane structural changes induced by α-synuclein are still largely unclear. Here we report a substantial membrane area expansion induced by the binding of α-synuclein monomers. This measurement is accomplished by observing the increase of membrane area during the binding of α-synuclein to pipette-aspirated giant vesicles. The extent of membrane area expansion correlates linearly with the density of α-synuclein on the membrane, revealing a constant area increase induced by the binding per α-synuclein molecule. The area expansion per synuclein is found to exhibit a strong dependence on lipid composition, but is independent of membrane tension and vesicle size. Fragmentation or tubulation of the membrane follows the membrane expansion process. However, contrary to BAR domain proteins, no distinct tubulation-transition density can apparently be identified for α-synuclein, suggesting a more complex membrane curvature generation mechanism. Consideration of α-synuclein's membrane binding free energy and biophysical properties of the lipid bilayer leads us to conclude that membrane expansion by α-synuclein results in thinning of the bilayer. These membrane thinning and tubulation effects may underlie α-synuclein's role in mediating cell trafficking processes such as endo- and exocytosis. PMID:25665896

  6. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons.

    PubMed

    Richter, Franziska; Gao, Fuying; Medvedeva, Vera; Lee, Patrick; Bove, Nicholas; Fleming, Sheila M; Michaud, Magali; Lemesre, Vincent; Patassini, Stefano; De La Rosa, Krystal; Mulligan, Caitlin K; Sioshansi, Pedrom C; Zhu, Chunni; Coppola, Giovanni; Bordet, Thierry; Pruss, Rebecca M; Chesselet, Marie-Françoise

    2014-09-01

    Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson's disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). Young mice were fed the drugs in food pellets or a control diet from 1 to 4months of age, approximately 10months before the appearance of striatal dopamine loss in this model. Unbiased weighted gene co-expression network analysis (WGCNA) of transcriptional changes revealed effects of cholesterol oximes on transcripts related to mitochondria, cytoprotection and anti-oxidant response in wild-type and transgenic mice, including increased transcription of stress defense (e.g. Prdx1, Prdx2, Glrx2, Hspa9, Pink1, Drp1, Trak1) and dopamine-related (Th, Ddc, Gch1, Dat, Vmat2, Drd2, Chnr6a) genes. Even at this young age transgenic mice showed alterations in transcripts implicated in mitochondrial function and oxidative stress (e.g. Bcl-2, Bax, Casp3, Nos2), and both drugs normalized about 20% of these alterations. Young Thy1-aSyn mice exhibit motor deficits that differ from parkinsonism and are established before the onset of treatment; these deficits were not improved by cholesterol oximes. However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased alpha-synuclein

  7. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons

    PubMed Central

    Richter, Franziska; Gao, Fuying; Medvedeva, Vera; Lee, Patrick; Bove, Nicholas; Fleming, Sheila M.; Michaud, Magali; Lemesre, Vincent; Patassini, Stefano; De La Rosa, Krystal; Mulligan, Caitlin K.; Sioshansi, Pedrom; Zhu, Chunni; Coppola, Giovanni; Bordet, Thierry; Pruss, Rebecca; Chesselet, Marie-Françoise

    2014-01-01

    Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson’s disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). Young mice were fed the drugs in food pellets or a control diet from 1 to 4 months of age, approximately 10 months before the appearance of striatal dopamine loss in this model. Unbiased weighted gene co-expression network analysis (WGCNA) of transcriptional changes revealed effects of cholesterol oximes on transcripts related to mitochondria, cytoprotection and anti-oxidant response in wild-type and transgenic mice, including increased transcription of stress defense (e.g. Prdx1, Prdx2, Glrx2, Hspa9, Pink1, Drp1, Trak1) and dopamine-related (Th, Ddc, Gch1, Dat, Vmat2, Drd2, Chnr6a) genes. Even at this young age transgenic mice showed alterations in transcripts implicated in mitochondrial function and oxidative stress (e.g. Bcl-2, Bax, Casp3, Nos2), and both drugs normalized about 20% of these alterations. Young Thy1-aSyn mice exhibit motor deficits that differ from parkinsonism and are established before the onset of treatment; these deficits were not improved by cholesterol oximes. However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased

  8. Biophysics of α-synuclein induced membrane remodelling

    PubMed Central

    Shi, Zheng; Sachs, Jonathan; Rhoades, Elizabeth; Baumgart, Tobias

    2015-01-01

    α-synuclein is an intrinsically disordered protein whose aggregation is a hallmark of Parkinson’s disease. In neurons, α-synuclein is thought to play important roles in mediating both endo- and exocytosis of synaptic vesicles through interactions with either the lipid bilayer or other proteins. Upon membrane binding, the N-terminus of α-synuclein forms a helical structure and inserts into the hydrophobic region of the outer membrane leaflet. However, membrane structural changes induced by α-synuclein are still largely unclear. Here we report a substantial membrane area expansion induced by the binding of α-synuclein monomers. This measurement is accomplished by observing the increase of membrane area during the binding of α-synuclein to pipette-aspirated giant vesicles. The extent of membrane area expansion correlates linearly with the density of α-synuclein on the membrane, revealing a constant area increase induced by the binding per α-synuclein molecule. The area expansion per synuclein is found to exhibit a strong dependence on lipid composition, but is independent of membrane tension and vesicle size. Fragmentation or tubulation of the membrane follows the membrane expansion process. However, contrary to BAR domain proteins, no distinct tubulation-transition density can apparently be identified for α-synuclein, suggesting a more complex membrane curvature generation mechanism. Consideration of α-synuclein’s membrane binding free energy and biophysical properties of the lipid bilayer leads us to conclude that membrane expansion by α-synuclein results in thinning of the bilayer. These membrane thinning and tubulation effects may underlie α-synuclein’s role in mediating cell trafficking processes such as endo- and exocytosis. PMID:25665896

  9. Rab7 induces clearance of α-synuclein aggregates.

    PubMed

    Dinter, Elisabeth; Saridaki, Theodora; Nippold, Markus; Plum, Sarah; Diederichs, Leonie; Komnig, Daniel; Fensky, Luisa; May, Caroline; Marcus, Katrin; Voigt, Aaron; Schulz, Jörg B; Falkenburger, Björn H

    2016-09-01

    Parkinson's disease can be caused by mutations in the α-synuclein gene and is characterized by aggregates of α-synuclein protein. Aggregates are degraded by the autophago-lysosomal pathway. Since Rab7 has been shown to regulate trafficking of late endosomes and autophagosomes, we hypothesized that over-expressing Rab7 might be beneficial in Parkinson's disease. To test this hypothesis, we expressed the pathogenic A53T mutant of α-synuclein in HEK293 cells and Drosophila melanogaster. In HEK293 cells, EGFP-Rab7-decorated vesicles contain α-synuclein. Rab7 over-expression reduced the percentage of cells with α-synuclein particles and the amount of α-synuclein protein. Time-lapse microscopy confirmed that particles frequently disappeared with Rab7 over-expression. Clearance of α-synuclein is explained by the increased occurrence of acidified α-synuclein vesicles with Rab7 over-expression, presumably representing autolysosomes. Rab7 over-expression reduced apoptosis and the percentage of dead cells in trypan blue staining. In the fly model, Rab7 rescued the locomotor deficit induced by neuronal expression of A53T-α-synuclein. These beneficial effects were not produced by Rab7 missense mutations causing Charcot Marie Tooth neuropathy, or by the related GTPases Rab5, Rab9, or Rab23. Using mass spectrometry, we identified Rab7 in neuromelanin granules purified from human substantia nigra, indicating that Rab7 might be involved in the biogenesis of these possibly protective, autophagosome-like organelles in dopaminergic neurons. Taken together, Rab7 increased the clearance of α-synuclein aggregates, reduced cell death, and rescued the phenotype in a fly model of Parkinson's disease. These findings indicate that Rab7 is rate-limiting for aggregate clearance, and that Rab7 activation may offer a therapeutic strategy for Parkinson's disease. Cells over-expressing aggregation-prone A53T alpha-synuclein develop cytoplasmic aggregates mimicking changes observed in

  10. Binding Interactions of Agents That Alter α-Synuclein Aggregation

    PubMed Central

    Sivanesam, K.; Byrne, A.; Bisaglia, M.; Bubacco, L.

    2015-01-01

    Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor. PMID:25705374

  11. Cofilin 1 activation prevents the defects in axon elongation and guidance induced by extracellular alpha-synuclein

    PubMed Central

    Tilve, Sharada; Difato, Francesco; Chieregatti, Evelina

    2015-01-01

    Impaired adult neurogenesis and axon traumatic injury participate in the severity of neurodegenerative diseases. Alpha-synuclein, a cytosolic protein involved in Parkinson’s disease, may be released from neurons, suggesting a role for excess secreted alpha-synuclein in the onset and spread of the pathology. Here we provide evidence that long term exposure of young neurons to extracellular alpha-synuclein hampers axon elongation and growth cone turning. We show that actin turnover and the rate of movement of actin waves along the axon are altered, due to alpha-synuclein-induced inactivation of cofilin. Upon laser disruption of microfilaments, healing of axons is favored by the increased phosphorylation of cofilin, however, at later time points; the defect in neurite extension prevails, being lost the regulation of cofilin activity. Importantly, overexpression of the active form of cofilin in neurons exposed to alpha-synuclein is able to restore the movement of actin waves, physiological axon elongation and growth cone turning. Our study reveals the molecular basis of alpha-synuclein-driven deficits in growth and migration of newborn neurons, and in elongation and regeneration of adult neurons. PMID:26558842

  12. Ca2+ is a key factor in α-synuclein-induced neurotoxicity

    PubMed Central

    Angelova, Plamena R.; Ludtmann, Marthe H. R.; Horrocks, Mathew H.; Negoda, Alexander; Cremades, Nunilo; Klenerman, David; Dobson, Christopher M.; Wood, Nicholas W.; Pavlov, Evgeny V.; Gandhi, Sonia

    2016-01-01

    ABSTRACT Aggregation of α-synuclein leads to the formation of oligomeric intermediates that can interact with membranes to form pores. However, it is unknown how this leads to cell toxicity in Parkinson's disease. We investigated the species-specific effects of α-synuclein on Ca2+ signalling in primary neurons and astrocytes using live neuronal imaging and electrophysiology on artificial membranes. We demonstrate that α-synuclein induces an increase in basal intracellular Ca2+ in its unfolded monomeric state as well as in its oligomeric state. Electrophysiology of artificial membranes demonstrated that α-synuclein monomers induce irregular ionic currents, whereas α-synuclein oligomers induce rare discrete channel formation events. Despite the ability of monomeric α-synuclein to affect Ca2+ signalling, it is only the oligomeric form of α-synuclein that induces cell death. Oligomer-induced cell death was abolished by the exclusion of extracellular Ca2+, which prevented the α-synuclein-induced Ca2+ dysregulation. The findings of this study confirm that α-synuclein interacts with membranes to affect Ca2+ signalling in a structure-specific manner and the oligomeric β-sheet-rich α-synuclein species ultimately leads to Ca2+ dysregulation and Ca2+-dependent cell death. PMID:26989132

  13. Ca2+ is a key factor in α-synuclein-induced neurotoxicity.

    PubMed

    Angelova, Plamena R; Ludtmann, Marthe H R; Horrocks, Mathew H; Negoda, Alexander; Cremades, Nunilo; Klenerman, David; Dobson, Christopher M; Wood, Nicholas W; Pavlov, Evgeny V; Gandhi, Sonia; Abramov, Andrey Y

    2016-05-01

    Aggregation of α-synuclein leads to the formation of oligomeric intermediates that can interact with membranes to form pores. However, it is unknown how this leads to cell toxicity in Parkinson's disease. We investigated the species-specific effects of α-synuclein on Ca(2+) signalling in primary neurons and astrocytes using live neuronal imaging and electrophysiology on artificial membranes. We demonstrate that α-synuclein induces an increase in basal intracellular Ca(2+) in its unfolded monomeric state as well as in its oligomeric state. Electrophysiology of artificial membranes demonstrated that α-synuclein monomers induce irregular ionic currents, whereas α-synuclein oligomers induce rare discrete channel formation events. Despite the ability of monomeric α-synuclein to affect Ca(2+) signalling, it is only the oligomeric form of α-synuclein that induces cell death. Oligomer-induced cell death was abolished by the exclusion of extracellular Ca(2+), which prevented the α-synuclein-induced Ca(2+) dysregulation. The findings of this study confirm that α-synuclein interacts with membranes to affect Ca(2+) signalling in a structure-specific manner and the oligomeric β-sheet-rich α-synuclein species ultimately leads to Ca(2+) dysregulation and Ca(2+)-dependent cell death. PMID:26989132

  14. Altered α-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains.

    PubMed

    Brudek, Tomasz; Winge, Kristian; Rasmussen, Nadja Bredo; Bahl, Justyna Maria Czarna; Tanassi, Julia; Agander, Tina Klitmøller; Hyde, Thomas M; Pakkenberg, Bente

    2016-01-01

    Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease-specific transcription patterns in frontal cortex in PD, dementia with Lewy bodies, and MSA, and thus may mediate the development of α-synucleinopathies. In this study, the differential expression of α-synuclein isoforms on transcriptional and translational levels was ascertained in MSA patients in comparison with PD cases and normal controls using isoform-specific primers and exon-specific antibodies in substantia nigra, striatum, cerebellar cortex, and nucleus dentatus. These regions are severely affected by α-synuclein pathology and neurodegeneration. Furthermore, we have also investigated transcript levels for parkin and synphilin-1 isoforms. In MSA brains, α-synuclein140 and α-synuclein 112 isoform levels were significantly increased, whereas levels of the α-synuclein 126 isoform were decreased in the substantia nigra, striatum, cerebellar cortex, and nucleus dentatus versus controls. Moreover, in MSA cases, we showed increased levels of parkin isoforms lacking the N-terminal ubiquitin-like domain and an aggregation-prone synphilin-1A isoform that causes neuronal toxicity in MSA. In PD brains, parkin transcript variant 3, 7, and 11 were significantly and specifically over-expressed in the striatum and cerebellar cortex, together with synphilin-1A and 1C. The changes of isoform expression profiles in neurodegenerative diseases suggest alterations in the regulation of transcription and/or splicing events, leading to regional/cellular events that may be important for the highly increased aggregation of α-synuclein in the brain. We report differential expression of α-synuclein, parkin, and synphilin-1 isoforms in multiple system atrophy (MSA) versus Parkinson's disease and normal

  15. Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration.

    PubMed

    Brahmachari, Saurav; Ge, Preston; Lee, Su Hyun; Kim, Donghoon; Karuppagounder, Senthilkumar S; Kumar, Manoj; Mao, Xiaobo; Shin, Joo Ho; Lee, Yunjong; Pletnikova, Olga; Troncoso, Juan C; Dawson, Valina L; Dawson, Ted M; Ko, Han Seok

    2016-08-01

    Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein-induced neuropathology. In mice expressing a human α-synucleinopathy-associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein-induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies. PMID:27348587

  16. Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons.

    PubMed

    Caudal, D; Alvarsson, A; Björklund, A; Svenningsson, P

    2015-11-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigral dopaminergic neurons and by the presence of aggregates containing α-synuclein called Lewy bodies. Viral vector-induced overexpression of α-synuclein in dopaminergic neurons represents a model of PD which recapitulates disease progression better than commonly used neurotoxin models. Previous studies using this model have reported motor and cognitive impairments, whereas depression, mood and anxiety phenotypes are less described. To investigate these psychiatric phenotypes, Sprague-Dawley rats received bilateral injections of a recombinant adeno-associated virus (AAV) vector expressing human α-synuclein or GFP into the substantia nigra pars compacta. Behavior was assessed at two timepoints: 3 and 8 weeks post-injection. We report that nigral α-synuclein overexpression led to a pronounced nigral dopaminergic cell loss accompanied by a smaller cell loss in the ventral tegmental area, and to a decreased striatal density of dopaminergic fibers. The AAV-α-synuclein group exhibited modest, but significant motor impairments 8 weeks after vector administration. The AAV-α-synuclein group displayed depressive-like behavior in the forced swim test after 3 weeks, and reduced sucrose preference at week 8. At both timepoints, overexpression of α-synuclein was linked to a hyperactive hypothalamic-pituitary-adrenal (HPA) axis regulation of corticosterone. The depressive-like phenotype was also correlated with decreased nigral brain-derived neurotrophic factor and spinophilin levels, and with decreased striatal levels of the activity-regulated cytoskeleton-associated protein. This study demonstrates that AAV-mediated α-synuclein overexpression in dopamine neurons is not only useful to model motor impairments of PD, but also depression. This study also provides evidence that depression in experimental Parkinsonism is correlated to dysregulation of the HPA axis and to

  17. Alteration of Dynein Function Affects α-Synuclein Degradation via the Autophagosome-Lysosome Pathway

    PubMed Central

    Li, Da; Shi, Ji-Jun; Mao, Cheng-Jie; Liu, Sha; Wang, Jian-Da; Chen, Jing; Wang, Fen; Yang, Ya-Ping; Hu, Wei-Dong; Hu, Li-Fang; Liu, Chun-Feng

    2013-01-01

    Growing evidence suggests that dynein dysfunction may be implicated in the pathogenesis of neurodegeneration. It plays a central role in aggresome formation, the delivery of autophagosome to lysosome for fusion and degradation, which is a pro-survival mechanism essential for the bulk degradation of misfolded proteins and damaged organells. Previous studies reported that dynein dysfuntion was associated with aberrant aggregation of α-synuclein, which is a major component of inclusion bodies in Parkinson’s disease (PD). However, it remains unclear what roles dynein plays in α-synuclein degradation. Our study demonstrated a decrease of dynein expression in neurotoxin-induced PD models in vitro and in vivo, accompanied by an increase of α-synuclein protein level. Dynein down-regulation induced by siRNA resulted in a prolonged half-life of α-synuclein and its over-accumulation in A53T overexpressing PC12 cells. Dynein knockdown also prompted the increase of microtubule-associated protein 1 light chain 3 (LC3-II) and sequestosome 1 (SQSTM1, p62) expression, and the accumulation of autophagic vacuoles. Moreover, dynein suppression impaired the autophagosome fusion with lysosome. In summary, our findings indicate that dynein is critical for the clearance of aberrant α-synuclein via autophagosome-lysosome pathway. PMID:24351814

  18. Inhibition of Calpain Prevents Manganese-Induced Cell Injury and Alpha-Synuclein Oligomerization in Organotypic Brain Slice Cultures

    PubMed Central

    Xu, Bin; Liu, Wei; Deng, Yu; Yang, Tian-Yao; Feng, Shu; Xu, Zhao-Fa

    2015-01-01

    Overexposure to manganese has been known to promote alpha-synuclein oligomerization and enhance cellular toxicity. However, the exact mechanism of Mn-induced alpha-synuclein oligomerization is unclear. To explore whether alpha-synuclein oligomerization was associated with the cleavage of alpha-synuclein by calpain, we made a rat brain slice model of manganism and pretreated slices with calpain inhibitor II, a cell-permeable peptide that restricts the activity of calpain. After slices were treated with 400 μM Mn for 24 h, there were significant increases in the percentage of apoptotic cells, lactate dehydrogenase release, intracellular [Ca2+]i, calpain activity, and the mRNA and protein expression of calpain 1 and alpha-synuclein. Moreover, the number of C- and N-terminal fragments of alpha-synuclein and the amount of alpha-synuclein oligomerization also increased. These results also showed that calpain inhibitor II pretreatment could reduce Mn-induced nerve cell injury and alpha-synuclein oligomerization. Additionally, there was a significant decrease in the number of C- and N-terminal fragments of alpha-synuclein in calpain inhibitor II-pretreated slices. These findings revealed that Mn induced the cleavage of alpha-synuclein protein via overactivation of calpain and subsequent alpha-synuclein oligomerization in cultured slices. Moreover, the cleavage of alpha-synuclein by calpain 1 is an important signaling event in Mn-induced alpha-synuclein oligomerization. PMID:25756858

  19. Divalent metal ions enhance DOPAL-induced oligomerization of alpha-synuclein.

    PubMed

    Jinsmaa, Yunden; Sullivan, Patricia; Gross, Daniel; Cooney, Adele; Sharabi, Yehonatan; Goldstein, David S

    2014-05-21

    Parkinson disease (PD) features profound striatal dopamine depletion and Lewy bodies containing abundant precipitated alpha-synuclein. Mechanisms linking alpha-synucleinopathy with the death of dopamine neurons remain incompletely understood. One such link may be 3,4-dihydroxyphenylacetaldehyde (DOPAL). All of the intra-neuronal metabolism of dopamine passes through DOPAL, which is toxic. DOPAL also potently oligomerizes alpha-synuclein and alpha-synuclein oligomers are thought to be pathogenic in PD. Another implicated factor in PD pathogenesis is metal ions, and alpha-synuclein contains binding sites for these ions. In this study we tested whether divalent metal ions augment DOPAL-induced oligomerization of alpha-synuclein in cell-free system and in PC12 cells conditionally over-expressing alpha-synuclein. Incubation with divalent metal ions augmented DOPAL-induced oligomerization of alpha-synuclein (Cu(2+)>Fe(2+)>Mn(2+)), whereas monovalent Cu(1+) and trivalent Fe(3+) were without effect. Other dopamine metabolites, dopamine itself, and metal ions alone or in combination with dopamine, also had no effect. Antioxidant treatment with ascorbic acid and divalent cation chelation with EDTA attenuated the augmentation by Cu(2+) of DOPAL-induced alpha-synuclein oligomerization. Incubation of PC12 cells with L-DOPA markedly increased intracellular DOPAL content and promoted alpha-synuclein dimerization. Co-incubation with Cu(2+) amplified (p=0.01), while monoamine oxidase inhibition prevented, L-DOPA-related dimerization of alpha-synuclein (p=0.01). We conclude that divalent metal ions augment DOPAL-induced oligomerization of alpha-synuclein. Drugs that interfere with this interaction might constitute a novel approach for future treatment or prevention approaches. PMID:24670480

  20. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways.

    PubMed

    Anandhan, Annadurai; Rodriguez-Rocha, Humberto; Bohovych, Iryna; Griggs, Amy M; Zavala-Flores, Laura; Reyes-Reyes, Elsa M; Seravalli, Javier; Stanciu, Lia A; Lee, Jaekwon; Rochet, Jean-Christophe; Khalimonchuk, Oleh; Franco, Rodrigo

    2015-09-01

    Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of wild type (WT) or mutant A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic and yeast cells in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways. PMID:25497688

  1. Polychlorinated biphenyls alter expression of alpha-synuclein, synaptophysin and parkin in the rat brain.

    PubMed

    Malkiewicz, Katarzyna; Mohammed, Roma; Folkesson, Ronnie; Winblad, Bengt; Szutowski, Miroslaw; Benedikz, Eirikur

    2006-02-20

    Polychlorinated Biphenyls (PCBs)-induced changes in synaptic transmission are one of the effects of their neurotoxicity but the mechanism remains unknown. We assessed the in vivo effects of the PCBs mixture, Aroclor 1254 on the expression of neuronal proteins that are involved in the synaptic function and/or are associated with neurodegeneration. Wistar rats were treated orally with repeated doses of Aroclor 1254 and the levels of soluble alpha-synuclein, parkin, synaptophysin and amyloid precursor protein (APP) in the brain were determined by Western blotting. The results showed that Aroclor did not cause changes in the expression and processing of APP but at a dose 100 microg/g/day repeated for 6 days caused a decrease in the expression of alpha-synuclein in the cerebellum, cortex, hippocampus and hypothalamus of the animals sacrificed 2 days after treatment. The decrease in alpha-synuclein was accompanied by a transient increase in parkin and synaptophysin levels. Interestingly, in the hypothalamus the levels of alpha-synuclein remained decreased after 21 days post treatment perhaps due to regional differences in the PCBs elimination or perhaps a more specific interaction with the dopaminergic cells that are present in the hypothalamus that needs to be investigated further. PMID:16174552

  2. Oxidative stress induces nuclear translocation of C-terminus of {alpha}-synuclein in dopaminergic cells

    SciTech Connect

    Xu Shengli; Zhou Ming; Yu Shun; Cai Yanning; Zhang Alex; Ueda, Kenji; Chan Piu . E-mail: pbchan@bjsap.org

    2006-03-31

    Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of {alpha}-synuclein. However, the role of {alpha}-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the {alpha}-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200 {mu}M H{sub 2}O{sub 2} treatment induced the translocation of {alpha}-synuclein from cytoplasm to nuclei at 30 min post-treatment. The immunoactivity of {alpha}-synuclein became highly intensive in the nuclei after 2 h treatment. The protein translocated to nucleus was a 10 kDa fragment of C-terminus region of {alpha}-synuclein, while full-length {alpha}-synuclein remained in cytoplasm. Thioflavine-S staining suggested that the C-terminal fragment in the nuclei has no {beta}-sheet structures. Our present results indicated that 200 {mu}M H{sub 2}O{sub 2} treatment induces the intranuclear accumulation of the C-terminal fragment of {alpha}-synuclein in dopaminergic neurons, whose role remains to be investigated.

  3. Alpha-synuclein aggregation induced by brief ischemia negatively impacts neuronal survival in vivo: a study in [A30P]alpha-synuclein transgenic mouse.

    PubMed

    Unal-Cevik, Isin; Gursoy-Ozdemir, Yasemin; Yemisci, Muge; Lule, Sevda; Gurer, Gunfer; Can, Alp; Müller, Veronica; Kahle, Philip J; Dalkara, Turgay

    2011-03-01

    Alpha-synuclein oligomerization and aggregation are considered to have a role in the pathogenesis of neurodegenerative diseases. However, despite numerous in vitro studies, the impact of aggregates in the intact brain is unclear. In vitro, oxidative/nitrative stress and acidity induce α-synuclein oligomerization. These conditions favoring α-synuclein fibrillization are present in the ischemic brain, which may serve as an in vivo model to study α-synuclein aggregation. In this study, we show that 30-minute proximal middle cerebral artery (MCA) occlusion and 72 hours reperfusion induce oligomerization of wild-type α-synuclein in the ischemic mouse brain. The nonamyloidogenic isoform β-synuclein did not form oligomers. Alpha-synuclein aggregates were confined to neurons and colocalized with ubiquitin immunoreactivity. We also found that 30 minutes proximal MCA occlusion and 24 hours reperfusion induced larger infarcts in C57BL/6(Thy1)-h[A30P]alphaSYN transgenic mice, which have an increased tendency to form synuclein fibrils. Trangenics also developed more selective neuronal necrosis when subjected to 20 minutes distal MCA occlusion and 72 hours reperfusion. Enhanced 3-nitrotyrosine immunoreactivity in transgenic mice suggests that oxidative/nitrative stress may be one of the mechanisms mediating aggregate toxicity. Thus, the increased vulnerability of transgenic mice to ischemia suggests that α-synuclein aggregates not only form during ischemia but also negatively impact neuronal survival, supporting the idea that α-synuclein misfolding may be neurotoxic. PMID:20877387

  4. Alpha-synuclein aggregation induced by brief ischemia negatively impacts neuronal survival in vivo: a study in [A30P]alpha-synuclein transgenic mouse

    PubMed Central

    Unal-Cevik, Isin; Gursoy-Ozdemir, Yasemin; Yemisci, Muge; Lule, Sevda; Gurer, Gunfer; Can, Alp; Müller, Veronica; Kahle, Philip J; Dalkara, Turgay

    2011-01-01

    Alpha-synuclein oligomerization and aggregation are considered to have a role in the pathogenesis of neurodegenerative diseases. However, despite numerous in vitro studies, the impact of aggregates in the intact brain is unclear. In vitro, oxidative/nitrative stress and acidity induce α-synuclein oligomerization. These conditions favoring α-synuclein fibrillization are present in the ischemic brain, which may serve as an in vivo model to study α-synuclein aggregation. In this study, we show that 30-minute proximal middle cerebral artery (MCA) occlusion and 72 hours reperfusion induce oligomerization of wild-type α-synuclein in the ischemic mouse brain. The nonamyloidogenic isoform β-synuclein did not form oligomers. Alpha-synuclein aggregates were confined to neurons and colocalized with ubiquitin immunoreactivity. We also found that 30 minutes proximal MCA occlusion and 24 hours reperfusion induced larger infarcts in C57BL/6(Thy1)-h[A30P]alphaSYN transgenic mice, which have an increased tendency to form synuclein fibrils. Trangenics also developed more selective neuronal necrosis when subjected to 20 minutes distal MCA occlusion and 72 hours reperfusion. Enhanced 3-nitrotyrosine immunoreactivity in transgenic mice suggests that oxidative/nitrative stress may be one of the mechanisms mediating aggregate toxicity. Thus, the increased vulnerability of transgenic mice to ischemia suggests that α-synuclein aggregates not only form during ischemia but also negatively impact neuronal survival, supporting the idea that α-synuclein misfolding may be neurotoxic. PMID:20877387

  5. Combinational losses of synucleins reveal their differential requirements for compensating age-dependent alterations in motor behavior and dopamine metabolism.

    PubMed

    Connor-Robson, Natalie; Peters, Owen M; Millership, Steven; Ninkina, Natalia; Buchman, Vladimir L

    2016-10-01

    Synucleins are involved in multiple steps of the neurotransmitter turnover, but the largely normal synaptic function in young adult animals completely lacking synucleins suggests their roles are dispensable for execution of these processes. Instead, they may be utilized for boosting the efficiency of certain molecular mechanisms in presynaptic terminals, with a deficiency of synuclein proteins sensitizing to or exacerbating synaptic malfunction caused by accumulation of mild alterations, which are commonly associated with aging. Although functional redundancy within the family has been reported, it is unclear whether the remaining synucleins can fully compensate for the deficiency of a lost family member or whether some functions are specific for a particular member. We assessed several structural and functional characteristics of the nigrostriatal system of mice lacking members of the synuclein family in every possible combination and demonstrated that stabilization of the striatal dopamine level depends on the presence of α-synuclein and cannot be compensated by other family members, whereas β-synuclein is required for efficient maintenance of animal's balance and coordination in old age. PMID:27614017

  6. α-Synuclein-induced myelination deficit defines a novel interventional target for multiple system atrophy.

    PubMed

    Ettle, Benjamin; Kerman, Bilal E; Valera, Elvira; Gillmann, Clarissa; Schlachetzki, Johannes C M; Reiprich, Simone; Büttner, Christian; Ekici, Arif B; Reis, André; Wegner, Michael; Bäuerle, Tobias; Riemenschneider, Markus J; Masliah, Eliezer; Gage, Fred H; Winkler, Jürgen

    2016-07-01

    Multiple system atrophy (MSA) is a rare atypical parkinsonian disorder characterized by a rapidly progressing clinical course and at present without any efficient therapy. Neuropathologically, myelin loss and neurodegeneration are associated with α-synuclein accumulation in oligodendrocytes, but underlying pathomechanisms are poorly understood. Here, we analyzed the impact of oligodendrocytic α-synuclein on the formation of myelin sheaths to define a potential interventional target for MSA. Post-mortem analyses of MSA patients and controls were performed to quantify myelin and oligodendrocyte numbers. As pre-clinical models, we used transgenic MSA mice, a myelinating stem cell-derived oligodendrocyte-neuron co-culture, and primary oligodendrocytes to determine functional consequences of oligodendrocytic α-synuclein overexpression on myelination. We detected myelin loss accompanied by preserved or even increased numbers of oligodendrocytes in post-mortem MSA brains or transgenic mouse forebrains, respectively, indicating an oligodendrocytic dysfunction in myelin formation. Corroborating this observation, overexpression of α-synuclein in primary and stem cell-derived oligodendrocytes severely impaired myelin formation, defining a novel α-synuclein-linked pathomechanism in MSA. We used the pro-myelinating activity of the muscarinic acetylcholine receptor antagonist benztropine to analyze the reversibility of the myelination deficit. Transcriptome profiling of primary pre-myelinating oligodendrocytes demonstrated that benztropine readjusts myelination-related processes such as cholesterol and membrane biogenesis, being compromised by oligodendrocytic α-synuclein. Additionally, benztropine restored the α-synuclein-induced myelination deficit of stem cell-derived oligodendrocytes. Strikingly, benztropine also ameliorated the myelin deficit in transgenic MSA mice, resulting in a prevention of neuronal cell loss. In conclusion, this study defines the α-synuclein-induced

  7. Nascent histamine induces α-synuclein and caspase-3 on human cells

    SciTech Connect

    Caro-Astorga, Joaquín; Fajardo, Ignacio; Ruiz-Pérez, María Victoria; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2014-09-05

    Highlights: • Nascent histamine alters cyclin expression pattern. • Nascent histamine increases expression of α-synuclein. • Nascent histamine activates caspase-3. - Abstract: Histamine (Hia) is the most multifunctional biogenic amine. It is synthetized by histidine decarboxylase (HDC) in a reduced set of mammalian cell types. Mast cells and histaminergic neurons store Hia in specialized organelles until the amine is extruded by exocytosis; however, other immune and cancer cells are able to produce but not store Hia. The intracellular effects of Hia are still not well characterized, in spite of its physiopathological relevance. Multiple functional relationships exist among Hia metabolism/signaling elements and those of other biogenic amines, including growth-related polyamines. Previously, we obtained the first insights for an inhibitory effect of newly synthetized Hia on both growth-related polyamine biosynthesis and cell cycle progression of non-fully differentiated mammalian cells. In this work, we describe progress in this line. HEK293 cells were transfected to express active and inactive versions of GFP-human HDC fusion proteins and, after cell sorting by flow cytometry, the relative expression of a large number of proteins associated with cell signaling were measured using an antibody microarray. Experimental results were analyzed in terms of protein–protein and functional interaction networks. Expression of active HDC induced a cell cycle arrest through the alteration of the levels of several proteins such as cyclin D1, cdk6, cdk7 and cyclin A. Regulation of α-synuclein and caspase-3 was also observed. The analyses provide new clues on the molecular mechanisms underlying the regulatory effects of intracellular newly synthetized Hia on cell proliferation/survival, cell trafficking and protein turnover. This information is especially interesting for emergent and orphan immune and neuroinflammatory diseases.

  8. α-Mangostin Inhibits α-Synuclein-Induced Microglial Neuroinflammation and Neurotoxicity.

    PubMed

    Hu, Zhaoyang; Wang, Wei; Ling, Jing; Jiang, Chunming

    2016-07-01

    Microglia-mediated neuroinflammation induced by α-synuclein in the substantianigra likely either initiates or aggravates nigral neuro degeneration in Parkinson's disease (PD). We aimed to explore the effects of α-mangostin (α-M), a polyphenolicxanthone derivative from mangosteen on α-synuclein-stimulated DA neurodegeneration. Primary microglia, mesencephalic neuron, mesencephalic neuron-glianeuronal cultures, and transwell co-cultures were prepared separately. Liquid scintillation counting was used to determine the radioactivity in DA uptake. Enzyme-linked immunosorbent assay (ELISA) was performed in the IL-1β, IL-6, and TNF-α assay. The expression of proteins was analyzed by Western blot. α-M inhibited the increased levels of pro-inflammatory cytokines, NO, and ROS in α-synuclein-stimulated primary microglia. Mechanistic study revealed that α-M functioned by inhibition of nuclear factor kappa B (NF-κB) and NADPH oxidase. Further, α-M protected α-synuclein-induced microglial and direct neurotoxicity. Although detailed mechanisms remain to be defined, our observations suggest a potential compound, which inhibits microglial activation induced by α-synuclein by targeting NADPH oxidase, might be a therapeutic possibility in preventing PD progression. PMID:27002719

  9. Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss

    PubMed Central

    Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.

    2016-01-01

    The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017

  10. Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra.

    PubMed

    St Martin, Jessie L; Klucken, Jochen; Outeiro, Tiago F; Nguyen, Paul; Keller-McGandy, Christine; Cantuti-Castelvetri, Ippolita; Grammatopoulos, Tom N; Standaert, David G; Hyman, Bradley T; McLean, Pamela J

    2007-03-01

    Several transgenic mouse lines with altered alpha-synuclein expression have been developed that show a variety of Parkinson's disease-like symptoms without specific loss of dopaminergic neurons. Targeted over-expression of human alpha-synuclein using viral-vector mediated gene delivery into the substantia nigra of rats and non-human primates leads to dopaminergic cell loss and the formation of alpha-synuclein aggregates reminiscent of Lewy bodies. In the context of these recent findings, we used adeno-associated virus (AAV) to over-express wild type human alpha-synuclein in the substantia nigra of mice. We hypothesized that this over-expression would recapitulate pathological hallmarks of Parkinson's disease, creating a mouse model to further characterize the disease pathogenesis. Recombinant AAV expressing alpha-synuclein was stereotaxically injected into the substantia nigra of mice, leading to a 25% reduction of dopaminergic neurons after 24 weeks of transduction. Furthermore, examination of mRNA levels of stress-related proteins using laser capture microdissection and quantitative PCR revealed a positive correlation of Hsp27 expression with the extent of viral transduction at 4 weeks and a positive correlation of Hsp40, Hsp70 and caspase 9 with the extent of viral transduction at 24 weeks. Taken together, our findings suggest that targeted over-expression of alpha-synuclein can induce pathology at the gross anatomical and molecular level in the substantia nigra, providing a mouse model in which upstream changes in Parkinson's disease pathogenesis can be further elucidated. PMID:17241127

  11. α-Synuclein and Its A30P Mutant Affect Actin Cytoskeletal Structure and Dynamics

    PubMed Central

    Sousa, Vítor L.; Bellani, Serena; Giannandrea, Maila; Yousuf, Malikmohamed; Valtorta, Flavia; Meldolesi, Jacopo

    2009-01-01

    The function of α-synuclein, a soluble protein abundant in the brain and concentrated at presynaptic terminals, is still undefined. Yet, α-synuclein overexpression and the expression of its A30P mutant are associated with familial Parkinson's disease. Working in cell-free conditions, in two cell lines as well as in primary neurons we demonstrate that α-synuclein and its A30P mutant have different effects on actin polymerization. Wild-type α-synuclein binds actin, slows down its polymerization and accelerates its depolymerization, probably by monomer sequestration; A30P mutant α-synuclein increases the rate of actin polymerization and disrupts the cytoskeleton during reassembly of actin filaments. Consequently, in cells expressing mutant α-synuclein, cytoskeleton-dependent processes, such as cell migration, are inhibited, while exo- and endocytic traffic is altered. In hippocampal neurons from mice carrying a deletion of the α-synuclein gene, electroporation of wild-type α-synuclein increases actin instability during remodeling, with growth of lamellipodia-like structures and apparent cell enlargement, whereas A30P α-synuclein induces discrete actin-rich foci during cytoskeleton reassembly. In conclusion, α-synuclein appears to play a major role in actin cytoskeletal dynamics and various aspects of microfilament function. Actin cytoskeletal disruption induced by the A30P mutant might alter various cellular processes and thereby play a role in the pathogenesis of neurodegeneration. PMID:19553474

  12. The NACP/synuclein gene: Chromosomal assignment and screening for alterations in Alzheimer disease

    SciTech Connect

    Campion, D.; Martin, C.; Charbonnier, F.

    1995-03-20

    The major component of the vascular and plaque amyloid deposits in Alzheimer disease is the amyloid {beta} peptide (A{beta}). A second intrinsic component of amyloid, the NAC (non-A{beta} component of amyloid) peptide, has recently been identified, and its precursor protein was named NACP. A computer homology search allowed us to establish that the human NACP gene was homologous to the rat synuclein gene. We mapped the NACP/synuclein gene to chromosome 4 and cloned three alternatively spliced transcripts in lymphocytes derived from a normal subject. We analyzed by RT-PCR and direct sequencing the entire coding region of the NACP/synuclein gene in a group of patients with familial early onset Alzheimer disease. No mutation was found in 26 unrelated patients. Further studies are required to investigate the implication of the NACP/synuclein gene in Alzheimer disease. 21 refs., 3 tabs.

  13. Altered levels of α-synuclein and sphingolipids in Batten disease lymphoblast cells.

    PubMed

    Kang, Sunyang; Heo, Tae-Hwe; Kim, Sung-Jo

    2014-04-15

    Batten disease (juvenile neuronal ceroid lipofuscinosis) is a neurodegenerative disorder characterized by blindness, seizures, cognitive decline, and early death due to the inherited mutation of the CLN3 gene. Although α-synuclein and sphingolipids are relevant for the pathogenesis of some neuronal disorders, little attention has been paid to their role in Batten disease. To identify the molecular factors linked to autophagy and apoptotic cell death in Batten disease, the levels of α-synuclein, sphingomyelin, and gangliosides were examined. We observed enhanced levels of α-synuclein oligomers and gangliosides GM1, GM2, and GM3 and reduced levels of sphingomyelin and autophagy in Batten disease lymphoblast cells compared with normal lymphoblast cells, possibly resulting in a higher rate of apoptosis typically found in Batten disease lymphoblast cells. PMID:24534465

  14. Soluble, Prefibrillar α-Synuclein Oligomers Promote Complex I-dependent, Ca2+-induced Mitochondrial Dysfunction*

    PubMed Central

    Luth, Eric S.; Stavrovskaya, Irina G.; Bartels, Tim; Kristal, Bruce S.; Selkoe, Dennis J.

    2014-01-01

    α-Synuclein (αSyn) aggregation and mitochondrial dysfunction both contribute to the pathogenesis of Parkinson disease (PD). Although recent studies have suggested that mitochondrial association of αSyn may disrupt mitochondrial function, it is unclear what aggregation state of αSyn is most damaging to mitochondria and what conditions promote or inhibit the effect of toxic αSyn species. Because the neuronal populations most vulnerable in PD are characterized by large cytosolic Ca2+ oscillations that burden mitochondria, we examined mitochondrial Ca2+ stress in an in vitro system comprising isolated mitochondria and purified recombinant human αSyn in various aggregation states. Using fluorimetry to simultaneously measure four mitochondrial parameters, we observed that soluble, prefibrillar αSyn oligomers, but not monomeric or fibrillar αSyn, decreased the retention time of exogenously added Ca2+, promoted Ca2+-induced mitochondrial swelling and depolarization, and accelerated cytochrome c release. Inhibition of the permeability transition pore rescued these αSyn-induced changes in mitochondrial parameters. Interestingly, the mitotoxic effects of αSyn were specifically dependent upon both electron flow through complex I and mitochondrial uptake of exogenous Ca2+. Our results suggest that soluble prefibrillar αSyn oligomers recapitulate several mitochondrial phenotypes previously observed in animal and cell models of PD: complex I dysfunction, altered membrane potential, disrupted Ca2+ homeostasis, and enhanced cytochrome c release. These data reveal how the association of oligomeric αSyn with mitochondria can be detrimental to the function of cells with high Ca2+-handling requirements. PMID:24942732

  15. Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein

    PubMed Central

    Brown, James W. P.; Ouberai, Myriam M.; Flagmeier, Patrick; Vendruscolo, Michele; Buell, Alexander K.; Sparr, Emma; Dobson, Christopher M.

    2016-01-01

    Intracellular α-synuclein deposits, known as Lewy bodies, have been linked to a range of neurodegenerative disorders, including Parkinson’s disease. α-Synuclein binds to synthetic and biological lipids, and this interaction has been shown to play a crucial role for both α-synuclein’s native function, including synaptic plasticity, and the initiation of its aggregation. Here, we describe the interplay between the lipid properties and the lipid binding and aggregation propensity of α-synuclein. In particular, we have observed that the binding of α-synuclein to model membranes is much stronger when the latter is in the fluid rather than the gel phase, and that this binding induces a segregation of the lipids into protein-poor and protein-rich populations. In addition, α-synuclein was found to aggregate at detectable rates only when interacting with membranes composed of the most soluble lipids investigated here. Overall, our results show that the chemical properties of lipids determine whether or not the lipids can trigger the aggregation of α-synuclein, thus affecting the balance between functional and aberrant behavior of the protein. PMID:27298346

  16. The H50Q mutation induces a 10-fold decrease in the solubility of α-synuclein.

    PubMed

    Porcari, Riccardo; Proukakis, Christos; Waudby, Christopher A; Bolognesi, Benedetta; Mangione, P Patrizia; Paton, Jack F S; Mullin, Stephen; Cabrita, Lisa D; Penco, Amanda; Relini, Annalisa; Verona, Guglielmo; Vendruscolo, Michele; Stoppini, Monica; Tartaglia, Gian Gaetano; Camilloni, Carlo; Christodoulou, John; Schapira, Anthony H V; Bellotti, Vittorio

    2015-01-23

    The conversion of α-synuclein from its intrinsically disordered monomeric state into the fibrillar cross-β aggregates characteristically present in Lewy bodies is largely unknown. The investigation of α-synuclein variants causative of familial forms of Parkinson disease can provide unique insights into the conditions that promote or inhibit aggregate formation. It has been shown recently that a newly identified pathogenic mutation of α-synuclein, H50Q, aggregates faster than the wild-type. We investigate here its aggregation propensity by using a sequence-based prediction algorithm, NMR chemical shift analysis of secondary structure populations in the monomeric state, and determination of thermodynamic stability of the fibrils. Our data show that the H50Q mutation induces only a small increment in polyproline II structure around the site of the mutation and a slight increase in the overall aggregation propensity. We also find, however, that the H50Q mutation strongly stabilizes α-synuclein fibrils by 5.0 ± 1.0 kJ mol(-1), thus increasing the supersaturation of monomeric α-synuclein within the cell, and strongly favors its aggregation process. We further show that wild-type α-synuclein can decelerate the aggregation kinetics of the H50Q variant in a dose-dependent manner when coaggregating with it. These last findings suggest that the precise balance of α-synuclein synthesized from the wild-type and mutant alleles may influence the natural history and heterogeneous clinical phenotype of Parkinson disease. PMID:25505181

  17. Sustained Systemic Glucocerebrosidase Inhibition Induces Brain α-Synuclein Aggregation, Microglia and Complement C1q Activation in Mice

    PubMed Central

    Rocha, Emily M.; Smith, Gaynor A.; Park, Eric; Cao, Hongmei; Graham, Anne-Renee; Brown, Eilish; McLean, Jesse R.; Hayes, Melissa A.; Beagan, Jonathan; Izen, Sarah C.; Perez-Torres, Eduardo

    2015-01-01

    Abstract Aims: Loss-of-function mutations in GBA1, which cause the autosomal recessive lysosomal storage disease, Gaucher disease (GD), are also a key genetic risk factor for the α-synucleinopathies, including Parkinson's disease (PD) and dementia with Lewy bodies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase and reductions in this enzyme result in the accumulation of the glycolipid substrates glucosylceramide and glucosylsphingosine. Deficits in autophagy and lysosomal degradation pathways likely contribute to the pathological accumulation of α-synuclein in PD. In this report we used conduritol-β-epoxide (CBE), a potent selective irreversible competitive inhibitor of glucocerebrosidase, to model reduced glucocerebrosidase activity in vivo, and tested whether sustained glucocerebrosidase inhibition in mice could induce neuropathological abnormalities including α-synucleinopathy, and neurodegeneration. Results: Our data demonstrate that daily systemic CBE treatment over 28 days caused accumulation of insoluble α-synuclein aggregates in the substantia nigra, and altered levels of proteins involved in the autophagy lysosomal system. These neuropathological changes were paralleled by widespread neuroinflammation, upregulation of complement C1q, abnormalities in synaptic, axonal transport and cytoskeletal proteins, and neurodegeneration. Innovation: A reduction in brain GCase activity has been linked to sporadic PD and normal aging, and may contribute to the susceptibility of vulnerable neurons to degeneration. This report demonstrates that systemic reduction of GCase activity using chemical inhibition, leads to neuropathological changes in the brain reminiscent of α-synucleinopathy. Conclusions: These data reveal a link between reduced glucocerebrosidase and the development of α-synucleinopathy and pathophysiological abnormalities in mice, and support the development of GCase therapeutics to reduce α-synucleinopathy in PD and related disorders

  18. Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis.

    PubMed

    Tanaka, Y; Engelender, S; Igarashi, S; Rao, R K; Wanner, T; Tanzi, R E; Sawa, A; L Dawson, V; Dawson, T M; Ross, C A

    2001-04-15

    Parkinson's disease (PD) is a common progressive neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic neural cell death occurs remains unknown. Proteins encoded by two other genes in which mutations cause familial PD, parkin and UCH-L1, are involved in regulation of the ubiquitin-proteasome pathway, suggesting that dysregulation of the ubiquitin-proteasome pathway is involved in the mechanism by which these mutations cause PD. We established inducible PC12 cell lines in which wild-type or mutant alpha-synuclein can be de-repressed by removing doxycycline. Differentiated PC12 cell lines expressing mutant alpha-synuclein showed decreased activity of proteasomes without direct toxicity. Cells expressing mutant alpha-synuclein showed increased sensitivity to apoptotic cell death when treated with sub-toxic concentrations of an exogenous proteasome inhibitor. Apoptosis was accompanied by mitochondrial depolarization and elevation of caspase-3 and -9, and was blocked by cyclosporin A. These data suggest that expression of mutant alpha-synuclein results in sensitivity to impairment of proteasome activity, leading to mitochondrial abnormalities and neuronal cell death. PMID:11309365

  19. Toxic Oligomeric Alpha-Synuclein Variants Present in Human Parkinson’s Disease Brains Are Differentially Generated in Mammalian Cell Models

    PubMed Central

    Xin, Wei; Emadi, Sharareh; Williams, Stephanie; Liu, Qiang; Schulz, Philip; He, Ping; Alam, Now Bahar; Wu, Jie; Sierks, Michael R.

    2015-01-01

    Misfolding and aggregation of α-synuclein into toxic soluble oligomeric α-synuclein aggregates has been strongly correlated with the pathogenesis of Parkinson’s disease (PD). Here, we show that two different morphologically distinct oligomeric α-synuclein aggregates are present in human post-mortem PD brain tissue and are responsible for the bulk of α-synuclein induced toxicity in brain homogenates from PD samples. Two antibody fragments that selectively bind the different oligomeric α-synuclein variants block this α-synuclein induced toxicity and are useful tools to probe how various cell models replicate the α-synuclein aggregation pattern of human PD brain. Using these reagents, we show that mammalian cell type strongly influences α-synuclein aggregation, where neuronal cells best replicate the PD brain α-synuclein aggregation profile. Overexpression of α-synuclein in the different cell lines increased protein aggregation but did not alter the morphology of the oligomeric aggregates generated. Differentiation of the neuronal cells into a cholinergic-like or dopaminergic-like phenotype increased the levels of oligomeric α-synuclein where the aggregates were localized in cell neurites and cell bodies. PMID:26287258

  20. Formation and Implications of Alpha-Synuclein Radical in Maneb- and Paraquat-Induced Models of Parkinson's Disease.

    PubMed

    Kumar, Ashutosh; Leinisch, Fabian; Kadiiska, Maria B; Corbett, Jean; Mason, Ronald P

    2016-07-01

    Parkinson's disease (PD) is a debilitating, progressive, neurodegenerative disorder characterized by progressive loss of dopaminergic neurons and motor deficits. Alpha-synuclein-containing aggregates represent a feature of a variety of neurodegenerative disorders, including PD; however, the mechanism that initiates and promotes intraneuronal alpha-synuclein aggregation remains unknown. We hypothesized protein radical formation as an initiating mechanism for alpha-synuclein aggregation. Therefore, we used the highly sensitive immuno-spin trapping technique to investigate protein radical formation as a possible mechanism of alpha-synuclein aggregation as well as to investigate the source of protein radical formation in the midbrains of Maneb- and paraquat-coexposed mice. Coexposure to Maneb and paraquat for 6 weeks resulted in active microgliosis, NADPH oxidase activation, and inducible nitric oxide synthase (iNOS) induction, which culminated in protein radical formation in the midbrains of mice. Results obtained with immuno-spin trapping and immunoprecipitation experiments confirmed formation of alpha-synuclein radicals in dopaminergic neurons of exposed mice. Free radical formation requires NADPH oxidase and iNOS, as indicated by decreased protein radical formation in knockout mice (P47phox(-/-) and iNOS(-/-)) and in mice treated with inhibitors such as FeTPPS (a peroxynitrite decomposition catalyst), 1400 W (an iNOS inhibitor), or apocynin (a NADPH oxidase inhibitor). Concurrence of protein radical formation with dopaminergic neuronal death indicated a link between protein radicals and disease progression. Taken together, these results show for the first time the formation and detection of the alpha-synuclein radical and suggest that NADPH oxidase and iNOS play roles in peroxynitrite-mediated protein radical formation and subsequent neuronal death in the midbrains of Maneb- and paraquat-coexposed mice. PMID:25952542

  1. α-Synuclein induced toxicity in brain stem serotonin neurons mediated by an AAV vector driven by the tryptophan hydroxylase promoter

    PubMed Central

    Wan, Oi Wan; Shin, Eunju; Mattsson, Bengt; Caudal, Dorian; Svenningsson, Per; Björklund, Anders

    2016-01-01

    We studied the impact of α-synuclein overexpression in brainstem serotonin neurons using a novel vector construct where the expression of human wildtype α-synuclein is driven by the tryptophan hydroxylase promoter, allowing expression of α-synuclein at elevated levels, and with high selectivity, in serotonergic neurons. α-Synuclein induced degenerative changes in axons and dendrites, displaying a distorted appearance, suggesting accumulation and aggregation of α-synuclein as a result of impaired axonal transport, accompanied by a 40% loss of terminals, as assessed in the hippocampus. Tissue levels of serotonin and its major metabolite 5-HIAA remained largely unaltered, and the performance of the α-synuclein overexpressing rats in tests of spatial learning (water maze), anxiety related behavior (elevated plus maze) and depressive-like behavior (forced swim test) was not different from control, suggesting that the impact of the developing axonal pathology on serotonin neurotransmission was relatively mild. Overexpression of α-synuclein in the raphe nuclei, combined with overexpression in basal forebrain cholinergic neurons, resulted in more pronounced axonal pathology and significant impairment in the elevated plus maze. We conclude that α-synuclein pathology in serotonergic or cholinergic neurons alone is not sufficient to impair non-motor behaviors, but that it is their simultaneous involvement that determines severity of such symptoms. PMID:27211987

  2. α-Synuclein induced toxicity in brain stem serotonin neurons mediated by an AAV vector driven by the tryptophan hydroxylase promoter.

    PubMed

    Wan, Oi Wan; Shin, Eunju; Mattsson, Bengt; Caudal, Dorian; Svenningsson, Per; Björklund, Anders

    2016-01-01

    We studied the impact of α-synuclein overexpression in brainstem serotonin neurons using a novel vector construct where the expression of human wildtype α-synuclein is driven by the tryptophan hydroxylase promoter, allowing expression of α-synuclein at elevated levels, and with high selectivity, in serotonergic neurons. α-Synuclein induced degenerative changes in axons and dendrites, displaying a distorted appearance, suggesting accumulation and aggregation of α-synuclein as a result of impaired axonal transport, accompanied by a 40% loss of terminals, as assessed in the hippocampus. Tissue levels of serotonin and its major metabolite 5-HIAA remained largely unaltered, and the performance of the α-synuclein overexpressing rats in tests of spatial learning (water maze), anxiety related behavior (elevated plus maze) and depressive-like behavior (forced swim test) was not different from control, suggesting that the impact of the developing axonal pathology on serotonin neurotransmission was relatively mild. Overexpression of α-synuclein in the raphe nuclei, combined with overexpression in basal forebrain cholinergic neurons, resulted in more pronounced axonal pathology and significant impairment in the elevated plus maze. We conclude that α-synuclein pathology in serotonergic or cholinergic neurons alone is not sufficient to impair non-motor behaviors, but that it is their simultaneous involvement that determines severity of such symptoms. PMID:27211987

  3. Familial Parkinson Disease-associated Mutations Alter the Site-specific Microenvironment and Dynamics of α-Synuclein*

    PubMed Central

    Sahay, Shruti; Ghosh, Dhiman; Dwivedi, Saumya; Anoop, Arunagiri; Mohite, Ganesh Maruti; Kombrabail, Mamata; Krishnamoorthy, Guruswamy; Maji, Samir K.

    2015-01-01

    Human α-synuclein (α-Syn) is a natively unstructured protein whose aggregation into amyloid fibrils is associated with Parkinson disease (PD) pathogenesis. Mutations of α-Syn, E46K, A53T, and A30P, have been linked to the familial form of PD. In vitro aggregation studies suggest that increased propensity to form non-fibrillar oligomers is the shared property of these familial PD-associated mutants. However, the structural basis of the altered aggregation propensities of these PD-associated mutants is not yet clear. To understand this, we studied the site-specific structural dynamics of wild type (WT) α-Syn and its three PD mutants (A53T, E46K, and A30P). Tryptophan (Trp) was substituted at the N terminus, central hydrophobic region, and C terminus of all α-Syns. Using various biophysical techniques including time-resolved fluorescence studies, we show that irrespective of similar secondary structure and early oligomerization propensities, familial PD-associated mutations alter the site-specific microenvironment, solvent exposure, and conformational flexibility of the protein. Our results further show that the common structural feature of the three PD-associated mutants is more compact and rigid sites at their N and C termini compared with WT α-Syn that may facilitate the formation of a partially folded intermediate that eventually leads to their increased oligomerization propensities. PMID:25635052

  4. TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson's disease.

    PubMed

    Bender, Andreas; Desplats, Paula; Spencer, Brian; Rockenstein, Edward; Adame, Anthony; Elstner, Matthias; Laub, Christoph; Mueller, Sarina; Koob, Andrew O; Mante, Michael; Pham, Emily; Klopstock, Thomas; Masliah, Eliezer

    2013-01-01

    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery--TOM40--might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies. PMID:23626796

  5. TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson’s Disease

    PubMed Central

    Rockenstein, Edward; Adame, Anthony; Elstner, Matthias; Laub, Christoph; Mueller, Sarina; Koob, Andrew O.; Mante, Michael; Pham, Emily; Klopstock, Thomas; Masliah, Eliezer

    2013-01-01

    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson’s disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies. PMID:23626796

  6. Amyloidogenic α-synuclein seeds do not invariably induce rapid, widespread pathology in mice

    PubMed Central

    Sacino, Amanda N.; Brooks, Mieu; Thomas, Michael A.; McKinney, Alex B.; McGarvey, Nicholas H.; Rutherford, Nicola L.; Ceballos-Diaz, Carolina; Robertson, Janice; Golde, Todd E.; Giasson, Benoit I.

    2014-01-01

    To further evaluate the parameters whereby intracerebral administration of recombinant α-synuclein (αS) induces pathological phenotypes in mice, we conducted a series of studies where αS fibrils were injected into the brains of M83 (A53T) and M47 (E46K) αS transgenic (Tg) mice, and non-transgenic (nTg) mice. Using multiple markers to assess αS inclusion formation, we find that injected fibrillar human αS induced widespread cerebral αS inclusion formation in the M83 Tg mice, but in both nTg and M47 Tg mice, induced αS inclusion pathology is largely restricted to the site of injection. Furthermore, mouse αS fibrils injected into nTg mice brains also resulted in inclusion pathology restricted to the site of injection with no evidence for spread. We find no compelling evidence for extensive spread of αS pathology within white matter tracts, and we attribute previous reports of white matter tract spreading to cross-reactivity of the αS pSer129/81A antibody with phosphorylated neurofilament subunit L (NFL). These studies suggest that with the exception of the M83 mice which appear to be uniquely susceptible to induction of inclusion pathology by exogenous forms of αS there are significant barriers in mice to widespread induction of αS pathology following intracerebral administration of amyloidogenic αS. PMID:24659240

  7. Altered expression of gamma-synuclein and detoxification-related genes in lungs of rats exposed to JP-8.

    PubMed

    Espinoza, Luis A; Valikhani, Mohammad; Cossio, María J; Carr, Theresa; Jung, Mira; Hyde, Juanita; Witten, Mark L; Smulson, Mark E

    2005-03-01

    Many military personnel are at risk of lung damage or systemic toxicity as a result of exposure to the jet fuel JP-8. We have now used microarray analysis to characterize changes in the gene expression profile of lung tissue induced by exposure of rats to JP-8 at a concentration of 171 or 352 mg/m(3) for 1 h/d for 7 d, with the higher dose estimated to mimic the level of occupational exposure in humans. The expression of 56 genes was significantly affected by a factor of /= 1.5 by JP-8 at the low dose. Eighty-six percent of these genes were downregulated by JP-8. The expression of 66 genes was similarly affected by JP-8 at the higher dose, with the expression of 42% of these genes being upregulated. Prominent among the latter genes was that for the centrosome-associated protein gamma-synuclein, whose expression was consistently increased. The expression of various genes related to antioxidant responses and detoxification, including those for glutathione S-transferases and cytochrome P450 proteins, were also upregulated. The microarray data were confirmed by quantitative RT-PCR analysis. Our extensive data set may thus provide important insight into the pulmonary response to occupational exposure to JP-8 in humans. PMID:15618438

  8. rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration

    PubMed Central

    2013-01-01

    Background Alpha-synuclein is a key protein implicated in the pathogenesis of Parkinson's disease (PD). It is the main component of the Lewy bodies, a cardinal neuropathological feature in the disease. In addition, whole locus multiplications and point mutations in the gene coding for alpha-synuclein lead to autosomal dominant monogenic PD. Over the past decade, research on PD has impelled the development of new animal models based on alpha-synuclein. In this context, transgenic mouse lines have failed to reproduce several hallmarks of PD, especially the strong and progressive dopaminergic neurodegeneration over time that occurs in the patients. In contrast, viral vector-based models in rats and non-human primates display prominent, although highly variable, nigral dopaminergic neuron loss. However, the few studies available on viral vector-mediated overexpression of alpha-synuclein in mice report a weak neurodegenerative process and no clear Lewy body-like pathology. To address this issue, we performed a comprehensive comparative study of alpha-synuclein overexpression by means of recombinant adeno-associated viral vectors serotype 2/7 (rAAV2/7) at different doses in adult mouse substantia nigra. Results We noted a significant and dose-dependent alpha-synucleinopathy over time upon nigral viral vector-mediated alpha-synuclein overexpression. We obtained a strong, progressive and dose-dependent loss of dopaminergic neurons in the substantia nigra, reaching a maximum of 82% after 8 weeks. This effect correlated with a reduction in tyrosine hydroxylase immunoreactivity in the striatum. Moreover, behavioural analysis revealed significant motor impairments from 12 weeks after injection on. In addition, we detected the presence of alpha-synuclein-positive aggregates in the remaining surviving neurons. When comparing wild-type to mutant A53T alpha-synuclein at the same vector dose, both induced a similar degree of cell death. These data were supported by a biochemical

  9. Dopamine Transporter Activity Is Modulated by α-Synuclein.

    PubMed

    Butler, Brittany; Saha, Kaustuv; Rana, Tanu; Becker, Jonas P; Sambo, Danielle; Davari, Paran; Goodwin, J Shawn; Khoshbouei, Habibeh

    2015-12-01

    The duration and strength of the dopaminergic signal are regulated by the dopamine transporter (DAT). Drug addiction and neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-Synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine-induced DAT-mediated dopamine efflux, and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT·α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells and that the amphetamine-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases dopamine efflux and enhances DAT localization in cholesterol-rich membrane microdomains. PMID:26442590

  10. DT-Diaphorase Prevents Aminochrome-Induced Alpha-Synuclein Oligomer Formation and Neurotoxicity

    PubMed Central

    Muñoz, Patricia; Cardenas, Sergio; Huenchuguala, Sandro; Briceño, Andrea; Couve, Eduardo; Paris, Irmgard; Segura-Aguilar, Juan

    2015-01-01

    It was reported that aminochrome induces the formation of alpha synuclein (SNCA) oligomers during dopamine oxidation. We found that DT-diaphorase (NQO1) prevents the formation of SNCA oligomers in the presence of aminochrome determined by Western blot, transmission electron microscopy, circular dichroism, and thioflavin T fluorescence, suggesting a protective role of NQO1 by preventing the formation of SNCA oligomers in dopaminergic neurons. In order to test NQO1 protective role in SNCA neurotoxicity in cellular model, we overexpressed SNCA in both RCSN-3 cells (wild-type) and RCSN-3Nq7 cells, which have constitutive expression of a siRNA against NQO1. The expression of SNCA in RCSN-3SNCA and RCSN-3Nq7SNCA cells increased 4.2- and 4.4-fold, respectively. The overexpression of SNCA in RCSN-3Nq7SNCA cells induces a significant increase in cell death of 2.8- and 3.2-fold when they were incubated with 50 and 70 µM aminochrome, respectively. The cell death was found to be of apoptotic character determined by annexin/propidium iodide technique with flow cytometry and DNA laddering. A Western blot demonstrated that SNCA in RCSN-3SNCA is only found in monomer form both in the presence of 20 µM aminochrome or cell culture medium contrasting with RCSN-3Nq7SNCA cells where the majority SNCA is found as oligomer. The antioligomer compound scyllo-inositol induced a significant decrease in aminochrome-induced cell death in RCSN-3Nq7SNCA cells in comparison to cells incubated in the absence of scyllo-inositol. Our results suggest that NQO1 seems to play an important role in the prevention of aminochrome-induced SNCA oligomer formation and SNCA oligomers neurotoxicity in dopaminergic neurons. PMID:25634539

  11. Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha-synuclein aggregation

    NASA Astrophysics Data System (ADS)

    Anderson, V. L.; Webb, W. W.; Eliezer, D.

    2012-10-01

    Both increased temperature and moderate concentrations of fluorinated alcohols enhance aggregation of the Parkinson's disease-associated protein α-synuclein (αS). Here, we investigate the secondary structural rearrangements induced by heating and trifluoroethanol [TFE]. At low TFE concentrations, CD spectra feature a negative peak characteristic of disordered polypeptides near 200 nm and a slight shoulder around 220 nm suggesting some polyproline-II content. Upon heating, these peaks weaken, while a weak negative signal develops at 222 nm. At high TFE concentrations, the spectra show distinct minima at 208 and 222 nm, indicative of considerable α-helical structure, which diminish upon heating. We observe a crossover between the low-TFE and high-TFE behavior near 15% TFE, where we previously showed that a partially helical intermediate is populated. We postulate that the protein is well solvated by water at low TFE concentrations and by TFE at high TFE concentrations, but may become desolvated at the crossover point. We discuss the potential roles and interplay of desolvation and helical secondary structure in driving αS aggregation.

  12. Small heat shock proteins protect against {alpha}-synuclein-induced toxicity and aggregation

    SciTech Connect

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.; Liu Fang; Nguyen, Paul; Rochet, Jean-Christophe; Hyman, Bradley T.; McLean, Pamela J. . E-mail: touteiro@partners.org

    2006-12-22

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). {alpha}-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and {alpha}B-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are {approx}2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by {approx}80% in a culture model while {alpha}B-crystallin reduces toxicity by {approx}20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.

  13. microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease.

    PubMed

    Thome, Aaron D; Harms, Ashley S; Volpicelli-Daley, Laura A; Standaert, David G

    2016-02-24

    Increasing evidence points to inflammation as a chief mediator of Parkinson's disease (PD), a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein α-synuclein (α-syn). Recently, microRNAs, small, noncoding RNAs involved in regulating gene expression at the posttranscriptional level, have been recognized as important regulators of the inflammatory environment. Using an array approach, we found significant upregulation of microRNA-155 (miR-155) in an in vivo model of PD produced by adeno-associated-virus-mediated expression of α-syn. Using a mouse with a complete deletion of miR-155, we found that loss of miR-155 reduced proinflammatory responses to α-syn and blocked α-syn-induced neurodegeneration. In primary microglia from miR-155(-/-) mice, we observed a markedly reduced inflammatory response to α-syn fibrils, with attenuation of major histocompatibility complex class II (MHCII) and proinflammatory inducible nitric oxide synthase expression. Treatment of these microglia with a synthetic mimic of miR-155 restored the inflammatory response to α-syn fibrils. Our results suggest that miR-155 has a central role in the inflammatory response to α-syn in the brain and in α-syn-related neurodegeneration. These effects are at least in part due to a direct role of miR-155 on the microglial response to α-syn. These data implicate miR-155 as a potential therapeutic target for regulating the inflammatory response in PD. PMID:26911687

  14. Dopamine-induced α-synuclein oligomers show self- and cross-propagation properties

    PubMed Central

    Planchard, Matthew S; Exley, Sarah E; Morgan, Sarah E; Rangachari, Vijayaraghavan

    2014-01-01

    Amyloid aggregates of α-synuclein (αS) protein are the predominant species present within the intracellular inclusions called Lewy bodies in Parkinson’s disease (PD) patients. Among various aggregates, the low-molecular weight ones broadly ranging between 2 and 30 mers are known to be the primary neurotoxic agents responsible for the impairment of neuronal function. Recent research has indicated that the neurotransmitter dopamine (DA) is one of the key physiological agents promoting and augmenting αS aggregation, which is thought to be a significant event in PD pathologenesis. Specifically, DA is known to induce the formation of soluble oligomers of αS, which in turn are responsible for inducing several important cellular changes leading to cellular toxicity. In this report, we present the generation, isolation, and biophysical characterization of five different dopamine-derived αS oligomers (DSOs) ranging between 3 and 15 mers, corroborating previously published reports. More importantly, we establish that these DSOs are also capable of replication by self-propagation, which leads to the replication of DSOs upon interaction with αS monomers, a process similar to that observed in mammilian prions. In addition, DSOs are also able to cross-propagate amyloid-β (Aβ) aggregates involved in Alzheimer’s disease (AD). Interestingly, while self-propagation of DSOs occur with no net gain in protein structure, cross-propagation proceeds with an overall gain in β-sheet conformation. These results implicate the involvement of DSOs in the progression of PD, and, in part, provide a molecular basis for the observed co-existence of AD-like pathology among PD patients. PMID:25044276

  15. Chronic Treatment with Novel Small Molecule Hsp90 Inhibitors Rescues Striatal Dopamine Levels but Not α-Synuclein-Induced Neuronal Cell Loss

    PubMed Central

    Kibuuka, Laura; Ebrahimi-Fakhari, Darius; Desjardins, Cody A.; Danzer, Karin M.; Danzer, Michael; Fan, Zhanyun; Schwarzschild, Michael A.; Hirst, Warren; McLean, Pamela J.

    2014-01-01

    Hsp90 inhibitors such as geldanamycin potently induce Hsp70 and reduce cytotoxicity due to α-synuclein expression, although their use has been limited due to toxicity, brain permeability, and drug design. We recently described the effects of a novel class of potent, small molecule Hsp90 inhibitors in cells overexpressing α-synuclein. Screening yielded several candidate compounds that significantly reduced α-synuclein oligomer formation and cytotoxicity associated with Hsp70 induction. In this study we examined whether chronic treatment with candidate Hsp90 inhibitors could protect against α-synuclein toxicity in a rat model of parkinsonism. Rats were injected unilaterally in the substantia nigra with AAV8 expressing human α-synuclein and then treated with drug for approximately 8 weeks by oral gavage. Chronic treatment with SNX-0723 or the more potent, SNX-9114 failed to reduce dopaminergic toxicity in the substantia nigra compared to vehicle. However, SNX-9114 significantly increased striatal dopamine content suggesting a positive neuromodulatory effect on striatal terminals. Treatment was generally well tolerated, but higher dose SNX-0723 (6–10 mg/kg) resulted in systemic toxicity, weight loss, and early death. Although still limited by potential toxicity, Hsp90 inhibitors tested herein demonstrate oral efficacy and possible beneficial effects on dopamine production in a vertebrate model of parkinsonism that warrant further study. PMID:24465863

  16. Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP-probenecid-induced parkinsonism mouse model by targeting α-synuclein abnormalities in the substantia nigra.

    PubMed

    Heng, Yang; Zhang, Qiu-Shuang; Mu, Zheng; Hu, Jin-Feng; Yuan, Yu-He; Chen, Nai-Hong

    2016-01-22

    Parkinson's disease (PD) is pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of aggregated α-synuclein in specific central nervous system (CNS) regions. Disease development is attributed to α-synuclein abnormalities, particularly aggregation and phosphorylation. The ginsenoside Rg1, an active component of ginseng, possesses neuroprotective and anti-inflammatory effects. The purpose of the present study was to evaluate these activities of Rg1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/probenecid (MPTP/p)-induced PD mouse model for the first time and to elucidate the underlying mechanisms. Oral treatment with Rg1 significantly attenuated the high MPTP-induced mortality, behavior defects, loss of dopamine neurons and abnormal ultrastructure changes in the SNpc. Other assays indicated that the protective effect of Rg1 may be mediated by its anti-neuroinflammatory properties. Rg1 regulated MPTP-induced reactive astrocytes and microglia and decreased the release of cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the SNpc. Rg1 also alleviated the unusual MPTP-induced increase in oligomeric, phosphorylated and disease-related α-synuclein in the SNpc. In conclusion, Rg1 protects dopaminergic neurons, most likely by reducing aberrant α-synuclein-mediated neuroinflammation, and holds promise for PD therapeutics. PMID:26723869

  17. Age- and brain region-dependent α-synuclein oligomerization is attributed to alterations in intrinsic enzymes regulating α-synuclein phosphorylation in aging monkey brains

    PubMed Central

    Chen, Min; Yang, Weiwei; Li, Xin; Li, Xuran; Wang, Peng; Yue, Feng; Yang, Hui; Chan, Piu; Yu, Shun

    2016-01-01

    We previously reported that the levels of α-syn oligomers, which play pivotal pathogenic roles in age-related Parkinson's disease (PD) and dementia with Lewy bodies, increase heterogeneously in the aging brain. Here, we show that exogenous α-syn incubated with brain extracts from older cynomolgus monkeys and in Lewy body pathology (LBP)-susceptible brain regions (striatum and hippocampus) forms higher amounts of phosphorylated and oligomeric α-syn than that in extracts from younger monkeys and LBP-insusceptible brain regions (cerebellum and occipital cortex). The increased α-syn phosphorylation and oligomerization in the brain extracts from older monkeys and in LBP-susceptible brain regions were associated with higher levels of polo-like kinase 2 (PLK2), an enzyme promoting α-syn phosphorylation, and lower activity of protein phosphatase 2A (PP2A), an enzyme inhibiting α-syn phosphorylation, in these brain extracts. Further, the extent of the age- and brain-dependent increase in α-syn phosphorylation and oligomerization was reduced by inhibition of PLK2 and activation of PP2A. Inversely, phosphorylated α-syn oligomers reduced the activity of PP2A and showed potent cytotoxicity. In addition, the activity of GCase and the levels of ceramide, a product of GCase shown to activate PP2A, were lower in brain extracts from older monkeys and in LBP-susceptible brain regions. Our results suggest a role for altered intrinsic metabolic enzymes in age- and brain region-dependent α-syn oligomerization in aging brains. PMID:27032368

  18. Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2

    PubMed Central

    Diao, Jiajie; Burré, Jacqueline; Vivona, Sandro; Cipriano, Daniel J; Sharma, Manu; Kyoung, Minjoung; Südhof, Thomas C; Brunger, Axel T

    2013-01-01

    α-Synuclein is a presynaptic protein that is implicated in Parkinson's and other neurodegenerative diseases. Physiologically, native α-synuclein promotes presynaptic SNARE-complex assembly, but its molecular mechanism of action remains unknown. Here, we found that native α-synuclein promotes clustering of synaptic-vesicle mimics, using a single-vesicle optical microscopy system. This vesicle-clustering activity was observed for both recombinant and native α-synuclein purified from mouse brain. Clustering was dependent on specific interactions of native α-synuclein with both synaptobrevin-2/VAMP2 and anionic lipids. Out of the three familial Parkinson's disease-related point mutants of α-synuclein, only the lipid-binding deficient mutation A30P disrupted clustering, hinting at a possible loss of function phenotype for this mutant. α-Synuclein had little effect on Ca2+-triggered fusion in our reconstituted single-vesicle system, consistent with in vivo data. α-Synuclein may therefore lead to accumulation of synaptic vesicles at the active zone, providing a ‘buffer’ of synaptic vesicles, without affecting neurotransmitter release itself. DOI: http://dx.doi.org/10.7554/eLife.00592.001 PMID:23638301

  19. α-Synuclein and protein degradation systems: a reciprocal relationship.

    PubMed

    Xilouri, Maria; Brekk, Oystein Rod; Stefanis, Leonidas

    2013-04-01

    An increasing wealth of data indicates a close relationship between the presynaptic protein alpha-synuclein and Parkinson's disease (PD) pathogenesis. Alpha-synuclein protein levels are considered as a major determinant of its neurotoxic potential, whereas secreted extracellular alpha-synuclein has emerged as an additional important factor in this regard. However, the manner of alpha-synuclein degradation in neurons remains contentious. Both the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway (ALP)-mainly macroautophagy and chaperone-mediated autophagy-have been suggested to contribute to alpha-synuclein turnover. Additionally, other proteases such as calpains, neurosin, and metalloproteinases have been also proposed to have a role in intracellular and extracellular alpha-synuclein processing. Both UPS and ALP activity decline with aging and such decline may play a pivotal role in many neurodegenerative conditions. Alterations in these major proteolytic pathways may result in alpha-synuclein accumulation due to impaired clearance. Conversely, increased alpha-synuclein protein burden promotes the generation of aberrant species that may impair further UPS or ALP function, generating thus a bidirectional positive feedback loop leading to neuronal death. In the current review, we summarize the recent findings related to alpha-synuclein degradation, as well as to alpha-synuclein-mediated aberrant effects on protein degradation systems. Identifying the factors that regulate alpha-synuclein association to cellular proteolytic pathways may represent potential targets for therapeutic interventions in PD and related synucleinopathies. PMID:22941029

  20. 3-Anhydro-6-hydroxy-ophiobolin A, a fungal sesterterpene from Bipolaris oryzae induced autophagy and promoted the degradation of α-synuclein in PC12 cells.

    PubMed

    Xue, Danfeng; Wang, Quanxin; Chen, Ziheng; Cai, Lei; Bao, Li; Qi, Qiuyue; Liu, Lei; Wang, Xiaohui; Jin, Haijing; Wang, Jun; Wu, Hao; Liu, Hongwei; Chen, Quan

    2015-04-01

    Autophagy is defined as an evolutionarily conserved process responsible for degradation of the cytoplasmic components including protein aggregates via the lysosomal machinery. Increasing evidence has linked defective autophagic degradation of protein aggregates with the pathogenesis of neurodegenerative disorders, and it is suggested that promotion of autophagy is regarded as a potential therapeutic for these diseases including Parkinson's disease (PD). Here we identified, 3-anhydro-6-hydroxy-ophiobolin A (X15-2), an ophiobolin derivative from Bipolaris oryzae that can strongly induce autophagic degradation of α-synuclein, the major constituent of Lewy bodies. We showed that X15-2 induced autophagy is dependent on both Beclin1 and Beclin2. Knockout of ATG5 by CRISPER/Cas9 prevented X15-2 induced autophagy and degradation of α-synuclein. Mechanistically, we showed that X15-2 induces ROS and the activation of JNK signaling for the autophagic degradation of α-synuclein in PC12 cells. PMID:25748161

  1. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation

    PubMed Central

    Su, Ling-Yan; Li, Hao; Lv, Li; Feng, Yue-Mei; Li, Guo-Dong; Luo, Rongcan; Zhou, He-Jiang; Lei, Xiao-Guang; Ma, Liang; Li, Jia-Li; Xu, Lin; Hu, Xin-Tian; Yao, Yong-Gang

    2015-01-01

    Autophagy is involved in the pathogenesis of neurodegenerative diseases including Parkinson disease (PD). However, little is known about the regulation of autophagy in neurodegenerative process. In this study, we characterized aberrant activation of autophagy induced by neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and demonstrated that melatonin has a protective effect on neurotoxicity. We found an excessive activation of autophagy in monkey brain tissues and C6 cells, induced by MPTP, which is mediated by CDK5 (cyclin-dependent kinase 5). MPTP treatment significantly reduced total dendritic length and dendritic complexity of cultured primary cortical neurons and melatonin could reverse this effect. Decreased TH (tyrosine hydroxylase)-positive cells and dendrites of dopaminergic neurons in the substantia nigra pars compacta (SNc) were observed in MPTP-treated monkeys and mice. Along with decreased TH protein level, we observed an upregulation of CDK5 and enhanced autophagic activity in the striatum of mice with MPTP injection. These changes could be salvaged by melatonin treatment or knockdown of CDK5. Importantly, melatonin or knockdown of CDK5 reduced MPTP-induced SNCA/α-synuclein aggregation in mice, which is widely thought to trigger the pathogenesis of PD. Finally, melatonin or knockdown of CDK5 counteracted the PD phenotype in mice induced by MPTP. Our findings uncover a potent role of CDK5-mediated autophagy in the pathogenesis of PD, and suggest that control of autophagic pathways may provide an important clue for exploring potential target for novel therapeutics of PD. PMID:26292069

  2. Transgenic overexpression of the alpha-synuclein interacting protein synphilin-1 leads to behavioral and neuropathological alterations in mice.

    PubMed

    Nuber, Silke; Franck, Thomas; Wolburg, Hartwig; Schumann, Ulrike; Casadei, Nicolas; Fischer, Kristina; Calaminus, Carsten; Pichler, Bernd J; Chanarat, Sittinan; Teismann, Peter; Schulz, Jörg B; Luft, Andreas R; Tomiuk, Jürgen; Wilbertz, Johannes; Bornemann, Antje; Krüger, Rejko; Riess, Olaf

    2010-02-01

    Synphilin-1 has been identified as an interacting protein of alpha-synuclein, Parkin, and LRRK2, proteins which are mutated in familial forms of Parkinson disease (PD). Subsequently, synphilin-1 has also been shown to be an intrinsic component of Lewy bodies in sporadic PD. In order to elucidate the role of synphilin-1 in the pathogenesis of PD, we generated transgenic mice overexpressing wild-type and mutant (R621C) synphilin-1 driven by a mouse prion protein promoter. Transgenic expression of both wild-type and the R621C variant synphilin-1 resulted in increased dopamine levels of the nigrostriatal system in 3-month-old mice. Furthermore, we found pathological ubiquitin-positive inclusions in cerebellar sections and dark-cell degeneration of Purkinje cells. Both transgenic mouse lines showed significant reduction of motor skill learning and motor performance. These findings suggest a pathological role of overexpressed synphilin-1 in vivo and will help to further elucidate the mechanisms of protein aggregation and neuronal cell death. PMID:19760259

  3. α-Synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: implications in the pathogenesis of Parkinson's disease.

    PubMed

    Bir, Aritri; Sen, Oishimaya; Anand, Shruti; Khemka, Vineet Kumar; Banerjee, Priyanjalee; Cappai, Roberto; Sahoo, Arghyadip; Chakrabarti, Sasanka

    2014-12-01

    This study has shown that purified recombinant human α-synuclein (20 μM) causes membrane depolarization and loss of phosphorylation capacity of isolated purified rat brain mitochondria by activating permeability transition pore complex. In intact SHSY5Y (human neuroblastoma cell line) cells, lactacystin (5 μM), a proteasomal inhibitor, causes an accumulation of α-synuclein with concomitant mitochondrial dysfunction and cell death. The effects of lactacystin on intact SHSY5Y cells are, however, prevented by knocking down α-synuclein expression by specific siRNA. Furthermore, in wild-type (non-transfected) SHSY5Y cells, the effects of lactacystin on mitochondrial function and cell viability are also prevented by cyclosporin A (1 μM) which blocks the activity of the mitochondrial permeability transition pore. Likewise, in wild-type SHSY5Y cells, typical mitochondrial poison like antimycin A (50 nM) produces loss of cell viability comparable to that of lactacystin (5 μM). These data, in combination with those from isolated brain mitochondria, strongly suggest that intracellularly accumulated α-synuclein can interact with mitochondria in intact SHSY5Y cells causing dysfunction of the organelle which drives the cell death under our experimental conditions. The results have clear implications in the pathogenesis of sporadic Parkinson's disease. α-Synuclein is shown to cause mitochondrial impairment through interaction with permeability transition pore complex in isolated preparations. Intracellular accumulation of α-synuclein in SHSY5Y cells following proteasomal inhibition leads to mitochondrial impairment and cell death which could be prevented by knocking down α-synuclein gene. The results link mitochondrial dysfunction and α-synuclein accumulation, two key pathogenic mechanisms of Parkinson's disease, in a common damage pathway. PMID:25319443

  4. Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction

    PubMed Central

    Gan, Ming; Moussaud, Simon; Jiang, Peizhou; McLean, Pamela J.

    2014-01-01

    The pathological hallmark of Parkinson’s disease (PD) is the accumulation of alpha-synuclein (αsyn) in susceptible neurons in the form of Lewy bodies and Lewy neurites. The etiology of PD remains unclear. Because brain injury has been suggested to facilitate αsyn aggregation, we investigated whether cellular breakdown products from damaged cells can act on neighboring healthy cells and cause intracellular αsyn accumulation/aggregation. Using two neuronal cell models we found that extracellular ATP induced a significant increase in intracellular αsyn levels between 24 to 48 hours after treatment. Further investigation revealed that the observed αsyn accumulation is a result of lysosome dysfunction caused by extracellular ATP-induced elevation of lysosomal pH. Interestingly, P2X1 receptor appears to mediate the cells’ response to extracellular ATP. Although Ca2+ influx via P2X1 receptor is necessary for αsyn accumulation, Ca2+ influx per se is not sufficient for increased αsyn accumulation. These findings provide new insight into our knowledge of the role of P2X receptors in PD pathogenesis and may be helpful in identifying new therapeutic targets for PD. PMID:25480524

  5. Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction.

    PubMed

    Gan, Ming; Moussaud, Simon; Jiang, Peizhou; McLean, Pamela J

    2015-02-01

    The pathologic hallmark of Parkinson's disease (PD) is the accumulation of alpha-synuclein (αsyn) in susceptible neurons in the form of Lewy bodies and Lewy neurites. The etiology of PD remains unclear. Because brain injury has been suggested to facilitate αsyn aggregation, we investigated whether cellular breakdown products from damaged cells can act on neighboring healthy cells and cause intracellular αsyn accumulation and/or aggregation. Using 2 neuronal cell models, we found that extracellular adenosine triphosphate (ATP) induced a significant increase in intracellular αsyn levels between 24 and 48 hours after treatment. Further investigation revealed that the observed αsyn accumulation is a result of lysosome dysfunction caused by extracellular ATP-induced elevation of lysosomal pH. Interestingly, P2X1 receptor appears to mediate the cells' response to extracellular ATP. Although Ca(2+) influx via P2X1 receptor is necessary for αsyn accumulation, Ca(2+) influx per se is not sufficient for increased αsyn accumulation. These findings provide new insight into our knowledge of the role of P2X receptors in PD pathogenesis and may be helpful in identifying new therapeutic targets for PD. PMID:25480524

  6. Photobiomodulation Suppresses Alpha-Synuclein-Induced Toxicity in an AAV-Based Rat Genetic Model of Parkinson’s Disease

    PubMed Central

    Oueslati, Abid; Lovisa, Blaise; Perrin, John; Wagnières, Georges; van den Bergh, Hubert; Tardy, Yanik; Lashuel, Hilal A.

    2015-01-01

    Converging lines of evidence indicate that near-infrared light treatment, also known as photobiomodulation (PBM), may exert beneficial effects and protect against cellular toxicity and degeneration in several animal models of human pathologies, including neurodegenerative disorders. In the present study, we report that chronic PMB treatment mitigates dopaminergic loss induced by unilateral overexpression of human α-synuclein (α-syn) in the substantia nigra of an AAV-based rat genetic model of Parkinson’s disease (PD). In this model, daily exposure of both sides of the rat’s head to 808-nm near-infrared light for 28 consecutive days alleviated α-syn-induced motor impairment, as assessed using the cylinder test. This treatment also significantly reduced dopaminergic neuronal loss in the injected substantia nigra and preserved dopaminergic fibers in the ipsilateral striatum. These beneficial effects were sustained for at least 6 weeks after discontinuing the treatment. Together, our data point to PBM as a possible therapeutic strategy for the treatment of PD and other related synucleinopathies. PMID:26484876

  7. Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease

    PubMed Central

    Deas, Emma; Cremades, Nunilo; Angelova, Plamena R.; Ludtmann, Marthe H.R.; Yao, Zhi; Chen, Serene; Horrocks, Mathew H.; Banushi, Blerida; Little, Daniel; Devine, Michael J.; Gissen, Paul; Klenerman, David; Dobson, Christopher M.; Wood, Nicholas W.

    2016-01-01

    Abstract Aims: Protein aggregation and oxidative stress are both key pathogenic processes in Parkinson's disease, although the mechanism by which misfolded proteins induce oxidative stress and neuronal death remains unknown. In this study, we describe how aggregation of alpha-synuclein (α-S) from its monomeric form to its soluble oligomeric state results in aberrant free radical production and neuronal toxicity. Results: We first demonstrate excessive free radical production in a human induced pluripotent stem-derived α-S triplication model at basal levels and on application of picomolar doses of β-sheet-rich α-S oligomers. We probed the effects of different structural species of α-S in wild-type rat neuronal cultures and show that both oligomeric and fibrillar forms of α-S are capable of generating free radical production, but that only the oligomeric form results in reduction of endogenous glutathione and subsequent neuronal toxicity. We dissected the mechanism of oligomer-induced free radical production and found that it was interestingly independent of several known cellular enzymatic sources. Innovation: The oligomer-induced reactive oxygen species (ROS) production was entirely dependent on the presence of free metal ions as addition of metal chelators was able to block oligomer-induced ROS production and prevent oligomer-induced neuronal death. Conclusion: Our findings further support the causative role of soluble amyloid oligomers in triggering neurodegeneration and shed light into the mechanisms by which these species cause neuronal damage, which, we show here, can be amenable to modulation through the use of metal chelation. Antioxid. Redox Signal. 24, 376–391. PMID:26564470

  8. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease

    PubMed Central

    Allen Reish, Heather E.; Standaert, David G.

    2015-01-01

    Alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson disease (PD). Gene duplications, triplications and point mutations in SNCA1, the gene encoding α-syn, cause autosomal dominant forms of PD. Aggregated and post-translationally modified forms of α-syn are present in Lewy bodies and Lewy neurites in both sporadic and familial PD, and recent work has emphasized the prion-like ability of aggregated α-syn to produce spreading pathology. Accumulation of abnormal forms of α-syn is a trigger for PD, but recent evidence suggests that much of the downstream neurodegeneration may result from inflammatory responses. Components of both the innate and adaptive immune systems are activated in PD, and influencing interactions between innate and adaptive immune components has been shown to modify the pathological process in animal models of PD. Understanding the relationship between α-syn and subsequent inflammation may reveal novel targets for neuroprotective interventions. In this review, we examine the role of α-syn and modified forms of this protein in the initiation of innate and adaptive immune responses. PMID:25588354

  9. The Mitochondrial Chaperone Protein TRAP1 Mitigates α-Synuclein Toxicity

    PubMed Central

    Lutz, A. Kathrin; Toegel, Jane P.; Gerhardt, Ellen; Karsten, Peter; Falkenburger, Björn; Reinartz, Andrea; Winklhofer, Konstanze F.; Schulz, Jörg B.

    2012-01-01

    Overexpression or mutation of α-Synuclein is associated with protein aggregation and interferes with a number of cellular processes, including mitochondrial integrity and function. We used a whole-genome screen in the fruit fly Drosophila melanogaster to search for novel genetic modifiers of human [A53T]α-Synuclein–induced neurotoxicity. Decreased expression of the mitochondrial chaperone protein tumor necrosis factor receptor associated protein-1 (TRAP1) was found to enhance age-dependent loss of fly head dopamine (DA) and DA neuron number resulting from [A53T]α-Synuclein expression. In addition, decreased TRAP1 expression in [A53T]α-Synuclein–expressing flies resulted in enhanced loss of climbing ability and sensitivity to oxidative stress. Overexpression of human TRAP1 was able to rescue these phenotypes. Similarly, human TRAP1 overexpression in rat primary cortical neurons rescued [A53T]α-Synuclein–induced sensitivity to rotenone treatment. In human (non)neuronal cell lines, small interfering RNA directed against TRAP1 enhanced [A53T]α-Synuclein–induced sensitivity to oxidative stress treatment. [A53T]α-Synuclein directly interfered with mitochondrial function, as its expression reduced Complex I activity in HEK293 cells. These effects were blocked by TRAP1 overexpression. Moreover, TRAP1 was able to prevent alteration in mitochondrial morphology caused by [A53T]α-Synuclein overexpression in human SH-SY5Y cells. These results indicate that [A53T]α-Synuclein toxicity is intimately connected to mitochondrial dysfunction and that toxicity reduction in fly and rat primary neurons and human cell lines can be achieved using overexpression of the mitochondrial chaperone TRAP1. Interestingly, TRAP1 has previously been shown to be phosphorylated by the serine/threonine kinase PINK1, thus providing a potential link of PINK1 via TRAP1 to α-Synuclein. PMID:22319455

  10. Strong interactions with polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA NPs) alter α-synuclein conformation and aggregation kinetics

    NASA Astrophysics Data System (ADS)

    Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Marvian, Amir Tayaranian; Pedersen, Jannik Nedergaard; Klausen, Lasse Hyldgaard; Christiansen, Gunna; Pedersen, Jan Skov; Dong, Mingdong; Morshedi, Dina; Otzen, Daniel E.

    2015-11-01

    The interaction between nanoparticles (NPs) and the small intrinsically disordered protein α-synuclein (αSN), whose aggregation is central in the development of Parkinson's disease, is of great relevance in biomedical applications of NPs as drug carriers. Here we showed using a combination of different techniques that αSN interacts strongly with positively charged polyethylenimine-coated human serum albumin (PEI-HSA) NPs, leading to a significant alteration in the αSN secondary structure. In contrast, the weak interactions of αSN with HSA NPs allowed αSN to remain unfolded. These different levels of interactions had different effects on αSN aggregation. While the weakly interacting HSA NPs did not alter the aggregation kinetic parameters of αSN, the rate of primary nucleation increased in the presence of PEI-HSA NPs. The aggregation rate changed in a PEI-HSA NP-concentration dependent and size independent manner and led to fibrils which were covered with small aggregates. Furthermore, PEI-HSA NPs reduced the level of membrane-perturbing oligomers and reduced oligomer toxicity in cell assays, highlighting a potential role for NPs in reducing αSN pathogenicity in vivo. Collectively, our results highlight the fact that a simple modification of NPs can strongly modulate interactions with target proteins, which may have important and positive implications in NP safety.The interaction between nanoparticles (NPs) and the small intrinsically disordered protein α-synuclein (αSN), whose aggregation is central in the development of Parkinson's disease, is of great relevance in biomedical applications of NPs as drug carriers. Here we showed using a combination of different techniques that αSN interacts strongly with positively charged polyethylenimine-coated human serum albumin (PEI-HSA) NPs, leading to a significant alteration in the αSN secondary structure. In contrast, the weak interactions of αSN with HSA NPs allowed αSN to remain unfolded. These different

  11. α-Synuclein Senses Lipid Packing Defects and Induces Lateral Expansion of Lipids Leading to Membrane Remodeling*

    PubMed Central

    Ouberai, Myriam M.; Wang, Juan; Swann, Marcus J.; Galvagnion, Celine; Guilliams, Tim; Dobson, Christopher M.; Welland, Mark E.

    2013-01-01

    There is increasing evidence for the involvement of lipid membranes in both the functional and pathological properties of α-synuclein (α-Syn). Despite many investigations to characterize the binding of α-Syn to membranes, there is still a lack of understanding of the binding mode linking the properties of lipid membranes to α-Syn insertion into these dynamic structures. Using a combination of an optical biosensing technique and in situ atomic force microscopy, we show that the binding strength of α-Syn is related to the specificity of the lipid environment (the lipid chemistry and steric properties within a bilayer structure) and to the ability of the membranes to accommodate and remodel upon the interaction of α-Syn with lipid membranes. We show that this interaction results in the insertion of α-Syn into the region of the headgroups, inducing a lateral expansion of lipid molecules that can progress to further bilayer remodeling, such as membrane thinning and expansion of lipids out of the membrane plane. We provide new insights into the affinity of α-Syn for lipid packing defects found in vesicles of high curvature and in planar membranes with cone-shaped lipids and suggest a comprehensive model of the interaction between α-Syn and lipid bilayers. The ability of α-Syn to sense lipid packing defects and to remodel membrane structure supports its proposed role in vesicle trafficking. PMID:23740253

  12. Oxidative stress-induced posttranslational modifications of alpha-synuclein: specific modification of alpha-synuclein by 4-hydroxy-2-nonenal increases dopaminergic toxicity.

    PubMed

    Xiang, Wei; Schlachetzki, Johannes C M; Helling, Stefan; Bussmann, Julia C; Berlinghof, Marvin; Schäffer, Tilman E; Marcus, Katrin; Winkler, Jürgen; Klucken, Jochen; Becker, Cord-Michael

    2013-05-01

    Aggregation and neurotoxicity of misfolded alpha-synuclein (αSyn) are crucial mechanisms for progressive dopaminergic neurodegeneration associated with Parkinson's disease (PD). Posttranslational modifications (PTMs) of αSyn caused by oxidative stress, including modification by 4-hydroxy-2-nonenal (HNE-αSyn), nitration (n-αSyn), and oxidation (o-αSyn), have been implicated to promote oligomerization of αSyn. However, it is yet unclear if these PTMs lead to different types of oligomeric intermediates. Moreover, little is known about which PTM-derived αSyn species exerts toxicity to dopaminergic cells. In this study, we directly compared aggregation characteristics of HNE-αSyn, n-αSyn, and o-αSyn. Generally, all of them promoted αSyn oligomerization. Particularly, HNE-αSyn and n-αSyn were more prone to forming oligomers than unmodified αSyn. Moreover, these PTMs prevented the formation of amyloid-like fibrils, although HNE-αSyn and o-αSyn were able to generate protofibrillar structures. The cellular effects associated with distinct PTMs were studied by exposing modified αSyn to dopaminergic Lund human mesencephalic (LUHMES) neurons. The cellular toxicity of HNE-αSyn was significantly higher than other PTM species. Furthermore, we tested the toxicity of HNE-αSyn in dopaminergic LUHMES cells and other cell types with low tyrosine hydroxylase (TH) expression, and additionally analyzed the loss of TH-immunoreactive cells in HNE-αSyn-treated LUHMES cells. We observed a selective toxicity of HNE-αSyn to neurons with higher TH expression. Further mechanistic studies showed that HNE-modification apparently increased the interaction of extracellular αSyn with neurons. Moreover, exposure of differentiated LUHMES cells to HNE-αSyn triggered the production of intracellular reactive oxygen species, preceding neuronal cell death. Antioxidant treatment effectively protected cells from the damage triggered by HNE-αSyn. Our findings suggest a specific

  13. Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice.

    PubMed

    Helwig, Michael; Klinkenberg, Michael; Rusconi, Raffaella; Musgrove, Ruth E; Majbour, Nour K; El-Agnaf, Omar M A; Ulusoy, Ayse; Di Monte, Donato A

    2016-03-01

    Aggregation and neuron-to-neuron transmission are attributes of α-synuclein relevant to its pathogenetic role in human synucleinopathies such as Parkinson's disease. Intraparenchymal injections of fibrillar α-synuclein trigger widespread propagation of amyloidogenic protein species via mechanisms that require expression of endogenous α-synuclein and, possibly, its structural corruption by misfolded conformers acting as pathological seeds. Here we describe another paradigm of long-distance brain diffusion of α-synuclein that involves inter-neuronal transfer of monomeric and/or oligomeric species and is independent of recruitment of the endogenous protein. Targeted expression of human α-synuclein was induced in the mouse medulla oblongata through an injection of viral vectors into the vagus nerve. Enhanced levels of intra-neuronal α-synuclein were sufficient to initiate its caudo-rostral diffusion that likely involved at least one synaptic transfer and progressively reached specific brain regions such as the locus coeruleus, dorsal raphae and amygdala in the pons, midbrain and forebrain. Transfer of human α-synuclein was compared in two separate lines of α-synuclein-deficient mice versus their respective wild-type controls and, interestingly, lack of endogenous α-synuclein expression did not counteract diffusion but actually resulted in a more pronounced and advanced propagation of exogenous α-synuclein. Self-interaction of adjacent molecules of human α-synuclein was detected in both wild-type and mutant mice. In the former, interaction of human α-synuclein with mouse α-synuclein was also observed and might have contributed to differences in protein transmission. In wild-type and α-synuclein-deficient mice, accumulation of human α-synuclein within recipient axons in the pons, midbrain and forebrain caused morphological evidence of neuritic pathology. Tissue sections from the medulla oblongata and pons were stained with different antibodies recognizing

  14. αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction

    PubMed Central

    Greten-Harrison, Becket; Polydoro, Manuela; Morimoto-Tomita, Megumi; Diao, Ling; Williams, Andrew M.; Nie, Esther H.; Makani, Sachin; Tian, Ning; Castillo, Pablo E.; Buchman, Vladimir L.; Chandra, Sreeganga S.

    2010-01-01

    Synucleins are a vertebrate-specific family of abundant neuronal proteins. They comprise three closely related members, α-, β-, and γ-synuclein. α-Synuclein has been the focus of intense attention since mutations in it were identified as a cause for familial Parkinson's disease. Despite their disease relevance, the normal physiological function of synucleins has remained elusive. To address this, we generated and characterized αβγ-synuclein knockout mice, which lack all members of this protein family. Deletion of synucleins causes alterations in synaptic structure and transmission, age-dependent neuronal dysfunction, as well as diminished survival. Abrogation of synuclein expression decreased excitatory synapse size by ∼30% both in vivo and in vitro, revealing that synucleins are important determinants of presynaptic terminal size. Young synuclein null mice show improved basic transmission, whereas older mice show a pronounced decrement. The late onset phenotypes in synuclein null mice were not due to a loss of synapses or neurons but rather reflect specific changes in synaptic protein composition and axonal structure. Our results demonstrate that synucleins contribute importantly to the long-term operation of the nervous system and that alterations in their physiological function could contribute to the development of Parkinson's disease. PMID:20974939

  15. Reduced expression of peroxisome-proliferator activated receptor gamma coactivator-1α enhances α-synuclein oligomerization and down regulates AKT/GSK3β signaling pathway in human neuronal cells that inducibly express α-synuclein

    PubMed Central

    Ebrahim, Abdul Shukkur; Ko, Li-wen; Yen, Shu-Hui

    2010-01-01

    Intracellular accumulation of filamentous α-synuclein (α-Syn) aggregates to form Lewy bodies is a pathologic hallmark of Parkinson’s disease. To determine whether mitochondrial impairment plays a role in accumulation of α-Syn oligomer, we used 3D5 cell culture model of human neuronal type whereby conditional overexpression of wild-type α-Syn via the tetracycline off (TetOff) induction mechanism results in formation of inclusions that exhibit many characteristics of Lewy bodies. In the present study, we compromised mitochondrial function in 3D5 cells by using shRNA to knockdown peroxisome-proliferator activated receptor gamma coactivator-1α (PGC-1α), a key regulator of mitochondrial biogenesis and cellular energy metabolism and found that PGC-1α suppression at both protein and mRNA levels results in α-Syn accumulation (i.e. monomeric and oligomeric species in the TetOff-induced cells and monomeric only in the non-induced). These changes were accompanied with reduced mitochondrial potential as well as decreased levels of AKT, GSK3β (total and Ser9-phosphorylated) and p53 that are important for cell survival. The extent to which these proteins decreased following PGC-1α knockdown, in contrast to what was demonstrable with the viability assay, is greater in the induced than the non-induced. Together these findings indicate that such knockdown increases the propensity to accumulate α-Syn oligomers, but the accumulation appears to have very little toxic impact to the neuronal cells. PMID:20178833

  16. α-Synuclein Fibrils Exhibit Gain of Toxic Function, Promoting Tau Aggregation and Inhibiting Microtubule Assembly.

    PubMed

    Oikawa, Takayuki; Nonaka, Takashi; Terada, Makoto; Tamaoka, Akira; Hisanaga, Shin-Ichi; Hasegawa, Masato

    2016-07-15

    α-Synuclein is the major component of Lewy bodies and Lewy neurites in Parkinson disease and dementia with Lewy bodies and of glial cytoplasmic inclusions in multiple system atrophy. It has been suggested that α-synuclein fibrils or intermediate protofibrils in the process of fibril formation may have a toxic effect on neuronal cells. In this study, we investigated the ability of soluble monomeric α-synuclein to promote microtubule assembly and the effects of conformational changes of α-synuclein on Tau-promoted microtubule assembly. In marked contrast to previous findings, monomeric α-synuclein had no effect on microtubule polymerization. However, both α-synuclein fibrils and protofibrils inhibited Tau-promoted microtubule assembly. The inhibitory effect of α-synuclein fibrils was greater than that of the protofibrils. Dot blot overlay assay and spin-down techniques revealed that α-synuclein fibrils bind to Tau and inhibit microtubule assembly by depleting the Tau available for microtubule polymerization. Using various deletion mutants of α-synuclein and Tau, the acidic C-terminal region of α-synuclein and the basic central region of Tau were identified as regions involved in the binding. Furthermore, introduction of α-synuclein fibrils into cultured cells overexpressing Tau protein induced Tau aggregation. These results raise the possibility that α-synuclein fibrils interact with Tau, inhibit its function to stabilize microtubules, and also promote Tau aggregation, leading to dysfunction of neuronal cells. PMID:27226637

  17. Endogenous catecholamine enhances the dysfunction of unfolded protein response and alpha-synuclein oligomerization in PC12 cells overexpressing human alpha-synuclein.

    PubMed

    Ito, Satoru; Nakaso, Kazuhiro; Imamura, Keiko; Takeshima, Takao; Nakashima, Kenji

    2010-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. alpha-Synuclein is a major component of Lewy bodies. Recently, many studies have focused on the interaction between alpha-synuclein and catecholamine in the pathogenesis of PD. However, no detailed relationship between cathecholamine and alpha-synuclein cytotoxicity has been elucidated. Therefore, this study established PC12 cell lines which overexpress human alpha-synuclein in a tetracycline-inducible manner. The overexpression of human alpha-synuclein increased the number of apoptotic cells in a long-term culture. Moreover, human alpha-synuclein expressing PC12 cells demonstrated an increased vulnerability to several stressors in a short culture period. Thapsigargin increased the SDS soluble oligomers of alpha-synuclein associated with catecholamine-quinone. The unfolded protein response (UPR) study showed that thapsigargin increased eIF2alpha phosphorylation and nuclear GADD153/CHOP induction under alpha-synuclein overexpressed conditions. The activities of the ATF6alpha and IRE1alpha pathways decreased. These findings suggest that an overexpression of alpha-synuclein partly inactivates the UPR. alpha-Methyltyrosine inhibited the dysfunction of the UPR caused by an overexpression of human alpha-synuclein. Therefore, these findings suggest that the coexistence of human alpha-synuclein with catecholamine enhances the endoplasmic reticulum stress-related toxicity in PD pathogenesis. PMID:19835916

  18. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells

    PubMed Central

    Oliveira, L M A; Falomir-Lockhart, L J; Botelho, M G; Lin, K-H; Wales, P; Koch, J C; Gerhardt, E; Taschenberger, H; Outeiro, T F; Lingor, P; Schüle, B; Arndt-Jovin, D J; Jovin, T M

    2015-01-01

    We have assessed the impact of α-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of α-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction. PMID:26610207

  19. Low doses of single or combined agrichemicals induces α-synuclein aggregation in nigrostriatal system of mice through inhibition of proteasomal and autophagic pathways

    PubMed Central

    Su, Cen; Niu, Ping

    2015-01-01

    Alpha synuclein (SNCA) genes and environmental factors are important risk factors of Parkinson’s disease (PD). The agrichemicals paraquat, maneb and chlorpyrifos selectively target dopaminergic neurons, leading to parkinsonism, through ill-defined mechanisms. We analyzed the ability of low dose paraquat, maneb and chlorpyrifos, separately or combined together, to induce synucleinopathy in wild type mice. Paraquat and maneb applied together did not increase α-Synuclein (α-Syn) levels. By contrast, paraquat and chlorpyrifos together resulted in robust accumulation of α-Syn in striata in mice. Therefore, co-treatment with chlorpyrifos enhanced the effects of paraquat. Paraquat, and its co-treatment with maneb or chlorpyrifos, inhibited all soluble proteasomal expression of 26S proteasome subunits. Both paraquat and chlorpyrifos treatments increased levels of the autophagy inhibitor, mammalian target of rapamycin, mTOR, suggesting impaired axonal autophagy, despite increases in certain autophagic proteins, such as beclin 1 and Atg 12. Autophagic flux was also impaired, as ratios of LC3 II to LC3 I were reduced in all the treated animals. These results suggest that a combination of paraquat and chlorpyrifos is much more toxic than paraquat alone or combined with maneb. These effects are likely via inhibitory effects of these toxins on proteasomes and autophagy, which lead to accumulation of α-Syn. Our study provides a novel insight into the mechanisms of action of these agrichemicals. PMID:26884967

  20. Dopamine and α-synuclein dysfunction in Smad3 null mice

    PubMed Central

    2011-01-01

    Background Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra (SN). Transforming growth factor-β1 (TGF-β1) levels increase in patients with PD, although the effects of this increment remain unclear. We have examined the mesostriatal system in adult mice deficient in Smad3, a molecule involved in the intracellular TGF-β1 signalling cascade. Results Striatal monoamine oxidase (MAO)-mediated dopamine (DA) catabolism to 3,4-dihydroxyphenylacetic acid (DOPAC) is strongly increased, promoting oxidative stress that is reflected by an increase in glutathione levels. Fewer astrocytes are detected in the ventral midbrain (VM) and striatal matrix, suggesting decreased trophic support to dopaminergic neurons. The SN of these mice has dopaminergic neuronal degeneration in its rostral portion, and the pro-survival Erk1/2 signalling is diminished in nigra dopaminergic neurons, not associated with alterations to p-JNK or p-p38. Furthermore, inclusions of α-synuclein are evident in selected brain areas, both in the perikaryon (SN and paralemniscal nucleus) or neurites (motor and cingulate cortices, striatum and spinal cord). Interestingly, these α-synuclein deposits are detected with ubiquitin and PS129-α-synuclein in a core/halo cellular distribution, which resemble those observed in human Lewy bodies (LB). Conclusions Smad3 deficiency promotes strong catabolism of DA in the striatum (ST), decrease trophic and astrocytic support to dopaminergic neurons and may induce α-synuclein aggregation, which may be related to early parkinsonism. These data underline a role for Smad3 in α-synuclein and DA homeostasis, and suggest that modulatory molecules of this signalling pathway should be evaluated as possible neuroprotective agents. PMID:21995845

  1. Diffusion Kurtosis Imaging Detects Microstructural Alterations in Brain of α-Synuclein Overexpressing Transgenic Mouse Model of Parkinson's Disease: A Pilot Study.

    PubMed

    Khairnar, Amit; Latta, Peter; Drazanova, Eva; Ruda-Kucerova, Jana; Szabó, Nikoletta; Arab, Anas; Hutter-Paier, Birgit; Havas, Daniel; Windisch, Manfred; Sulcova, Alexandra; Starcuk, Zenon; Rektorova, Irena

    2015-11-01

    Evidence suggests that accumulation and aggregation of α-synuclein contribute to the pathogenesis of Parkinson's disease (PD). The aim of this study was to evaluate whether diffusion kurtosis imaging (DKI) will provide a sensitive tool for differentiating between α-synuclein-overexpressing transgenic mouse model of PD (TNWT-61) and wild-type (WT) littermates. This experiment was designed as a proof-of-concept study and forms a part of a complex protocol and ongoing translational research. Nine-month-old TNWT-61 mice and age-matched WT littermates underwent behavioral tests to monitor motor impairment and MRI scanning using 9.4 Tesla system in vivo. Tract-based spatial statistics (TBSS) and the DKI protocol were used to compare the whole brain white matter of TNWT-61 and WT mice. In addition, region of interest (ROI) analysis was performed in gray matter regions such as substantia nigra, striatum, hippocampus, sensorimotor cortex, and thalamus known to show higher accumulation of α-synuclein. For the ROI analysis, both DKI (6 b-values) protocol and conventional (2 b-values) diffusion tensor imaging (cDTI) protocol were used. TNWT-61 mice showed significant impairment of motor coordination. With the DKI protocol, mean, axial, and radial kurtosis were found to be significantly elevated, whereas mean and radial diffusivity were decreased in the TNWT-61 group compared to that in the WT controls with both TBSS and ROI analysis. With the cDTI protocol, the ROI analysis showed decrease in all diffusivity parameters in TNWT-61 mice. The current study provides evidence that DKI by providing both kurtosis and diffusivity parameters gives unique information that is complementary to cDTI for in vivo detection of pathological changes that underlie PD-like symptomatology in TNWT-61 mouse model of PD. This result is a crucial step in search for a candidate diagnostic biomarker with translational potential and relevance for human studies. PMID:26153486

  2. Alpha-Synuclein Function and Dysfunction on Cellular Membranes

    PubMed Central

    Snead, David

    2014-01-01

    Alpha-synuclein is a small neuronal protein that is closely associated with the etiology of Parkinson's disease. Mutations in and alterations in expression levels of alpha-synuclein cause autosomal dominant early onset heredity forms of Parkinson's disease, and sporadic Parkinson's disease is defined in part by the presence of Lewy bodies and Lewy neurites that are composed primarily of alpha-synuclein deposited in an aggregated amyloid fibril state. The normal function of alpha-synuclein is poorly understood, and the precise mechanisms by which it leads to toxicity and cell death are also unclear. Although alpha-synuclein is a highly soluble, cytoplasmic protein, it binds to a variety of cellular membranes of different properties and compositions. These interactions are considered critical for at least some normal functions of alpha-synuclein, and may well play critical roles in both the aggregation of the protein and its mechanisms of toxicity. Here we review the known features of alpha-synuclein membrane interactions in the context of both the putative functions of the protein and of its pathological roles in disease. PMID:25548530

  3. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo

    PubMed Central

    Rockenstein, Edward; Nuber, Silke; Overk, Cassia R.; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H.; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H.; Winner, Beate

    2014-01-01

    higher-expressing α-synuclein E57K mice displayed synaptic and dendritic loss, reduced levels of synapsin 1 and synaptic vesicles, and behavioural deficits. Similar alterations, but to a lesser extent, were seen in the α-synuclein wild-type mice. Moreover, although the oligomer-prone α-synuclein mice displayed neurodegeneration in the frontal cortex and hippocampus, the α-synuclein wild-type only displayed neuronal loss in the hippocampus. These results support the hypothesis that accumulating oligomeric α-synuclein may mediate early synaptic pathology in Parkinson’s disease and dementia with Lewy bodies by disrupting synaptic vesicles. This oligomer-prone model might be useful for evaluating therapies directed at oligomer reduction. PMID:24662516

  4. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo.

    PubMed

    Rockenstein, Edward; Nuber, Silke; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H; Winner, Beate; Masliah, Eliezer

    2014-05-01

    higher-expressing α-synuclein E57K mice displayed synaptic and dendritic loss, reduced levels of synapsin 1 and synaptic vesicles, and behavioural deficits. Similar alterations, but to a lesser extent, were seen in the α-synuclein wild-type mice. Moreover, although the oligomer-prone α-synuclein mice displayed neurodegeneration in the frontal cortex and hippocampus, the α-synuclein wild-type only displayed neuronal loss in the hippocampus. These results support the hypothesis that accumulating oligomeric α-synuclein may mediate early synaptic pathology in Parkinson's disease and dementia with Lewy bodies by disrupting synaptic vesicles. This oligomer-prone model might be useful for evaluating therapies directed at oligomer reduction. PMID:24662516

  5. Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation.

    PubMed

    Fonseca-Ornelas, Luis; Eisbach, Sybille E; Paulat, Maria; Giller, Karin; Fernández, Claudio O; Outeiro, Tiago F; Becker, Stefan; Zweckstetter, Markus

    2014-01-01

    α-synuclein is an abundant presynaptic protein that is important for regulation of synaptic vesicle trafficking, and whose misfolding plays a key role in Parkinson's disease. While α-synuclein is disordered in solution, it folds into a helical conformation when bound to synaptic vesicles. Stabilization of helical, folded α-synuclein might therefore interfere with α-synuclein-induced neurotoxicity. Here we show that several small molecules, which delay aggregation of α-synuclein in solution, including the Parkinson's disease drug selegiline, fail to interfere with misfolding of vesicle-bound α-synuclein. In contrast, the porphyrin phtalocyanine tetrasulfonate directly binds to vesicle-bound α-synuclein, stabilizes its helical conformation and thereby delays pathogenic misfolding and aggregation. Our study suggests that small-molecule-mediated stabilization of helical vesicle-bound α-synuclein opens new possibilities to target Parkinson's disease and related synucleinopathies. PMID:25524885

  6. Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease.

    PubMed

    Alexopoulou, Zoi; Lang, Johannes; Perrett, Rebecca M; Elschami, Myriam; Hurry, Madeleine E D; Kim, Hyoung Tae; Mazaraki, Dimitra; Szabo, Aron; Kessler, Benedikt M; Goldberg, Alfred Lewis; Ansorge, Olaf; Fulga, Tudor A; Tofaris, George K

    2016-08-01

    In Parkinson's disease, misfolded α-synuclein accumulates, often in a ubiquitinated form, in neuronal inclusions termed Lewy bodies. An important outstanding question is whether ubiquitination in Lewy bodies is directly relevant to α-synuclein trafficking or turnover and Parkinson's pathogenesis. By comparative analysis in human postmortem brains, we found that ubiquitin immunoreactivity in Lewy bodies is largely due to K63-linked ubiquitin chains and markedly reduced in the substantia nigra compared with the neocortex. The ubiquitin staining in cells with Lewy bodies inversely correlated with the content and pathological localization of the deubiquitinase Usp8. Usp8 interacted and partly colocalized with α-synuclein in endosomal membranes and, both in cells and after purification, it deubiquitinated K63-linked chains on α-synuclein. Knockdown of Usp8 in the Drosophila eye reduced α-synuclein levels and α-synuclein-induced eye toxicity. Accordingly, in human cells, Usp8 knockdown increased the lysosomal degradation of α-synuclein. In the dopaminergic neurons of the Drosophila model, unlike knockdown of other deubiquitinases, Usp8 protected from α-synuclein-induced locomotor deficits and cell loss. These findings strongly suggest that removal of K63-linked ubiquitin chains on α-synuclein by Usp8 is a critical mechanism that reduces its lysosomal degradation in dopaminergic neurons and may contribute to α-synuclein accumulation in Lewy body disease. PMID:27444016

  7. α-Synuclein-induced synapse damage in cultured neurons is mediated by cholesterol-sensitive activation of cytoplasmic phospholipase A2.

    PubMed

    Bate, Clive; Williams, Alun

    2015-01-01

    The accumulation of aggregated forms of the α-synuclein (αSN) is associated with the pathogenesis of Parkinson's disease (PD) and Dementia with Lewy Bodies. The loss of synapses is an important event in the pathogenesis of these diseases. Here we show that aggregated recombinant human αSN, but not βSN, triggered synapse damage in cultured neurons as measured by the loss of synaptic proteins. Pre-treatment with the selective cytoplasmic phospholipase A2 (cPLA2) inhibitors AACOCF3 and MAFP protected neurons against αSN-induced synapse damage. Synapse damage was associated with the αSN-induced activation of synaptic cPLA2 and the production of prostaglandin E2. The activation of cPLA2 is the first step in the generation of platelet-activating factor (PAF) and PAF receptor antagonists (ginkgolide B or Hexa-PAF) also protect neurons against αSN-induced synapse damage. αSN-induced synapse damage was also reduced in neurons pre-treated with the cholesterol synthesis inhibitor (squalestatin). These results are consistent with the hypothesis that αSN triggered synapse damage via hyperactivation of cPLA2. They also indicate that αSN-induced activation of cPLA2 is influenced by the cholesterol content of membranes. Inhibitors of this pathway that can cross the blood brain barrier may protect against the synapse damage seen during PD. PMID:25761116

  8. Sumoylation inhibits α-synuclein aggregation and toxicity

    PubMed Central

    Krumova, Petranka; Meulmeester, Erik; Garrido, Manuel; Tirard, Marilyn; Hsiao, He-Hsuan; Bossis, Guillaume; Urlaub, Henning; Zweckstetter, Markus; Kügler, Sebastian; Bähr, Mathias

    2011-01-01

    Posttranslational modification of proteins by attachment of small ubiquitin-related modifier (SUMO) contributes to numerous cellular phenomena. Sumoylation sometimes creates and abolishes binding interfaces, but increasing evidence points to another role for sumoylation in promoting the solubility of aggregation-prone proteins. Using purified α-synuclein, an aggregation-prone protein implicated in Parkinson’s disease that was previously reported to be sumoylated upon overexpression, we compared the aggregation kinetics of unmodified and modified α-synuclein. Whereas unmodified α-synuclein formed fibrils, modified α-synuclein remained soluble. The presence of as little as 10% sumoylated α-synuclein was sufficient to delay aggregation significantly in vitro. We mapped SUMO acceptor sites in α-synuclein and showed that simultaneous mutation of lysines 96 and 102 to arginine significantly impaired α-synuclein sumoylation in vitro and in cells. Importantly, this double mutant showed increased propensity for aggregation and cytotoxicity in a cell-based assay and increased cytotoxicity in dopaminergic neurons of the substantia nigra in vivo. These findings strongly support the model that sumoylation promotes protein solubility and suggest that defects in sumoylation may contribute to aggregation-induced diseases. PMID:21746851

  9. Monomeric Synucleins Generate Membrane Curvature*

    PubMed Central

    Westphal, Christopher H.; Chandra, Sreeganga S.

    2013-01-01

    Synucleins are a family of presynaptic membrane binding proteins. α-Synuclein, the principal member of this family, is mutated in familial Parkinson disease. To gain insight into the molecular functions of synucleins, we performed an unbiased proteomic screen and identified synaptic protein changes in αβγ-synuclein knock-out brains. We observed increases in the levels of select membrane curvature sensing/generating proteins. One of the most prominent changes was for the N-BAR protein endophilin A1. Here we demonstrate that the levels of synucleins and endophilin A1 are reciprocally regulated and that they are functionally related. We show that all synucleins can robustly generate membrane curvature similar to endophilins. However, only monomeric but not tetrameric α-synuclein can bend membranes. Further, A30P α-synuclein, a Parkinson disease mutant that disrupts protein folding, is also deficient in this activity. This suggests that synucleins generate membrane curvature through the asymmetric insertion of their N-terminal amphipathic helix. Based on our findings, we propose to include synucleins in the class of amphipathic helix-containing proteins that sense and generate membrane curvature. These results advance our understanding of the physiological function of synucleins. PMID:23184946

  10. α-Synuclein: Experimental Pathology.

    PubMed

    Hasegawa, Masato; Nonaka, Takashi; Masuda-Suzukake, Masami

    2016-01-01

    α-Synuclein, which is present as a small, soluble, cytosolic protein in healthy subjects, is converted to amyloid-like fibrils in diseases such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Bulk synthesis of purified α-synuclein has made it more convenient to study the nature of the normal protein and the mechanism of its conversion to an abnormal form in vitro and in vivo. Synthetic α-synuclein fibrils and pathological α-synuclein from diseased brains can act as triggers to convert normal α-synuclein to an abnormal form via prion-like mechanisms. In this article, we describe the experimental pathologies of α-synuclein both in vitro and in vivo in human and animal models. Prion-like spreading of abnormal α-synuclein from cell to cell can account for the progression of these α-synucleinopathies. PMID:27481772

  11. Metabolic alterations accompanying oncogene-induced senescence

    PubMed Central

    Aird, Katherine M; Zhang, Rugang

    2014-01-01

    Senescence is defined as a stable cell growth arrest. Oncogene-induced senescence (OIS) occurs in normal primary human cells after activation of an oncogene in the absence of other cooperating oncogenic stimuli. OIS is therefore considered a bona fide tumor suppression mechanism in vivo. Indeed, overcoming OIS-associated stable cell growth arrest can lead to tumorigenesis. Although cells that have undergone OIS do not replicate their DNA, they remain metabolically active. A number of recent studies report significant changes in cellular metabolism during OIS, including alterations in nucleotide, glucose, and mitochondrial metabolism and autophagy. These alterations may be necessary for stable senescence-associated cell growth arrest, and overcoming these shifts in metabolism may lead to tumorigenesis. This review highlights what is currently known about alterations in cellular metabolism during OIS and the implication of OIS-associated metabolic changes in cellular transformation and the development of cancer therapeutic strategies. PMID:27308349

  12. Recombinant expression and phenotypic screening of a bioactive cyclotide against α-synuclein-induced cytotoxicity in baker’s yeast

    PubMed Central

    Jagadish, Krishnappa; Gould, Andrew; Borra, Radhika; Majumder, Subhabrata; Mushtaq, Zahid; Shekhtman, Alexander; Camarero, Julio A.

    2015-01-01

    We report for the first time the recombinant expression of fully folded bioactive cyclotides inside live yeast cells by using intracellular protein trans-splicing in combination with a highly efficient split-intein. This approach was successfully used to produce the naturally occurring cyclotide MCoTI-I and the engineered bioactive cyclotide MCoCP4. Cyclotide MCoCP4 was shown reduce the toxicity of human α-synuclein in live yeast cells. Cyclotide MCoCP4 was selected by phenotypic screening from cells transformed with a mixture of plasmids encoding MCoCP4 and inactive cyclotide MCoTI-I in a ratio of 1 to 5×104. This demonstrates the potential for using yeast to perform phenotypic screening of genetically-encoded cyclotide-based libraries in eukaryotic cells. PMID:26096948

  13. Recombinant Expression and Phenotypic Screening of a Bioactive Cyclotide Against α-Synuclein-Induced Cytotoxicity in Baker's Yeast.

    PubMed

    Jagadish, Krishnappa; Gould, Andrew; Borra, Radhika; Majumder, Subhabrata; Mushtaq, Zahid; Shekhtman, Alexander; Camarero, Julio A

    2015-07-13

    We report for the first time the recombinant expression of fully folded bioactive cyclotides inside live yeast cells by using intracellular protein trans-splicing in combination with a highly efficient split-intein. This approach was successfully used to produce the naturally occurring cyclotide MCoTI-I and the engineered bioactive cyclotide MCoCP4. Cyclotide MCoCP4 was shown to reduce the toxicity of human α-synuclein in live yeast cells. Cyclotide MCoCP4 was selected by phenotypic screening from cells transformed with a mixture of plasmids encoding MCoCP4 and inactive cyclotide MCoTI-I in a ratio of 1:5×10(4). This demonstrates the potential for using yeast to perform phenotypic screening of genetically encoded cyclotide-based libraries in eukaryotic cells. PMID:26096948

  14. Preconditioning of Microglia by α-Synuclein Strongly Affects the Response Induced by Toll-like Receptor (TLR) Stimulation

    PubMed Central

    Gonzalez-Rey, Elena; Lachaud, Christian C.; Guilliams, Tim; Fernandez-Montesinos, Rafael; Benitez-Rondan, Alicia; Robledo, Gema; Hmadcha, Abdelkrim; Delgado, Mario; Dobson, Christopher M.; Pozo, David

    2013-01-01

    In recent years, it has become accepted that α-synuclein (αSyn) has a key role in the microglia-mediated neuroinflammation, which accompanies the development of Parkinson’s disease and other related disorders, such as Dementia with Lewy Bodies and Alzheimer’s disease. Nevertheless, the cellular and molecular mechanisms underlying its pathological actions, especially in the sporadic forms of the diseases, are not completely understood. Intriguingly, several epidemiological and animal model studies have revealed a link between certain microbial infections and the onset or progression of sporadic forms of these neurodegenerative disorders. In this work, we have characterized the effect of toll-like receptor (TLR) stimulation on primary murine microglial cultures and analysed the impact of priming cells with extracellular wild-type (Wt) αSyn on the subsequent TLR stimulation of cells with a set of TLR ligands. By assaying key interleukins and chemokines we report that specific stimuli, in particular Pam3Csk4 (Pam3) and single-stranded RNA40 (ssRNA), can differentially affect the TLR2/1- and TLR7-mediated responses of microglia when pre-conditioned with αSyn by augmenting IL-6, MCP-1/CCL2 or IP-10/CXCL10 secretion levels. Furthermore, we report a skewing of αSyn-primed microglia stimulated with ssRNA (TLR7) or Pam3 (TLR2/1) towards intermediate but at the same time differential, M1/M2 phenotypes. Finally, we show that the levels and intracellular location of activated caspase-3 protein change significantly in αSyn-primed microglia after stimulation with these particular TLR agonists. Overall, we report a remarkable impact of non-aggregated αSyn pre-sensitization of microglia on TLR-mediated immunity, a phenomenon that could contribute to triggering the onset of sporadic α-synuclein-related neuropathologies. PMID:24236103

  15. Nigrostriatal α-synucleinopathy induced by viral vector-mediated overexpression of human α-synuclein: A new primate model of Parkinson's disease

    PubMed Central

    Kirik, Deniz; Annett, Lucy E.; Burger, Corinna; Muzyczka, Nicholas; Mandel, Ronald J.; Björklund, Anders

    2003-01-01

    We used a high-titer recombinant adeno-associated virus (rAAV) vector to express WT or mutant human α-synuclein in the substantia nigra of adult marmosets. The α-synuclein protein was expressed in 90–95% of all nigral dopamine neurons and distributed by anterograde transport throughout their axonal and dendritic projections. The transduced neurons developed severe neuronal pathology, including α-synuclein-positive cytoplasmic inclusions and granular deposits; swollen, dystrophic, and fragmented neuritis; and shrunken and pyknotic, densely α-synuclein-positive perikarya. By 16 wk posttransduction, 30–60% of the tyrosine hydroxylase-positive neurons were lost, and the tyrosine hydroxylase-positive innervation of the caudate nucleus and putamen was reduced to a similar extent. The rAAV-α-synuclein-treated monkeys developed a type of motor impairment, i.e., head position bias, compatible with this magnitude of nigrostriatal damage. rAAV vector-mediated α-synuclein gene transfer provides a transgenic primate model of nigrostriatal α-synucleinopathy that is of particular interest because it develops slowly over time, like human Parkinson's disease (PD), and expresses neuropathological features (α-synuclein-positive inclusions and dystrophic neurites, in particular) that are similar to those seen in idiopathic PD. This model offers new opportunities for the study of pathogenetic mechanisms and exploration of new therapeutic targets of particular relevance to human PD. PMID:12601150

  16. Interplay Between Cytosolic Dopamine, Calcium and α-Synuclein Causes Selective Death of Substantia Nigra Neurons

    PubMed Central

    Mosharov, Eugene V.; Larsen, Kristin E.; Kanter, Ellen; Phillips, Kester A.; Wilson, Krystal; Schmitz, Yvonne; Krantz, David E.; Kobayashi, Kazuto; Edwards, Robert H.; Sulzer, David

    2009-01-01

    Summary The basis for selective death of specific neuronal populations in neurodegenerative diseases remains unclear. Parkinson's disease (PD) is a synucleinopathy characterized by a preferential loss of dopaminergic neurons in the substantia nigra (SN), whereas neurons of the ventral tegmental area (VTA) are spared. Using intracellular patch electrochemistry to directly measure cytosolic dopamine (DAcyt) in cultured midbrain neurons, we confirm that elevated DAcyt and its metabolites are neurotoxic and that genetic and pharmacological interventions that decrease DAcyt provide neuroprotection. L-DOPA increased DAcyt in SN neurons to levels 2-3-fold higher than in VTA neurons, a response dependent on dihydropyridine-sensitive Ca2+ channels, resulting in greater susceptibility of SN neurons to L-DOPA-induced neurotoxicity. DAcyt was not altered by α-synuclein deletion, although dopaminergic neurons lacking α-synuclein were resistant to L-DOPA-induced cell death. Thus, an interaction between Ca2+, DAcyt and α-synuclein may underlie the susceptibility of SN neurons in PD, suggesting multiple therapeutic targets. PMID:19409267

  17. Hypergravity-induced altered behavior in Drosophila

    NASA Astrophysics Data System (ADS)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  18. Protective role of olesoxime against wild-type α-synuclein-induced toxicity in human neuronally differentiated SHSY-5Y cells

    PubMed Central

    Gouarné, C; Tracz, J; Paoli, M Giraudon; Deluca, V; Seimandi, M; Tardif, G; Xilouri, M; Stefanis, L; Bordet, T; Pruss, R M

    2015-01-01

    BACKGROUND AND PURPOSE Parkinson's disease (PD) is usually diagnosed clinically from classical motor symptoms, while definitive diagnosis is made postmortem, based on the presence of Lewy bodies and nigral neuron cell loss. α-Synuclein (ASYN), the main protein component of Lewy bodies, clearly plays a role in the neurodegeneration that characterizes PD. Additionally, mutation in the SNCA gene or copy number variations are associated with some forms of familial PD. Here, the objective of the study was to evaluate whether olesoxime, a promising neuroprotective drug can prevent ASYN-mediated neurotoxicity. EXPERIMENTAL APPROACH We used here a novel, mechanistically approachable and attractive cellular model based on the inducible overexpression of human wild-type ASYN in neuronally differentiated human neuroblastoma (SHSY-5Y) cells. This model demonstrates gradual cellular degeneration, coinciding temporally with the appearance of soluble and membrane-bound ASYN oligomers and cell death combining both apoptotic and non-apoptotic pathways. KEY RESULTS Olesoxime fully protected differentiated SHSY-5Y cells from cell death, neurite retraction and cytoplasmic shrinkage induced by moderate ASYN overexpression. This protection was associated with a reduction in cytochrome c release from mitochondria and caspase-9 activation suggesting that olesoxime prevented ASYN toxicity by preserving mitochondrial integrity and function. In addition, olesoxime displayed neurotrophic effects on neuronally differentiated SHSY-5Y cells, independent of ASYN expression, by promoting their differentiation. CONCLUSIONS AND IMPLICATIONS Because ASYN is a common underlying factor in many cases of PD, olesoxime could be a promising therapy to slow neurodegeneration in PD. PMID:25220617

  19. Extracellular α-synuclein--a possible initiator of inflammation in Parkinson's disease.

    PubMed

    Ren, Wen-qing; Tian, Zeng-min; Yin, Feng; Sun, Jun-zhao; Zhang, Jian-ning

    2016-02-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease involving the loss of dopamine-producing neurons of the substantia nigra and the presence of Lewy bodies which contain high levels of α-synuclein. Although the causative factors of PD remain unclear, the progression of PD is accompanied by a highly localized inflammatory response mediated by reactive microglia. Recently, attention has focused on the relationship between α-synuclein and microglial activation. This review examines the role of α-synuclein on microglia in PD pathogenesis and progression, we also discuss the way of α-synuclein induced microglial activation. PMID:27004367

  20. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    PubMed

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders. PMID:26839413

  1. Piceatannol and Other Wine Stilbenes: A Pool of Inhibitors against α-Synuclein Aggregation and Cytotoxicity.

    PubMed

    Temsamani, Hamza; Krisa, Stéphanie; Decossas-Mendoza, Marion; Lambert, Olivier; Mérillon, Jean-Michel; Richard, Tristan

    2016-01-01

    The aggregation of α-synuclein is one on the key pathogenic events in Parkinson's disease. In the present study, we investigated the inhibitory capacities of stilbenes against α-synuclein aggregation and toxicity. Thioflavin T fluorescence, transmission electronic microscopy, and SDS-PAGE analysis were performed to investigate the inhibitory effects of three stilbenes against α-synuclein aggregation: piceatannol, ampelopsin A, and isohopeaphenol. Lipid vesicle permeabilization assays were performed to screen stilbenes for protection against membrane damage induced by aggregated α-synuclein. The viability of PC12 cells was examined using an MTT assay to assess the preventive effects of stilbenes against α-synuclein-induced toxicity. Piceatannol inhibited the formation of α synuclein fibrils and was able to destabilize preformed filaments. It seems to induce the formation of small soluble complexes protecting membranes against α-synuclein-induced damage. Finally, piceatannol protected cells against α-synuclein-induced toxicity. The oligomers tested (ampelopsin A and hopeaphenol) were less active. PMID:27314384

  2. Piceatannol and Other Wine Stilbenes: A Pool of Inhibitors against α-Synuclein Aggregation and Cytotoxicity

    PubMed Central

    Temsamani, Hamza; Krisa, Stéphanie; Decossas-Mendoza, Marion; Lambert, Olivier; Mérillon, Jean-Michel; Richard, Tristan

    2016-01-01

    The aggregation of α-synuclein is one on the key pathogenic events in Parkinson’s disease. In the present study, we investigated the inhibitory capacities of stilbenes against α-synuclein aggregation and toxicity. Thioflavin T fluorescence, transmission electronic microscopy, and SDS-PAGE analysis were performed to investigate the inhibitory effects of three stilbenes against α-synuclein aggregation: piceatannol, ampelopsin A, and isohopeaphenol. Lipid vesicle permeabilization assays were performed to screen stilbenes for protection against membrane damage induced by aggregated α-synuclein. The viability of PC12 cells was examined using an MTT assay to assess the preventive effects of stilbenes against α-synuclein-induced toxicity. Piceatannol inhibited the formation of α synuclein fibrils and was able to destabilize preformed filaments. It seems to induce the formation of small soluble complexes protecting membranes against α-synuclein-induced damage. Finally, piceatannol protected cells against α-synuclein-induced toxicity. The oligomers tested (ampelopsin A and hopeaphenol) were less active. PMID:27314384

  3. shRNA targeting α-synuclein prevents neurodegeneration in a Parkinson’s disease model

    PubMed Central

    Zharikov, Alevtina D.; Cannon, Jason R.; Tapias, Victor; Bai, Qing; Horowitz, Max P.; Shah, Vipul; El Ayadi, Amina; Hastings, Teresa G.; Greenamyre, J. Timothy; Burton, Edward A.

    2015-01-01

    Multiple convergent lines of evidence implicate both α-synuclein (encoded by SCNA) and mitochondrial dysfunction in the pathogenesis of sporadic Parkinson’s disease (PD). Occupational exposure to the mitochondrial complex I inhibitor rotenone increases PD risk; rotenone-exposed rats show systemic mitochondrial defects but develop specific neuropathology, including α-synuclein aggregation and degeneration of substantia nigra dopaminergic neurons. Here, we inhibited expression of endogenous α-synuclein in the adult rat substantia nigra by adeno-associated virus–mediated delivery of a short hairpin RNA (shRNA) targeting the endogenous rat Snca transcript. Knockdown of α-synuclein by ~35% did not affect motor function or cause degeneration of nigral dopaminergic neurons in control rats. However, in rotenone-exposed rats, progressive motor deficits were substantially attenuated contralateral to α-synuclein knockdown. Correspondingly, rotenone-induced degeneration of nigral dopaminergic neurons, their dendrites, and their striatal terminals was decreased ipsilateral to α-synuclein knockdown. These data show that α-synuclein knockdown is neuroprotective in the rotenone model of PD and indicate that endogenous α-synuclein contributes to the specific vulnerability of dopaminergic neurons to systemic mitochondrial inhibition. Our findings are consistent with a model in which genetic variants influencing α-synuclein expression modulate cellular susceptibility to environmental exposures in PD patients. shRNA targeting the SNCA transcript should be further evaluated as a possible neuroprotective therapy in PD. PMID:26075822

  4. shRNA targeting α-synuclein prevents neurodegeneration in a Parkinson's disease model.

    PubMed

    Zharikov, Alevtina D; Cannon, Jason R; Tapias, Victor; Bai, Qing; Horowitz, Max P; Shah, Vipul; El Ayadi, Amina; Hastings, Teresa G; Greenamyre, J Timothy; Burton, Edward A

    2015-07-01

    Multiple convergent lines of evidence implicate both α-synuclein (encoded by SCNA) and mitochondrial dysfunction in the pathogenesis of sporadic Parkinson's disease (PD). Occupational exposure to the mitochondrial complex I inhibitor rotenone increases PD risk; rotenone-exposed rats show systemic mitochondrial defects but develop specific neuropathology, including α-synuclein aggregation and degeneration of substantia nigra dopaminergic neurons. Here, we inhibited expression of endogenous α-synuclein in the adult rat substantia nigra by adeno-associated virus-mediated delivery of a short hairpin RNA (shRNA) targeting the endogenous rat Snca transcript. Knockdown of α-synuclein by ~35% did not affect motor function or cause degeneration of nigral dopaminergic neurons in control rats. However, in rotenone-exposed rats, progressive motor deficits were substantially attenuated contralateral to α-synuclein knockdown. Correspondingly, rotenone-induced degeneration of nigral dopaminergic neurons, their dendrites, and their striatal terminals was decreased ipsilateral to α-synuclein knockdown. These data show that α-synuclein knockdown is neuroprotective in the rotenone model of PD and indicate that endogenous α-synuclein contributes to the specific vulnerability of dopaminergic neurons to systemic mitochondrial inhibition. Our findings are consistent with a model in which genetic variants influencing α-synuclein expression modulate cellular susceptibility to environmental exposures in PD patients. shRNA targeting the SNCA transcript should be further evaluated as a possible neuroprotective therapy in PD. PMID:26075822

  5. Cerebrospinal fluid α-synuclein predicts cognitive decline in Parkinson disease progression in the DATATOP cohort.

    PubMed

    Stewart, Tessandra; Liu, Changqin; Ginghina, Carmen; Cain, Kevin C; Auinger, Peggy; Cholerton, Brenna; Shi, Min; Zhang, Jing

    2014-04-01

    Most patients with Parkinson disease (PD) develop both cognitive and motor impairment, and biomarkers for progression are urgently needed. Although α-synuclein is altered in cerebrospinal fluid of patients with PD, it is not known whether it predicts motor or cognitive deterioration. We examined clinical data and α-synuclein in >300 unmedicated patients with PD who participated in the deprenyl and tocopherol antioxidative therapy of parkinsonism (DATATOP) study, with up to 8 years of follow-up. Longitudinal measures of motor and cognitive function were studied before (phase 1) and during (phase 2) levodopa therapy; cerebrospinal fluid was collected at the beginning of each phase. Correlations and linear mixed models were used to assess α-synuclein association with disease severity and prediction of progression in the subsequent follow-up period. Despite decreasing α-synuclein (phase 1 to phase 2 change of -0.05 ± 0.21 log-transformed values, P < 0.001), no correlations were observed between α-synuclein and motor symptoms. Longitudinally, lower α-synuclein predicted better preservation of cognitive function by several measures [Selective Reminding Test total recall α-synuclein × time interaction effect coefficient, -0.12 (P = 0.037); delayed recall, -0.05 (P = 0.002); New Dot Test, -0.03 (P = 0.002)]. Thus, α-synuclein, although not clinically useful for motor progression, might predict cognitive decline, and future longitudinal studies should include this outcome for further validation. PMID:24625392

  6. Dimebon Does Not Ameliorate Pathological Changes Caused by Expression of Truncated (1–120) Human Alpha-Synuclein in Dopaminergic Neurons of Transgenic Mice

    PubMed Central

    Shelkovnikova, Tatyana A.; Ustyugov, Alexey A.; Millership, Steven; Peters, Owen; Anichtchik, Oleg; Spillantini, Maria Grazia; Buchman, Vladimir L.; Bachurin, Sergey O.; Ninkina, Natalia N.

    2011-01-01

    Background Recent clinical studies have demonstrated that dimebon, a drug originally designed and used as a non-selective antihistamine, ameliorates symptoms and delays progress of mild to moderate forms of Alzheimer's and Huntington's diseases. Although the mechanism of dimebon action on pathological processes in degenerating brain is elusive, results of studies carried out in cell cultures and animal models suggested that this drug might affect the process of pathological accumulation and aggregation of various proteins involved in the pathogenesis of proteinopathies. However, the effect of this drug on the pathology caused by overexpression and aggregation of alpha-synuclein, including Parkinson's disease (PD), has not been assessed. Objective To test if dimebon affected alpha-synuclein-induced pathology using a transgenic animal model. Methods We studied the effects of chronic dimebon treatment on transgenic mice expressing the C-terminally truncated (1–120) form of human alpha-synuclein in dopaminergic neurons, a mouse model that recapitulates several biochemical, histopathological and behavioral characteristics of the early stage of PD. Results Dimebon did not improve balance and coordination of aging transgenic animals or increase the level of striatal dopamine, nor did it prevent accumulation of alpha-synuclein in cell bodies of dopaminergic neurons. Conclusion Our observations suggest that in the studied model of alpha-synucleinopathy dimebon has very limited effect on certain pathological alterations typical of PD and related diseases. Copyright © 2011 S. Karger AG, Basel PMID:21576917

  7. Relationships between the sequence of α-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity

    PubMed Central

    Volles, Michael J.; Lansbury, Peter T.

    2007-01-01

    Summary To investigate the α-synuclein protein and its role in Parkinson’s disease, we screened a library of random point mutants both in vitro and in yeast to find variants in an unbiased way that could help us understand the sequence-phenotype relationship. We developed a rapid purification method that allowed us to screen 59 synuclein mutants in vitro and discovered two double point mutants that fibrillized slowly relative to wild type, A30P, and A53T α-synucleins. The yeast toxicity of all of these proteins was measured and we found no correlation with fibrillization rate, suggesting that fibrillization is not necessary for synuclein-induced yeast toxicity. We also found that β-synuclein was of intermediate toxicity to yeast and γ-synuclein was non-toxic. Coexpression of Parkinson’s disease related genes DJ-1, parkin, Pink1, UCH-L1, or synphilin, with synuclein, did not affect synuclein toxicity. A second screen, of several thousand library clones in yeast, identified 25 non-toxic α-synuclein sequence variants. Most of these contained a mutation to either proline or glutamic acid that caused a defect in membrane binding. We hypothesize that yeast toxicity is caused by synuclein binding directly to membranes at levels sufficient to non-specifically disrupt homeostasis. PMID:17222866

  8. Lysines, Achilles' heel in alpha-synuclein conversion to a deadly neuronal endotoxin.

    PubMed

    Plotegher, Nicoletta; Bubacco, Luigi

    2016-03-01

    Alpha-synuclein aggregation is associated with Parkinson's disease and other neurodegenerative disorders termed synucleinopathies. The sequence of alpha-synuclein has a remarkable amount of lysines, which may be a target for modifications by several aldehydes found at increased concentration in parkinsonian brains. The involved aldehydes are the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde, the lipid peroxidation products 4-hydroxynonenal, acrolein and malondialdehyde, and advanced glycation end-products. Moreover, both relative expression levels and enzymatic activity of aldehyde dehydrogenases, which are responsible for aldehydes detoxification in cells, are altered in Parkinson's disease brains. The effects of aldehyde modifications can include: (i) a perturbation in the equilibrium of cytosolic and membrane-bound alpha-synuclein, that may alter protein function and lead to aggregation; (ii) the reduction of alpha-synuclein ubiquitination and SUMOylation, affecting its cellular localization and clearance; (iii) a decreased susceptibility to cleavage at specific sites by extracellular proteases; (iv) a reduced availability of identified lysine acetylation sites; (v) the production of toxic oligomeric alpha-synuclein-aldehyde species, able to damage lipid membranes and transmissible from unhealthy to healthy neurons. All of these observations point to a complex interaction between alpha-synuclein and aldehydes in brain, which may lead to the accumulation of dysfunctional alpha-synuclein and its oligomerization. PMID:26690800

  9. α-Synuclein produces a long-lasting increase in neurotransmitter release

    PubMed Central

    Liu, Shumin; Ninan, Ipe; Antonova, Irina; Battaglia, Fortunato; Trinchese, Fabrizio; Narasanna, Archana; Kolodilov, Nikolai; Dauer, William; Hawkins, Robert D; Arancio, Ottavio

    2004-01-01

    Wild-type α-synuclein, a protein of unknown function, has received much attention because of its involvement in a series of diseases that are known as synucleinopathies. We find that long-lasting potentiation of synaptic transmission between cultured hippocampal neurons is accompanied by an increase in the number of α-synuclein clusters. Conversely, suppression of α-synuclein expression through antisense nucleotide and knockout techniques blocks the potentiation, as well as the glutamate-induced increase in presynaptic functional bouton number. Consistent with these findings, α-synuclein introduction into the presynaptic neuron of a pair of monosynaptically connected cells causes a rapid and long-lasting enhancement of synaptic transmission, and rescues the block of potentiation in α-synuclein null mouse cultures. Also, we report that the application of nitric oxide (NO) increases the number of α-synuclein clusters, and inhibitors of NO-synthase block this increase, supporting the hypothesis that NO is involved in the enhancement of the number of α-synuclein clusters. Thus, α-synuclein is involved in synaptic plasticity by augmenting transmitter release from the presynaptic terminal. PMID:15510220

  10. DESIPRAMINE INDUCED CHANGES IN THE NOREPINEPRHINE TRANSPORTER, α- AND γ-SYNUCLEIN IN THE HIPPOCAMPUS, AMYGDALA AND STRIATUM

    PubMed Central

    Jeannotte, Alexis M.; McCarthy, John G.; Sidhu, Anita

    2009-01-01

    The high incidence of depression in Parkinson’s Disease (PD) has been well-documented in the clinic; however, the underlying molecular mechanisms of these overlapping pathologies remain elusive. Using a rodent model of depression, the Wistar-Kyoto (WKY) rat, we previously demonstrated that in the frontal cortex the altered expression and protein interactions of alpha- and gamma-synculein (α-Syn, γ-Syn) were associated with dysregulated trafficking of the norepinephrine transporter (NET). Chronic treatment with Desipramine (DMI), a NET-selective antidepressant, caused a disappearance of depressive-like behavior that was accompanied by a change in α-Syn and γ-Syn expression and their trafficking of NET. Using this same model, we examined the expression of NET, α-Syn and γ-Syn in the hippocampus, amygdale, brainstem, and striatum, all regions implicated in the development or maintenance of depression or PD pathology. Following chronic treatment with DMI, we observed a significant decrease in NET in the hippocampus, amygdala, and brainstem; decrease in γ-Syn in the hippocampus and amygdala; and, increase in α-Syn in the hippocampus and amygdala. Unexpectedly, we observed a significant decrease in α-Syn expression in the striatum of the WKY following chronic DMI treatment. The altered expression of NET, α-Syn and γ-Syn in different brain suggest that DMI’s ability to improve depressive-like behavior in a rodent is associated with region-specific changes in the regulation of NET by α- and γ-Syn. PMID:19818834

  11. Enhanced ubiquitin-dependent degradation by Nedd4 protects against α-synuclein accumulation and toxicity in animal models of Parkinson's disease

    PubMed Central

    Davies, Sian E.; Hallett, Penelope J.; Moens, Thomas; Smith, Gaynor; Mangano, Emily; Kim, Hyoung Tae; Goldberg, Alfred L.; Liu, Ji-Long; Isacson, Ole; Tofaris, George K.

    2014-01-01

    Parkinson's disease is a neurodegenerative disorder, characterized by accumulation and misfolding of α-synuclein. Although the level of α-synuclein in neurons is fundamentally linked to the onset of neurodegeneration, multiple pathways have been implicated in its degradation, and it remains unclear which are the critical ubiquitination enzymes that protect against α-synuclein accumulation in vivo. The ubiquitin ligase Nedd4 targets α-synuclein to the endosomal–lysosomal pathway in cultured cells. Here we asked whether Nedd4-mediated degradation protects against α-synuclein-induced toxicity in the Drosophila and rodent models of Parkinson's disease. We show that overexpression of Nedd4 can rescue the degenerative phenotype from ectopic expression of α-synuclein in the Drosophila eye. Overexpressed Nedd4 in the Drosophila brain prevented the α-synuclein-induced locomotor defect whereas reduction in endogenous Nedd4 by RNAi led to worsening motor function and increased loss of dopaminergic neurons. Accordingly, AAV-mediated expression of wild-type but not the catalytically inactive Nedd4 decreased the α-synuclein-induced dopaminergic cell loss in the rat substantia nigra and reduced α-synuclein accumulation. Collectively, our data in two evolutionarily distant model organisms strongly suggest that Nedd4 is a modifier of α-synuclein pathobiology and thus a potential target for neuroprotective therapies. PMID:24388974

  12. Mechanistic study of the inhibitory activity of Geum urbanum extract against α-Synuclein fibrillation.

    PubMed

    Lobbens, Eva S; Breydo, Leonid; Skamris, Thomas; Vestergaard, Bente; Jäger, Anna K; Jorgensen, Lene; Uversky, Vladimir; van de Weert, Marco

    2016-09-01

    The presence of Lewy bodies and Lewy neurites is a major pathological hallmark of Parkinson's disease and is hypothesized to be linked to disease development, although this is not yet conclusive. Lewy bodies and Lewy neurites primarily consist of fibrillated α-Synuclein; yet, there is no treatment available targeting stabilization of α-Synuclein in its native state. The aim of the present study was to investigate the inhibitory activity of an ethanolic extract of Geum urbanum against α-Synuclein fibrillation and examine the structural changes of α-Synuclein in the presence of the extract. The anti-fibrillation and anti-aggregation activities of the plant extract were monitored by thioflavin T fibrillation assays and size exclusion chromatography, while structural changes were followed by circular dichroism, Fourier transform infrared spectroscopy, intrinsic fluorescence, small angle X-ray scattering and electron microscopy. Since the extract is a complex mixture, structure-function relationships could not be determined. Under the experimental conditions investigated, Geum urbanum was found to inhibit α-Synuclein fibrillation in a concentration dependent way, and to partly disintegrate preformed α-Synuclein fibrils. Based on the structural changes of α-Synuclein in the presence of extract, we propose that Geum urbanum delays α-Synuclein fibrillation either by reducing the fibrillation ability of one or more of the aggregation prone intermediates or by directing α-Synuclein aggregation towards a non-fibrillar state. However, whether these alterations of the fibrillation pathway lead to less pathogenic species is yet to be determined. PMID:27353564

  13. GABA transmission via ATP-dependent K+ channels regulates α-synuclein secretion in mouse striatum.

    PubMed

    Emmanouilidou, Evangelia; Minakaki, Georgia; Keramioti, Maria V; Xylaki, Mary; Balafas, Evangelos; Chrysanthou-Piterou, Margarita; Kloukina, Ismini; Vekrellis, Kostas

    2016-03-01

    α-Synuclein is readily released in human and mouse brain parenchyma, even though the normal function of the secreted protein has not been yet elucidated. Under pathological conditions, such as in Parkinson's disease, pathologically relevant species of α-synuclein have been shown to propagate between neurons in a prion-like manner, although the mechanism by which α-synuclein transfer induces degeneration remains to be identified. Due to this evidence extracellular α-synuclein is now considered a critical target to hinder disease progression in Parkinson's disease. Given the importance of extracellular α-synuclein levels, we have now investigated the molecular pathway of α-synuclein secretion in mouse brain. To this end, we have identified a novel synaptic network that regulates α-synuclein release in mouse striatum. In this brain area, the majority of α-synuclein is localized in corticostriatal glutamatergic terminals. Absence of α-synuclein from the lumen of brain-isolated synaptic vesicles suggested that they are unlikely to mediate its release. To dissect the mechanism of α-synuclein release, we have used reverse microdialysis to locally administer reagents that locally target specific cellular pathways. Using this approach, we show that α-synuclein secretion in vivo is a calcium-regulated process that depends on the activation of sulfonylurea receptor 1-sensitive ATP-regulated potassium channels. Sulfonylurea receptor 1 is distributed in the cytoplasm of GABAergic neurons from where the ATP-dependent channel regulates GABA release. Using a combination of specific agonists and antagonists, we were able to show that, in the striatum, modulation of GABA release through the sulfonylurea receptor 1-regulated ATP-dependent potassium channels located on GABAergic neurons controls α-synuclein release from the glutamatergic terminals through activation of the presynaptic GABAB receptors. Considering that sulfonylurea receptors can be selectively targeted, our

  14. New Roles of Glycosaminoglycans in α-Synuclein Aggregation in a Cellular Model of Parkinson Disease

    PubMed Central

    Lehri-Boufala, Sonia; Ouidja, Mohand-Ouidir; Barbier-Chassefière, Véronique; Hénault, Emilie; Raisman-Vozari, Rita; Garrigue-Antar, Laure; Papy-Garcia, Dulce; Morin, Christophe

    2015-01-01

    The causes of Parkinson disease (PD) remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD), the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs) regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology. PMID:25617759

  15. Non-cell-autonomous Neurotoxicity of α-synuclein Through Microglial Toll-like Receptor 2

    PubMed Central

    Kim, Changyoun; Lee, He-Jin; Masliah, Eliezer

    2016-01-01

    Synucleinopathies are a collection of neurological diseases that are characterized by deposition of α-synuclein aggregates in neurons and glia. These diseases include Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. Although it has been increasingly clear that α-synuclein is implicated in the pathogenesis of PD and other synucleinopathies, the precise mechanism underlying the disease process remains to be unraveled. The past studies on how α-synuclein exerts pathogenic actions have focused on its direct, cell-autonomous neurotoxic effects. However, recent findings suggested that there might be indirect, non-cell-autonomous pathways, perhaps through the changes in glial cells, for the pathogenic actions of this protein. Here, we present evidence that α-synuclein can cause neurodegeneration through a non-cell-autonomous manner. We show that α-synuclein can be secreted from neurons and induces inflammatory responses in microglia, which in turn secreted neurotoxic agents into the media causing neurodegeneration. The neurotoxic response of microglia was mediated by activation of toll-like receptor 2 (TLR2), a receptor for neuron-derived α-synuclein. This work suggests that TLR2 is the key molecule that mediates non-cell-autonomous neurotoxic effects of α-synuclein, hence a candidate for the therapeutic target. PMID:27358579

  16. Mannose 6-Phosphate Receptor Is Reduced in -Synuclein Overexpressing Models of Parkinsons Disease

    PubMed Central

    Matrone, Carmela; Dzamko, Nicolas; Madsen, Peder; Nyegaard, Mette; Pohlmann, Regina; Søndergaard, Rikke V.; Lassen, Louise B.; Andresen, Thomas L.; Halliday, Glenda M.; Jensen, Poul Henning

    2016-01-01

    Increasing evidence points to defects in autophagy as a common denominator in most neurodegenerative conditions. Progressive functional decline in the autophagy-lysosomal pathway (ALP) occurs with age, and the consequent impairment in protein processing capacity has been associated with a higher risk of neurodegeneration. Defects in cathepsin D (CD) processing and α-synuclein degradation causing its accumulation in lysosomes are particularly relevant for the development of Parkinson's disease (PD). However, the mechanism by which alterations in CD maturation and α-synuclein degradation leads to autophagy defects in PD neurons is still uncertain. Here we demonstrate that MPR300 shuttling between endosomes and the trans Golgi network is altered in α-synuclein overexpressing neurons. Consequently, CD is not correctly trafficked to lysosomes and cannot be processed to generate its mature active form, leading to a reduced CD-mediated α-synuclein degradation and α-synuclein accumulation in neurons. MPR300 is downregulated in brain from α-synuclein overexpressing animal models and in PD patients with early diagnosis. These data indicate MPR300 as crucial player in the autophagy-lysosomal dysfunctions reported in PD and pinpoint MRP300 as a potential biomarker for PD. PMID:27509067

  17. Ultrastructural hepatocytic alterations induced by silver nanoparticle toxicity.

    PubMed

    Almansour, Mansour; Sajti, Laszlo; Melhim, Walid; Jarrar, Bashir M

    2016-01-01

    Silver nanoparticles (SNPs) are widely used in nanomedicine and consuming products with potential risk to human health. While considerable work was carried out on the molecular, biochemical, and physiological alterations induced by these particles, little is known of the ultrastructural pathological alterations that might be induced by nanosilver materials. The aim of the present work is to investigate the hepatocyte ultrastructural alterations that might be induced by SNP exposure. Male rats were subjected to a daily single dose (2 mg/kg) of SNPs (15-35 nm diameter) for 21 days. Liver biopsies from all rats under study were processed for transmission electron microscopy examination. The following hepatic ultrastructural alterations were demonstrated: mitochondria swelling and crystolysis, endoplasmic reticulum disruption, cytoplasmic vacuolization, lipid droplets accumulation, glycogen depletion, karyopyknosis, apoptosis, sinusoidal dilatation, Kupffer cells activation, and myelin figures formation. The current findings may indicate that SNPs can induce hepatocyte organelles alteration, leading to cellular damage that may affect the function of the liver. These findings might indicate that SNPs potentially trigger heptocyte ultrastructural alterations that may affect the function of the liver with potential risk on human health in relation to numerous applications of these particles. More work is needed to elucidate probable ultrastructural alterations in the vital organs that might result from nanosilver toxicity. PMID:26934218

  18. Fish Synucleins: An Update

    PubMed Central

    Toni, Mattia; Cioni, Carla

    2015-01-01

    Synucleins (syns) are a family of proteins involved in several human neurodegenerative diseases and tumors. Since the first syn discovery in the brain of the electric ray Torpedo californica, members of the same family have been identified in all vertebrates and comparative studies have indicated that syn proteins are evolutionary conserved. No counterparts of syns were found in invertebrates suggesting that they are vertebrate-specific proteins. Molecular studies showed that the number of syn members varies among vertebrates. Three genes encode for α-, β- and γ-syn in mammals and birds. However, a variable number of syn genes and encoded proteins is expressed or predicted in fish depending on the species. Among biologically verified sequences, four syn genes were identified in fugu, encoding for α, β and two γ (γ1 and γ2) isoforms, whereas only three genes are expressed in zebrafish, which lacks α-syn gene. The list of “non verified” sequences is much longer and is often found in sequence databases. In this review we provide an overview of published papers and known syn sequences in agnathans and fish that are likely to impact future studies in this field. Indeed, fish models may play a key role in elucidating some of the molecular mechanisms involved in physiological and pathological functions of syn proteins. PMID:26528989

  19. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies

    PubMed Central

    Stuendl, Anne; Kunadt, Marcel; Kruse, Niels; Bartels, Claudia; Moebius, Wiebke; Danzer, Karin M.; Mollenhauer, Brit

    2016-01-01

    Extracellular α-synuclein has been proposed as a crucial mechanism for induction of pathological aggregate formation in previously healthy cells. In vitro, extracellular α-synuclein is partially associated with exosomal vesicles. Recently, we have provided evidence that exosomal α-synuclein is present in the central nervous system in vivo. We hypothesized that exosomal α-synuclein species from patients with α-synuclein related neurodegeneration serve as carriers for interneuronal disease transmission. We isolated exosomes from cerebrospinal fluid from patients with Parkinson’s disease, dementia with Lewy bodies, progressive supranuclear palsy as a non-α-synuclein related disorder that clinically overlaps with Parkinson’s disease, and neurological controls. Cerebrospinal fluid exosome numbers, α-synuclein protein content of cerebrospinal fluid exosomes and their potential to induce oligomerization of α-synuclein were analysed. The quantification of cerebrospinal fluid exosomal α-synuclein showed distinct differences between patients with Parkinson’s disease and dementia with Lewy bodies. In addition, exosomal α-synuclein levels correlated with the severity of cognitive impairment in cross-sectional samples from patients with dementia with Lewy bodies. Importantly, cerebrospinal fluid exosomes derived from Parkinson’s disease and dementia with Lewy bodies induce oligomerization of α-synuclein in a reporter cell line in a dose-dependent manner. Our data suggest that cerebrospinal fluid exosomes from patients with Parkinson’s disease and dementia with Lewy bodies contain a pathogenic species of α-synuclein, which could initiate oligomerization of soluble α-synuclein in target cells and confer disease pathology. PMID:26647156

  20. Laser-induced alteration of contaminated papers

    NASA Astrophysics Data System (ADS)

    Rudolph, P.; Ligterink, F. J.; Pedersoli, J. L., Jr.; Scholten, H.; Schipper, D.; Havermans, J. B. G. A.; Aziz, H. A.; Quillet, V.; Kraan, M.; van Beek, B.; Corr, S.; Hua-Ströfer, H.-Y.; Stokmans, J.; Dalen, P. van; Kautek, W.

    Cleaning of paper objects represents one of the most complex cases of laser ablation, since low volumes of dispersed material phases are evaporated while a sensitive and fragile fibrous organic matrix has to be preserved. Conventional chemical and mechanical cleaning methods suffer from the common phenomenon that the foreign matter is diluted into the substrate rather than removed. The application of a laser beam allows highly localized and optically specific interaction. However, the occurrence of extreme temperatures and light intensities may cause irreversible alteration of the paper matrix. Further, incomplete removal and/or chemical conversion of contaminations may result in insufficient cleaning or affect the ageing behaviour. Laser treatments were performed by Q-switched Nd:YAG lasers at three wavelengths (355 nm, 532 nm, and 1064 nm). Papers contaminated with inks and adhesive-tape remnants served as model samples. Multispectral imaging and colorimetric results served to quantify and systematize the results.

  1. Mitochondrial translocation of α-synuclein is promoted by intracellular acidification

    PubMed Central

    Cole, Nelson B.; DiEuliis, Diane; Leo, Paul; Mitchell, Drake C.; Nussbaum, Robert L.

    2008-01-01

    Mitochondrial dysfunction plays a central role in the selective vulnerability of dopaminergic neurons in Parkinson’s disease (PD) and is influenced by both environmental and genetic factors. Expression of the PD protein α-synuclein or its familial mutants often sensitizes neurons to oxidative stress and to damage by mitochondrial toxins. This effect is thought to be indirect, since little evidence physically linking α-synuclein to mitochondria has been reported. Here, we show that the distribution of α-synuclein within neuronal and non-neuronal cells is dependent on intracellular pH. Cytosolic acidification induces translocation of α-synuclein from the cytosol onto the surface of mitochondria. Translocation occurs rapidly under artificially-induced low pH conditions and as a result of pH changes during oxidative or metabolic stress. Binding is likely facilitated by low pH-induced exposure of the mitochondria-specific lipid cardiolipin. These results imply a direct role for α-synuclein in mitochondrial physiology, especially under pathological conditions, and in principle, link α-synuclein to other PD genes in regulating mitochondrial homeostasis. PMID:18440504

  2. Spermidine protects against α-synuclein neurotoxicity

    PubMed Central

    Büttner, Sabrina; Broeskamp, Filomena; Sommer, Cornelia; Markaki, Maria; Habernig, Lukas; Alavian-Ghavanini, Ali; Carmona-Gutierrez, Didac; Eisenberg, Tobias; Michael, Eva; Kroemer, Guido; Tavernarakis, Nektarios; Sigrist, Stephan J; Madeo, Frank

    2014-01-01

    As our society ages, neurodegenerative disorders like Parkinson`s disease (PD) are increasing in pandemic proportions. While mechanistic understanding of PD is advancing, a treatment with well tolerable drugs is still elusive. Here, we show that administration of the naturally occurring polyamine spermidine, which declines continuously during aging in various species, alleviates a series of PD-related degenerative processes in the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, two established model systems for PD pathology. In the fruit fly, simple feeding with spermidine inhibited loss of climbing activity and early organismal death upon heterologous expression of human α-synuclein, which is thought to be the principal toxic trigger of PD. In this line, administration of spermidine rescued α-synuclein-induced loss of dopaminergic neurons, a hallmark of PD, in nematodes. Alleviation of PD-related neurodegeneration by spermidine was accompanied by induction of autophagy, suggesting that this cytoprotective process may be responsible for the beneficial effects of spermidine administration. PMID:25483063

  3. Epigenetic Alterations Induced by Bacterial Lipopolysaccharides.

    PubMed

    Chiariotti, Lorenzo; Coretti, Lorena; Pero, Raffaela; Lembo, Francesca

    2016-01-01

    Lipopolysaccharide (LPS) is one of the principal bacterial products known to elicit inflammation. Cells of myeloid lineage such as monocytes and macrophages, but also epithelial cells give rise to an inflammatory response upon LPS stimulation. This phenomenon implies reprogramming of cell specific gene expression that can occur through different mechanisms including epigenetic modifications. Given their intrinsic nature, epigenetic modifications may be involved both in the acute response to LPS and in the establishment of a preconditioned genomic state (epigenomic memory) that may potentially influence the host response to further contacts with microorganisms. Information has accumulated during the last years aimed at elucidating the epigenetic mechanisms which underlie the cellular LPS response. These findings, summarized in this chapter, will hopefully be a good basis for a definition of the complete cascade of LPS-induced epigenetic events and their biological significance in different cell types. PMID:26659265

  4. Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes.

    PubMed

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Vestergaard, Bente

    2015-09-14

    Oligomeric species formed during α-synuclein fibrillation are suggested to be membrane-disrupting agents, and have been associated with cytotoxicity in Parkinson's disease. The majority of studies, however, have revealed that the effect of α-synuclein oligomers is only noticeable on systems composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model membranes are either unperturbed, disrupt, or undergo dramatic morphological changes and segregate into structurally different components, which we visualize by 2-photon fluorescence microscopy and generalized polarization analysis using the fluorescent probe Laurdan. Our results highlight the crucial role of cholesterol for mediating interactions between physiologically relevant membranes and α-synuclein. PMID:26297828

  5. Lysosomes and α-synuclein form a dangerous duet leading to neuronal cell death

    PubMed Central

    Bourdenx, Mathieu; Bezard, Erwan; Dehay, Benjamin

    2014-01-01

    Neurodegenerative diseases are (i) characterized by a selective neuronal vulnerability to degeneration in specific brain regions; and (ii) likely to be caused by disease-specific protein misfolding. Parkinson’s disease (PD) is characterized by the presence of intraneuronal proteinacious cytoplasmic inclusions, called Lewy Bodies (LB). α-Synuclein, an aggregation prone protein, has been identified as a major protein component of LB and the causative for autosomal dominant PD. Lysosomes are responsible for the clearance of long-lived proteins, such as α-synuclein, and for the removal of old or damaged organelles, such as mitochondria. Interestingly, PD-linked α-synuclein mutants and dopamine-modified wild-type α-synuclein block its own degradation, which result in insufficient clearance, leading to its aggregation and cell toxicity. Moreover, both lysosomes and lysosomal proteases have been found to be involved in the activation of certain cell death pathways. Interestingly, lysosomal alterations are observed in the brains of patients suffering from sporadic PD and also in toxic and genetic rodent models of PD-related neurodegeneration. All these events have unraveled a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. In this review, we emphasize the pathophysiological mechanisms connecting α-synuclein and lysosomal dysfunction in neuronal cell death. PMID:25177278

  6. Posttranslational Modifications and Clearing of α-Synuclein Aggregates in Yeast

    PubMed Central

    Popova, Blagovesta; Kleinknecht, Alexandra; Braus, Gerhard H.

    2015-01-01

    The budding yeast Saccharomyces cerevisiae represents an established model system to study the molecular mechanisms associated to neurodegenerative disorders. A key-feature of Parkinson’s disease is the formation of Lewy bodies, which are cytoplasmic protein inclusions. Misfolded α-synuclein is one of their main constituents. Expression of α-synuclein protein in yeast leads to protein aggregation and cellular toxicity, which is reminiscent to Lewy body containing human cells. The molecular mechanism involved in clearance of α-synuclein aggregates is a central question for elucidating the α-synuclein-related toxicity. Cellular clearance mechanisms include ubiquitin mediated 26S proteasome function as well as lysosome/vacuole associated degradative pathways as autophagy. Various modifications change α-synuclein posttranslationally and alter its inclusion formation, cytotoxicity and the distribution to different clearance pathways. Several of these modification sites are conserved from yeast to human. In this review, we summarize recent findings on the effect of phosphorylation and sumoylation of α-synuclein to the enhanced channeling to either the autophagy or the proteasome degradation pathway in yeast model of Parkinson’s disease. PMID:25915624

  7. Cerebrospinal Fluid α-Synuclein Predicts Cognitive Decline in Parkinson Disease Progression in the DATATOP Cohort

    PubMed Central

    Stewart, Tessandra; Liu, Changqin; Ginghina, Carmen; Cain, Kevin C.; Auinger, Peggy; Cholerton, Brenna; Shi, Min; Zhang, Jing

    2015-01-01

    Most patients with Parkinson disease (PD) develop both cognitive and motor impairment, and biomarkers for progression are urgently needed. Although α-synuclein is altered in cerebrospinal fluid of patients with PD, it is not known whether it predicts motor or cognitive deterioration. We examined clinical data and α-synuclein in >300 unmedicated patients with PD who participated in the deprenyl and tocopherol antioxidative therapy of parkinsonism (DATATOP) study, with up to 8 years of follow-up. Longitudinal measures of motor and cognitive function were studied before (phase 1) and during (phase 2) levodopa therapy; cerebrospinal fluid was collected at the beginning of each phase. Correlations and linear mixed models were used to assess α-synuclein association with disease severity and prediction of progression in the subsequent follow-up period. Despite decreasing α-synuclein (phase 1 to phase 2 change of −0.05 ± 0.21 log-transformed values, P < 0.001), no correlations were observed between α-synuclein and motor symptoms. Longitudinally, lower α-synuclein predicted better preservation of cognitive function by several measures [Selective Reminding Test total recall α-synuclein × time interaction effect coefficient, −0.12 (P = 0.037); delayed recall, −0.05 (P = 0.002); New Dot Test, −0.03 (P = 0.002)]. Thus, α-synuclein, although not clinically useful for motor progression, might predict cognitive decline, and future longitudinal studies should include this outcome for further validation. PMID:24625392

  8. Microtubule depolymerization potentiates alpha-synuclein oligomerization.

    PubMed

    Esteves, A Raquel; Arduíno, Daniela M; Swerdlow, Russell H; Oliveira, Catarina R; Cardoso, Sandra M

    2010-01-01

    Parkinson's disease (PD) is associated with perturbed mitochondria function and alpha-synuclein fibrillization. We evaluated potential mechanistic links between mitochondrial dysfunction and alpha-synuclein aggregation. We studied a PD cytoplasmic hybrid (cybrid) cell line in which platelet mitochondria from a PD subject were transferred to NT2 neuronal cells previously depleted of endogenous mitochondrial DNA. Compared to a control cybrid cell line, the PD line showed reduced ATP levels, an increased free/polymerized tubulin ratio, and alpha-synuclein oligomer accumulation. Taxol (which stabilizes microtubules) normalized the PD tubulin ratio and reduced alpha-synuclein oligomerization. A nexus exists between mitochondrial function, cytoskeleton homeostasis, and alpha-synuclein oligomerization. In our model, mitochondrial dysfunction triggers an increased free tubulin, which destabilizes the microtubular network and promotes alpha-synuclein oligomerization. PMID:20552056

  9. [The role of alpha-synuclein in Parkinson's disease].

    PubMed

    Miklya, Ildikó; Pencz, Noémi; Hafenscher, Florencia; Göltl, Patricia

    2014-06-01

    α-synuclein, a small protein (140 amino acids) encoded by the SNCA gene is the best known isoform of the synuclein protein family. Though its physiological role is still not fully clarified, there is growing experimental evidence for a causal role of α-synuclein in the so-called conformational-neurodegenerative diseases. Conformational changes in the structure of the native soluble protein form insoluble neurotoxic aggregates and finally contribute to the formation of inclusion Lewy-bodies and Lewy-neurites. Neurodegeneration first hits the olfactory system, the peripheral autonomic nervous system, the enteric nervous system and the dorsal vagal motoneurons. The middle stage of the disease hits the dopaminergic neurons of the substantia nigra; and the neocortex is affected only in the late stage of the disease. This precise order of neurodegeneration is not always valid, but increases the likelihood that Lewy-bodies and neurodegenaration spread to intact areas in a prion-like way. Prions are infectious proteins which do not contain nucleic acids and cause diseases because they form toxic aggregates and filaments by misfolding in a β-sheet-rich conformation. The misfolded protein behaves like a template inducing conformational change in the wild type proteins causing cross-reaction and leading to neurodegeneration. Later, the defective proteins may infect healthy nerve cells, thus neurodegeneration is extended. Growing experimental evidence shows that monomers and aggregates of α-synuclein are secreted via exocytosis from damaged nerve cells and taken up via endocytosis by healthy nerve cells furnishing evidence for the prion-like role of α-synuclein. PMID:24978050

  10. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism

    PubMed Central

    Prusiner, Stanley B.; Woerman, Amanda L.; Mordes, Daniel A.; Watts, Joel C.; Rampersaud, Ryan; Berry, David B.; Patel, Smita; Oehler, Abby; Lowe, Jennifer K.; Kravitz, Stephanie N.; Geschwind, Daniel H.; Glidden, David V.; Halliday, Glenda M.; Middleton, Lefkos T.; Gentleman, Steve M.; Grinberg, Lea T.; Giles, Kurt

    2015-01-01

    Prions are proteins that adopt alternative conformations that become self-propagating; the PrPSc prion causes the rare human disorder Creutzfeldt–Jakob disease (CJD). We report here that multiple system atrophy (MSA) is caused by a different human prion composed of the α-synuclein protein. MSA is a slowly evolving disorder characterized by progressive loss of autonomic nervous system function and often signs of parkinsonism; the neuropathological hallmark of MSA is glial cytoplasmic inclusions consisting of filaments of α-synuclein. To determine whether human α-synuclein forms prions, we examined 14 human brain homogenates for transmission to cultured human embryonic kidney (HEK) cells expressing full-length, mutant human α-synuclein fused to yellow fluorescent protein (α-syn140*A53T–YFP) and TgM83+/− mice expressing α-synuclein (A53T). The TgM83+/− mice that were hemizygous for the mutant transgene did not develop spontaneous illness; in contrast, the TgM83+/+ mice that were homozygous developed neurological dysfunction. Brain extracts from 14 MSA cases all transmitted neurodegeneration to TgM83+/− mice after incubation periods of ∼120 d, which was accompanied by deposition of α-synuclein within neuronal cell bodies and axons. All of the MSA extracts also induced aggregation of α-syn*A53T–YFP in cultured cells, whereas none of six Parkinson’s disease (PD) extracts or a control sample did so. Our findings argue that MSA is caused by a unique strain of α-synuclein prions, which is different from the putative prions causing PD and from those causing spontaneous neurodegeneration in TgM83+/+ mice. Remarkably, α-synuclein is the first new human prion to be identified, to our knowledge, since the discovery a half century ago that CJD was transmissible. PMID:26324905

  11. Lipid Peroxidation Product 4-Hydroxy-2-Nonenal Promotes Seeding-Capable Oligomer Formation and Cell-to-Cell Transfer of α-Synuclein

    PubMed Central

    Bae, Eun-Jin; Ho, Dong-Hwan; Park, Eunbi; Jung, Jin Woo; Cho, Kyungcho; Hong, Ji Hye; Lee, He-Jin; Kim, Kwang Pyo

    2013-01-01

    Abstract Aims: Abnormal accumulation of α-synuclein aggregates is one of the key pathological features of many neurodegenerative movement disorders and dementias. These pathological aggregates propagate into larger brain regions as the disease progresses, with the associated clinical symptoms becoming increasingly severe and complex. However, the factors that induce α-synuclein aggregation and spreading of the aggregates remain elusive. Herein, we have evaluated the effects of the major lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE) on α-synuclein oligomerization and cell-to-cell transmission of this protein. Results: Incubation with HNE promoted the oligomerization of recombinant human α-synuclein via adduct formation at the lysine and histidine residues. HNE-induced α-synuclein oligomers evidence a little β-sheet structure and are distinct from amyloid fibrils at both conformation and ultrastructure levels. Nevertheless, the HNE-induced oligomers are capable of seeding the amyloidogenesis of monomeric α-synuclein under in vitro conditions. When neuronal cells were treated with HNE, both the translocation of α-synuclein into vesicles and the release of this protein from cells were increased. Neuronal cells can internalize HNE-modified α-synuclein oligomers, and HNE treatment increased the cell-to-cell transfer of α-synuclein proteins. Innovation and Conclusion: These results indicate that HNE induces the oligomerization of α-synuclein through covalent modification and promotes the cell-to-cell transfer of seeding-capable oligomers, thereby contributing to both the initiation and spread of α-synuclein aggregates. Antioxid. Redox Signal. 18, 770–783. PMID:22867050

  12. Serotonergic dysfunction in the A53T alpha-synuclein mouse model of Parkinson’s disease

    PubMed Central

    Deusser, Janina; Schmidt, Stefanie; Ettle, Benjamin; Plötz, Sonja; Huber, Sabine; Müller, Christian P.; Masliah, Eliezer; Winkler, Jürgen; Kohl, Zacharias

    2016-01-01

    Parkinson’s disease, neuropathologically defined by the aggregation of alpha-synuclein, is characterized by neuropsychiatric symptoms such as depression and anxiety preceding the onset of motor symptoms. A loss of serotonergic neurons or their projections into the hippocampus, and alterations in serotonin release may be linked to these symptoms. Here, we investigate the effect of human A53T alpha-synuclein on serotonergic neurons using 12 months old transgenic mice. We detected human alpha-synuclein in the perikarya of brainstem median and dorsal raphe neurons as well as in serotonergic fibers in the hippocampus. Despite intracellular alpha-synuclein accumulation there was no loss of serotonergic neurons in dorsal and median raphe nuclei of A53T alpha-synuclein mice. However, serotonin levels were significantly reduced in the brainstem. Additionally, serotonergic fiber density in the dorsal dentate gyrus was significantly less dense in transgenic mice. Interestingly, we detected a significantly compromised increase of doublecortin+ neuroblasts after chronic treatment with fluoxetine at the site of reduced serotonergic innervation, the infrapyramidal blade of the dorsal dentate gyrus in A53T alpha-synuclein mice. This suggests that alpha-synuclein affects serotonergic projections in a spatially distinct pattern within the hippocampus thereby influencing the response to antidepressant treatment. PMID:26201615

  13. Biophysics of Parkinson’s Disease: Structure and Aggregation of α-Synuclein

    PubMed Central

    Uversky, Vladimir N.; Eliezer, David

    2013-01-01

    Parkinson’s disease (PD) is a slowly progressive movement disorder that results from the loss of dopaminergic neurons in the substantia nigra, a small area of cells in the mid-brain. PD is a multifactorial disorder with unknown etiology, in which both genetic and environmental factors play important roles. Substantial evidence links α-synuclein, a small highly conserved presynaptic protein with unknown function, to both familial and sporadic PD. Rare familial cases of PD are associated with missense point mutations in α-synuclein, or with the hyper-expression of the wild type protein due to its gene duplication/triplication. Furthermore, α-synuclein was identified as the major component of amyloid fibrils found in Lewy body and Lewy neurites, the characteristic proteinaceous deposits that are the diagnostic hallmarks of PD. α-Synuclein is abundant in various regions of the brain and has two closely related homologs, β-synuclein and γ-synuclein. When isolated in solution, the protein is intrinsically disordered, but in the presence of lipid surfaces α-synuclein adopts a highly helical structure that is believed to mediate its normal function(s). A number of different conformational states of α-synuclein have been observed. Besides the membrane-bound form, other critical conformations include a partially-folded state that is a key intermediate in aggregation and fibrillation, various oligomeric species, and fibrillar and amorphous aggregates. A number of intrinsic and extrinsic factors that either accelerate or inhibit the rate of α-synuclein aggregation and fibrillation in vitro are known. There is a strong correlation between the conformation of α-synuclein (induced by various factors) and its rate of fibrillation. The aggregation process appears to be branched, with one pathway leading to fibrils and another to oligomeric intermediates that may ultimately form amorphous deposits. The molecular basis of Parkinson’s disease appears to be tightly

  14. Untangling the Manganese-α-Synuclein Web

    PubMed Central

    Peres, Tanara Vieira; Parmalee, Nancy L.; Martinez-Finley, Ebany J.; Aschner, Michael

    2016-01-01

    Neurodegenerative diseases affect a significant portion of the aging population. Several lines of evidence suggest a positive association between environmental exposures, which are common and cumulative in a lifetime, and development of neurodegenerative diseases. Environmental or occupational exposure to manganese (Mn) has been implicated in neurodegeneration due to its ability to induce mitochondrial dysfunction, oxidative stress, and α-synuclein (α-Syn) aggregation. The role of the α-Syn protein vis-a-vis Mn is controversial, as it seemingly plays a duplicitous role in neuroprotection and neurodegeneration. α-Syn has low affinity for Mn, however an indirect interaction cannot be ruled out. In this review we will examine the current knowledge surrounding the interaction of α-Syn and Mn in neurodegenerative process. PMID:27540354

  15. Untangling the Manganese-α-Synuclein Web.

    PubMed

    Peres, Tanara Vieira; Parmalee, Nancy L; Martinez-Finley, Ebany J; Aschner, Michael

    2016-01-01

    Neurodegenerative diseases affect a significant portion of the aging population. Several lines of evidence suggest a positive association between environmental exposures, which are common and cumulative in a lifetime, and development of neurodegenerative diseases. Environmental or occupational exposure to manganese (Mn) has been implicated in neurodegeneration due to its ability to induce mitochondrial dysfunction, oxidative stress, and α-synuclein (α-Syn) aggregation. The role of the α-Syn protein vis-a-vis Mn is controversial, as it seemingly plays a duplicitous role in neuroprotection and neurodegeneration. α-Syn has low affinity for Mn, however an indirect interaction cannot be ruled out. In this review we will examine the current knowledge surrounding the interaction of α-Syn and Mn in neurodegenerative process. PMID:27540354

  16. Permeability alteration induced by drying of brines in porous media

    NASA Astrophysics Data System (ADS)

    Peysson, Y.

    2012-11-01

    Permeability of reservoir rocks can be strongly altered by salt precipitation induced by drying. Indeed, gas injection in deep saline aquifers leads first to the brine displacement. The liquid saturation decreases near the injection point and reaches a residual water saturation. But at longer time, the water mass transfer to the gas phase by evaporation can become significant and the dissolved salt can precipitate in the porous structure. The solid salts fill the pores and the permeability decreases. Permeability alteration by salting out is a risk of injectivity decline in the context of CO2 geological storage in saline aquifers where high level of gas injection has to be maintained over decades. However, this problem has been poorly investigated. It implies physical processes that are strongly coupled: drying, water and gas flows in the porous structure and precipitation. This work is an experimental investigation aiming at measuring on natural rock samples the permeability alteration induced by convective drying where dry gas is injected through the sample. We show that alteration of permeability is strong and total blockage of the flow is even possible. We also show that the change in porosity due to the solid salt is heterogeneous along the rock samples. A local permeability-porosity relationship has been estimated from the measurements and we could deduce the permeability alteration function of time by modeling the drying dynamic. We show that it starts very early because capillary backflows are extremely efficient in this process to accumulate solid salt near the injection surfaces.

  17. α-Synuclein and neuronal cell death

    PubMed Central

    Cookson, Mark R

    2009-01-01

    α-Synuclein is a small protein that has special relevance for understanding Parkinson disease and related disorders. Not only is α-synuclein found in Lewy bodies characteristic of Parkinson disease, but also mutations in the gene for α-synuclein can cause an inherited form of Parkinson disease and expression of normal α-synuclein can increase the risk of developing Parkinson disease in sporadic, or non-familial, cases. Both sporadic and familial Parkinson disease are characterized by substantial loss of several groups of neurons, including the dopaminergic cells of the substantia nigra that are the target of most current symptomatic therapies. Therefore, it is predicted that α-synuclein, especially in its mutant forms or under conditions where its expression levels are increased, is a toxic protein in the sense that it is associated with an increased rate of neuronal cell death. This review will discuss the experimental contexts in which α-synuclein has been demonstrated to be toxic. I will also outline what is known about the mechanisms by which α-synuclein triggers neuronal damage, and identify some of the current gaps in our knowledge about this subject. Finally, the therapeutic implications of toxicity of α-synuclein will be discussed. PMID:19193223

  18. Synucleins Regulate the Kinetics of Synaptic Vesicle Endocytosis

    PubMed Central

    Vargas, Karina J.; Makani, Sachin; Davis, Taylor; Westphal, Christopher H.; Castillo, Pablo E.

    2014-01-01

    Genetic and pathological studies link α-synuclein to the etiology of Parkinson's disease (PD), but the normal function of this presynaptic protein remains unknown. α-Synuclein, an acidic lipid binding protein, shares high sequence identity with β- and γ-synuclein. Previous studies have implicated synucleins in synaptic vesicle (SV) trafficking, although the precise site of synuclein action continues to be unclear. Here we show, using optical imaging, electron microscopy, and slice electrophysiology, that synucleins are required for the fast kinetics of SV endocytosis. Slowed endocytosis observed in synuclein null cultures can be rescued by individually expressing mouse α-, β-, or γ-synuclein, indicating they are functionally redundant. Through comparisons to dynamin knock-out synapses and biochemical experiments, we suggest that synucleins act at early steps of SV endocytosis. Our results categorize α-synuclein with other familial PD genes known to regulate SV endocytosis, implicating this pathway in PD. PMID:25009269

  19. Higher Vulnerability and Stress Sensitivity of Neuronal Precursor Cells Carrying an Alpha-Synuclein Gene Triplication

    PubMed Central

    Flierl, Adrian; Oliveira, Luís M. A.; Falomir-Lockhart, Lisandro J.; Mak, Sally K.; Hesley, Jayne; Soldner, Frank; Arndt-Jovin, Donna J.; Jaenisch, Rudolf; Langston, J. William; Jovin, Thomas M.; Schüle, Birgitt

    2014-01-01

    Parkinson disease (PD) is a multi-factorial neurodegenerative disorder with loss of dopaminergic neurons in the substantia nigra and characteristic intracellular inclusions, called Lewy bodies. Genetic predisposition, such as point mutations and copy number variants of the SNCA gene locus can cause very similar PD-like neurodegeneration. The impact of altered α-synuclein protein expression on integrity and developmental potential of neuronal stem cells is largely unexplored, but may have wide ranging implications for PD manifestation and disease progression. Here, we investigated if induced pluripotent stem cell-derived neuronal precursor cells (NPCs) from a patient with Parkinson’s disease carrying a genomic triplication of the SNCA gene (SNCA-Tri). Our goal was to determine if these cells these neuronal precursor cells already display pathological changes and impaired cellular function that would likely predispose them when differentiated to neurodegeneration. To achieve this aim, we assessed viability and cellular physiology in human SNCA-Tri NPCs both under normal and environmentally stressed conditions to model in vitro gene-environment interactions which may play a role in the initiation and progression of PD. Human SNCA-Tri NPCs displayed overall normal cellular and mitochondrial morphology, but showed substantial changes in growth, viability, cellular energy metabolism and stress resistance especially when challenged by starvation or toxicant challenge. Knockdown of α-synuclein in the SNCA-Tri NPCs by stably expressed short hairpin RNA (shRNA) resulted in reversal of the observed phenotypic changes. These data show for the first time that genetic alterations such as the SNCA gene triplication set the stage for decreased developmental fitness, accelerated aging, and increased neuronal cell loss. The observation of this “stem cell pathology” could have a great impact on both quality and quantity of neuronal networks and could provide a powerful new

  20. Diphenyl diselenide prevents hepatic alterations induced by paraquat in rats.

    PubMed

    Costa, Michael D; de Freitas, Mayara L; Dalmolin, Laíza; Oliveira, Lia P; Fleck, Michelli A; Pagliarini, Paula; Acker, Carmine; Roman, Silvane S; Brandão, Ricardo

    2013-11-01

    This study aimed to investigate the beneficial effect of diphenyl diselenide (PhSe)₂ on paraquat (PQ) induced alterations in rats liver. Adult male Wistar rats received (PhSe)₂ at 10 mg kg(-1), by oral administration (p.o.), during five consecutive days. Twenty-four hours after the last (PhSe)₂ dose, rats received PQ at 15 mg kg(-1), in a single intraperitoneally injection (i.p.). Seventy-two hours after PQ exposure, animals were sacrificed by decapitation for blood and liver samples obtainment. Histological alterations induced by PQ exposure, such as inflammatory cells infiltration and edema, were prevented by (PhSe)₂ administration. Moreover, (PhSe)₂ prevented hepatic lipid peroxidation (LPO) induced by PQ and was effective in reducing the myeloperoxidase (MPO) activity in liver, which was enhanced by PQ exposure. (PhSe)₂ also was effective in protecting against the reduction in ascorbic acid and non-protein thiols (NPSH) levels induced by PQ. The inhibition of glutathione S-transferase (GST) activity, in rats exposed to PQ, was normalized by (PhSe)₂ pre-treatment, whereas the inhibition of catalase (CAT) activity was not prevented by (PhSe)₂. The serum alkaline phosphatase (ALP) inhibition, induced by PQ administration, was also prevented by (PhSe)₂ pre-treatment. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were not modified by PQ and/or (PhSe)₂ administration. Therefore, (PhSe)₂ pre-treatment was effective in protecting against the hepatic alterations induced by PQ in rats. This protective effect can involve the antioxidant and anti-inflammatory properties of (PhSe)₂. PMID:23958967

  1. Histologic and temperature alterations induced by skin refrigerants.

    PubMed

    Dzubow, L M

    1985-05-01

    The histologic alterations induced by spray refrigerants independent of and in combination with dermabrasion were studied with the use of the domestic pig as a model. Tissue injury was found to be a function of spray duration and freeze intensity. Both preabrasion freezing and postabrasion refreezing could produce damage additive to that of mechanical planing. Skin surface and intradermal temperature variations during refrigeration were recorded. The possible implications of these findings as they pertain to clinical dermabrasion are discussed. PMID:4008684

  2. Congenital heart malformations induced by hemodynamic altering surgical interventions

    PubMed Central

    Midgett, Madeline; Rugonyi, Sandra

    2014-01-01

    Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load. PMID:25136319

  3. Hypoxia-induced alterations of G2 checkpoint regulators.

    PubMed

    Hasvold, Grete; Lund-Andersen, Christin; Lando, Malin; Patzke, Sebastian; Hauge, Sissel; Suo, ZhenHe; Lyng, Heidi; Syljuåsen, Randi G

    2016-05-01

    Hypoxia promotes an aggressive tumor phenotype with increased genomic instability, partially due to downregulation of DNA repair pathways. However, genome stability is also surveilled by cell cycle checkpoints. An important issue is therefore whether hypoxia also can influence the DNA damage-induced cell cycle checkpoints. Here, we show that hypoxia (24 h 0.2% O2) alters the expression of several G2 checkpoint regulators, as examined by microarray gene expression analysis and immunoblotting of U2OS cells. While some of the changes reflected hypoxia-induced inhibition of cell cycle progression, the levels of several G2 checkpoint regulators, in particular Cyclin B, were reduced in G2 phase cells after hypoxic exposure, as shown by flow cytometric barcoding analysis of individual cells. These effects were accompanied by decreased phosphorylation of a Cyclin dependent kinase (CDK) target in G2 phase cells after hypoxia, suggesting decreased CDK activity. Furthermore, cells pre-exposed to hypoxia showed increased G2 checkpoint arrest upon treatment with ionizing radiation. Similar results were found following other hypoxic conditions (∼0.03% O2 20 h and 0.2% O2 72 h). These results demonstrate that the DNA damage-induced G2 checkpoint can be altered as a consequence of hypoxia, and we propose that such alterations may influence the genome stability of hypoxic tumors. PMID:26791779

  4. Redistribution of DAT/α-synuclein complexes visualized by "in situ" proximity ligation assay in transgenic mice modelling early Parkinson's disease.

    PubMed

    Bellucci, Arianna; Navarria, Laura; Falarti, Elisa; Zaltieri, Michela; Bono, Federica; Collo, Ginetta; Spillantini, Maria Grazia; Grazia, Maria; Missale, Cristina; Spano, Pierfranco

    2011-01-01

    Alpha-synuclein, the major component of Lewy bodies, is thought to play a central role in the onset of synaptic dysfunctions in Parkinson's disease (PD). In particular, α-synuclein may affect dopaminergic neuron function as it interacts with a key protein modulating dopamine (DA) content at the synapse: the DA transporter (DAT). Indeed, recent evidence from our "in vitro" studies showed that α-synuclein aggregation decreases the expression and membrane trafficking of the DAT as the DAT is retained into α-synuclein-immunopositive inclusions. This notwithstanding, "in vivo" studies on PD animal models investigating whether DAT distribution is altered by the pathological overexpression and aggregation of α-synuclein are missing. By using the proximity ligation assay, a technique which allows the "in situ" visualization of protein-protein interactions, we studied the occurrence of alterations in the distribution of DAT/α-synuclein complexes in the SYN120 transgenic mouse model, showing insoluble α-synuclein aggregates into dopaminergic neurons of the nigrostriatal system, reduced striatal DA levels and an altered distribution of synaptic proteins in the striatum. We found that DAT/α-synuclein complexes were markedly redistributed in the striatum and substantia nigra of SYN120 mice. These alterations were accompanied by a significant increase of DAT striatal levels in transgenic animals when compared to wild type littermates. Our data indicate that, in the early pathogenesis of PD, α-synuclein acts as a fine modulator of the dopaminergic synapse by regulating the subcellular distribution of key proteins such as the DAT. PMID:22163275

  5. Redistribution of DAT/α-Synuclein Complexes Visualized by “In Situ” Proximity Ligation Assay in Transgenic Mice Modelling Early Parkinson's Disease

    PubMed Central

    Bellucci, Arianna; Navarria, Laura; Falarti, Elisa; Zaltieri, Michela; Bono, Federica; Collo, Ginetta; Grazia, Maria; Missale, Cristina; Spano, PierFranco

    2011-01-01

    Alpha-synuclein, the major component of Lewy bodies, is thought to play a central role in the onset of synaptic dysfunctions in Parkinson's disease (PD). In particular, α-synuclein may affect dopaminergic neuron function as it interacts with a key protein modulating dopamine (DA) content at the synapse: the DA transporter (DAT). Indeed, recent evidence from our “in vitro” studies showed that α-synuclein aggregation decreases the expression and membrane trafficking of the DAT as the DAT is retained into α-synuclein-immunopositive inclusions. This notwithstanding, “in vivo” studies on PD animal models investigating whether DAT distribution is altered by the pathological overexpression and aggregation of α-synuclein are missing. By using the proximity ligation assay, a technique which allows the “in situ” visualization of protein-protein interactions, we studied the occurrence of alterations in the distribution of DAT/α-synuclein complexes in the SYN120 transgenic mouse model, showing insoluble α-synuclein aggregates into dopaminergic neurons of the nigrostriatal system, reduced striatal DA levels and an altered distribution of synaptic proteins in the striatum. We found that DAT/α-synuclein complexes were markedly redistributed in the striatum and substantia nigra of SYN120 mice. These alterations were accompanied by a significant increase of DAT striatal levels in transgenic animals when compared to wild type littermates. Our data indicate that, in the early pathogenesis of PD, α-synuclein acts as a fine modulator of the dopaminergic synapse by regulating the subcellular distribution of key proteins such as the DAT. PMID:22163275

  6. Direct and/or Indirect Roles for SUMO in Modulating Alpha-Synuclein Toxicity

    PubMed Central

    Vijayakumaran, Shamini; Wong, Mathew B.; Antony, Helma; Pountney, Dean L.

    2015-01-01

    α-Synuclein inclusion bodies are a pathological hallmark of several neurodegenerative diseases, including Parkinson’s disease, and contain aggregated α-synuclein and a variety of recruited factors, including protein chaperones, proteasome components, ubiquitin and the small ubiquitin-like modifier, SUMO-1. Cell culture and animal model studies suggest that misfolded, aggregated α-synuclein is actively translocated via the cytoskeletal system to a region of the cell where other factors that help to lessen the toxic effects can also be recruited. SUMO-1 covalently conjugates to various intracellular target proteins in a way analogous to ubiquitination to alter cellular distribution, function and metabolism and also plays an important role in a growing list of cellular pathways, including exosome secretion and apoptosis. Furthermore, SUMO-1 modified proteins have recently been linked to cell stress responses, such as oxidative stress response and heat shock response, with increased SUMOylation being neuroprotective in some cases. Several recent studies have linked SUMOylation to the ubiquitin-proteasome system, while other evidence implicates the lysosomal pathway. Other reports depict a direct mechanism whereby sumoylation reduced the aggregation tendency of α-synuclein, and reduced the toxicity. However, the precise role of SUMO-1 in neurodegeneration remains unclear. In this review, we explore the potential direct or indirect role(s) of SUMO-1 in the cellular response to misfolded α-synuclein in neurodegenerative disorders. PMID:26213981

  7. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  8. The neural chaperone proSAAS blocks α-synuclein fibrillation and neurotoxicity.

    PubMed

    Jarvela, Timothy S; Lam, Hoa A; Helwig, Michael; Lorenzen, Nikolai; Otzen, Daniel E; McLean, Pamela J; Maidment, Nigel T; Lindberg, Iris

    2016-08-01

    Emerging evidence strongly suggests that chaperone proteins are cytoprotective in neurodegenerative proteinopathies involving protein aggregation; for example, in the accumulation of aggregated α-synuclein into the Lewy bodies present in Parkinson's disease. Of the various chaperones known to be associated with neurodegenerative disease, the small secretory chaperone known as proSAAS (named after four residues in the amino terminal region) has many attractive properties. We show here that proSAAS, widely expressed in neurons throughout the brain, is associated with aggregated synuclein deposits in the substantia nigra of patients with Parkinson's disease. Recombinant proSAAS potently inhibits the fibrillation of α-synuclein in an in vitro assay; residues 158-180, containing a largely conserved element, are critical to this bioactivity. ProSAAS also exhibits a neuroprotective function; proSAAS-encoding lentivirus blocks α-synuclein-induced cytotoxicity in primary cultures of nigral dopaminergic neurons, and recombinant proSAAS blocks α-synuclein-induced cytotoxicity in SH-SY5Y cells. Four independent proteomics studies have previously identified proSAAS as a potential cerebrospinal fluid biomarker in various neurodegenerative diseases. Coupled with prior work showing that proSAAS blocks β-amyloid aggregation into fibrils, this study supports the idea that neuronal proSAAS plays an important role in proteostatic processes. ProSAAS thus represents a possible therapeutic target in neurodegenerative disease. PMID:27457957

  9. The Function of α-Synuclein

    PubMed Central

    Bendor, Jacob; Logan, Todd; Edwards, Robert H.

    2013-01-01

    Human genetics has indicated a causal role for the protein α-synuclein in the pathogenesis of familial Parkinson’s disease (PD), and the aggregation of synuclein in essentially all patients with PD suggests a central role for this protein in the sporadic disorder. Indeed, the accumulation of misfolded α-synuclein now defines multiple forms of neural degeneration. Like many of the proteins that accumulate in other neurodegenerative disorders, however, the normal function of synuclein remains poorly understood. α-Synuclein localizes specifically to the nerve terminal and inhibits neurotransmitter release when over-expressed, but the knockout has a modest effect on synaptic transmission, suggesting alternative presynaptic roles. Natively unstructured, synuclein adopts a helical conformation on membrane binding and recent work suggests a role in membrane remodeling. In neural degeneration, synuclein misfolds and aggregates as a β-sheet. Multiple observations now suggest propagation of the misfolded protein as a prion, providing a mechanism for the spread of degeneration through the neuraxis. However, the factors that trigger the original misfolding remain unknown. PMID:24050397

  10. Gut Feelings About α-Synuclein in Gastrointestinal Biopsies: Biomarker in the Making?

    PubMed

    Ruffmann, Claudio; Parkkinen, Laura

    2016-02-01

    In recent years, several studies have investigated the potential of immunohistochemical detection of α-synuclein in the gastrointestinal tract to diagnose Parkinson's disease (PD). Although methodological heterogeneity has hindered comparability between studies, it has become increasingly apparent that the high sensitivity and specificity reported in preliminary studies has not been sustained in subsequent large-scale studies. What constitutes pathological α-synuclein in the alimentary canal that could distinguish between PD patients and controls and how this can be reliably detected represent key outstanding questions in the field. In this review, we will comment on and compare the variable technical aspects from previous studies, and by highlighting some advantages and shortcomings we hope to delineate a standardized approach to facilitate the consensus criteria urgently needed in the field. Furthermore, we will describe alternative detection techniques to conventional immunohistochemistry that have recently emerged and may facilitate ease of interpretation and reliability of gastrointestinal α-synuclein detection. Such techniques have the potential to detect the presence of pathological α-synuclein and include the paraffin-embedded tissue blot, the proximity ligation assay, the protein misfolding cyclic amplification technique, and the real-time quaking-induced conversion assay. Finally, we will review 2 nonsynonymous theories that have driven enteric α-synuclein research, namely, (1) that α-synuclein propagates in a prion-like fashion from the peripheral nervous system to the brain via vagal connections and (2) that gastrointestinal α-synuclein deposition may be used as a clinically useful biomarker in PD. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. PMID:26799450

  11. Gut Feelings About α‐Synuclein in Gastrointestinal Biopsies: Biomarker in the Making?

    PubMed Central

    Ruffmann, Claudio

    2016-01-01

    ABSTRACT In recent years, several studies have investigated the potential of immunohistochemical detection of α‐synuclein in the gastrointestinal tract to diagnose Parkinson's disease (PD). Although methodological heterogeneity has hindered comparability between studies, it has become increasingly apparent that the high sensitivity and specificity reported in preliminary studies has not been sustained in subsequent large‐scale studies. What constitutes pathological α‐synuclein in the alimentary canal that could distinguish between PD patients and controls and how this can be reliably detected represent key outstanding questions in the field. In this review, we will comment on and compare the variable technical aspects from previous studies, and by highlighting some advantages and shortcomings we hope to delineate a standardized approach to facilitate the consensus criteria urgently needed in the field. Furthermore, we will describe alternative detection techniques to conventional immunohistochemistry that have recently emerged and may facilitate ease of interpretation and reliability of gastrointestinal α‐synuclein detection. Such techniques have the potential to detect the presence of pathological α‐synuclein and include the paraffin‐embedded tissue blot, the proximity ligation assay, the protein misfolding cyclic amplification technique, and the real‐time quaking‐induced conversion assay. Finally, we will review 2 nonsynonymous theories that have driven enteric α‐synuclein research, namely, (1) that α‐synuclein propagates in a prion‐like fashion from the peripheral nervous system to the brain via vagal connections and (2) that gastrointestinal α‐synuclein deposition may be used as a clinically useful biomarker in PD. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. PMID:26799450

  12. The serotonin aldehyde, 5-HIAL, oligomerizes alpha-synuclein.

    PubMed

    Jinsmaa, Yunden; Cooney, Adele; Sullivan, Patricia; Sharabi, Yehonatan; Goldstein, David S

    2015-03-17

    In Parkinson's disease (PD) alpha-synuclein oligomers are thought to be pathogenic, and 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate aldehyde intermediate in neuronal dopamine metabolism, potently oligomerizes alpha-synuclein. PD involves alpha-synuclein deposition in brainstem raphe nuclei; however, whether 5-hydroxyindoleacetaldehyde (5-HIAL), the aldehyde of serotonin, oligomerizes alpha-synuclein has been unknown. In this study we tested whether 5-HIAL oligomerizes alpha-synuclein in vitro and in PC12 cells conditionally over-expressing alpha-synuclein. Alpha-synuclein oligomers were quantified by western blotting after incubation of alpha-synuclein with serotonin and monoamine oxidase-A (MAO-A) to generate 5-HIAL or dopamine to generate DOPAL. Oligomerization of alpha-synuclein in PC12 cells over-expressing the protein was compared between vehicle-treated cells and cells incubated with levodopa to generate DOPAL or 5-hydroxytryptophan to generate 5-HIAL. Monoamine aldehyde mediation of the oligomerization was assessed using the MAO inhibitor, pargyline. Dopamine and serotonin incubated with MAO-A both strongly oligomerized alpha-synuclein (more than 10 times control); pargyline blocked the oligomerization. In synuclein overexpressing PC12 cells, levodopa and 5-hydroxytryptophan elicited pargyline-sensitive alpha-synuclein oligomerization. 5-HIAL oligomerizes alpha-synuclein both in vitro and in synuclein-overexpressing PC12 cells, in a manner similar to DOPAL. The findings may help explain loss of serotonergic neurons in PD. PMID:25637699

  13. The serotonin aldehyde, 5-HIAL, oligomerizes alpha-synuclein

    PubMed Central

    Jinsmaa, Yunden; Cooney, Adele; Sullivan, Patricia; Sharabi, Yehonatan; Goldstein, David S.

    2016-01-01

    In Parkinson’s disease (PD) alpha-synuclein oligomers are thought to be pathogenic, and 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate aldehyde intermediate in neuronal dopamine metabolism, potently oligomerizes alpha-synuclein. PD involves alpha-synuclein deposition in brainstem raphe nuclei; however, whether 5-hydroxyindoleacetaldehyde (5-HIAL), the aldehyde of serotonin, oligomerizes alpha-synuclein has been unknown. In this study we tested whether 5-HIAL oligomerizes alpha-synuclein in vitro and in PC12 cells conditionally over-expressing alpha-synuclein. Alpha-synuclein oligomers were quantified by western blotting after incubation of alpha-synuclein with serotonin and monoamine oxidase-A (MAO-A) to generate 5-HIAL or dopamine to generate DOPAL. Oligomerization of alpha-synuclein in PC12 cells over-expressing the protein was compared between vehicle-treated cells and cells incubated with levodopa to generate DOPAL or 5-hydroxytryptophan to generate 5-HIAL. Monoamine aldehyde mediation of the oligomerization was assessed using the MAO inhibitor, pargyline. Dopamine and serotonin incubated with MAO-A both strongly oligomerized alpha-synuclein (more than 10 times control); pargyline blocked the oligomerization. In synuclein overexpressing PC12 cells, levodopa and 5-hydroxytryptophan elicited pargyline-sensitive alpha-synuclein oligomerization. 5-HIAL oligomerizes alpha-synuclein both in vitro and in synuclein-overexpressing PC12 cells, in a manner similar to DOPAL. The findings may help explain loss of serotonergic neurons in PD. PMID:25637699

  14. Environmental toxicants--induced epigenetic alterations and their reversers.

    PubMed

    Kim, Minju; Bae, Minji; Na, Hyunkyung; Yang, Mihi

    2012-01-01

    Epigenetics has been emphasized in the postgenome era to clarify obscure health risks of environmental toxicants including endocrine disrupting chemicals (EDCs). In addition, mixed exposure in real life can modify health consequences of the toxicants. Particularly, some nutritional and dietary materials modify individual susceptibility through changes in the epigenome. Therefore, we focused on some environmental toxicants that induce epigenetic alterations, and introduced chemopreventive materials to reverse the toxicants-induced epigenetic alterations. Methodologically, we used global and specific DNA methylation as epigenetic end points and searched epigenetic modulators in food. We reviewed various epigenetic end points induced by environmental toxicants including alcohol, asbestos, nanomaterials, benzene, EDCs, metals, and ionizing radiation. The epigenetic end points can be summarized into global hypomethylation and specific hypermethylation at diverse tumor suppress genes. Exposure timing, dose, sex, or organ specificity should be considered to use the epigenetic end points as biomarkers for exposure to the epimutagenic toxicants. Particularly, neonatal exposure to the epimutagens can influence their future adult health because of characteristics of the epimutagens, which disrupt epigenetic regulation in imprinting, organogenesis, development, etc. Considering interaction between epimutagenic toxicants and their reversers in food, we suggest that multiple exposures to them can alleviate or mask epigenetic toxicity in real life. Our present review provides useful information to find new end points of environmental toxicants and to prevention from environment-related diseases. PMID:23167630

  15. α-Synuclein Oligomers Impair Neuronal Microtubule-Kinesin Interplay*

    PubMed Central

    Prots, Iryna; Veber, Vanesa; Brey, Stefanie; Campioni, Silvia; Buder, Katrin; Riek, Roland; Böhm, Konrad J.; Winner, Beate

    2013-01-01

    Early α-synuclein (α-Syn)-induced alterations are neurite pathologies resulting in Lewy neurites. α-Syn oligomers are a toxic species in synucleinopathies and are suspected to cause neuritic pathology. To investigate how α-Syn oligomers may be linked to aberrant neurite pathology, we modeled different stages of α-Syn aggregation in vitro and investigated the interplay of α-Syn aggregates with proteins involved in axonal transport. The interaction of wild type α-Syn (WTS) and α-Syn variants (E57K, A30P, and aSyn(30–110)) with kinesin, tubulin, and the microtubule (MT)-associated proteins, MAP2 and Tau, is stronger for multimers than for monomers. WTS seeds but not α-Syn oligomers significantly and dose-dependently reduced Tau-promoted MT assembly in vitro. In contrast, MT gliding velocity across kinesin-coated surfaces was significantly decreased in the presence of α-Syn oligomers but not WTS seeds or fibrils (aSyn(30–110) multimers). In a human dopaminergic neuronal cell line, mild overexpression of the oligomerizing E57K α-Syn variant significantly impaired neurite network morphology without causing profound cell death. In accordance with these findings, MT stability, neuritic kinesin, and neuritic kinesin-dependent cargoes were significantly reduced by the presence of α-Syn oligomers. In summary, different α-Syn species act divergently on the axonal transport machinery. These findings provide new insights into α-Syn oligomer-driven neuritic pathology as one of the earliest events in synucleinopathies. PMID:23744071

  16. Alteration of Heterogeneous Ice Nucleation Properties Induced by Particle Aging

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Polen, M.; Beydoun, H.; Lawlis, E.; Ahern, A.; Jahn, L.; Hill, T. C. J.

    2015-12-01

    Aerosol particles that can serve as ice nuclei frequently experience rapid and extensive chemical aging during atmospheric transport. This is known to significantly alter some ice nucleation modes of the few types of ice nucleation particle systems where aging effects have been simulated, such as for mineral dust. Yet much of our understanding of atmospheric particle freezing properties is derived from measurements of fresh or unaged particles. We know almost nothing regarding how atmospheric aging might alter the freezing properties of biomass burning aerosol or biological particle nucleants. We have investigated the effects of simulated aging using a chamber reactor on the heterogeneous ice nucleation properties of biomass burning aerosol (BBA) and ice-active bacteria particles. Some types of aging were found to enhance the freezing ability of BBA, exhibited as a shift in a portion of the droplet freezing curve to warmer temperatures by a few °C. Ice-active bacteria were found to consistently loose their most ice-active nucleants after repeated aging cycles. The bacterial systems always retained significantly efficient ice active sites that still allowed them to induce freezing at mild/warm temperatures, despite this decrease in freezing ability. A comprehensive series of online single-particle mass spectrometry and offline spectromicroscopic analysis of individual particles was used to determine how the aging altered the aerosol's composition, and gain mechanistic insights into how this in turn altered the freezing properties. Our new ice nucleation framework that uses a continuous distribution of ice active site ability (contact angle) was used to interpret the droplet freezing spectra and understand how aging alters the internal and external variability, and rigidity, of the ice active sites.

  17. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, Jr., Edward I.; Soden, Jerry M.

    1995-01-01

    An apparatus and method are described for analyzing an integrated circuit (IC), The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC, The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs.

  18. Light-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, E.I. Jr.; Soden, J.M.

    1995-07-04

    An apparatus and method are described for analyzing an integrated circuit (IC). The invention uses a focused light beam that is scanned over a surface of the IC to generate a light-induced voltage alteration (LIVA) signal for analysis of the IC. The LIVA signal may be used to generate an image of the IC showing the location of any defects in the IC; and it may be further used to image and control the logic states of the IC. The invention has uses for IC failure analysis, for the development of ICs, for production-line inspection of ICs, and for qualification of ICs. 18 figs.

  19. Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain

    PubMed Central

    Beatman, Erica L.; Massey, Aaron; Shives, Katherine D.; Burrack, Kristina S.; Chamanian, Mastooreh; Morrison, Thomas E.

    2015-01-01

    ABSTRACT We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 104.5 infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. IMPORTANCE Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal

  20. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.

    PubMed

    Brown, Marishka K; Chan, May T; Zimmerman, John E; Pack, Allan I; Jackson, Nicholas E; Naidoo, Nirinjini

    2014-06-01

    Alterations in the quality, quantity, and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response. The effectiveness of the adaptive unfolded protein response is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of X-box binding protein 1 and upregulation of phosphorylated elongation initiation factor 2 α, in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged or sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep or sleep debt discharge. PMID:24444805

  1. Diethanolamine alters neurogenesis and induces apoptosis in fetal mouse hippocampus

    PubMed Central

    Craciunescu, Corneliu N.; Wu, Renan; Zeisel, Steven H.

    2006-01-01

    Diethanolamine (DEA) is present in many consumer products such as shampoo. Dermal administration of DEA diminishes hepatic stores of the essential nutrient choline, and we previously reported that dietary choline deficiency during pregnancy reduces neurogenesis and increases apoptosis in the hippocampus of fetal rats and mice. Therefore, DEA could also alter brain development. Timed-pregnant C57BL/6 mice were dosed dermally from gestation day 7 through 17 with DEA at 0, 20, 80, 160, 320, and 640 mg/kg body/day. At doses of DEA > 80 mg/kg body/day, we observed decreased litter size. In fetuses (embryonic day 17) collected from dams treated dermally with 80 mg/kg body/day DEA, we observed decreased neural progenitor cell mitosis at the ventricular surface of the ventricular zone of the hippocampus [to 56±14% (SE) histone 3 (H3) phosphorylation as compared to controls; P < 0.01]. We also observed increased apoptosis in fetal hippocampus (to 170±10% of control measured using TUNEL and to 178±7% of control measured using activated caspase 3; P < 0.01). Thus, maternal exposure to DEA reduces the number of neural progenitor cells in hippocampus by two mechanisms, and this could permanently alter memory function in offspring of mothers exposed to this common ingredient of shampoos and soaps.—Craciunescu, C. N., Wu, R., Zeisel, S. H. Diethanolamine alters neurogenesis and induces apoptosis in fetal mouse hippocampus. PMID:16873886

  2. Mechanism of Anti-α-Synuclein Immunotherapy

    PubMed Central

    Lee, Jun Sung; Lee, Seung-Jae

    2016-01-01

    Immunization therapy targeting α-synuclein has emerged as a promising approach for Parkinson’s disease and perhaps for other synucleinopathies. Several antibodies have shown therapeutic effects in mouse models of synucleinopathies and have alleviated the pathological and behavioral phenotypes of these mice. The mechanisms through which the immunization therapy works were initially puzzling, especially given that α-synuclein is a typical cytosolic protein. Recent studies, however, suggested that extracellular α-synuclein is an important pathogenic entity, and hence, a target for immunotherapy. Here, we review the literature describing immunization therapy for synucleinopathies in mouse models and provide current thoughts on the potential mechanisms underlying the therapeutic effects of α-synuclein immunotherapy. PMID:26828212

  3. Alpha-Synuclein Proteins Promote Pro-Inflammatory Cascades in Microglia: Stronger Effects of the A53T Mutant.

    PubMed

    Hoenen, Claire; Gustin, Audrey; Birck, Cindy; Kirchmeyer, Mélanie; Beaume, Nicolas; Felten, Paul; Grandbarbe, Luc; Heuschling, Paul; Heurtaux, Tony

    2016-01-01

    Parkinson's disease (PD) is histologically described by the deposition of α-synuclein, whose accumulation in Lewy bodies causes dopaminergic neuronal death. Although most of PD cases are sporadic, point mutations of the gene encoding the α-synuclein protein cause inherited forms of PD. There are currently six known point mutations that result in familial PD. Oxidative stress and neuroinflammation have also been described as early events associated with dopaminergic neuronal degeneration in PD. Though it is known that microglia are activated by wild-type α-synuclein, little is known about its mutated forms and the signaling cascades responsible for this microglial activation. The present study was designed to investigate consequences of wild-type and mutant α-synuclein (A53T, A30P and E46K) exposure on microglial reactivity. Interestingly, we described that α-synuclein-induced microglial reactivity appeared to be peptide-dependent. Indeed, the A53T protein activated more strongly microglia than the wild-type α-synuclein and other mutants. This A53T-induced microglial reactivity mechanism was found to depend on phosphorylation mechanisms mediated by MAPKs and on successive NFkB/AP-1/Nrf2 pathways activation. These results suggest that the microgliosis intensity during PD might depend on the type of α-synuclein protein implicated. Indeed, mutated forms are more potent microglial stimulators than wild-type α-synuclein. Based on these data, anti-inflammatory and antioxidant therapeutic strategies may be valid in order to reduce microgliosis but also to subsequently slow down PD progression, especially in familial cases. PMID:27622765

  4. Investigation of cadmium-induced alterations in renal glomerular function

    SciTech Connect

    Long, T.J.

    1982-01-01

    This research was designed to test the hypothesis that certain aspects of cadmium-induced renal dysfunction are the result of glomerular, rather than classic tubular, injury. To determine whether cadmium-induced proteinuria was due to altered glomerular function, cadmium was administered chronically at a concentration of 185 ppm in the drinking water. This protocol resulted in the production of proteinuria which when analyzed by high pressure liquid chromatography and radioimmunoassay was indistinguishable from that occurring in control rats. Glomerular filtration rate, renal blood flow, and filtration fraction were all significantly depressed after 20-30 weeks of exposure. In order to further investigate these alterations in glomerular function, an acute exposure model was developed. It was found that a single i.p. injection of cadmium in mercaptoethanol resulted in the onset of acute renal failure. The clinical picture was characterized by a reduction in glomerular filtrate rate of 50-90% within 24 hours, with partial to total recovery occurring by day 7 post-exposure. Histological evidence indicated that to a large extent the reduction in GFR was due to tubular blockade and/or backleak of filtrate across damaged tubules.

  5. Structural transitions in the intrinsically disordered Parkinson's protein alpha-synuclein

    NASA Astrophysics Data System (ADS)

    Eliezer, David

    2013-03-01

    The protein alpha-synuclein is genetically and histopathologically associated with familial and sporadic Parkinson's disease. Although considered to belong to the category of intrinsically disordered proteins for well over a decade, recent reports have suggested that synuclein may actually exist predominantly in a native, well-structured, tetrameric form. Experiments using in-cell NMR, which bypass potential structural perturbations caused by purification protocols, conclusively demonstrate that recombinant synuclein is in fact highly disordered and monomeric. In the presence of membranes, however, the protein undergoes a coil-to-helix transition to adopt several highly helical conformations, which are proposed to mediate both its normal function and its membrane-induced aggregation into amyloid fibrils. Supported by NIH grant R37AG019391

  6. Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of α-Synuclein.

    PubMed

    Werner-Allen, Jon W; DuMond, Jenna F; Levine, Rodney L; Bax, Ad

    2016-06-20

    Parkinson's disease has long been known to involve the loss of dopaminergic neurons in the substantia nigra and the coincidental appearance of Lewy bodies containing oligomerized forms of α-synuclein. The "catecholaldehyde hypothesis" posits a causal link between these two central pathologies mediated by 3,4-dihydroxyphenylacetaldehyde (DOPAL), the most toxic dopamine metabolite. Here we determine the structure of the dominant product in reactions between DOPAL and α-synuclein, a dicatechol pyrrole lysine adduct. This novel modification results from the addition of two DOPAL molecules to the Lys sidechain amine through their aldehyde moieties and the formation of a new carbon-carbon bond between their alkyl chains to generate a pyrrole ring. The product is detectable at low concentrations of DOPAL and its discovery should provide a valuable chemical basis for future studies of DOPAL-induced crosslinking of α-synuclein. PMID:27158766

  7. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    PubMed Central

    Bernardi, Caren; Tramontina, Ana Carolina; Nardin, Patrícia; Biasibetti, Regina; Costa, Ana Paula; Vizueti, Adriana Fernanda; Batassini, Cristiane; Tortorelli, Lucas Silva; Wartchow, Krista Minéia; Dutra, Márcio Ferreira; Bobermin, Larissa; Sesterheim, Patrícia; Quincozes-Santos, André; de Souza, Jaqueline; Gonçalves, Carlos Alberto

    2013-01-01

    Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day) for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP), glutamate uptake and glutamine synthetase (GS) activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF) levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry) and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy. PMID:23401802

  8. Treadmill exercise induces hippocampal astroglial alterations in rats.

    PubMed

    Bernardi, Caren; Tramontina, Ana Carolina; Nardin, Patrícia; Biasibetti, Regina; Costa, Ana Paula; Vizueti, Adriana Fernanda; Batassini, Cristiane; Tortorelli, Lucas Silva; Wartchow, Krista Minéia; Dutra, Márcio Ferreira; Bobermin, Larissa; Sesterheim, Patrícia; Quincozes-Santos, André; de Souza, Jaqueline; Gonçalves, Carlos Alberto

    2013-01-01

    Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day) for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP), glutamate uptake and glutamine synthetase (GS) activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF) levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry) and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy. PMID:23401802

  9. A progressive dopaminergic phenotype associated with neurotoxic conversion of α-synuclein in BAC-transgenic rats

    PubMed Central

    Harmuth, Florian; Kohl, Zacharias; Adame, Anthony; Trejo, Margaritha; Schönig, Kai; Zimmermann, Frank; Bauer, Claudia; Casadei, Nicolas; Giel, Christiane; Calaminus, Carsten; Pichler, Bernd J.; Jensen, Poul H.; Müller, Christian P.; Amato, Davide; Kornhuber, Johannes; Teismann, Peter; Yamakado, Hodaka; Takahashi, Ryosuke; Winkler, Juergen; Masliah, Eliezer; Riess, Olaf

    2013-01-01

    Conversion of soluble α-synuclein into insoluble and fibrillar inclusions is a hallmark of Parkinson’s disease and other synucleinopathies. Accumulating evidence points towards a relationship between its generation at nerve terminals and structural synaptic pathology. Little is known about the pathogenic impact of α-synuclein conversion and deposition at nigrostriatal dopaminergic synapses in transgenic mice, mainly owing to expression limitations of the α-synuclein construct. Here, we explore whether both the rat as a model and expression of the bacterial artificial chromosome construct consisting of human full-length wild-type α-synuclein could exert dopaminergic neuropathological effects. We found that the human promoter induced a pan-neuronal expression, matching the rodent α-synuclein expression pattern, however, with prominent C-terminally truncated fragments. Ageing promoted conversion of both full-length and C-terminally truncated α-synuclein species into insolube and proteinase K-resistant fibres, with strongest accumulation in the striatum, resembling biochemical changes seen in human Parkinson’s disease. Transgenic rats develop early changes in novelty-seeking, avoidance and smell before the progressive motor deficit. Importantly, the observed pathological changes were associated with severe loss of the dopaminergic integrity, thus resembling more closely the human pathology. PMID:23413261

  10. A progressive dopaminergic phenotype associated with neurotoxic conversion of α-synuclein in BAC-transgenic rats.

    PubMed

    Nuber, Silke; Harmuth, Florian; Kohl, Zacharias; Adame, Anthony; Trejo, Margaritha; Schönig, Kai; Zimmermann, Frank; Bauer, Claudia; Casadei, Nicolas; Giel, Christiane; Calaminus, Carsten; Pichler, Bernd J; Jensen, Poul H; Müller, Christian P; Amato, Davide; Kornhuber, Johannes; Teismann, Peter; Yamakado, Hodaka; Takahashi, Ryosuke; Winkler, Juergen; Masliah, Eliezer; Riess, Olaf

    2013-02-01

    Conversion of soluble α-synuclein into insoluble and fibrillar inclusions is a hallmark of Parkinson's disease and other synucleinopathies. Accumulating evidence points towards a relationship between its generation at nerve terminals and structural synaptic pathology. Little is known about the pathogenic impact of α-synuclein conversion and deposition at nigrostriatal dopaminergic synapses in transgenic mice, mainly owing to expression limitations of the α-synuclein construct. Here, we explore whether both the rat as a model and expression of the bacterial artificial chromosome construct consisting of human full-length wild-type α-synuclein could exert dopaminergic neuropathological effects. We found that the human promoter induced a pan-neuronal expression, matching the rodent α-synuclein expression pattern, however, with prominent C-terminally truncated fragments. Ageing promoted conversion of both full-length and C-terminally truncated α-synuclein species into insolube and proteinase K-resistant fibres, with strongest accumulation in the striatum, resembling biochemical changes seen in human Parkinson's disease. Transgenic rats develop early changes in novelty-seeking, avoidance and smell before the progressive motor deficit. Importantly, the observed pathological changes were associated with severe loss of the dopaminergic integrity, thus resembling more closely the human pathology. PMID:23413261

  11. Behavioral and Histopathological Consequences of Paraquat Intoxication in Mice: Effects of α-Synuclein Over-Expression

    PubMed Central

    Fernagut, P.O.; Hutson, C.B.; Fleming, S.M.; Tetreaut, N.A.; Salcedo, J.; Masliah, E.; Chesselet, M.F.

    2011-01-01

    Genetic variability in the α-synuclein gene and long-term exposure to the pesticide paraquat constitute possible risk factors for sporadic Parkinson’s disease. The goal of the present study was to further characterize the effects of paraquat in mice as a model of Parkinson’s disease and to determine whether it acted synergistically with α-synuclein over-expression to cause nigrostriatal cell death or dysfunction. Paraquat (10 mg/kg i.p.) was administered once a week for 3 weeks to mice over-expressing human α-synuclein under the Thy1 promoter and their wild-type littermates. The effect of paraquat on catecholaminergic neurons was reminiscent of that of Parkinson’s disease, with preferential loss of dopaminergic neurons in the ventral tier of the substantia nigra pars compacta and loss of tyrosine hydroxylase staining in the locus coeruleus. α-Synuclein over-expression did not increase paraquat-induced cell loss, and paraquat did not worsen the behavioral deficits observed in the transgenic mice. However, paraquat markedly increased proteinase-K-resistant α-synuclein aggregates in substantia nigra of the transgenic mice. The data further validate the use of paraquat to model Parkinson’s disease in mice and show that although paraquat and α-synuclein over-expression act synergistically to increase protein aggregation in vivo, this interaction does not result in short-term neuroprotection or increased vulnerability of nigrostriatal neurons. PMID:17879265

  12. Artificial sweeteners induce glucose intolerance by altering the gut microbiota.

    PubMed

    Suez, Jotham; Korem, Tal; Zeevi, David; Zilberman-Schapira, Gili; Thaiss, Christoph A; Maza, Ori; Israeli, David; Zmora, Niv; Gilad, Shlomit; Weinberger, Adina; Kuperman, Yael; Harmelin, Alon; Kolodkin-Gal, Ilana; Shapiro, Hagit; Halpern, Zamir; Segal, Eran; Elinav, Eran

    2014-10-01

    Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage. PMID:25231862

  13. Thermally-induced voltage alteration for analysis of microelectromechanical devices

    DOEpatents

    Walraven, Jeremy A.; Cole, Jr., Edward I.

    2002-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing a microelectromechanical (MEM) device with or without on-board integrated circuitry. One embodiment of the TIVA apparatus uses constant-current biasing of the MEM device while scanning a focused laser beam over electrically-active members therein to produce localized heating which alters the power demand of the MEM device and thereby changes the voltage of the constant-current source. This changing voltage of the constant-current source can be measured and used in combination with the position of the focused and scanned laser beam to generate an image of any short-circuit defects in the MEM device (e.g. due to stiction or fabrication defects). In another embodiment of the TIVA apparatus, an image can be generated directly from a thermoelectric potential produced by localized laser heating at the location of any short-circuit defects in the MEM device, without any need for supplying power to the MEM device. The TIVA apparatus can be formed, in part, from a scanning optical microscope, and has applications for qualification testing or failure analysis of MEM devices.

  14. Thermally-induced voltage alteration for integrated circuit analysis

    DOEpatents

    Cole, Jr., Edward I.

    2000-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  15. Hydrogen peroxide induces lysosomal protease alterations in PC12 cells.

    PubMed

    Lee, Daniel C; Mason, Ceceile W; Goodman, Carl B; Holder, Maurice S; Kirksey, Otis W; Womble, Tracy A; Severs, Walter B; Palm, Donald E

    2007-09-01

    Alterations in lysosomal proteases have been implicated in many neurodegenerative diseases. The current study demonstrates a concentration-dependent decrease in PC12 cell viability and transient changes in cystatin C (CYSC), cathepsin B (CATB), cathepsin D (CATD) and caspase-3 following exposure to H2O2. Furthermore, activation of CATD occurred following exposure to H2O2 and cysteine protease suppression, while inhibition of CATD with pepstatin A significantly improved cell viability. Additionally, significant PARP cleavage, suggestive of caspase-3-like activity, was observed following H2O2 exposure, while inhibition of caspase-3 significantly increased cell viability compared to H2O2 administration alone. Collectively, our data suggest that H2O2 induced cell death is regulated at least in part by caspase-3 and CATD. Furthermore, cysteine protease suppression increases CATD expression and activity. These studies provide insight for alternate pathways and potential therapeutic targets of cell death associated with oxidative stress and lysosomal protease alterations. PMID:17440810

  16. Epigenetic Alterations Induced by Ambient Particulate Matter in Mouse Macrophages

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cécile G.; Aykin-Burns, Nükhet; Wang, Xiaoying; Basnakian, Alexei; Kavouras, Ilias G.; Koturbash, Igor

    2014-01-01

    Respiratory mortality and morbidity has been associated with exposure to particulate matter (PM). Experimental evidence suggests involvement of cytotoxicity, oxidative stress, and inflammation in the development of PM-associated pathological states; however, the exact mechanisms remain unclear. In the current study, we analyzed short-term epigenetic response to PM10 (particles with aerodynamic diameter less than 10 μm) exposure in mouse ascitic RAW264.7 macrophages (BALB/C Abelson murine leukemia virus-induced tumor). Ambient PM10 was collected using a high volume sampler in Little Rock, AR. Analysis revealed that PM10 was composed mainly of Al and Fe, and the water soluble organic fraction was dominated by aliphatic and carbohydrate fragments and minor quantities of aromatic components. Exposure to PM10 compromised the cellular epigenome at concentrations 10–200 μg/ml. Specifically, epigenetic alterations were evident as changes in the methylation and expression of repetitive element-associated DNA and associated DNA methylation machinery. These results suggest that epigenetic alterations, in concert with cytotoxicity, oxidative stress, and inflammation, might contribute to the pathogenesis of PM-associated respiratory diseases. PMID:24535919

  17. Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease

    PubMed Central

    Murphy, Karen E.; Gysbers, Amanda M.; Abbott, Sarah K.; Tayebi, Nahid; Kim, Woojin S.; Sidransky, Ellen; Cooper, Antony; Garner, Brett

    2014-01-01

    Heterozygous mutations in GBA1, the gene encoding lysosomal glucocerebrosidase, are the most frequent known genetic risk factor for Parkinson’s disease. Reduced glucocerebrosidase and α-synuclein accumulation are directly related in cell models of Parkinson’s disease. We investigated relationships between Parkinson’s disease-specific glucocerebrosidase deficits, glucocerebrosidase-related pathways, and α-synuclein levels in brain tissue from subjects with sporadic Parkinson’s disease without GBA1 mutations. Brain regions with and without a Parkinson’s disease-related increase in α-synuclein levels were assessed in autopsy samples from subjects with sporadic Parkinson’s disease (n = 19) and age- and post-mortem delay-matched controls (n = 10). Levels of glucocerebrosidase, α-synuclein and related lysosomal and autophagic proteins were assessed by western blotting. Glucocerebrosidase enzyme activity was measured using a fluorimetric assay, and glucocerebrosidase and α-synuclein messenger RNA expression determined by quantitative polymerase chain reaction. Related sphingolipids were analysed by mass spectrometry. Multivariate statistical analyses were performed to identify differences between disease groups and regions, with non-parametric correlations used to identify relationships between variables. Glucocerebrosidase protein levels and enzyme activity were selectively reduced in the early stages of Parkinson’s disease in regions with increased α-synuclein levels although limited inclusion formation, whereas GBA1 messenger RNA expression was non-selectively reduced in Parkinson’s disease. The selective loss of lysosomal glucocerebrosidase was directly related to reduced lysosomal chaperone-mediated autophagy, increased α-synuclein and decreased ceramide. Glucocerebrosidase deficits in sporadic Parkinson’s disease are related to the abnormal accumulation of α-synuclein and are associated with substantial alterations in lysosomal chaperone

  18. Targeting α-synuclein: Therapeutic options.

    PubMed

    Dehay, Benjamin; Decressac, Mickael; Bourdenx, Mathieu; Guadagnino, Irene; Fernagut, Pierre-Olivier; Tamburrino, Anna; Bassil, Fares; Meissner, Wassilios G; Bezard, Erwan

    2016-06-01

    The discovery of the central role of α-synuclein (αSyn) in the pathogenesis of Parkinson's disease (PD) has powered, in the last decade, the emergence of novel relevant models of this condition based on viral vector-mediated expression of the disease-causing protein or inoculation of toxic species of αSyn. Although the development of these powerful tools and models has provided considerable insights into the mechanisms underlying neurodegeneration in PD, it has also been translated into the expansion of the landscape of preclinical therapeutic strategies. Much attention is now brought to the proteotoxic mechanisms induced by αSyn and how to block them using strategies inspired by intrinsic cellular pathways such as the enhancement of cellular clearance by the lysosomal-autophagic system, through proteasome-mediated degradation or through immunization. The important effort undertaken by several laboratories and consortia to tackle these issues and identify novel targets warrants great promise for the discovery not only of neuroprotective approaches but also of restorative strategies for PD and other synucleinopathies. In this viewpoint, we summarize the latest advances in this new area of PD research and will discuss promising approaches and ongoing challenges. © 2016 International Parkinson and Movement Disorder Society. PMID:26926119

  19. Gastrointestinal motor alterations induced by precipitated benzodiazepine withdrawal in rats.

    PubMed

    Martinez, J; Fargeas, M J; Bueno, L

    1992-03-01

    The effects of benzodiazepine withdrawal on intestinal motor activity and propulsion were investigated in two groups of diazepam-dependent rats (15 mg/kg/day for 8 days). Withdrawal was precipitated by injection of two benzodiazepine antagonists (Ro 15.1788 and PK 11.95) acting on central and peripheral-type receptors, respectively. Intestinal motor activity was assessed by implanting electrodes for long-term electromyographic recordings. Gastrointestinal transit was evaluated after gavage by a marker (51CrO4Na2) and radioactivity counting. Both RO 15.1788 (15 mg/kg) and PK 11.195 (5 mg/kg) triggered an abstinence syndrome with behavioral and autonomic signs. At the intestinal level, Ro 15.1788 induced a phase of strong irregular spiking activity (173 +/- 63 min) which remained located in the duodenum. In contrast, PK 11.195 induced a period of propagated myoelectric complexes characterized by phases II and III of high amplitude. The cecal frequency was doubled during the 1st hr after withdrawal induced by the two antagonists. Both Ro 15.1788 and PK 11.195 at this dosage had no effect per se on intestinal motility in vehicle-treated rats. In the second group of rats, gastric emptying was enhanced by 49.4 and 45.6% by Ro 15.1788 and PK 11.195, respectively. In contrast, PK 11.195 was able to accelerate the intestinal transit more than did Ro 15.1788 (geometric center, 5.9 +/- 0.43 and 5.3 +/- 0.49, respectively, vs. 4.1 +/- 0.31 in control rats). Our study shows that precipitated benzodiazepine withdrawal in diazepam-dependent rats induces alterations of the intestinal myoelectrical activity leading to an increase of the gastrointestinal transit. Central and peripheral-type receptors are involved in these effects. PMID:1312156

  20. Galantamine reverses scopolamine-induced behavioral alterations in Dugesia tigrina.

    PubMed

    Ramakrishnan, Latha; Amatya, Christina; DeSaer, Cassie J; Dalhoff, Zachary; Eggerichs, Michael R

    2014-09-01

    In planaria (Dugesia tigrina), scopolamine, a nonselective muscarinic receptor antagonist, induced distinct behaviors of attenuated motility and C-like hyperactivity. Planarian locomotor velocity (pLMV) displayed a dose-dependent negative correlation with scopolamine concentrations from 0.001 to 1.0 mM, and a further increase in scopolamine concentration to 2.25 mM did not further decrease pLMV. Planarian hyperactivity counts was dose-dependently increased following pretreatment with scopolamine concentrations from 0.001 to 0.5 mM and then decreased for scopolamine concentrations ≥ 1 mM. Planarian learning and memory investigated using classical Pavlovian conditioning experiments demonstrated that scopolamine (1 mM) negatively influenced associative learning indicated by a significant decrease in % positive behaviors from 86 % (control) to 14 % (1 mM scopolamine) and similarly altered memory retention, which is indicated by a decrease in % positive behaviors from 69 % (control) to 27 % (1 mM scopolamine). Galantamine demonstrated a complex behavior in planarian motility experiments since co-application of low concentrations of galantamine (0.001 and 0.01 mM) protected planaria against 1 mM scopolamine-induced motility impairments; however, pLMV was significantly decreased when planaria were tested in the presence of 0.1 mM galantamine alone. Effects of co-treatment of scopolamine and galantamine on memory retention in planaria via classical Pavlovian conditioning experiments showed that galantamine (0.01 mM) partially reversed scopolamine (1 mM)-induced memory deficits in planaria as the % positive behaviors increased from 27 to 63 %. The results demonstrate, for the first time in planaria, scopolamine's effects in causing learning and memory impairments and galantamine's ability in reversing scopolamine-induced memory impairments. PMID:24402079

  1. Fracture-aperture alteration induced by calcite precipitation

    NASA Astrophysics Data System (ADS)

    Jones, T.; Detwiler, R. L.

    2013-12-01

    Mineral precipitation significantly alters the transport properties of fractured rock. Chemical solubility gradients that favor precipitation induce mineral growth, which decreases the local aperture and alters preferential flow paths. Understanding the resulting development of spatial heterogeneities is necessary to predict the evolution of transport properties in the subsurface. We present experimental results that quantify the relationship between mineral precipitation and aperture alteration in a transparent analog fracture, 7.62cm x 7.62cm, with a uniform aperture of ~200 μm. Prior to flow experiments, a pump circulated a super-saturated calcite solution over the bottom glass, coating the glass surface with calcite. This method of seeding resulted in clusters of calcite crystals with large reactive surface area and provided micro-scale variability in the aperture field. A continuous flow syringe pump injected a reactive fluid into the fracture at 0.5 ml/min. The fluid was a mixture of sodium bicarbonate (NaHCO3, 0.02M) and calcium chloride (CaCl2 0.0004M) with a saturation index, Ω, of 8.51 with respect to calcite. A strobed LED panel backlit the fracture and a high-resolution CCD camera monitored changes in transmitted light intensity. Light transmission techniques provided a quantitative measurement of fracture aperture over the flow field. Results from these preliminary experiments showed growth near the inlet of the fracture, with decreasing precipitation rates in the flow direction. Over a period of two weeks, the fracture aperture decreased by 17% within the first 4mm of the inlet. Newly precipitated calcite bridged individual crystal clusters and smoothed the reacting surface. This observation is an interesting contradiction to the expectation of surface roughening induced by mineral growth. Additionally, the aperture decreased uniformly across the width of the fracture due to the initial aperture distribution. Future experiments of precipitation

  2. Structural Characteristics of the Alpha-Synuclein Oligomers Stabilized By the Flavonoid Baicalein

    SciTech Connect

    Hong, D.-P.; Fink, A.L.; Uversky, V.N.

    2009-05-18

    The flavonoid baicalein inhibits fibrillation of alpha-synuclein, which is a major component of Lewy bodies in Parkinson's disease. It has been known that baicalein induces the formation of alpha-synuclein oligomers and consequently prevents their fibrillation. In order to evaluate the structural properties of baicalein-stabilized oligomers, we purified oligomer species by HPLC and examined their stability and structure by CD, Fourier transform infrared spectroscopy, size exclusion chromatography HPLC, small-angle X-ray scattering, and atomic force microscopy. Baicalein-stabilized oligomers are beta-sheet-enriched according to CD and Fourier transform infrared spectroscopy analyses. They did not form fibrils even after very prolonged incubation. From small-angle X-ray scattering data and atomic force microscopy images, the oligomers were characterized as quite compact globular species. Oligomers were extremely stable, with a GdmCl C(m)=3.3 M. This high stability explains the previously observed inhibition properties of baicalein against alpha-synuclein fibrillation. These baicalein-stabilized oligomers, added to the solution of aggregating alpha-synuclein, were able to noticeably inhibit its fibrillation. After prolonged coincubation, short fibrils were formed, suggesting an effective interaction of oligomers with monomeric alpha-synuclein. Membrane permeability tests suggested that the baicalein-stabilized oligomers had a mild effect on the integrity of the membrane surface. This effect was rather similar to that of the monomeric protein, suggesting that targeted stabilization of certain alpha-synuclein oligomers might offer a potential strategy for the development of novel Parkinson's disease therapies.

  3. Alterations in the rat electrocardiogram induced by stationary magnetic fields

    SciTech Connect

    Gaffey, C.T.; Tenforde, T.S.

    1981-01-01

    A field strength dependent increase in the amplitude of the T-wave signal in the rat electrocardiogram (ECG) was observed during exposure to homogeneous, stationary magnetic fields. For 24 adult Sprague-Dswley and Buffalo rats of both sexes, the T-wave amplitude was found to increase by an average of 408% in a 2.0 Tesla (1 Tesla = 10/sup 4/ Gauss) field. No significant magnetically induced changes were observed in other components of the ECG record, including the P wave and the QRS complex. The minimum field level at which augmentation of the T wave could be detected was 0.3 Tesla. The magnetically induced increase in T-wave amplitude occurred instantaneously, and was immediately reversible after exposure to fields as high as 2.0 Tesla. No abnormalities in any component of the ECG record, including the T wave, were noted during a period of 3 weeks following cessation of a continuous 5-h exposure of rats to a 1.5-Tesla field. The heart rate and breathing rate of adult rats were not altered during, or subsequent to, application of fields up to 2.0 Tesla. The effect of animal orientation within the field was tested using juvenile rats 3-14 days old. The maximum increase in T-wave amplitude was observed when subjects were placed with the long axis of the body perpendicular to the lines of magnetic induction. (JMT)

  4. Early biochemical alterations induced by 2-acetylaminofluorene in rat liver.

    PubMed

    Elliott, W L; Sawick, D P; Creek, K E; Deutscher, S L; Quinn, J F; Yeo, E; Webb, W R; Morré, D M; Harrington, D D; Heinstein, P F

    1984-01-01

    Livers from rats fed the carcinogen 2-acetylaminofluorene (AAF) were analyzed at weekly or semiweekly intervals to correlate appearance of enzymatic markers in total liver homogenates with histochemical events accompanying formation of hyperplastic liver nodules. gamma-Glutamyltranspeptidase (gamma-GT)-positive foci appeared by day 11 and visible nodules were present by days 28-35. Specific activity of homogenate gamma-GT increased in parallel to formation of hyperplastic foci and nodules, declined and then rose again to 20-fold that of controls by day 77. Specific activity of ornithine decarboxylase increased in advance of that of gamma-GT, to a level of 8-fold above control during the period of formation of hyperplastic foci. An early response was a 2-fold rise in the specific activity of nucleoside diphosphate phosphatase during the first week of carcinogen administration. The specific activity of 5'-nucleotidase, known to increase during liver regeneration, declined as the animals aged and was not increased by the dietary AAF. The enzymatic alterations induced by AAF could not be mimicked by cell proliferation, diet stress or the hepatotoxicity induced by feeding 1.87% 4-acetamidophenol. PMID:6148271

  5. Salivary total α-synuclein, oligomeric α-synuclein and SNCA variants in Parkinson’s disease patients

    PubMed Central

    Kang, Wenyan; Chen, Wei; Yang, Qiong; Zhang, Lina; Zhang, Linyuan; Wang, Xiaoying; Dong, Fangyi; Zhao, Yang; Chen, Shuai; Quinn, Thomas J.; Zhang, Jing; Chen, Shengdi; Liu, Jun

    2016-01-01

    The present study was to evaluate the diagnostic value of salivary total and oligomeric α-synuclein levels in PD. Furthermore, we sought to explore the relationship between salivary total α-synuclein and α-synuclein SNP variants levels. 201 PD patients and 67 controls were recruited, of which there also had the genetic information of two positive α-synuclein (SNCA) loci. Salivary total α-synuclein was assayed using a highly sensitive Luminex assay and oligomeric α-synuclein was quantified by the combination of Gel filtration chromatography and Western blot, respectively. From our analysis,No difference in salivary total α-synuclein levels was found between PD patients and healthy controls, it decreased with age in PD patients, and was closely associated with genotypic distribution of rs11931074 and rs894278 in PD, respectively. After controlled for age and genders, G allele of rs11931074 was correlated with lower salivary total α-synuclein levels, while G allele of rs894278 was also correlated with the higher levels. Simultaneously, the further study was shown that salivary oligomeric α-synuclein in PD patients significantly increased comparing to healthy controls. In conclusions,our study firstly demonstrated that salivary total α-synuclein levels could be manipulated by different α-synuclein SNPs and salivary oligomeric α-synuclein could be a potential diagnostic indicator of PD. PMID:27335051

  6. Is the NACP/Synuclein gene involved in early-onset Alheimer`s disease?

    SciTech Connect

    Champion, D.; Clerget-Darpoux, F.; Frebourg, T.

    1994-09-01

    The major component of senile plaques (SP), the most specific histologic lesion of Alzheimer`s disease (AD) is the A4 peptide, derived from a large precursor protein (APP). Recently, a second major component of SP has been isolated. This 35 AA peptide was named non-A4 component amyloid (NAC) and its precursor - a 140 AA protein - was named NACP. Computer homology search has allowed us to establish that the NACP gene is homologous to the rat synuclein gene which is expressed in neurons. Since APP mutations have been shown to cause early-onset Alzheimer`s disease (EOAD) in several families, we investigated whether the NACP/synuclein gene was also involved in familial early-onset Alzheimer`s disease (FEOAD). RT-PCR and direct sequencing of the entire NACP open reading frame did not reveal any alteration of the NACP coding sequence in lymphocytes of 26 unrelated FEOAD patients. We showed that the NACP/synuclein gene was alternatively spliced and that the different transcripts potentially encoded for distinct proteins all containing the NAC peptide. Accumulation of NAC in SP might result from a dysregulation of NACP/synuclein expression.

  7. Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution.

    PubMed

    Di Carlo, Maria Giovanna; Vetri, Valeria; Buscarino, Gianpiero; Leone, Maurizio; Vestergaard, Bente; Foderà, Vito

    2016-09-01

    The conversion of proteins into amyloid fibrils and other amyloid-like aggregates is closely connected to the onset of a series of age-related pathologies. Upon changes in environmental conditions, amyloid-like aggregates may also undergo disassembly into oligomeric aggregates, the latter being recognized as key effectors in toxicity. This indicates new possible routes for in vivo accumulation of toxic species. In the light of the recognized implication of α-Synuclein (αSN) in Parkinson's disease, we present an experimental study on supramolecular assembly of αSN with a focus on stability and disassembly paths of such supramolecular aggregate species. Using spectroscopic techniques, two-photon microscopy, small-angle X-ray scattering and atomic force microscopy, we report evidences on how the stability of αSN amyloid-like aggregates can be altered by changing solution conditions. We show that amyloid-like aggregate formation can be induced at high temperature in the presence of trifluoroethanol (TFE). Moreover, sudden disassembly or further structural reorganisation toward higher hierarchical species can be induced by varying TFE concentration. Our results may contribute in deciphering fundamental mechanisms and interactions underlying supramolecular clustering/dissolution of αSN oligomers in cells. PMID:27372900

  8. Alterations in the rat electrocardiogram induced by stationary magnetic fields

    SciTech Connect

    Gaffey, C.T.; Tenforde, T.S.

    1981-01-01

    A field strength dependent increase in the amplitude of the T-wave signal in the rat electrocardiogram (ECG) was observed during exposure to homogeneous, stationary magnetic fields. For 24 adult Sprague-Dawley and Buffalo rats of both sexes, the T-wave amplitude was found to increase by an average of 408% in a 2.0 Tesla (1 Tesla - 10(4) Gauss) field. No significant magnetically induced changes were observed in other components of the ECG record, including the P wave and the QRS complex. The minimum field level at which augmentation of the T wave could be detected was 0.3 Tesla. The magnetically induced increase in T-wave amplitude occurred instantaneously, and was immediately reversible after exposure to fields as high as 2.0 Tesla. No abnormalities in any component of the ECG record, including the T wave, were noted during a period of 3 weeks following cessation of a continuous 5-h exposure of rats to a 1.5-Tesla field. The heart rate and breathing rate of adult rats were not altered during, or subsequent to, application of fields up to 2.0 Tesla. The effect of animal orientation within the field was tested using juvenile rats 3-14 days old. The maximum increase in T-wave amplitude was observed when subjects were placed with the long axis of the body perpendicular to the lines of magnetic induction. These experimental observations, as well as theoretical considerations, suggest that augmentation of the signal amplitude in the T-wave segment of the ECG may result from a superimposed electrical potential generated by aortic blood flow in the presence of a stationary magnetic field.

  9. Drought induces alterations in the stomatal development program in Populus

    PubMed Central

    Campbell, Malcolm M

    2012-01-01

    Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar. PMID:22760471

  10. Morphofunctional renal alterations in rats induced by intrauterine hyperglycemic environment

    PubMed Central

    França-Silva, Nathane; Oliveira, Natácia Dreyce Gonçalves

    2015-01-01

    Introduction The renal development of rats begins in intrauterine life, finishing by 15 days after birth. Diabetes and other diseases during pregnancy can cause systemic changes in the offspring. We evaluated the structural and functional renal alterations of the offspring from diabetic mothers. Material and methods Pregnant rats were separated and 1, 7, 30 and 90 days-old (DO) pups were divided into groups according to the treatment that the mothers received: G1: control, G2: untreated diabetic and G3: insulin-treated diabetic. The kidneys from offspring at 1, 7 and 30 DO were removed for immunohistochemical and histological studies. Furthermore, blood and urine samples were collected from animals at 30 DO to determine the glomerular filtration rate (GFR) by creatinine clearance, and the animals at 90 DO were subjected to blood pressure measurement by plethysmography. Results Our results show an increase of PCNA+ glomerular cells at 7 DO and a reduction in 30 DO animals as well as increased α-smooth muscle actin (α-SMA) tubulointerstitial expression at 1 and 7 DO in animals from G2, when compared with controls. The adult offspring from G2 showed reduced GFR and increased blood pressure. Conclusions Maternal diabetes may have induced programming of renal damage in offspring of hyperglycemic mothers, which may have contributed to the impairment of renal function. PMID:27186167

  11. Platelets Potentiate Brain Endothelial Alterations Induced by Plasmodium falciparum

    PubMed Central

    Wassmer, Samuel C.; Combes, Valéry; Candal, Francisco J.; Juhan-Vague, Irène; Grau, Georges E.

    2006-01-01

    Brain lesions of cerebral malaria (CM) are characterized by a sequestration of Plasmodium falciparum-parasitized red blood cells (PRBC) and platelets within brain microvessels, as well as by blood-brain barrier (BBB) disruption. In the present study, we evaluated the possibility that PRBC and platelets induce functional alterations in brain endothelium. In a human brain endothelial cell line, named HBEC-5i, exhibiting most of the features demanded for a pathophysiological study of BBB, tumor necrosis factor (TNF) or lymphotoxin α (LT-α) reduced transendothelial electrical resistance (TEER), enhanced the permeability to 70-kDa dextran, and increased the release of microparticles, a recently described indicator of disease severity in CM patients. In vitro cocultures showed that platelets or PRBC can have a direct cytotoxic effect on activated, but not on resting, HBEC-5i cells. Platelet binding was required, as platelet supernatant had no effect. Furthermore, platelets potentiated the cytotoxicity of PRBC for TNF- or LT-α-activated HBEC-5i cells when they were added prior to these cells on the endothelial monolayers. This effect was not observed when platelets were added after PRBC. Both permeability and TEER were strongly affected, and the apoptosis rate of HBEC-5i cells was dramatically increased. These findings provide insights into the mechanisms by which platelets can be deleterious to the brain endothelium during CM. PMID:16369021

  12. Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity

    PubMed Central

    Tarale, Prashant; Chakrabarti, Tapan; Sivanesan, Saravanadevi; Naoghare, Pravin; Bafana, Amit; Krishnamurthi, Kannan

    2016-01-01

    Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease. PMID:27314012

  13. Intracellular Dynamics of Synucleins: "Here, There and Everywhere".

    PubMed

    Surguchov, Andrei

    2015-01-01

    Synucleins are small, soluble proteins expressed primarily in neural tissue and in certain tumors. The synuclein family consists of three members: α-, β-, and γ-synucleins present only in vertebrates. Members of the synuclein family have high sequence identity, especially in the N-terminal regions. The synuclein gene family came into the spotlight, when one of its members, α-synuclein, was found to be associated with Parkinson's disease and other neurodegenerative disorders, whereas γ-synuclein was linked to several forms of cancer. There are a lot of controversy and exciting debates concerning members of the synuclein family, including their normal functions, toxicity, role in pathology, transmission between cells and intracellular localization. Important findings which remain undisputable for many years are synuclein localization in synapses and their role in the regulation of synaptic vesicle trafficking, whereas their presence and function in mitochondria and nucleus is a debated topic. In this review, we present the data on the localization of synucleins in two intracellular organelles: the nucleus and mitochondria. PMID:26614873

  14. α-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons.

    PubMed

    Zaltieri, Michela; Grigoletto, Jessica; Longhena, Francesca; Navarria, Laura; Favero, Gaia; Castrezzati, Stefania; Colivicchi, Maria Alessandra; Della Corte, Laura; Rezzani, Rita; Pizzi, Marina; Benfenati, Fabio; Spillantini, Maria Grazia; Missale, Cristina; Spano, PierFranco; Bellucci, Arianna

    2015-07-01

    The main neuropathological features of Parkinson's disease are dopaminergic nigrostriatal neuron degeneration, and intraneuronal and intraneuritic proteinaceous inclusions named Lewy bodies and Lewy neurites, respectively, which mainly contain α-synuclein (α-syn, also known as SNCA). The neuronal phosphoprotein synapsin III (also known as SYN3), is a pivotal regulator of dopamine neuron synaptic function. Here, we show that α-syn interacts with and modulates synapsin III. The absence of α-syn causes a selective increase and redistribution of synapsin III, and changes the organization of synaptic vesicle pools in dopamine neurons. In α-syn-null mice, the alterations of synapsin III induce an increased locomotor response to the stimulation of synapsin-dependent dopamine overflow, despite this, these mice show decreased basal and depolarization-dependent striatal dopamine release. Of note, synapsin III seems to be involved in α-syn aggregation, which also coaxes its increase and redistribution. Furthermore, synapsin III accumulates in the caudate and putamen of individuals with Parkinson's disease. These findings support a reciprocal modulatory interaction of α-syn and synapsin III in the regulation of dopamine neuron synaptic function. PMID:25967550

  15. Southern analysis of genomic alterations in gamma-ray-induced aprt- hamster cell mutants

    SciTech Connect

    Grosovsky, A.J.; Drobetsky, E.A.; deJong, P.J.; Glickman, B.W.

    1986-06-01

    The role of genomic alterations in mutagenesis induced by ionizing radiation has been the subject of considerable speculation. By Southern blotting analysis we show here that 9 of 55 (approximately 1/6) gamma-ray-induced mutants at the adenine phosphoribosyl transferase (aprt) locus of Chinese hamster ovary (CHO) cells have a detectable genomic rearrangement. These fall into two classes: intragenic deletions and chromosomal rearrangements. In contrast, no major genomic alterations were detected among 67 spontaneous mutants, although two restriction site loss events were observed. Three gamma-ray-induced mutants were found to be intragenic deletions; all may have identical break-points. The remaining six gamma-ray-induced mutants demonstrating a genomic alteration appear to be the result of chromosomal rearrangements, possibly translocation or inversion events. None of the remaining gamma-ray-induced mutants showed any observable alteration in blotting pattern indicating a substantial role for point mutation in gamma-ray-induced mutagenesis at the aprt locus.

  16. Chronic Methamphetamine Increases Alpha-Synuclein Protein Levels in the Striatum and Hippocampus but not in the Cortex of Juvenile Mice

    PubMed Central

    Butler, B.; Gamble-George, J.; Prins, P.; North, A.; Clarke, J.T; Khoshbouei, H.

    2015-01-01

    Methamphetamine is the second most widely used illicit drug worldwide. More than 290 tons of methamphetamine was synthesized in the year 2005 alone, corresponding to approximately ~3 billion 100 mg doses of methamphetamine. Drug addicts abuse high concentrations of methamphetamine for months and even years. Current reports in the literature are consistent with the interpretation that methamphetamine-induced neuronal injury may render methamphetamine users more susceptible to neurodegenerative pathologies. Specifically, chronic exposure to psychostimulants is associated with increases in striatal alpha-synuclein expression, a synaptic protein implicated in the pathogenesis of neurodegenerative diseases. This raises the question whether methamphetamine exposure affects alpha-synuclein levels in the brain. In this short report, we examined alpha-synuclein protein and mRNA levels in the striatum, hippocampus and cortex of adolescent male mice following a neurotoxic regimen of methamphetamine (24mg/kg/daily/14days). We found that methamphetamine exposure resulted in a decrease in the monomeric form of alpha-synuclein (molecular species <19 kDa), while increasing higher molecular weight alpha-synuclein species (>19 kDa) in the striatum and hippocampus, but not in the cortex. Despite the elevation of high molecular weight alpha-synuclein species (>19 kDa), there was no change in the alpha-synuclein mRNA levels in the striatum, hippocampus and cortex of mice exposed to methamphetamine. The methamphetamine-induced increase in high molecular weight alpha-synuclein protein levels might be one of the causal mechanisms or one of the compensatory consequences of methamphetamine-mediated neurotoxicity. PMID:25621291

  17. Translocation of α-Synuclein Expressed in Escherichia coli▿

    PubMed Central

    Ren, Guoping; Wang, Xi; Hao, Shufeng; Hu, Hongyu; Wang, Chih-chen

    2007-01-01

    α-Synuclein is a major component of Lewy bodies in Parkinson's disease. Although no signal sequence is apparent, α-synuclein expressed in Escherichia coli is mostly located in the periplasm. The possibilities that α-synuclein translocated into the periplasm across the inner membrane by the SecA or the Tat targeting route identified in bacteria and that α-synuclein was released through MscL were excluded. The signal recognition particle-dependent pathway is involved in the translocation of α-synuclein. The C-terminal 99-to-140 portion of the α-synuclein molecule plays a signal-like role for its translocation into the periplasm, cooperating with the central 61-to-95 section. The N-terminal 1-to-60 region is not required for this translocation. PMID:17277073

  18. Definition of a molecular pathway mediating α-synuclein neurotoxicity.

    PubMed

    Burré, Jacqueline; Sharma, Manu; Südhof, Thomas C

    2015-04-01

    α-Synuclein physiologically chaperones SNARE-complex assembly at the synapse but pathologically misfolds into neurotoxic aggregates that are characteristic for neurodegenerative disorders, such as Parkinson's disease, and that may spread from one neuron to the next throughout the brain during Parkinson's disease pathogenesis. In normal nerve terminals, α-synuclein is present in an equilibrium between a cytosolic form that is natively unfolded and monomeric and a membrane-bound form that is composed of an α-helical multimeric species that chaperones SNARE-complex assembly. Although the neurotoxicity of α-synuclein is well established, the relationship between the native conformations of α-synuclein and its pathological aggregation remain incompletely understood; most importantly, it is unclear whether α-synuclein aggregation originates from its monomeric cytosolic or oligomeric membrane-bound form. Here, we address this question by introducing into α-synuclein point mutations that block membrane binding and by then assessing the effect of blocking membrane binding on α-synuclein aggregation and neurotoxicity. We show that membrane binding inhibits α-synuclein aggregation; conversely, blocking membrane binding enhances α-synuclein aggregation. Stereotactic viral expression of wild-type and mutant α-synuclein in the substantia nigra of mice demonstrated that blocking α-synuclein membrane binding significantly enhanced its neurotoxicity in vivo. Our data delineate a folding pathway for α-synuclein that ranges from a physiological multimeric, α-helical, and membrane-bound species that acts as a SNARE-complex chaperone over a monomeric, natively unfolded form to an amyloid-like aggregate that is neurotoxic in vivo. PMID:25834048

  19. Synergistic effects of pesticides and metals on the fibrillation of alpha-synuclein: implications for Parkinson's disease.

    PubMed

    Uversky, Vladimir N; Li, Jie; Bower, Kiowa; Fink, Anthony L

    2002-10-01

    Aggregation of alpha-synuclein has been implicated in the formation of proteinaceous inclusions in the brain (Lewy bodies, Lewy neurites) that are characteristic of neurodegenerative diseases, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLBs). The etiology of PD is unknown, but recent work has shown that except in rare cases, there appears to be no direct genetic basis. However, several studies have implicated environmental factors, especially pesticides and metals. Here we show that certain pesticides and metals induce a conformational change in alpha-synuclein and directly accelerate the rate of formation of alpha-synuclein fibrils in vitro. In addition, the simultaneous presence of metal and pesticide led to synergistic effects on the rate of fibrillation. We propose a model in which environmentalfactors in conjunction with genetic susceptibility may form the underlying molecular basis for idiopathic PD. PMID:12428725

  20. Alpha-synuclein expression in the developing human brain.

    PubMed

    Raghavan, Ravi; Kruijff, Loes de; Sterrenburg, Monique D; Rogers, Beverly B; Hladik, Christa L; White, Charles L

    2004-01-01

    Alpha (alpha)-synuclein is a presynaptic protein, abnormal expression of which has been associated with neurodegenerative and neoplastic diseases. It is abundant in the developing vertebrate central nervous system (CNS), but less is known about its developmental expression in the human CNS. Immunohistochemical expression of alpha-synuclein was studied in 39 fetal, perinatal, pediatric, and adolescent brains. Perikaryal expression of alpha-synuclein is observed as early as 11-wk gestation in the cortical plate. Several discrete neuronal groups in the hippocampus, basal ganglia, and brain stem express perikaryal alpha-synuclein by 20-wk gestation, persisting through the first few years of life. In the cerebellum, alpha-synuclein is present by 21-wk gestation and persists into adult life as a coarse granular neuropil reaction product in the internal granular layer, and as a diffuse neuropil "blush" in the molecular layer. The germinal matrix, glia, endothelial cells, external granular layer, Pukinje cells, and dentate neurons are consistently negative for alpha-synuclein. We conclude that alpha-synuclein is expressed very early in human gestation, and that its distribution and temporal sequence of expression varies in discrete neuronal groups. Perikaryal alpha-synuclein starts disappearing from the neuronal cytosol in early childhood, and only the neuropil retains immunoreactivity into adulthood. The reappearance of alpha-synuclein in the adult neuronal cytosol in certain disease processes may represent reemergence of cues from an earlier developmental stage as part of a stress response. PMID:15547775

  1. Paroxysmal Perceptual Alteration: Drug-Induced Phenomenon or Schizophrenic Psychopathology?

    PubMed

    Praharaj, Samir Kumar; Kongasseri, Sreejayan; Acharya, Mahima

    2016-01-01

    Brief and repetitive episodes of perceptual changes, termed paroxysmal perceptual alteration (PPA), have been described in association with antipsychotic treatment. We report a case of paranoid schizophrenia who had such perceptual changes akin to PPA for 15 years, which was not related to antipsychotic treatment. There was a rapid resolution of PPA after treatment with low-dose clonazepam. PMID:26954463

  2. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    PubMed

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis. PMID:27179108

  3. Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson's disease

    PubMed Central

    Alvarez-Erviti, L; Seow, Y; Schapira, A HV; Rodriguez-Oroz, M C; Obeso, J A; Cooper, J M

    2013-01-01

    The presence of α-synuclein aggregates in the characteristic Lewy body pathology seen in idiopathic Parkinson's disease (PD), together with α-synuclein gene mutations in familial PD, places α-synuclein at the center of PD pathogenesis. Decreased levels of the chaperone-mediated autophagy (CMA) proteins LAMP-2A and hsc70 in PD brain samples suggests compromised α-synuclein degradation by CMA may underpin the Lewy body pathology. Decreased CMA protein levels were not secondary to the various pathological changes associated with PD, including mitochondrial respiratory chain dysfunction, increased oxidative stress and proteasomal inhibition. However, decreased hsc70 and LAMP-2A protein levels in PD brains were associated with decreases in their respective mRNA levels. MicroRNA (miRNA) deregulation has been reported in PD brains and we have identified eight miRNAs predicted to regulate LAMP-2A or hsc70 expression that were reported to be increased in PD. Using a luciferase reporter assay in SH-SY5Y cells, four and three of these miRNAs significantly decreased luciferase activity expressed upstream of the lamp-2a and hsc70 3′UTR sequences respectively. We confirmed that transfection of these miRNAs also decreased endogenous LAMP-2A and hsc70 protein levels respectively and resulted in significant α-synuclein accumulation. The analysis of PD brains confirmed that six and two of these miRNAs were significantly increased in substantia nigra compacta and amygdala respectively. These data support the hypothesis that decreased CMA caused by miRNA-induced downregulation of CMA proteins plays an important role in the α-synuclein pathology associated with PD, and opens up a new avenue to investigate PD pathogenesis. PMID:23492776

  4. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure.

    PubMed

    Uversky, V N; Li, J; Fink, A L

    2001-11-23

    Parkinson's disease involves the aggregation of alpha-synuclein to form fibrils, which are the major constituent of intracellular protein inclusions (Lewy bodies and Lewy neurites) in dopaminergic neurons of the substantia nigra. Occupational exposure to specific metals, especially manganese, copper, lead, iron, mercury, zinc, aluminum, appears to be a risk factor for Parkinson's disease based on epidemiological studies. Elevated levels of several of these metals have also been reported in the substantia nigra of Parkinson's disease subjects. We examined the effect of various metals on the kinetics of fibrillation of recombinant alpha-synuclein and in inducing conformational changes, as monitored by biophysical techniques. Several di- and trivalent metal ions caused significant accelerations in the rate of alpha-synuclein fibril formation. Aluminum was the most effective, along with copper(II), iron(III), cobalt(III), and manganese(II). The effectiveness correlated with increasing ion charge density. A correlation was noted between efficiency in stimulating fibrillation and inducing a conformational change, ascribed to formation of a partially folded intermediate. The potential for ligand bridging by polyvalent metal ions is proposed to be an important factor in the metal-induced conformational changes of alpha-synuclein. The results indicate that low concentrations of some metals can directly induce alpha-synuclein fibril formation. PMID:11553618

  5. Drugs That Bind to α-Synuclein: Neuroprotective or Neurotoxic?

    PubMed

    Kakish, Joe; Lee, Dongsoo; Lee, Jeremy S

    2015-12-16

    The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinson's disease. Drugs that bind to α-synuclein and form a loop structure between the N- and C-terminus tend to be neuroprotective, whereas others that cause a more compact structure tend to be neurotoxic. The binding of several natural products and other drugs that are involved in dopamine metabolism were investigated by nanopore analysis and isothermal titration calorimetry. The antinausea drugs, cinnarizine and metoclopramide, do not bind to α-synuclein, whereas amphetamine and the herbicides, paraquat and rotenone, bind tightly and cause α-synuclein to adopt a more compact conformation. The recreational drug, cocaine, binds to α-synuclein, whereas heroin and methadone do not. Metformin, which is prescribed for diabetes and is neuroprotective, binds well without causing α-synuclein to adopt a more compact conformation. Methylphenidate (ritalin) binds to sites in both the N- and C-terminus and causes α-synuclein to adopt a loop conformation. In contrast, amphetamine only binds to the N-terminus. Except for cinnarizine and metoclopramide, there is a good correlation between the mode of binding to α-synuclein and whether a drug is neuroprotective or neurotoxic. PMID:26378986

  6. Localization of pellicle-induced open contacts using Charge-Induced Voltage Alteration

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.

    1993-08-01

    The recently developed Charge-Induced Voltage Alteration (CIVA) technique for localizing open metal conductors was used successfully to identify transistors with electrically open metal-1 contacts to silicon. The transistors were in the I/O port circuitry of a failing microcontroller and were completely covered by a metal-2 power bus. The root cause of the open contacts was a subtle scratch in the pellicle over the contact reticle. The scratch prevented full exposure of the photoresist, resulting in incomplete removal of the interlevel oxide in several contact windows. In addition to this powerful new application of CIVA, a number of failure analysis techniques utilizing both the electrical and physical properties of the failing microcontrollers were employed to identify and confirm the open contacts. These techniques are reviewed and recommendations are given for improved pellicle/reticle inspection.

  7. Radiation-induced alterations of fracture healing biomechanics

    SciTech Connect

    Pelker, R.R.; Friedlaender, G.E.; Panjabi, M.M.; Kapp, D.; Doganis, A.

    1984-01-01

    The effects of irradiation on the normal temporal progression of the physical properties of healing fractures were studied in a rat model. Fractures were surgically produced in the femur, stabilized with an intramedullary pin, and irradiated. One group of rats was exposed to 2,500 rads in divided doses over 2 weeks, beginning 3 days after fracture, and compared to a control group with fractures which were not irradiated. Animals were sacrificed at periodic intervals and the bones were tested to failure in torsion. The torque, stiffness, and energy increased and the angle decreased for the nonirradiated specimens in the expected fashion. This progression was deleteriously altered in the irradiated femurs.

  8. Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril.

    PubMed

    Kim, Changyoun; Lv, Guohua; Lee, Jun Sung; Jung, Byung Chul; Masuda-Suzukake, Masami; Hong, Chul-Suk; Valera, Elvira; Lee, He-Jin; Paik, Seung R; Hasegawa, Masato; Masliah, Eliezer; Eliezer, David; Lee, Seung-Jae

    2016-01-01

    A single amyloidogenic protein is implicated in multiple neurological diseases and capable of generating a number of aggregate "strains" with distinct structures. Among the amyloidogenic proteins, α-synuclein generates multiple patterns of proteinopathies in a group of diseases, such as Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). However, the link between specific conformations and distinct pathologies, the key concept of the strain hypothesis, remains elusive. Here we show that in the presence of bacterial endotoxin, lipopolysaccharide (LPS), α-synuclein generated a self-renewable, structurally distinct fibril strain that consistently induced specific patterns of synucleinopathies in mice. These results suggest that amyloid fibrils with self-renewable structures cause distinct types of proteinopathies despite the identical primary structure and that exposure to exogenous pathogens may contribute to the diversity of synucleinopathies. PMID:27488222

  9. Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril

    PubMed Central

    Kim, Changyoun; Lv, Guohua; Lee, Jun Sung; Jung, Byung Chul; Masuda-Suzukake, Masami; Hong, Chul-Suk; Valera, Elvira; Lee, He-Jin; Paik, Seung R.; Hasegawa, Masato; Masliah, Eliezer; Eliezer, David; Lee, Seung-Jae

    2016-01-01

    A single amyloidogenic protein is implicated in multiple neurological diseases and capable of generating a number of aggregate “strains” with distinct structures. Among the amyloidogenic proteins, α-synuclein generates multiple patterns of proteinopathies in a group of diseases, such as Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). However, the link between specific conformations and distinct pathologies, the key concept of the strain hypothesis, remains elusive. Here we show that in the presence of bacterial endotoxin, lipopolysaccharide (LPS), α-synuclein generated a self-renewable, structurally distinct fibril strain that consistently induced specific patterns of synucleinopathies in mice. These results suggest that amyloid fibrils with self-renewable structures cause distinct types of proteinopathies despite the identical primary structure and that exposure to exogenous pathogens may contribute to the diversity of synucleinopathies. PMID:27488222

  10. Lysosomal Dysfunction and α-Synuclein Aggregation in Parkinson's Disease: Diagnostic Links.

    PubMed

    Moors, Tim; Paciotti, Silvia; Chiasserini, Davide; Calabresi, Paolo; Parnetti, Lucilla; Beccari, Tommaso; van de Berg, Wilma D J

    2016-06-01

    Lysosomal impairment is increasingly recognized as a central event in the pathophysiology of PD. Genetic associations between lysosomal storage disorders, including Gaucher disease and PD, highlight common risk factors and pathological mechanisms. Because the autophagy-lysosomal system is involved in the intralysosomal hydrolysis of dysfunctional proteins, lysosomal impairment may contribute to α-synuclein aggregation in PD. The degradation of α-synuclein is a complex process involving different proteolytic mechanisms depending on protein burden, folding, posttranslational modifications, and yet unknown factors. In this review, evidence for lysosomal dysfunction in PD and its intimate relationship with α-synuclein aggregation are discussed, after which the question of whether lysosomal proteins may serve as diagnostic biomarkers for PD is addressed. Changes in lysosomal enzymes, such as reduced glucocerebrosidase and cathepsin levels, have been observed in affected brain regions in PD patients. The detection of lysosomal proteins in CSF may provide a read-out of lysosomal dysfunction in PD and holds promise for the development of diagnostic PD biomarkers. Initial PD biomarker studies demonstrated altered lysosomal enzyme activities in CSF of PD patients when compared with controls. However, CSF lysosomal enzyme activities alone could not discriminate between PD patients and controls. The combination of CSF lysosomal markers with α-synuclein species and indicators of mitochondrial dysfunction, inflammation, and other pathological proteins in PD may be able to facilitate a more accurate diagnosis of PD. Further CSF biomarker studies are needed to investigate the utility of CSF lysosomal proteins as measures of disease state and disease progression in PD. © 2016 International Parkinson and Movement Disorder Society. PMID:26923732

  11. Protein-Induced Membrane Curvature Alters Local Membrane Tension

    PubMed Central

    Rangamani, Padmini; Mandadap, Kranthi K.; Oster, George

    2014-01-01

    Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins. PMID:25099814

  12. Radiation-induced motility alterations in medulloblastoma cells.

    PubMed

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Weber, Klaus J; Debus, Jürgen; Combs, Stephanie E

    2015-05-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins. PMID:25736470

  13. Study on hematological alterations induced by amphistomosis in buffaloes

    PubMed Central

    Chauhan, Vandip. D.; Patel, P. V.; Hasnani, Jigar J.; Pandya, Suchit S.; Pandey, Sunanda; Pansuriya, Dhaval V.; Choudhary, Vijayata

    2015-01-01

    Aim: The study was undertaken to compare the alterations in the hematological parameters in buffaloes suffering from Amphistomosis with normal buffaloes and to correlate it with the subclinical infection that is hard to diagnose. Materials and Methods: Blood samples from 50 amphistomes infected as well as 50 non-infected buffaloes from slaughter houses were taken into vacutainer tubes containing ethylene diamine tetraacetic acid for estimation of various hematological parameters by Automatic Analyzer Hema-2062 manufactured by Analytical Technologies Ltd. Result: There was a significant reduction in the mean hemoglobin, total leukocyte count, total erythrocyte count and packed cell volume and significant increase in the neutrophils count and eosinophil count of infected buffaloes as compared to the non-infected buffaloes respectively. Conclusion: Amphistomosis is characterized by severe neutrophilia, eosinophilia, and anemia. Anemia of high intensity along with hepatic damage can lead to the death of the animal in severe cases. Alterations in the Hematological parameters can be used as an indicator to diagnose and check the severity of amphistomosis especially in young ones and in subclinical infection. PMID:27047107

  14. Alcohol induced alterations to the human fecal VOC metabolome.

    PubMed

    Couch, Robin D; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B; Mutlu, Ece; Engen, Phillip A; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  15. Alcohol Induced Alterations to the Human Fecal VOC Metabolome

    PubMed Central

    Couch, Robin D.; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B.; Mutlu, Ece; Engen, Phillip A.; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  16. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  17. Low molecular weight heparin restores antithrombin III activity from hyperglycemia induced alterations.

    PubMed

    Ceriello, A; Marchi, E; Palazzni, E; Quatraro, A; Giugliano, D

    1990-01-01

    Alteration of antithrombin III (ATIII) activity, glycemia level dependent, exists in diabetes mellitus. In this study the ability of a low molecular weight heparin (LMWH) (Fluxum, Alfa-Wassermann S.p.A., Bologna, Italy), as well as unfractioned héparin, to preserve ATIII activity from glucose-induced alterations, both in vitro and in vivo, is reported. The subcutaneous and intravenous LMWH and heparin administration increases basal depressed ATIII activity in diabetic patients. Heparin shows an equivalent effect on both anti-IIa and anti-Xa activity of ATIII, while LMWH is more effective in preserving the anti-Xa activity. Similarity, heparin preserves ATIII activity from hyperglycemia-induced alterations, during hyperglycemic clamp, and LMWH infusion is able to preserve a significant amount of anti-Xa activity from glucose-induced alterations. Since diabetic patients show a high incidence of thrombotic accidents, LMWH appears to be a promising innovation for the prevention of diabetic thrombophylia. PMID:2196192

  18. Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen; Brigo, Francesco

    2013-01-01

    Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans. PMID:24235882

  19. Thiamine Deficiency Induced Neurochemical, Neuroanatomical, and Neuropsychological Alterations: A Reappraisal

    PubMed Central

    Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2013-01-01

    Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans. PMID:24235882

  20. Metronidazole-induced alterations in murine spermatozoa morphology.

    PubMed

    Mudry, Marta D; Palermo, Ana M; Merani, María S; Carballo, Marta A

    2007-02-01

    The aim of this work was to assess the effect of metronidazole (MTZ) on the stages of the seminiferous epithelial cycle and spermatozoa morphology when the drug is administered in human therapeutic doses to 60-day-old CFW male mice. The frequency of the stages was established by counting spermatocytes in pachytene and spermatids. Abnormalities in the flagellum or the head, lack of maturity and multiple malformations, were considered in the morphological analysis. Murine control strain was compared with MTZ treated group (v.ip 130 mg/kg/bw) both kept in standard captivity conditions. Cellular composition or number of stages in the seminiferous tubules were not altered in MTZ exposed animals, though the number of cells in stages I, V and XII was increased. The sperm cell morphology was severely affected by the treatment with potentially serious consequences on the normal fertilization process. Thus, the MTZ has to be considered as a conceivable thread regarding male fertility. PMID:17184970

  1. Alcohol-induced alterations in dopamine modulation of prefrontal activity.

    PubMed

    Trantham-Davidson, Heather; Chandler, L Judson

    2015-12-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC. PMID:26558348

  2. Vanadium Exposure-Induced Neurobehavioral Alterations among Chinese Workers

    PubMed Central

    Li, Hong; Zhou, Dinglun; Zhang, Qin; Feng, Chengyong; Zheng, Wei; He, Keping; Lan, Yajia

    2014-01-01

    Vanadium-containing products are manufactured and widely used in the modern industry. Yet the neurobehavioral toxicity due to occupational exposure to vanadium remained elusive. This cross-sectional study was designed to examine the neurotoxic effects of occupational vanadium exposure. A total of 463 vanadium-exposed workers (exposed group) and 251 non-exposed workers (control group) were recruited from a Steel and Iron Group in Sichuan, China. A WHO-recommended neurobehavioral core test battery (NCTB) and event-related auditory evoked potentials test (P300) were used to assess the neurobehavioral functions of all study subjects. A general linear model was used to compare outcome scores between the two groups while controlling for possible confounders. The exposed group showed a statistically significant neurobehavioral alteration more than the control group in the NCTB tests. The exposed workers also exhibited an increased anger-hostility, depression-dejection and fatigue-inertia on the profile of mood states (p<0.05). Performances in the Simple Reaction Time, Digit Span, Benton Visual Retention and Pursuit Aiming were also poorer among exposed workers as compared to unexposed control workers(p<0.05). Some of these poor performances in tests were also significantly related to workers’ exposure duration. P300 latencies were longer in the exposed group than in the control (p<0.05). Longer mean reaction times and more counting errors were also found in the exposed workers (p<0.05). Given the findings of our study and the limitations of neurobehavioral workplace testing, we found evidence of altered neurobehavioral outcomes by occupational exposure to vanadium. PMID:23500660

  3. Alteration of sperm protein profile induced by cigarette smoking.

    PubMed

    Chen, Xiaohui; Xu, Wangjie; Miao, Maohua; Zhu, Zijue; Dai, Jingbo; Chen, Zhong; Fang, Peng; Wu, Junqing; Nie, Dongsheng; Wang, Lianyun; Wang, Zhaoxia; Qiao, Zhongdong; Shi, Huijuan

    2015-07-01

    Cigarette smoking is associated with lower semen quality, but how cigarette smoking changes the semen quality remains unclear. The aim of this study was to screen the differentially expressed proteins in the sperm of mice with daily exposure to cigarette smoke. The 2D gel electrophoresis (2DE) and mass spectrometry (MS) analyses results showed that the mouse sperm protein profile was altered by cigarette smoking. And 22 of the most abundant proteins that correspond to differentially expressed spots in 2DE gels of the sperm samples were identified. These proteins were classified into different groups based on their functions, such as energy metabolism, reproduction, and structural molecules. Furthermore, the 2DE and MS results of five proteins (Aldoa, ATP5a1, Gpx4, Cs, and Spatc1) were validated by western blot analysis and reverse transcriptase-polymerase chain reaction. Results showed that except Spatc1 the other four proteins showed statistically significant different protein levels between the smoking group and the control group (P < 0.05). The expressions of three genes (Aldoa, Gpx4, and Spatc1) were significantly different (P < 0.05) at transcription level between the smoking group and the control group. In addition, five proteins (Aldoa, ATP5a1, Spatc1, Cs, and Gpx4) in human sperm samples from 30 male smokers and 30 non-smokers were detected by western blot analysis. Two proteins (Aldoa and Cs) that are associated with energy production were found to be significantly altered, suggesting that these proteins may be potential diagnostic markers for evaluation of smoking risk in sperm. Further study of these proteins may provide insight into the pathogenic mechanisms underlying infertility in smoking persons. PMID:26063603

  4. Radiation-Induced Alterations in Mitochondria of the Rat Heart

    PubMed Central

    Sridharan, Vijayalakshmi; Aykin-Burns, Nukhet; Tripathi, Preeti; Krager, Kimberly J.; Sharma, Sunil K.; Moros, Eduardo G.; Corry, Peter M.; Nowak, Grazyna; Hauer-Jensen, Martin; Boerma, Marjan

    2014-01-01

    Radiation therapy for the treatment of thoracic cancers may be associated with radiation-induced heart disease (RIHD), especially in long-term cancer survivors. Mechanisms by which radiation causes heart disease are largely unknown. To identify potential long-term contributions of mitochondria in the development of radiation-induced heart disease, we examined the time course of effects of irradiation on cardiac mitochondria. In this study, Sprague-Dawley male rats received image-guided local X irradiation of the heart with a single dose ranging from 3–21 Gy. Two weeks after irradiation, left ventricular mitochondria were isolated to assess the dose-dependency of the mitochondrial permeability transition pore (mPTP) opening in a mitochondrial swelling assay. At time points from 6 h to 9 months after a cardiac dose of 21 Gy, the following analyses were performed: left ventricular Bax and Bcl-2 protein levels; apoptosis; mitochondrial inner membrane potential and mPTP opening; mitochondrial mass and expression of mitophagy mediators Parkin and PTEN induced putative kinase-1 (PINK-1); mitochondrial respiration and protein levels of succinate dehydrogenase A (SDHA); and the 70 kDa subunit of complex II. Local heart irradiation caused a prolonged increase in Bax/Bcl-2 ratio and induced apoptosis between 6 h and 2 weeks. The mitochondrial membrane potential was reduced until 2 weeks, and the calcium-induced mPTP opening was increased from 6 h up to 9 months. An increased mitochondrial mass together with unaltered levels of Parkin suggested that mitophagy did not occur. Lastly, we detected a significant decrease in succinate-driven state 2 respiration in isolated mitochondria from 2 weeks up to 9 months after irradiation, coinciding with reduced mitochondrial levels of succinate dehydrogenase A. Our results suggest that local heart irradiation induces long-term changes in cardiac mitochondrial membrane functions, levels of SDH and state 2 respiration. At any time after

  5. Mechanically induced alterations in cultured skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Hatfaludy, S.; Karlisch, P.; Shansky, J.

    1991-01-01

    Model systems are available for mechanically stimulating cultured skeletal muscle cells by passive tensile forces which simulate those found in vivo. When applied to embryonic muscle cells in vitro these forces induce tissue organogenesis, metabolic adaptations, and muscle cell growth. The mechanical stimulation of muscle cell growth correlates with stretch-induced increases in the efflux of prostaglandins PGE2 and PGF2(alpha) in a time and frequency dependent manner. These prostaglandins act as mechanical 'second messengers' regulating skeletal muscle protein turnover rates. Since they also effect bone remodelling in response to tissue loading and unloading, secreted prostaglandins may serve as paracrine growth factors, coordinating the growth rates of muscle and bone in response to external mechanical forces. Cell culture model systems will supplement other models in understanding mechanical transduction processes at the molecular level.

  6. Alteration of fibroblast phenotype by asbestos-induced autoantibodies.

    PubMed

    Pfau, Jean C; Li, Sheng'ai; Holland, Sara; Sentissi, Jami J

    2011-06-01

    Pulmonary fibrosis is a relentlessly progressive disease for which the etiology can be idiopathic or associated with environmental or occupational exposures. There is not a clear explanation for the chronic and progressive nature of the disease, leaving treatment and prevention options limited. However, there is increasing evidence of an autoimmune component, since fibrotic diseases are often accompanied by production of autoantibodies. Because exposure to silicates such as silica and asbestos can lead to both autoantibodies and pulmonary/pleural fibrosis, these exposures provide an excellent tool for examining the relationship between these outcomes. This study explored the possibility that autoantibodies induced by asbestos exposure in mice would affect fibroblast phenotype. L929 fibroblasts and primary lung fibroblasts were treated with serum IgG from asbestos- or saline-treated mice, and tested for binding using cell-based ELISA, and for phenotypic changes using immunofluorescence, laser scanning cytometry and Sirius Red collagen assay. Autoantibodies in the serum of C57Bl/6 mice exposed to asbestos (but not sera from untreated mice) bound to mouse fibroblasts. The autoantibodies induced differentiation to a myofibroblast phenotype, as demonstrated by increased expression of smooth muscle α-actin (SMA), which was lost when the serum was cleared of IgG. Cells treated with purified IgG of exposed mice produced excess collagen. Using ELISA, we tested serum antibody binding to DNA topoisomerase (Topo) I, vimentin, TGFβ-R, and PDGF-Rα. Antibodies to DNA Topo I and to PDGF-Rα were detected, both of which have been shown by others to be able to affect fibroblast phenotype. The anti-fibroblast antibodies (AFA) also induced STAT-1 activation, implicating the PDGF-R pathway as part of the response to AFA binding. These data support the hypothesis that asbestos induces AFA that modify fibroblast phenotype, and suggest a mechanism whereby autoantibodies may mediate

  7. Light-Induced Alterations in Striatal Neurochemical Profiles

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.

    1997-01-01

    Much of our present knowledge regarding circadian rhythms and biological activity during space flight has been derived from those missions orbiting the Earth. During space missions, astronauts can become exposed to bright/dark cycles that vary considerably from those that entrain the mammalian biological timing system to the 24-hour cycle found on Earth. As a spacecraft orbits the Earth, the duration of the light/dark period experienced becomes a function of the time it takes to circumnavigate the planet which in turn depends upon the altitude of the craft. Orbiting the Earth at an altitude of 200-800 km provides a light/dark cycle lasting between 80 and 140 minutes, whereas a voyage to the moon or even another planet would provide a light condition of constant light. Currently, little is known regarding the effects of altered light/dark cycles on neurochemical levels within the central nervous system (CNS). Many biochemical, physiological and behavioral phenomena are under circadian control, governed primarily by the hypothalamic suprachiasmatic nucleus. As such, these phenomena are subject to influence by the environmental light/dark cycle. Circadian variations in locomotor and behavioral activities have been correlated to both the environmental light/dark cycle and to dopamine (DA) levels within the CNS. It has been postulated by Martin-Iverson et al. that DA's role in the control of motor activity is subject to modulation by circadian rhythms (CR), environmental lighting and excitatory amino acids (EAAs). In addition, DA and EAA receptor regulated pathways are involved in both the photic entrainment of CR and the control of motor activity. The cellular mechanisms by which DA and EAA-receptor ligands execute these functions, is still unclear. In order to help elucidate these mechanisms, we set out to determine the effects of altered environmental light/dark cycles on CNS neurotransmitter levels. In this study, we focused on the striatum, a region of the brain

  8. Epstein-Barr Virus Induced Epigenetic Alterations Following Transient Infection

    PubMed Central

    Queen, Krista J.; Shi, Mingxia; Zhang, Fangfang; Cvek, Urska; Scott, Rona S.

    2012-01-01

    Epstein-Barr virus (EBV) is a known tumor virus associated with an increasing array of malignancies; however, the association of the virus with certain malignancies is often erratic. To determine EBV’s contributions to tumorigenesis in a setting of incomplete association, a transient model of infection was established where a clonal CCL185 carcinoma cell line infected with recombinant EBV was allowed to lose viral genomes by withdrawal of selection pressure. Global gene expression comparing EBV-negative, transiently infected clones to uninfected controls identified expression changes in over 1000 genes. Among downregulated genes, several genes known to be DNA methylated in cancer were identified including E-cadherin and PYCARD. A cadherin switch, increased motility and enhanced cellular invasiveness present in EBV-positive cells were retained following viral loss indicating an epigenetic effect. Repression of PYCARD expression was due to increased promoter CpG methylation, whereas loss of E-cadherin expression after transient EBV infection did not correlate with increased DNA methylation of the E-cadherin promoter. Rather, repression of E-cadherin was consistent with formation of a repressive chromatin state. Decreased histone 3 or 4 acetylation at the promoter and 5’ end of the E-cadherin gene was observed in an EBV-negative, transiently infected clone relative to the uninfected controls. These results suggest that EBV can stably alter gene expression in a heritable fashion in formerly infected cells, while its own contribution to the oncogenic process is masked. PMID:23047626

  9. Aging induced cortical drive alterations during sleep in rats.

    PubMed

    Ciric, Jelena; Lazic, Katarina; Petrovic, Jelena; Kalauzi, Aleksandar; Saponjic, Jasna

    2015-03-01

    We followed the impact of healthy aging on cortical drive during sleep in rats by using the corticomuscular coherence (CMC). We employed the chronic electrodes implantation for sleep recording in adult, male Wistar rats, and followed the aging impact during sleep from 3 to 5.5 months age. We have analyzed the sleep/wake states architecture, and the sleep/wake state related EEG microstructure and CMCs. We evidenced the topographically distinct impact of aging on sleep/wake states architecture within the sensorimotor (SMCx) vs. motor cortex (MCx) from 4.5 to 5.5 months age. Healthy aging consistently altered only the SMCx sleep/wake states architecture, and increased the delta and beta CMCs through both cortical drives during Wake, but only through the MCx drive during REM. According to the delta and beta CMCs values, aging impact through the SMCx drive was opposite, but it was convergent through the MCx drive during Wake vs. REM, and there was a dual and inverse mode for the motor control during REM. PMID:25773067

  10. Alterations in glucose kinetics induced by pentobarbital anesthesia

    SciTech Connect

    Lang, C.H.; Bagby, G.J.; Hargrove, D.M.; Hyde, P.M.; Spitzer, J.J. )

    1987-12-01

    Because pentobarbital is often used in investigations related to carbohydrate metabolism, the in vivo effect of this drug on glucose homeostasis was studied. Glucose kinetics assessed by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose, were determined in three groups of catheterized fasted rats: conscious, anesthetized and body temperature maintained, and anesthetized but body temperature not maintained. After induction of anesthesia, marked hypothermia developed in rats not provided with external heat. Anesthetized rats that developed hypothermia showed a decrease in mean arterial blood pressure (25%) and heart rate (40%). Likewise, the plasma lactate concentration and the rates of glucose appearance, recycling, and metabolic clearance were reduced by 30-50% in the hypothermic anesthetized rats. Changes in whole-body carbohydrate metabolism were prevented when body temperature was maintained. Because plasma pentobarbital levels were similar between the euthermic and hypothermic rats during the first 2 h of the experiment, the rapid reduction in glucose metabolism in this latter group appears related to the decrease in body temperature. The continuous infusion of epinephrine produced alterations in glucose kinetics that were not different between conscious animals and anesthetized rats with body temperature maintained. Thus pentobarbital-anesthetized rats became hypothermic when kept at room temperature and exhibited marked decreases in glucose metabolism. Such changes were absent when body temperature was maintained during anesthesia.

  11. Ceramide-induced alterations in dopamine transporter function.

    PubMed

    Riddle, Evan L; Rau, Kristi S; Topham, Matthew K; Hanson, Glen R; Fleckenstein, Annette E

    2003-01-01

    The purpose of this study was to determine the effects of ceramide on dopamine and serotonin (5-HT, 5-hydroxytryptamine) transporters. Exposure of rat striatal synaptosomes to C2-ceramide caused a reversible, concentration-dependent decrease in plasmalemmal dopamine uptake. In contrast, ceramide exposure increased striatal 5-HT synaptosomal uptake. This increase did not appear to be due to an increased uptake by the 5-HT transporter. Rather, the increase appeared to result from an increase in 5-HT transport through the dopamine transporter, an assertion evidenced by findings that this increase: (1) does not occur in hippocampal synaptosomes (i.e., a preparation largely devoid of dopamine transporters), (2) occurs in striatal synaptosomes prepared from para-chloroamphetamine-treated rats (i.e., a preparation lacking 5-HT transporters), (3) is attenuated by pretreatment with methylphenidate (i.e., a relatively selective dopamine reuptake inhibitor) and (4) is inhibited by exposure to exogenous dopamine (i.e., which presumably competes for uptake with 5-HT). Taken together, these results reveal that ceramide is a novel modulator of monoamine transporter function, and may alter the affinity of dopamine transporters for its primary substrate. PMID:12498904

  12. Parvovirus Induced Alterations in Nuclear Architecture and Dynamics

    PubMed Central

    Ihalainen, Teemu O.; Niskanen, Einari A.; Jylhävä, Juulia; Paloheimo, Outi; Dross, Nicolas; Smolander, Hanna; Langowski, Jörg; Timonen, Jussi; Vihinen-Ranta, Maija

    2009-01-01

    The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP) studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analyzis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications. PMID:19536327

  13. Methoxychlor induces atresia by altering Bcl2 factors and inducing caspase activity in mouse ovarian antral follicles in vitro

    PubMed Central

    Basavarajappa, Mallikarjuna S.; Karman, Bethany N.; Wang, Wei; Gupta, Rupesh K.; Flaws, Jodi A.

    2012-01-01

    Methoxychlor (MXC) is an organochlorine pesticide widely used in many countries against various species of insects that attack crops and domestic animals. MXC reduces fertility by increasing atresia (death) of antral follicles in vivo. MXC also induces atresia of antral follicles after 96 h in vitro. The current work tested the hypothesis that MXC induces morphological atresia at early time points (24 and 48 h) by altering pro-apoptotic (Bax, Bok, Casp3, and caspase activity) and anti-apoptotic (Bcl2 and Bcl-xL) factors in the follicles. The results indicate that at 24 h, MXC increased Bcl-xL and Bax mRNA levels and increased the ratio of Bax/Bcl2. At 48–96 h, MXC induced morphological atresia. At 24–96 h, MXC increased caspase activities. These data suggest that MXC may induce atresia by altering Bcl2 factors and inducing caspase activities in antral follicles. PMID:23000595

  14. Altered Acer Rubrum Fecundity Induced By Chemical Climate Change

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Peters, A.

    2014-12-01

    Red maple (Acer rubrum L.) is becoming the most dominating tree in North American eastern deciduous forests. Concurrently, human activities have altered the chemical climate of terrestrial ecosystems via acidic deposition, which increases the available of nitrogen (N), while decreasing phosphorus (P) availability. Once a minor forest component prior to European settlement, the abundance of red maple may be a symptom of the modern age. The current paradigm explaining red maple's rise to prominence concerns fire suppression that excludes competitors. However, this still does not explain why red maple is unique compared to other functionally similar trees. The objective of this study was to investigate the interactive influence of acid rain mitigation on the fecundity of red maple. Objectives were achieved by measuring flowering, seed production, germination, and growth from red maple on plots that have been experimentally manipulated to increase soil pH, P, or both in three unglaciated eastern deciduous hardwood forests. At least 50% of the red maple population is seed bearing in our control soils, however the median percent of seed-bearing trees declined to zero when mitigating soils from acidic deposition. This can be explained by the curious fact that red maple is polygamodioecious, or has labile sex-expression, in which an individual tree can change its sex-expression in response to the environment. Furthermore, seed-bearing trees in the mitigated plots grew less, produced less seeds, and germinated at lower rates than their counterparts in control soils. Our results provide evidence that chemical climate change could be the primary contributing factor accelerating the dominance of red maple in eastern North American forests. Our observations can provide a boarder conceptual framework for understanding how nutrient limitations can be applied beyond plant productivity towards explaining distribution changes in vegetation.

  15. Plasma-induced Escape and Alterations of Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Tucker, O. J.; Ewrin, J.; Cassidy, T. A.; Leblanc, F.

    2009-12-01

    The atmospheres of planets and planetary satellites are typically imbedded in space plasmas. Depending on the interaction with the induced or intrinsic fields energetic ions can have access to the thermosphere and the corona affecting their composition and thermal structure and causing loss to space. These processes are often lumped together as ‘atmospheric sputtering’ (Johnson 1994). In this talk I will review the results of simulations of the plasma bombardment at a number of solar system bodies and use those data to describe the effect on the upper atmosphere and on escape. Of considerable recent interest is the modeling of escape from Titan. Prior to Cassini’s tour of the Saturnian system, plasma-induced escape was suggested to be the dominant loss process, but recent models of enhanced thermal escape, often referred to as ‘slow hydrodynamic’ escape, have been suggested to lead to much larger Titan atmospheric loss rates (Strobel 2008; Cui et al. 2008). Such a process has been suggested to be active at some point in time on a number of solar system bodies. I will present hybrid fluid/ kinetic models of the upper atmosphere of certain bodies in order to test both the plasma-induced and thermal escape processes. Preliminary results suggest that the loss rates estimated using the ‘slow hydrodynamic’ escape process can be orders of magnitude too large. The implications for Mars, Titan and Pluto will be discussed. Background for this talk is contained in the following papers (Johnson 2004; 2009; Chaufray et al. 2007; Johnson et al. 2008; 2009; Tucker and Johnson 2009). References: Chaufray, J.Y., R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, and J.G. Luhmann, Mars Solar Wind interaction: formation of the Martian corona and atmosphric loss to space, JGR 112, E09009, doi:10.1029/2007JE002915 (2007) Cui, J., Yelle, R. V., Volk, K. Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. 113, doi:10

  16. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy.

    PubMed

    Ma, Qiongmin; Wu, Donglin; Zeng, Ling-Li; Shen, Hui; Hu, Dewen; Qiu, Shijun

    2016-07-01

    The study aims to investigate the radiation-induced brain functional alterations in nasopharyngeal carcinoma (NPC) patients who received radiotherapy (RT) using functional magnetic resonance imaging (fMRI) and statistic scale.The fMRI data of 35 NPC patients with RT and 24 demographically matched untreated NPC patients were acquired. Montreal Cognitive Assessment (MoCA) was also measured to evaluate their global cognition performance. Multivariate pattern analysis was performed to find the significantly altered functional connections between these 2 groups, while the linear correlation level was detected between the altered functional connections and the MoCA scores.Forty-five notably altered functional connections were found, which were mainly located between 3 brain networks, the cerebellum, sensorimotor, and cingulo-opercular. With strictly false discovery rate correction, 5 altered functional connections were shown to have significant linear correlations with the MoCA scores, that is, the connections between the vermis and hippocampus, cerebellum lobule VI and dorsolateral prefrontal cortex, precuneus and dorsal frontal cortex, cuneus and middle occipital lobe, and insula and cuneus. Besides, the connectivity between the vermis and hippocampus was also significantly correlated with the attention score, 1 of the 7 subscores of the MoCA.The present study provides new insights into the radiation-induced functional connectivity impairments in NPC patients. The results showed that the RT may induce the cognitive impairments, especially the attention alterations. The 45 altered functional connections, especially the 5 altered functional connections that were significantly correlated to the MoCA scores, may serve as the potential biomarkers of the RT-induced brain functional impairments and provide valuable targets for further functional recovery treatment. PMID:27442663

  17. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  18. γ-Synuclein antibodies have neuroprotective potential on neuroretinal cells via proteins of the mitochondrial apoptosis pathway.

    PubMed

    Wilding, Corina; Bell, Katharina; Beck, Sabine; Funke, Sebastian; Pfeiffer, Norbert; Grus, Franz H

    2014-01-01

    The family of synuclein proteins (α, β and γ) are related to neurodegenerative disease e.g. Parkinson disease and Morbus Alzheimer. Additionally, a connection between γ-synuclein and glaucoma, a neurodegenerative disease characterized by a progressive loss of retinal ganglion cells, which finally leads to blindness, exists. The reason for the development of glaucoma is still unknown. Recent studies evaluating the participation of immunological components, demonstrate complex changed antibody reactivities in glaucoma patients in comparison to healthy people, showing not only up-regulations (e.g. alpha-fodrin antibody) but also down-regulations (e.g. γ-synuclein antibody) of antibodies in glaucoma patients. Up-regulated antibodies could be auto-aggressive, but the role of down-regulated antibodies is still unclear. Previous studies show a significant influence of the serum and the antibodies of glaucoma patients on protein expression profiles of neuroretinal cells. The aim of this study was to investigate the effect of γ-synuclein antibody on the viability and reactive oxygen species levels of a neuroretinal cell line (RGC-5) as well as their interaction with cellular proteins. We found a protective effect of γ-synuclein antibody resulting in an increased viability (up to 15%) and decreased reactive oxygen species levels (up to -12%) of glutamate and oxidative stressed RGC-5. These can be traced back to anti-apoptotic altered protein expressions in the mitochondrial apoptosis pathway indicated by mass spectrometry and validated by microarray analysis such as active caspase 3, bcl-2 associated-x-protein, S100A4, voltage-dependent anion channel, extracellular-signal-regulated-kinase (down-regulated) and baculoviral IAP repeat-containing protein 6, phosphorylated extracellular-signal-regulated-kinase (up-regulated). These changed protein expression are triggered by the γ-synuclein antibody internalization of RGC-5 we could see in immunohistochemical stainings

  19. Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson’s disease genetically related mutants

    PubMed Central

    Tosatto, Laura; Horrocks, Mathew H.; Dear, Alexander J.; Knowles, Tuomas P. J.; Dalla Serra, Mauro; Cremades, Nunilo; Dobson, Christopher M.; Klenerman, David

    2015-01-01

    Oligomers of alpha-synuclein are toxic to cells and have been proposed to play a key role in the etiopathogenesis of Parkinson’s disease. As certain missense mutations in the gene encoding for alpha-synuclein induce early-onset forms of the disease, it has been suggested that these variants might have an inherent tendency to produce high concentrations of oligomers during aggregation, although a direct experimental evidence for this is still missing. We used single-molecule Förster Resonance Energy Transfer to visualize directly the protein self-assembly process by wild-type alpha-synuclein and A53T, A30P and E46K mutants and to compare the structural properties of the ensemble of oligomers generated. We found that the kinetics of oligomer formation correlates with the natural tendency of each variant to acquire beta-sheet structure. Moreover, A53T and A30P showed significant differences in the averaged FRET efficiency of one of the two types of oligomers formed compared to the wild-type oligomers, indicating possible structural variety among the ensemble of species generated. Importantly, we found similar concentrations of oligomers during the lag-phase of the aggregation of wild-type and mutated alpha-synuclein, suggesting that the properties of the ensemble of oligomers generated during self-assembly might be more relevant than their absolute concentration for triggering neurodegeneration. PMID:26582456

  20. Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson’s disease genetically related mutants

    NASA Astrophysics Data System (ADS)

    Tosatto, Laura; Horrocks, Mathew H.; Dear, Alexander J.; Knowles, Tuomas P. J.; Dalla Serra, Mauro; Cremades, Nunilo; Dobson, Christopher M.; Klenerman, David

    2015-11-01

    Oligomers of alpha-synuclein are toxic to cells and have been proposed to play a key role in the etiopathogenesis of Parkinson’s disease. As certain missense mutations in the gene encoding for alpha-synuclein induce early-onset forms of the disease, it has been suggested that these variants might have an inherent tendency to produce high concentrations of oligomers during aggregation, although a direct experimental evidence for this is still missing. We used single-molecule Förster Resonance Energy Transfer to visualize directly the protein self-assembly process by wild-type alpha-synuclein and A53T, A30P and E46K mutants and to compare the structural properties of the ensemble of oligomers generated. We found that the kinetics of oligomer formation correlates with the natural tendency of each variant to acquire beta-sheet structure. Moreover, A53T and A30P showed significant differences in the averaged FRET efficiency of one of the two types of oligomers formed compared to the wild-type oligomers, indicating possible structural variety among the ensemble of species generated. Importantly, we found similar concentrations of oligomers during the lag-phase of the aggregation of wild-type and mutated alpha-synuclein, suggesting that the properties of the ensemble of oligomers generated during self-assembly might be more relevant than their absolute concentration for triggering neurodegeneration.

  1. Psychosine-induced alterations in peroxisomes of Twitcher Mouse Liver

    PubMed Central

    Contreras, Miguel Agustin; Haq, Ehtishamul; Uto, Takuhiro; Singh, Inderjit; Singh, Avtar Kaur

    2008-01-01

    Krabbe’s disease is a neuroinflammatory disorder in which galactosylsphingosine (psychosine) accumulates in nervous tissue. To gain insight into whether the psychosine-induced effects in nervous tissue extend to peripheral organs, we investigated the expression of cytokines and their effects on peroxisomal structure/function in twitcher mouse liver (animal model of Krabbe disease). Immunofluorescence analysis demonstrated TNF-α and IL-6 expression, which was confirmed by mRNAs quantitation. Despite the presence of TNF-α, lipidomic analysis did not indicate a significant decrease in sphingomyelin or an increase in ceramide fractions. Ultrastructural analysis of catalase-dependent staining of liver sections showed reduced reactivity without significant changes in peroxisomal contents. This observation was confirmed by assaying catalase activity and quantitation of its mRNA, both of which were found significantly decreased in twitcher mouse liver. Western blot analysis demonstrated a generalized reduction of peroxisomal matrix and membrane proteins. These observations indicate that twitcher mouse pathobiology extends to the liver, where the induction of TNF-α and IL-6 compromise peroxisomal structure and function. PMID:18602885

  2. Alterations in enamel remineralization in vitro induced by blue light

    NASA Astrophysics Data System (ADS)

    Kato, I. T.; Zezell, D. M.; Mendes, F. M.; Wetter, N. U.

    2010-06-01

    Blue light, especially from LED devices, is a very frequently used tool in dental procedures. However, the investigations of its effects on dental enamel are focused primarily on enamel demineralization and fluoride retention. Despite the fact that this spectral region can inhibit enamel demineralization, the effects of the irradiation on demineralized enamel are not known. For this reason, we evaluated the effects of blue LED on remineralization of dental enamel. Artificial lesions were formed in bovine dental enamel blocks by immersing the samples in undersaturated acetate buffer. The lesions were irradiated with blue LED (455 nm, 1.38 W/cm2, 13.75 J/cm2, and 10 s) and remineralization was induced by pH-cycling process. Cross-sectional hardness was used to asses mineral changes after remineralization. Non-irradiated enamel lesions presented higher mineral content than irradiated ones. Furthermore, the mineral content of irradiated group was not significantly different from the lesion samples that were not submitted to the remineralization process. Results obtained in the present study show that the blue light is not innocuous for the dental enamel and inhibition of its remineralization can occur.

  3. HIV-Induced Epigenetic Alterations in Host Cells.

    PubMed

    Abdel-Hameed, Enass A; Ji, Hong; Shata, Mohamed Tarek

    2016-01-01

    Human immunodeficiency virus (HIV), a member of the Retroviridae family, is a positive-sense, enveloped RNA virus. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS) has two major types, HIV-1 and HIV-2 In HIV-infected cells the single stranded viral RNA genome is reverse transcribed and the double-stranded viral DNA integrates into the cellular DNA, forming a provirus. The proviral HIV genome is controlled by the host epigenetic regulatory machinery. Cellular epigenetic regulators control HIV latency and reactivation by affecting the chromatin state in the vicinity of the viral promoter located to the 5' long terminal repeat (LTR) sequence. In turn, distinct HIV proteins affect the epigenotype and gene expression pattern of the host cells. HIV-1 infection of CD4(+) T cells in vitro upregulated DNMT activity and induced hypermethylation of distinct cellular promoters. In contrast, in the colon mucosa and peripheral blood mononuclear cells from HIV-infected patients demethylation of the FOXP3 promoter was observed, possibly due to the downregulation of DNA methyltransferase 1. For a curative therapy of HIV infected individuals and AIDS patients, a combination of antiretroviral drugs with epigenetic modifying compounds have been suggested for the reactivation of latent HIV-1 genomes. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase inhibitors (DNMTI). PMID:26659262

  4. Cell-to-Cell Transmission of α-Synuclein Aggregates

    PubMed Central

    Lee, Seung-Jae; Desplats, Paula; Lee, He-Jin; Spencer, Brian; Masliah, Eliezer

    2016-01-01

    It is now recognized that the cell-to-cell transmission of misfolded proteins such as α-synuclein contributes to the neurodegenerative phenotype in neurological disorders such as idiopathic Parkinson’s disease, Dementia with Lewy bodies, and Parkinson’s disease dementia. Thus, establishing cell-based models for the transmission of α-synuclein is of importance to understand the mechanisms of neurodegeneration in these disorders and to develop new therapies. Here we describe methods to study the neuron-to-neuron propagation of α-synuclein in an in vitro setting that also has in vivo applications. PMID:22528101

  5. Chronic cola drinking induces metabolic and cardiac alterations in rats

    PubMed Central

    Milei, José; Losada, Matilde Otero; Llambí, Hernán Gómez; Grana, Daniel R; Suárez, Daniel; Azzato, Francisco; Ambrosio, Giuseppe

    2011-01-01

    AIM: To investigate the effects of chronic drinking of cola beverages on metabolic and echocardiographic parameters in rats. METHODS: Forty-eight male Wistar rats were divided in 3 groups and allowed to drink regular cola (C), diet cola (L), or tap water (W) ad libitum during 6 mo. After this period, 50% of the animals in each group were euthanized. The remaining rats drank tap water ad libitum for an additional 6 mo and were then sacrificed. Rat weight, food, and beverage consumption were measured regularly. Biochemical, echocardiographic and systolic blood pressure data were obtained at baseline, and at 6 mo (treatment) and 12 mo (washout). A complete histopathology study was performed after sacrifice. RESULTS: After 6 mo, C rats had increased body weight (+7%, P < 0.01), increased liquid consumption (+69%, P < 0.001), and decreased food intake (-31%, P < 0.001). C rats showed mild hyperglycemia and hypertriglyceridemia. Normoglycemia (+69%, P < 0.01) and sustained hypertriglyceridemia (+69%, P < 0.01) were observed in C after washout. Both cola beverages induced an increase in left ventricular diastolic diameter (C: +9%, L: +7%, P < 0.05 vs W) and volumes (diastolic C: +26%, L: +22%, P < 0.01 vs W; systolic C: +24%, L: +24%, P < 0.05 vs W) and reduction of relative posterior wall thickness (C: -8%, L: -10%, P < 0.05 vs W). Cardiac output tended to increase (C: +25%, P < 0.05 vs W; L: +17%, not significant vs W). Heart rate was not affected. Pathology findings were scarce, related to aging rather than treatment. CONCLUSION: This experimental model may prove useful to investigate the consequences of high consumption of soft drinks. PMID:21526048

  6. Overexpression of α-synuclein simultaneously increases glutamate NMDA receptor phosphorylation and reduces glucocerebrosidase activity.

    PubMed

    Yang, Junfeng; Hertz, Ellen; Zhang, Xiaoqun; Leinartaité, Lina; Lundius, Ebba Gregorsson; Li, Jie; Svenningsson, Per

    2016-01-12

    Progressive accumulation of α-synuclein (α-syn)-containing protein aggregates throughout the nervous system is a pathological hallmark of Parkinson's disease (PD). The mechanisms whereby α-syn exerts neurodegeneration remain to be fully understood. Here we show that overexpression of α-syn in transgenic mice leads to increased phosphorylation of glutamate NMDA receptor (NMDAR) subunits NR1 and NR2B in substantia nigra and striatum as well as reduced glucocerebrosidase (GCase) levels. Similarly, molecular studies performed in mouse N2A cells stably overexpressing human α-syn ((α-syn)N2A) showed that phosphorylation states of the same NMDAR subunits were increased, whereas GCase levels and lysosomal GCase activity were reduced. (α-syn)N2A cells showed an increased sensitivity to neurotoxicity towards 6-hydroxydopamine and NMDA. However, wildtype N2A, but not (α-syn)N2A cells, showed a further reduction in viability when co-incubated with 6-hydroxydopamine and the lysosomal inhibitors NH4Cl and leupeptin, suggesting that α-syn per se perturbs lysosomal functions. NMDA treatment reduced lysosomal GCase activity to the same extent in (α-syn)N2A cells as in wildtype N2A cells, indicating that the α-syn-dependent difference in NMDA neurotoxicity is unrelated to an altered GCase activity. Nevertheless, these data provide molecular evidence that overexpression of α-syn simultaneously induces two potential neurotoxic hits by increasing glutamate NMDA receptor phosphorylation, consistent with increased NMDA receptors functionality, and reducing GCase activity. PMID:26610904

  7. Analysis of alpha-synuclein-associated proteins by quantitative proteomics.

    PubMed

    Zhou, Yong; Gu, Guangyu; Goodlett, David R; Zhang, Terry; Pan, Catherine; Montine, Thomas J; Montine, Kathleen S; Aebersold, Ruedi H; Zhang, Jing

    2004-09-10

    To identify the proteins associated with soluble alpha-synuclein (AS) that might promote AS aggregation, a key event leading to neurodegeneration, we quantitatively compared protein profiles of AS-associated protein complexes in MES cells exposed to rotenone, a pesticide that produces parkinsonism in animals and induces Lewy body (LB)-like inclusions in the remaining dopaminergic neurons, and to vehicle. We identified more than 250 proteins associated with Nonidet P-40 soluble AS, and demonstrated that at least 51 of these proteins displayed significant differences in their relative abundance in AS complexes under conditions where rotenone was cytotoxic and induced formation of cytoplasmic inclusions immunoreactive to anti-AS. Overexpressing one of these proteins, heat shock protein (hsp) 70, not only protected cells from rotenone-mediated cytotoxicity but also decreased soluble AS aggregation. Furthermore, the protection afforded by hsp70 transfection appeared to be related to suppression of rotenone-induced oxidative stress as well as mitochondrial and proteasomal dysfunction. PMID:15234983

  8. Methamphetamine alters occludin expression via NADPH oxidase-induced oxidative insult and intact caveolae

    PubMed Central

    Park, Minseon; Hennig, Bernhard; Toborek, Michal

    2012-01-01

    Abstract Methamphetamine (METH) is a drug of abuse with neurotoxic and vascular effects that may be mediated by reactive oxygen species (ROS). However, potential sources of METH-induced generation of ROS are not fully understood. This study is focused on the role of NAD(P)H oxidase (NOX) in METH-induced dysfunction of brain endothelial cells. Treatment with METH induced a time-dependent increase in phosphorylation of NOX subunit p47, followed by its binding with gp91 and p22, and the formation of an active NOX complex. An increase in NOX activity was associated with elevated production of ROS, alterations of occludin levels and increased transendothelial migration of monocytes. Inhibition of NOX by NSC 23766 attenuated METH-induced ROS generation, changes in occludin protein levels and monocyte migration. Because an active NOX complex is localized to caveolae, we next evaluated the role of caveolae in METH-mediated toxicity to brain endothelial cells. Treatment with METH induced phosphorylation of ERK1/2 and caveolin-1 protein. Inhibition of ERK1/2 activity or caveolin-1 silencing protected against METH-induced alterations of occludin levels. These findings indicate an important role of NOX and functional caveolae in METH-induced oxidative stress in brain endothelial cells that contribute to the subsequent alterations of occludin levels and transendothelial migration of inflammatory cells. PMID:21435178

  9. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    PubMed

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress. PMID:7926607

  10. Local and systemic biochemical alterations induced by Bothrops atrox snake venom in mice.

    PubMed

    de Souza, Carlos At; Kayano, Anderson M; Setúbal, Sulamita S; Pontes, Adriana S; Furtado, Juliana L; Kwasniewski, Fábio H; Zaqueo, Kayena D; Soares, Andreimar M; Stábeli, Rodrigo G; Zuliani, Juliana P

    2012-01-01

    The local and systemic alterations induced by Bothrops atrox snake venom (BaV) injection in mice were studied. BaV induced superoxide production by migrated neutrophils, mast cell degranulation and phagocytosis by macrophages. Moreover, BaV caused hemorrhage in dorsum of mice after 2hr post- injection. Three hours post-injection in gastrocnemius muscle, we also observed myonecrosis, which was assessed by the determination of serum and tissue CK besides the release of urea, but not creatinine and uric acid, indicating kidney alterations. BaV also induced the release of LDH and transaminases (ALT and AST) indicating tissue and liver abnormalities. In conclusion, the data indicate that BaV induces events of local and systemic importance. PMID:23487552