Science.gov

Sample records for system design studies

  1. BWID System Design Study

    SciTech Connect

    O`Brien, M.C.; Rudin, M.J.; Morrison, J.L.; Richardson, J.G.

    1991-12-31

    The mission of the Buried Waste Integrated Demonstration (BWID) System Design Study is to identify and evaluate technology process options for the cradle-to-grave remediation of Transuranic (TRU)-Contaminated Waste Pits and Trenches buried at the Idaho National Engineering Laboratory (INEL). Emphasis is placed upon evaluating system configuration options and associated functional and operational requirements for retrieving and treating the buried wastes. A Performance-Based Technology Selection Filter was developed to evaluate the identified remediation systems and their enabling technologies based upon system requirements and quantification of technical Comprehensive Environmental Response, Compensation, and Liability (CERCLA) balancing criteria. Remediation systems will also be evaluated with respect to regulatory and institutional acceptance and cost-effectiveness.

  2. BWID System Design Study

    SciTech Connect

    O'Brien, M.C.; Rudin, M.J.; Morrison, J.L.; Richardson, J.G.

    1991-01-01

    The mission of the Buried Waste Integrated Demonstration (BWID) System Design Study is to identify and evaluate technology process options for the cradle-to-grave remediation of Transuranic (TRU)-Contaminated Waste Pits and Trenches buried at the Idaho National Engineering Laboratory (INEL). Emphasis is placed upon evaluating system configuration options and associated functional and operational requirements for retrieving and treating the buried wastes. A Performance-Based Technology Selection Filter was developed to evaluate the identified remediation systems and their enabling technologies based upon system requirements and quantification of technical Comprehensive Environmental Response, Compensation, and Liability (CERCLA) balancing criteria. Remediation systems will also be evaluated with respect to regulatory and institutional acceptance and cost-effectiveness.

  3. Vehicle systems design optimization study

    SciTech Connect

    Gilmour, J. L.

    1980-04-01

    The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

  4. Digital television system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1976-01-01

    The use of digital techniques for transmission of pictorial data is discussed for multi-frame images (television). Video signals are processed in a manner which includes quantization and coding such that they are separable from the noise introduced into the channel. The performance of digital television systems is determined by the nature of the processing techniques (i.e., whether the video signal itself or, instead, something related to the video signal is quantized and coded) and to the quantization and coding schemes employed.

  5. Mobile Variable Depth Sampling System Design Study

    SciTech Connect

    BOGER, R.M.

    2000-08-25

    A design study is presented for a mobile, variable depth sampling system (MVDSS) that will support the treatment and immobilization of Hanford LAW and HLW. The sampler can be deployed in a 4-inch tank riser and has a design that is based on requirements identified in the Level 2 Specification (latest revision). The waste feed sequence for the MVDSS is based on Phase 1, Case 3S6 waste feed sequence. Technical information is also presented that supports the design study.

  6. Electrostatic camera system functional design study

    NASA Technical Reports Server (NTRS)

    Botticelli, R. A.; Cook, F. J.; Moore, R. F.

    1972-01-01

    A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.

  7. Space shuttle visual simulation system design study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A recommendation and a specification for the visual simulation system design for the space shuttle mission simulator are presented. A recommended visual system is described which most nearly meets the visual design requirements. The cost analysis of the recommended system covering design, development, manufacturing, and installation is reported. Four alternate systems are analyzed.

  8. VXIbus data collection system -- A design study

    SciTech Connect

    Hacker, U.; Richter, B.; Weinert, A.; Arlt, R.; Lewis, W.; Swinhoe, M.

    1995-12-31

    The German support program has sponsored the work to investigate the VXIbus as integration platform for safeguards instrumentation. This paper will cover the analysis of the user requirements for a VXIbus based monitoring system for integrated safeguards -- primarily for reliable unattended in-field collection of large amounts of data. The goal is to develop a suitable system architecture. The design of the system makes use of the VXIbus standard as the selected hardware platform Based upon the requirement analysis and the overriding need for high reliability and robustness, a systematic investigation of different operating system options, as well as development and integration tools will be considered. For the software implementation cycle high and low level programming tools are required. The identification of the constraints for the programming platform and the tool selection will be presented. Both the strategic approach, the rules for analysis and design work as well as the executive components for the support of the implementation and production cycle are given. Here all the conditions for reliable, unattended and integrated safeguards monitoring systems will be addressed. The definition of the basic and advanced design principles are covered. The paper discusses the results of a study on a system produced to demonstrate a high data rate timer/counter application.

  9. Microgravity isolation system design: A case study

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Many acceleration-sensitive, microgravity science experiments will require active vibration isolation from manned orbiters on which they will be mounted. The isolation problem, especially in the case of a tethered payload, is a complex three-dimensional one that is best suited to modern-control design methods. In this paper, extended H(sub 2) synthesis is used to design an active isolator (i.e., controller) for a realistic single-input-multiple-output (SIMO) microgravity vibration isolation problem. Complex mu-analysis methods are used to analyze the isolation system with respect to sensor, actuator, and umbilical uncertainties. The paper fully discusses the design process employed and the insights gained. This design case study provides a practical approach for isolation problems of greater complexity. Issues addressed include a physically intuitive state-space description of the system, disturbance and noise filters, filters for frequency weighting, and uncertainty models. The controlled system satisfies all the performance specifications and is robust with respect to model uncertainties.

  10. Advanced turbine systems: Studies and conceptual design

    SciTech Connect

    van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

    1993-11-01

    The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

  11. Preliminary systems design study assessment report

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-10-01

    The System Design Study (SDS), part of the Waste Technology Development Department of the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume I contains an executive summary. The SDS summary and analysis of results are presented in Volume II. Volumes III through VII contain descriptions of twelve system and four subsystem concepts. Volume VIII contains the appendixes.

  12. Shuttle Global Positioning System (GPS) design study

    NASA Technical Reports Server (NTRS)

    Nilsen, P. W.

    1979-01-01

    The effects of oscillator noise on Shuttle Global Positioning System (GPS) receiver performance, GPS navigation system self-test, GPS ground transmitter design to augment shuttle navigation, the effect of ionospheric delay modelling on GPS receiver design, and GPS receiver tracking of Shuttle transient maneuvers were investigated.

  13. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1988-01-01

    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

  14. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  15. Mars orbiter conceptual systems design study

    NASA Technical Reports Server (NTRS)

    Dixon, W.; Vogl, J.

    1982-01-01

    Spacecraft system and subsystem designs at the conceptual level to perform either of two Mars Orbiter missions, a Climatology Mission and an Aeronomy Mission were developed. The objectives of these missions are to obtain and return data.

  16. Study on Reactive Automatic Compensation System Design

    NASA Astrophysics Data System (ADS)

    Zhe, Sun; Qingyang, Liang; Peiqing, Luo; Chenfei, Zhang

    At present, low-voltage side of transformer is public in urban distribution network, as inductive load of household appliances is increasing, the power factor decreased, this lead to a large loss of public transformer low voltage side, the supply voltage indicators can not meet user's requirements. Therefore, the design of reactive power compensation system has become another popular research. This paper introduces the principle of reactive power compensation, analyzes key technologies of reactive power compensation, design an overall program of reactive power automatic compensation system to conquer various deficiencies of reactive power automatic compensation equipment.

  17. Reusable Reentry Satellite (RRS) system design study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Reusable Reentry Satellite (RRS) is intended to provide investigators in several biological disciplines with a relatively inexpensive method to access space for up to 60 days with eventual recovery on Earth. The RRS will permit totally intact, relatively soft, recovery of the vehicle, system refurbishment, and reflight with new and varied payloads. The RRS is to be capable of three reflights per year over a 10-year program lifetime. The RRS vehicle will have a large and readily accessible volume near the vehicle center of gravity for the Payload Module (PM) containing the experiment hardware. The vehicle is configured to permit the experimenter late access to the PM prior to launch and rapid access following recovery. The RRS will operate in one of two modes: (1) as a free-flying spacecraft in orbit, and will be allowed to drift in attitude to provide an acceleration environment of less than 10(exp -5) g. the acceleration environment during orbital trim maneuvers will be less than 10(exp -3) g; and (2) as an artificial gravity system which spins at controlled rates to provide an artificial gravity of up to 1.5 Earth g. The RRS system will be designed to be rugged, easily maintained, and economically refurbishable for the next flight. Some systems may be designed to be replaced rather than refurbished, if cost effective and capable of meeting the specified turnaround time. The minimum time between recovery and reflight will be approximately 60 days. The PMs will be designed to be relatively autonomous, with experiments that require few commands and limited telemetry. Mass data storage will be accommodated in the PM. The hardware development and implementation phase is currently expected to start in 1991 with a first launch in late 1993.

  18. Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.

  19. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  20. Shuttle Global Positioning System (GPS) system design study

    NASA Technical Reports Server (NTRS)

    Nilsen, P. W.

    1979-01-01

    The various integration problems in the Shuttle GPS system were investigated. The analysis of the Shuttle GPS link was studied. A preamplifier was designed since the Shuttle GPS antennas must be located remotely from the receiver. Several GPS receiver architecture trade-offs were discussed. The Shuttle RF harmonics and intermode that fall within the GPS receiver bandwidth were analyzed. The GPS PN code acquisition was examined. Since the receiver clock strongly affects both GPS carrier and code acquisition performance, a clock model was developed.

  1. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Udalov, S.

    1974-01-01

    This study investigated the configuration and integration of a wideband communication system with a Ku-band rendezvous radar system. The goal of the study was to provide as much commonality between the two systems as possible. The antenna design was described with the only change being the requirement for dual polarization (linear for the radar system and circular for the communication system).

  2. Shuttle Global Positioning (GPS) System design study

    NASA Technical Reports Server (NTRS)

    Nilsen, P.; Huth, G. K.

    1980-01-01

    Investigations of certain aspects and problems of the shuttle global positioning system GPS, are presented. Included are: test philosophy and test outline; development of a phase slope specification for the shuttle GPS antenna; an investigation of the shuttle jamming vulnerability; and an expression for the GPS signal to noise density ratio for the thermal protection system.

  3. Space shuttle visual simulation system design study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The current and near-future state-of-the-art in visual simulation equipment technology is related to the requirements of the space shuttle visual system. Image source, image sensing, and displays are analyzed on a subsystem basis, and the principal conclusions are used in the formulation of a recommended baseline visual system. Perceptibility and visibility are also analyzed.

  4. Fluid design studies of integrated modular engine system

    NASA Technical Reports Server (NTRS)

    Frankenfield, Bruce; Carek, Jerry

    1993-01-01

    A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.

  5. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    NASA Technical Reports Server (NTRS)

    Goldfarb, W.; Carpenter, L. C.; Redhed, D. D.; Hansen, S. D.; Anderson, L. O.; Kawaguchi, A. S.

    1973-01-01

    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included.

  6. Impact of Design Trade Studies on System Human Resources.

    ERIC Educational Resources Information Center

    Whalen, Gary V.; Askren, William B.

    This study focused on two objectives. The first objective was to identify and classify the characteristics of conceptual design trade studies that have high potential impact on human resource requirements of Air Force weapon systems. The approach used was a case history review and analysis of 129 F-15 aircraft design trade studies. The analysis…

  7. Design Languages, Notation Systems, and Instructional Technology: A Case Study

    ERIC Educational Resources Information Center

    Waters, Sandie H.; Gibbons, Andrew S.

    2004-01-01

    Notational systems, used in mature fields of study, are closely related to design languages. The future of a technological field depends on the ability to communicate ideas and changes with others in the field. Instructional technology is one field that can benefit from a notation system enabling designers to duplicate, execute, and communicate…

  8. DESIGN AND EVALUATION OF LABORATORY ECOLOGICAL SYSTEM STUDIES

    EPA Science Inventory

    Design and evaluation of laboratory ecological system studies are considered in relation to problems and objectives in environmental toxicology. Ecological systems are defined to be organismic systems together with their level-specific, co-extensive environmental systems and to o...

  9. Magnetic suspension and balance system advanced study, 1989 design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Eyssa, Y. M.; Abdelsalam, Moustafa K.; Mcintosh, Glen E.

    1991-01-01

    The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved.

  10. Space shuttle food system study. Volume 1: System design report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Data were assembled which define the optimum food system to support the space shuttle program, and which provide sufficient engineering data to support necessary requests for proposals towards final development and installment of the system. The study approach used is outlined, along with technical data and sketches for each functional area. Logistic support analysis, system assurance, and recommendations and conclusions based on the study results are also presented.

  11. Conceptual design study for a teleoperator visual system, phase 1

    NASA Technical Reports Server (NTRS)

    Adams, D.; Grant, C.; Johnson, C.; Meirick, R.; Polhemus, C.; Ray, A.; Rittenhouse, D.; Skidmore, R.

    1972-01-01

    Results are reported for work performed during the first phase of the conceptual design study for a teleoperator visual system. This phase consists of four tasks: General requirements, concept development, subsystem requirements and analysis, and concept evaluation.

  12. Engineering study for the functional design of a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Miller, J. S.; Vandever, W. H.; Stanten, S. F.; Avakian, A. E.; Kosmala, A. L.

    1972-01-01

    The results are presented of a study to generate a functional system design of a multiprocessing computer system capable of satisfying the computational requirements of a space station. These data management system requirements were specified to include: (1) real time control, (2) data processing and storage, (3) data retrieval, and (4) remote terminal servicing.

  13. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Alem, W. K.; Huth, G. K.; Simon, M. K.

    1978-01-01

    The particular Ku-band carrier, PN despreading, and symbol synchronization strategies, which were selected for implementation in the Ku-band transponder aboard the orbiter, were assessed and evaluated from a systems performance viewpoint, verifying that system specifications were met. A study was performed of the design and implementation of tracking techniques which are suitable for incorporation into the Orbiter Ku-band communication system. Emphasis was placed on maximizing tracking accuracy and communication system flexibility while minimizing cost, weight, and system complexity of Orbiter and ground systems hardware. The payload communication study assessed the design and performance of the forward link and return link bent-pipe relay modes for attached and detached payloads. As part of this study, a design for a forward link bent-pipe was proposed which employs a residual carrier but which is tracked by the existing Costas loop.

  14. Forest fire advanced system technology (FFAST) conceptual design study

    NASA Technical Reports Server (NTRS)

    Nichols, J. David; Warren, John R.

    1987-01-01

    The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  15. Shuttle/tethered satellite system conceptual design study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.

  16. Preliminary design study of the TMT Telescope structure system: overview

    NASA Astrophysics Data System (ADS)

    Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry

    2014-07-01

    We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the

  17. A reliability study of instrument air system design options

    SciTech Connect

    Guey, C.; Skelley, W. ); Gilbert, L.; Anoba, R.; Stutzke, M. )

    1992-01-01

    The existing instrument air system at Turkey Point station uses mobile diesel-driven air compressors. Although these diesel compressors have performed their function well, they represent a maintenance and financial burden requiring engineering review. An engineering evaluation is ongoing to develop several feasible conceptual design options to upgrade the instrument air systems. This phase-1 study was performed to assess the reliability of the various proposed design options. A phase-2 study will be conducted later to determine the core damage frequency for a selected option.

  18. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Trumpis, B. D.; Udalov, S.

    1975-01-01

    Various aspects of space shuttle communication systems were studied. The following major areas were investigated: burst error correction for shuttle command channels; performance optimization and design considerations for Costas receivers with and without bandpass limiting; experimental techniques for measuring low level spectral components of microwave signals; and potential modulation and coding techniques for the Ku-band return link. Results are presented.

  19. Aircraft systems design studies employing advanced transport technologies

    NASA Technical Reports Server (NTRS)

    Downie, B.; Pearce, C.; Quartero, C.; Taylor, A.

    1972-01-01

    System and design integration studies are presented to define and assess the application of the advanced technology most likely to result in a superior next generation, high subsonic/sonic conventional takeoff and landing transport aircraft system. It is concluded that the new technologies can be directed toward the achievement of improved economy and performance. These benefits may be used to compensate for the penalties associated with reduced noise requirements anticipated to make future aircraft ecologically acceptable.

  20. Alpha low-level stored waste systems design study

    SciTech Connect

    Feizollahi, F.; Teheranian, B.; Quapp, W.J.

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

  1. Alpha low-level stored waste systems design study

    SciTech Connect

    Feizollahi, F.; Teheranian, B. . Environmental Services Div.); Quapp, W.J. )

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

  2. Design study on safety protection system of JSFR

    SciTech Connect

    Ishikawa, N.; Chikazawa, Y.; Fujita, K.; Yamada, Y.; Okazaki, H.; Suzuki, S.

    2012-07-01

    Development of Japan Sodium-cooled Fast Reactor (JSFR) has been progressed in Fast Reactor Cycle Technology Development (FaCT) project aiming at realizing high level of safety, reliability and economic competitiveness. For JSFR, design consideration on safety protection system has also been performed, which is essential for reactor shutdown in the case of design basis events (DBEs). In the design activity, consideration of safety protection system includes logic circuits configuration, selection of trip signals, and its setting values for reactor trip. In addition, it is necessary to evaluate the performance of the safety protection system by safety analysis taking into account the comprehensive parameter ranges. For this purpose, it has been evaluated whether adequate reactor trip signals can be ensured for satisfying safety standard regarding the fuel integrity (e.g., maximum fuel clad temperature) for DBEs. In this paper, results obtained from the design study on safety protection system of JSFR is presented focusing on the evaluation results of satisfaction of safety protection system for representative events of transient over power (TOP), loss of coolant flow (LOF) and loss of heat sink (LOHS). (authors)

  3. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    NASA Technical Reports Server (NTRS)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  4. Thermogravity system designed for use in dispersion strengthening studies

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    A thermogravimetry system designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 PPM water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.

  5. X-33 Base Region Thermal Protection System Design Study

    NASA Technical Reports Server (NTRS)

    Lycans, Randal W.

    1998-01-01

    The X-33 is an advanced technology demonstrator for validating critical technologies and systems required for an operational Single-Stage-to-Orbit (SSTO) Reusuable Launch Vehicle (RLV). Currently under development by a unique contractor/government team led by Lockheed- Martin Skunk Works (LMSW), and managed by Marshall Space Flight Center (MSFC), the X-33 will be the prototype of the first new launch system developed by the United States since the advent of the space shuttle. This paper documents a design trade study of the X-33 base region thermal protection system (TPS). Two candidate designs were evaluated for thermal performance and weight. The first candidate was a fully reusable metallic TPS using Inconel honeycomb panels insulated with high temperature fibrous insulation, while the second was an ablator/insulator sprayed on the metallic skin of the vehicle. The TPS configurations and insulation thickness requirements were determined for the predicted main engine plume heating environments and base region entry aerothermal environments. In addition to thermal analysis of the design concepts, sensitivity studies were performed to investigate the effect of variations in key parameters of the base TPS analysis.

  6. Tradeoff studies in multiobjective insensitive design of airplane control systems

    NASA Technical Reports Server (NTRS)

    Schy, A. A.; Giesy, D. P.

    1983-01-01

    A computer aided design method for multiobjective parameter-insensitive design of airplane control systems is described. Methods are presented for trading off nominal values of design objectives against sensitivities of the design objectives to parameter uncertainties, together with guidelines for designer utilization of the methods. The methods are illustrated by application to the design of a lateral stability augmentation system for two supersonic flight conditions of the Shuttle Orbiter. Objective functions are conventional handling quality measures and peak magnitudes of control deflections and rates. The uncertain parameters are assumed Gaussian, and numerical approximations of the stochastic behavior of the objectives are described. Results of applying the tradeoff methods to this example show that stochastic-insensitive designs are distinctly different from deterministic multiobjective designs. The main penalty for achieving significant decrease in sensitivity is decreased speed of response for the nominal system.

  7. Preliminary design studies on a nuclear seawater desalination system

    SciTech Connect

    Wibisono, A. F.; Jung, Y. H.; Choi, J.; Kim, H. S.; Lee, J. I.; Jeong, Y. H.; No, H. C.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclear heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)

  8. Design study for LANDSAT-D attitude control system

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.; Mayo, R. A.; Nakano, H.

    1977-01-01

    The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse.

  9. Preliminary systems design study assessment report. Volume 7, Subsystem concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem.

  10. Space shuttle auxiliary propulsion system design study. Executive summary

    NASA Technical Reports Server (NTRS)

    Kelly, P. J.; Schweickert, T. F.

    1972-01-01

    The development and characteristics of an auxiliary propulsion system for space shuttle applications are presented. The system design data necessary for selection of preferred system concepts and the requirements for complementing component design and test programs are analyzed. The use of cryogenic oxygen and hydrogen as a propellant combination is explained on the basis of high vehicle impulse requirements, safety factors, reuse, and logistics considerations. The final configurations for the alternate propellant system, with primary emphasis on earth storable propellants is described.

  11. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  12. Advanced vehicle concepts systems and design analysis studies

    NASA Technical Reports Server (NTRS)

    Waters, Mark H.; Huynh, Loc C.

    1994-01-01

    The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program.

  13. Design study for a two-color beta measurement system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Design analysis of the beam splitter combined two color beta system is presented. Conventional and dichroic beam splitters are discussed. Design analysis of the beta system employing two beams with focusing at separate points is presented. Alterations and basic parameters of the two beam system are discussed. Alterations in the focus of the initial laser and the returning beams are also discussed. Heterodyne efficiencies for the on axis and off axis reflected radiation are included.

  14. Design Study of an Incinerator Ash Conveyor Counting System - 13323

    SciTech Connect

    Jaederstroem, Henrik; Bronson, Frazier

    2013-07-01

    A design study has been performed for a system that should measure the Cs-137 activity in ash from an incinerator. Radioactive ash, expected to consist of both Cs-134 and Cs-137, will be transported on a conveyor belt at 0.1 m/s. The objective of the counting system is to determine the Cs-137 activity and direct the ash to the correct stream after a diverter. The decision levels are ranging from 8000 to 400000 Bq/kg and the decision error should be as low as possible. The decision error depends on the total measurement uncertainty which depends on the counting statistics and the uncertainty in the efficiency of the geometry. For the low activity decision it is necessary to know the efficiency to be able to determine if the signal from the Cs-137 is above the minimum detectable activity and that it generates enough counts to reach the desired precision. For the higher activity decision the uncertainty of the efficiency needs to be understood to minimize decision errors. The total efficiency of the detector is needed to be able to determine if the detector will be able operate at the count rate at the highest expected activity. The design study that is presented in this paper describes how the objectives of the monitoring systems were obtained, the choice of detector was made and how ISOCS (In Situ Object Counting System) mathematical modeling was used to calculate the efficiency. The ISOCS uncertainty estimator (IUE) was used to determine which parameters of the ash was important to know accurately in order to minimize the uncertainty of the efficiency. The examined parameters include the height of the ash on the conveyor belt, the matrix composition and density and relative efficiency of the detector. (authors)

  15. Advanced EVA system design requirements study, executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.

  16. Conceptual designs study for a Personnel Launch System (PLS)

    NASA Technical Reports Server (NTRS)

    Wetzel, E. D.

    1990-01-01

    A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.

  17. Hybrid vehicle system studies and optimized hydrogen engine design

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Aceves, S.

    1995-04-01

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  18. Hybrid vehicle system studies and optimized hydrogen engine design

    SciTech Connect

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  19. Study and design of laser communications system for space shuttle

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design, development and operation are described of the laser communications system developed for potential space shuttle application. A brief study was conducted to identify the need, if any, for narrow bandwidth space-to-space communication on the shuttle vehicles. None have been specifically identified that could not be accommodated with existing equipments. The key technical features developed in this hardware are the conically scanned tracker for optimized track while communicating with a single detector, and the utilization of a common optical carrier frequency for both transmission and detection. This latter feature permits a multiple access capability so that several transceivers can communicate with one another. The conically scanned tracker technique allows the received signal energy to be efficiently divided between the tracking and communications functions within a common detector.

  20. Preliminary design study of astronomical detector cooling system

    NASA Technical Reports Server (NTRS)

    Norman, R. H.

    1976-01-01

    The preliminary design of an astronomical detector cooling system for possible use in the NASA C-141 Airborne Infrared Observatory is presented. The system consists of the following elements: supercritical helium tank, Joule-Thomson supply gas conditioner, Joule-Thomson expander (JTX), optical cavity dewar, optical cavity temperature controller, adjustable J-T discharge gas pressure controller, and vacuum pump.

  1. Design study for LANDSAT D attitude control system

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.

    1976-01-01

    A design and performance evaluation is presented for the LANDSAT D attitude control system (ACS). Control and configuration of the gimballed Ku-band antenna system for communication with the tracking and data relay satellite (TDRS). Control of the solar array drive considered part of the ACS is also addressed.

  2. Simulation Environment for Orion Launch Abort System Control Design Studies

    NASA Technical Reports Server (NTRS)

    McMinn, J. Dana; Jackson, E. Bruce; Christhilf, David M.

    2007-01-01

    The development and use of an interactive environment to perform control system design and analysis of the proposed Crew Exploration Vehicle Launch Abort System is described. The environment, built using a commercial dynamic systems design package, includes use of an open-source configuration control software tool and a collaborative wiki to coordinate between the simulation developers, control law developers and users. A method for switching between multiple candidate control laws and vehicle configurations is described. Aerodynamic models, especially in a development program, change rapidly, so a means for automating the implementation of new aerodynamic models is described.

  3. Technology Solutions Case Study: Hydronic Systems: Designing for Setback Operation

    SciTech Connect

    2014-05-01

    For years, conventional wisdom surrounding space heating has specified two points: size the mechanical systems to the heating loads, and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. Determining the appropriateness of setback for a particular project is the first step. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step-by-step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.

  4. Blade system design studies volume II : preliminary blade designs and recommended test matrix.

    SciTech Connect

    Griffin, Dayton A.

    2004-06-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

  5. Thermal Protection System design studies for lunar crew module

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.; Bouslog, Stanley A.; Rochelle, William C.

    1993-01-01

    The results of a study to predict aeroheating and Thermal Protection System (TPS) requirements for manned entry vehicles returning to Earth from the moon are presented. The effects of vehicle size and lunar-return strategies on the aerothermodynamic environment and TPS design were assessed. Study guidelines were based on an Apollo Command Module (CM) configuration and lunar return strategies included direct entry and aerocapture followed by Low Earth Orbit entry (LEO). Convective heating was obtained by the boundary layer integral matrix procedure (BLIMP) code, and radiative heating was computed with the QRAD program. The AESOP-STAB code and the AESOP-THERM code were used for TPS analysis for ablating materials and nonablating materials respectively. Results indicated that there was an optimum size for minimum heating and that direct entry had higher heating rates than aerocapture. Aerocapture resulted in higher heat loads and TPS weight. The TPS weight factor was 6-8 percent for all lunar return strategies, with the TPS weight being about 50 percent less than that of the original Apollo CM vehicle.

  6. Design study for electronic system for Jupiter Orbit Probe (JOP)

    NASA Technical Reports Server (NTRS)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  7. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    SciTech Connect

    DR. Stephen Croft; Mr. David Martancik; Dr. Brian Young; Dr. Patrick MJ Chard; Dr. Robert J Estop; Sheila Melton; Gaetano J. Arnone

    2003-01-13

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.

  8. The study and design of a wireless ECG monitoring system.

    PubMed

    Yang, Hongli; Chai, Jihong

    2012-01-01

    This paper describes a research project on wireless electrocardiogram (ECG) monitoring systems. A detection and measurement processor designed by a MSP430 microcontroller accomplishes the analog-to-digital conversion, digital filtering, QRS wave detection, and heart rate calculation. The data of detection can be sent to the central controller and personal computer (PC) by wireless on-chip MG2455 through a ZigBee network. This design can be used widely in home healthcare, community healthcare, and sports training, as well as in healthcare facilities, due to its characteristics of low power consumption, small size, and reliability. PMID:23039742

  9. Simulation and simplified design studies of photovoltaic systems

    SciTech Connect

    Evans, D.L.; Facinelli, W.A.; Koehler, L.P.

    1980-09-01

    Results of TRNSYS simulations of photovoltaic systems with electrical storage are described. Studies of the sensitivity of system performance, in terms of the fraction of the electrical load supplied by the solar energy system, to variables such as array size, battery size, location, time of year, and load shape are reported. An accurate simplified method for predicting array output of max-power photovoltaic systems is presented. A second simplified method, which estimates the overall performance of max-power systems, is developed. Finally, a preliminary technique for predicting clamped-voltage system performance is discussed.

  10. Design study LANDSAT follow-on mission unique communications system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Spacecraft subsystem design, performance evaluation, and system tradeoffs are presented for the LANDSAT follow-on mission (LF/O) spacecraft to TDRSS link for the transmission of thematic mapper (TM) and multispectral scanner (MSS) data and for the LF/O spacecraft to STDN and other direct users link for the transmission of TM data. Included are requirements definition, link analysis, subsystem and hardware tradeoffs, conceptual selection, hardware definition, and identification of required new technology. Cost estimates of the recommended communication system including both recurring and non recurring costs are discussed.

  11. Crew emergency return vehicle - Electrical power system design study

    NASA Technical Reports Server (NTRS)

    Darcy, E. C.; Barrera, T. P.

    1989-01-01

    A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.

  12. Reliability studies of Integrated Modular Engine system designs

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-01-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  13. Reliability studies of integrated modular engine system designs

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-01-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  14. Reliability studies of Integrated Modular Engine system designs

    NASA Astrophysics Data System (ADS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-06-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  15. Reliability studies of integrated modular engine system designs

    NASA Astrophysics Data System (ADS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-06-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  16. Reusable Reentry Satellite (RRS) system design study. Phase B, appendix E: Attitude control system study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.

  17. Blade System Design Study. Part II, final project report (GEC).

    SciTech Connect

    Griffin, Dayton A.

    2009-05-01

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being

  18. C-MOS array design techniques: SUMC multiprocessor system study

    NASA Technical Reports Server (NTRS)

    Clapp, W. A.; Helbig, W. A.; Merriam, A. S.

    1972-01-01

    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units.

  19. Design studies for a spectrally agile staring sensor /SASS/ system

    NASA Astrophysics Data System (ADS)

    Kollodge, M. A.; Cox, J. A.; Marshall, W. C.; Solstad, R. G.; Steadman, S. S.

    1981-01-01

    The operation of the Spectrally Agile Staring Sensor (SASS) involves the employment of a telescope system which uses variable spectral band information to detect and identify moving IR sources against the background radiance of the earth. A description is presented of SASS simulation studies. A signal-to-noise ratio (SNR) expression used as a measure of system performance is considered. Attention is given to the target trajectory generator, a target signature model, a background and atmospheric model, a Dual Tunable Fabry-Perot (DTFP) optical filter model, problems of out-of-band leakage transmission, a Focal Plane Array (FPA)/spot convolution model, SNR improvement with high filter transmission efficiency, system performance vs DTFP optical filter parameters, and system performance vs atmospheric conditions.

  20. Study and design on USB wireless laser communication system

    NASA Astrophysics Data System (ADS)

    Wang, Aihua; Zheng, Jiansheng; Ai, Yong

    2004-04-01

    We give the definition of USB wireless laser communication system (WLCS) and the brief introduction to the protocol of USB, the standard of hardware is also given. The paper analyses the hardware and software of USB WLCS. Wireless laser communication part and USB interface circuit part are discussed in detail. We also give the periphery design of the chip AN2131Q, the control circuit to realize the transformation from parallel port to serial bus, and the circuit of laser sending and receiving of laser communication part, which are simply, cheap and workable. And then the four part of software are analyzed as followed. We have consummated the ISR in the firmware frame to develop the periphery device of USB. We have debugged and consummated the 'ezload,' and the GPD of the drivers. Windows application performs functions and schedules the corresponding API functions to let the interface practical and beautiful. The system can realize USB wireless laser communication between computers, which distance is farther than 50 meters, and top speed can be bigger than 8 Mbps. The system is of great practical sense to resolve the issues of high-speed communication among increasing districts without fiber trunk network.

  1. HYLIFE-II power conversion system design and cost study

    SciTech Connect

    Hoffman, M.A. . Dept. of Mechanical, Aeronautical and Materials Engineering)

    1990-09-01

    The power conversion system for the HYLIFE-2 fusion power plant has been defined to include the IHX's (intermediate heat exchangers) and everything that support the exchange of energy from the reactor. It is referred to simply as the BOP (balance of plant) in the rest of this report. The above is a convenient division between the reactor equipment and the rest of the fusion power plant since the BOP design and cost then depend only on the specification of the thermal power to the IHX's and the temperature of the primary Flibe coolant into and out of the IHX's, and is almost independent of the details of the reactor design. The main efforts during the first year have been on the definition and thermal-hydraulics of the IHX's, the steam generators and the steam power plant, leading to the definition of a reference BOP with the molten salt, Flibe, as the primary coolant. A summary of the key results in each of these areas is given in this report.

  2. Integrated source and channel encoded digital communications system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1974-01-01

    Studies on the digital communication system for the direct communication links from ground to space shuttle and the links involving the Tracking and Data Relay Satellite (TDRS). Three main tasks were performed:(1) Channel encoding/decoding parameter optimization for forward and reverse TDRS links,(2)integration of command encoding/decoding and channel encoding/decoding; and (3) modulation coding interface study. The general communication environment is presented to provide the necessary background for the tasks and to provide an understanding of the implications of the results of the studies.

  3. Studies to design and develop improved remote manipulator systems

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    Remote manipulator control considered is based on several levels of automatic supervision which derives manipulator commands from an analysis of sensor states and task requirements. Principle sensors are manipulator joint position, tactile, and currents. The tactile sensor states can be displayed visually in perspective or replicated in the operator's control handle of perceived by the automatic supervisor. Studies are reported on control organization, operator performance and system performance measures. Unusual hardware and software details are described.

  4. Design/cost tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of design/cost tradeoff studies conducted during the Earth Observatory Satellite system definition studies are presented. The studies are concerned with the definition of a basic modular spacecraft capable of supporting a variety of operational and/or research and development missions, with the deployment either by conventional launch vehicles or by means of the space shuttle. The three levels investigated during the study are: (1) subsystem tradeoffs, (2) spacecraft tradeoffs, and (3) system tradeoffs. The range of requirements which the modular concept must span is discussed. The mechanical, thermal, power, data and electromagnetic compatibility aspects of modularity are analyzed. Other data are provided for the observatory design concept, the payloads, integration and test, the ground support equipment, and ground data management systems.

  5. An assessment of separable fluid connector system parameters to perform a connector system design optimization study

    NASA Technical Reports Server (NTRS)

    Prasthofer, W. P.

    1974-01-01

    The key to optimization of design where there are a large number of variables, all of which may not be known precisely, lies in the mathematical tool of dynamic programming developed by Bellman. This methodology can lead to optimized solutions to the design of critical systems in a minimum amount of time, even when there are a great number of acceptable configurations to be considered. To demonstrate the usefulness of dynamic programming, an analytical method is developed for evaluating the relationship among existing numerous connector designs to find the optimum configuration. The data utilized in the study were generated from 900 flanges designed for six subsystems of the S-1B stage of the Saturn 1B space carrier vehicle.

  6. User Studies and Systems Design: Bridging the Gap (SIGs USE, HCI).

    ERIC Educational Resources Information Center

    Robins, David

    2000-01-01

    Presents an abstract for a planned session on the need to coordinate user studies and information retrieval system design research. Topics include human-based research and system-based research; children's information use; usability and cartographic information systems; and ethnomethodology and system design. Panelists included: Nick Belkin, Dania…

  7. Performance Study and Dynamic Optimization Design for Thread Pool Systems

    SciTech Connect

    Dongping Xu

    2004-12-19

    Thread pools have been widely used by many multithreaded applications. However, the determination of the pool size according to the application behavior still remains problematic. To automate this process, in this thesis we have developed a set of performance metrics for quantitatively analyzing thread pool performance. For our experiments, we built a thread pool system which provides a general framework for thread pool research. Based on this simulation environment, we studied the performance impact brought by the thread pool on different multithreaded applications. Additionally, the correlations between internal characterizations of thread pools and their throughput were also examined. We then proposed and evaluated a heuristic algorithm to dynamically determine the optimal thread pool size. The simulation results show that this approach is effective in improving overall application performance.

  8. Shared Values as Anchors of a Learning Community: A Case Study in Information Systems Design

    ERIC Educational Resources Information Center

    Giordano, Daniela

    2004-01-01

    This paper examines the role in both individual and organizational learning of the system of values sustained by a community undertaking a design task. The discussion is based on the results of a longitudinal study of a community of novice information system designers supported by a Web-based shared design memory which allows reuse of design…

  9. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  10. Study to design and develop remote manipulator systems

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Salisbury, J. K., Jr.

    1977-01-01

    A description is given of part of a continuing effort both to develop models for and to augment the performance of humans controlling remote manipulators. The project plan calls for the performance of several standard tasks with a number of different manipulators, controls, and viewing conditions, using an automated performance measuring system; in addition, the project plan calls for the development of a force-reflecting joystick and supervisory display system.

  11. System design parameter study for Shuttle Infrared Telescope Facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Mord, A. J.; Bottema, M.; Devereux, W. P.; Poley, R. L.; Strecker, D. W.; Tai, F.

    1983-01-01

    SIRTF is a high-sensitivity, cooled astronomical telescope operating from 2 to 1000 microns. The techniques used in analyzing the sensitivity of the SIRTF system performance to several technical issues are presented. Lowering the telescope temperature to near 4K is found to produce margin in several areas. A refined observing requirements model relieves the hardware performance requirements, and identifies extended source size/observing strategy as an important system specification. Other major conclusions are presented.

  12. Integrated command, control, communication and computation system design study. Summary of tasks performed

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A summary of tasks performed on an integrated command, control, communication, and computation system design study is given. The Tracking and Data Relay Satellite System command and control system study, an automated real-time operations study, and image processing work are discussed.

  13. Design and study on optic fiber sensor detection system

    NASA Astrophysics Data System (ADS)

    Jiang, Xuemei; Liu, Quan; Liang, Xiaoyu; Lin, Haiyan

    2005-11-01

    With the development of industry and agriculture, the environmental pollution becomes more and more serious. Various kinds of poisonous gas are the important pollution sources. Various kinds of poisonous gas, such as the carbon monoxide, sulfureted hydrogen, sulfur dioxide, methane, acetylene are threatening human normal life and production seriously especially today when industry and various kinds of manufacturing industries develop at full speed. The acetylene is a kind of gas with very lively chemical property, extremely apt to burn, resolve and explode, and it is great to destroy things among these poisonous gases. Comparing with other inflammable and explosive gas, the explosion range of the acetylene is heavier. Therefore carrying on monitoring acetylene pollution sources scene in real time, grasping the state of pollution taking place and development in time, have very important meanings. Aim at the above problems, a set of optical fiber detection system of acetylene gas based on the characteristic of spectrum absorption of acetylene is presented in this paper, which has reference channel and is for on-line and real-time detection. In order to eliminate the effect of other factors on measurement precision, the double light sources, double light paths and double cells are used in this system. Because of the use of double wavelength compensating method, this system can eliminate the disturbance in the optical paths, the problem of instability is solved and the measurement precision is greatly enhanced. Some experimental results are presented at the end of this paper.

  14. Acquisition/expulsion system for earth orbital propulsion system study. Volume 5: Earth storable design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A comprehensive analysis and parametric design effort was conducted under the earth-storable phase of the program. Passive Acquisition/expulsion system concepts were evaluated for a reusable Orbital Maneuvering System (OMS) application. The passive surface tension technique for providing gas free liquid on demand was superior to other propellant acquisition methods. Systems using fine mesh screens can provide the requisite stability and satisfy OMS mission requirements. Both fine mesh screen liner and trap systems were given detailed consideration in the parametric design, and trap systems were selected for this particular application. These systems are compatible with the 100- to 500-manned mission reuse requirements.

  15. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Udalov, S.; Huth, G. K.

    1977-01-01

    The analysis of the forward link signal structure for the shuttle orbiter Ku-band communication system was carried out, based on the assumptions of a 3.03 Mcps PN code. It is shown that acquisition requirements for the forward link can be met at the acquisition threshold C/N0 sub 0 value of about 60 dB-Hz, which corresponds to a bit error rate (BER) of about 0.001. It is also shown that the tracking threshold for the forward link is at about 57 dB-Hz. The analysis of the bent pipe concept for the orbiter was carried out, along with the comparative analysis of the empirical data. The complexity of the analytical approach warrants further investigation to reconcile the empirical and theoretical results. Techniques for incorporating a text and graphics capability into the forward link data stream are considered and a baseline configuration is described.

  16. A Parallel Trade Study Architecture for Design Optimization of Complex Systems

    NASA Technical Reports Server (NTRS)

    Kim, Hongman; Mullins, James; Ragon, Scott; Soremekun, Grant; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    Design of a successful product requires evaluating many design alternatives in a limited design cycle time. This can be achieved through leveraging design space exploration tools and available computing resources on the network. This paper presents a parallel trade study architecture to integrate trade study clients and computing resources on a network using Web services. The parallel trade study solution is demonstrated to accelerate design of experiments, genetic algorithm optimization, and a cost as an independent variable (CAIV) study for a space system application.

  17. Acquisition/expulsion system for earth orbital propulsion system study. Volume 2: Cryogenic design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Detailed designs were made for three earth orbital propulsion systems; (1) the space shuttle (integrated) OMS/RCS, (2) the space shuttle (dedicated) OMS (LO2), and (3) the space tug. The preferred designs from the integrated OMS/RCS were used as the basis for the flight test article design. A plan was prepared that outlines the steps, cost, and schedule required to complete the development of the prototype DSL tank and feedline (LH2 and LO2) systems. Ground testing of a subscale model using LH2 verified the expulsion characteristics of the preferred DSL designs.

  18. Design studies of the output system of a 95 GHz, 100 kW, CW gyrotron

    SciTech Connect

    Vamshi Krishna, P.; Kartikeyan, M.V. E-mail: kartik@iitr.ernet.in; Thumm, M.

    2011-07-01

    This paper presents the design studies of the output system of a 95 GHz, 100 kW, CW gyrotron for ECRH7ECRIS applications. During this course, the design studies of an advanced dimpled-wall quasi optical launcher, non-linear taper and RF window will be carried out. (author)

  19. System design and specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design summary of the Earth Observatory Satellite (EOS) is presented. The systems considered in the summary are: (1) the spacecraft structure, (2) electrical power modules, (3) communications and data handling module, (4) attitude determination module, (5) actuation module, and (6) solar array and drive module. The documents which provide the specifications for the systems and the equipment are identified.

  20. Issues in Designing a Hypermedia Document System: The Intermedia Case Study.

    ERIC Educational Resources Information Center

    Yankelovich, Nicole; And Others

    1986-01-01

    Intermedia, a hypermedia system developed at Brown University's Institute for Research (Rhode Island) in Information and Scholarship, is first described, and then used as a case study to explore a number of key issues that software designers must consider in the development of hypermedia document systems. A hypermedia document system is defined as…

  1. Parametric Optimization of Some Critical Operating System Functions--An Alternative Approach to the Study of Operating Systems Design

    ERIC Educational Resources Information Center

    Sobh, Tarek M.; Tibrewal, Abhilasha

    2006-01-01

    Operating systems theory primarily concentrates on the optimal use of computing resources. This paper presents an alternative approach to teaching and studying operating systems design and concepts by way of parametrically optimizing critical operating system functions. Detailed examples of two critical operating systems functions using the…

  2. Earth Observatory Satellite system definition study. Report 3: Design cost trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the design and cost tradeoff aspects of the Earth Observatory Satellite (EOS) development is presented. The design/cost factors that affect a series of mission/system level concepts are discussed. The subjects considered are as follows: (1) spacecraft subsystem cost tradeoffs, (2) ground system cost tradeoffs, and (3) program cost summary. Tables of data are provided to summarize the results of the analyses. Illustrations of the various spacecraft configurations are included.

  3. Magnetic suspension and balance system (MSBS) advanced study.I - System design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Abdelsalam, Mostafa K.; Eyssa, Yehia M.; Mcintosh, Glen E.

    1987-01-01

    A magnetic suspension and balance system is designed to support models of aircraft or other objects in wind tunnels by means of magnetic forces. Major design improvements have been achieved, resulting in reductions of the system size, weight, and cost. These improvements are due to: (1) the use of holmium in the model core to increase its magnetic moment, (2) the use of a powerful new permanent magnet material in the model wings, (3) a new arrangement for the roll coils, and (4) the use of a nonmetallic structure to eliminate eddy current losses. The conceptual design of the holmium core superconductive solenoid and of the new permanent magnet wing assembly is described in detail. The discussion includes comparisons of the pole strengths for different model core magnets, the design of a superconducting solenoid and cryostat, and the analysis of model wing magnetic requirements.

  4. Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)

    NASA Technical Reports Server (NTRS)

    Weisbrich, R.; Perley, R.; Howes, H.

    1977-01-01

    The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.

  5. Making intelligent systems team players: Case studies and design issues. Volume 1: Human-computer interaction design

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.

    1991-01-01

    Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.

  6. Star Laws: an Anti-Newtonian Design. a Study in Science-Systems Analysis and Design.

    NASA Astrophysics Data System (ADS)

    Graham, Ross Lee

    1994-01-01

    The main theme is the recognition and testing of dual concepts and dual systems of thought in physical theory. This dual analysis generates a non-inertial Physics and can be characterized as anti-Newtonian (dual to Newton). This exposition addresses this subject with special emphasis on the problem of falling bodies. Falling bodies are analyzed with respect to the most important cosmologies that influenced scientists up to Newton. This study includes relevant points from the work of Ptolemy, Copernicus, Gilbert, Brahe, Kepler, Descartes, and Galileo. Newton's Second Law of motion is used in a new way to criticize Galileo's famous thought experiment that he used to prove that all falling bodies fall at the same acceleration regardless of weight. Newton agreed with Galileo's argument and then proposed that it is true that all falling bodies fall at the same acceleration but that heavier bodies fall with more force. The formula for this is derived from his Second Law of motion. I attempt to show that Newton's Law and Galileo's thought experiment are incompatible and cannot both be true. Furthermore, I attempt to show that a system dual to Newton's is both consistent and coherent with observed phenomena.

  7. Integrated design of electrical distribution systems: Phase balancing and phase prediction case studies

    NASA Astrophysics Data System (ADS)

    Dilek, Murat

    Distribution system analysis and design has experienced a gradual development over the past three decades. The once loosely assembled and largely ad hoc procedures have been progressing toward being well-organized. The increasing power of computers now allows for managing the large volumes of data and other obstacles inherent to distribution system studies. A variety of sophisticated optimization methods, which were impossible to conduct in the past, have been developed and successfully applied to distribution systems. Among the many procedures that deal with making decisions about the state and better operation of a distribution system, two decision support procedures will be addressed in this study: phase balancing and phase prediction. The former recommends re-phasing of single- and double-phase laterals in a radial distribution system in order to improve circuit loss while also maintaining/improving imbalances at various balance point locations. Phase balancing calculations are based on circuit loss information and current magnitudes that are calculated from a power flow solution. The phase balancing algorithm is designed to handle time-varying loads when evaluating phase moves that will result in improved circuit losses over all load points. Applied to radial distribution systems, the phase prediction algorithm attempts to predict the phases of single- and/or double phase laterals that have no phasing information previously recorded by the electric utility. In such an attempt, it uses available customer data and kW/kVar measurements taken at various locations in the system. It is shown that phase balancing is a special case of phase prediction. Building on the phase balancing and phase prediction design studies, this work introduces the concept of integrated design, an approach for coordinating the effects of various design calculations. Integrated design considers using results of multiple design applications rather than employing a single application for a

  8. MSFC Sortie Laboratory Environmental Control System (ECS) phase B design study results

    NASA Technical Reports Server (NTRS)

    Ignatonis, A. J.; Mitchell, K. L.

    1974-01-01

    Phase B effort of the Sortie Lab program has concluded. Results of that effort are presented which pertain to the definitions of the environmental control system (ECS). Numerous design studies were performed in Phase B to investigate system feasibility, complexity, weight, and cost. The results and methods employed for these design studies are included. An autonomous Sortie Lab ECS was developed which utilizes a deployed space radiator. Total system weight was projected to be 1814.4 kg including the radiator and fluids. ECS power requirements were estimated at 950 watts.

  9. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The key issues in the Earth Observatory Satellite (EOS) program which are subject to configuration study and tradeoff are identified. The issue of a combined operational and research and development program is considered. It is stated that cost and spacecraft weight are the key design variables and design options are proposed in terms of these parameters. A cost analysis of the EOS program is provided. Diagrams of the satellite configuration and subsystem components are included.

  10. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 4: OEPSS design concepts

    NASA Technical Reports Server (NTRS)

    Wong, George S.; Ziese, James M.; Farhangi, Shahram

    1990-01-01

    This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study have been organized into a series of OEPSS Data Books. This volume describes three propulsion concepts that will simplify the propulsion system design and significantly reduce operational requirements. The concepts include: (1) a fully integrated, booster propulsion module concept for the ALS that avoids the complex system created by using autonomous engines with numerous artificial interfaces; (2) an LOX tank aft concept which avoids potentially dangerous geysering in long LOX propellant lines; and (3) an air augmented, rocket engine nozzle afterburning propulsion concept that will significantly reduce LOX propellant requirements, reduce vehicle size and simplify ground operations and ground support equipment and facilities.

  11. The Design and Use of an Optical Mapping System for the Study of Intracardiac Electrical Signaling

    PubMed Central

    Shrivastav, Maneesh; Ghai, Megan B; Singal, Ashish; Iaizzo, Paul A

    2012-01-01

    Fluorescent optical mapping of electrically active cardiac tissues provides a unique method to examine the excitation wave dynamics of underlying action potentials. Such mapping can be viewed as a bridge between cellular level and organ systems physiology, e.g., by facilitating the development of advanced theoretical concepts of arrhythmia. We present the design and use of a high-speed, high-resolution optical mapping system composed entirely of "off the shelf" components. The electrical design integrates a 256 element photodiode array with a 16 bit data acquisition system. Proper grounding and shielding at various stages of the design reduce electromagnetic interference. Our mechanical design provides flexibility in terms of mounting positions and applications (use for whole heart or tissue preparations), while maintaining precise alignment between all optical components. The system software incorporates a user friendly graphical user interface, e.g., spatially recorded action potentials can be represented as intensity graphs or in strip chart format. Thus, this system is capable of displaying cardiac action potentials with high spatiotemporal resolution. Results from cardiac action potential mapping with intact mouse hearts are provided. It should be noted that this system could be readily configured to study isolated myocardial biopsies (e.g., isolated ventricular trabeculae). We describe the details of a versatile, user-friendly system that could be employed for a magnitude of study protocols. PMID:22912535

  12. Space station/base food system study. Volume 1: Systems design handbook

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A description is given of the approach used in a study to identify and define engineering data for a spectrum of possible items and equipment comprising potential food systems. In addition, the material presented includes: (1) the study results containing the candidate concepts considered and technical data, performance characteristics, and sketches for each of the concepts by functional area; (2) human factors considerations for crew tasks; (3) shuttle supply interface requirements; (4) special food system study areas; and (5) recommendations and conclusions based on the study results.

  13. Second-generation mobile satellite system. A conceptual design and trade-off study

    NASA Technical Reports Server (NTRS)

    Sue, M. K.; Park, Y. H.

    1985-01-01

    In recent years, interest has grown in the mobile satellite (MSAT) system, a satellite-based communications system capable of providing integrated voice and data services to a large number of users. To explore the potential of a commercial mobile satellite system (MSS) beyond the horizon of the first generation, using technologies of the 1990's and to assist MSAT-X in directing its efforts, a conceptual design has been performed for a second-generation system to be launched around the mid-1990's. The design goal is to maximize the number of satellite channels and/or minimize the overall life-cycle cost, subject to the constraint of utilizing a commercial satellite bus with minimum modifications. To provide an optimal design, a series of trade-offs are performed, including antenna sizing, feed configurations, and interference analysis. Interference is a serious problem for MSAT and often an overlapping feed design is required to reduce interbeam interference. The trade-off studies will show that a simple non-overlapping feed is sufficient for the second-generation system, thus avoiding the need for the complicated beam-forming network that is associated with the overlapping feed designs. In addition, a system that operates at L-band, an alternative frequency band that is being considered by some for possible MSAT applications, is also presented.

  14. Designing future photovoltaic systems

    SciTech Connect

    Jones, G.J.

    1984-01-01

    The large scale use of photovoltaic systems to generate our electricity is a dream for the future; but if this dream is to be realized, we must understand these systems today. As a result, there has been extensive research into the design and economic tradeoffs of utility interconnected photovoltaic applications. The understanding gained in this process has shown that photovoltaic system design can be a very simple and straight-forward endeavor. This paper reviews those past studies and shows how we have reached the present state of system design evolution. The concept of the utility interactive PV system with energy value determined by the utility's avoided cost will be explored. This concept simplifies the screening of potential applications for economic viability, and we will present several rules-of-thumb for this purpose.

  15. Design concepts and cost studies for magnetic suspension and balance systems. [wind tunnel apparatus

    NASA Technical Reports Server (NTRS)

    Bloom, H. L.

    1982-01-01

    The application of superconducting magnets for suspension and balance of wind tunnel models was studied. Conceptual designs are presented for magnetic suspension and balance system (MSBS) configurations compatible with three high Reynolds number cases representing specified combinations of test conditions and model sizes. Concepts in general met initially specified performance requirements such as duty cycle, force and moment levels, model angular displacement and positioning accuracy with nominal design requirements for support subsystems. Other performance requirements, such as forced model sinusoidal oscillations, and control force magnitude and frequency, were modified so as to alleviate the magnitude of magnet, power, and cryogenic design requirements.

  16. Conceptual design study for an advanced cab and visual system, volume 1

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    A conceptual design study was conducted to define requirements for an advanced cab and visual system. The rotorcraft system integration simulator is for engineering studies in the area of mission associated vehicle handling qualities. Principally a technology survey and assessment of existing and proposed simulator visual display systems, image generation systems, modular cab designs, and simulator control station designs were performed and are discussed. State of the art survey data were used to synthesize a set of preliminary visual display system concepts of which five candidate display configurations were selected for further evaluation. Basic display concepts incorporated in these configurations included: real image projection, using either periscopes, fiber optic bundles, or scanned laser optics; and virtual imaging with helmet mounted displays. These display concepts were integrated in the study with a simulator cab concept employing a modular base for aircraft controls, crew seating, and instrumentation (or other) displays. A simple concept to induce vibration in the various modules was developed and is described. Results of evaluations and trade offs related to the candidate system concepts are given, along with a suggested weighting scheme for numerically comparing visual system performance characteristics.

  17. Reusable Reentry Satellite (RRS) system design study: System cost estimates document

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Reusable Reentry Satellite (RRS) program was initiated to provide life science investigators relatively inexpensive, frequent access to space for extended periods of time with eventual satellite recovery on earth. The RRS will provide an on-orbit laboratory for research on biological and material processes, be launched from a number of expendable launch vehicles, and operate in Low-Altitude Earth Orbit (LEO) as a free-flying unmanned laboratory. SAIC's design will provide independent atmospheric reentry and soft landing in the continental U.S., orbit for a maximum of 60 days, and will sustain three flights per year for 10 years. The Reusable Reentry Vehicle (RRV) will be 3-axis stabilized with artificial gravity up to 1.5g's, be rugged and easily maintainable, and have a modular design to accommodate a satellite bus and separate modular payloads (e.g., rodent module, general biological module, ESA microgravity botany facility, general botany module). The purpose of this System Cost Estimate Document is to provide a Life Cycle Cost Estimate (LCCE) for a NASA RRS Program using SAIC's RRS design. The estimate includes development, procurement, and 10 years of operations and support (O&S) costs for NASA's RRS program. The estimate does not include costs for other agencies which may track or interface with the RRS program (e.g., Air Force tracking agencies or individual RRS experimenters involved with special payload modules (PM's)). The life cycle cost estimate extends over the 10 year operation and support period FY99-2008.

  18. Quality Rating and Improvement System (QRIS) Validation Study Designs. CEELO FastFacts

    ERIC Educational Resources Information Center

    Schilder, D.

    2013-01-01

    In this "Fast Facts," a state has received Race to the Top Early Learning Challenge funds and is seeking information to inform the design of the Quality Rating and Improvement System (QRIS) validation study. The Center on Enhancing Early Learning Outcomes (CEELO) responds that according to Resnick (2012), validation of a QRIS is an…

  19. Design studies for a high-resolution, transportable neutron radiography/radioscopy system

    SciTech Connect

    Gillespie, G.H.; Micklich, B.J.; McMichael, G.E.

    1996-09-30

    A preliminary design has been developed for a high-resolution, transportable neutron radiology system (TNRS) concept. The primary system requirement is taken to be a thermal neutron flux of 10[sup 6] n/(cm[sup 2]-sec) with a L/D ratio of 100. The approach is to use an accelerator-driven neutron source, with a radiofrequency quadrupole (RFQ) as the primary accelerator component. Initial concepts for all of the major components of the system have been developed,and selected key parts have been examined further. An overview of the system design is presented, together with brief summaries of the concepts for the ion source, low energy beam transport (LEBT), RFQ, high energy beam transport (HEBT), target, moderator, collimator, image collection, power, cooling, vacuum, structure, robotics, control system, data analysis, transport vehicle, and site support. The use of trade studies for optimizing the TNRS concept are also described.

  20. Marketing information system online design for craftsmen small medium enterprises (case study: craftsmen ac)

    NASA Astrophysics Data System (ADS)

    Fitriana, Rina; Kurniawan, Wawan; Barlianto, Anung; Adriansyah Putra, Rizki

    2016-02-01

    AC is small and medium enterprises which is engaged in the field of crafts. This SME (Small Medium Enterprise) didn't have an integrated information system for managing sales. This research aims to design a marketing Information system online as applications that built as web base. The integrated system is made to manage sales and expand its market share. This study uses a structured analysis and design in its approach to build systems and also implemented a marketing framework of STP (Segmentation, Targeting, Positioning) and 4P (Price, Product, Place, Promotion) to obtain market analysis. The main market target customer craftsmen AC is women aged 13 years to 35 years. The products produced by AC are shoes, brooch, that are typical of the archipelago. The prices is range from Rp. 2000 until Rp. 400.000. Marketing information system online can be used as a sales transaction document, promoting the goods, and for customer booking products.

  1. Opportunities for sustainable design and operation of cleanspaces: A case study on minienvironment system performance

    SciTech Connect

    Xu, Tengfang

    2005-05-01

    In order to identify and pursue energy efficiency opportunities associated with cleanrooms, it is necessary to understand the design and operation of cleanroom systems for specific contamination control requirements. With the industrial trend toward more stringent cleanliness class and tightening clean spaces, it is vital to understand the design of minienvironment and the operational performance of its systems. A good understanding of such system performance would help to identify opportunities in efficient energy end-use and wise allocation of resources associated with processes or productions that require minienvironments and cleanrooms. This report summarizes a case study on energy performance of a common minienvironment used in semiconductor industry, and discusses the opportunities in saving energy, in particular, the opportunities in achieving efficient operation and design that entails applications of minienvironments.

  2. Designing for the home: a comparative study of support aids for central heating systems.

    PubMed

    Sauer, J; Wastell, D G; Schmeink, C

    2009-03-01

    The study examined the influence of different types of enhanced system support on user performance during the management of a central heating system. A computer-based simulation of a central heating system, called CHESS V2.0, was used to model different interface options, providing different support facilities to the user (e.g., historical, predictive, and instructional displays). Seventy-five participants took part in the study and completed a series of operational scenarios under different support conditions. The simulation environment allowed the collection of performance measures (e.g., energy consumption), information sampling, and system control behaviour. Subjective user evaluations of various aspects of the system were also measured. The results showed performance gains for predictive displays whereas no such benefits were observed for the other display types. The data also revealed that status and predictive displays were valued most highly by users. The implications of the findings for designers of central heating systems are discussed. PMID:18433730

  3. Retrofit photovoltaic systems for intermediate sized applications-A design and market study

    SciTech Connect

    Noel, G.T.; Hagely, J.R.

    1982-09-01

    An assessment of the technical and economic feasibility of retrofitting a significant portion of the existing intermediate sector building/application inventory with photovoltaic systems is presented. The assessment includes the development of detailed engineering and architectural designs as well as cost estimates for 12 representative installations. Promising applications include retail stores, warehouses, office buildings, religious buildings, shopping centers, education buildings, hospitals, and industrial sites. A market study indicates that there is a national inventory of 1.5 to 2.0 million feasible intermediate sector applications, with the majority being in the 20 to 400 kW size range. The present cost of the major systems components and the cost of necessary building modifications are the primary current barriers to the realization of a large retrofit photovoltaic system market. The development of standardized modular system designs and installation techniques are feasible ways to minimize costs.

  4. Advanced technology cogeneration system conceptual design study: Closed cycle gas turbines

    NASA Technical Reports Server (NTRS)

    Mock, E. A. T.; Daudet, H. C.

    1983-01-01

    The results of a three task study performed for the Department of Energy under the direction of the NASA Lewis Research Center are documented. The thermal and electrical energy requirements of three specific industrial plants were surveyed and cost records for the energies consumed were compiled. Preliminary coal fired atmospheric fluidized bed heated closed cycle gas turbine and steam turbine cogeneration system designs were developed for each industrial plant. Preliminary cost and return-on-equity values were calculated and the results compared. The best of the three sites was selected for more detailed design and evaluation of both closed cycle gas turbine and steam turbine cogeneration systems during Task II. Task III involved characterizing the industrial sector electrical and thermal loads for the 48 contiguous states, applying a family of closed cycle gas turbine and steam turbine cogeneration systems to these loads, and conducting a market penetration analysis of the closed cycle gas turbine cogeneration system.

  5. Preliminary design study of a regenerative life support system information management and display system

    NASA Technical Reports Server (NTRS)

    Parker, C. D.; Tommerdahl, J. B.

    1972-01-01

    The instrumentation requirements for a regenerative life support systems were studied to provide the earliest possible indication of a malfunction that will permit degradation of the environment. Four categories of parameters were investigated: environmental parameters that directly and immediately influence the health and safety of the cabin crew; subsystems' inputs to the cabin that directly maintain the cabin environmental parameters; indications for maintenance or repair; and parameters useful as diagnostic indicators. A data averager concept is introduced which provides a moving average of parameter values that is not influenced by spurious changes, and is convenient for detecting parameter rates of change. A system is included to provide alarms at preselected parameter levels.

  6. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 1: Baseline system description

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A system baseline design oriented to the requirements of the next generation of Earth Observatory Satellite missions is presented. The first mission (EOS-A) is envisioned as a two-fold mission which (1) provides a continuum of data of the type being supplied by ERTS for the emerging operational applications and also (2) expands the research and development activities for future instrumentation and analysis techniques. The baseline system specifically satisfies the requirements of this first mission. However, EOS-A is expected to be the first of a series of earth observation missions. Thus the baseline design has been developed so as to accommodate these latter missions effectively as the transition is made from conventional, expendable launch vehicles and spacecraft to the Shuttle Space Transportation System era. Further, a subset of alternative missions requirements including Seasat, SEOS, SMM and MSS-5 have been analyzed to verify that the spacecraft design to serve a multi-mission role is economically sound. A key feature of the baseline system design is the concept of a modular observatory system whose elements are compatible with varying levels of launch vehicle capability. The design configuration can be used with either the Delta or Titan launch vehicles and will adapt readily to the space shuttle when that system becomes available in the early 1980's.

  7. Three-Dimensional Optical Memory Systems Based on 2-PHOTON Excitation: System Studies and Component Design.

    NASA Astrophysics Data System (ADS)

    Hunter, Susan

    The computational power of current high-performance computers is increasingly limited by data storage and retrieval rates. No existing memory technology has the combination of fast access and large data capacity that is needed for high-performance computing application. There are several new approaches to data storage that use additional degrees of freedom to increase the memory capacity, reduce the access time and provide parallel access to large arrays of information. These new technologies are typically called 3D memories and take advantage of the fact that optics can store data throughout a volume or by multiplexing information with wavelength, electric field or time. The majority of the dissertation focuses on the phenomenon of two-photon absorption in photochromic materials. Memory systems based on these materials are shown to have many advantages over other 3D memory approaches because they (1) operate at room temperature, (2) have a potential data density of 10^{12} bits/cm ^3 and (3) are relatively inexpensive to fabricate. Several architecture issues are included and the trade-offs between access time, capacity and bandwidth are discussed. In addition, two critical components for the volume memory system designs have been built and tested: the Holographic Dynamic Focusing Lens and the Optical Pulse Delay.

  8. Design study for a 16x zoom lens system for visible surveillance camera

    NASA Astrophysics Data System (ADS)

    Vella, Anthony; Li, Heng; Zhao, Yang; Trumper, Isaac; Gandara-Montano, Gustavo A.; Xu, Di; Nikolov, Daniel K.; Chen, Changchen; Brown, Nicolas S.; Guevara-Torres, Andres; Jung, Hae Won; Reimers, Jacob; Bentley, Julie

    2015-09-01

    *avella@ur.rochester.edu Design study for a 16x zoom lens system for visible surveillance camera Anthony Vella*, Heng Li, Yang Zhao, Isaac Trumper, Gustavo A. Gandara-Montano, Di Xu, Daniel K. Nikolov, Changchen Chen, Nicolas S. Brown, Andres Guevara-Torres, Hae Won Jung, Jacob Reimers, Julie Bentley The Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, USA 14627-0186 ABSTRACT High zoom ratio zoom lenses have extensive applications in broadcasting, cinema, and surveillance. Here, we present a design study on a 16x zoom lens with 4 groups (including two internal moving groups), designed for, but not limited to, a visible spectrum surveillance camera. Fifteen different solutions were discovered with nearly diffraction limited performance, using PNPX or PNNP design forms with the stop located in either the third or fourth group. Some interesting patterns and trends in the summarized results include the following: (a) in designs with such a large zoom ratio, the potential of locating the aperture stop in the front half of the system is limited, with ray height variations through zoom necessitating a very large lens diameter; (b) in many cases, the lens zoom motion has significant freedom to vary due to near zero total power in the middle two groups; and (c) we discuss the trade-offs between zoom configuration, stop location, packaging factors, and zoom group aberration sensitivity.

  9. Lunar surface transportation systems conceptual design lunar base systems study Task 5.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Conceptual designs for three categories of lunar surface transportation were described. The level of understanding for the capabilities and design approach varies between the vehicles representing these categories. A summary of the vehicle categories and current state of conceptual design is provided. Finally, a brief evaluation and discussion is provided for a systematic comparison of transportation categories and effectiveness in supporting transportation objectives.

  10. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  11. Software Design Analyzer System

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1985-01-01

    CRISP80 software design analyzer system a set of programs that supports top-down, hierarchic, modular structured design, and programing methodologies. CRISP80 allows for expression of design as picture of program.

  12. Design study and comparative evaluation of JSFR failed fuel detection system

    SciTech Connect

    Aizawa, K.; Chikazawa, Y.; Ishikawa, N.; Kubo, S.; Okazaki, H.; Mito, M.; Tozawa, K.; Hayashi, M.

    2012-07-01

    A conceptual design study of an advanced sodium-cooled fast reactor JSFR has progressed in the 'Fast Reactor Cycle Technology Development (FaCT) 'project in Japan. JSFR has two failed fuel detection systems in the core. One is a failed fuel detection (FFD) system which continuously monitors a fission product from failed fuel subassembly. The other is a failed fuel detection and location (FFDL) system which locates when it receives signals from FFD. The FFD system consists of a FFD-DN which detects delayed neutron (DN) in sodium and a FFD-CG which detects fission products in the cover gas of the reactor vessel. In this study, requirements to the FFD-DN and the FFD-DN design to meet the requirements were investigated for the commercial and demonstration JSFR. In the commercial JSFR, a sampling type FFD which collects sodium from the reactor vessel by sampling lines for DN detectors was adopted. The performances have been investigated and confirmed by a fluid analysis in the reactor upper plenum. In the demonstration JSFR, the performance of DN detectors installed on the primary cold-leg piping has been confirmed. For the FFDL systems, experiences in the previous fast reactors and the R and D of FFDL system for JSFR were investigated. This study focuses on the Selector-Valve and the Tagging-Gas FFDL systems. Operation experiences of the Selector-valve FFDL system were accumulated in PFR and Phenix. Tagging-gas system experiences were accumulated in EBR-II and FFTF. The feasibility of both FFDL systems for JSFR was evaluated. (authors)

  13. Technology Transfer Challenges: A Case Study of User-Centered Design in NASA's Systems Engineering Culture

    NASA Technical Reports Server (NTRS)

    Quick, Jason

    2009-01-01

    The Upper Stage (US) section of the National Aeronautics and Space Administration's (NASA) Ares I rocket will require internal access platforms for maintenance tasks performed by humans inside the vehicle. Tasks will occur during expensive critical path operations at Kennedy Space Center (KSC) including vehicle stacking and launch preparation activities. Platforms must be translated through a small human access hatch, installed in an enclosed worksite environment, support the weight of ground operators and be removed before flight - and their design must minimize additional vehicle mass at attachment points. This paper describes the application of a user-centered conceptual design process and the unique challenges encountered within NASA's systems engineering culture focused on requirements and "heritage hardware". The NASA design team at Marshall Space Flight Center (MSFC) initiated the user-centered design process by studying heritage internal access kits and proposing new design concepts during brainstorming sessions. Simultaneously, they partnered with the Technology Transfer/Innovative Partnerships Program to research inflatable structures and dynamic scaffolding solutions that could enable ground operator access. While this creative, technology-oriented exploration was encouraged by upper management, some design stakeholders consistently opposed ideas utilizing novel, untested equipment. Subsequent collaboration with an engineering consulting firm improved the technical credibility of several options, however, there was continued resistance from team members focused on meeting system requirements with pre-certified hardware. After a six-month idea-generating phase, an intensive six-week effort produced viable design concepts that justified additional vehicle mass while optimizing the human factors of platform installation and use. Although these selected final concepts closely resemble heritage internal access platforms, challenges from the application of the

  14. Conceptual design study for an advanced cab and visual system, volume 2

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation.

  15. VLSI system design

    NASA Astrophysics Data System (ADS)

    Muroga, S.

    A complete picture of LSI/VLSI system design is provided, encompassing both engineering and economic considerations. The subjects discussed include: cost analysis based on production volume, yield, chip size, design manpower and other factors; bipolar and MOS logic families, logic design procedures, and mask designs; use of ROMs and PLAs in logic design, along with design algorithms; a survey of CAD used in LSI/VLSI chip design. Also covered are: full-custom and semicustom designs; microprocessor and dedicated processor chips; system design and hardware-software tradeoffs; LSI/VLSI technological trends; new products realized by LSI/VLSI technology; future production and management problems.

  16. Lunar base Controlled Ecological Life Support System (LCELSS): Preliminary conceptual design study

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.

    1991-01-01

    The objective of this study was to develop a conceptual design for a self-sufficient LCELSS. The mission need is for a CELSS with a capacity to supply the life support needs for a nominal crew of 30, and a capability for accommodating a range of crew sizes from 4 to 100 people. The work performed in this study was nominally divided into two parts. In the first part, relevant literature was assembled and reviewed. This review identified LCELSS performance requirements and the constraints and advantages confronting the design. It also collected information on the environment of the lunar surface and identified candidate technologies for the life support subsystems and the systems with which the LCELSS interfaced. Information on the operation and performance of these technologies was collected, along with concepts of how they might be incorporated into the LCELSS conceptual design. The data collected on these technologies was stored for incorporation into the study database. Also during part one, the study database structure was formulated and implemented, and an overall systems engineering methodology was developed for carrying out the study.

  17. Energy Systems Design

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PRESTO, a COSMIC program, handles energy system specifications and predicts design efficiency of cogeneration systems. These systems allow a company to use excess energy produced to generate electricity. PRESTO is utilized by the Energy Systems Division of Thermo Electron Corporation in the custom design of cogeneration systems.

  18. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  19. Preliminary Systems Design Study assessment report. Volume 5, Land disposal compliance and hydrogen generation restricted concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-11-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  20. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 4: Conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.

  1. Control system design guide

    SciTech Connect

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  2. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    NASA Astrophysics Data System (ADS)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-06-01

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  3. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect

    Krstulovich, S.F.

    1986-11-12

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  4. Introducing Whole-Systems Design to First-Year Engineering Students with Case Studies

    ERIC Educational Resources Information Center

    Blizzard, Jackie; Klotz, Leidy; Pradhan, Alok; Dukes, Michael

    2012-01-01

    Purpose: A whole-systems approach, which seeks to optimize an entire system for multiple benefits, not isolated components for single benefits, is essential to engineering design for radically improved sustainability performance. Based on real-world applications of whole-systems design, the Rocky Mountain Institute (RMI) is developing educational…

  5. Fuzzy Controller Design Using Evolutionary Techniques for Twin Rotor MIMO System: A Comparative Study

    PubMed Central

    Hashim, H. A.; Abido, M. A.

    2015-01-01

    This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed. PMID:25960738

  6. Fuzzy Controller Design Using Evolutionary Techniques for Twin Rotor MIMO System: A Comparative Study.

    PubMed

    Hashim, H A; Abido, M A

    2015-01-01

    This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed. PMID:25960738

  7. Lunar lander conceptual design: Lunar base systems study task 2.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This study is a first look at the problem of building a lunar lander to support a small lunar surface base. One lander, which can land 25 metric tons, one way, or take a 6 metric ton crew capsule up and down is desired. A series of trade studies are used to narrow the choices and provide some general guidelines. Given a rough baseline, the systems are then reviewed. A conceptual design is then produced. The process was only carried through one iteration. Many more iterations are needed. Assumptions and groundrules are considered.

  8. A Facility for Testing High-Power Electric Propulsion Systems in Space: A Design Study

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for a subsequent detailed design and development activities leading to the deployment of a valuable space facility supporting the new vision of space exploration. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The platform would be designed to accommodate the side-by-side testing of multiple types of electric thrusters currently under development and thus provide a strong basis for comparing their relative performance. The utility of testing on the station is further enhanced by the human presence, enabling close interaction with and modification of the test hardware in a true laboratory environment. These conditions facilitate rapid development and flight certification at potentially lower cost than with conventional Earth-bound facilities. As an added benefit, the propulsive effect of these tests could provide some drag compensation for the station, reducing the re-boost cost for the orbital facility. While it is expected that the ISS will not be capable of generating continuous levels of high power, the utilization of state-of-the-art energy storage media

  9. Design study of advanced model support systems for the National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    It has long been recognized that the sting (or support system) is a very critical part of the model system. The designer is frequently faced with the tradeoff of minimizing sting size, thereby compromising facility and model safety, against a larger sting and the subsequent problems of sting interference effects. In the NASA Langley Research Center National Transonic Facility (NTF), this problem is accentuated by the severe environment of high pressure/low temperature, designed into the facility to provide the desired high Reynolds number. Compromises in the configuration geometry and/or limiting the test envelope are therefore contrary to the purposes and goals of the NTF and are unacceptable. The results of an investigation aimed at improvements of 25% in both strength and Young's modulus of elasticity as compared to high strength cryogenically acceptable steels currently being used are presented. Various materials or combinations of materials were studied along with different design approaches. Design concepts were developed which included conventional material stings, advanced composites, and hybrid configurations. Candidate configurations are recommended.

  10. Preliminary systems design study assessment report. Volume 4, Leach resistant/high integrity structure concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-10-01

    The System Design Study (SDS), part of the Waste Technology Development Department of the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume I contains an executive summary. The SDS summary and analysis of results are presented in Volume II. Volumes III through VII contain descriptions of twelve system and four subsystem concepts. Volume VIII contains the appendixes.

  11. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 2: Propulsion transmission system design

    NASA Technical Reports Server (NTRS)

    Obrien, W. J.

    1976-01-01

    Two types of lift/cruise fan technology aircraft were conceptually designed. One aircraft used turbotip fans pneumatically interconnected to three gas generators, and the other aircraft used variable pitch fans mechanically interconnected to three turboshaft engines. The components of each propulsion transmission system were analyzed and designed to the depth necessary to determine areas of risk, development methods, performance, weights and costs. The types of materials and manufacturing processes were identified to show that the designs followed a low cost approach. The lift/cruise fan thrust vectoring hoods, which are applicable to either aircraft configuration, were also evaluated to assure a low cost/low risk approach.

  12. Design, synthesis and study of supramolecular donor-acceptor systems mimicking natural photosynthesis processes

    NASA Astrophysics Data System (ADS)

    Bikram, Chandra

    This dissertation investigates the chemical ingenuity into the development of various photoactive supramolecular donor -- acceptor systems to produce clean and carbon free energy for the next generation. The process is inspired by the principles learned from nature's approach where the solar energy is converted into the chemical energy through the natural photosynthesis process. Owing to the importance and complexity of natural photosynthesis process, we have designed ideal donor-acceptor systems to investigate their light energy harvesting properties. This process involves two major steps: the first step is the absorption of light energy by antenna or donor systems to promote them to an excited electronic state. The second step involves, the transfer of excitation energy to the reaction center, which triggers an electron transfer process within the system. Based on this principle, the research is focused into the development of artificial photosynthesis systems to investigate dynamics of photo induced energy and electron transfer events. The derivatives of Porphyrins, Phthalocyanines, BODIPY, and SubPhthalocyanines etc have been widely used as the primary building blocks for designing photoactive and electroactive ensembles in this area because of their excellent and unique photophysical and photochemical properties. Meanwhile, the fullerene, mainly its readily available version C60 is typically used as an electron acceptor component because of its unique redox potential, symmetrical shape and low reorganization energy appropriate for improved charge separation behavior. The primary research motivation of the study is to achieve fast charge separation and slow charge recombination of the system by stabilizing the radical ion pairs which are formed from photo excitation, for maximum utility of solar energy. Besides Fullerene C60, this dissertation has also investigated the potential application of carbon nanomaterials (Carbon nanotubes and graphene) as primary

  13. Design tradeoff study for reflector antenna systems for the shuttle imaging microwave system

    NASA Technical Reports Server (NTRS)

    Hansen, R. C.

    1974-01-01

    A general tradeoff is made of the symmetric Cassegrain antenna with regard to the possibility of meeting a 90% beam efficiency. The effects of aperture taper and blockage are calculated using an adjustable sidelobe circular distribution. Numerical integration is used. For the feed spillover calculation, a low sidelobe symmetric feed pattern is used with the equivalent parabola and numerical integration. Reflector cross polarization is calculated using double numerical integration. Reflector back lobes are estimated from radiation pattern envelopes of commercial common carrier dish antennas. The curves allow a range of f/D to be determined for a specified edge taper and blockage diameter ratio, and with a table of Cassegrain parameters, a range of possible designs that meet the 90% beam efficiency is obtained. It is shown that the feed and reflector design and implementation must be carefully done.

  14. Heat Exchanger Design Options and Tritium Transport Study for the VHTR System

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2008-09-01

    This report presents the results of a study conducted to consider heat exchanger options and tritium transport in a very high temperature reactor (VHTR) system for the Next Generation Nuclear Plant Project. The heat exchanger options include types, arrangements, channel patterns in printed circuit heat exchangers (PCHE), coolant flow direction, and pipe configuration in shell-and-tube designs. Study considerations include: three types of heat exchanger designs (PCHE, shell-and-tube, and helical coil); single- and two-stage unit arrangements; counter-current and cross flow configurations; and straight pipes and U-tube designs in shell-and-tube type heat exchangers. Thermal designs and simple stress analyses were performed to estimate the heat exchanger options, and the Finite Element Method was applied for more detailed calculations, especially for PCHE designs. Results of the options study show that the PCHE design has the smallest volume and heat transfer area, resulting in the least tritium permeation and greatest cost savings. It is theoretically the most reliable mechanically, leading to a longer lifetime. The two-stage heat exchanger arrangement appears to be safer and more cost effective. The recommended separation temperature between first and second stages in a serial configuration is 800oC, at which the high temperature unit is about one-half the size of the total heat exchanger core volume. Based on simplified stress analyses, the high temperature unit will need to be replaced two or three times during the plant’s lifetime. Stress analysis results recommend the off-set channel pattern configuration for the PCHE because stress reduction was estimated at up to 50% in this configuration, resulting in a longer lifetime. The tritium transport study resulted in the development of a tritium behavior analysis code using the MATLAB Simulink code. In parallel, the THYTAN code, previously performed by Ohashi and Sherman (2007) on the Peach Bottom data, was revived

  15. Computational Design Studies for an Ion Extraction System for a ''volume-type'' ECR Ion Source

    SciTech Connect

    Zaim, H.

    2001-11-05

    Numerical studies have been performed for optimally extracting high-intensity, space-charged-limited multi-charged ion beams from an all-permanent-magnet, ''volume-type'' ECR ion source, equipped with a three-electrode extraction system. These studies clearly demonstrate the importance of being able to adjust the extraction gap in order to ensure high quality, minimum divergence (highly transportable) ion beams. Optimum extraction conditions are reached whenever the plasma meniscus has an optimum curvature for a given current density. Optimum perveance (optimum current) values are found to closely agree with those derived from elementary analytical theory for extraction of space-charge-dominated beams. Details of the electrode system design as well as angular divergence and RMS emittance versus extraction parameter data (e.g., perveance and extraction gap) are provided for ion beams of varying charge-state and mass, extracted under the influence of a mirror-geometry plasma confinement magnetic field.

  16. Lessons Learned During TBCC Design for the NASA-AFRL Joint System Study

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Espinosa, A. M.

    2013-01-01

    NASA and the Air Force Research Laboratory are involved in a Joint System Study (JSS) on Two-Stage-to-Orbit (TSTO) vehicles. The JSS will examine the performance, operability and analysis uncertainty of unmanned, fully reusable, TSTO launch vehicle concepts. NASA is providing a vehicle concept using turbine-based combined cycle (TBCC) propulsion on the booster stage and an all-rocket orbiter. The variation in vehicle and mission requirements for different potential customers, combined with analysis uncertainties, make it problematic to define optimum vehicle types or concepts, but the study is being used by NASA for tool assessment and development, and to identify technology gaps. Preliminary analyses were performed on the entire TBCC booster concept; then higher-fidelity analyses were performed for particular areas to verify results or reduce analysis uncertainties. Preliminary TBCC system analyses indicated that there would be sufficient thrust margin over its mission portion. The higher fidelity analyses, which included inlet and nozzle performance corrections for significant area mismatches between TBCC propulsion requirements versus the vehicle design, resulted in significant performance penalties from the preliminary results. TBCC system design and vehicle operation assumptions were reviewed to identify items to mitigate these performance penalties. The most promising items were then applied and analyses rerun to update performance predictions. A study overview is given to orient the reader, quickly focusing upon the NASA TBCC booster and low speed propulsion system. Details for the TBCC concept and the analyses performed are described. Finally, a summary of "Lessons Learned" are discussed with suggestions to improve future study efforts.

  17. Asymmetrical booster ascent guidance and control system design study. Volume 1: Summary. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.; Jaggers, R. F.; Wilson, J. L.

    1974-01-01

    Dynamics and control, stability, and guidance analyses are summarized for the asymmetrical booster ascent guidance and control system design studies, performed in conjunction with space shuttle planning. The mathematical models developed for use in rigid body and flexible body versions of the NASA JSC space shuttle functional simulator are briefly discussed, along with information on the following: (1) space shuttle stability analysis using equations of motion for both pitch and lateral axes; (2) the computer program used to obtain stability margin; and (3) the guidance equations developed for the space shuttle powered flight phases.

  18. A turbojet-boosted two-stage-to-orbit space transportation system design study

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W.; Scharf, W.

    1979-01-01

    The concept to use twin turbo-powered boosters for acceleration to supersonic staging speed followed by an all rocket powered orbiter stage was proposed. A follow-on design study was then made of the concept with the performance objective of placing a 29,483 Kg payload into a .2.6 X 195.3 km orbit. The study was performed in terms of analysis and trade studies, conceptual design, utility and economic analysis, and technology assessment. Design features of the final configuration included: strakes and area rule for improved take off and low transonic drag, variable area inlets, exits and turbine, and low profile fixed landing gear for turbojet booster stage. The payload required an estimated GLOW of 1,270,000 kg for injection in orbit. Each twin booster required afterburning turbojet engines each with a static sea level thrust rating of 444,800 N. Life cycle costs for this concept were comparable to a SSTO/SLED concept except for increased development cost due to the turbojet engine propulsion system.

  19. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 5: Design of the IPAD system. Part 2: System design. Part 3: General purpose utilities, phase 1, task 2

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    Viable designs are presented of various elements of the IPAD framework software, data base management system, and required new languages in relation to the capabilities of operating systems software. A thorough evaluation was made of the basic systems functions to be provide by each software element, its requirements defined in the conceptual design, the operating systems features affecting its design, and the engineering/design functions which it was intended to enhance.

  20. Space shuttle auxiliary propulsion system design study. Phase D report: Oxygen-hydrogen special RCS studies

    NASA Technical Reports Server (NTRS)

    Baumann, T. L.; Pattern, T. C.; Mckee, H. B.

    1972-01-01

    Two alternate oxygen-hydrogen auxiliary propulsion system concepts for use with the space shuttle vehicle were evaluated. The two concepts considered were: (1) gaseous oxygen-hydrogen systems with electric or hydraulic motor driven pumps to provide system pressure and (2) liquid oxygen-hydrogen systems which delivered propellants to the engines in a liquid state without the need for pumps. The various means of implementing each of the concepts are compared on the basis of weight, technology requirements, and operational considerations. It was determined that the liquid oxygen-hydrogen system concepts have the potential to produce substantial weight reductions in the space shuttle orbiter total impulse range.

  1. Study of space shuttle orbiter system management computer function. Volume 1: Analysis, baseline design

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A system analysis of the shuttle orbiter baseline system management (SM) computer function is performed. This analysis results in an alternative SM design which is also described. The alternative design exhibits several improvements over the baseline, some of which are increased crew usability, improved flexibility, and improved growth potential. The analysis consists of two parts: an application assessment and an implementation assessment. The former is concerned with the SM user needs and design functional aspects. The latter is concerned with design flexibility, reliability, growth potential, and technical risk. The system analysis is supported by several topical investigations. These include: treatment of false alarms, treatment of off-line items, significant interface parameters, and a design evaluation checklist. An in-depth formulation of techniques, concepts, and guidelines for design of automated performance verification is discussed.

  2. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Offermans, G.; Altenburg, Y.; Baylard, C.; Birus, D.; Bozhenkov, S.; Hartmann, D. A.; Kallmeyer, J. P.; Renard, S.; Wolf, R. C.; Fülöp, T.

    2014-06-01

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25-38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  3. Conceptual design study: cold water pipe systems for shelf-mounted OTEC powerplants. Final report

    SciTech Connect

    Not Available

    1981-02-01

    This study considers the conceptual design and installation aspects of CWP systems for shelf-mounted OTEC power plants in Puerto Rico and Hawaii. CWP systems using FRP (Fiberglass Reinforced Plastic) and steel have been designed: FRP, because the buoyancy of the pipe can be controlled by varying the core thickness; and steel, because of decades of successful use as a structural material in offshore applications. A marine railway approach was chosen for installation of the CWP. Two methods for pulling the track for the railway down the pipe fairway to final location are presented. The track is then permanently fastened to the sloping seabed with piles installed by a remotely controlled cart that rides on the track itself, thus minimizing deep water control problems. Both the marine railway and the shelf-mounted platform that houses the OTEC power plant must have an anodic or equivalent corrosion protection system, which would require the same inspection and maintenance procedures as currently used for offshore oil production platforms.

  4. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    SciTech Connect

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Altenburg, Y.; Baylard, C.; and others

    2014-06-15

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25–38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  5. Initial conceptual design study of self-critical nuclear pumped laser systems

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.

    1979-01-01

    An analytical study of self-critical nuclear pumped laser system concepts was performed. Primary emphasis was placed on reactor concepts employing gaseous uranium hexafluoride (UF6) as the fissionable material. Relationships were developed between the key reactor design parameters including reactor power level, critical mass, neutron flux level, reactor size, operating pressure, and UF6 optical properties. The results were used to select a reference conceptual laser system configuration. In the reference configuration, the 3.2 m cubed lasing volume is surrounded by a graphite internal moderator and a region of heavy water. Results of neutronics calculations yield a critical mass of 4.9 U(235) in the form (235)UF6. The configuration appears capable of operating in a continuous steady-state mode. The average gas temperature in the core is 600 K and the UF6 partial pressure within the lasing volume is 0.34 atm.

  6. A Design Research Study of a Curriculum and Diagnostic Assessment System for a Learning Trajectory on Equipartitioning

    ERIC Educational Resources Information Center

    Confrey, Jere; Maloney, Alan

    2015-01-01

    Design research studies provide significant opportunities to study new innovations and approaches and how they affect the forms of learning in complex classroom ecologies. This paper reports on a two-week long design research study with twelve 2nd through 4th graders using curricular materials and a tablet-based diagnostic assessment system, both…

  7. Designing Simulation Systems

    ERIC Educational Resources Information Center

    Twelker, Paul A.

    1969-01-01

    "The purpose of this paper is to outline the approach to designing instructional simulation systems developed at Teaching Research. The 13 phases of simulation design will be summarized, and an effort will be made to expose the vital decision points that confront the designer as he develops simulation experiences. (Author)

  8. Information system design of inventory control spare parts maintenance (valuation class 5000) (case study: plant kw)

    NASA Astrophysics Data System (ADS)

    Fitriana, Rina; Moengin, Parwadi; Riana, Mega

    2016-02-01

    Plat KW hadn't using optimal inventory level planning yet and hadn't have an information system that well computerized. The research objective is to be able to design an information system related inventory control of spare parts maintenance. The study focused on five types of spare parts with the highest application rate during February 2013- March 2015 and included in the classification of fast on FSN analysis Grinding stones Cut 4". Cable Tie 15". Welding RB 26-32MM. Ring Plat ½" and Ring Plate 5/8 ". Inventory calculation used Economic Order Quantity (EOQ). Safety Stock (SS) and Reorder Point (ROP) methods. System analysis conducted using the framework PIECES with the proposed inventory control system. the performance of the plant KW relating to the supply of spare parts maintenance needs can be more efficient as well as problems at the company can be answered and can perform inventory cost savings amounting Rp.267.066. A computerized information system of inventory control spare parts maintenance provides a menu that can be accessed by each departments as the user needed.

  9. An Axenic Plant Culture System for Optimal Growth in Long-Term Studies: Design and Maintenance

    NASA Technical Reports Server (NTRS)

    Henry, Amelia; Doucette, William; Norton, Jeanette; Jones, Scott; Chard, Julie; Bugbee, Bruce

    2006-01-01

    The symbiotic co-evolution of plants and microbes leads to difficulties in understanding which of the two components is responsible for a given environmental response. Plant-microbe studies greatly benefit from the ability to grow plants in axenic (sterile) culture. Several studies have used axenic plant culture systems, but experimental procedures are often poorly documented, the plant growth environment is not optimal, and axenic conditions are not rigorously verified. We developed a unique axenic system using inert components that promotes plant health and can be kept sterile for at least 70 d. Crested wheatgrass (Agropyron cristatum cv. DII) plants were grown in sand within flow-through glass columns that were positively pressured with filtered air. Plant health was optimized by regulating temperature, light level, CO2 concentration, humidity, and nutrients. The design incorporates several novel aspects, such as pretreatment of the sand with Fe, graduated sand layers to optimize the air-water balance of the root zone, and modification of a laminar flow hood to serve as a plant growth chamber. Adaptations of several sterile techniques were necessary for maintenance of axenic conditions. Axenic conditions were verified by plating and staining leachates as well as rhizoplane stain. This system was designed to study nutrient and water stress effects on root exudates, but is useful for assessing a broad range of plant-microbe-environment interactions. Based on total organic C analysis, 74% of exudates was recovered in the leachate, 6% was recovered in the bulk sand, and 17% was recovered in the rhizosphere sand. Carbon in the leachate after 70 d reached 255 micro-g/d. Fumaric, malic, malonic, oxalic, and succinic acids were measured as components of the root exudates.

  10. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 4. Saudi Engineering Solar Energy Applications System Design Study

    SciTech Connect

    Not Available

    1985-01-01

    Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)

  11. System design of the Pioneer Venus spacecraft. Volume 8: Command/data handling subsystems studies

    NASA Technical Reports Server (NTRS)

    Vesely, D. D.

    1973-01-01

    Study tasks for the command and data handling subsystems have been directed to: (1) determining ground data systems, (GDS) interfaces and deep space network (DSN) changes, if required, (2) defining subsystem requirements, (3) surveying existing hardware that could be used or modified to meet subsystem requirements, and (4) establishing a baseline design. Study of the existing GDS led to the conclusion that the Viking configuration GDS can be used with only minor changes required for the Pioneer Venus baseline. Those changes required are associated with providing a predetection recording capability used during probe entry and descent. Subsystem requirements were first formulated with sufficient latitude so that surveys of existing hardware could lead to low cost hardware which, in turn, could modify more narrowly defined subsystem requirements.

  12. System design of the Pioneer Venus spacecraft. Volume 6: Power subsystem studies

    NASA Technical Reports Server (NTRS)

    Prochaska, H. F.

    1973-01-01

    Selection of a baseline power subsystem for the probe bus, orbiter, and large and small probes has been performed as a part of the Pioneer Venus Mission Systems Design Study. In each case the selection process has involved trades and incorporated the results of previous related studies. Factors considered primary in the selection of each subsystem approach were cost, and the ability of each of the proposed subsystems to perform reliably under the rigors of the space environment, temperature extremes, and high g loads. A trade was made to consider the advantages of an unregulated primary bus versus a regulated bus. The decision to use an unregulated bus was based on cost, weight, and the increase in load isolation achievable through the use of individual load regulators.

  13. Preliminary system design study for a digital fly-by-wire flight control system for an F-8C aircraft

    NASA Technical Reports Server (NTRS)

    Seacord, C. L.; Vaughn, D. K.

    1976-01-01

    The design of a fly-by-wire control system having a mission failure probability of less than one millionth failures per flight hour is examined. Emphasis was placed on developing actuator configurations that would improve the system performance, and consideration of the practical aspects of sensor/computer and computer/actuator interface implementation. Five basic configurations were defined as appropriate candidates for the F-8C research aircraft. Options on the basic configurations were included to cover variations in flight sensors, redundancy levels, data transmission techniques, processor input/output methods, and servo actuator arrangements. The study results can be applied to fly by wire systems for transport aircraft in general and the space shuttle.

  14. Study on a Real-Time BEAM System for Diagnosis Assistance Based on a System on Chips Design

    PubMed Central

    Sung, Wen-Tsai; Chen, Jui-Ho; Chang, Kung-Wei

    2013-01-01

    As an innovative as well as an interdisciplinary research project, this study performed an analysis of brain signals so as to establish BrainIC as an auxiliary tool for physician diagnosis. Cognition behavior sciences, embedded technology, system on chips (SOC) design and physiological signal processing are integrated in this work. Moreover, a chip is built for real-time electroencephalography (EEG) processing purposes and a Brain Electrical Activity Mapping (BEAM) system, and a knowledge database is constructed to diagnose psychosis and body challenges in learning various behaviors and signals antithesis by a fuzzy inference engine. This work is completed with a medical support system developed for the mentally disabled or the elderly abled. PMID:23681095

  15. Space station system analysis study. Part 3: Documentation. Volume 2: Technical report. [structural design and construction

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An analysis of construction operation is presented as well as power system sizing requirements. Mission hardware requirements are reviewed in detail. Space construction base and design configurations are also examined.

  16. A numerical study for design of depth, pitch and roll control system of a towed vehicle

    SciTech Connect

    Koterayama, W.; Yamaguchi, S.; Nakamura, M.; Moriyama, A.; Akamatsu, T.

    1994-12-31

    A towed vehicle system, FLYING FISH, is under development for use in making chemical and physical measurements which enable the authors to obtain spacially continuous and real time data in an ocean mixed layer. The heave, pitch and roll of FLYING FISH are controlled by a main wing and horizontal tail wings which permit its stable attitudes and assure accurate measurements. The numerical simulation of motions was carried out to design the optimal control system of this towed vehicle system and the results gave the data for the design of the mechanical parts of the control system.

  17. Mini-Brayton heat source assembly design study. Volume 1: Space shuttle mission. [feasibility of Brayton isotope power system design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conceptual design definitions of a heat source assembly for use in nominal 500 watt electrical (W(e)) 1200 W(e)and 2000 W(e) mini-Brayton isotope power systems are reported. The HSA is an independent package which maintains thermal and nuclear control of an isotope fueled heat source and transfers the thermal energy to a Brayton rotating unit turbine-alternator-compressor power conversion unit.

  18. Design and feasibility studies of a stationary digital breast tomosynthesis system.

    PubMed

    Yang, G; Qian, X; Phan, T; Sprenger, F; Sultana, S; Calderon-Colon, X; Kearse, B; Spronk, D; Lu, J; Zhou, O

    2011-08-21

    Studies have shown that digital breast tomosynthesis (DBT) can improve breast cancer diagnosis by reconstructing 3D images. However, DBT scanners based on rotation gantry prolong the imaging time and reduce spatial resolution due to motion comparing with the regular two-view mammography. To obtain three dimension reconstruction images and maintain the high image quality of conventional mammography, we proposed a prototype stationary digital breast tomosynthesis system (s-DBT). The proposed s-DBT system acquires projection images without mechanical movement. The core component of the s-DBT system is a specially designed spatially distributed multi-beam x-ray tube based on the carbon nanotube field emission x-ray technology. The multi-beam x-ray source array enables collection of all projection images from different viewing angles without mechanical motion. Preliminary results show the s-DBT system can achieve a scan time comparable to the regular two-view mammography, and improve the spatial resolution comparing with rotating gantry DBT. PMID:21808428

  19. Space shuttle auxiliary propulsion system design study. Phase C and E report: Storable propellants, RCS/OMS/APU integration study

    NASA Technical Reports Server (NTRS)

    Anglim, D. D.; Bruns, A. E.; Perryman, D. C.; Wieland, D. L.

    1972-01-01

    Auxiliary propulsion concepts for application to the space shuttle are compared. Both monopropellant and bipropellant earth storable reaction control systems were evaluated. The fundamental concepts evaluated were: (1) monopropellant and bipropellant systems installed integrally within the vehicle, (2) fuel systems installed modularly in nose and wing tip pods, and (3) fuel systems installed modularly in nose and fuselage pods. Numerous design variations within these three concepts were evaluated. The system design analysis and methods for implementing each of the concepts are reported.

  20. Satellite Power Systems (SPS) concept definition study. Volume 4: SPS point design definition

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The satellite power systems point design concept is described. The concept definition includes satellite, ground and space systems, and their relationships. Emphasis is placed on the definition of the GaAlAs photovoltaic satellite system. The major subsystems of the satellite system including power conversion, power distribution and control, microwave, attitude control and stationkeeping, thermal control, structures, and information management and control are discussed.

  1. Optimizing clinical trial design for multiple system atrophy: lessons from the rifampicin study.

    PubMed

    Singer, Wolfgang; Low, Phillip A

    2015-02-01

    Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by autonomic failure and parkinsonism/ataxia; no treatment exists to slow disease progression. A number of factors have prevented or compromised trials targeting disease modification. A major hurdle has been uncertainty about the number of patients needed to achieve adequate power. Information based on natural history studies suggested such numbers to be so large that only international multi-center models seemed feasible. When designing the rifampicin trial in MSA we sought to identify and apply strategies that would improve power and reduce the number needed to treat to allow for an oligocenter approach. Strategies included: (1) inclusion/exclusion criteria designed to enroll patients with relatively early, actively progressing disease; (2) minimizing dropouts; (3) pre-defined interim analysis; and (4) approaches to reduce scoring variability. The model allowed for the number needed to treat to be only 50 patients per treatment arm. Ten selected sites managed to reach the recruitment goal within 12 months. The dropout rate was less than 10%, and the goal of enrolling patients with actively progressing disease was accomplished as reflected by the progression rate in the placebo group. Data from this unfortunately negative trial can now be effectively used to more realistically power future trials. A number of ways to further improve trial design and feasibility have been identified and include rigorous site selection and training, designated primary site investigators, improved error trapping, early site visits, remedial training, and future biomarkers for earlier diagnosis and tracking of disease progression. PMID:25763826

  2. An MDO augmented value-based systems engineering approach to holistic design decision-making: A satellite system case study

    NASA Astrophysics Data System (ADS)

    Kannan, Hanumanthrao

    The design of large scale complex engineered systems (LSCES) involves hundreds or thousands of designers making decisions at different levels of an organizational hierarchy. Traditionally, these LSCES are designed using systems engineering methods and processes, where the preferences of the stakeholder are flowed down the hierarchy using requirements that act as surrogates for preference. Current processes do not provide a system level guidance to subsystem designers. Value-Driven Design (VDD) offers a new perspective on complex system design, where the value preferences of the stakeholder are communicated directly through a decomposable value function, thereby providing a mechanism for improved system consistency. Requirements-based systems engineering approaches do not offer a mathematically rigorous way to capture the couplings present in the system. Multidisciplinary Design Optimization (MDO) was specifically developed to address couplings in both analysis and optimization thereby enabling physics-based consistency. MDO uses an objective function with constraints but does not provide a way to formulate the objective function. Current systems engineering processes do not provide a mathematically sound way to make design decisions when designers are faced with uncertainties. Designers tend to choose designs based on their preferences towards risky/uncertain designs, and past research has shown that there needs to be a consistency in risk preferences to enable design decisions that are consistent with stakeholder's desires. This research exploits the complimentary nature of VDD, MDO and Decision Analysis (DA) to enable consistency in communication of system preferences, consistency in physics and consistency in risk preferences. The role of VDD in this research is in formulating a value function for true preferences, whereas the role of MDO is to capture couplings and enable optimization using the value function, and the role of DA is to enable consistent design

  3. Design study of a low cost civil aviation GPS receiver system

    NASA Technical Reports Server (NTRS)

    Cnossen, R.; Gilbert, G. A.

    1979-01-01

    A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified.

  4. Study and design of cryogenic propellant acquisition systems. Volume 2: Supporting experimental program

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    Areas of cryogenic fuel systems were identified where critical experimental information was needed either to define a design criteria or to establish the feasibility of a design concept or a critical aspect of a particular design. Such data requirements fell into three broad categories: (1) basic surface tension screen characteristics; (2) screen acquisition device fabrication problems; and (3) screen surface tension device operational failure modes. To explore these problems and to establish design criteria where possible, extensive laboratory or bench test scale experiments were conducted. In general, these proved to be quite successful and, in many instances, the test results were directly used in the system design analyses and development. In some cases, particularly those relating to operational-type problems, areas requiring future research were identified, especially screen heat transfer and vibrational effects.

  5. Seal design alternatives study

    SciTech Connect

    Van Sambeek, L.L.

    1993-06-01

    This report presents the results from a study of various sealing alternatives for the WIPP sealing system. Overall, the sealing system has the purpose of reducing to the extent possible the potential for fluids (either gas or liquid) from entering or leaving the repository. The sealing system is divided into three subsystems: drift and panel seals within the repository horizon, shaft seals in each of the four shafts, and borehole seals. Alternatives to the baseline configuration for the WIPP seal system design included evaluating different geometries and schedules for seal component installations and the use of different materials for seal components. Order-of-magnitude costs for the various alternatives were prepared as part of the study. Firm recommendations are not presented, but the advantages and disadvantages of the alternatives are discussed. Technical information deficiencies are identified and studies are outlined which can provide required information.

  6. Residential photovoltaic system designs

    SciTech Connect

    Russell, M. C.

    1981-01-01

    A project to develop Residential Photovoltaic Systems has begun at Massachusetts Institute of Technology Lincoln Laboratory with the construction and testing of five Prototype Systems. All of these systems utilize a roof-mounted photovoltaic array and allow excess solar-generated electric energy to be fed back to the local utility grid, eliminating the need for on-site storage. Residential photovoltaic system design issues are discussed and specific features of the five Prototype Systems now under test are presented.

  7. Control system design method

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  8. Reduction of liquid hydrogen boiloff: Optimal reliquefaction system design and cost study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A preliminary design and economic analysis of candidate hydrogen reliquefaction systems was performed. All candidate systems are of the same general type; differences and size, compressor arrangement, and amount of hydrogen venting. The potential application of the hydrogen reliquefaction will be to reduce the boil-off from the 850,000 gallon storage dewars at LC-39.

  9. Systems design study of the Pioneer Venus spacecraft. Volume 3. Specifications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Pioneer Venus spacecraft performance requirements are presented. The specifications include: (1) Design criteria and performance requirements for the Pioneer Venus spacecraft systems and subsystems for a 1978 multiprobe mission and a 1978 orbiter mission, spacecraft system interface, and scientific instrument integration.

  10. Design and experimental study of an integrated vapor chamber-thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Kota, Krishna M.

    Future defense, aerospace and automotive technologies involve electronic systems that release high pulsed waste heat like during high power microwave and laser diode applications in tactical and combat aircraft, and electrical and electronic systems in hybrid electric vehicles, which will require the development of an efficient thermal management system. A key design issue is the need for fast charging so as not to overheat the key components. The goal of this work is to study the fabrication and technology implementation feasibility of a novel high energy storage, high heat flux passive heat sink. Key focus is to verify by theory and experiments, the practicability of using phase change materials as a temporary storage of waste heat for heat sink applications. The reason for storing the high heat fluxes temporarily is to be able to reject the heat at the average level when the heat source is off. Accordingly, a concept of a dual latent heat sink intended for moderate to low thermal duty cycle electronic heat sink applications is presented. This heat sink design combines the features of a vapor chamber with rapid thermal energy storage employing graphite foam inside the heat storage facility along with phase change materials and is attractive owing to its passive operation unlike some of the current thermal management techniques for cooling of electronics employing forced air circulation or external heat exchangers. In addition to the concept, end-application dependent criteria to select an optimized design for this dual latent heat sink are presented. A thermal resistance concept based design tool/model has been developed to analyze and optimize the design for experiments. The model showed that it is possible to have a dual latent heat sink design capable of handling 7 MJ of thermal load at a heat flux of 500 W/cm2 (over an area of 100 cm 2) with a volume of 0.072 m3 and weighing about 57.5 kg. It was also found that with such high heat flux absorption capability

  11. Design study of TDRS antenna gimbal system for LANDSAT-D

    NASA Technical Reports Server (NTRS)

    Wu, J.

    1977-01-01

    The conceptual design studies of a two axis antenna drive assembly for the TDRSS link communications subsystem for LANDSAT D are presented. The recommended antenna drive assembly is a simple and reliable design substantially similar to the antenna and solar array drives developed and space qualified for programs such as DSCS 2 and FltSatCom. The gimbal design tradeoff is presented, along with drive electronics.

  12. Ex-situ experimental studies on serpentine flow field design for redox flow battery systems

    NASA Astrophysics Data System (ADS)

    Jyothi Latha, T.; Jayanti, S.

    2014-02-01

    Electrolyte distribution using parallel flow field for redox flow battery (RFB) applications shows severe non-uniformity, while the conventional design of using the carbon felt itself as the flow distributor gives too high pressure drop. An optimized flow field design for uniform flow distribution at a minimal parasitic power loss is therefore needed for RFB systems. Since the materials and geometrical dimensions in RFBs are very different from those used in fuel cells, the hydrodynamics of the flow fields in RFBs is likely to be very different. In the present paper, we report on a fundamental study of the hydrodynamics of a serpentine flow field relevant to RFB applications. The permeability of the porous medium has been measured under different compression ratios and this is found to be in the range of 5-8 × 10-11 m2. The pressure drop in two serpentine flow fields of different geometric characteristics has been measured over a range of Reynolds numbers. Further analysis using computational fluid dynamics simulations brings out the importance of the compression of the porous medium as an additional parameter in determining the flow distribution and pressure drop in these flow fields.

  13. A comparative study of various electric propulsion systems and their impact on a nominal ship design

    NASA Astrophysics Data System (ADS)

    Davis, James C.

    1987-06-01

    Computer programs which model synchronous, permanent magnet, and induction machines incorporate an optimization algorithm which converges on lowest weight, volume, and inefficiency. Machine designs for high and low rmps are performed, with a varying number of pole-pairs. The machine designs are analyzed to find the optimum combination of generator and motor for inclusion in a naval ship propulsion system. The three ships used for the study are: a baseline mechanical transmission ship, a ship retaining the same sub-division as the baseline but with the electric machinery, and an electric transmission ship with subdivision and machinery box arrangement chosen to benefit from the inherent arrangeability of electric transmission. The two generator/motor combinations used in the final ship analysis, both employ a 3600 rpm, six-pole synchronous generator, which turns at the shaft speed of the prime mover. One combination uses a 180 rpm, direct-drive, 16-pole synchronous motor, and the other an 1800 rpm, geared, 8-pole synchronous motor. Power converters are used in both combinations to control motor speed. The geared combination in the rearranged ship demonstrated the best endurance speed efficiency, reducing the endurance fuel load by 18 percent, while maintaining the maximum and sustained speed of the baseline ship. The savings in ship volume translated to an additional twenty Tomahawk missile cells in the rearranged ship. When the fuel load was held at the tonnage of the baseline ship, endurance range increased as much as 25 percent.

  14. Instructional Design: System Strategies.

    ERIC Educational Resources Information Center

    Ledford, Bruce R.; Sleeman, Phillip J.

    This book is intended as a source for those who desire to apply a coherent system of instructional design, thereby insuring accountability. Chapter 1 covers the instructional design process, including: instructional technology; the role of evaluation; goal setting; the psychology of teaching and learning; task analysis; operational objectives;…

  15. Remote Systems Design & Deployment

    SciTech Connect

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  16. A Study of the Design of Acceleration Control System for Missiles

    NASA Astrophysics Data System (ADS)

    Kajita, Takanori; Eguchi, Hirofumi

    A 2-degrees of freedom PID controller is designed for a maneuvering acceleration control system. This design method is based on the combination of PID and IPD controller. Results show that (1) IP controller is superior to PI controller for the damper loop controller, (2) the selection of PI or IP controller as for the acceleration controller depends on the tradeoffs between the responsibility and the reduction of inverse response.

  17. Preliminary design study of a higher harmonic blade feathering control system

    NASA Technical Reports Server (NTRS)

    Powers, R. W.

    1980-01-01

    The feasibility to incorporate an active higher harmonic control (HHC) system on an OH-6A rotorcraft was demonstrated. The introduction of continuously modulated low amplitude 4P feathering showed potential for reducing rotor transmitted oscillatory loads. The design implementation of this system on a baseline OH-6A required generation of a hydraulic power system, control actuator placement and design integration of an electronic subsystem comprised of an electronic control unit (ECU) and digital microcomputer. Various placements of the HHC actuators in the primary control system are evaluated. Assembly drawings of the actuator concepts and control rigging are presented. The advantages of generating both hydraulic power and 4F control motions in the nonrotating system is confirmed.

  18. Design study of the Low Energy Beam Transport system at RISP

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Kim, Eunsan; Kim, Yonghwan; Hong, In-Seok

    2013-03-01

    We present the design status of LEBT for the RISP that consists of two 90 degree dipoles, a multi-harmonic buncher, pair solenoids, electrostatic quadrupoles and a high voltage platform. After ECR-IS with an energy of 10 keV/u, heavy-ion beams are selected by achromatic bending systems and then be bunched in the LEBT. A multi-harmonic buncher is used to achieve a small longitudinal emittance in the RFQ. We show the results on the optics design by using the TRANSPORT code and the beam tracking of two-charge beams by using the code IMPACT. We present the results and issues on beam dynamics simulaitons in the designed LEBT system. For heavy ion beams in the low energy system, we have to separate and select desire beam. we also transport beam from ECR to RFQ with high transmission.

  19. Pointing and control system design study for the space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J. N.; Sridhar, B.; Cochran, R. W.

    1984-01-01

    The design and performance of pointing and control systems for two space infrared telescope facility vehicles were examined. The need for active compensation of image jitter using the secondary mirror or other optical elements was determined. In addition, a control system to allow the telescope to perform small angle slews, and to accomplish large angle slews at the rate of 15 deg per minute was designed. Both the 98 deg and the 28 deg inclination orbits were examined, and spacecraft designs were developed for each. The results indicate that active optical compensation of line-of-sight errors is not necessary if the system is allowed to settle for roughly ten seconds after a slew maneuver. The results are contingent on the assumption of rigid body dynamics, and a single structural mode between spacecraft and telescope. Helium slosh for a half full 4000 liter tank was analyzed, and did not represent a major control problem.

  20. Integrated orbital servicing study follow-on. Volume 2: Technical analysis and system design

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In-orbit service functional and physical requirements to support both low and high Earth orbit servicing/maintenance operations were defined, an optimum servicing system configuration was developed and mockups and early prototype hardware were fabricated to demonstrate and validate the concepts selected. Significant issues addressed include criteria for concept selection; representative mission equipment and approaches to their design for serviceability; significant serviceable spacecraft design aspects; servicer mechanism operation in one-g; approaches for the demonstration/simulation; and service mechanism structure design approach.

  1. Design of the software development and verification system (SWDVS) for shuttle NASA study task 35

    NASA Technical Reports Server (NTRS)

    Drane, L. W.; Mccoy, B. J.; Silver, L. W.

    1973-01-01

    An overview of the Software Development and Verification System (SWDVS) for the space shuttle is presented. The design considerations, goals, assumptions, and major features of the design are examined. A scenario that shows three persons involved in flight software development using the SWDVS in response to a program change request is developed. The SWDVS is described from the standpoint of different groups of people with different responsibilities in the shuttle program to show the functional requirements that influenced the SWDVS design. The software elements of the SWDVS that satisfy the requirements of the different groups are identified.

  2. Design and experiment study of a semi-active energy-regenerative suspension system

    NASA Astrophysics Data System (ADS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.

  3. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 3: Refined conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.

  4. Design of a collective scattering system for electron gyroscale turbulence study in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, Woochang; Park, Hyeon; Lee, Dongjae; Leem, Juneeok; Nam, Yongun

    2015-11-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for electron scale turbulence study in KSTAR, which is planned to be installed in 2016, are investigated. A few critical issues are discussed in depth such as effect of the Faraday rotation of the electric field polarization of probing and scattered, the probing wave frequency which is related to the optics for measurement of electron gyro scale turbulence, the wave polarization to minimize absorption of the probing power by electron cyclotron resonant layers, and the probing power. A proper and feasible optics with 300 GHz probing wave, which is based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wave numbers up to 21 cm-1. The upper limit corresponds to the normalized wave number k⊥ρe of 0.2 in KSTAR plasmas. To detect scattered wave power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed. Work supported by NRF Korea under grant numbers NRF-2015M1A7A1A02002627 and NRF-2014M1A7A1A03029865.

  5. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 4: Design of the IPAD system. Part 1: IPAD system design requirements, phase 1, task 2

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    System requirements, software elements, and hardware equipment required for an IPAD system are defined. An IPAD conceptual design was evolved, a potential user survey was conducted, and work loads for various types of interactive terminals were projected. Various features of major host computing systems were compared, and target systems were selected in order to identify the various elements of software required.

  6. Designing automatic resupply systems.

    PubMed

    Harding, M L

    1999-02-01

    This article outlines the process for designing and implementing autoresupply systems. The planning process includes determination of goals and appropriate participation. Different types of autoresupply mechanisms include kanban, breadman, consignment, systems contracts, and direct shipping from an MRP schedule. PMID:10345630

  7. Digital systems design language

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    Digital Systems Design Language (DDL) is implemented on the SEL-32 Computer Systems. The detaileds of the language, the translator, and the simulator, and the smulator programs are given. Several example descriptions and a tutorial on hardware description languages are provided, to guide the user.

  8. Numerical studies of the thermal design sensitivity calculation for a reaction-diffusion system with discontinuous derivatives

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.; Sheen, Jeen S.

    1987-01-01

    The aim of this study is to find a reliable numerical algorithm to calculate thermal design sensitivities of a transient problem with discontinuous derivatives. The thermal system of interest is a transient heat conduction problem related to the curing process of a composite laminate. A logical function which can smoothly approximate the discontinuity is introduced to modify the system equation. Two commonly used methods, the adjoint variable method and the direct differentiation method, are then applied to find the design derivatives of the modified system. The comparisons of numerical results obtained by these two methods demonstrate that the direct differentiation method is a better choice to be used in calculating thermal design sensitivity.

  9. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  10. Design and implementation of flexible laboratory system for beam propagation study through weak atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Rickenstorff, Carolina; Rodrigo, Jóse A.; Alieva, Tatiana

    2016-04-01

    Different applications such as astronomy, remote optical sensing and free space optical communications, among others, require both numerical and laboratory experimental simulations of beam propagation through turbulent atmosphere prior to an outdoor test. While rotating phase plates or hot chambers can be applied to such studies, they do not allow changing the atmospheric conditions and the propagation distance in situ. In contrast, the spatial light modulators (SLMs) are a flexible alternative for experimental turbulence simulation. In this work we consider an experimental setup comprising two SLMs for studying laser beam propagation in weak atmospheric turbulence. The changes of atmospheric conditions and propagation distances are properly achieved by the adjustment of the phase screens and the focal distances of digital lenses implemented in both SLMs. The proposed system can be completely automatized and all its elements are in fixed positions avoiding mechanical misalignment. Its design, propagation distance and atmospheric condition adjustment are provided. The setup performance is verified by numerical simulation of Gaussian beam propagation in the weak turbulence regime. The obtained parameters: scintillation index, beam wander and spreading are compared to their theoretical counterparts for different propagation distances and atmospheric conditions.

  11. SRB/SLEEC (Solid Rocket Booster/Shingle Lap Extendible Exit Cone) feasibility study, volume 2. Appendix A: Design study for a SLEEC actuation system

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1986-01-01

    The results are presented of a design feasibility study of a self-contained (powered) actuation system for a Shingle Lap Extendible Exit Cone (SLEEC) for Transportation System (STS). The evolution of the SLEEC actuation system design is reviewed, the final design concept is summarized, and the results of the detailed study of the final concept of the actuation system are treated. A conservative design using proven mechanical components was established as a major program priority. The final mechanical design has a very low development risk since the components, which consist of ballscrews, gearing, flexible shaft drives, and aircraft cables, have extensive aerospace applications and a history of proven reliability. The mathematical model studies have shown that little or no power is required to deploy the SLEEC actuation system because acceleration forces and internal pressure from the rocket plume provide the required energies. A speed control brake is incorporated in the design in order to control the rate of deployment.

  12. Nicotinamide polymeric nanoemulsified systems: a quality-by-design case study for a sustained antimicrobial activity.

    PubMed

    Zidan, Ahmed S; Ahmed, Osama Aa; Aljaeid, Bader M

    2016-01-01

    Nicotinamide, the amide form of vitamin B3, was demonstrated to combat some of the antibiotic-resistant infections that are increasingly common around the world. The objective of this study was to thoroughly understand the formulation and process variabilities affecting the preparation of nicotinamide-loaded polymeric nanoemulsified particles. The quality target product profile and critical quality attributes of the proposed product were presented. Plackett-Burman screening design was employed to screen eight variables for their influences on the formulation's critical characteristics. The formulations were prepared by an oil-in-water emulsification followed by solvent replacement. The prepared systems were characterized by entrapment capacity (EC), entrapment efficiency (EE), particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, in vitro drug release, and their antibacterial activity against bacterial scrums. EC, EE, particle size, polydispersity index, zeta potential, and percentage release in 24 hours were found to be in the range of 33.5%-68.8%, 53.1%-67.1%, 43.3-243.3 nm, 0.08-0.28, 9.5-53.3 mV, and 5.8%-22.4%, respectively. One-way analysis of variance and Pareto charts revealed that the experimental loadings of 2-hydroxypropyl-β-cyclodextrin and Eudragit(®) S100 were the most significant for their effects on nicotinamide EC and EE. Moreover, the polymeric nanoemulsified particles demonstrated a sustained release profile for nicotinamide. The Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction demonstrated a significant interaction between the drug and 2-hydroxypropyl-β-cyclodextrin that might modulate the sustained release behavior. Furthermore, the formulations provided a sustained antibacterial activity that depended on nicotinamide-loading concentration, release rate, and

  13. Design and Preliminary Accuracy Studies of an MRI-Guided Transrectal Prostate Intervention System

    PubMed Central

    Krieger, Axel; Csoma, Csaba; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Fichtinger, Gabor; Whitcomb, Louis L.

    2012-01-01

    This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners. PMID:18044553

  14. System design of the Pioneer Venus spacecraft. Volume 5: Probe vehicle studies

    NASA Technical Reports Server (NTRS)

    Nolte, L. J.; Stephenson, D. S.

    1973-01-01

    A summary of the key issues and studies conducted for the Pioneer Venus spacecraft and the resulting probe designs are presented. The key deceleration module issues are aerodynamic configuration and heat shield material selection. The design and development of the pressure vessel module are explained. Thermal control and science integration of the pressure vessel module are explained. The deceleration module heat shield, parachute and separation/despin are reported. The Thor/Delta and Atlas/Centaur baseline descriptions are provided.

  15. Conceptual design study: Cold water pipe systems for self-mounted OTEC powerplants

    NASA Astrophysics Data System (ADS)

    1981-02-01

    The conceptual design and installation aspects of cold water pipes (CWP) systems for shelf mounted OTEC power plants in Puerto Rico and Hawaii are considered. The CWP systems using Fiberglass Reinforced Plastic (FRP) and steel were designed; the FRP, can be controlled by varying the core thickness; and steel is used as a structural material in offshore applications. A marine railway approach was chosen for installation of the CWP. Two methods for pulling the track for the railway down the pipe fairway to its final location are presented. The track is permanently fastened to the sloping seabed with piles installed by a remotely controlled cart that rides on the track itself. Both the marine railway and the shelf mounted platform that houses the OTEC power plant require an anodic or equivalent corrosion protection system.

  16. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 2: Data management system configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Earth Observatory Satellite (EOS) data management system (DMS) is discussed. The DMS is composed of several subsystems or system elements which have basic purposes and are connected together so that the DMS can support the EOS program by providing the following: (1) payload data acquisition and recording, (2) data processing and product generation, (3) spacecraft and processing management and control, and (4) data user services. The configuration and purposes of the primary or high-data rate system and the secondary or local user system are explained. Diagrams of the systems are provided to support the systems analysis.

  17. Reliability-Based Design of a Safety-Critical Automation System: A Case Study

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.; Dunn, W.; Doty, L.; Frank, M. V.; Hulet, M.; Alvarez, Teresa (Technical Monitor)

    1994-01-01

    In 1986, NASA funded a project to modernize the NASA Ames Research Center Unitary Plan Wind Tunnels, including the replacement of obsolescent controls with a modern, automated distributed control system (DCS). The project effort on this system included an independent safety analysis (ISA) of the automation system. The purpose of the ISA was to evaluate the completeness of the hazard analyses which had already been performed on the Modernization Project. The ISA approach followed a tailoring of the risk assessment approach widely used on existing nuclear power plants. The tailoring of the nuclear industry oriented risk assessment approach to the automation system and its role in reliability-based design of the automation system is the subject of this paper.

  18. Integrated system design report

    SciTech Connect

    Not Available

    1989-07-01

    The primary objective of the integrated system test phase is to demonstrate the commercial potential of a coal fueled diesel engine in its actual operating environment. The integrated system in this project is defined as a coal fueled diesel locomotive. This locomotive, shown on drawing 41D715542, is described in the separate Concept Design Report. The test locomotive will be converted from an existing oil fueled diesel locomotive in three stages, until it nearly emulates the concept locomotive. Design drawings of locomotive components (diesel engine, locomotive, flatcar, etc.) are included.

  19. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 2: EOS-A system specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives of the Earth Observatory Satellite (EOS) program are defined. The system specifications for the satellite payload are examined. The broad objectives of the EOS-A program are as follows: (1) to develop space-borne sensors for the measurement of land resources, (2) to evolve spacecraft systems and subsystems which will permit earth observation with greater accuracy, coverage, spatial resolution, and continuity than existing systems, (3) to develop improved information processing, extraction, display, and distribution systems, and (4) to use space transportation systems for resupply and retrieval of the EOS.

  20. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking.

  1. EHF SATCOM system design

    NASA Astrophysics Data System (ADS)

    Ahmed, M. Jamil

    Future satellite systems will differ considerably from the current versions. The impetus for change is a result of the need for more capacity, wider bandwidth requirements for enhanced services, increasing demand for mobile communications, advances in technology, developments in satellite payload systems, and a demand for secure military communications. To a large extent all of these needs can be satisfied by the use of extremely high frequency satellite communication (EHF Satcom) systems. EHF Satcom system design, features, pros and cons of using the system, particularly for military applications, and the current status of EHF SATCOM in Canada, U.S., Europe, and Japan are examined. The demand for bandwidth will continue to increase due to the growth of communication as well as due to enhanced services for business and entertainment. The increased bandwidth needs will be met by operating at higher frequencies, and perhaps by using extremely high frequency/superhigh frequency (EHF/SHF) satellites. Design of such systems involves a consideration of numerous aspects of design, technology, cost, and services. Advances in technology will make EHF/SHF systems feasible for military applications, as well as commercial mobile terminals, and high data rate terminals. The use of higher frequencies and small antennas will aid mobile communications. On-board processing will be akin to putting a switch in the space, providing flexibility of rates, connectivity, and services.

  2. Distributed System Design Checklist

    NASA Technical Reports Server (NTRS)

    Hall, Brendan; Driscoll, Kevin

    2014-01-01

    This report describes a design checklist targeted to fault-tolerant distributed electronic systems. Many of the questions and discussions in this checklist may be generally applicable to the development of any safety-critical system. However, the primary focus of this report covers the issues relating to distributed electronic system design. The questions that comprise this design checklist were created with the intent to stimulate system designers' thought processes in a way that hopefully helps them to establish a broader perspective from which they can assess the system's dependability and fault-tolerance mechanisms. While best effort was expended to make this checklist as comprehensive as possible, it is not (and cannot be) complete. Instead, we expect that this list of questions and the associated rationale for the questions will continue to evolve as lessons are learned and further knowledge is established. In this regard, it is our intent to post the questions of this checklist on a suitable public web-forum, such as the NASA DASHLink AFCS repository. From there, we hope that it can be updated, extended, and maintained after our initial research has been completed.

  3. Maglev system design considerations

    SciTech Connect

    Coffey, H.T.

    1991-01-01

    Although efforts are now being made to develop magnetic levitation technologies in the United States, they have been underway for two decades in Germany and Japan. The characteristics of maglev systems being considered for implementation in the United States are speculative. A conference was held at Argonne National Laboratory on November 28--29, 1990, to discuss these characteristics and their implications for the design requirements of operational systems. This paper reviews some of the factors considered during that conference.

  4. Studies on sustainability of simulated constructed wetland system for treatment of urban waste: Design and operation.

    PubMed

    Upadhyay, A K; Bankoti, N S; Rai, U N

    2016-03-15

    New system configurations and wide range of treatability make constructed wetland (CW) as an eco-sustainable on-site approach of waste management. Keeping this view into consideration, a novel configured three-stage simulated CW was designed to study its performance efficiency and relative importance of plants and substrate in purification processes. Two species of submerged plant i.e., Potamogeton crispus and Hydrilla verticillata were selected for this study. After 6 months of establishment, operation and maintenance of simulated wetland, enhanced reduction in physicochemical parameters was observed, which was maximum in the planted CW. The percentage removal (%) of the pollutants in three-stage mesocosms was; conductivity (60.42%), TDS (67.27%), TSS (86.10%), BOD (87.81%), NO3-N (81.28%) and PO4-P (83.54%) at 72 h of retention time. Submerged macrophyte used in simulated wetlands showed a significant time dependent accumulation of toxic metals (p ≤ 0.05). P. crispus accumulated the highest Mn (86.36 μg g(-1) dw) in its tissue followed by Cr (54.16 μg g(-1) dw), Pb (31.56 μg g(-1) dw), Zn (28.06 μg g(-1) dw) and Cu (25.76 μg g(-1) dw), respectively. In the case of H. verticillata, it was Zn (45.29), Mn (42.64), Pb (22.62), Cu (18.09) and Cr (16.31 μg g(-1) dw). Thus, results suggest that the application of simulated CW tackles the water pollution problem more efficiently and could be exploited in small community level as alternative and cost effective tools of phytoremediation. PMID:26773432

  5. Design study of a 9 MeV compact cyclotron system for PET

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  6. Space shuttle auxiliary propulsion system design study. Phase B report: Candidate RCS concept comparisons

    NASA Technical Reports Server (NTRS)

    Orton, G. F.; Schweickert, T. F.

    1972-01-01

    The competing auxiliary propulsion concepts for the reusable space shuttle vehicle are defined. The concepts are compared on the basis of selection criteria such as weight, reliability, and technology requirements. Propulsion systems using both cryogenic oxygen-hydrogen and earth storable propellants were considered. Three high value oxygen-hydrogen reaction control system concepts were evaluated. The final comparisons demonstrate that all three concepts are viable design approaches. The flexibility and growth potential of the parallel concept are considered to provide an advantage over the series concept.

  7. Study for a Design of Magnet System for the SPD Detector NICA LHEP JINR

    NASA Astrophysics Data System (ADS)

    Yudin, Ivan P.

    2016-02-01

    The choice of magnet system for the Spin Physics Detector of the NICA Collider of LHEP JINR is given. The inverse problem of magnetostatics is solved for a magnetic field of 0.5 tesla in the aperture a) ɸ 3 m x 5 m and b) ɸ 3 m x 6 m. We also discuss the design of the magnet with a field of 0.3 T. The paper presents the results obtained for the "warm" and SC versions of the magnetic system: currents (ampere-turns), the geometry (size) of the coil and the iron yoke, weight (on the whole and the individual elements), the magnet transportation and assembly.

  8. Shuttle communications design study

    NASA Technical Reports Server (NTRS)

    Cartier, D. E.

    1975-01-01

    The design and development of a space shuttle communication system are discussed. The subjects considered include the following: (1) Ku-band satellite relay to shuttle, (2) phased arrays, (3) PN acquisition, (4) quadriplexing of direct link ranging and telemetry, (5) communications blackout on launch and reentry, (6) acquisition after blackout on reentry, (7) wideband communications interface with the Ku-Band rendezvous radar, (8) aeroflight capabilities of the space shuttle, (9) a triple multiplexing scheme equivalent to interplex, and (10) a study of staggered quadriphase for use on the space shuttle.

  9. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    SciTech Connect

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected

  10. The scheme machine: A case study in progress in design derivation at system levels

    NASA Technical Reports Server (NTRS)

    Johnson, Steven D.

    1995-01-01

    The Scheme Machine is one of several design projects of the Digital Design Derivation group at Indiana University. It differs from the other projects in its focus on issues of system design and its connection to surrounding research in programming language semantics, compiler construction, and programming methodology underway at Indiana and elsewhere. The genesis of the project dates to the early 1980's, when digital design derivation research branched from the surrounding research effort in programming languages. Both branches have continued to develop in parallel, with this particular project serving as a bridge. However, by 1990 there remained little real interaction between the branches and recently we have undertaken to reintegrate them. On the software side, researchers have refined a mathematically rigorous (but not mechanized) treatment starting with the fully abstract semantic definition of Scheme and resulting in an efficient implementation consisting of a compiler and virtual machine model, the latter typically realized with a general purpose microprocessor. The derivation includes a number of sophisticated factorizations and representations and is also deep example of the underlying engineering methodology. The hardware research has created a mechanized algebra supporting the tedious and massive transformations often seen at lower levels of design. This work has progressed to the point that large scale devices, such as processors, can be derived from first-order finite state machine specifications. This is roughly where the language oriented research stops; thus, together, the two efforts establish a thread from the highest levels of abstract specification to detailed digital implementation. The Scheme Machine project challenges hardware derivation research in several ways, although the individual components of the system are of a similar scale to those we have worked with before. The machine has a custom dual-ported memory to support garbage collection

  11. Nicotinamide polymeric nanoemulsified systems: a quality-by-design case study for a sustained antimicrobial activity

    PubMed Central

    Zidan, Ahmed S; Ahmed, Osama AA; Aljaeid, Bader M

    2016-01-01

    Nicotinamide, the amide form of vitamin B3, was demonstrated to combat some of the antibiotic-resistant infections that are increasingly common around the world. The objective of this study was to thoroughly understand the formulation and process variabilities affecting the preparation of nicotinamide-loaded polymeric nanoemulsified particles. The quality target product profile and critical quality attributes of the proposed product were presented. Plackett–Burman screening design was employed to screen eight variables for their influences on the formulation’s critical characteristics. The formulations were prepared by an oil-in-water emulsification followed by solvent replacement. The prepared systems were characterized by entrapment capacity (EC), entrapment efficiency (EE), particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, in vitro drug release, and their antibacterial activity against bacterial scrums. EC, EE, particle size, polydispersity index, zeta potential, and percentage release in 24 hours were found to be in the range of 33.5%–68.8%, 53.1%–67.1%, 43.3–243.3 nm, 0.08–0.28, 9.5–53.3 mV, and 5.8%–22.4%, respectively. One-way analysis of variance and Pareto charts revealed that the experimental loadings of 2-hydroxypropyl-β-cyclodextrin and Eudragit® S100 were the most significant for their effects on nicotinamide EC and EE. Moreover, the polymeric nanoemulsified particles demonstrated a sustained release profile for nicotinamide. The Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction demonstrated a significant interaction between the drug and 2-hydroxypropyl-β-cyclodextrin that might modulate the sustained release behavior. Furthermore, the formulations provided a sustained antibacterial activity that depended on nicotinamide-loading concentration

  12. Pollution control system design for achieving stringent emissions standards on waste incineration facilities -- a case study

    SciTech Connect

    Weaver, E.H.; Bourgoin, S.

    1998-12-31

    In Germany, environmental standards for non-municipal waste incineration are set to not only achieve very low emissions to the atmosphere, but to also ensure that the solid residues generated are of acceptable quality for final disposal and that no liquid effluent is discharged from the system. In order to control pollution from these facilities, an integrated system is required to address the air, liquid and solid regulatory issues. This paper examines one recent facility installed in Germany which incorporates all of the design features required to comply with those standards. The facility examined is an industrial waste incineration facility located at an oil refinery in northeastern Germany. Equipped with a spray dryer absorber, fabric filter, and wet scrubber, the system is designed to achieve HCl emissions of less than 10 mg/Nm{sup 3} and SO{sub 2} emissions of less than 50 mg/Nm{sup 3}. Particulate emissions must be below 10 mg/Nm{sup 3}. The limit for mercury emissions is 50 ug/Nm{sup 3}, while dioxin emissions must be below 0.10 ng/Nm{sup 3}. Purge water from the wet scrubbing system containing salts is dried in the spray dryer absorber and collected as a dry waste in the fabric filter following the spray dryer absorber. The detailed design of the pollution control system is discussed, along with considerations to ensure continuous compliance with allowable emission levels. Operation of the facility is discussed, along with special operating issues that have been encountered since startup. Finally, performance tests and emissions data are presented to illustrate the actual performance level of the facility.

  13. The Application of an Engineering Design and Information Systems Case Study in a Senior Level Product Data Management Course

    ERIC Educational Resources Information Center

    Connolly, Patrick

    2011-01-01

    This study examines the use of an engineering design and information systems case study over a three week period in a senior level class covering the topics of product data management (PDM) and product lifecycle management (PLM). Students that have taken the course in the past have struggled with the sometimes nebulous and difficult to…

  14. Integrated source and channel encoded digital communication system design study. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  15. Design and physical studies of fast reactor for bimodal space thermionic system with single-cell TFEs

    NASA Astrophysics Data System (ADS)

    Kirillov, E. Ya.; Klimov, A. V.; Ogloblin, B. G.; Radchenko, I. S.; Shumov, D. P.

    1997-01-01

    The paper presents the design studies and results of neutron-physical calculations of a fast nuclear reactor of a bimodal space thermionic system with single-cell thermionic fuel elements (TFE) designed for operation in two modes. These modes are (a) the propulsion mode making possible the system movement in outer space by the use of a reactive thrust generated by hydrogen heated in the reactor and (b) the electric power mode providing power supply to space vehicle-mounted systems with energy consumption level of 40kW(e) for a long time. The paper also discusses the problems of nuclear reactor safeguarding in an emergency.

  16. Design studies for a technology assessment receiver for global positioning system

    NASA Technical Reports Server (NTRS)

    Painter, J. H.

    1981-01-01

    The operational conditions of a radio receiver - microprocessor for the global positioning system are studied. Navigation fundamentals and orbit characterization are reviewed. The global positioning system is described with emphasis upon signal structure and satellite positioning. Ranging and receiver processing techniques are discussed.

  17. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 2: Ground system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Ground System requirements for the Land Resources Management (LRM) type-A and type-B missions of the Earth Observatory Satellite (EOS) program are presented. Specifications for the Thematic Mapper data processing are provided (LRM A mission). The specifications also cover the R and D instruments (Thematic Mapper and High Resolution Pointable Imager) data processing for the LRM type-B mission.

  18. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 5: Specification for EROS operations control center

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functional, performance, and design requirements for the Operations Control Center (OCC) of the Earth Observatory Satellite (EOS) system are presented. The OCC controls the operations of the EOS satellite to acquire mission data consisting of: (1) thematic mapper data, (2) multispectral scanner data on EOS-A, or High Resolution Pointable Imager data on EOS-B, and (3) data collection system (DCS) data. The various inputs to the OCC are identified. The functional requirements of the OCC are defined. The specific systems and subsystems of the OCC are described and block diagrams are provided.

  19. A design study of the energy selection system for carbon-ion therapy

    NASA Astrophysics Data System (ADS)

    Hahn, Garam; An, Dong Hyun; Hong, Bong Hwan; Kim, Geun Beom; Yim, Heejoong; Chang, Hong Seok; Jung, In Su; Kang, Kun Uk; Nam, Sang Hoon; Park, Inkyu

    2015-02-01

    KHIMA, a research project to construct a carbon radio-therapy facility in Korea, has been developing a superconducting cyclotron named KIRAMS-430 as a carbon(12 C 6+) particle accelerator. Due to the fixed beam energy of the cyclotron, an energy selection system (ESS) is required for treatment of tumors located at various depths in the human body. In the present paper, two design stages of the ESS are discussed. First, the beam tracks behind the degrader block and the statistical twiss parameters for the entire energy range were calculated by using the GEANT4 simulation toolkit. Analysis of the beam transmission and the contamination ratios were performed. In the second stage, the beam optics was designed to support the same phase profile at the end regardless of the variations in all of input twiss parameters and the emittance.

  20. Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    Wesley, R. W.; Waineo, D. K.; Barton, C. R.; Love, A. W.

    1975-01-01

    A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements.

  1. A System Design for Studying Geriatric Patients with Dementia and Hypertension Based on Daily Living Information

    NASA Astrophysics Data System (ADS)

    Xu, Weifeng; Betz, Willian R.; Frezza, Stephen T.; Liu, Yunkai

    2011-08-01

    Geriatric patients with dementia and hypertension (DAH) suffer both physically and financially. The needs of these patients mainly include improving the quality of daily living and reducing the cost of long-term care. Traditional treatment approaches are strained to meet these needs. The goal of the paper is to design an innovative system to provide cost-effective quality treatments for geriatric patients with DAH by collecting and analyzing the multi-dimensional personal information, such as observations in daily living (ODL) from a non-clinical environment. The proposed ODLs in paper include activities, cleanliness, blood pressure, medication compliance and mood changes. To complete the system design, an incremental user-centered strategy is exploited to assemble needs of patients, caregivers, and clinicians. A service-oriented architecture (SOA) is employed to make full use of existing devices, software systems, and platforms. This health-related knowledge can be interpreted and utilized to help patients with DAH remain in their homes safely and improve their life quality while reducing medical expenditures.

  2. Intelligent design system for design automation

    NASA Astrophysics Data System (ADS)

    Shakeri, Cirrus; Deif, Ismail; Katragadda, Prasanna; Knutson, Stanley

    2000-10-01

    In order to succeed in today's global, competitive market, companies need continuous improvements in their product development processes. These improvements should result in expending fewer resources on the design process while achieving better quality. Automating the design process reduces resources needed and allows designers to spend more time on creative aspects that improve the quality of design. For the last three decades, engineers and designers have been searching for better ways to automate the product development process. For certain classes of design problems, which cover a large portion of real world design situations, the process can be automated using knowledge-based systems. These are design problems in which the knowledge sources are known in advance. Using techniques from Knowledge-Based Engineering, knowledge is codified and inserted into a knowledge-based system. The system activates the design knowledge, automatically generating designs that satisfy the design constraints. To increase the return on investment of building automated design systems, Knowledge management methodologies and techniques are required for capturing, formalizing, storing, and searching design knowledge.

  3. Air Force Reusable Booster System: A Quick-look, Design Focused Modeling and Cost Analysis Study

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2011-01-01

    This paper presents a method and an initial analysis of the costs of a reusable booster system (RBS) as envisioned by the US Department of Defense (DoD) and numerous initiatives that form the concept of Operationally Responsive Space (ORS). This paper leverages the knowledge gained from decades of experience with the semi-reusable NASA Space Shuttle to understand how the costs of a military next generation semi-reusable space transport might behave in the real world - and how it might be made as affordable as desired. The NASA Space Shuttle had a semi-expendable booster, that being the reusable Solid Rocket MotorslBoosters (SRMlSRB) and the expendable cryogenic External Tank (ET), with a reusable cargo and crew capable orbiter. This paper will explore DoD concepts that invert this architectural arrangement, using a reusable booster plane that flies back to base soon after launch, with the in-space elements of the launch system being the expendable portions. Cost estimating in the earliest stages of any potential, large scale program has limited usefulness. As a result, the emphasis here is on developing an approach, a structure, and the basic concepts that could continue to be matured as the program gains knowledge. Where cost estimates are provided, these results by necessity carry many caveats and assumptions, and this analysis becomes more about ways in which drivers of costs for diverse scenarios can be better understood. The paper is informed throughout with a design-for-cost philosophy whereby the design and technology features of the proposed RBS (who and what, the "architecture") are taken as linked at the hip to a desire to perform a certain mission (where and when), and together these inform the cost, responsiveness, performance and sustainability (how) of the system. Concepts for developing, acquiring, producing or operating the system will be shown for their inextricable relationship to the "architecture" of the system, and how these too relate to costs

  4. Design and test of a biosensor-based multisensorial system: a proof of concept study.

    PubMed

    Santonico, Marco; Pennazza, Giorgio; Grasso, Simone; D'Amico, Arnaldo; Bizzarri, Mariano

    2013-01-01

    Sensors are often organized in multidimensional systems or networks for particular applications. This is facilitated by the large improvements in the miniaturization process, power consumption reduction and data analysis techniques nowadays possible. Such sensors are frequently organized in multidimensional arrays oriented to the realization of artificial sensorial systems mimicking the mechanisms of human senses. Instruments that make use of these sensors are frequently employed in the fields of medicine and food science. Among them, the so-called electronic nose and tongue are becoming more and more popular. In this paper an innovative multisensorial system based on sensing materials of biological origin is illustrated. Anthocyanins are exploited here as chemical interactive materials for both quartz microbalance (QMB) transducers used as gas sensors and for electrodes used as liquid electrochemical sensors. The optical properties of anthocyanins are well established and widely used, but they have never been exploited as sensing materials for both gas and liquid sensors in non-optical applications. By using the same set of selected anthocyanins an integrated system has been realized, which includes a gas sensor array based on QMB and a sensor array for liquids made up of suitable Ion Sensitive Electrodes (ISEs). The arrays are also monitored from an optical point of view. This embedded system, is intended to mimic the working principles of the nose, tongue and eyes. We call this setup BIONOTE (for BIOsensor-based multisensorial system for mimicking NOse, Tongue and Eyes). The complete design, fabrication and calibration processes of the BIONOTE system are described herein, and a number of preliminary results are discussed. These results are relative to: (a) the characterization of the optical properties of the tested materials; (b) the performance of the whole system as gas sensor array with respect to ethanol, hexane and isopropyl alcohol detection

  5. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test.

  6. System design of the Pioneer Venus spacecraft. Volume 9: Attitude control/mechanisms subsystems studies

    NASA Technical Reports Server (NTRS)

    Neil, A. L.

    1973-01-01

    The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.

  7. Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Griffin, D.

    2002-07-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The project team for this work includes experts in all areas of wind turbine blade design, analysis, manufacture, and testing. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes.

  8. Case Studies in a Physiology Course on the Autonomic Nervous System: Design, Implementation, and Evaluation

    ERIC Educational Resources Information Center

    Zimmermann, Martina

    2010-01-01

    The introduction of case studies on the autonomic nervous system in a fourth-semester physiology course unit for Pharmacy students is described in this article. This article considers how these case studies were developed and presents their content. Moreover, it reflects on their implementation and, finally, the reception of such a transformation…

  9. [Design and study of middle infrared spectrum system with variational field of view].

    PubMed

    Bai, Yu; Xing, Ting-wen; Jiang, Ya-dong; Feng, Cheng

    2014-08-01

    In order to track and capture target at the same time with a set of equipment, a middle infrared spectrum variational field of view (fov) detection system with a large focal plane array was designed for a 640 x 512 novel large focal plane array infrared detector with the picture element size of 15 m x 15 m. The spectrum range was 3.7-4.8 m, F number was 4.0, narrow FOV and wide FOV was 0.45 and 0.90 respectively. The manner of variational FOV was accomplished by pitching two lenses into the narrow FOV system layout with mechanism framework. Reimaging technology not only minished the diameter of front fixed group, but also met 100% cold shield efficiency to minish stray light into the infrared detector. Two common infrared materials Ge and Si were used in the variational FOV detection system. The aspheric technology was used in order to correct the off axis aberration and higher order aberration and assure the fixedness of image plane. At the spatial frequency 33 lp x mm(-1), the modulation transfer function(MTF) was above 0.2 for both the narrow FOV and wide FOV. Moreover, the distortion is below 0.5%. The middle infrared spectrum variational FOV detection system has excellent image. The image quality of the middle infrared spectrum variational field of view detection system changed little in the working temperature range -35-55 degrees C. PMID:25508759

  10. [Design and study of middle infrared spectrum system with variational field of view].

    PubMed

    Bai, Yu; Xing, Ting-wen; Jiang, Ya-dong; Feng, Cheng

    2014-08-01

    In order to track and capture target at the same time with a set of equipment, a middle infrared spectrum variational field of view (fov) detection system with a large focal plane array was designed for a 640 x 512 novel large focal plane array infrared detector with the picture element size of 15 m x 15 m. The spectrum range was 3.7-4.8 m, F number was 4.0, narrow FOV and wide FOV was 0.45 and 0.90 respectively. The manner of variational FOV was accomplished by pitching two lenses into the narrow FOV system layout with mechanism framework. Reimaging technology not only minished the diameter of front fixed group, but also met 100% cold shield efficiency to minish stray light into the infrared detector. Two common infrared materials Ge and Si were used in the variational FOV detection system. The aspheric technology was used in order to correct the off axis aberration and higher order aberration and assure the fixedness of image plane. At the spatial frequency 33 lp x mm(-1), the modulation transfer function(MTF) was above 0.2 for both the narrow FOV and wide FOV. Moreover, the distortion is below 0.5%. The middle infrared spectrum variational FOV detection system has excellent image. The image quality of the middle infrared spectrum variational field of view detection system changed little in the working temperature range -35-55 degrees C. PMID:25474980

  11. Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades

    SciTech Connect

    GRIFFIN, DAYTON A.; ASHWILL, THOMAS D.

    2002-07-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The project team for this work includes experts in all areas of wind turbine blade design, analysis, manufacture, and testing. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes. Fiberglass/carbon fiber hybrid blades are identified as having a promising combination of cost, weight, stiffness and fatigue resistance. Vacuum-assisted resin transfer molding, resin film infision, and pre-impregnated materials are identified as having benefits in reduced volatile emissions, higher fiber content, and improved laminate quality relative to the baseline wet lay-up process. Alternative structural designs are identified, including jointed configurations to facilitate transportation. Based on the results to date, recommendations are made for further evaluation and testing under this study to verify the predicted material and structural performance.

  12. Design study of the cooling scheme for SMES system in ASPCS by using liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Makida, Yasuhiro; Shintomi, Takakazu; Asami, Takuya; Suzuki, Goro; Takao, Tomoaki; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Munakata, Kouhei; Kajiwara, Masataka

    2013-11-01

    From the point of view of environment and energy problems, the renewable energies have been attracting attention. However, fluctuating power generation by the renewable energies affects the stability of the power network. Thus, we propose a new electric power storage and stabilization system, Advanced Superconducting Power Conditioning System (ASPCS), in which a Superconducting Magnetic Energy Storage (SMES) and a hydrogen-energy-storage converge on a liquid hydrogen station for fuel cell vehicles. The ASPCS proposes that the SMES coils wound with MgB2 conductor are indirectly cooled by thermo-siphon circulation of liquid hydrogen to use its cooling capability. The conceptual design of cooling scheme of the ASPCS is presented.

  13. Preliminary design study of a lateral-directional control system using thrust vectoring

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1985-01-01

    A preliminary design of a lateral-directional control system for a fighter airplane capable of controlled operation at extreme angles of attack is developed. The subject airplane is representative of a modern twin-engine high-performance jet fighter, is equipped with ailerons, rudder, and independent horizontal-tail surfaces. Idealized bidirectional thrust-vectoring engine nozzles are appended to the mathematic model of the airplane to provide additional control moments. Optimal schedules for lateral and directional pseudo control variables are calculated. Use of pseudo controls results in coordinated operation of the aerodynamic and thrust-vectoring controls with minimum coupling between the lateral and directional airplane dynamics. Linear quadratic regulator designs are used to specify a preliminary flight control system to improve the stability and response characteristics of the airplane. Simulated responses to step pilot control inputs are stable and well behaved. For lateral stick deflections, peak stability axis roll rates are between 1.25 and 1.60 rad/sec over an angle-of-attack range of 10 deg to 70 deg. For rudder pedal deflections, the roll rates accompanying the sideslip responses can be arrested by small lateral stick motions.

  14. The Development of the CONDUIT Advanced Control System Design and Evaluation Interface with a Case Study Application to an Advanced Fly by Wire Helicopter Design

    NASA Technical Reports Server (NTRS)

    Colbourne, Jason

    1999-01-01

    This report details the development and use of CONDUIT (Control Designer's Unified Interface). CONDUIT is a design tool created at Ames Research Center for the purpose of evaluating and optimizing aircraft control systems against handling qualities. Three detailed design problems addressing the RASCAL UH-60A Black Hawk are included in this report to show the application of CONDUIT to helicopter control system design.

  15. CETF Space Station payload pointing system design and analysis feasibility study. [Critical Evaluation Task Force

    NASA Technical Reports Server (NTRS)

    Smagala, Tom; Mcglew, Dave

    1988-01-01

    The expected pointing performance of an attached payload coupled to the Critical Evaluation Task Force Space Station via a payload pointing system (PPS) is determined. The PPS is a 3-axis gimbal which provides the capability for maintaining inertial pointing of a payload in the presence of disturbances associated with the Space Station environment. A system where the axes of rotation were offset from the payload center of mass (CM) by 10 in. in the Z axis was studied as well as a system having the payload CM offset by only 1 inch. There is a significant improvement in pointing performance when going from the 10 in. to the 1 in. gimbal offset.

  16. Operationally efficient propulsion system study (OEPSS) data book. Volume 7; Launch Operations Index (LOI) Design Features and Options

    NASA Technical Reports Server (NTRS)

    Ziese, James M.

    1992-01-01

    A design tool of figure of merit was developed that allows the operability of a propulsion system design to be measured. This Launch Operations Index (LOI) relates Operations Efficiency to System Complexity. The figure of Merit can be used by conceptual designers to compare different propulsion system designs based on their impact on launch operations. The LOI will improve the design process by making sure direct launch operations experience is a necessary feedback to the design process.

  17. System design of the Pioneer Venus spacecraft. Volume 7: Communication subsystem studies

    NASA Technical Reports Server (NTRS)

    Newlands, D. M.

    1973-01-01

    Communications subsystem tradeoffs were undertaken to establish a low cost and low weight design consistent with the mission requirements. Because of the weight constraint of the Thor/Delta launched configuration, minimum weight was emphasized in determining the Thor/Delta design. In contrast, because of the greatly relaxed weight constraint of the Atlas/Centaur launched configuration, minimum cost and off the shelf hardware were emphasized and the attendant weight penalities accepted. Communication subsystem hardware elements identified for study included probe and bus antennas (CM-6, CM-17), power amplifiers (CM-10), and the large probe transponder and small probe stable oscillator required for doppler tracking (CM-11, CM-16). In addition, particular hardware problems associated with the probe high temperature and high-g environment were investigated (CM-7).

  18. A Microperfusion and In-Bore Oxygenator System Designed for Magnetic Resonance Microscopy Studies on Living Tissue Explants.

    PubMed

    Flint, Jeremy J; Menon, Kannan; Hansen, Brian; Forder, John; Blackband, Stephen J

    2015-01-01

    Spectrometers now offer the field strengths necessary to visualize mammalian cells but were not designed to accommodate imaging of live tissues. As such, spectrometers pose significant challenges--the most evident of which are spatial limitations--to conducting experiments in living tissue. This limitation becomes problematic upon trying to employ commercial perfusion equipment which is bulky and--being designed almost exclusively for light microscopy or electrophysiology studies--seldom includes MR-compatibility as a design criterion. To overcome problems exclusive to ultra-high magnetic field environments with limited spatial access, we have designed microperfusion and in-bore oxygenation systems capable of interfacing with Bruker's series of micro surface-coils. These devices are designed for supporting cellular resolution imaging in MR studies of excised, living tissue. The combined system allows for precise control of both dissolved gas and pH levels in the perfusate thus demonstrating applicability for a wide range of tissue types. Its compactness, linear architecture, and MR-compatible material content are key design features intended to provide a versatile hardware interface compatible with any NMR spectrometer. Such attributes will ensure the microperfusion rig's continued utility as it may be used with a multitude of contemporary NMR systems in addition to those which are currently in development. PMID:26666980

  19. PRACA Enhancement Pilot Study Report: Engineering for Complex Systems Program (formerly Design for Safety), DFS-IC-0006

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David; Schreiner, John

    2002-01-01

    This technology evaluation report documents the findings and recommendations of the Engineering for Complex Systems Program (formerly Design for Safety) PRACA Enhancement Pilot Study of the Space Shuttle Program's (SSP's) Problem Reporting and Corrective Action (PRACA) System. A team at NASA Ames Research Center (ARC) performed this Study. This Study was initiated as a follow-on to the NASA chartered Shuttle Independent Assessment Team (SIAT) review (performed in the Fall of 1999) which identified deficiencies in the current PRACA implementation. The Pilot Study was launched with an initial qualitative assessment and technical review performed during January 2000 with the quantitative formal Study (the subject of this report) started in March 2000. The goal of the PRACA Enhancement Pilot Study is to evaluate and quantify the technical aspects of the SSP PRACA systems and recommend enhancements to address deficiencies and in preparation for future system upgrades.

  20. Study on Sensor Design Technique for Real-Time Robotic Welding Tracking System

    NASA Astrophysics Data System (ADS)

    Liu, C. J.; Li, Y. B.; Zhu, J. G.; Ye, S. H.

    2006-10-01

    Based on visual measurement techniques, the real-time robotic welding tracking system achieves real-time adjustment for robotic welding according to the position and shape changes of a workpiece. In system design, the sensor design technique is so important that its performance directly affects the precision and stability of the tracking system. Through initiative visual measurement technology, a camera unit for real-time sampling is built with multiple-strip structured light and a high-performance CMOS image sensor including 1.3 million pixels; to realize real-time data process and transmission, an image process unit is built with FPGA and DSP. Experiments show that the precision of this sensor reaches 0.3mm, and band rate comes up to 10Mbps, which effectively improves robot welding quality.With the development of advanced manufacturing technology, it becomes an inexorable trend to realize the automatic, flexible and intelligent welding product manufacture. With the advantage of interchangeability and reliability, robotic welding can boost productivity, improve work condition, stabilize and guarantee weld quality, and realize welding automation of the short run products [1]. At present, robotic welding has already become the application trend of automatic welding technology. Traditional welding robots are play-back ones, which cannot adapt environment and weld distortion. Especially in the more and more extensive arc-welding course, the deficiency and limitation of play-back welding technology becomes more prominent because of changeable welding condition. It becomes one of the key technology influencing the development of modern robotic welding technology to eliminate or decrease uncertain influence on quality of welding such as changing welding condition etc [2]. Based on visual measuring principle, this text adopts active visual measuring technology, cooperated with high-speed image process and transmission technology to structure a tracking sensor, to realize

  1. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix C: EOS program requirements document

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the requirements for the Earth Observatory Satellite (EOS) system specifications is presented. The analysis consists of requirements obtained from existing documentation and those derived from functional analysis. The requirements follow the hierarchy of program, mission, system, and subsystem. The code for designating specific requirements is explained. Among the subjects considered are the following: (1) the traffic model, (2) space shuttle related performance, (3) booster related performance, (4) the data collection system, (5) spacecraft structural tests, and (6) the ground support requirements.

  2. Feed system design and experimental results in the uhf model study for the proposed Urbana phased array

    NASA Technical Reports Server (NTRS)

    Loane, J. T.; Bowhill, S. A.; Mayes, P. E.

    1982-01-01

    The effects of atmospheric turbulence and the basis for the coherent scatter radar techniques are discussed. The reasons are given for upgrading the Radar system to a larger steerable array. Phase array theory pertinent to the system design is reviewed, along with approximations for maximum directive gain and blind angles due to mutual coupling. The methods and construction techniques employed in the UHF model study are explained. The antenna range is described, with a block diagram for the mode of operation used.

  3. Designing the Next Generation of Tools Using an Open Systems Approach: A Usability Study.

    ERIC Educational Resources Information Center

    Ahern, Terence C.; Jamison, Mark; Olivarez, Arturo

    This paper reports on the results of a usability study that investigated the suitability of using an open systems approach for developing an online assessment application. Issues examined included ease of use, security, effectiveness, and ease of maintenance. Participants were 68 preservice teachers taking a technology integration course. Students…

  4. Electronic system for monitoring the frequency and pressure of mastication: study and approach for its design.

    PubMed

    Nakamura, Orlando K; Garcia, Daniel O; Villavicencio, Emilio A; Navarro, Luis A; Torres, Miguel A; Huamani, Robinson; Yabar, Leopoldo F

    2010-01-01

    The objective of this work is to study and design a portable non invasive prototype which allows us to supervise the mastication frequency and pressure for specific meals, performing an analysis of sounds and pressures generated by facial muscles when they are chewing. These variables have a direct influence on people nutritious and dietary habits; also, a quickly eating makes people ingest a lot of food instead he needs generating overweight on him. On the other hand, there is no so much study for upheaval of temporal-mandible joints (TMJ) in Peru, keeping as reference that unilateral mastication is one of the principal causes on myofacial pains but, as obesity, there are no studies in Peru about how to prevent these pathologies. In consequence, we propose the development of this prototype which, additional to supervise variables such as mastication frequency and pressure, will allow to the patient an self-correction of his habits. PMID:21097334

  5. [Study on the design and detection method of a novel blood pressure measurement system].

    PubMed

    Feng, Xueji; Deng, Qinkai; Guo, Jinsong; Liang, Feixue

    2013-05-01

    A novel blood pressure measurement system was designed which based on auscultatory method. And the electret sensor that embedded into the internal instrument can detect the Korotkoff-sound signal directly which is coupled by the cuff and transmitted in the cross connection. The BP values identification algorithm is based on combined detection of Korotkoff-sound and pulse signal, and the products of amplitudes and energies are calculated as the characteristic values of Korotkoff-sound, and the Korotkoff-sound phases are classified and detected by means of clustering of characteristic values, and then BP parameters are determined. The contrast test and statistical analysis showed good consistency and accuracy between the new BP detection method and conventional mercury sphygmomanometer. PMID:24015608

  6. Interdisciplinary design study of a high-rise integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.

    2012-10-01

    Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  7. TBCC TSTO Design for the NASA-AFRL Joint System Study

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Robinson, Jeff; Ferlemann, Shelly

    2010-01-01

    NASA and the Air Force Research Laboratory are involved in a Joint System Study (JSS) on Two-Stage-to-Orbit (TSTO) vehicles. The JSS will examine the performance, operability and uncertainty of unmanned, fully reusable, airbreathing-based TSTO launch vehicle concepts. NASA is providing a concept using turbine-based combined cycle (TBCC) propulsion on the booster stage and an all-rocket orbiter. The Air Force supplied two vehicle concepts, both utilizing an all-rocket booster; one with an all-rocket orbiter, the other using a rocket-based combined cycle orbiter. For NASA, this study is being used for tool assessment and development, and to identify generic technology gaps, not to choose vehicle types or concepts. This presentation starts with an overview of the major JSS ground rules and assumptions. Second, the NASA TSTO concept, Reusable Airbreathing Launch Vehicle - iteration B (RALV-B) is introduced, including its mission profile and, the vehicle (booster and orbiter) layout and packaging. The high speed propulsion concept is then briefly discussed, including the work performed and lessons learned. The low speed TBCC propulsion system is covered next in some detail. An overview for the low speed system is given; then its development is discussed (starting with initial layout and leading to more detailed analyses performed and results). The low speed system portion is wrapped up with lessons learned and summary. Finally, an overall summary and lessons learned so far for the JSS are given as well as work planned to complete the study.

  8. A Microperfusion and In-Bore Oxygenator System Designed for Magnetic Resonance Microscopy Studies on Living Tissue Explants

    NASA Astrophysics Data System (ADS)

    Flint, Jeremy J.; Menon, Kannan; Hansen, Brian; Forder, John; Blackband, Stephen J.

    2015-12-01

    Spectrometers now offer the field strengths necessary to visualize mammalian cells but were not designed to accommodate imaging of live tissues. As such, spectrometers pose significant challenges—the most evident of which are spatial limitations—to conducting experiments in living tissue. This limitation becomes problematic upon trying to employ commercial perfusion equipment which is bulky and—being designed almost exclusively for light microscopy or electrophysiology studies—seldom includes MR-compatibility as a design criterion. To overcome problems exclusive to ultra-high magnetic field environments with limited spatial access, we have designed microperfusion and in-bore oxygenation systems capable of interfacing with Bruker’s series of micro surface-coils. These devices are designed for supporting cellular resolution imaging in MR studies of excised, living tissue. The combined system allows for precise control of both dissolved gas and pH levels in the perfusate thus demonstrating applicability for a wide range of tissue types. Its compactness, linear architecture, and MR-compatible material content are key design features intended to provide a versatile hardware interface compatible with any NMR spectrometer. Such attributes will ensure the microperfusion rig’s continued utility as it may be used with a multitude of contemporary NMR systems in addition to those which are currently in development.

  9. A Microperfusion and In-Bore Oxygenator System Designed for Magnetic Resonance Microscopy Studies on Living Tissue Explants

    PubMed Central

    Flint, Jeremy J.; Menon, Kannan; Hansen, Brian; Forder, John; Blackband, Stephen J.

    2015-01-01

    Spectrometers now offer the field strengths necessary to visualize mammalian cells but were not designed to accommodate imaging of live tissues. As such, spectrometers pose significant challenges—the most evident of which are spatial limitations—to conducting experiments in living tissue. This limitation becomes problematic upon trying to employ commercial perfusion equipment which is bulky and—being designed almost exclusively for light microscopy or electrophysiology studies—seldom includes MR-compatibility as a design criterion. To overcome problems exclusive to ultra-high magnetic field environments with limited spatial access, we have designed microperfusion and in-bore oxygenation systems capable of interfacing with Bruker’s series of micro surface-coils. These devices are designed for supporting cellular resolution imaging in MR studies of excised, living tissue. The combined system allows for precise control of both dissolved gas and pH levels in the perfusate thus demonstrating applicability for a wide range of tissue types. Its compactness, linear architecture, and MR-compatible material content are key design features intended to provide a versatile hardware interface compatible with any NMR spectrometer. Such attributes will ensure the microperfusion rig’s continued utility as it may be used with a multitude of contemporary NMR systems in addition to those which are currently in development. PMID:26666980

  10. Systems design study of the Pioneer Venus spacecraft. Volume 2. Preliminary program development plan

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The preliminary development plan for the Pioneer Venus program is presented. This preliminary plan treats only developmental aspects that would have a significant effect on program cost. These significant development areas were: master program schedule planning; test planning - both unit and system testing for probes/orbiter/ probe bus; ground support equipment; performance assurance; and science integration Various test planning options and test method techniques were evaluated in terms of achieving a low-cost program without degrading mission performance or system reliability. The approaches studied and the methodology of the selected approach are defined.

  11. A design study on high power RF system for the TARLA facility of TAC

    NASA Astrophysics Data System (ADS)

    Karslı, Özlem; Yavaş, Ömer

    2012-11-01

    The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) is a superconducting electron linac based IR FEL and Bremsstrahlung facility and it is under construction in Ankara as the first facility of the Turkish Accelerator Center (TAC) Project. TARLA will compose of two optical cavity systems to produce oscillator FEL in infrared region (2-250 μm) and also Bremsstrahlung radiation to be used in basic and applied sciences. In this study, main parameters of TARLA's high power RF and power transmission line systems are defined and a 20 kW RF solid state power amplifier is optimized.

  12. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods.

    PubMed

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-01-01

    Knowledge of bacteria's heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria's heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample's thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS's performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria's thermo-tolerances. PMID:27465120

  13. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    NASA Astrophysics Data System (ADS)

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-07-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances.

  14. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    PubMed Central

    Kou, Xiao-xi; Li, Rui; Hou, Li-xia; Huang, Zhi; Ling, Bo; Wang, Shao-jin

    2016-01-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances. PMID:27465120

  15. Design Language for Digital Systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1985-01-01

    Digital Systems Design Language (DDL) is convenient hardware description language for developing and testing digital designs and for inputting design details into design automation system. Describes digital systems at gate, register transfer, and combinational block levels. DDL-based programs written in FORTRAN IV for batch execution.

  16. Design study of a HEAO-C spread spectrum transponder telemetry system for use with the TDRSS subnet

    NASA Technical Reports Server (NTRS)

    Weathers, G.

    1975-01-01

    The results of a design study of a spread spectrum transponder for use on the HEAO-C satellite were given. The transponder performs the functions of code turn-around for ground range and range-rate determination, ground command receiver, and telemetry data transmitter. The spacecraft transponder and associated communication system components will allow the HEAO-C satellite to utilize the Tracking and Data Relay Satellite System (TDRSS) subnet of the post 1978 STDN. The following areas were discussed in the report: TDRSS Subnet Description, TDRSS-HEAO-C System Configuration, Gold Code Generator, Convolutional Encoder Design and Decoder Algorithm, High Speed Sequence Generators, Statistical Evaluation of Candidate Code Sequences using Amplitude and Phase Moments, Code and Carrier Phase Lock Loops, Total Spread Spectrum Transponder System, and Reference Literature Search.

  17. Design study to simulate the development of a commercial freight transportation system

    NASA Technical Reports Server (NTRS)

    Batill, Stephen M.; Costello, Kevin; Pinkelman, Jim

    1992-01-01

    The Notre Dame Aerospace Engineering senior class was divided into six design teams. A request for proposals (RFP) asking for the design of a remotely piloted vehicle (RPV) was given to the class, and each design team was responsible for designing, developing, producing, and presenting an RPV concept. The RFP called for the design of commercial freight transport RPV. The RFP provided a description of a fictitious world called 'Aeroworld'. Aeroworld's characteristics were scaled to provide the same types of challenges for RPV design that the real world market provides for the design of commercial aircraft. Fuel efficiency, range and payload capabilities, production and maintenance costs, and profitability are a few of the challenges that were addressed in this course. Each design team completed their project over the course of a semester by designing and flight testing a prototype, freight-carrying remotely piloted vehicle.

  18. [Experimental study of the root supply system with periodic water return designed for space greenhouses].

    PubMed

    Berkovich, Iu A; Smolianina, S O; Krivobok, N M

    2000-01-01

    To improve reliability of plant's moistening and aeration control in microgravity, an original root supply system with a periodic return water flow has been designed and tested in laboratory. For 30 days crops of Pekinese cabbage (Brassica pekinesis (Lour Rupr), Khibini sort) were raised in the test bench which allowed adjustment of water potential in the root zone within a preset range. A three-step water potential control algorithm included water injection with a pump-dispenser, a pause, and water sucking back to a desired value of water potential. The following parameters of the control cycle were selected in a series of two experiments: time of water injection (2.5 hr) and return (1.5 hr), and a pause of 8 and 20 hr, respectively. Magnitude of water potential about the root module axis was controlled in the range from -1.3 kPa to -3.0 kPa in both experiments and maintained at -1.3 kPa in the control. The root modules consisted of porous metaloceramic tubes wrapped in fibrous ion exchanging cloth and a light-proof film with planting slots on top. In the first experiment, plant characteristics were comparable to the control. The developed procedure and technology can be used to provide favourable moisture-air conditions in the root zone. By and large, the system of root nutrition with a periodic water return has demonstrated high capacity during the ground-based cultivation of plants. To use this system in space greenhouse, it is necessary to specify operational parameters for the microgravity environment. PMID:10826063

  19. Methodology to design a municipal solid waste pre-collection system. A case study

    SciTech Connect

    Gallardo, A. Carlos, M. Peris, M. Colomer, F.J.

    2015-02-15

    Highlights: • MSW recovery starts at homes; therefore it is important to facilitate it to people. • Additionally, to optimize MSW collection a previous pre-collection must be planned. • A methodology to organize pre-collection considering several factors is presented. • The methodology has been verified applying it to a Spanish middle town. - Abstract: The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve natural resources. To design an adequate MSW management plan the first step consists in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the selective collection. To verify the methodology it has

  20. A design study of a reaction control system for a V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Beard, B. B.; Foley, W. H.

    1983-01-01

    Attention is given to a short takeoff vertical landing (STOVL) aircraft reaction control system (RCS) design study. The STOVL fighter/attack aircraft employs an existing turbofan engine, and its hover requirement places a premium on weight reduction, which eliminates prospective nonairbreathing RCSs. A simple engine compressor bleed RCS degrades overall performance to an unacceptable degree, and the supersonic requirement precludes the large volume alternatives of thermal or ejector thrust augmentation systems as well as the ducting of engine exhaust gases and the use of a dedicated turbojet. The only system which addressed performance criteria without requiring major engine modifications was a dedicated load compressor driven by an auxilliary power unit.

  1. LOXT mirror design study

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Antrim, W.; Boyd, D.; Giacconi, R.; Sinnamon, G.; Stille, F.

    1972-01-01

    The final report for the large orbiting X-ray telescope (LOXT) high resolution mirror design study is presented. The following tasks were performed: (1) Generation of a reference and alternate preliminary design for the LOXT high resolution mirror assembly, which will meet the LOXT scientific requirements, and are within the present state of the art of materials and fabrication techniques. (2) Measurement, in X-rays, of the scattering properties of a variety of optical flats, embodying materials, coatings, and polishing techniques which might be applicable to the flight configuration LOXT high resolution mirror. (3) Preparation of a procurement specification for a paraboloid test mirror of the size of the innermost paraboloid of the high resolution mirror assembly, including the design requirements for the reference design evolved from this preliminary design study. The results of the engineering and scientific analysis and the conclusions drawn are presented. The procurement specification for the test mirror is included.

  2. Fort Hood solar cogeneration facility conceptual design study. Volume II. System specification. Final technical report

    SciTech Connect

    Not Available

    1981-08-01

    The characteristics and design and the environmental requirements for a solar cogeneration facility at a Texas military facility are specified. In addition, the conceptual design and performance characteristics, cost and economic data and other information for the cogeneration facility designed to meet the requirements are summarized. (LEW)

  3. Fort Hood solar cogeneration facility conceptual design study. Volume 2: System specification

    NASA Astrophysics Data System (ADS)

    1981-08-01

    The characteristics and design and the environmental requirements for a solar cogeneration facility at a Texas military facility are specified. In addition, the conceptual design and performance characteristics, cost and economic data and other information for the cogeneration facility designed to meet the requirements are summarized.

  4. Design study to simulate the development of a commercial transportation system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Seven teams of senior-level Aerospace Engineering undergraduates were given a Request for Proposals (RFP) for a design concept of a remotely piloted vehicle (RPV). The RPV designs were intended to simulate commercial transport aircraft within the model of 'Aeroworld.' The Aeroworld model was developed so that the RPV designs would be subject to many of the engineering problems and tradeoffs that dominate real-world commercial air transport designs, such as profitability, fuel efficiency, range vs. payload capabilities, and ease of production and maintenance. As part of the proposal, each team was required to construct a prototype and validate its design with a flight demonstration.

  5. System design description cone penetrometer system

    SciTech Connect

    Seda, R.Y., Westinghouse Hanford

    1996-08-12

    The system design description documents in detail the design of the cone penetrometer system. The systems includes the cone penetrometer physical package, raman spectroscopy package and moisture sensor package. Information pertinent to the system design, development, fabrication and testing is provided.

  6. Thermionic Reactor Design Studies

    SciTech Connect

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full

  7. Studies of Laser Interferometer Design and a Vibration Isolation System for Interferometric Gravitational Wave Detectors.

    NASA Astrophysics Data System (ADS)

    Giaime, Joseph Anthony

    1995-01-01

    Two techniques are developed that are needed in the design of an interferometric gravitational wave (GW) detector such as the LIGO, or Long-baseline Interferometric Gravitational-wave Observatory. The detector sensitivity of a long-baseline instrument is studied. A multi-layer mechanical isolation stack to filter seismic noise from test masses is designed, modeled and tested in vacuum. This is a four-stage elastomer (spring) and stainless steel (mass) stack, consisting of a table resting on three separate legs of three layers each. The visco-elastic properties of elastomer springs are exploited to damp the stack's normal modes while providing rapid roll-off of stack transmission above these modal frequencies. The stack's transmission of base motion to top motion is measured in vacuum and compared with 3-D finite-element models. In one tested configuration, at 100 Hz, horizontal transmission is 10^{-7}, vertical transmission is 3 times 10^{-6}, and the cross-coupling terms are between these values. A length detection scheme using RF phase modulated light and synchronous detection is developed for Fabry -Perot arm power-recycled Michelson interferometer GW detectors. This scheme uses an external Mach-Zehnder interferometer to measure the GW signal, and a frequency-shifted subcarrier to measure ancillary interferometer degrees of freedom. Use of the Mach-Zehnder allows rejection of laser source amplitude noise from the output, as well as the ability to exploit well-balanced Fabry-Perot arms to reject frequency noise from the output. A long baseline GW detector using these techniques should meet the LIGO initial goal sensitivity to GW strain of h_{rm RMS} = 10^ {-21} at 100 Hz. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-1307. Ph. 617 -253-5668; Fax 617-253-1690.).

  8. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  9. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 1: Spacecraft configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of structural studies of the Earth Observatory Satellite (EOS) which define the member sizes to meet the vehicle design requirements are presented. The most significant requirements in sizing the members are the stiffness required to meet the launch vehicle design frequencies both in the late al and in the longitudinal directions. The selected configurations, both baseline and preferred, for the Delta and Titan launch vehicles were evaluated for stiffness requirements. The structural idealization used to estimate the stiffness of each structural arrangement, was based on an evaluation of primary loads paths, effectivity of structural members, and estimated sizes for the preferred configurations. The study included an evaluation of the following structural materials: (1) aluminum alloys, (2) titanium alloys, (3) beryllium, (4) beryllium/aluminum alloy, and (5) composite materials.

  10. System design of the Pioneer Venus spacecraft. Volume 4: Probe bus and orbiter spacecraft vehicle studies

    NASA Technical Reports Server (NTRS)

    Bozajian, J. M.

    1973-01-01

    The requirements, trades, and design descriptions for the probe bus and orbiter spacecraft configurations, structure, thermal control, and harness are defined. Designs are developed for Thor/Delta and Atlas/Centaur launch vehicles with the latter selected as the final baseline. The major issues examined in achieving the baseline design are tabulated. The importance of spin axis orientation because of the effect on science experiments and earth communications is stressed.

  11. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  12. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Conger, Bruce; Sompyrac, Robert; Chamberlain, Mateo

    2008-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  13. Design of a hybrid advective-diffusive microfluidic system with ellipsometric detection for studying adsorption.

    PubMed

    Wang, Lei; Zhao, Cunlu; Wijnperlé, Daniel; Duits, Michel H G; Mugele, Frieder

    2016-05-01

    Establishing and maintaining concentration gradients that are stable in space and time is critical for applications that require screening the adsorption behavior of organic or inorganic species onto solid surfaces for wide ranges of fluid compositions. In this work, we present a design of a simple and compact microfluidic device based on steady-state diffusion of the analyte, between two control channels where liquid is pumped through. The device generates a near-linear distribution of concentrations. We demonstrate this via experiments with dye solutions and comparison to finite-element numerical simulations. In a subsequent step, the device is combined with total internal reflection ellipsometry to study the adsorption of (cat)ions on silica surfaces from CsCl solutions at variable pH. Such a combined setup permits a fast determination of an adsorption isotherm. The measured optical thickness is compared to calculations from a triple layer model for the ion distribution, where surface complexation reactions of the silica are taken into account. Our results show a clear enhancement of the ion adsorption with increasing pH, which can be well described with reasonable values for the equilibrium constants of the surface reactions. PMID:27375818

  14. Orbital Maneuvering system design evolution

    NASA Technical Reports Server (NTRS)

    Gibson, C.; Humphries, C.

    1985-01-01

    Preliminary design considerations and changes made in the baseline space shuttle orbital maneuvering system (OMS) to reduce cost and weight are detailed. The definition of initial subsystem requirements, trade studies, and design approaches are considered. Design features of the engine, its injector, combustion chamber, nozzle extension and bipropellant valve are illustrated and discussed. The current OMS consists of two identical pods that use nitrogen tetroxide (NTO) and monomethylhydrazine (MMH) propellants to provide 1000 ft/sec of delta velocity for a payload of 65,000 pounds. Major systems are pressurant gas storage and control, propellant storage supply and quantity measurement, and the rocket engine, which includes a bipropellant valve, an injector/thrust chamber, and a nozzle. The subsystem provides orbit insertion, circularization, and on orbit and deorbit capability for the shuttle orbiter.

  15. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    An overview is provided of the Ipad System, including its goals and objectives, organization, capabilities and future usefulness. The systems implementation is also presented with operational cost summaries.

  16. Designing and Implementing a System for Tracking Functional Status after Stroke: a Feasibility Study

    PubMed Central

    Sandel, M. Elizabeth; Jette, Alan M.; Appelman, Jed; Terdiman, Joseph; TeSelle, Marian; Delmonico, Richard L.; Wang, Hua; Camicia, Michelle; Rasch, Elizabeth K.; Brandt, Diane E.; Chan, Leighton

    2014-01-01

    Objective To determine the feasibility of tracking stroke patients’ functional outcomes in an integrated health system across a care continuum using the computer version of the Activity Measure of Post-Acute Care (AM-PAC). Setting A large integrated healthcare system in northern California. Participants 222 stroke patients (aged 18 or older) hospitalized after an acute cerebrovascular accident. Methods An AM-PAC assessment was made at discharge from sites of care, including acute hospital, inpatient rehabilitation hospital, skilled nursing facility, home during home care, and in outpatient settings. Assessments were also completed in the patient’s home at six months. Data from the AM-PAC program was integrated with the health care system’s databases. Main Outcome Measurements 1) AM-PAC administration time at the various sites of care; 2) assessment of a floor or a ceiling effect, 3) administrative burden of tracking participants Results AM-PAC assessment sessions averaged 7.9 minutes for data acquisition in 3 domains: Basic Mobility, Activities of Daily Living, and Applied Cognition. Participants answered, on average, 27 AM-PAC questions per session. A small ceiling effect was observed at 6 months and there was a larger ceiling effect when the instrument was administered in an institution, i.e., using the AM-PAC institutional item bank, rather than the community item bank. It was feasible to track patients and assess their function using the AM-PAC instrument from institutional to community settings. Implementation of the AM-PAC in clinical environments, and success of the project was influenced by instrumental, technological, operational, resource, and cultural factors. Conclusions This study demonstrates the feasibility of implementing a single functional outcome instrument in clinical and community settings to measure rehabilitation functional outcomes of stroke patients. Integrating the AM-PAC measurement system into clinical workflows and the electronic

  17. Configuration evaluation and criteria plan. Volume 1: System trades study and design methodology plan (preliminary). Space Transportation Main Engine (STME) configuration study

    NASA Technical Reports Server (NTRS)

    Bair, E. K.

    1986-01-01

    The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.

  18. Design requirements for SRB production control system. Volume 1: Study background and overview

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The solid rocket boosters assembly environment is described in terms of the contraints it places upon an automated production control system. The business system generated for the SRB assembly and the computer system which meets the business system requirements are described. The selection software process and modifications required to the recommended software are addressed as well as the hardware and configuration requirements necessary to support the system.

  19. Preliminary systems design study assessment report. Volume 3, Process in-place/leave in-place concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-09-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  20. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  1. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  2. ILC cryogenic systems reference design

    SciTech Connect

    Peterson, T.J.; Geynisman, M.; Klebaner, A.; Theilacker, J.; Parma, V.; Tavian, L.; /CERN

    2008-01-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  3. Ilc Cryogenic Systems Reference Design

    NASA Astrophysics Data System (ADS)

    Peterson, T. J.; Geynisman, M.; Klebaner, A.; Parma, V.; Tavian, L.; Theilacker, J.

    2008-03-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  4. Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect

    Krstulovich, S.F.

    1987-10-31

    This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

  5. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lee, W.; Park, H. K.; Lee, D. J.; Nam, Y. U.; Leem, J.; Kim, T. K.

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm-1. The upper limit corresponds to the normalized wavenumber kθρe of ˜0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  6. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lee, W; Park, H K; Lee, D J; Nam, Y U; Leem, J; Kim, T K

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm(-1). The upper limit corresponds to the normalized wavenumber kθρe of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed. PMID:27131668

  7. The Aerospace Vehicle Interactive Design system

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.

    1981-01-01

    The aerospace vehicle interactive design (AVID) is a computer aided design that was developed for the conceptual and preliminary design of aerospace vehicles. The AVID system evolved from the application of several design approaches in an advanced concepts environment in which both mission requirements and vehicle configurations are continually changing. The basic AVID software facilitates the integration of independent analysis programs into a design system where the programs can be executed individually for analysis or executed in groups for design iterations and parametric studies. Programs integrated into an AVID system for launch vehicle design include geometry, aerodynamics, propulsion, flight performance, mass properties, and economics.

  8. DESIGN, SYNTHESIS AND STUDY OF MULTI-COMPONENT AND INTEGRATED SYSTEMS FOR LIGHT-DRIVEN HYDROGEN GENERATION

    SciTech Connect

    Professor Richard Eisenberg

    2012-07-18

    The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved

  9. SP-100 planetary mission/system preliminary design study. Final report, technical information report

    SciTech Connect

    Jones, R.M.

    1986-02-01

    This report contains a discussion on many aspects of a nuclear electric propulsion planetary science mission and spacecraft using the proposed SP-100 nuclear power subsystem. A review of the science rationale for such missions is included. A summary of eleven nuclear electric propulsion planetary missions is presented. A conceptual science payload, mission design, and spacecraft design is included for the Saturn Ring Rendezvous mission. Spacecraft and mission costs have been estimated for two potential sequences of nuclear electric propulsion planetary missions. The integration issues and requirements on the proposed SP-100 power subsystems are identified.

  10. Regulation study for the facility control system design at the Facility Operations Center at TA55

    SciTech Connect

    1994-03-16

    NMT-8 is proposing to upgrade the existing Facility Control System (FCS) located within the Facility Operations Center (FOC) at the TA-55 Plutonium Processing and Handling Facility (PPHF). The FCS modifications will upgrade the existing electronics to provide better reliability of system functions. Changes include replacement of the FCS computers and field multiplex units which are used for transmitting systems data. Data collected at the FCS include temperature, pressure, contact closures, etc., and are used for monitoring and/or control of key systems at TA-55. Monitoring is provided for the electrical power system status, PF-4 HVAC air balance status (Static Differential pressure), HVAC fan system status, site chill water return temperature, fire system information, and radioactive constant air monitors alarm information, site compressed air pressure and other key systems used at TA-55. Control output signals are provided for PF-4 HVAC systems, and selected alarms for criticality, fire, loss of pressure in confinement systems. A detailed description of the FCS modifications is provided in Section 2.

  11. Optical design study of an infrared visible viewing system for Wendelstein 7-X divertor observation and control

    SciTech Connect

    Cantarini, J.; Hildebrandt, D.; Koenig, R.; Wolf, R.; Klinkhamer, F.; Moddemeijer, K.; Vliegenthart, W.

    2008-10-15

    For the Wendelstein 7-X stellarator, which will allow quasicontinuous operation ({tau}{<=}30 min) with 10 MW of electron cyclotron radiation heating power, a conceptual design study for an IR/visible viewing system (IVVS) has been elaborated. Ten such systems, as part of the machine protection system, will be required for real time monitoring of all ten discrete, water cooled divertor modules with high spatial (<10 mm) resolution, in order to prevent local overheating of the target tiles, which could easily lead to their destruction. On the physics side, the systems will be used for divertor symmetry investigations by studying the power load distribution on all targets modules and by observing the island divertor plasmas in the light of H{alpha}, C II, and C III using the visible imaging section of the systems. The optics of the system can be divided into three parts: a mirror based optical head, creating an intermediate image, a Cassegrain telescope system, and individual lens based imaging optics adapted to the various detectors for IR (3-5 {mu}m and 8-14 {mu}m) and visible observations, with their optical light paths being separated by in-vacuum dichroic beam splitters.

  12. Optical design study of an infrared visible viewing system for Wendelstein 7-X divertor observation and control.

    PubMed

    Cantarini, J; Hildebrandt, D; König, R; Klinkhamer, F; Moddemeijer, K; Vliegenthart, W; Wolf, R

    2008-10-01

    For the Wendelstein 7-X stellarator, which will allow quasicontinuous operation (tau < or = 30 min) with 10 MW of electron cyclotron radiation heating power, a conceptual design study for an IR/visible viewing system (IVVS) has been elaborated. Ten such systems, as part of the machine protection system, will be required for real time monitoring of all ten discrete, water cooled divertor modules with high spatial (< 10 mm) resolution, in order to prevent local overheating of the target tiles, which could easily lead to their destruction. On the physics side, the systems will be used for divertor symmetry investigations by studying the power load distribution on all targets modules and by observing the island divertor plasmas in the light of H alpha, C II, and C III using the visible imaging section of the systems. The optics of the system can be divided into three parts: a mirror based optical head, creating an intermediate image, a Cassegrain telescope system, and individual lens based imaging optics adapted to the various detectors for IR (3-5 microm and 8-14 microm) and visible observations, with their optical light paths being separated by in-vacuum dichroic beam splitters. PMID:19044658

  13. Wide area detection system: Conceptual design study. [using television and microelectronic technology

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Carl, C.; Goss, W.; Hansen, G. R.; Olsasky, M. J.; Johnston, A. R.

    1978-01-01

    An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis.

  14. Conceptual design of a coal-fired MHD retrofit plant. Topical report, Seed Regeneration System Study 2

    SciTech Connect

    Not Available

    1992-11-01

    Westinghouse Advanced Energy Systems (WAES), through Contract No. DE-AC22-87PC79668 funded by US DOE/PETC, is conducting a conceptual design study to evaluate a coal-fired magnetohydrodynamic (MHD) retrofit of a utility plant of sufficient size to demonstrate the technical and future economic viability of an MHD system operating within an electric utility environment. The objective of this topical report is to document continuing seed regeneration system application studies and the definition of will system integration requirements for the Scholz MHD retrofit plant design. MHD power plants require the addition of a seeding material in the form of potassium to enhance the ionization of the high temperature combustion gas in the MHD channel. This process has an added environmental advantage compared to other types of coal-fired power plants in that the potassium combines with the naturally occurring sulfur in the coal to form a potassium sulfate flyash (K{sub 2}SO{sub 4}) which can be removed from the process by appropriate particulate control equipment. Up to 100% of the Sulfur in the coal can be removed by this process thereby providing environmentally clean power plant operation that is better than required by present and anticipated future New Source Performance Standards (NSPS).

  15. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  16. FNAL system patching design

    SciTech Connect

    Schmidt, Jack; Lilianstrom, Al; Romero, Andy; Dawson, Troy; Sieh, Connie; /Fermilab

    2004-01-01

    FNAL has over 5000 PCs running either Linux or Windows software. Protecting these systems efficiently against the latest vulnerabilities that arise has prompted FNAL to take a more central approach to patching systems. Due to different levels of existing support infrastructures, the patching solution for linux systems differs from that of windows systems. In either case, systems are checked for vulnerabilities by Computer Security using the Nessus tool.

  17. Study Design for Sequencing Studies.

    PubMed

    Honaas, Loren A; Altman, Naomi S; Krzywinski, Martin

    2016-01-01

    Once a biochemical method has been devised to sample RNA or DNA of interest, sequencing can be used to identify the sampled molecules with high fidelity and low bias. High-throughput sequencing has therefore become the primary data acquisition method for many genomics studies and is being used more and more to address molecular biology questions. By applying principles of statistical experimental design, sequencing experiments can be made more sensitive to the effects under study as well as more biologically sound, hence more replicable. PMID:27008009

  18. Results of design studies and wind tunnel tests of an advanced high lift system for an Energy Efficient Transport

    NASA Technical Reports Server (NTRS)

    Oliver, W. R.

    1980-01-01

    The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.

  19. The design and research of poverty alleviation monitoring and evaluation system: a case study in the Jiangxi province

    NASA Astrophysics Data System (ADS)

    Mo, Hong-yuan; Wang, Ying-jie; Yu, Zhuo-yuan

    2009-07-01

    The Poverty Alleviation Monitoring and Evaluation System (PAMES) is introduced in this paper. The authors present environment platform selection, and details of system design and realization. Different with traditional research of poverty alleviation, this paper develops a new analytical geo-visualization approach to study the distribution and causes of poverty phenomena within Geographic Information System (GIS). Based on the most detailed poverty population data, the spatial location and population statistical indicators of poverty village in Jiangxi province, the distribution characteristics of poverty population are detailed. The research results can provide much poverty alleviation decision support from a spatial-temporal view. It should be better if the administrative unit of poverty-stricken area to be changed from county to village according to spatial distribution pattern of poverty.

  20. DDL system: Design systhesis of digital systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1983-01-01

    Digital Systems Design Language was integrated into the CADAT system environment of NASA-MSFC. The major technical aspects of this integration are summarized. Automatic hardware synthesis is now possible starting with a high level description of the system to be synthesized. The DDL system provides a high level design verification capability, thereby minimizing design changes in the later stages of the design cycle. An overview of the DDL system covering the translation, simulation and synthesis capabilities is provided. Two companion documents (the user's and programmer's manuals) are to be consulted for detailed discussions.

  1. Design study of a kinematic Stirling engine for dispered solar electric power systems

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The concept evaluation shows that the four cylinder double acting U type Stirling engine with annular regenerators is the most suitable engine type for the 15 kW solar application with respect to design, performance and cost. Results show that near term performance for a metallic Stirling engine is 42% efficiency. Further improved components show an impact on efficiency of the future metallic engine to 45%. Increase of heater temperature, through the introduction of ceramic components, contribute the greatest amount to achieve high efficiency goals. Future ceramic Stirling engines for solar applications show an efficiency of around 50%.

  2. Terrestrial Planet Finder Coronagraph 2005: Overview of Technology Development and System Design Studies

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.

    2005-01-01

    Technology research, design trades, and modeling and analysis guide the definition of a Terrestrial Planet Finder Coronagraph Mission that will search for and characterize earth-like planets around near-by stars. Operating in visible wavebands, this mission will use coronagraphy techniques to suppress starlight to enable capturing and imaging the reflected light from a planet orbiting in the habitable zone of its parent star. The light will be spectrally characterized to determine the presence of life-indicating chemistry in the planet atmosphere.

  3. Insertion device vacuum system designs

    SciTech Connect

    Hoyer, E.

    1988-05-01

    Synchrotron light source insertion device vacuum systems now in operation and systems proposed for the future are reviewed. An overview of insertion devices is given and four generic vacuum chamber designs, transition section design and pumping considerations are discussed. Examples of vacuum chamber systems are presented.

  4. Integrated Utility Systems Feasibility Study and Conceptual Design at the University of Florida. Executive Summary.

    ERIC Educational Resources Information Center

    Kirmse, Dale W.; Manyimo, Steve B.

    This executive summary presents a brief analysis of findings and recommendations. The concept of the Integrated Utility System (IUS) is to consider the interaction and mutual support of five utility subsystems needed by a campus complex of buildings. The subsystems are: (1) Electric power service; (2) Heating - ventilating - air conditioning and…

  5. A modular Space Station/Base electrical power system - Requirements and design study.

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  6. Six kilowatt, residential photovoltaic power systems study; design, performance, economics, market potential

    NASA Astrophysics Data System (ADS)

    Partain, L. D.

    1980-08-01

    A cost and performance analysis is presented for a solar cell electric system that can provide 70% of the electric power to a home in a California-like climate. Both a battery storage and no-storage configuration with a six kilowatt, peak power, solar array were considered, including batteries, for a 15 kWh per day average energy use that equals that of an average household in Northern California. For the promising, no-storage home system the uncertainties in important parameter values are too large to allow definitive assessment until better characterizations have been made. The political and policy decisions that can have a strong influence were assessed and quantified. The effects of tax credits, utility buyback, and proper home construction were considered. Potential markets in the hundreds of millions of dollars per year range that involve on the order of one million peak kilowatts of solar cells per year were estimated.

  7. Project Cyclops: a Design Study of a System for Detecting Extraterrestrial Intelligent Life

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The requirements in hardware, manpower, time and funding to conduct a realistic effort aimed at detecting the existence of extraterrestrial intelligent life are examined. The methods used are limited to present or near term future state-of-the-art techniques. Subjects discussed include: (1) possible methods of contact, (2) communication by electromagnetic waves, (3) antenna array and system facilities, (4) antenna elements, (5) signal processing, (6) search strategy, and (7) radio and radar astronomy.

  8. A design study for an advanced ocean color scanner system. [spaceborne equipment

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Fraser, R. S.; Thompson, L. L.; Bahethi, O.

    1980-01-01

    Along with a colorimetric data analysis scheme, the instrumental parameters which need to be optimized in future spaceborne ocean color scanner systems are outlined. With regard to assessing atmospheric effects from ocean colorimetry, attention is given to computing size parameters of the aerosols in the atmosphere, total optical depth measurement, and the aerosol optical thickness. It is suggested that sensors based on the use of linear array technology will meet hardware objectives.

  9. Optical Telescope Design Study Results

    NASA Astrophysics Data System (ADS)

    Livas, J.; Sankar, S.

    2015-05-01

    We report on the results of a study conducted from Nov 2012-Apr 2013 to develop a telescope design for a space-based gravitational wave detector. The telescope is needed for efficient power delivery but since it is directly in the beam path, the design is driven by the requirements for the overall displacement sensitivity of the gravitational wave observatory. Two requirements in particular, optical pathlength stability and scattered light performance, are beyond the usual specifications for good image quality encountered in traditional telescopic systems. An important element of the study was to tap industrial expertise to develop an optimized design that can be reliably manufactured. Key engineering and design trade-offs and the sometimes surprising results will be presented.

  10. Design Of Bioremediation Systems For Groundwater (Aerobic and Anaerobic Plus Representative Case Studies)

    EPA Science Inventory

    The attached presentation discusses the fundamentals of bioremediation in the subsurface. The basics of aerobic, cometabolic, and anaerobic bioremediation are presented. Case studies from the Delaware Sand & Gravel Superfund Site, Dover Cometabolic Research Project and the SABR...

  11. Aerothermodynamic systems engineering and design

    NASA Astrophysics Data System (ADS)

    A reference source for various aspects of aerothermodynamic systems engineering and design is presented. Air conditioning load analysis is addressed, including physiological requirements, heat and cooling load equations, skin temperature computational methods, cooling loads due to radiation through transparent areas, heating and cooling loads due to internal sources, and practical considerations in the determination of overall heating and cooling loads. Refrigeration system design is considered, including air cycle systems, vapor cycle systems, combined vapor cycle and air cycle systems, and thermoelectric cooling. Heating methods is heating system design and low pressure and high pressure systems in air distribution system design are addressed. Procedures and equations commonly used for aerospace applications of these technologies are included.

  12. The Casualty Assistance Readiness Enhancement System: A Case Study in Rapid Prototyping and Design for Flexibility

    NASA Astrophysics Data System (ADS)

    Goerger, Simon R.; Wong, Ernest Y.; Henderson, Dale L.; Sperling, Brian K.; Bland, William

    Numerous government benefits are available to the surviving family of fallen U.S. military service members. Unfortunately, most of these entitlements require a considerable amount of paperwork to process correctly, necessitating a great deal of patience, attention to detail, and composure from families at a time when their grief is raw. Even though the U.S. Army appoints a Casualty Assistance Officer (CAO) to help surviving family members through this process, the soldiers serving as CAOs tend to be inexperienced and oftentimes find themselves challenged to provide accurate and thorough assistance. Consequently, some families do not receive all benefits in a timely manner, and some entitlements may be overlooked entirely. To help with the military's Casualty Program, we have developed the Casualty Assistance Readiness Enhancement System (CARES), an information system that improves how the Department of the Army cares for military families in arguably their greatest time of need. The tool and associated process reduced the time required to complete forms, reduced the potential for errors on repetitive information, assisted CAOs through the process, and provided electronic copies of completed forms.

  13. Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels

    NASA Astrophysics Data System (ADS)

    Li, Yang; Weng, Yiwu

    This paper presents an analysis of the fuel flexibility of a methane-based solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The simulation models of the system are mathematically defined. Special attention is paid to the development of an SOFC thermodynamic model that allows for the calculation of radial temperature gradients. Based on the simulation model, the new design point of system for new fuels is defined first; the steady-state performance of the system fed by different fuels is then discussed. When the hybrid system operates with hydrogen, the net power output at the new design point will decrease to 70% of the methane, while the design net efficiency will decrease to 55%. Similar to hydrogen, the net output power of the ethanol-fueled system will decrease to 88% of the methane value due to the lower cooling effect of steam reforming. However, the net efficiency can remain at 61% at high level due to increased heat recuperation from exhaust gas. To increase the power output of the hybrid system operating with non-design fuels without changing the system configuration, three different measures are introduced and investigated in this paper. The introduced measures can increase the system net power output operating with hydrogen to 94% of the original value at the cost of a lower efficiency of 45%.

  14. Nanowire systems: technology and design.

    PubMed

    Gaillardon, Pierre-Emmanuel; Amarù, Luca Gaetano; Bobba, Shashikanth; De Marchi, Michele; Sacchetto, Davide; De Micheli, Giovanni

    2014-03-28

    Nanosystems are large-scale integrated systems exploiting nanoelectronic devices. In this study, we consider double independent gate, vertically stacked nanowire field effect transistors (FETs) with gate-all-around structures and typical diameter of 20 nm. These devices, which we have successfully fabricated and evaluated, control the ambipolar behaviour of the nanostructure by selectively enabling one type of carriers. These transistors work as switches with electrically programmable polarity and thus realize an exclusive or operation. The intrinsic higher expressive power of these FETs, when compared with standard complementary metal oxide semiconductor technology, enables us to realize more efficient logic gates, which we organize as tiles to realize nanowire systems by regular arrays. This article surveys both the technology for double independent gate FETs as well as physical and logic design tools to realize digital systems with this fabrication technology. PMID:24567471

  15. Software-Design-Analyzer System

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1991-01-01

    CRISP-90 software-design-analyzer system, update of CRISP-80, is set of computer programs constituting software tool for design and documentation of other software and supporting top-down, hierarchical, modular, structured methodologies for design and programming. Written in Microsoft QuickBasic.

  16. Mars oxygen production system design

    NASA Technical Reports Server (NTRS)

    Cotton, Charles E.; Pillow, Linda K.; Perkinson, Robert C.; Brownlie, R. P.; Chwalowski, P.; Carmona, M. F.; Coopersmith, J. P.; Goff, J. C.; Harvey, L. L.; Kovacs, L. A.

    1989-01-01

    The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing.

  17. Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.

    PubMed

    Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru

    2016-09-01

    The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively. PMID:27423022

  18. Boulder Capture System Design Options for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    NASA Technical Reports Server (NTRS)

    Belbin, Scott P.; Merrill, Raymond G.

    2014-01-01

    This paper presents a boulder acquisition and asteroid surface interaction electromechanical concept developed for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger Near Earth Asteroid (NEA). It details the down select process and ranking of potential boulder capture methods, the evolution of a simple yet elegant articulating spaceframe, and ongoing risk reduction and concept refinement efforts. The capture system configuration leverages the spaceframe, heritage manipulators, and a new microspine technology to enable the ARRM boulder capture. While at the NEA it enables attenuation of terminal descent velocity, ascent to escape velocity, boulder collection and restraint. After departure from the NEA it enables, robotic inspection, sample caching, and crew Extra Vehicular Activities (EVA).

  19. History Places: A Case Study for Relational Database and Information Retrieval System Design

    ERIC Educational Resources Information Center

    Hendry, David G.

    2007-01-01

    This article presents a project-based case study that was developed for students with diverse backgrounds and varied inclinations for engaging technical topics. The project, called History Places, requires that student teams develop a vision for a kind of digital library, propose a conceptual model, and use the model to derive a logical model and…

  20. Slurry reactor design studies

    SciTech Connect

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  1. Design study for multi-channel tape recorder system, volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The means of storing multispectral, high resolution sensor data on an Earth observing satellite are studied. It is concluded that this is best done digitally on a multi-track, longitudinal, magnetic tape recorder. The machine proposed will store 8 X 10 to the 10th power bits of data on 1040 m of 51 mm-wide magnetic tape mounted on two co-planar reels.

  2. Towards mHealth Systems for Support of Psychotherapeutic Practice: A Qualitative Study of Researcher-Clinician Collaboration in System Design and Evaluation

    PubMed Central

    Halje, Karin; Timpka, Toomas; Ekberg, Joakim; Bång, Magnus; Fröberg, Anders; Eriksson, Henrik

    2016-01-01

    We examined clinicians' and researchers' experiences from participation in collaborative research on the introduction of Internet and mobile information systems (mHealth systems) in psychotherapeutic routines. The study used grounded theory methodology and was set in a collaboration that aimed to develop and evaluate mHealth support of psychotherapy provided to young people. Soundness of the central objects developed in the design phase (the collaboration contract, the trial protocol, and the system technology) was a necessary foundation for successful collaborative mHealth research; neglect of unanticipated organizational influences during the trial phase was a factor in collaboration failure. The experiences gained in this study can be used in settings where collaborative research on mHealth systems in mental health is planned. PMID:27034661

  3. Towards mHealth Systems for Support of Psychotherapeutic Practice: A Qualitative Study of Researcher-Clinician Collaboration in System Design and Evaluation.

    PubMed

    Halje, Karin; Timpka, Toomas; Ekberg, Joakim; Bång, Magnus; Fröberg, Anders; Eriksson, Henrik

    2016-01-01

    We examined clinicians' and researchers' experiences from participation in collaborative research on the introduction of Internet and mobile information systems (mHealth systems) in psychotherapeutic routines. The study used grounded theory methodology and was set in a collaboration that aimed to develop and evaluate mHealth support of psychotherapy provided to young people. Soundness of the central objects developed in the design phase (the collaboration contract, the trial protocol, and the system technology) was a necessary foundation for successful collaborative mHealth research; neglect of unanticipated organizational influences during the trial phase was a factor in collaboration failure. The experiences gained in this study can be used in settings where collaborative research on mHealth systems in mental health is planned. PMID:27034661

  4. Feasibility Study on a Portable Field Pest Classification System Design Based on DSP and 3G Wireless Communication Technology

    PubMed Central

    Han, Ruizhen; He, Yong; Liu, Fei

    2012-01-01

    This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests’ pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture. PMID:22736996

  5. Feasibility study on a portable field pest classification system design based on DSP and 3G wireless communication technology.

    PubMed

    Han, Ruizhen; He, Yong; Liu, Fei

    2012-01-01

    This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests' pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture. PMID:22736996

  6. Design study of RL10 derivatives. Volume 2: Engine design characteristics, appendices. [development of rocket engine for application to space tug propulsion system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Calculations, curves, and substantiating data which support the engine design characteristics of the RL-10 engines are presented. A description of the RL-10 ignition system is provided. The performance calculations of the RL-10 derivative engines and the performance results obtained are reported. The computer simulations used to establish the control system requirements and to define the engine transient characteristics are included.

  7. Designing Systems for Environmental Sustainability

    EPA Science Inventory

    Dr. Smith will describe his U.S. EPA research which involves elements of design, from systems as diverse as biofuel supply chains to recycling systems and chemical processes. Design uses models that rate performance as part of a synthesis approach, where steps of analysis and sy...

  8. Liquid belt radiator design study

    NASA Technical Reports Server (NTRS)

    Teagan, W. P.; Fitzgerald, K. F.

    1986-01-01

    The Liquid Belt Radiator (LBR) is an advanced concept developed to meet the needs of anticipated future space missions. A previous study documented the advantages of this concept as a lightweight, easily deployable alternative to present day space heat rejection systems. The technical efforts associated with this study concentrate on refining the concept of the LBR as well as examining the issues of belt dynamics and potential application of the LBR to intermediate and high temperature heat rejection applications. A low temperature point design developed in previous work is updated assuming the use of diffusion pump oil, Santovac-6, as the heat transfer media. Additional analytical and design effort is directed toward determining the impact of interface heat exchanger, fluid bath sealing, and belt drive mechanism designs on system performance and mass. The updated design supports the earlier result by indicating a significant reduction in system specific system mass as compared to heat pipe or pumped fluid radiator concepts currently under consideration (1.3 kg/sq m versus 5 kg/sq m).

  9. REC Tracking Systems Design Guide

    SciTech Connect

    Meredith Wingate

    2004-02-03

    OAK-B135 The Design Guide is presented in three parts. Section II describes the need for REC tracking, the two principal tracking methods available, and, in simple terms, the operation of certificate-based systems. Section III presents the major issues in the design of certificate-based tracking systems and discusses the advantages and disadvantages of alternative solutions. Finally, Section IV offers design principles or recommendations for most of these issues.

  10. System design of the Pioneer Venus spacecraft. Volume 10: Propulsion/orbit insertion subsystem studies

    NASA Technical Reports Server (NTRS)

    Rosenstein, B. J.

    1973-01-01

    The Pioneer Venus orbiter and multiprobe missions require spacecraft maneuvers for successful accomplishment. This report presents the results of studies performed to define the propulsion subsystems required to perform those maneuvers. Primary goals were to define low mass subsystems capable of performing the required missions with a high degree of reliability for low cost. A review was performed of all applicable propellants and thruster types, as well as propellant management techniques. Based on this review, a liquid monopropellant hydrazine propulsion subsystem was selected for all multiprobe mission maneuvers, and for all orbiter mission maneuvers except orbit insertion. A pressure blowdown operating mode was selected using helium as the pressurizing gas. The forces associated with spacecraft rotations were used to control the liquid-gas interface and resulting propellant orientation within the tank.

  11. Conceptual spacecraft systems design and synthesis

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.

    1984-01-01

    An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.

  12. Preliminary systems design study assessment report. [Evaluation of using specific technologies and system concepts for testing the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L. ); Feizollahi, F. ); Del Signore, J.C. )

    1991-09-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  13. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-11-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  14. Tracking and data relay satellite system configuration and tradeoff study. Volume 4: Spacecraft and subsystem design, part 1

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1972-01-01

    The design and development of the Tracking and Data Relay satellite are discussed. The subjects covered are: (1) spacecraft mechanical and structural design, (2) attitude stabilization and control subsystem, (3) propulsion system, (4) electrical power subsystem, (5) thermal control, and (6) reliability engineering.

  15. Support systems design and analysis

    NASA Technical Reports Server (NTRS)

    Ferguson, R. M.

    1985-01-01

    The integration of Kennedy Space Center (KSC) ground support systems with the new launch processing system and new launch vehicle provided KSC with a unique challenge in system design and analysis for the Space Transportation System. Approximately 70 support systems are controlled and monitored by the launch processing system. Typical systems are main propulsion oxygen and hydrogen loading systems, environmental control life support system, hydraulics, etc. An End-to-End concept of documentation and analysis was chosen and applied to these systems. Unique problems were resolved in the areas of software analysis, safing under emergency conditions, sampling rates, and control loop analysis. New methods of performing End-to-End reliability analyses were implemented. The systems design approach selected and the resolution of major problem areas are discussed.

  16. DESIGN INFORMATION ON FINE PORE AERATION SYSTEMS

    EPA Science Inventory

    Field studies were conducted over several years at municipal wastewater treatment plants employing line pore diffused aeration systems. These studies were designed to produce reliable information on the performance and operational requirements of fine pore devices under process ...

  17. Mars Aerocapture Systems Study

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Oh, David Y.; Westhelle, Carlos H.; Fisher, Jody L.; Dyke, R. Eric; Edquist, Karl T.; Brown, James L.; Justh, Hilary L.; Munk, Michelle M.

    2006-01-01

    Mars Aerocapture Systems Study (MASS) is a detailed study of the application of aerocapture to a large Mars robotic orbiter to assess and identify key technology gaps. This study addressed use of an Opposition class return segment for use in the Mars Sample Return architecture. Study addressed mission architecture issues as well as system design. Key trade studies focused on design of aerocapture aeroshell, spacecraft design and packaging, guidance, navigation and control with simulation, computational fluid dynamics, and thermal protection system sizing. Detailed master equipment lists are included as well as a cursory cost assessment.

  18. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    PubMed Central

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; Zito, Fabio; De Rossi, Danilo; Lanatà, Antonio

    2008-01-01

    A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported. PMID:18389068

  19. Advanced turboprop testbed systems study. Volume 1: Testbed program objectives and priorities, drive system and aircraft design studies, evaluation and recommendations and wind tunnel test plans

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.

    1982-01-01

    The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.

  20. Conceptual design optimization study

    NASA Technical Reports Server (NTRS)

    Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.

    1990-01-01

    The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.

  1. NASA [National Aeronautics and Space Administration] low power DIPS [Dynamic Isotope Power System] conceptual design study; Final report

    SciTech Connect

    Otting, W.

    1990-12-01

    This report describes the conceptual design and integration of a low power (0.5 to 1.0 kWe) Dynamic Isotope Power System (DIPS) Low Power (LPD) with the Mariner Mark II (MMII) spacecraft for use on interplanetary and space exploration missions as an alternative to RTGs. A detailed MMII/LPD system description is provided that discusses, among other things, the design requirements, design point selection, system layout and spacecraft integration, mechanical design, electrical system design, interface assessments, reliability, and safety. Performance characteristics are given for the reference 500 We LPD using a peak cycle temperature of 1100 K. Parametrics are provided giving the LPD performance characteristics at power levels up to 1.0 kWe and peak cycle temperatures as high as 1300 K. A side-by-side comparison of the LPD performance with the RTG performance is provided. Finally, program plans, costs, and schedules are provided giving the overall plan for design, development, fabrication, qualification, and acceptance of the LPD system.

  2. NASA System Engineering Design Process

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  3. Thermal design study of an air-cooled plug-nozzle system for a supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Lieberman, A.

    1972-01-01

    A heat-transfer design analysis has been made of an air-cooled plug-nozzle system for a supersonic-cruise aircraft engine. The proposed 10deg half-angle conical plug is sting supported from the turbine frame. Plug cooling is accomplished by convection and film cooling. The flight profile studied includes maximum afterburning from takeoff to Mach 2.7 and supersonic cruise at Mach 2.7 with a low afterburner setting. The calculations indicate that, for maximum afterburning, about 2 percent of the engine primary flow, removed after the second stage of the nine-stage compressor, will adequately cool the plug and sting support. Ram air may be used for cooling during supersonic-cruise operations, however. Therefore, the cycle efficiency penalty paid for air cooling the plug and sting support should be low.

  4. Design study for a gound microwave power transmission system for use with a high-altitude powered platform

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1983-01-01

    The conceptual design of a ground-based microwave power transmission system is described. This system is intended to supply electrical power via an air link to a high-altitude (21 km) powered platform. The platform must be equipped with the required instrumentation (RECTENNA) to convert the RF energy to dc power.

  5. Nitrosative Stress in the Nervous System: Guidelines for Designing Experimental Strategies to Study Protein S-Nitrosylation.

    PubMed

    Nakamura, Tomohiro; Lipton, Stuart A

    2016-03-01

    Reactive nitrogen species, such as nitric oxide (NO), exert their biological activity in large part through post-translational modification of cysteine residues, forming S-nitrosothiols. This chemical reaction proceeds via a process that we and our colleagues have termed protein S-nitrosylation. Under conditions of normal NO production, S-nitrosylation regulates the activity of many normal proteins. However, in degenerative conditions characterized by nitrosative stress, increased levels of NO lead to aberrant S-nitrosylation that contributes to the pathology of the disease. Thus, S-nitrosylation has been implicated in a wide range of cellular mechanisms, including mitochondrial function, proteostasis, transcriptional regulation, synaptic activity, and cell survival. In recent years, the research area of protein S-nitrosylation has become prominent due to improvements in the detection systems as well as the demonstration that protein S-nitrosylation plays a critical role in the pathogenesis of neurodegenerative and other neurological disorders. To further promote our understanding of how protein S-nitrosylation affects cellular systems, guidelines for the design and conduct of research on S-nitrosylated (or SNO-)proteins would be highly desirable, especially for those newly entering the field. In this review article, we provide a strategic overview of designing experimental approaches to study protein S-nitrosylation. We specifically focus on methods that can provide critical data to demonstrate that an S-nitrosylated protein plays a (patho-)physiologically-relevant role in a biological process. Hence, the implementation of the approaches described herein will contribute to further advancement of the study of S-nitrosylated proteins, not only in neuroscience but also in other research fields. PMID:26118537

  6. System Design of the SWRL Financial System.

    ERIC Educational Resources Information Center

    Ikeda, Masumi

    To produce various management and accounting reports in order to maintain control of SWRL (Southwest Regional Laboratory) operational and financial activities, a computer-based SWRL financial system was developed. The system design is outlined, and various types of system inputs described. The kinds of management and accounting reports generated…

  7. General Systems Theory and Instructional Systems Design.

    ERIC Educational Resources Information Center

    Salisbury, David F.

    1990-01-01

    Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)

  8. The design of laser scanning galvanometer system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoling; Zhou, Bin; Xie, Weihao; Zhang, Yuangeng

    2015-02-01

    In this paper, we designed the laser scanning galvanometer system according to our requirements. Based on scanning range of our laser scanning galvanometer system, the design parameters of this system were optimized. During this work, we focused on the design of the f-θ field lens. An optical system of patent lens in the optical manual book, which had three glasses structure, was used in our designs. Combining the aberration theory, the aberration corrections and image quality evaluations were finished using Code V optical design software. An optimum f-θ field lens was designed, which had focal length of 434 mm, pupil diameter of 30 mm, scanning range of 160 mm × 160 mm, and half field angle of 18°×18°. At the last, we studied the influences of temperature changes on our system.

  9. SP-100 Control System Design

    NASA Astrophysics Data System (ADS)

    Shukla, Jaikaran N.; Halfen, Frank J.; Brynsvold, Glen V.; Syed, Akbar; Jiang, Thomas J.; Wong, Kwok K.; Otwell, Robert L.

    1994-07-01

    Recent work in lower power generic early applications for the SP-100 have resulted in control system design simplification for a 20 kWe design with thermoelectric power conversion. This paper presents the non-mission-dependent control system features for this design. The control system includes a digital computer based controller, dual purpose control rods and drives, temperature sensors, and neutron flux monitors. The thaw system is mission dependent and can be either electrical or based on NaK trace lines. Key features of the control system and components are discussed. As was the case for higher power applications, the initial on-orbit approach to criticality involves the relatively fast withdrawal of the control-rods to a near-critical position followed by slower movement through critical and into the power range. The control system performs operating maneuvers as well as providing for automatic startup, shutdown, restart, and reactor protection.

  10. Design of a digital beam attenuation system for computed tomography. Part II. Performance study and initial results

    SciTech Connect

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-02-15

    Purpose: The purpose of this work is to present a performance study of the digital beam attenuator (DBA) for implementing fluence field modulated CT (FFMCT) using a simulation framework developed to model the incorporation of the DBA into an existing CT system. Additionally, initial results will be presented using a prototype DBA and the realization of the prototype will be described. To our knowledge, this study represents the first experimental use of a device capable of modulating x-ray fluence as a function of fan angle using a CT geometry. Methods: To realize FFMCT, the authors propose to use a wedge design in which one wedge is held stationary and another wedge is moved over the stationary wedge. Due to the wedge shape, the composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. This design allows for the wedges to modulate the photon fluence incident onto a patient. Using a simulation environment, the effect of changing the number of wedges has on dose, scatter, detector dynamic range, and noise uniformity is explored. Experimental results are presented using a prototype DBA having ten Fe wedges and a c-arm CT system geometry. The experimental DBA results are compared to non-DBA scans using scatter and detector dynamic range as metrics. Both flat field and bowtie filtered CT acquisitions were simulated for comparison with the DBA. Results: Numerical results suggest that substantial gains in noise uniformity and scatter-to-primary ratio (SPR) can be obtained using only seven wedges. After seven wedges, the decrease in noise ununiformity and SPR falls off at a lower rate. Simulations comparing CT acquisitions between flat field, bowtie enabled, and DBA CT acquisitions suggest DBA-FFMCT can reduce dose relative to flat field CT by Almost-Equal-To 3 times. A bowtie filter under the same imaging conditions was shown to only allow a dose reduction of 1.65 times. Experimentally, a 10 wedge DBA prototype result showed

  11. Design of a digital beam attenuation system for computed tomography. Part II. Performance study and initial results

    PubMed Central

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-01-01

    Purpose: The purpose of this work is to present a performance study of the digital beam attenuator (DBA) for implementing fluence field modulated CT (FFMCT) using a simulation framework developed to model the incorporation of the DBA into an existing CT system. Additionally, initial results will be presented using a prototype DBA and the realization of the prototype will be described. To our knowledge, this study represents the first experimental use of a device capable of modulating x-ray fluence as a function of fan angle using a CT geometry. Methods: To realize FFMCT, the authors propose to use a wedge design in which one wedge is held stationary and another wedge is moved over the stationary wedge. Due to the wedge shape, the composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. This design allows for the wedges to modulate the photon fluence incident onto a patient. Using a simulation environment, the effect of changing the number of wedges has on dose, scatter, detector dynamic range, and noise uniformity is explored. Experimental results are presented using a prototype DBA having ten Fe wedges and a c-arm CT system geometry. The experimental DBA results are compared to non-DBA scans using scatter and detector dynamic range as metrics. Both flat field and bowtie filtered CT acquisitions were simulated for comparison with the DBA. Results: Numerical results suggest that substantial gains in noise uniformity and scatter-to-primary ratio (SPR) can be obtained using only seven wedges. After seven wedges, the decrease in noise ununiformity and SPR falls off at a lower rate. Simulations comparing CT acquisitions between flat field, bowtie enabled, and DBA CT acquisitions suggest DBA-FFMCT can reduce dose relative to flat field CT by ≈3 times. A bowtie filter under the same imaging conditions was shown to only allow a dose reduction of 1.65 times. Experimentally, a 10 wedge DBA prototype result showed a SPR

  12. Systems Design Orientation. Final Report.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Institutions, Social and Rehabilitation Services, Oklahoma City.

    A 40-hour course in systems design is described. The course was developed for presentation to non-data processing management personnel whose responsibilities include utilization of data processing services. All course material is included. (Author/JY)

  13. Design of Knight LED system

    NASA Astrophysics Data System (ADS)

    Zheng, Wen; Lou, Yuna; Xiao, Zhihong

    2010-02-01

    This design introduces a used car on the design of LED decorative light strip. This LED named Knight LED. In This system we use ATMEGA8 as the Master MCU Chip. Through the microcontroller to implement the wireless remote control receiver and the LED lights of different modes of switching, different brightness control. Also we use ULN2803 as the LED driver.

  14. Digital systems design language. Design synthesis of digital systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    The Digital Systems Design Language (DDL) is implemented on the SEL-32 computer systems. The details of the language, translator and simulator programs are included. Several example descriptions and a tutorial on hardware description languages are provided, to guide the user.

  15. BrachyView, A novel inbody imaging system for HDR prostate brachytherapy: Design and Monte Carlo feasibility study

    SciTech Connect

    Safavi-Naeini, M.; Han, Z.; Cutajar, D.; Guatelli, S.; Petasecca, M.; Lerch, M. L. F.; Franklin, D. R.; Jakubek, J.; Pospisil, S.; Bucci, J.; Zaider, M.; Rosenfeld, A. B.

    2013-07-15

    Purpose: High dose rate (HDR) brachytherapy is a form of radiation therapy for treating prostate cancer whereby a high activity radiation source is moved between predefined positions inside applicators inserted within the treatment volume. Accurate positioning of the source is essential in delivering the desired dose to the target area while avoiding radiation injury to the surrounding tissue. In this paper, HDR BrachyView, a novel inbody dosimetric imaging system for real time monitoring and verification of the radioactive seed position in HDR prostate brachytherapy treatment is introduced. The current prototype consists of a 15 Multiplication-Sign 60 mm{sup 2} silicon pixel detector with a multipinhole tungsten collimator placed 6.5 mm above the detector. Seven identical pinholes allow full imaging coverage of the entire treatment volume. The combined pinhole and pixel sensor arrangement is geometrically designed to be able to resolve the three-dimensional location of the source. The probe may be rotated to keep the whole prostate within the transverse plane. The purpose of this paper is to demonstrate the efficacy of the design through computer simulation, and to estimate the accuracy in resolving the source position (in detector plane and in 3D space) as part of the feasibility study for the BrachyView project.Methods: Monte Carlo simulations were performed using the GEANT4 radiation transport model, with a {sup 192}Ir source placed in different locations within a prostate phantom. A geometrically accurate model of the detector and collimator were constructed. Simulations were conducted with a single pinhole to evaluate the pinhole design and the signal to background ratio obtained. Second, a pair of adjacent pinholes were simulated to evaluate the error in calculated source location.Results: Simulation results show that accurate determination of the true source position is easily obtainable within the typical one second source dwell time. The maximum error in

  16. System design projects for undergraduate design education

    NASA Technical Reports Server (NTRS)

    Batill, S. M.; Pinkelman, J.

    1993-01-01

    Design education has received considerable in the recent past. This paper is intended to address one aspect of undergraduate design education and that is the selection and development of the design project for a capstone design course. Specific goals for a capstone design course are presented and their influence on the project selection are discussed. The evolution of a series of projects based upon the design of remotely piloted aircraft is presented along with students' perspective on the capstone experience.

  17. Optimal design of a gas transmission network: A case study of the Turkish natural gas pipeline network system

    NASA Astrophysics Data System (ADS)

    Gunes, Ersin Fatih

    Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and strong natural gas supply. Because of the geographical location, Turkey has strategic importance according to energy sources. To supply this demand, a pipeline network configuration with the optimal and efficient lengths, pressures, diameters and number of compressor stations is extremely needed. Because, Turkey has a currently working and constructed network topology, obtaining an optimal configuration of the pipelines, including an optimal number of compressor stations with optimal locations, is the focus of this study. Identifying a network design with lowest costs is important because of the high maintenance and set-up costs. The quantity of compressor stations, the pipeline segments' lengths, the diameter sizes and pressures at compressor stations, are considered to be decision variables in this study. Two existing optimization models were selected and applied to the case study of Turkey. Because of the fixed cost of investment, both models are formulated as mixed integer nonlinear programs, which require branch and bound combined with the nonlinear programming solution methods. The differences between these two models are related to some factors that can affect the network system of natural gas such as wall thickness, material balance compressor isentropic head and amount of gas to be delivered. The results obtained by these two techniques are compared with each other and with the current system. Major differences between results are costs, pressures and flow rates. These solution techniques are able to find a solution with minimum cost for each model both of which are less than the current cost of the system while satisfying all the constraints on diameter, length, flow rate and pressure. These results give the big picture of an ideal configuration for the future state network for the country of Turkey.

  18. Conceptual Design Study of a Closed Brayton Cycle Turbogenerator for Space Power Thermal-To-Electric Conversion System

    NASA Technical Reports Server (NTRS)

    Hansen, Jeff L.

    2000-01-01

    A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.

  19. The CCTV system design problem

    SciTech Connect

    Walters, P.E.

    1993-12-31

    There are numerous cases where CCTV system performance is less than ideal. The detection probability of a complete barrier system frequently relies upon the ability of the security operator to perform a particular visual task. This impacts directly upon the staffing costs for the response teams. This situation has given rise to the introduction of systems performance tests. The subsequent adoption of these tests for use in systems performance requirements at purchase time means that the system designer needs to be able to characterize the performance of all of the system components, and to understand the way in which each of them contribute to the performance of the whole system. Broadly this knowledge is not available. Work has been done to review the ways in which the operator performance impacts upon the specification of the different hardware components. A broader understanding of the whole system design problem has been obtained as a result of this work.

  20. Preliminary systems design study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem.

  1. Responsive Evaluation as a Guide to Design and Implementation: Case Study of an E-Health Learning System

    ERIC Educational Resources Information Center

    Schaffer, Scott P.; Kim, Hannah

    2012-01-01

    Evaluation of the design and implementation of a web-based e-health application offers an opportunity to apply extensive research findings and evidence-based practices from the learning and performance literature. In this study, we examined how interactions between stakeholders influenced the design, implementation, and outcomes of an e-health…

  2. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  3. FFTF fuel systems design criteria

    SciTech Connect

    Dutt, D.S.; Baars, R.E.; Jackson, R.J.; Weber, J.W.

    1980-01-01

    The purpose of this paper is to first enumerate the design considerations that were given to the fuel system, then secondly, show how these design allowances, methods, and criteria compare to the subsequent irradiation data. This comparison will show that decisions made by the design team were generally correct and, if in error, tended to be conservative. The FFTF driver fuel assemblies addressed by this paper are composed of the duct, a spacer system, and 217 fuel pins. Each of these subcomponents is described as the criteria are discussed and important parameters noted.

  4. Automatic design of IMA systems

    NASA Astrophysics Data System (ADS)

    Salomon, U.; Reichel, R.

    During the last years, the integrated modular avionics (IMA) design philosophy became widely established at aircraft manufacturers, giving rise to a series of new design challenges, most notably the allocation of avionics functions to the various IMA components and the placement of this equipment in the aircraft. This paper presents a modelling approach for avionics that allows automation of some steps of the design process by applying an optimisation algorithm which searches for system configurations that fulfil the safety requirements and have low costs. The algorithm was implemented as a quite sophisticated software prototype, therefore we will also present detailed results of its application to actual avionics systems.

  5. A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design

    SciTech Connect

    Stevens, J.W.; Corey, G.P.

    1996-07-01

    Knowledge of the charge efficiency of lead-acid batteries near top-of-charge is important to the design of small photovoltaic systems. In order to know how much energy is required from the photovoltaic array in order to accomplish the task of meeting load, including periodic full battery charge, a detailed knowledge of the battery charging efficiency as a function of state of charge is required, particularly in the high state-of-charge regime, as photovoltaic systems are typically designed to operate in the upper 20 to 30% of battery state-of-charge. This paper presents the results of a process for determining battery charging efficiency near top-of-charge and discusses the impact of these findings on the design of small PV systems.

  6. Conceptual design study of a visual system for a rotorcraft simulator and some advances in platform motion utilization

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.

    1980-01-01

    A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.

  7. MIUS community conceptual design study

    NASA Technical Reports Server (NTRS)

    Fulbright, B. E.

    1976-01-01

    The feasibility, practicality, and applicability of the modular integrated utility systems (MIUS) concept to a satellite new-community development with a population of approximately 100,000 were analyzed. Two MIUS design options, the 29-MIUS-unit (option 1) and the 8-MIUS-unit (option 2) facilities were considered. Each resulted in considerable resource savings when compared to a conventional utility system. Economic analyses indicated that the total cash outlay and operations and maintenance costs for these two options were considerably less than for a conventional system. Computer analyses performed in support of this study provided corroborative data for the study group. An environmental impact assessment was performed to determine whether the MIUS meets or will meet necessary environmental standards. The MIUS can provide improved efficiency in the conservation of natural resources while not adversely affecting the physical environment.

  8. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  9. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 1. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A listing of the Earth Observatory Satellite (EOS) candidate missions is presented for use as a baseline in describing the EOS payloads. The missions are identified in terms of first, second, and third generation payloads. The specific applications of the EOS satellites are defined. The subjects considered are: (1) orbit analysis, (2) space shuttle interfaces, (3) thematic mapping subsystem, (4) high resolution pointable imager subsystem, (5) the data collection system, (6) the synthetic aperture radar, (7) the passive multichannel microwave radiometer, and (8) the wideband communications and handling equipment. Illustrations of the satellite and launch vehicle configurations are provided. Block diagrams of the electronic circuits are included.

  10. Space systems computer-aided design technology

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1984-01-01

    The interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system is described, together with planned capability increases in the IDEAS system. The system's disciplines consist of interactive graphics and interactive computing. A single user at an interactive terminal can create, design, analyze, and conduct parametric studies of earth-orbiting satellites, which represents a timely and cost-effective method during the conceptual design phase where various missions and spacecraft options require evaluation. Spacecraft concepts evaluated include microwave radiometer satellites, communication satellite systems, solar-powered lasers, power platforms, and orbiting space stations.

  11. A comparative study of the Unified System for Orbit Computation and the Flight Design System. [computer programs for mission planning tasks associated with space shuttle

    NASA Technical Reports Server (NTRS)

    Maag, W.

    1977-01-01

    The Flight Design System (FDS) and the Unified System for Orbit Computation (USOC) are compared and described in relation to mission planning for the shuttle transportation system (STS). The FDS is designed to meet the requirements of a standardized production tool and the USOC is designed for rapid generation of particular application programs. The main emphasis in USOC is put on adaptability to new types of missions. It is concluded that a software system having a USOC-like structure, adapted to the specific needs of MPAD, would be appropriate to support planning tasks in the area unique to STS missions.

  12. Mechatronic system design course for undergraduate programmes

    NASA Astrophysics Data System (ADS)

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-08-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching mechatronic system design to undergraduate engineering students is emphasised. The paper offers the collaborative experience in preparing and delivering the course material for two universities in Jordan. A detailed description of such a course is provided and a case study is presented. The case study used is a final year project, where students applied a six-stage design procedure that is described in the paper.

  13. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    PubMed

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system. PMID:19209604

  14. Systems Studies

    SciTech Connect

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.

  15. Modular biowaste monitoring system conceptual design

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1974-01-01

    The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.

  16. SOURCE ASSESSMENT SAMPLING SYSTEM: DESIGN AND DEVELOPMENT

    EPA Science Inventory

    The report chronologically describes the design and development of the Source Assessment Sampling System (SASS). The SASS train is the principal sampling element for ducted sources when performing EPA's Level 1 environmental assessment studies. As such, it samples process streams...

  17. Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems

    NASA Astrophysics Data System (ADS)

    Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke

    2016-01-01

    A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.

  18. Rapid Geometry Creation for Computer-Aided Engineering Parametric Analyses: A Case Study Using ComGeom2 for Launch Abort System Design

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica; Gage, Peter; Manning, Ted

    2007-01-01

    ComGeom2, a tool developed to generate Common Geometry representation for multidisciplinary analysis, has been used to create a large set of geometries for use in a design study requiring analysis by two computational codes. This paper describes the process used to generate the large number of configurations and suggests ways to further automate the process and make it more efficient for future studies. The design geometry for this study is the launch abort system of the NASA Crew Launch Vehicle.

  19. Theoretical study of network design methodologies for the aerial relay system. [energy consumption and air traffic control

    NASA Technical Reports Server (NTRS)

    Rivera, J. M.; Simpson, R. W.

    1980-01-01

    The aerial relay system network design problem is discussed. A generalized branch and bound based algorithm is developed which can consider a variety of optimization criteria, such as minimum passenger travel time and minimum liner and feeder operating costs. The algorithm, although efficient, is basically useful for small size networks, due to its nature of exponentially increasing computation time with the number of variables.

  20. A study of alternative designs for a system to concentrate carbon dioxide in a hydrogen-depolarized cell

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Experimental results are presented on alternative designs for a hydrogen depolarized cell to concentrate CO2 in spacecraft atmospheric control systems. Data cover technical problems, methods for solving these problems, and the suitability of such a cell for CO2 removal and control of atmospheric humidity during the flight mode.

  1. Scheduling language and algorithm development study. Volume 1, phase 2: Design considerations for a scheduling and resource allocation system

    NASA Technical Reports Server (NTRS)

    Morrell, R. A.; Odoherty, R. J.; Ramsey, H. R.; Reynolds, C. C.; Willoughby, J. K.; Working, R. D.

    1975-01-01

    Data and analyses related to a variety of algorithms for solving typical large-scale scheduling and resource allocation problems are presented. The capabilities and deficiencies of various alternative problem solving strategies are discussed from the viewpoint of computer system design.

  2. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 6: IPAD system development and operation

    NASA Technical Reports Server (NTRS)

    Redhed, D. D.; Tripp, L. L.; Kawaguchi, A. S.; Miller, R. E., Jr.

    1973-01-01

    The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered.

  3. Flight Design System-1 System Design Document. Volume 9: Executive logic flow, program design language

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.

  4. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 4: System planning studies

    NASA Astrophysics Data System (ADS)

    1981-04-01

    Preliminary design and planning studies of water compensated compressed air energy storage (CAES) and underground pumped hydroelectric (UPH) power plants are presented. The costs of the CAES and UPH plant designs, and the results of economic evaluations performed for the PEPCO system are presented. The PEPCO system planning analysis was performed in parallel stages with plant design development. Analyses performed early in the project indicated a requirement for 1000 MW/10,000 MWH of energy storage on a daily operating schedule, with economic installation in two segments of 500 MW in 1990 and 1997. The analysis was updated eighteen months later near the end of the project to reflect the impact of new growth projections and revised plant costs. The revised results indicated economic installations for either UPH or CAES of approximately 675 MW/6750 MWH on a daily cycle, installed in blocks of approximately 225 MW in 1990, 1993 and 1995. Significant savings in revenue requirements and oil fuel over the combustion turbine alternative were identified for both CAES and UPH.

  5. Computer-aided system design

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  6. Conceptual design study of a superconducting spherical tokamak reactor with a self-consistent system analysis code

    NASA Astrophysics Data System (ADS)

    Hong, B. G.; Hwang, Y. S.; Kang, J. S.; Lee, D. W.; Joo, H. G.; Ono, M.

    2011-11-01

    In a spherical tokamak (ST) reactor, the radial build of toroidal field coil and the shield play a key role in determining the size of the reactor. For self-consistent determination of the reactor components and physics parameters, a system analysis code is coupled with a one-dimensional radiation transport code. A conceptual design study of a compact superconducting ST reactor with an aspect ratio of up to 2.0 is conducted and the optimum radial build is identified. It is shown that the use of an improved shielding material and high-temperature superconducting magnets with high critical current density opens up the possibility of a fusion power plant with compact size and small re-circulating power simultaneously at a low aspect ratio, and that by using an inboard neutron reflector instead of a breeding blanket, tritium self-sufficiency is possible with an outboard blanket only and thus a compact-sized all superconducting coil ST reactor is viable.

  7. Conceptual design study of a 5 kilowatt solar dynamic Brayton power system using a dome Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Mcdanal, A. J.; Spears, Don H.

    1989-01-01

    The primary project objective was to generate a conceptual design for a nominal 5 kW solar dynamic space power system, which uses a unique, patented, transmittance-optimized, dome-shaped, point-focus Fresnel lens as the optical concentrator. Compared to reflective concentrators, the dome lens allows 200 times larger slope errors for the same image displacement. Additionally, the dome lens allows the energy receiver, the power conversion unit (PCU), and the heat rejection radiator to be independently optimized in configuration and orientation, since none of these elements causes any aperture blockage. Based on optical and thermal trade studies, a 6.6 m diameter lens with a focal length of 7.2 m was selected. This lens should provide 87 percent net optical efficienty at 800X geometric concentration ratio. The large lens is comprised of 24 gores, which compactly stow together during launch, and automatically deploy on orbit. The total mass of the microglass lens panels, the graphite/epoxy support structure, and miscellaneous hardware is about 1.2 kg per square meter of aperture. The key problem for the dome lens approach relates to the selection of a space-durable lens material. For the first time, all-glass Fresnel lens samples were successfully made by a sol-gel casting process.

  8. Thermionic Reactor Design Studies

    SciTech Connect

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  9. Multi crop model climate risk country-level management design: case study on the Tanzanian maize production system

    NASA Astrophysics Data System (ADS)

    Chavez, E.

    2015-12-01

    Future climate projections indicate that a very serious consequence of post-industrial anthropogenic global warming is the likelihood of the greater frequency and intensity of extreme hydrometeorological events such as heat waves, droughts, storms, and floods. The design of national and international policies targeted at building more resilient and environmentally sustainable food systems needs to rely on access to robust and reliable data which is largely absent. In this context, the improvement of the modelling of current and future agricultural production losses using the unifying language of risk is paramount. In this study, we use a methodology that allows the integration of the current understanding of the various interacting systems of climate, agro-environment, crops, and the economy to determine short to long-term risk estimates of crop production loss, in different environmental, climate, and adaptation scenarios. This methodology is applied to Tanzania to assess optimum risk reduction and maize production increase paths in different climate scenarios. The simulations carried out use inputs from three different crop models (DSSAT, APSIM, WRSI) run in different technological scenarios and thus allowing to estimate crop model-driven risk exposure estimation bias. The results obtained also allow distinguishing different region-specific optimum climate risk reduction policies subject to historical as well as RCP2.5 and RCP8.5 climate scenarios. The region-specific risk profiles obtained provide a simple framework to determine cost-effective risk management policies for Tanzania and allow to optimally combine investments in risk reduction and risk transfer.

  10. Blindness in designing intelligent systems

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    New investigations of the foundations of artificial intelligence are challenging the hypothesis that problem solving is the cornerstone of intelligence. New distinctions among three domains of concern for humans--description, action, and commitment--have revealed that the design process for programmable machines, such as expert systems, is based on descriptions of actions and induces blindness to nonanalytic action and commitment. Design processes focusing in the domain of description are likely to yield programs like burearcracies: rigid, obtuse, impersonal, and unable to adapt to changing circumstances. Systems that learn from their past actions, and systems that organize information for interpretation by human experts, are more likely to be successful in areas where expert systems have failed.

  11. Business System Planning Project, Preliminary System Design

    SciTech Connect

    EVOSEVICH, S.

    2000-10-30

    CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time.

  12. Theory of reliable systems. [systems analysis and design

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1973-01-01

    The analysis and design of reliable systems are discussed. The attributes of system reliability studied are fault tolerance, diagnosability, and reconfigurability. Objectives of the study include: to determine properties of system structure that are conducive to a particular attribute; to determine methods for obtaining reliable realizations of a given system; and to determine how properties of system behavior relate to the complexity of fault tolerant realizations. A list of 34 references is included.

  13. Tailoring Systems Engineering Processes in a Conceptual Design Environment: A Case Study at NASA Marshall Spaceflight Center's ACO

    NASA Technical Reports Server (NTRS)

    Mulqueen, John; Maples, C. Dauphne; Fabisinski, Leo, III

    2012-01-01

    This paper provides an overview of Systems Engineering as it is applied in a conceptual design space systems department at the National Aeronautics and Space Administration (NASA) Marshall Spaceflight Center (MSFC) Advanced Concepts Office (ACO). Engineering work performed in the NASA MFSC's ACO is targeted toward the Exploratory Research and Concepts Development life cycle stages, as defined in the International Council on Systems Engineering (INCOSE) System Engineering Handbook. This paper addresses three ACO Systems Engineering tools that correspond to three INCOSE Technical Processes: Stakeholder Requirements Definition, Requirements Analysis, and Integration, as well as one Project Process Risk Management. These processes are used to facilitate, streamline, and manage systems engineering processes tailored for the earliest two life cycle stages, which is the environment in which ACO engineers work. The role of systems engineers and systems engineering as performed in ACO is explored in this paper. The need for tailoring Systems Engineering processes, tools, and products in the ever-changing engineering services ACO provides to its customers is addressed.

  14. MAP Propulsion System Thermal Design

    NASA Technical Reports Server (NTRS)

    Mosier, Carol L.

    2003-01-01

    The propulsion system of the Microwave Anisotropy Probe (MAP) had stringent requirements that made the thermal design unique. To meet instrument stability requirements the system had to be designed to keep temperatures of all components within acceptable limits without heater cycling. Although the spacecraft remains at a fixed 22 sun angle at L2, the variations in solar constant, property degradation, and bus voltage range all significantly affect the temperature. Large portions of the fuel lines are external to the structure and all components are mounted to non-conductive composite structure. These two facts made the sensitivity to the MLI effective emissivity and bus temperature very high. Approximately two years prior to launch the propulsion system was redesigned to meet MAP requirements. The new design utilized hardware that was already installed in order to meet schedule constraints. The spacecraft design and the thermal requirements were changed to compensate for inadequacies of the existing hardware. The propulsion system consists of fuel lines, fill and drain lines/valve, eight thrusters, a HXCM, and a propulsion tank. A voltage regulator was added to keep critical components within limits. Software was developed to control the operational heaters. Trim resistors were put in series with each operational heater circuits and the tank survival heater. A highly sophisticated test program, which included real time model correlation, was developed to determine trim resistors sizes. These trim resistors were installed during a chamber break and verified during thermal balance testing.

  15. Nanoscale control designs for systems.

    PubMed

    Chen, Yung-Yue

    2014-02-01

    Nanoscale control is the science of the control of objects at dimensions with 100 nm or less and the manipulation of them at this level of precision. The desired attributes of systems under nanoscale control design are extreme high resolution, accuracy, stability, and fast response. An important perspective of investigation in nanoscale control design includes system modeling and precision control devices and materials at a nanoscale dimension, i.e., design of nanopositioners. Nanopositioners are mechatronic systems with an ultraprecise resolution down to a fraction of an atomic diameter and developed to move objects over a small range in nanoscale dimension. After reviewing a lot of existing literatures for nanoscale control designs, the way to successful nanoscale control is accurate position sensing and feedback control of the motion. An overview of nanoscale identification, linear, and nonlinear control technologies, and devices that are playing a key role in improving precision, accuracy, and response of operation of these systems are introduced in this research. PMID:24749455

  16. Cockpit control system conceptual design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    The purpose of this project was to provide a means for operating the ailerons, elevator, elevator trim, rudder, nosewheel steering, and brakes in the Triton primary flight trainer. The main design goals under consideration were to illustrate system and subsystem integration, control function ability, and producibility. Weight and maintenance goals were addressed.

  17. Warm gas TVC design study

    NASA Technical Reports Server (NTRS)

    Moorhead, S. B., Jr.

    1973-01-01

    A warm gas thrust vector control system was studied to optimize the injection geometry for a specific engine configuration, and an injection valve was designed capable of meeting the base line requirements. To optimize injection geometry, studies were made to determine the performance effects of varying injection location, angle, port size, and port configuration. Having minimized the injection flow rate required, a warm gas valve was designed to handle the required flow. A direct drive hydraulic servovalve capable of operating with highly contaminated hydraulic fluid was designed. The valve is sized to flow 15 gpm at 3000 psia and the direct drive feature is capable of applying a spool force of 200 pounds. The baseline requirements are the development of 6 deg of thrust vector control utilizing 2000 F (total temperature) gas for 180 seconds on a 1.37 million pound thrust engine burning LOX and RP-1 at a chamber pressure of 250 psia with a 155 inch long conical nozzle having a 68 inch diameter throat and a 153 inch diameter exit.

  18. Lunar astronomical observatories - Design studies

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Burns, Jack O.; Chua, Koon Meng; Duric, Nebojsa; Gerstle, Walter H.

    1990-01-01

    The best location in the inner solar system for the grand observatories of the 21st century may be the moon. A multidisciplinary team including university students and faculty in engineering, astronomy, physics, and geology, and engineers from industry is investigating the moon as a site for astronomical observatories and is doing conceptual and preliminary designs for these future observatories. Studies encompass lunar facilities for radio astronomy and astronomy at optical, ultraviolet, and infrared wavelengths of the electromagnetic spectrum. Although there are significant engineering challenges in design and construction on the moon, the rewards for astronomy can be great, such as detection and study of earth-like planets orbiting nearby stars, and the task for engineers promises to stimulate advances in analysis and design, materials and structures, automation and robotics, foundations, and controls. Fabricating structures in the reduced-gravity environment of the moon will be easier than in the zero-gravity environment of earth orbit, as Apollo and space-shuttle missions have revealed. Construction of observatories on the moon can be adapted from techniques developed on the earth, with the advantage that the moon's weaker gravitational pull makes it possible to build larger devices than are practical on earth.

  19. Advanced turbocharger design study program

    NASA Technical Reports Server (NTRS)

    Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.

    1984-01-01

    The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.

  20. Integrated technology wing design study

    NASA Technical Reports Server (NTRS)

    Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.

    1984-01-01

    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.

  1. A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.

  2. Integrated Aeropropulsion Control System Design

    NASA Technical Reports Server (NTRS)

    Lin, C. -F.; Hurley, Francis X.; Huang, Jie; Hadaegh, F. Y.

    1996-01-01

    %T Integrated Aeropropulsion Control System Design%A C-F. Lin%A Francis X. Hurley%A Jie Huang%A F. Y. Hadaegh%J International Conference on Control and Information(psi)995%C Hong Kong%D June 1995%K aeropropulsion, control, system%U http://jpltrs.jpl.nasa.gov/1995/95-0658.pdfAn integrated intelligent control approach is proposed to design a high performance control system for aeropropulsion systems based on advanced sensor processing, nonlinear control and neural fuzzy control integration. Our approach features the following innovations:??e complexity and uncertainty issues are addressed via the distributed parallel processing, learning, and online reoptimization properties of neural networks.??e nonlinear dynamics and the severe coupling can be naturally incorporated into the design framework.??e knowledge base and decision making logic furnished by fuzzy systems leads to a human intelligence enhanced control scheme.In addition, fault tolerance, health monitoring and reconfigurable control strategies will be accommodated by this approach to ensure stability, graceful degradation and reoptimization in the case of failures, malfunctions and damage.!.

  3. Methodology on zoom system design and optimization

    NASA Astrophysics Data System (ADS)

    Ding, Quanxin; Liu, Hua

    2008-03-01

    For aim to establish effective methodology in research to design and evaluate on typical zoom sensor system, to satisfy the system requirements and achieve an advanced characteristics. Some methods about system analysis, especially task principle and key technique of core system, are analyzed deeply. Base on Gaussian photonics theory, zoom system differential equation, solves vector space distribution and integrated balance algorithm on global optimization system is studied. Dominate configuration of new idea system design and optimization, with which consecutive zoom and diffractive module equipped by great format photonics device, is established. The results of evaluated on a kind of typical zoom sensor system is presented, and achieves remarkable advantages on some criterions, such as Modulation Transfer Function (MTF), Spot Diagram (RMS) and Point Spread Function (PSF) etc., and in volume, weight, system efficiency and otherwise.

  4. A comparative study of soft sensor design for lipid estimation of microalgal photobioreactor system with experimental validation.

    PubMed

    Yoo, Sung Jin; Jung, Dong Hwi; Kim, Jung Hun; Lee, Jong Min

    2015-03-01

    This study examines the applicability of various nonlinear estimators for online estimation of the lipid concentration in microalgae cultivation system. Lipid is a useful bio-product that has many applications including biofuels and bioactives. However, the improvement of lipid productivity using real-time monitoring and control with experimental validation is limited because measurement of lipid in microalgae is a difficult and time-consuming task. In this study, estimation of lipid concentration from other measurable sources such as biomass or glucose sensor was studied. Extended Kalman filter (EKF), unscented Kalman filter (UKF), and particle filter (PF) were compared in various cases for their applicability to photobioreactor systems. Furthermore, simulation studies to identify appropriate types of sensors for estimating lipid were also performed. Based on the case studies, the most effective case was validated with experimental data and found that UKF and PF with time-varying system noise covariance is effective for microalgal photobioreactor system. PMID:25545097

  5. Automating software design system DESTA

    NASA Technical Reports Server (NTRS)

    Lovitsky, Vladimir A.; Pearce, Patricia D.

    1992-01-01

    'DESTA' is the acronym for the Dialogue Evolutionary Synthesizer of Turnkey Algorithms by means of a natural language (Russian or English) functional specification of algorithms or software being developed. DESTA represents the computer-aided and/or automatic artificial intelligence 'forgiving' system which provides users with software tools support for algorithm and/or structured program development. The DESTA system is intended to provide support for the higher levels and earlier stages of engineering design of software in contrast to conventional Computer Aided Design (CAD) systems which provide low level tools for use at a stage when the major planning and structuring decisions have already been taken. DESTA is a knowledge-intensive system. The main features of the knowledge are procedures, functions, modules, operating system commands, batch files, their natural language specifications, and their interlinks. The specific domain for the DESTA system is a high level programming language like Turbo Pascal 6.0. The DESTA system is operational and runs on an IBM PC computer.

  6. Designing vision systems for robotic applications

    SciTech Connect

    Trivedi, M.M.

    1988-01-01

    Intelligent robotic systems utilize sensory information to perceive the nature of their work environment. Of the many sensor modalities, vision is recognized as one of the most important and cost-effective sensors utilized in practical systems. In this paper, we address the problem of designing vision systems to perform a variety of robotic inspection and manipulation tasks. We describe the nature and characteristics of the robotic task domain and discuss the computational hierarchy governing the process of scene interpretation. We also present a case study illustrating the design of a specific vision system developed for performing inspection and manipulation tasks associated with a control panel. 27 refs., 6 figs.

  7. Telecommunications Systems Design Techniques Handbook

    NASA Technical Reports Server (NTRS)

    Edelson, R. E. (Editor)

    1972-01-01

    The Deep Space Network (DSN) increasingly supports deep space missions sponsored and managed by organizations without long experience in DSN design and operation. The document is intended as a textbook for those DSN users inexperienced in the design and specification of a DSN-compatible spacecraft telecommunications system. For experienced DSN users, the document provides a reference source of telecommunication information which summarizes knowledge previously available only in a multitude of sources. Extensive references are quoted for those who wish to explore specific areas more deeply.

  8. DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS

    SciTech Connect

    L.R. Eisler

    1995-02-02

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.

  9. ARGOS laser system mechanical design

    NASA Astrophysics Data System (ADS)

    Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.

    2014-07-01

    ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.

  10. INTRODUCTION AND STUDY DESIGN

    EPA Science Inventory

    Under the sponsorship of the UNEP/ILO/IPCS, 17 laboratories from diverse regions of the world participated in evaluating the utility of four plant bioassays for detecting genetic hazards of environmental chemicals. he bioassays included in this collaborative study were Arabidopsi...

  11. ACSYNT inner loop flight control design study

    NASA Technical Reports Server (NTRS)

    Bortins, Richard; Sorensen, John A.

    1993-01-01

    The NASA Ames Research Center developed the Aircraft Synthesis (ACSYNT) computer program to synthesize conceptual future aircraft designs and to evaluate critical performance metrics early in the design process before significant resources are committed and cost decisions made. ACSYNT uses steady-state performance metrics, such as aircraft range, payload, and fuel consumption, and static performance metrics, such as the control authority required for the takeoff rotation and for landing with an engine out, to evaluate conceptual aircraft designs. It can also optimize designs with respect to selected criteria and constraints. Many modern aircraft have stability provided by the flight control system rather than by the airframe. This may allow the aircraft designer to increase combat agility, or decrease trim drag, for increased range and payload. This strategy requires concurrent design of the airframe and the flight control system, making trade-offs of performance and dynamics during the earliest stages of design. ACSYNT presently lacks means to implement flight control system designs but research is being done to add methods for predicting rotational degrees of freedom and control effector performance. A software module to compute and analyze the dynamics of the aircraft and to compute feedback gains and analyze closed loop dynamics is required. The data gained from these analyses can then be fed back to the aircraft design process so that the effects of the flight control system and the airframe on aircraft performance can be included as design metrics. This report presents results of a feasibility study and the initial design work to add an inner loop flight control system (ILFCS) design capability to the stability and control module in ACSYNT. The overall objective is to provide a capability for concurrent design of the aircraft and its flight control system, and enable concept designers to improve performance by exploiting the interrelationships between

  12. Preliminary design and manufacturing feasibility study for a machined Zircaloy triangular pitch fuel rod support system (grids) (AWBA development program)

    SciTech Connect

    Horwood, W A

    1981-07-01

    General design features and manufacturing operations for a high precision machined Zircaloy fuel rod support grid intended for use in advanced light water prebreeder or breeder reactor designs are described. The grid system consists of a Zircaloy main body with fuel rod and guide tube cells machined using wire EDM, a separate AM-350 stainless steel insert spring which fits into a full length T-slot in each fuel rod cell, and a thin (0.025'' or 0.040'' thick) wire EDM machined Zircaloy coverplate laser welded to each side of the grid body to retain the insert springs. The fuel rods are placed in a triangular pitch array with a tight rod-to-rod spacing of 0.063 inch nominal. Two dimples are positioned at the mid-thickness of the grid (single level) with a 90/sup 0/ included angle. Data is provided on the effectiveness of the manufacturing operations chosen for grid machining and assembly.

  13. Tracking and data relay satellite system configuration and tradeoff study. Volume 5: TDRS spacecraft design, part 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A dual spin stabilized TDR spacecraft design is presented for low data rate (LDR) and medium data rate (MDR) user spacecraft telecommunication relay service. The relay satellite provides command and data return channels for unmanned users together with duplex voice and data communication channels for manned user spacecraft. TDRS/ground links are in the Ku band. Command links are provided at UHF for LDR users and S band for MDR users. Voice communication channels are provided at UHF/VHF for LDR users and at S band for MDR users. The spacecraft is designed for launch on the Delta 2914 with system deployment planned for 1978. This volume contains a description of the overall TDR spacecraft configuration, a detailed description of the spacecraft subsystems, a reliability analysis, and a product effectiveness plan.

  14. Research study on stabilization and control: Modern sampled-data control theory. Design of the large space telescope system

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Singh, G.

    1975-01-01

    Conditions of self-sustained oscillations in a two-axis model of the nonlinear LST system are studied. The describing function of the CMG frictional nonlinearity of the LST system is used for the analysis, as well as continuous-data and discrete-data models of the simplified LST control system. A numerical-iterative method is described for the analysis of the two-axis system. Approximation methods and the direct plotting of the stability equation are implemented in the study. It is shown that although the dynamics of the two axes are identical, the amplitudes of self-sustained oscillations in the two axes may in principle be different. Analysis shows that the LST systems are of equal amplitudes but with 180-degree phase shift.

  15. SIRTF Science Operations System Design

    NASA Technical Reports Server (NTRS)

    Green, William

    1999-01-01

    SIRTF Science Operations System Design William B. Green Manager, SIRTF Science Center California Institute of Technology M/S 310-6 1200 E. California Blvd., Pasadena CA 91125 (626) 395 8572 Fax (626) 568 0673 bgreen@ipac.caltech.edu. The Space Infrared Telescope Facility (SIRTF) will be launched in December 2001, and perform an extended series of science observations at wavelengths ranging from 20 to 160 microns for five years or more. The California Institute of Technology has been selected as the home for the SIRTF Science Center (SSC). The SSC will be responsible for evaluating and selecting observation proposals, providing technical support to the science community, performing mission planning and science observation scheduling activities, instrument calibration during operations and instrument health monitoring, production of archival quality data products, and management of science research grants. The science payload consists of three instruments delivered by instrument Principal Investigators located at University of Arizona, Cornell, and Harvard Smithsonian Astrophysical Observatory. The SSC is responsible for design, development, and operation of the Science Operations System (SOS) which will support the functions assigned to the SSC by NASA. The SIRTF spacecraft, mission profile, and science instrument design have undergone almost ten years of refinement. SIRTF development and operations activities are highly cost constrained. The cost constraints have impacted the design of the SOS in several ways. The Science Operations System has been designed to incorporate a set of efficient, easy to use tools which will make it possible for scientists to propose observation sequences in a rapid and automated manner. The use of highly automated tools for requesting observations will simplify the long range observatory scheduling process, and the short term scheduling of science observations. Pipeline data processing will be highly automated and data

  16. Design Evolution Study - Aging Options

    SciTech Connect

    P. McDaniel

    2002-04-05

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new

  17. Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study

    PubMed Central

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-01

    Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems. PMID:24514765

  18. Investigation of expert system design approaches for electronic design environments

    NASA Astrophysics Data System (ADS)

    Poppens, Susan A.

    1987-12-01

    Various schemes were investigated that are available for the design effort of electronic systems. The information is to be incorporated into a knowledge base to determine approaches for a particular design. Various design methodologies are to be investigated for their appropriateness and application in the aforesaid design environment. The second phase is to focus on the knowledge base gathered in the design effort for electronic design. This knowledge base is to be incorporated into a rule based expert system which can be utilized by the design engineer in the design/development of functional specifications.

  19. Content of system design descriptions

    SciTech Connect

    1998-10-01

    A System Design Description (SDD) describes the requirements and features of a system. This standard provides guidance on the expected technical content of SDDs. The need for such a standard was recognized during efforts to develop SDDs for safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Existing guidance related to the corresponding documents in other industries is generally not suitable to meet the needs of DOE nuclear facilities. Across the DOE complex, different contractors have guidance documents, but they vary widely from site to site. While such guidance documents are valuable, no single guidance document has all the attributes that DOE considers important, including a reasonable degree of consistency or standardization. This standard is a consolidation of the best of the existing guidance. This standard has been developed with a technical content and level of detail intended to be most applicable to safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Notwithstanding that primary intent, this standard is recommended for other systems at such facilities, especially those that are important to achieving the programmatic mission of the facility. In addition, application of this standard should be considered for systems at other facilities, including non-nuclear facilities, on the basis that SDDs may be beneficial and cost-effective.

  20. Design Studies of the Calorimeter Systems for the sPHENIX Experiment at RHIC and Future Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Woody, C.; Kistenev, E.; PHENIX Collaboration

    2015-02-01

    The PHENIX Experiment at RHIC is planning a series of major upgrades that will enable a comprehensive measurement of jets in relativistic heavy ion collisions, provide enhanced physics capabilities for studying nucleon-nucleus and polarized proton collisions, and allow a detailed study of electron-nucleus collisions at the Electron Ion Collider at Brookhaven (eRHIC). The first of these upgrades, sPHENIX, will be based on the former BaBar magnet and will include a hadronic calorimeter and new electromagnetic calorimeter that will cover ±1.1 units in pseudorapidity and 2π in azimuth in the central region, resulting in a factor of 6 increase in acceptance over the present PHENIX detector. The electromagnetic calorimeter will be a tungsten scintillating fiber design with a radiation length ~ 7 mm and a Moliere radius ~ 2 cm. It will have a total depth of ~ 18 radiation lengths and an energy resolution ~ 15%/√E. The hadronic calorimeter will consist of steel plates with scintillating tiles in between that are read out with wavelength shifting fibers, It will have a total depth of ~ 5 interaction lengths and an energy resolution 100%/√E. Both calorimeters will use silicon photomultipliers as the readout sensor. Detailed design studies and Monte Carlo simulations for both calorimeters have been carried out and prototype detectors have been constructed and tested in a test beam at Fermilab in February 2014. This contribution describes these design studies for the sPHENIX experiment and its future upgrade plans at RHIC.

  1. Space systems design at Utah State University - A total approach

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.

    1992-01-01

    An account is given of an Advanced Design Program, developed under the auspices of NASA/USRA, which uses a six quarter-hour multidisciplinary systems-design course to teach spacecraft design. The course integrates engineering skills with system-design principles, while emphasizing written and oral communications. The setting for such student efforts is patterned after existing high-tech spacecraft-design organizations. The classes address design tradeoff decisions, parametric studies, and design reviews, as well as project-continuations.

  2. Design study of a 15 kW free-piston Stirling engine-linear alternator for dispersed solar electric power systems

    NASA Technical Reports Server (NTRS)

    Dochat, G. R.; Chen, H. S.; Bhate, S.; Marusak, T.

    1979-01-01

    A conceptual design of a free piston solar Stirling engine-linear alternator which can be designed and developed to meet the requirements of a near-term solar test bed engine with minimum risks was developed. The conceptual design was calculated to have an overall system efficiency of 38% and provide 15kW electric output. The free piston engine design incorporates features such as gas bearings, close clearance seals, and gas springs. This design is hermetically sealed to provide long life, reliability, and maintenance free operation. An implementation assessment study performed indicates that the free piston solar Stirling engine-linear alternator can be manufactured at a reasonable price cost (direct labor plus material) of $2,500 per engine in production quantities of 25,000 units per year. Opportunity for significant reduction of cost was also identified.

  3. Multirate digital control system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Amit, Naftali; Powell, J. David

    1988-01-01

    Methods for multirate digital control system design are discussed. A simple method for sampling rate selection based on control bandwidths is proposed. Methods for generating a discrete-time state model of a sampled-data plant and a discrete-time equivalent to an analog cost function for a sampled-data plant are described. The succesive loop closures and linear quadratic Gaussian synthesis methods are reviewed, and a constrained optimization synthesis method is introduced. The proposed sampling rate selection, discretization, and synthesis methods are applied to two example design problems. Multirate and single-rate compensators synthesized by the different methods are compared, based on closed-loop responses, with compensators having the same real-time computation load.

  4. DESIGN PACKAGE 1E SYSTEM SAFETY ANALYSIS

    SciTech Connect

    M. Salem

    1995-06-23

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1E, Surface Facilities, (for a list of design items included in the package 1E system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1E structures/systems/components(S/S/Cs) in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions.

  5. Design Study of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Zhang, Yiyi; Snyder, Christopher A.; Vonderwell, Daniel

    2013-01-01

    Boeing, Rolls Royce, and NASA have worked together to complete a parametric sizing study for NASA's Large Civil Tilt Rotor (LCTR2) concept 2nd iteration. Vehicle gross weight and fuel usage were evaluated as propulsion and drive system characteristics were varied to maximize the benefit of reduced rotor tip speed during cruise conditions. The study examined different combinations of engine and gearbox variability to achieve rotor cruise tip speed reductions down to 54% of the hover tip speed. Previous NASA studies identified that a 54% rotor speed reduction in cruise minimizes vehicle gross weight and fuel burn. The LCTR2 was the study baseline for initial sizing. This study included rotor tip speed ratios (cruise to hover) of 100%, 77% and 54% at different combinations of engine RPM and gearbox speed reductions, which were analyzed to achieve the lightest overall vehicle gross weight (GW) at the chosen rotor tip speed ratio. Different engine and gearbox technology levels are applied ranging from commercial off-the-shelf (COTS) engines and gearbox technology to entry-in-service (EIS) dates of 2025 and 2035 to assess the benefits of advanced technology on vehicle gross weight and fuel burn. Interim results were previously reported1. This technical paper extends that work and summarizes the final study results including additional engine and drive system study accomplishments. New vehicle sizing data is presented for engine performance at a single operating speed with a multispeed drive system. Modeling details for LCTR2 vehicle sizing and subject engine and drive sub-systems are presented as well. This study was conducted in support of NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project.

  6. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    ERIC Educational Resources Information Center

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  7. Effects of Neoprene Wrist/Hand Splints on Handwriting for Students with Joint Hypermobility Syndrome: A Single System Design Study

    ERIC Educational Resources Information Center

    Frohlich, Lauren; Wesley, Alison; Wallen, Margaret; Bundy, Anita

    2012-01-01

    Purpose: Pain associated with hypermobility of wrist and hand joints can contribute to decreased handwriting output. This study examined the effectiveness of a neoprene wrist/hand splint in reducing pain and increasing handwriting speed and endurance for students with joint hypermobility syndrome. Methods: Multiple baseline, single system design…

  8. What could they have been thinking? How sociotechnical system design influences cognition: a case study of the Stockwell shooting.

    PubMed

    Jenkins, Daniel P; Salmon, Paul M; Stanton, Neville A; Walker, Guy H; Rafferty, Laura

    2011-02-01

    Understanding why an individual acted in a certain way is of fundamental importance to the human factors community, especially when the choice of action results in an undesirable outcome. This challenge is typically tackled by applying retrospective interview techniques to generate models of what happened, recording deviations from a 'correct procedure'. While such approaches may have great utility in tightly constrained procedural environments, they are less applicable in complex sociotechnical systems that require individuals to modify procedures in real time to respond to a changing environment. For complex sociotechnical systems, a formative approach is required that maps the information available to the individual and considers its impact on performance and action. A context-specific, activity-independent, constraint-based model forms the basis of this approach. To illustrate, an example of the Stockwell shooting is used, where an innocent man, mistaken for a suicide bomber, was shot dead. Transferable findings are then presented. STATEMENT OF RELEVANCE: This paper presents a new approach that can be applied proactively to consider how sociotechnical system design, and the information available to an individual, can affect their performance. The approach is proposed to be complementary to the existing tools in the mental models phase of the cognitive work analysis framework. PMID:21294009

  9. Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    NASA Technical Reports Server (NTRS)

    Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.

    1992-01-01

    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions.

  10. RAD hard PROM design study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of a preliminary study on the design of a radiation hardened fusible link programmable read-only memory (PROM) are presented. Various fuse technologies and the effects of radiation on MOS integrated circuits are surveyed. A set of design rules allowing the fabrication of a radiation hardened PROM using a Si-gate CMOS process is defined. A preliminary cell layout was completed and the programming concept defined. A block diagram is used to describe the circuit components required for a 4 K design. A design goal data sheet giving target values for the AC, DC, and radiation parameters of the circuit is presented.

  11. Validation of an automated punctate mechanical stimuli delivery system designed for fMRI studies in rodents.

    PubMed

    Governo, Ricardo Jose Moylan; Prior, Malcolm John William; Morris, Peter Gordon; Marsden, Charles Alexander; Chapman, Victoria

    2007-06-15

    Functional magnetic resonance imaging (fMRI) is increasingly being used for animal studies studying the transmission of nociceptive information. Application of noxious mechanical stimuli is widely used for animal and human assessment of pain processing. Any accessory hardware used in animal imaging studies must, however, be sufficiently small to fit in the magnet bore diameter and be non-magnetic. We have developed a system that can apply mechanical stimuli simultaneously with fMRI. This system consists of a standardized instrument to deliver mechanical stimuli (VonFrey monofilament) and a gas-pressured mechanical transducer. These components were integrated with a computer console that controlled the period of stimuli to match acquisition scans. Preliminary experiments demonstrated that the force-stimulus transducer did not influence MRI signal to noise ratio. Mechanical stimulation of the hindpaw significantly increased blood oxygen level dependent (BOLD) signal intensity in several midbrain regions involved in the processing of nociceptive information in the rat (p<0.001, uncorrected for multiple comparisons). This system can be applied to both animal and human imaging studies and has a wide range of applications for studies of nociceptive processing. PMID:17368787

  12. Sensitivity Analysis of Neutron Cross-Sections Considered for Design and Safety Studies of Lfr and SFR Generation IV Systems

    NASA Astrophysics Data System (ADS)

    Tucek, Kamil; Carlsson, Johan; Wider, Hartmut

    2006-04-01

    We evaluated the sensitivity of several design and safety parameters with regard to five different nuclear data libraries, JEF2.2, JEFF3.0, ENDF/B-VI.8, JENDL3.2, and JENDL3.3. More specifically, the effective multiplication factor, burn-up reactivity swing and decay heat generation in available LFR and SFR designs were estimated. Monte Carlo codes MCNP and MCB were used in the analyses of the neutronic and burn-up performance of the systems. Thermo-hydraulic safety calculations were performed by the STAR-CD CFD code. For the LFR, ENDF/B-VI.8 and JEF2.2 showed to give a harder neutron spectrum than JEFF3.0, JENDL3.2, and JENDL3.3 data due to the lower inelastic scattering cross-section of lead in these libraries. Hence, the neutron economy of the system becomes more favourable and keff is higher when calculated with ENDF/B-VI.8 and JEF2.2 data. As for actinide cross-section data, the uncertainties in the keff values appeared to be mainly due to 239Pu, 240Pu and 241Am. Differences in the estimated burn-up reactivity swings proved to be significant, for an SFR as large as a factor of three (when comparing ENDF/B-VI.8 results to those of JENDL3.2). Uncertainties in the evaluation of short-term decay heat generation showed to be of the order of several per cent. Significant differences were, understandably, observed between decay heat generation data quoted in literature for LWR-UOX and those calculated for an LFR (U,TRU)O2 spent fuel. A corresponding difference in calculated core parameters (outlet coolant temperature) during protected total Loss-of-Power was evaluated.

  13. Designing case-control studies.

    PubMed Central

    Yanagawa, T

    1979-01-01

    Identification of confounding factors, evaluation of their influence on cause-effect associations, and the introduction of appropriate ways to account for these factors are important considerations in designing case-control studies. This paper presents designs useful for these purposes, after first providing a statistical definition of a confounding factor. Differences in the ability to identify and evaluate confounding factors and estimate disease risk between designs employing stratification (matching) and designs randomly sampling cases and controls are noted. Linear logistic models for the analysis of data from such designs are described and are shown to liberalize design requirements and to increase relative risk estimation efficiency. The methods are applied to data from a multiple factor investigation of lung cancer patients and controls. PMID:540588

  14. Comparison of Marginal Bone Changes with Internal Conus and External Hexagon Design Implant Systems: A Prospective, Randomized Study.

    PubMed

    Cooper, Lyndon F; Tarnow, Dennis; Froum, Stuart; Moriarty, John; De Kok, Ingeborg J

    2016-01-01

    A central dental implant success criterion is the marginal bone response as measured longitudinally. Factors that influence marginal bone changes include osseous and soft tissue architecture, occlusal loading factors, implant position, implant design, and inflammatory processes. The evolution of implant design is multifactorial and includes the implant-abutment interface geometries. The primary objective of this study was to compare the proximal marginal bone changes following placement and loading of internal conus design implants (ICI) and external hex design implants (EXI) used in the treatment of posterior partial edentulism. Among 45 enrolled participants, 39 were treated with 47 ICI or 46 EXI implants using a one-stage implant protocol. Prosthetic restoration was completed after 12 weeks using stock titanium abutments and all-ceramic crowns. Follow-up visits including clinical and radiographic examinations were performed 6 months after permanent restoration and then annually for 3 years. Marginal bone level changes, papilla index scores, condition of the peri-implant mucosa, presence of complications, and participant satisfaction were evaluated. The mean marginal bone level change from implant placement to 3 years was -0.25 ± 0.60 mm and -0.5 ± 0.93 mm for ICI and EXI implants, respectively. The change recorded from permanent restoration to 3 years was a gain of 0.31 ± 0.41 mm versus 0.04 ± 0.51 mm for ICI and EXI implants, respectively (P < .05). In the evaluation of interproximal soft tissue 3 years after permanent restoration, 80% of mandibular and 66% of maxillary interproximal ICI sites received papilla scores of 2 and 3, compared with 50% of mandibular and 60% of maxillary interproximal EXI sites. No significant differences in plaque or bleeding scores were recorded. Abutment/healing abutment complications were recorded for 11 EXI versus 1 ICI participant. The vast majority (> 90%) of participants stated they were satisfied or very satisfied with

  15. DDL:Digital systems design language

    NASA Technical Reports Server (NTRS)

    Shival, S. G.

    1980-01-01

    Hardware description languages are valuable tools in such applications as hardware design, system documentation, and logic design training. DDL is convenient medium for inputting design details into hardware-design automation system. It is suitable for describing digital systems at gate, register transfer, and major combinational block level.

  16. AGING SYSTEM DESIGN DEVELOPMENT STRATEGY

    SciTech Connect

    J. Beesley

    2005-02-07

    This plan provides an overview, work to date, and the path forward for the design development strategy of the Aging cask for aging commercial spent nuclear fuel (CSNF) at the Yucca Mountain Project (YMP) repository site. Waste for subsurface emplacement at the repository includes US Department of Energy (DOE) high-level radioactive waste (HLW), DOE SNF, commercial fuel in dual-purpose canisters (DPCs), uncanistered bare fuel, naval fuel, and other waste types. Table 1-1 lists the types of radioactive materials that may be aged at YMP, and those materials that will not be placed in an aging cask or module. This plan presents the strategy for design development of the Aging system. The Aging system will not handle naval fuel, DOE HLW, MCOs, or DOE SNF since those materials will be delivered to the repository in a state and sequence that allows them to be placed into waste packages for emplacement. Some CSNF from nuclear reactors, especially CSNF that is thermally too hot for emplacement underground, will need to be aged at the repository.

  17. Design of a modular digital computer system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A design tradeoff study is reported for a modular spaceborne computer system that is responsive to many mission types and phases. The computer uses redundancy to maximize reliability, and multiprocessing to maximize processing capacity. Fault detection and recovery features provide optimal reliability.

  18. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  19. Problems in the design of information-measuring systems for the study of the cosmic plasma and the upper layers of the atmosphere

    NASA Astrophysics Data System (ADS)

    Blazhkevich, B. I.; Kalashnikov, N. T.; Rakov, M. A.; Sopruniuk, M. P.

    The development of measuring instruments and information-measuring systems at the Karpenko Physicomechanical Institute of the Ukrainian Academy of Sciences for spacecraft-borne studies of the cosmic plasma and the upper layers of the earth atmosphere is examined. The design of instruments for plasma studies on Cosmos-721, Mars 6 and 7, Prognoz-8, Intercosmos-18, and in the SAMBO-82 program, is considered.

  20. ENABLER Nuclear Propulsion System Conceptual Design

    NASA Astrophysics Data System (ADS)

    Pauley, Keith A.; Woodham, Kurt; Ohi, Don; Haga, Heath; Henderson, Bo

    2004-02-01

    The Titan Corporation conducted a systems engineering study to develop an overall architecture that meets both the articulated and unarticulated requirements on the Prometheus Program with the least development effort. Key elements of the Titan-designed ENABLER system include a thermal fission reactor, thermionic power converters, sodium heat pipes, ion thruster engines, and a radiation shield and deployable truss to protect the payload. The overall design is scaleable over a wide range of power requirements from 10s of kilowatts to 10s of megawatts.

  1. Tritium glovebox stripper system seismic design evaluation

    SciTech Connect

    Grinnell, J. J.; Klein, J. E.

    2015-09-01

    The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological doses to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.

  2. ERIS adaptive optics system design

    NASA Astrophysics Data System (ADS)

    Marchetti, Enrico; Le Louarn, Miska; Soenke, Christian; Fedrigo, Enrico; Madec, Pierre-Yves; Hubin, Norbert

    2012-07-01

    The Enhanced Resolution Imager and Spectrograph (ERIS) is the next-generation instrument planned for the Very Large Telescope (VLT) and the Adaptive Optics facility (AOF). It is an AO assisted instrument that will make use of the Deformable Secondary Mirror and the new Laser Guide Star Facility (4LGSF), and it is planned for the Cassegrain focus of the telescope UT4. The project is currently in its Phase A awaiting for approval to continue to the next phases. The Adaptive Optics system of ERIS will include two wavefront sensors (WFS) to maximize the coverage of the proposed sciences cases. The first is a high order 40x40 Pyramid WFS (PWFS) for on axis Natural Guide Star (NGS) observations. The second is a high order 40x40 Shack-Hartmann WFS for single Laser Guide Stars (LGS) observations. The PWFS, with appropriate sub-aperture binning, will serve also as low order NGS WFS in support to the LGS mode with a field of view patrolling capability of 2 arcmin diameter. Both WFSs will be equipped with the very low read-out noise CCD220 based camera developed for the AOF. The real-time reconstruction and control is provided by a SPARTA real-time platform adapted to support both WFS modes. In this paper we will present the ERIS AO system in all its main aspects: opto-mechanical design, real-time computer design, control and calibrations strategy. Particular emphasis will be given to the system performance obtained via dedicated numerical simulations.

  3. Propagation considerations for the Odyssey system design

    NASA Technical Reports Server (NTRS)

    Ho, Hau H.

    1994-01-01

    This paper presents an overview of the Odyssey system with special emphasis given to the link availability for both mobile link and feeder link. The Odyssey system design provides high link availability, typically 98 percent in the primary service areas, and better than 95 percent availability in other service areas. Strategies for overcoming Ka-band feeder link rain fades are presented. Mobile link propagation study results and summary link budgets are also presented.

  4. Design and development of novel lipid based gastroretentive delivery system: response surface analysis, in-vivo imaging and pharmacokinetic study.

    PubMed

    Ahmed Abdelbary, Aly; Elsayed, Ibrahim; Hassen Elshafeey, Ahmed

    2015-01-01

    Famotidine HCl has low bioavailability (40-45%) due to its narrow absorption window and low solubility in intestinal pH. Lipids were utilized in the formulation of novel gastroretentive dosage forms to increase the availability of famotidine HCl at its absorption site. Novel non-swellable gastroretentive lipid disks (D) and swellable compression coated tablets with a lipid core (T) were prepared. Formulae were characterized by friability testing, in-vitro buoyancy, in-vitro drug release and scanning electron microscopy (SEM). Factorial designs of 2(2 )× 3(1) and 3(2) were planned for the optimization of disks and tablets, respectively, using Design-Expert® software. X-ray imaging was used for the in-vivo visualization of the selected formula in human gastrointestinal tract (GIT). Moreover, a bioavailability study was performed in healthy human volunteers using the optimized disk formula (D10). Results showed that formulae D10 (containing stearyl alcohol and polyethylene glycol in a ratio of 9:1 w/w) and T7 (containing polyethylene oxide only) had highest desirability values (0.684 and 0.842, respectively). Lipids achieved instantaneous floating and sustained the release of famotidine HCl over a prolonged period of time with significant bioavailability enhancement. PMID:24350634

  5. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results, attachment 2. Phase A: Conceptual design and programmatics

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.

  6. Sampling strategies for environmental data useful in design modification of ocean energy systems: an OTEC case study

    SciTech Connect

    Dengler, A.T.

    1983-01-01

    The Ocean Thermal Energy Conversion (OTEC) program is completing the conceptual design phase and entering the preliminary design phase of a 40 MWe pilot plant. During all design phases, there is a constructive feedback between the design of the plant and the body of data which describes the oceanographic and environmental setting of the plant. The design of the plant helps to define what data are gathered, and the data help refine the design of the plant. During conceptual design, development has proceeded on two baseline designs. Both designs are sited at the coast near Kahe Point, Oahu, Hawaii. The two designs are: (1) a shelf-seated artificial island, connected via a causeway to Oahu, using stainless steel heat exchangers, with the thermal resource enhanced by effluent from a near-by power plant, ammonia working fluid and biocide (chlorine) cleaning; and (2) a shelf-mounted tower 1 mile offshore using submerged aluminum heat exchangers, R-22 (freon) working fluid, and slurry cleaning with biocide (chlorine) backup. The designs are driven by engineering and socio-legal requirements which are in part defined using environmental and oceanographic data pertinent to the site. These requirements may be related to the data through four groupings of environmental concerns: (1) siting, design and operational criteria; (2) thermal resource evaluation and variability; (3) biological and chemical issues; and (4) regulatory requirements. The design, the requirements and the data are continually upgraded in concert.

  7. Semiautomated switched capacitor filter design system

    NASA Technical Reports Server (NTRS)

    Thelen, D.

    1990-01-01

    A software system is described which reduces the time required to design monolithic switched capacitor filters. The system combines several software tools into an integrated flow. Switched capacitor technology and alternative technologies are discussed. Design time using the software system is compared to typical design time without the system.

  8. Design and Data Management System

    NASA Technical Reports Server (NTRS)

    Messer, Elizabeth; Messer, Brad; Carter, Judy; Singletary, Todd; Albasini, Colby; Smith, Tammy

    2007-01-01

    The Design and Data Management System (DDMS) was developed to automate the NASA Engineering Order (EO) and Engineering Change Request (ECR) processes at the Propulsion Test Facilities at Stennis Space Center for efficient and effective Configuration Management (CM). Prior to the development of DDMS, the CM system was a manual, paper-based system that required an EO or ECR submitter to walk the changes through the acceptance process to obtain necessary approval signatures. This approval process could take up to two weeks, and was subject to a variety of human errors. The process also requires that the CM office make copies and distribute them to the Configuration Control Board members for review prior to meetings. At any point, there was a potential for an error or loss of the change records, meaning the configuration of record was not accurate. The new Web-based DDMS eliminates unnecessary copies, reduces the time needed to distribute the paperwork, reduces time to gain the necessary signatures, and prevents the variety of errors inherent in the previous manual system. After implementation of the DDMS, all EOs and ECRs can be automatically checked prior to submittal to ensure that the documentation is complete and accurate. Much of the configuration information can be documented in the DDMS through pull-down forms to ensure consistent entries by the engineers and technicians in the field. The software also can electronically route the documents through the signature process to obtain the necessary approvals needed for work authorization. The workflow of the system allows for backups and timestamps that determine the correct routing and completion of all required authorizations in a more timely manner, as well as assuring the quality and accuracy of the configuration documents.

  9. Preliminary aerosol generator design studies

    NASA Technical Reports Server (NTRS)

    Stampfer, J. F., Jr.

    1976-01-01

    The design and construction of a prototype vaporization generator for highly dispersed sodium chloride aerosols is described. The aerosol generating system is to be used in the Science Simulator of the Cloud Physics Laboratory Project and as part of the Cloud Physics Laboratory payload to be flown on the shuttle/spacelab.

  10. ITER Disruption Mitigation System Design

    NASA Astrophysics Data System (ADS)

    Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.

    2015-11-01

    The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.

  11. Study to determine potential flight applications and human factors design guidelines for voice recognition and synthesis systems

    NASA Technical Reports Server (NTRS)

    White, R. W.; Parks, D. L.

    1985-01-01

    A study was conducted to determine potential commercial aircraft flight deck applications and implementation guidelines for voice recognition and synthesis. At first, a survey of voice recognition and synthesis technology was undertaken to develop a working knowledge base. Then, numerous potential aircraft and simulator flight deck voice applications were identified and each proposed application was rated on a number of criteria in order to achieve an overall payoff rating. The potential voice recognition applications fell into five general categories: programming, interrogation, data entry, switch and mode selection, and continuous/time-critical action control. The ratings of the first three categories showed the most promise of being beneficial to flight deck operations. Possible applications of voice synthesis systems were categorized as automatic or pilot selectable and many were rated as being potentially beneficial. In addition, voice system implementation guidelines and pertinent performance criteria are proposed. Finally, the findings of this study are compared with those made in a recent NASA study of a 1995 transport concept.

  12. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 2: The design process

    NASA Technical Reports Server (NTRS)

    Gillette, W. B.; Turner, M. J.; Southall, J. W.; Whitener, P. C.; Kowalik, J. S.

    1973-01-01

    The extent to which IPAD is to support the design process is identified. Case studies of representative aerospace products were developed as models to characterize the design process and to provide design requirements for the IPAD computing system.

  13. Towards a dissipativity framework for power system stabilizer design

    SciTech Connect

    Jacobson, C.A.; Stankovic, A.M.; Tadmor, G.; Stevens, M.A.

    1996-11-01

    This paper describes a dissipativity-based framework for the study of low-frequency oscillations in power systems and for power system stabilizer design. This framework leads to a robust controller design formulation, amenable to both H{sub {infinity}} and QFT tools. An illustrating numerical example presents QFT based design for a widely used benchmark two area, four machine power system.

  14. Equilibrium Studies of Designed Metalloproteins.

    PubMed

    Gibney, B R

    2016-01-01

    Complete thermodynamic descriptions of the interactions of cofactors with proteins via equilibrium studies are challenging, but are essential to the evaluation of designed metalloproteins. While decades of studies on protein-protein interaction thermodynamics provide a strong underpinning to the successful computational design of novel protein folds and de novo proteins with enzymatic activity, the corresponding paucity of data on metal-protein interaction thermodynamics limits the success of computational metalloprotein design efforts. By evaluating the thermodynamics of metal-protein interactions via equilibrium binding studies, protein unfolding free energy determinations, proton competition equilibria, and electrochemistry, a more robust basis for the computational design of metalloproteins may be provided. Our laboratory has shown that such studies provide detailed insight into the assembly and stability of designed metalloproteins, allow for parsing apart the free energy contributions of metal-ligand interactions from those of porphyrin-protein interactions in hemeproteins, and even reveal their mechanisms of proton-coupled electron transfer. Here, we highlight studies that reveal the complex interplay between the various equilibria that underlie metalloprotein assembly and stability and the utility of making these detailed measurements. PMID:27586343

  15. Decomposing Systems Into Subsystems For Design

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.

    1991-01-01

    Interactions among systems displayed in concise format. DeMAID (Design Manager's Aide for Intelligent Decomposition) is knowledge based software system for automating sequencing of subprocesses in design process and identifying possible multilevel structure for synthesis problem. Reorders and groups modules of equipment being designed on basis of links among modules, helping design manager make design decisions early in design cycle. Written in FORTRAN 77.

  16. On the design of reversible QDCA systems.

    SciTech Connect

    DeBenedictis, Erik P.; Frank, Michael P. (Florida State University, Tallahassee, FL); Ottavi, Marco; Frost-Murphy, Sarah E.

    2006-10-01

    This work is the first to describe how to go about designing a reversible QDCA system. The design space is substantial, and there are many questions that a designer needs to answer before beginning to design. This document begins to explicate the tradeoffs and assumptions that need to be made and offers a range of approaches as starting points and examples. This design guide is an effective tool for aiding designers in creating the best quality QDCA implementation for a system.

  17. Uncertainty management in intelligent design aiding systems

    NASA Technical Reports Server (NTRS)

    Brown, Donald E.; Gabbert, Paula S.

    1988-01-01

    A novel approach to uncertainty management which is particularly effective in intelligent design aiding systems for large-scale systems is presented. The use of this approach in the materials handling system design domain is discussed. It is noted that, during any point in the design process, a point value can be obtained for the evaluation of feasible designs; however, the techniques described provide unique solutions for these point values using only the current information about the design environment.

  18. Fiber Optic Network Design Expert System

    NASA Astrophysics Data System (ADS)

    Artz, Timothy J.; Wnek, Roy M.

    1987-05-01

    The Fiber Optic Network Design Expert System (FONDES) is an engineering tool for the specification, design, and evaluation of fiber optic transmission systems. FONDES encompasses a design rule base and a data base of specifications of system components. This package applies to fiber optic design work in two ways, as a design-to-specification tool and a system performance prediction model. The FONDES rule base embodies the logic of design engineering. It can be used to produce a system design given a requirement specification or it can be used to predict system performance given a system design. The periodically updated FONDES data base contains performance specifications, price, and availability data for current fiber optic system components. FONDES is implemented in an artificial intelligence language, TURBO-PROLOG, and runs on an IBM-PC.

  19. Microwave power transmission system studies. Volume 4: Sections 9 through 14 with appendices. [ground tests and antenna design

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    The microwave rectifier technology, approaches to the receiving antenna, topology of rectenna circuits, assembly and construction, ROM cost estimates are discussed. Analyses and cost estimates for the equipment required to transmit the ground power to an external user. Noise and harmonic considerations are presented for both the amplitron and klystron and interference limits are identified and evaluated. The risk assessment discussion is discussed wherein technology risks are rated and ranked with regard to their importance in impacting the microwave power transmission system. The system analyses and evaluation are included of parametric studies of system relationships pertaining to geometry, materials, specific cost, specific weight, efficiency, converter packing, frequency selection, power distribution, power density, power output magnitude, power source, transportation and assembly. Capital costs per kW and energy costs as a function of rate of return, power source and transportation costs as well as build cycle time are presented. The critical technology and ground test program are discussed along with ROM costs and schedule. The orbital test program with associated critical technology and ground based program based on full implementation of the defined objectives is discussed.

  20. Optimal control model predictions of system performance and attention allocation and their experimental validation in a display design study

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Govindaraj, T.

    1980-01-01

    The influence of different types of predictor displays in a longitudinal vertical takeoff and landing (VTOL) hover task is analyzed in a theoretical study. Several cases with differing amounts of predictive and rate information are compared. The optimal control model of the human operator is used to estimate human and system performance in terms of root-mean-square (rms) values and to compute optimized attention allocation. The only part of the model which is varied to predict these data is the observation matrix. Typical cases are selected for a subsequent experimental validation. The rms values as well as eye-movement data are recorded. The results agree favorably with those of the theoretical study in terms of relative differences. Better matching is achieved by revised model input data.

  1. Influence of noise requirements on STOL propulsion system designs

    NASA Technical Reports Server (NTRS)

    Rulis, R. J.

    1973-01-01

    The severity of proposed noise goals for STOL systems has resulted in a new design approach for aircraft propulsion systems. It has become necessary to consider the influence of the noise goal on the design of engine components, engine systems, and the integrated nacelle, separately and collectively, from the onset of the design effort. This integrated system design approach is required in order to effect an optimization of the propulsion and aircraft system. Results from extensive design studies and pertinent test programs are presented which show the effect of noise specifications on component and system design, and the trade offs possible of noise versus configuration and performance. The design optimization process of propulsion systems for powered lift systems is presented beginning with the component level and proceeding through to the final integrated propulsion system. Designs are presented which are capable of meeting future STOL noise regulations and the performance, installation and economic penalties are assessed as a function of noise level.

  2. Design Tool for Cryogenic Thermal Insulation Systems

    SciTech Connect

    Demko, Jonathan A; Fesmire, J. E.; Augustynowicz, S. D.

    2008-01-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  3. Systems biology in vaccine design

    PubMed Central

    Six, Adrien; Bellier, Bertrand; Thomas‐Vaslin, Véronique; Klatzmann, David

    2012-01-01

    Summary Vaccines are the most effective tools to prevent infectious diseases and to minimize their impact on humans or animals. Despite the successful development of vaccines that are able to elicit potent and protective immune responses, the majority of vaccines have been so far developed empirically and mechanistic events leading to protective immune responses are often poorly understood. This hampers the development of new prophylactic as well as therapeutic vaccines for infectious diseases and cancer. Biological correlates of immune‐mediated protection are currently based on standard readout such as antibody titres and ELISPOT assays. The development of successful vaccines for difficult settings, such as infectious agents leading to chronic infection (HIV, HCV. . .) or cancer, calls for novel ‘readout systems’ or ‘correlates’ of immune‐mediated protection that would reliably predict immune responses to novel vaccines in vivo. Systems biology offers a new approach to vaccine design that is based upon understanding the molecular network mobilized by vaccination. Systems vaccinology approaches investigate more global correlates of successful vaccination, beyond the specific immune response to the antigens administered, providing new methods for measuring early vaccine efficacy and ultimately generating hypotheses for understanding the mechanisms that underlie successful immunogenicity. Using functional genomics, specific molecular signatures of individual vaccine can be identified and used as predictors of vaccination efficiency. The immune response to vaccination involves the coordinated induction of master transcription factors that leads to the development of a broad, polyfunctional and persistent immune response integrating all effector cells of the immune systems. PMID:22189033

  4. Visual Design Principles: An Empirical Study of Design Lore

    ERIC Educational Resources Information Center

    Kimball, Miles A.

    2013-01-01

    Many books, designers, and design educators talk about visual design principles such as balance, contrast, and alignment, but with little consistency. This study uses empirical methods to explore the lore surrounding design principles. The study took the form of two stages: a quantitative literature review to determine what design principles are…

  5. Designing Electronic Performance Support Systems: Models and Instructional Strategies Employed

    ERIC Educational Resources Information Center

    Nekvinda, Christopher D.

    2011-01-01

    The purpose of this qualitative study was to determine whether instructional designers and performance technologists utilize instructional design models when designing and developing electronic performance support systems (EPSS). The study also explored if these same designers were utilizing instructional strategies within their EPSS to support…

  6. Artwork Interactive Design System (AIDS) program description

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.; Taylor, J. F.

    1976-01-01

    An artwork interactive design system is described which provides the microelectronic circuit designer/engineer a tool to perform circuit design, automatic layout modification, standard cell design, and artwork verification at a graphics computer terminal using a graphics tablet at the designer/computer interface.

  7. Application and design of solar photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Hengwei, Lu; Chuan, Jiang; Luan, Hou; Xia, Zhang

    2011-02-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  8. Techniques for designing rotorcraft control systems

    NASA Technical Reports Server (NTRS)

    Yudilevitch, Gil; Levine, William S.

    1994-01-01

    Over the last two and a half years we have been demonstrating a new methodology for the design of rotorcraft flight control systems (FCS) to meet handling qualities requirements. This method is based on multicriterion optimization as implemented in the optimization package CONSOL-OPTCAD (C-O). This package has been developed at the Institute for Systems Research (ISR) at the University of Maryland at College Park. This design methodology has been applied to the design of a FCS for the UH-60A helicopter in hover having the ADOCS control structure. The controller parameters have been optimized to meet the ADS-33C specifications. Furthermore, using this approach, an optimal (minimum control energy) controller has been obtained and trade-off studies have been performed.

  9. Systems design study of the Pioneer Venus spacecraft. Appendices to volume 1, sections 3-6 (part 1 of 3). [design of Venus probe windows

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design is described of the Venus probe windows, which are required to measure solar flux, infrared flux, aureole, and cloud particles. Window heating and structural materials for the probe window assemblies are discussed along with the magnetometer. The command lists for science, power and communication requirements, telemetry sign characteristics, mission profile summary, mass properties of payloads, and failure modes are presented.

  10. Systems design study of the Pioneer Venus spacecraft. Volume 1. Technical analyses and tradeoffs, section 7 (part 3 of 4). [aerodynamic design problems for small probe reentry

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The aerodynamic design problems for the Pioneer Venus mission are discussed for a small probe shape that enters the atmosphere, and exhibits good stability for the subsonic portion of the flight. The problems discussed include: heat shield, structures and mechanisms, thermal control, decelerator, probe communication, data handling and command, and electric power.

  11. Exploring Health System Responsiveness in Ambulatory Care and Disease Management and its Relation to Other Dimensions of Health System Performance (RAC) – Study Design and Methodology

    PubMed Central

    Röttger, Julia; Blümel, Miriam; Engel, Susanne; Grenz-Farenholtz, Brigitte; Fuchs, Sabine; Linder, Roland; Verheyen, Frank; Busse, Reinhard

    2015-01-01

    Background: The responsiveness of a health system is considered to be an intrinsic goal of health systems and an essential aspect in performance assessment. Numerous studies have analysed health system responsiveness and related concepts, especially across different countries and health systems. However, fewer studies have applied the concept for the evaluation of specific healthcare delivery structures and thoroughly analysed its determinants within one country. The aims of this study are to assess the level of perceived health system responsiveness to patients with chronic diseases in ambulatory care in Germany and to analyse the determinants of health system responsiveness as well as its distribution across different population groups. Methods and Analysis: The target population consists of chronically ill people in Germany, with a focus on patients suffering from type 2 diabetes and/or from coronary heart disease (CHD). Data comes from two different sources: (i) cross-sectional survey data from a postal survey and (ii) claims data from a German sickness fund. Data from both sources will be linked at an individual-level. The postal survey has the purpose of measuring perceived health system responsiveness, health related quality of life, experiences with disease management programmes (DMPs) and (subjective) socioeconomic background. The claims data consists of information on (co)morbidities, service utilization, enrolment within a DMP and sociodemographic characteristics, including the type of residential area. Discussion: RAC is one of the first projects linking survey data on health system responsiveness at individual level with claims data. With this unique database, it will be possible to comprehensively analyse determinants of health system responsiveness and its relation to other aspects of health system performance assessment. The results of the project will allow German health system decision-makers to assess the performance of nonclinical aspects of

  12. Computer Aided Control System Design (CACSD)

    NASA Technical Reports Server (NTRS)

    Stoner, Frank T.

    1993-01-01

    The design of modern aerospace systems relies on the efficient utilization of computational resources and the availability of computational tools to provide accurate system modeling. This research focuses on the development of a computer aided control system design application which provides a full range of stability analysis and control design capabilities for aerospace vehicles.

  13. Gen IV Nuclear Energy Systems Interim Status Report on Pre-conceptual LFR Design Studies and Evaluations

    SciTech Connect

    Halsey, W G; Brown, N W; Smith, C F; Sienicki, J J; Moisseytsev, A V; Kim, S J; Smith, M A; Yang, W S; Williamson, M; Li, N

    2005-02-09

    Previous pre-conceptual core neutronics and system thermal hydraulics calculations initiated the investigation of viability of a Small Secure Transportable Autonomous Reactor (SSTAR) lead-cooled small modular fast reactor concept.1 The calculations indicated that a single-phase natural circulation SSTAR reactor concept with good core reactor physics performance, good system thermal hydraulics performance, and a high Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton cycle efficiency of 40 % may be viable at an electrical power of 18 MWe (45 MWt). Pre-conceptual studies of SSTAR viability have continued with the objective of improving the system thermal hydraulic performance and raising the plant efficiency as well as extending the neutronics analysis. This effort has been motivated by several considerations. First, the initial Pre-conceptual studies were focused upon a ''pancake'' core having a height-to-diameter of 0.5. It was found that a compact core with high average burn up could be realized with a height-to-diameter ratio of 0.8. Second, the initial assumed reactor vessel height of 12.2 meters limited the height of the Pb-to-CO{sub 2} in-reactor heat exchangers (HXs) which reduced the efficiency of supercritical carbon dioxide (S-CO2) Brayton cycle power converter. It was found that by increasing the reactor vessel height to 18 meters, the greater driving head for single-phase natural circulation would offset both the greater pressure drop of the 0.8 height-to-diameter ratio core as well as the pressure drop of taller HXs. This has enabled the plant efficiency to be increased from 40 to 43 % and the plant electrical power to be raised from 18 to 20 MWe. Third, reactivity feedback coefficients, which had previously not been generated for SSTAR, have now been calculated for the core. The reactivity feedback coefficients provide a basis for future investigation of the autonomous load following and passive shutdown behavior of the reactor. The current status of

  14. GALACSI system design and analysis

    NASA Astrophysics Data System (ADS)

    Ströbele, S.; La Penna, P.; Arsenault, R.; Conzelmann, R. D.; Delabre, B.; Duchateau, M.; Dorn, R.; Fedrigo, E.; Hubin, N.; Quentin, J.; Jolley, P.; Kiekebusch, M.; Kirchbauer, J. P.; Klein, B.; Kolb, J.; Kuntschner, H.; Le Louarn, M.; Lizon, J. L.; Madec, P.-Y.; Pettazzi, L.; Soenke, C.; Tordo, S.; Vernet, J.; Muradore, R.

    2012-07-01

    GALACSI is one of the Adaptive Optics (AO) systems part of the ESO Adaptive Optics Facility (AOF). It will use the VLT 4-Laser Guide Stars system, high speed and low noise WaveFront Sensor cameras (<1e-, 1000Hz) the Deformable Secondary Mirror (DSM) and the SPARTA Real Time Computer to sharpen images and enhance faint object detectability of the MUSE Instrument. MUSE is an Integral Field Spectrograph working at wavelengths from 465nm to 930nm. GALACSI implements 2 different AO modes; in Wide Field Mode (WFM) it will perform Ground Layer AO correction and enhance the collected energy in a 0.2" by 0.2" pixel by a factor 2 at 750nm over a Field of View (FoV) of 1' by 1'. The 4 LGSs and one tip tilt reference star (R-mag <17.5) are located outside the MUSE FoV. Key requirements are to provide this performance and a very good image stability for a 1hour long integration time. In Narrow Field Mode (NFM) Laser Tomography AO will be used to reconstruct and correct the turbulence for the center field using the 4 LGSs at 15" off axis and the Near Infra Red (NIR) light of one reference star on axis for tip tilt and focus sensing. In NFM GALACSI will provide a moderate Strehl Ratio of 5% (goal 10%) at 650nm. The NFM hosts several challenges and many subsystems will be pushed to their limits. The opto mechanical design and error budgets of GALACSI is described here.

  15. Design Considerations for Artificial Pancreas Pivotal Studies.

    PubMed

    Russell, Steven J; Beck, Roy W

    2016-07-01

    The development of artificial pancreas systems has evolved to the point that pivotal studies designed to assess efficacy and safety are in progress or soon to be initiated. These pivotal studies are intended to provide the necessary data to gain clearance from the U.S. Food and Drug Administration, coverage by payers, and adoption by patients and clinicians. Although there will not be one design that is appropriate for every system, there are certain aspects of protocol design that will be considerations in all pivotal studies designed to assess efficacy and safety. One key aspect of study design is the intervention to be used by the control group. A case can be made that the control group should use the currently available best technology, which is sensor-augmented pump therapy. However, an equally, if not more, compelling case can be made that the control intervention should be usual care. In this Perspective, we elaborate on this issue and provide a pragmatic approach to the design of clinical trials of artificial pancreas systems. PMID:27330125

  16. Automated Design of Complex Dynamic Systems

    PubMed Central

    Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni

    2014-01-01

    Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969

  17. Personalized Integrated Educational System (PIES) for the Learner-Centered Information-Age Paradigm of Education: A Study to Improve the Design of the Functions and Features of PIES

    ERIC Educational Resources Information Center

    Dutta, Pratima

    2013-01-01

    The Personalized Integrated Educational System (PIES) design theory is a design recommendation regarding the function and features of Learning Managements Systems (LMS) that can support the information-age learner-centered paradigm of education. The purpose of this study was to improve the proposed functions and features of the PIES design theory…

  18. System assessment study of the ESA Darwin Mission: concepts trade-off and first iteration design on novel Emma arrangement

    NASA Astrophysics Data System (ADS)

    Ruilier, C.; Krawczyk, R.; Sghedoni, M.; Chanal, O.; Degrelle, C.; Pirson, L.; Simane, O.; Thomas, E.

    2007-09-01

    ESA's Darwin mission is devoted to direct detection and spectroscopic characterisation of Earth-like planets in the thermal infrared domain by nulling interferometry in space. This technique requires deep and stable starlight rejection to an efficiency around 106 over the whole spectral band. Darwin is a major target for Thales Alenia Space, and is considered as a strategic part of its programme roadmap. In this paper we present the main outcomes of the Darwin mission study conducted by Thales Alenia Space from Oct. 2005 to Jul. 2007. Studying this mission in depth, our proposed most promising configuration features spacecraft in non planar arrangement (called Emma). It offers the best science return in terms of number of stars detected and sky accessibility while staying compliant with mass and volume constraints of a single Ariane 5 launch. Our solution dramatically alleviates engineering constraints thanks to a fully non deployable concept. As compared to the more conventional planar arrangement (called Charles), Emma suppresses Single Point Failures and spurious flexible modes, thus maximising both the system reliability and the stability of the dynamical environment. Emma is fully compatible with either 3 or 4 collectors.

  19. Linear tracking systems with applications to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Lee, W. H.; Athans, M.; Castanon, D.; Bacchioloni, F.

    1977-01-01

    A class of optimal linear time invariant tracking systems, both in continuous time and discrete time, of which the number of inputs (which are restricted to be step functions) is equal to the number of system outputs, is studied. Along with derivation of equations and design procedures, two discretization schemes are presented, constraining either the control or its time derivative, to be a constant over each sampling period. Descriptions are given for the linearized model of the F-8C aircraft longitudinal dynamics, and the C* handling qualities criterion, which then serve as an illustration of the applications of these linear tracking designs. A suboptimal reduced state design is also presented. Numerical results are given for both the continuous time and discrete time designs.

  20. Design-Filter Selection for H2 Control of Microgravity Isolation Systems: A Single-Degree-of-Freedom Case Study

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Whorton, Mark S.

    2000-01-01

    Many microgravity space-science experiments require active vibration isolation, to attain suitably low levels of background acceleration for useful experimental results. The design of state-space controllers by optimal control methods requires judicious choices of frequency-weighting design filters. Kinematic coupling among states greatly clouds designer intuition in the choices of these filters, and the masking effects of the state observations cloud the process further. Recent research into the practical application of H2 synthesis methods to such problems, indicates that certain steps can lead to state frequency-weighting design-filter choices with substantially improved promise of usefulness, even in the face of these difficulties. In choosing these filters on the states, one considers their relationships to corresponding design filters on appropriate pseudo-sensitivity- and pseudo-complementary-sensitivity functions. This paper investigates the application of these considerations to a single-degree-of-freedom microgravity vibration-isolation test case. Significant observations that were noted during the design process are presented. along with explanations based on the existent theory for such problems.